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ABSTRACT

ELHAM SOHRABI. Option Valuation Under A Regime-Switching Model Using the
Fast Fourier Transform. (Under the direction of Dr. Adriana Ocejo Monge)

The global financial crisis had severe implications on the real economy. For the

US alone, Luttrell et al. [40] estimate output losses in the range of 6 to 14 trillion

USD. It is hence not surprising that policy makers are keen to develop models which

can issue warning signals ideally sufficiently early to implement policies that increase

the resilience of financial institutions and ultimately mitigate at least some of the

risks and costs associated with financial crises. Hence regime-switching models have

been used extensively to identify business cycle turning points. Specifically, regime-

switching models have the capability to incorporate the changes of the model dynam-

ics brought by the changing macroeconomics conditions. Regime-switching models

typically use the states of a modulating Markov chain to represent the states of an

economy, depicted by some macroeconomics indicators. By adopting this method-

ology, regime-switching models can incorporate the impacts of structural changes in

macroeconomics conditions on asset price dynamics and the stochastic evolution of

investment opportunity sets, for example. Consequently, it is practical to consider

the valuation of financial derivatives under regime-switching models.

In this thesis, we consider valuation of different types of options where the under-

lying asset price or commodity spot price is governed by a regime-switching model.

We adopt an observable, continuous-time, finite-state Markov chain. We mostly focus

on obtaining analytical formula of the so-called characteristic function for logarithm

of commodity spot price, futures price and stock price.

Chapter 1 is organized as follows. Section 1 describes options and its pricing

model. Section 2 provides a literature review for regime-switching model, stochastic

interest rate models and fast Fourier transform (FFT). Section 3 presents a brief
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introduction of the basic definitions and mathematical tools to be used in this thesis

such as Markov chain setup model and FFT. We describe how to obtain analytical

pricing formula using inverse Fourier transform and discretize the pricing formula via

FFT.

The outline of Chapter 2 is as follows. In Section 1, we first briefly introduce the

motivation behind developing a fast Fourier transform approach for option pricing

when the underlying asset process is governed by a regime-switching model. Section

2 describes the risk-neutral world and the asset price dynamics where under risk-

neutral probability measure follows a regime-switching geometric Brownian motion.

Section 3 presents the derivation for obtaining an analytical pricing formula for the

two-state case and general case via the inverse Fourier transform. Then Section 4

calculates the inverse Fourier transform via FFT, providing an easier and faster way

to calculate options prices. Section 5 introduces other numerical methods to compare

with FFT results. As usual, we try to implement Monte Carlo simulation since it

frequently serves as a benchmark for testing other numerical methods. Furthurmore,

a novel semi-Monte Carlo simulation algorithm is presented by Liu el. at [39] that

can also be used as benchmark values in numerical experiments. To price our path

dependent European call options, we require the stock price trajectory {St}t∈[0,T ].

Finally, we reported numerical results in Section 6 & 7 and provide further remarks

and conclutions about the chapter in section 8. All of our proofs and Python pro-

gramming are placed in the Appendix. It is our hope that this information when

combined with some familiarity with the language, or at least an error checking IDE,

that any reader will be able to replicate our results with little trouble.

In Chapter 3, we first state our motivation in section 1. Section 2 presents the

Markovian regime-switching Ornstein-Uhlenbeck model. In this section, we discuss a

Markovian regime-switching extension to the Ornstein-Uhlenbeck model for evaluat-

ing European-style commodity options and futures options. The main feature of our
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model is that model parameters, the mean-reverting level and the volatility of the

commodity spot price, are governed by an observable continuous-time, finite-state,

Markov chain. In Section 3, we first consider the valuation of commodity options

and then the valuation of commodity futures options using inverse Fourier transform.

The final section provides concluding remarks. All proofs in this chapter are standard

and involve the use of standard mathematical techniques.

We also extend our work in chapter 4 to investigate the pricing of European-style

commodity options and futures options with a Markovian regime-switching Vasicek

stochastic interest rate model. The parameters of this model, including the mean-

reversion level, the volatility of the stochastic interest rate, and the volatility of the

commodity spot price are modulated by an observable, continuous-time, finite-state

Markov chain. We start with introducing a risk-neutral probability measure. To take

the zero-coupon bond value as the numéraire, a measure change technique is applied

to change the risk-neutral probability measure into a T -forward measure. We then

obtained a closed-form expression for the characteristic function of the logarithmic

commodity price and futures price. Eventually, chapter 5 shows future directions and

some potential future works.
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CHAPTER 1: INTRODUCTION

1.1 Overview

A “derivative” is a contract between two or more parties whose value is based on

an agreed-upon underlying financial asset (like a security) or set of assets (like an

index). Common underlying instruments include bonds, commodities, currencies,

interest rates, market indexes and stocks. Derivatives have been about to be as the

virtually important monetary instruments for centuries. The valuation of derivatives

has been a long-lasting issue. There are many different types of derivatives. The

most common derivative types are futures contracts, forward contracts, options and

swaps. Amongst the different kinds of derivatives, options play a carrying a lot of

weight role in the financial market. Options contracts have been known for decades.

The Chicago Board Options Exchange was established in 1973, which set up a regime

using standardized forms and terms and trade through a guaranteed clearing house.

Trading activity and academic interest has increased since then (Brealey and Myers

[4]).

Today, many options are created in a standardized form and traded through clear-

ing houses on regulated options exchanges, while other over-the-counter options are

written as bilateral, customized contracts between a single buyer and seller, one or

both of which may be a dealer or market-maker. Hull [31] defines an option as follows:

“An option is a financial derivative that represents a contract sold by one party (the

option writer) to another party (the option holder). The contract offers the buyer the

right, but not the obligation, to buy (call) or sell (put) a security or other financial
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asset at an agreed-upon price (the strike price) during a certain period of time or on

a specific date (exercise date)”.

There are many different types of options that can be traded and these can be

categorized in a number of ways. In a very broad sense, there are two main types:

calls and puts. Calls give the buyer the right to buy the underlying asset, while

puts give the buyer the right to sell the underlying asset. Along with this clear

distinction, options are also usually classified based on whether they are American

style or European style. This has nothing to do with geographical location, but rather

when the contracts can be exercised.

Options can be further categorized based on the method in which they are traded,

their expiration cycle, and the underlying security they relate to. There are also other

specific types and a number of exotic options that exist. Options and financial prod-

ucts with embedded-option features have become so important that we can hardly

find an investment portfolio without these products. Consequently, the valuation of

such well known financial derivatives deserves in a superior way attention.

After the introduction of well-known Black and Scholes [3]’s work, option valuation

has played a vital role in the development of modern finance. The valuation of options

has been a theoretically and practically important topic in the area of finance. In

mathematical finance, the Black–Scholes equation is a partial differential equation

(PDE) governing the price evolution of a European call or European put under the

Black–Scholes model. The well-known Black-Scholes-Merton have attracted a lot

of attention for quite a while due to the easy implementation of the closed-form

option pricing formula. However, numerous empirical studies have revealed that

the Black-Scholes-Merton model doesn’t satisfy the ability to describe some vital

features of the underlying assets, like no dividends are paid out during the life of the

option, there are no transaction costs in buying the option, the risk-free rate and

volatility of the underlying are known and constant, the returns on the underlying
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are normally distributed. In order to overcome all the mentioned shortcomings and

improve the efficiency of the Black-Scholes-Merton model, both academic researchers

and industry practitioners have dedicated efforts to extend the Black-Scholes-Merton

model in various possible directions, including jump-diffusion models (Merton [42]),

stochastic volatility models (Hull and White [32]; Wiggins [50]; Heston [30]; etc.),

regime-switching models, etc.

1.2 Literature review

In this dissertation, we investigate options valuation under Regime-Switching (RS)

model with stochastic interest rate using the fast Fourier transform (FFT). Therefore,

it’s beneficial to know about the background of RS model, Stochastic interest rate

and FFT in the following subsections. This section presents a brief literature review

of RS model, Stochastic interest rate and FFT to be used in the subsequent chapters.

1.2.1 Regime-Switching model

The global financial crisis had severe implications on the real economy. For the US

alone, Luttrell et al. [40] estimate output losses in the range of 6 to 14 trillion USD.

It is hence not surprising that policy makers are keen to develop models which can

issue warning signals ideally sufficiently early to implement policies that increase

the resilience of financial institutions and ultimately mitigate at least some of the

risks and costs associated with financial crises. Hence RS models have been used

extensively to identify business cycle turning points. Specifically, RS models have the

capability to incorporate the changes of the model dynamics brought by the changing

macroeconomics conditions. Consequently, RS models have attracted considerable

interests and have been applied to various financial areas, such as option pricing,

bond pricing, stock returns, etc. The history of RS models can be traced back to the

works of Quandt [44] and Goldfeld and Quandt [27]. The RS model by Hamilton [29]
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is one of the most popular nonlinear time series models in the literature.

1.2.2 Stochastic interest rate models

An interest rate is the rate at which interest is paid by a borrower for the use of money

that they borrow from a lender. Interest rates are fundamental to a capitalist society.

Interest rates are normally expressed as a percentage rate over the period of one year.

Interest rates are also a tool of monetary policy and are taken into account when

dealing with variables like investment, inflation, and unemployment. In traditional

actuarial investigations, the interest rate is assumed to be deterministic and hence

there is only one source of uncertainty, the mortality uncertainty, to be considered.

Concerns about the effects of including a stochastic interest rate in the model have

been growing during the last decade. The literature has tended to focus on annuities

and the model adopted to describe the interest rate uncertainty, in a continuous

framework, has usually involved the use of a Brownian motion. When the market

rates are high, volatility is expected to be high or when interest rates are low, volatility

will be low. Therefore, different stochastic interest rate models have been proposed

and helped to overcome the disadvantage of the constant interest rate assumption

under the Black-Scholes-Merton model. Some popular stochastic interest rate models

include those proposed by Vasicek [49], Cox et al. [11], Hull and White [33], among

others. One common feature of these models is the mean-reverting property of the

interest rate. The short-term effectiveness of these models were justified by many

empirical studies. Due to the advantages of RS models, it is reasonable to expect

that RS stochastic interest rate models may improve the long-term effectiveness of

the existing stochastic interest rate models. Examples of RS stochastic interest rate

diffusion models can be found in Elliott and Mamon [17], Elliott and Wilson [22] and

Elliott and Siu [18]. By adopting the method of stochastic flows, Siu [48] considered

the valuation of a bond under a jump-augmented Vasicek model. A partial differential



5

equation approach was applied in Shen and Siu [46] to obtain an exponential affine

formula for a zero-coupon bond.

1.2.3 The fast Fourier transform

Various techniques have been devised to determine the valuation of financial deriva-

tives. Among all, the Fourier transform has been widely applied to the valuation of

financial derivatives. The faster calculation speed of the discrete Fourier transform

against for example monte carlo simulation may be one of the main reasons why

FFT method attracts so much attention from both academics and industry. The

first of these Fourier methods is actually the application of the Gil-Palaez inversion

formula to finance. This idea originates from Heston [30]. However, singularities in

the integrand prevent it to be an accurate method. The second attempt, more recent

technique, was first proposed by Carr and Madan [7] by applying the FFT method

to price European-style options under the variance gamma (VG) model. Since then,

the FFT method has been applied to the valuation of options under different mod-

els. For example, Benhamou [1] discussed the valuation of discrete Asian options in

non-lognormal density cases. Dempster and Hong [13] presented a two-dimensional

FFT and considered the valuation of spread options under a three-factor stochas-

tic volatility model. Cĕrný [7] discussed applications of the FFT in finance. By

adopting the FFT technique, Liu et al. [39] investigated the valuation of options

under a regime-switching model and Wong and Guan [51] considered the valuation

of American options under a Lévy process.

FFT relys on the availability of the so-called characteristic function of the loga-

rithm of the stock price. Given any such characteristic function, one can develop a

simple analytic expression for the Fourier transform of the option value. Indeed, for a

wide class of stock models characteristic functions have been obtained in closed form

even if the risk-neutral densities (or probability mass functions) themselves are not
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available explicitly such as all the mentioned studies in the above paragraph. The

tremendous speed of the FFT allows option prices for a huge number of strikes to

be evaluated very rapidly. Although the FFT approach is significantly faster than

other numerical methods, such as finite difference method and Monte Carlo simula-

tion, it still has approximation errors when we adopt a discrete sum to approximate

the integral. To control the approximation errors, Carr and Madan [6] discussed the

selection of the upper limit of the integral and gave a sufficient condition to guarantee

the square integrability property of the dampened pricing formula. Numerical errors

in discretizing the pricing formula were discussed in Lee [37]. Liu et al. [39] also

showed that the errors are small.

1.3 Preliminaries

This section presents a brief introduction of the basic definitions and tools to be used

in the subsequent chapters. The contents in this section are mainly based on Elliott

et al. [15] and Carr and Madan [6].

1.3.1 Markov chain

Let’s consider a continuous-time economy with a finite time horizon T , i.e., T :=

[0, T ], where T < ∞. Suppose (Ω,F ,P) is a complete probability space, where P is

a risk-neutral probability measure. We assume the state of an economy is modeled

by a continuous-time, finite-state, observable Markov Chain α(·) := {α(t)|t ∈ T }

defined on (Ω,F ,P). The state space of the chain is denoted by S := {s1, s2, ..., sN},

representing N different observable states of an economy. Without loss of generality,

using the convention in Elliott et al. [15], we identify the state space of the chain

with a finite set of standard unit vectors ε := {e1, e2, ..., eN} ⊂ RN , where the j-

th component of ei is the Kronecker delta δij, for each i, j = 1, 2, ..., N . Let Q :=

[qij]i,j=1,2,...,N denote the generator or rate matrix of the chain α(·). Then, Elliott et
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al. [15] in Lemma 1.1 Appendix B obtained the following martingale representation

for the chain α(·):

α(t) = α(0) +

∫ t

0

Qα(u)du+M(t). (1.1)

Here {M(t)|t ∈ T } is an RN -valued martingale with respect to the natural fil-

tration Fα := {Fα(t)|t ∈ T } generated by Markov chain {α(t)|t ∈ T } under the

probability measure P .

1.3.2 The fast Fourier transform

FFT was introduced in Carr and Madan [6]. For the sake of completeness, we present a

brief introduction of the application of FFT. Define by ST the value of the underlying

asset at the maturity time T and K the strike price. Suppose that the price of a

T -maturity European-style call option at time 0 is given by

C(0, T,K) = E
{

e−rT
(
ST −K

)+}
(1.2)

where E[·] denote the expectation under the risk-neutral probability measure.

Let XT = lnST and κ = lnK denote the logarithmic of the asset price at time T

and the strike value, respectively. Then

C(0, T, κ) = E
{

e−rT
(
eXT − eκ

)+}
. (1.3)

Now let’s derive the Fourier transform of C(0, T, κ). Assume f(x) is the proba-

bility density function of XT :

Ĉ(0, T, u) =

∫ ∞
−∞

e−iuκC(0, T, κ)dκ
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=

∫ ∞
−∞

e−iuκE
{

e−rT
(
eXT − eκ

)+}
dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
−∞

(
ex − eκ

)+
f(x) dx dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
κ

(ex − eκ)f(x) dx dκ

= e−rT
∫ ∞
−∞

∫ x

−∞
e−iuκ(ex − eκ) dκ f(x) dx (1.4)

where we changed the order of integration by Fubini’s theorem and used the result∫∞
x

e−iuκ(ex − eκ)+ dκ = 0. If we evaluate the inner integral of (1.4), we have

∫ x

−∞
e−iuκ(ex − eκ) dκ =

∫ x

−∞
e−iuκ ex dκ−

∫ x

−∞
e−iuκ eκ dκ

= ex
e−iuκ

−iu
∣∣x
−∞ −

e(1−iu)κ

(1− iu)

∣∣x
−∞. (1.5)

As we can see, the first term of (1.5) is undetermined due to limκ→−∞ e−iuκ 6= 0,

while in second term of (1.5) limκ→−∞ e(1−iu)κ converges to zero.

To get around the “undetermined” problem, Carr and Madan [6] introduced a

dampning parameter ρ to modify the call option price. The so-called dampened call

price is defined as

c(0, T, κ) = exp(ρκ)C(0, T, κ).

The Fourier transform of the dampened call option price is given by

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκ c(0, T, κ) dκ.

Next we are showing that the dampening prameter ρ can force convergence,
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thereby permitting a computable Fourier tranform.

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκc(0, T, κ)dκ

=

∫ ∞
−∞

e−iuκeρκE
{

e−rT
(
eXT − eκ

)+}
dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
−∞

eρκ
(
ex − eκ

)+
f(x) dx dκ

= e−rT
∫ ∞
−∞

eρκe−iuκ
∫ ∞
κ

(ex − eκ)f(x) dx dκ

= e−rT
∫ ∞
−∞

∫ x

−∞
e(ρ−iu)κ(ex − eκ) dκ f(x) dx. (1.6)

Let’s compare the inner integral in (1.4) to (1.6). It can be seen that the term∫ x
−∞ e−iuκ(ex − eκ) dκ has been changed to

∫ x
−∞ e(ρ−iu)κ(ex − eκ) dκ.

Now if we evaluate the inner integral of (1.6), we have

∫ x

−∞
e(ρ−iu)κ(ex − eκ) dκ =

∫ x

−∞
e(ρ−iu)κ ex dκ−

∫ x

−∞
e(ρ−iu)κ eκ dκ

= ex
e(ρ−iu)κ

(ρ− iu)

∣∣x
−∞ −

e(ρ+1−iu)κ

(ρ+ 1− iu)

∣∣x
−∞

= ex
e(ρ−iu)x

(ρ− iu)
− e(ρ+1−iu)x

(ρ+ 1− iu)

=
e(ρ+1−iu)x

(ρ− iu)(ρ+ 1− iu)
. (1.7)

Given ρ > 0, the exponential terms vanish for κ = −∞:

lim
κ→−∞

e(ρ−iu)x = lim
κ→−∞

e(ρ+1−iu)x = 0. (1.8)

One can easily prove that ρ > 0 is to ensure the square integrability for call options

and ρ < 0 is to ensure the square integrability for put options.

The pricing formula for the European-style call option can be obtained via the
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inverse Fourier transform as follows:

C(0, T, κ) =
e−ρκ

2π

∫ ∞
−∞

eiuκ ĉ(0, T, u) du =
e−ρκ

π

∫ ∞
0

eiuκ ĉ(0, T, u) du. (1.9)

where the second term comes from the fact that call option is a real number. This

implies the Fourier transform ĉ(0, T, u) is odd in its imaginary part so that

Im{ĉ(0, T, u)} = −Im{ĉ(0, T,−u)} (1.10)

and even in its real part so that

Re{ĉ(0, T, u)} = Re{ĉ(0, T,−u)}. (1.11)

Thus this allows to rewrite the pricing integral as the second term in (1.9).

To derive the Fourier transform of the dampened call option price, one standard

way is to utilize the relationship between the Fourier transform of the dampened call

option price and the characteristic function of the logarithmic asset price. In this

thesis, under RS models, the conditional characteristic function of the logarithmic

asset price given FαT has to be derived first. To illustrate the method, we present the

details in the present context.

Let fFαT (x) denote the conditional density function of XT given FαT . Then for each

t ∈ T and u ∈ R

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκc(0, T, κ)dκ

=

∫ ∞
−∞

e−iuκeρκE
{

e−rT (eXT − eκ)+
}

dκ

= E
{∫ ∞

−∞
e−iuκeρκE

{
e−rT (eXT − eκ)+|FαT

}
dκ

}
= E

{∫ ∞
−∞

e−iuκeρκe−rT
∫ ∞
κ

(
ex − eκ

)
fFαT (x)dxdκ

}
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= E
{∫ ∞

−∞
e−rTfFαT (x)

∫ x

−∞

(
exe(ρ−iu)κ − e(1+ρ−iu)κ

)
dκdx

}
= E

{∫ ∞
−∞

e−rTfFαT (x)

(
e(1+ρ−iu)x

(ρ− iu)
− e(1+ρ−iu)x

(1 + ρ− iu)

)
dx

}
= E

{
e−rT

(
φFαT (−i(1 + ρ)− u)

(ρ− iu)
−
φFαT (−i(1 + ρ)− u)

(1 + ρ− iu)

)}

=

e−rTE
{
φFαT (−i(1 + ρ)− u)

}
(ρ− iu)(1 + ρ− iu)

(1.12)

where

φFαT (ν) = E{eiuXT |FαT } =

∫ ∞
−∞

eiν x fFαT (x) dx (1.13)

is the conditional characteristic function of XT given FαT .

The third equality in (1.12) holds by the well-known property of conditional

expectations(E{E{X|Y }} = E{X}), and fifth equality holds by Fubini’s theorem

since the modified call price is bounded.

There are many ways to define the discrete Fourier transform (DFT), varying

in the sign of the exponent, normalization, etc. Since we are going to use Python

implementation, therfore we are following the same definition for DFT given in Python

package numpy. The DFT is defined in Python is

Ak =
n−1∑
m=0

amexp

{
− 2πi

mk

n

}
, k = 0, ..., n− 1. (1.14)

The inverse DFT is defined as

am =
1

n

n−1∑
k=0

Akexp

{
2πi

mk

n

}
m = 0, ..., n− 1.

It differs from the Fourier transform by the sign of the exponential argument and

the default normalization by
1

n
.

Given the Fourier transform function ĉ(0, T, u), the modified call option price
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c(0, T, κ) can be obtained by the inverse Fourier transform as described in (1.9)

c(0, T, κ) =
exp(−ρκ)

π

∫ ∞
0

eiuκĉ(0, T, u)du, −∞ < κ <∞. (1.15)

Set uj = j4u, j = 0, 1, ..., N−1, where 4u is the grid size in the variable u. Then

(1.15) can be approximated by the following summation:

c(0, T, κ) ≈ 1

π

N−1∑
j=0

eiujκĉ(0, T, uj)4u. (1.16)

Next, let4κ be the grid size in κ and choose a grid along the log strike κ as below:

κl = (l − N

2
)4κ, l = 0, 1, ..., N − 1. (1.17)

Then

c(0, T, κl) ≈
1

π

N−1∑
j=0

eiujκl ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eij4u(l−
N
2
)4κ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eijl4u4κe−ij
N
2
4u4κ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1. (1.18)

If we set

4u4κ =
2π

N
, (1.19)

then we have

c(0, T, κl) ≈
1

π

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1. (1.20)
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Using Simpson’s rule for numerical integration, define a sequence of weighting

factors by

w(j) =



1

3
, if j = 0,

4

3
, if j is odd,

2

3
, if j is even.

Then

c(kl) ≈
4u

πN

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(0, T, uj)w(j)N, l = 0, 1, ..., N − 1. (1.21)

Comparing (1.21) with (1.14), it is easily seen that c(0, T, κ) can be obtained

by taking the Fourier transform of the sequence
{

e−ijπ ĉ(0, T, uj)w(j)N
}

, for j =

0, 1, ..., N − 1.

The fast Fourier transform algorithm developed by Cooley and Tukey [9] and

later extended by many others provide a more efficient algorithm for calculating DFT

or inverse DFT with sample points that are powers of two. That is, N = 2p, p ∈

{1, 2, ...}. The Cooley-Tukey FFT algorithm can reduce the number of multiplications

from N2 to N logN .



CHAPTER 2: FFT APPROACH FOR PRICING A EUROPEAN CALL OPTION

UNDER A REGIME-SWITCHING MODEL

In this chapter, we introduce the FFT approach to option valuation, where the un-

derlying asset price is governed by a regime-switching geometric Brownian motion

(GBM).

2.1 Motivation

FFT is a numerical approach for pricing options which utilizes the characteristic func-

tion of the underlying instrument’s price process. FFT is a significant computational

method in scientific computing and it has been widely applied to financial engineer-

ing, specifically in options pricing. FFT approach makes use of the characteristic

function of the underlying asset price. The use of the FFT method is motivated

by the following reasons: the algorithm has speed advantage (especially over Monte

Carlo Simulation and PDE). This enables the Fourier transform algorithm to cal-

culate prices accurately for a whole range of strikes. The characteristic function of

the log-price is known and has a simple form for many models considered in litera-

ture while the density is often not known in the closed form. The models meet this

requirement include the stochastic volatility models, the affine jump diffusions, and

the exponential Lévy models, among others; see Carr and Madan [6], Carr and Wu

[7], and Duffie et al. [113] for detailed discussions of these models. However, FFT

approach is only applicable to problems for which the characteristic functions of the

underlying price process can be obtained analytically. Because of its prevalence, in-

creasing research efforts have been devoted to the FFT approach in option pricing.
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For example, Carr and Madan [6] illustrated the fundamental idea of using FFT for

valuing European options based on the Black-Scholes setting and applied it to the

variance gamma (VG) model (see Madan et al. [41]). Cĕrný [7] presented a detailed

discussion on the implementation of FFT to option pricing.

Along another line, considerable attention has been focused on the RS diffusion

models for asset prices recently. In this setting, model parameters (rate of return,

volatility, and risk-free interest rate) are assumed to depend on a finite-state, observ-

able Markov chain, whose states represent different “states of the world” or regimes,

which can describe various randomly changing economical factors. By incorporating

an observable Markov chain into the formulation, the RS framework can capture the

effect of those less frequent but significant events that have impact on the individual

asset price behavior (especially for long-term dynamics). This is a major advantage

compared with other models, see Yao et al. [52], and Zhang [54], among others for

discussions on considerations leading to this modelling approach.

In this chapter, the FFT approach is applied for pricing European-style call op-

tions, where the underlying asset price is governed by a regime-switching geometric

Brownian motion (RSGBM). An FFT method for the RS model is developed. For

the two states case, numerical result is provided, however, for the general case where

the number of states is more than two (m > 2), the fundamental matrix sulotion is

not known explicitly. We use monte-carlo simulation as well as a novel method called

semi-MC simulation to compare with our FFT results for the two case. We also use

analytical sulotion for the case where the drift and interest rate don’t depend on time

and compare the results with what obtained by FFT, MCS and Semi-MCS.

2.2 Regime-switching model and risk-neutral option pricing

We consider a continuous-time economy with a finite time horizon [0, T ] where T <∞.

Suppose that (Ω,F ,P) is a complete probability space, where P is a risk-neutral
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probability measure. Let α(·) = {α(t)|t ∈ [0, T ]} be an observable continuous time

Markov chain with a finite state space M = {1, ...,m}, which may represent general

market trends. For example, when m = 2, α(t) = 1 may denote a bullish market and

α(t) = 2 a bearish market.

Let’s assume that under the risk-neutral probability measure P , the dynamics of

the underlying asset value, St, is given by

dSt = µ(α(t))St dt+ σ(α(t))St dWt, t ≥ 0 (2.1)

where S(0) = S0 > 0 is the initial underlying asset price, Wt is a standard Brownian

motion independent of α(t), and µ(α(t)) and σ(α(t)) are the risk-free drift rate and

volatility of the underlying asset, respectively. We assume that µ(j) and σ(j) are

positive constant, for each j ∈M.

Under the risk-neutral probability measure P , the price of T -maturity European-

style call options at time 0 with strike price K > 0 is given as follows:

C(K) = E
{

exp
(
−
∫ T

0

r(α(t))dt
)

(ST −K)+
}
. (2.2)

where the instantaneous risk-free interest rate, r(α(t)) also depends on α(t) with

r(j) > 0, for each j ∈M.

Following the notation in Liu et al. [39], let κ = ln

(
K

S0

)
and ST = S0e

XT . Then

(2.2) can be written as

C(k) = S0E
{

exp
(
−
∫ T

0

r(α(t))dt
)

(eXT − eκ)+
}
. (2.3)

2.3 Fourier transform of the option price

In this section, we would like to apply Fourier transform to the European-style call

option price given by equation (2.3). Let’s first recall the definition of Fourier trans-
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form (FT) and inverse Fourier transform (IFT) for continuous functions. The FT

of the function f is traditionally denoted by f̂ . There are several common conven-

tions for defining the FT of an integrable function f : R 7→ C. Here we will use the

following definition:

f̂(u) =

∫ ∞
−∞

e−iuxf(x)dx,

for any real number u.

When the independent variable x represents time, the transform variable u repre-

sents frequency. Under suitable conditions, f is determined by f̂ via IFT:

f(x) =

∫ ∞
−∞

eiuxf̂(u)du,

for any real number x.

For the rest of this dissertation, we use above definitions for FT and IFT. Assume

f(x) is the probability density function of XT . Now let’s derive the FT of C(k).

Ĉ(u) =

∫ ∞
−∞

e−iuκC(κ)dκ

=

∫ ∞
−∞

e−iuκS0E
{

exp
(
−
∫ T

0

r(α(t))dt
)

(eXT − eκ)+
}

dκ

= S0

∫ ∞
−∞

e−iuκ
∫ ∞
−∞

exp
(
−
∫ T

0

r(α(t))dt
)(

ex − eκ
)+
f(x) dx dκ

= S0

∫ ∞
−∞

exp
(
−
∫ T

0

r(α(t))dt
)

e−iuκ
∫ ∞
κ

(ex − eκ)f(x) dx dκ

= S0

∫ ∞
−∞

exp
(
−
∫ T

0

r(α(t))dt
)
f(x)

∫ x

−∞
e−iuκ(ex − eκ) dκ dx (2.4)

where we changed the order of integration by Fubini’s theorem and used the result
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x

e−iuκ(ex − eκ)+ dκ = 0. If we evaluate the inner integral of (2.4), we have

∫ x

−∞
e−iuκ(ex − eκ) dκ =

∫ x

−∞
e−iuκ ex dκ−

∫ x

−∞
e−iuκ eκ dκ

= ex
e−iuκ

−iu
∣∣x
−∞ −

e(1−iu)κ

(1− iu)

∣∣x
−∞. (2.5)

As we can see, the first term of (2.5) is not integrable since limκ→−∞ e−iuκ 6= 0,

while in second term of (2.5) limκ→−∞ e(1−iu)κ converges to zero.

To obtain a squared integrable function with respect to κ, Carr and Madan [6]

introduced a dampning parameter ρ to modify the call option price. The so-called

dampened call price is defined as

c(κ) = eρκ
C(k)

S0

, −∞ < κ <∞ (2.6)

where ρ > 0 is a prespecified positive number (dampening factor). We explained in

details in Chapter 1, Section 1.3.2 why we need a positive dampening factor for call

options and a negative dampening factor for put options.

The FT of the dampened call option price is given by:

ĉ(u) =

∫ ∞
−∞

e−iuκc(κ)dκ, u ∈ (−∞,∞). (2.7)

Once we find a closed form for FT of the dampened call option price, the pricing

formula for the European-style call option can be obtained via the IFT as follows:

C(κ) =
e−ρκ S0

2π

∫ ∞
−∞

eiuκ ĉ(u) du =
e−ακ S0

π

∫ ∞
0

eiuκ ĉ(u) du, (2.8)

where the second term comes from the fact that call option is a real number. This
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implies the FT ĉ(u) is odd in its imaginary part so that

Im{ĉ(u)} = −Im{ĉ(−u)} (2.9)

and even in its real part so that

Re{ĉ(u)} = Re{ĉ(−u)}. (2.10)

Thus this allows to rewrite the pricing integral as the second term in (2.8).

Therefore, all we need to do now is to find a closed form for FT of the dampened

call option price. Let FαT be the σ-algebra generated by the Markov chain α(t),

0 ≤ t ≤ T , that is, FαT = σ{α(t), 0 ≤ t ≤ T}. Note that Wt is still a Brownian

motion (BM) with respect to the filteration of Markov chain since we consider BM

to be independent of Markov chain. Let fFαT (x) be the conditional density function

of XT given FαT .

Then the FT of the dampened call option price, c(κ), is calculated as follows:

ĉ(u) =

∫ ∞
−∞

e−iuκ c(κ) dκ =

∫ ∞
−∞

e−iuκ eρκ E
{

e−
∫ T
0 r(α(t))dt (eXT − eκ)+

}
dκ

= E
{∫ ∞

−∞
e−iuκeρκE

{
e−

∫ T
0 r(α(t))dt(eXT − eκ)+|FαT

}
dκ

}
= E

{∫ ∞
−∞

e−iuκeρκe−
∫ T
0 r(α(t))dt

∫ ∞
κ

(
ex − eκ

)
fFαT (x)dxdκ

}
= E

{∫ ∞
−∞

e−
∫ T
0 r(α(t))dtfFαT (x)

∫ x

−∞

(
exe(ρ−iu)κ − e(1+ρ−iu)κ

)
dκdx

}
= E

{∫ ∞
−∞

e−
∫ T
0 r(α(t))dtfFαT (x)

(
e(1+ρ−iu)x

(ρ− iu)
− e(1+ρ−iu)x

(1 + ρ− iu)

)
dx

}
= E

{
e−

∫ T
0 r(α(t))dt

(
φFαT (−i(1 + ρ)− u)

(ρ− iu)
−
φFαT (−i(1 + ρ)− u)

(1 + ρ− iu)

)}

=

E
{

e−
∫ T
0 r(α(t))dtφFαT (−i(1 + ρ)− u)

}
(ρ− iu)(1 + ρ− iu)

(2.11)
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where

φFαT (u) = E{eiuXT |FαT } =

∫ ∞
−∞

eiuxfFαT (x)dx (2.12)

is the conditional characteristic function of XT given FαT .

Note that all the calculations done in (2.11) is pretty similar with (1.12). For the

rest of this dissertation, we do not repeat it again.

Call values are determined by substituting (2.11) into (2.8) and performing the

required integration. To find the explicit form for the required integration, we still

need to find the expectation in (2.11). Thus we first try to find φFαT (u). To do this

end, we need to know the distribution of XT . Recall ST = S0 eXT , therefore

ST = S0exp

(∫ T

0

[
µ(α(s))− 1

2
σ2(α(s))

]
ds+

∫ T

0

σ(α(s))dWs

)
, t ≥ 0.

To simplify our notation, let’s define

LT =

∫ T

0

µ(α(t))dt, VT =

∫ T

0

σ2(α(t))dt, RT =

∫ T

0

r(α(t))dt. (2.13)

Then given FαT , XT has Gaussian distribution with mean (LT − 1
2
VT ) and variance

VT . It follows that

φFαT (u) = exp

(
iu(LT −

1

2
VT )− 1

2
u2VT

)
. (2.14)

Plugging (2.14) in (2.11), we have

ĉ(u) =
1

(ρ− iu)(1 + ρ− iu)
E
{

exp

(
(1 + ρ)

(
LT +

1

2
ρVT

)
−RT

− 1

2
u2VT − iu

(
LT + (

1

2
+ ρ)VT

))}
. (2.15)

As we can see, still we haven’t been able to find a closed form for ĉ(u) as it is

necessary to calculate the expectation with respect to LT , VT and RT in (2.15). Note



21

that LT , VT and RT are random variables as their value depends on how much time

Markov chain spent in state j for example. Therefore, it’s useful to define the sojourn

time of the Markov chain α(t) in state j during the interval [0, T ].

Tj =

∫ T

0

1{α(t)=j}dt, j ∈M. (2.16)

Then
∑m

j=1 Tj = T . Then the three random variables LT , VT and RT defined in

(2.13) can be rewritten as

LT =
m−1∑
j=1

(
µ(j)− µ(m)

)
Tj + µ(m)T,

VT =
m−1∑
j=1

(
σ2(j)− σ2(m)

)
Tj + σ2(m)T, (2.17)

RT =
m−1∑
j=1

(
r(j)− r(m)

)
Tj + r(m)T.

Using (2.17) in (2.15), we obtain that

ĉ(u) =
1

(ρ− iu)(1 + ρ− iu)
exp
(
B(u)T

)
E
{

exp

(
i
m−1∑
j=1

A(u, j)Tj

)}
(2.18)

where for j = 1, ...,m− 1,

A(u, j) = −u
[
(µ(j)− µ(m)) +

(
1

2
+ ρ

)
(σ2(j)− σ2(m))

]
+

1

2
u2(σ2(j)− σ2(m))i+

[(
r(j)− r(m))−

(1 + ρ)(µ(j)− µ(m)
)
− 1

2
ρ(1 + ρ)(σ2(j)− σ2(m))

]
i,

B(u) = −iu
[
µ(m) +

(
1

2
+ ρ

)
σ2(m)

]
− 1

2
u2σ2(m)+

(1 + ρ)µ(m)− r(m) +
1

2
ρ(1 + ρ)σ2(m). (2.19)
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Therefore, the determination of ĉ(u) reduces to calculating the characteristic func-

tion of the random vector (T1, ..., Tm−1)
′
, where (T1, ..., Tm−1)

′
denotes the transpose

of (T1, ..., Tm−1). For the two-state case, we only need to find the characterisitic func-

tion of random sojourn time T1, as by finding T1 implies that T2 = T −T1. We adopt

the same methodology in Liu et al. [39] for the two states case. However, for general

case, when m > 2, we need to find the characteristic function of the random vector

(T1, ..., Tm−1)
′
. We are going to use a modification of proof of lemma 1 in Buffington

and Elliott [5].

Let the generator of the Markov chain α(·) be given by an m × m matrix Q =

(qij)m×m such that qij ≥ 0 for i 6= j and
∑m

j=1 qij = 0 for each j ∈M. Let

I(t) =

(
1{α(t)=1},1{α(t)=2}, ...,1{α(t)=m}

)′

∈ Rm×1, (2.20)

denote the vector of indicator functions. Then it is shown by Yin and Zhang [11,

Lemma 2.4, Chapter 2] that

M(t) = I(t)−
∫ t

0

Q
′
I(s)ds (2.21)

is a martingale. This implies

dI(t) = Q
′
I(t)dt+ dM(t). (2.22)

Let’s simplify our notation in (2.18) in order to determine the characteristic func-

tion of the random vector (T1, ..., Tm−1)
′
.

E
{

exp

(
i

m−1∑
j=1

θjTj

)}
= E

{
exp

(
i

m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)}
. (2.23)

We would like to generalize our method by calculating the following characteristic
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function

E
{

exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(t)=j}dt

)}
(2.24)

for any u ∈ [t, T ]. Define a random vector

Z(t, u) =

(
z1(t, u), z2(t, u), ..., zm(t, u)

)′

∈ Rm×1 (2.25)

for any u ∈ [t, T ], where

zj(t, u) = exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
1{α(u)=j}. (2.26)

Using the definition for I(u), one can rewrite (2.25) as the following:

Z(t, u) = exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
I(u).

Consequently,

dZ(t, u) =

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
Z(t, u)du

+ exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dI(u). (2.27)

We would like to simplify (2.27) by denoting Θ = diag(θ1, θ2, ..., θm−1, 0) where

diag(θ1, θ2, ..., θm−1, 0) is the diagonal matrix with diagonal entries θ1, θ2, ..., θm−1, 0.

Note

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
Z(t, u) = iΘZ(t, u). (2.28)
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Using (2.28) and the martingale property (2.22), we have

dZ(t, u) = iΘZ(t, u)du+Q
′
Z(t, u)du+ exp

(
i

m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dM(u), (2.29)

then

dZ(t, u) = (iΘ +Q
′
)Z(t, u)du+ exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dM(u). (2.30)

Consequently,

Z(t, u) = Z(t, t) +

∫ u

t
(iΘ +Q

′
)Z(t, s)ds

+

∫ u

t
exp

(
i
m−1∑
j=1

θj

∫ s

t
1{α(ν)=j}dν

)
dM(s). (2.31)

The final integral is a martingale, so taking expected values

E{Z(t, u)} = Z(t, t) +

∫ u

t

(iΘ +Q
′
)E{Z(t, s)}ds. (2.32)

Note that Z(t, t) = I(t), where I(t) is m×m identity matrix. By differentiation,

we have

dE{Z(t, u)} =
(
iΘ +Q

′)E{Z(t, u)}du, E{Z(t, t)} = I(t). (2.33)

Hence E{Z(t, u)} satisfies the following homogeneous system of linear ODEs of

order one and dimension m:

E{Z(t, u)}
du

=

(
iΘ +Q

′
)
E{Z(t, u)}, E{Z(t, t)} = I(t). (2.34)
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Since
(
iΘ +Q

′)
is not time dependent, the solution to (2.34) is given by

E{Z(t, u)} = I(t)exp

((
iΘ +Q

′)
(u− t)

)
. (2.35)

Thus for t = 0 and u = T , we have

E{Z(0, T )} = I(0)exp

((
iΘ +Q

′)
T

)
. (2.36)

Define 1m = (1, ..., 1)
′ ∈ Rm×1. Note 〈I(T ), 1

′
m〉 = 1, where 〈·, ·〉 is the scalar

product Rm. Consequently, the characteristic function can be determined by

E
{

exp

(
i
m−1∑
j=1

θjTj

)}
= E

{
exp

(
i
m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)}

= E
{

exp

(
i
m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)〈
I(T ), 1

′

m

〉}

= E
{〈

exp

(
i
m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)
I(T ), 1

′

m

〉}
= E{〈Z(0, T ), 1

′

m〉}

= 〈E{Z(0, T )}, 1′

m〉

=
〈
I(0)exp

(
(iΘ +Q

′
)T
)
, 1

′

m

〉
. (2.37)

Setting θj = A(u, j) in (2.37) and then using the result in (2.18), we obtain the

Fourier transform ĉ(u), which can then be used in the inverse transform to determine

the option price.

We closely follows the innovative way proposed by Liu et. al [39] for deriving a

simple form for the two-state case. Let the generator of the Markov chain α(·) be

given by

Q =

−λ1 λ1

λ2 −λ2

 (2.38)
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where λ1 is the jump rate from state 1 to state 2 and λ2 is the jump rate from state 2

to state 1. In this case, we need to find the characteristic function of T1, the sojourn

time in state 1.

Assume the initial state α(0) = j0. Define

φj0(θ, T ) = E{eiθT1|α(0) = j0}, j0 = 1, 2. (2.39)

Then φ1(θ, T ) and φ2(θ, T ) satisfy the following system of integral equations (see the

Appendix A):

φ1(θ, T ) = eiθT e−λ1T +

∫ T

0

eiθtφ2(θ, T − t)λ1e−λ1tdt,

φ2(θ, T ) = e−λ2T +

∫ T

0

eiθtφ1(θ, T − t)λ2e−λ2tdt. (2.40)

In order to find φ1(θ, T ) and φ2(θ, T ), we are going to use Laplace transforms.

Let’s denote L{f(t)} = F (s) and L{g(t)} = G(s). Recall

L{eat} =
1

s− a
,

L
{∫ t

0

f(t)g(t− u)du

}
= F (s)×G(s).

Taking Laplace transforms, we obtain the following system of algebraic equations:

L{φ1(θ, T )} =
1

s+ λ1 − iθ
+

λ1
s+ λ1 − iθ

L{φ2(θ, T )},

L{φ2(θ, T )} =
1

s+ λ2
+

λ2
s+ λ2

L{φ1(θ, T )}. (2.41)

We now solve the pair of equations:

L{φ1(θ, T )} =
1 + λ1L{φ2(θ, T )}

s+ λ1 − iθ
, (2.42)
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L{φ2(θ, T )} =
1 + λ2L{φ1(θ, T )}

s+ λ2
. (2.43)

Substituting (2.43) in (2.42) to find L{φ1(θ, T )} and (2.42) to (2.43) in order to

find L{φ2(θ, T )}, we have

(s+ λ1 − iθ)L{φ2(θ, T )} = (1 + λ1)
1 + λ2L{φ2(θ, T )}

s+ λ2

=
s+ λ1 − iθ + λ2 + λ1λ2L{φ2(θ, T )}

s+ λ1 − iθ
,

(s+ λ2)L{φ2(θ, T )} = (1 + λ2)
1 + λ1L{φ2(θ, T )}

s+ λ1 − iθ

=
s+ λ1 − iθ + λ2 + λ1λ2L{φ2(θ, T )}

s+ λ1 − iθ
.

Solving the above pair of equations for L{φ1(θ, T )} and L{φ2(θ, T )} implies

(s2 + λ1s+ λ2s− iθs− iθλ2)L{φ1(θ, T )} − λ2 − λ1 − s = 0,

(s2 + λ1s+ λ2s− iθs− iθλ2)L{φ2(θ, T )} − λ2 − λ1 − s+ iθ = 0.

Solving the pair of equations finally yields

L{φ1(θ, T )} =
s+ λ1 + λ2

s2 + (λ1 + λ2 − iθ)s− iθλ2
,

L{φ2(θ, T )} =
s+ λ1 + λ2 − iθ

s2 + (λ1 + λ2 − iθ)s− iθλ2
. (2.44)

Now let’s take inverse Laplace transform to find L{φ1(θ, T )} and L{φ2(θ, T )}.

But first, assume s1 and s2 are the two roots of the equation

s2 + (λ1 + λ2 − iθ)s− iθλ2 = 0. (2.45)



28

Note that since M= (λ1 + λ2 − iθ)2 + 4iθλ2 6= 0, there exist two roots for the

denominator in (2.44). Hence

φ1(θ, T ) =
s+ λ1 + λ2

(s− s1)(s− s2)
=

(s+ λ1 + λ2)(s1 − s2)
(s− s1)(s− s2)(s1 − s2)

=
ss1 − ss2 + (λ1 + λ2)s1 − (λ1 + λ2)s2 ± s1s2 ± (λ1 + λ2)s

(s− s1)(s− s2)(s1 − s2)

=
s1(s− s2) + (λ1 + λ2)(s− s2) + (s1 − s)s2 + (s1 − s)(λ1 + λ2)

(s− s1)(s− s2)(s1 − s2)

=
(s1 + λ1 + λ2)(s− s2)− (s− s1)(s2 + λ1 + λ2)

(s− s1)(s− s2)(s1 − s2)

=
s1 + λ1 + λ2

(s1 − s2)
× 1

s− s1
− s2 + λ1 + λ2

(s1 − s2)
× 1

s− s2

=
1

s1 − s2

(
(s1 + λ1 + λ2)L−1{L{es1T}} − (s2 + λ1 + λ2)L−1{L{es2T )}}

)
,

φ2(θ, T ) =
s+ λ1 + λ2 − iθ
(s− s1)(s− s2)

=
(s+ λ1 + λ2 − iθ)(s1 − s2)
(s− s1)(s− s2)(s1 − s2)

=
ss1 − ss2 + (λ1 + λ2 − iθ)s1 − (λ1 + λ2 − iθ)s2 ± s1s2 ± (λ1 + λ2 − iθ)s

(s− s1)(s− s2)(s1 − s2)

=
s1(s− s2) + (λ1 + λ2 − iθ)(s− s2) + (s1 − s)s2 + (s1 − s)(λ1 + λ2 − iθ)

(s− s1)(s− s2)(s1 − s2)

=
(s1 + λ1 + λ2 − iθ)(s− s2)− (s− s1)(s2 + λ1 + λ2 − iθ)

(s− s1)(s− s2)(s1 − s2)

=
s1 + λ1 + λ2 − iθ

(s1 − s2)
× 1

s− s1
− s2 + λ1 + λ2 − iθ

(s1 − s2)
× 1

s− s2

=
1

s1 − s2

(
(s1 + λ1 + λ2 − iθ)L−1{L{es1T}}

− (s2 + λ1 + λ2 − iθ)L−1{L{es2T )}}
)
.

Therefore we have

φ1(θ, T ) =
1

s1 − s2
((s1 + λ1 + λ2)e

s1T − (s+ λ1 + λ2)e
s2T ),

φ2(θ, T ) =
1

s1 − s2
((s1 + λ1 + λ2 − iθ)es1T − (s+ λ1 + λ2 − iθ)es2T ). (2.46)
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The Fourier transform (2.18) in this case is given by

ĉ(u) =
exp(B(u)T )φj0(A(u), T )

(ρ− iu)(1 + ρ− iu)
, (2.47)

where

A(u) = A(u, 1) = −u
[(
µ(1)− µ(2)

)
+
(1

2
+ ρ
)(
σ2(1)− σ2(2)

)]
+

1

2
u2
(
σ2(1)− σ2(2)

)
i+

[(
r(1)− r(2)

)
− (1 + ρ)

(
µ(1)− µ(2)

)
− 1

2
ρ(1 + ρ)

(
σ2(1)− σ2(2)

)]
i,

B(u) = −iu
[
µ(2) + (

1

2
+ ρ)σ2(2)

]
− 1

2
u2σ2(2)

+ (1 + ρ)µ(2)− r(2) +
1

2
ρ(1 + ρ)σ2(2). (2.48)

2.4 FFT algorithm for option pricing

We adopt the approach introduced by Carr and Madan [6].There are many ways to

define the discrete Fourier transform (DFT), varying in the sign of the exponent,

normalization, etc. Since we are going to use Python implementation, therfore we are

following the same definition for DFT given in Python package numpy. The DFT is

defined in Python is

Ak =
n−1∑
m=0

amexp

{
− 2πi

mk

n

}
, k = 0, ..., n− 1. (2.49)

The inverse DFT is defined as

am =
1

n

n−1∑
k=0

Akexp

{
2πi

mk

n

}
m = 0, ..., n− 1.
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It differs from the Fourier transform by the sign of the exponential argument and

the default normalization by
1

n
.

Given the transform function ĉ(u), the modified option price c(κ) can be obtained

by the inverse Fourier transform as described in (2.8)

C(κ) =
S0exp(−ρκ)

2π

∫ ∞
−∞

eiνκĉ(u)du =
S0exp(−ρκ)

π

∫ ∞
0

eiuκĉ(u)du,

and the option price is, in view of (2.6), C(κ) = e−ρκS0c(κ), for −∞ < κ <∞.

Set uj = j4u, j = 0, 1, ..., N−1, where 4u is the grid size in the variable u. Then

(2.8) can be approximated by the following summation:

c(κ) ≈ 1

π

N−1∑
j=0

eiujκĉ(uj)4u. (2.50)

Next, let 4κ be the grid size in κ and choose a grid along the modified log strike

κ as below:

κl = (l − N

2
)4κ, l = 0, 1, ..., N − 1. (2.51)

Then

c(κl) ≈
1

π

N−1∑
j=0

eiujκl ĉ(uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eij4u(l−
N
2
)4κ ĉ(uj)4u

=
1

π

N−1∑
j=0

eij4ul4κe−ij4u
N
2
4κ ĉ(uj)4u. (2.52)

If we set

4u4κ =
2π

N
, (2.53)
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then we have

c(κl) ≈
1

π

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(uj)4u, l = 0, 1, ..., N − 1. (2.54)

Using Simpson’s rule for numerical integration, define a sequence of weighting

factors by

w(j) =



1

3
, if j = 0,

4

3
, if j is odd,

2

3
, if j is even.

Then

c(κl) ≈
4u

πN

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(uj)w(j)N, l = 0, 1, ..., N − 1. (2.55)

Comparing (2.55) with (2.49), it is easy to see that
{
c(κ)

}
can be obtained by

taking the Fourier transform of the sequence
{

e−ijπ ĉ(uj)w(j)N
}

, j = 0, 1, ..., N − 1.

Details for the code is provided in Appendix B.

2.5 Monte Carlo and Semi-Monte Carlo algorithm for option pricing

Monte Carlo simulations (MCS) are frequently used when closed-form solutions are

not available for complex stochastic problems. A Monte Carlo algorithm frequently

serves as a benchmark for the “true value” used for testing other numerical methods.

The benchmark value is obtained by running a great number of sample paths in sim-

ulating the underlying stochastic dynamics. It is very time consuming and therefore

not feasible for most practical use in real time.

We employ MCS to price European call options in our two-state Markov-modulated
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model. To price non-path dependent options such as European call options, we only

require the final stock price at maturity ST , not the stock price trajectory {St}t∈[0,T ].

We therefore implement the following algorithm for obtaining pseudo-random sam-

ples from the terminal stock price distribution (under risk-neutral measure). As the

first step, we consider simulating the trajectory of the Markov chain {α(t)}t∈[0,T ],

conditional on α(0) = 1 ( at time t = 0 in state 1). Hence we may determine the

time until next change of state. Distribution of such a time is exponential. The ex-

ponential distribution is often concerned with the amount of time until some specific

event occurs ( in our case jumping to another state). For example, the amount of

time (beginning at t = 0) until Markov chain α(t) leaves state 1 has an exponential

distribution with rate λ1. Let t1, t2 & t3 ∈ [0, T ] denote successive jump times from

one state to another. Hence t1 ∼ exp(λ1) and P(t = t1) = λ1e
−λ1 t1 . We draw a

uniform random variable (p) on interval [0, 1] to simulate the probability P(t = t1)

by p. Therefore the exponential random variable t1 is −ln(
p/λ1 )/λ1 . Let T1 denote the

occupation time of the Markov chain α(t) in state 1 during the time interval [0, T ]

and that is T1 = t1 + (t3 − t2). Therefore, we have

∫ T

0

σsdWs =

∫ t1

0

σ1dWs +

∫ t2

t1

σ2dWs +

∫ t3

t2

σ1dWs +

∫ T

t3

σ2dWs

= σ1(Wt1 −W0) + σ2(Wt2 −Wt1) + σ1(Wt3 −Wt2) + σ2(WT −Wt3).

Using independent increments property of Brownian motion as well as the fact

that the sum of two independent normally distributed random variables is normal,

with its mean being the sum of the two means, and its variance being the sum of the

two variances, we have

σ1(Wt1 −W0) + σ1(Wt3 −Wt2)
dist
≈ N

(
0, σ2

1

(
t1 + (t3 − t2)

))
= N

(
0, σ2

1T1

)
.
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Using above equation implies that

(
Ln(ST )|FT

)
= LnS0 +

∫ T1

0

(µ1 −
1

2
σ2
1)ds+

∫ T

T1

(µ2 −
1

2
σ2
2)ds

+

∫ T1

0

σ1dWs +

∫ T

T1

σ2dWs

= LnS0 + (µ1 −
1

2
σ2
1)T1 + (µ2 −

1

2
σ2
2)(T − τ1)

+ σ1W (T1) + σ2(W (T )−W (T1))

dist
≈ N

(
LnS0 + (µ1 −

1

2
σ2
1)T1 + (µ2 −

1

2
σ2
2)(T − T1), σ2

1T1 + σ2
2(T − T1)

)
.

(2.56)

By using the procedure above and (2.56), we only require one pseudo-random

sample from the standard normal distribution, which minimizes the required compu-

tational time. To price options using the Monte Carlo algorithm above, let N be the

number of replications. For n = 1, ..., N ,

1. Obtain the n-th sample path of α(t), for t ∈ [0, T ].

2. Find the occupation time spent at given initial state (In our case, state 1. Note

than we only need to find occupation time in one state as we only have two

states).

3. Use equation (2.56) to simulate the log of terminal stock price.

4. Calculate Cn(K) for the nth sample path.

5. Calculate the average of Cn(K) by 1/N
∑N

n=1Cn(K) to obtain C(K).

A Monte Carlo base algorithm is presented by Liu et al. [39] that can be also

used as benchmark values in numerical experiments. It’s called semi-Monte Carlo

simulation (SMCS). As noted by Buffington and Elliott [4], for a given realization of

the Markov chain α(·) = {α(t) : 0 ≤ t ≤ T}, the European call option price whose
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underlying asset is governed by regime-switching GBM can be calculated by the usual

Black-Scholes formula in which the volatility and the interest rate are replaced by the

sample path values. SMCS approach only takes random sampling of the Markov chain

and then takes advantage of the availability of analytical formula of the conditional

price. Recall that from Section 2, FαT denotes the σ-algebra generated by the Markov

chain α(t) for 0 ≤ t ≤ T . Then the call option price can be calculated by

C(K) = E
{

exp
(
−
∫ T

0

r(α(t))dt
)

(S(T )−K)+
}

= E
{
E
{

e−RT (S(T )−K)+
∣∣∣FαT}}.

The conditional expectation is given by the Black-Scholes formula, that is,

E
{

e−RT (S(T )−K)+
∣∣∣FαT} = S0e

−(RT−LT )N
(
d1(LT , VT )

)
−Ke−RTN

(
d2(LT , VT )

)

where

d1(LT , VT ) =
ln(S0/K) + LT +

1

2
VT

√
VT

, d2(LT , VT ) = d1(LT , VT )−
√
VT

and N (·)is the cumulative standard normal distribution function.

Detail of the code is provided in Appendix C. We consider a two-state (m = 2)

example. When the underlying Markov chain α(·) has only two states, an analytical

formula in terms of an integral with respect to the Bessel function is developed by Guo

[28] for the European call option prices. Fuh el at. [26] considered a specific example

and compared various methods (binomial tree, Monte Carlo, and an approximation

approach presented in their paper) with the analytical results (equation(7)). Here

we consider the same example to compare the MCS, Semi-MCS with the analytical

results. Details of the code for MCS, analytical results and Semi-MCS are provided
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in Appendix C, Appendix D and Appendix E respectively.

2.6 Numerical experiments using MC and analytical method

The parameters used, in this example, are S0 = 100, K = 90, λ1 = λ2 = 1.0,

µ1 = µ2 = r1 = r2 = 0.1, σ1 = 0.2, σ2 = 0.3. The initial state is α(0) = 1 and

N = 100000 replications are used in the MCS. Table 2.1 lists the numerical results

for a range of option expiry times. We then change the initial state from 1 to 2 with

the same given parameters and the results are provide in Table 2.2.

It is clear from Table 2.1 and Table 2.2 that the MCS converges to real prices.

All the errors show a clear indication of high accuracy. It’s worth to mention that

Fuh el at. [26] used 50000000 replications in their MCS to obtain the numbers. We

only used 100000 replications (1/50 of theirs) in the MCS but achieved a much higher

degree of accuracy in our Semi-MCS.

Table 2.1: Comparison of Analytical prices, MC and Semi-MC Simulations at state
α(0) = 1

T (year) Analytical

α(0) = 1

MC(error)

α(0) = 1

Semi-MC(error)

α(0) = 1

0.1 10.999 10.999 (0.000) 10.993 (0.006)

0.2 12.194 12.186 (0.008) 12.165 (0.029)

0.5 15.754 15.671 (0.083) 15.615 (-0.421)

1.0 21.075 20.970 (0.105 ) 20.723 (-0.648)

2.0 29.943 29.970 (-0.027 ) 29.289 (0.654)

3.0 37.246 37.422 (-0.176) 36.473 (0.773)
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Table 2.2: Comparison of Analytical prices, MC and Semi-MC Simulations at state
α(0) = 2

T (year) Analytical

α(0) = 2

MC(error)

α(0) = 2

Semi-MC(error)

α(0) = 2

0.1 11.367 11.370 (-0.003) 11.361 (0.006)

0.2 12.914 12.906 (0.008) 12.889 (0.25)

0.5 16.813 16.730 (0.083) 16.720 (0.93)

1.0 22.003 21.749 (0.254) 21.820 (0.183)

2.0 30.383 29.944 (0.439) 30.087 (0.296)

3.0 37.421 37.135 (0.286) 37.062 (0.359)

2.7 Numerical experiments using FFT

In this section, we report numerical results of using FFT for option pricing developed

in this chapter. In implementing the FFT, we choose the number of grid points

N = 4096(212). That is, we invoke the FFT procedure to calculate 4096 option prices

simultaneously. The grid size along the log strike price κ is set to be 4κ = 0.01.

Consequently, 4u = 0.1534 by (2.53). We choose the damping factor ρ to be ρ = 1.0.

All options considered in the examples have maturity T = 1 (year). The initial asset

price S0 = $100. We consider a two-state Markov chain model. The parameters

are given by λ1 = 20.0, λ2 = 30.0, µ1 = r1 = 0.05 , µ2 = r2 = 0.1, σ1 = 0.5 and

σ2 = 0.3. Note that, unlike previous example, in this model, the parameters µ, σ

and r all vary with different states. Large jump rates λ1 and λ2 are chosen so that

the system switches frequently during the life of the options. Table 2.3 and Table

2.4 report the results for seven call options with different strike prices (from deep-

in-the-money to at-the-money and to deep-out-of-money) obtained using FFT, MC

and Semi-MC simulations. Column one in both tables lists the log strike (the strike)

for the options. Columns two, three and four in both tables list the FFT, MC and
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Semi-MC prices for both α(0) = 1 and α(0) = 2.

In each case (α(0) = 1 and α(0) = 2), a single run of FFT algorithm produces

4096 option prices (each one with a different strike price and all other parameters are

the same). It took only 0.069 seconds, to run the FFT algorithm. This shows the

clear advantage of the FFT.

Table 2.3: Comparison of FFT, MC and Semi-MC simulations at state α(0) = 1

ln(K/S0)(K) FFT

α(0) = 1

MC

α(0) = 1

Semi-MC

α(0) = 1

-0.3 (74.082) 34.774 34.708 34.773

-0.2 (81.873) 29.696 29.682 29.695

-0.1 (90.484) 24.763 24.766 24.763

0 (100) 20.116 20.095 20.116

0.1 (110.517) 15.881 15.888 15.881

0.2 (122.140) 12.157 12.162 12.155

0.3 (134.986) 9.006 9.019 9.004

Table 2.4: Comparison of FFT, MC and Semi-MC simulations at state α(0) = 2

ln(K/S0)(K) FFT

α(0) = 2

MC

α(0) = 2

Semi-MC

α(0) = 2

-0.3 (74.082) 34.742 34.661 34.741

-0.2 (81.873) 29.642 29.426 29.642

-0.1 (90.484) 24.688 24.744 24.688

0 (100) 20.022 20.060 20.024

0.1 (110.517) 15.774 15.767 15.772

0.2 (122.140) 12.043 12.086 12.043

0.3 (134.986) 8.893 8.876 8.893
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2.8 Concluding remarks

FFT has been used for calculating option prices for a wide range of asset price models.

In this chapter, we extended the technique to the class of regime-switching diffusion

models and developed the FFT scheme. When the number of states of the driving

Markov chain in the model is very large, the calculation of the characteristic function

involved in the FFT approach becomes computationally intensive. The speedup of

FFT along with acceptable accuracy is a promising direction for future research.

In fact, we have illustrated how the calculation of the call price via the Carr-

Madan formula can be done fast and accurately using the fast Fourier Transform.

Typically, N is a power of 2 (where N is the number of discretization steps). The

number of operations of the FFT algorithm is of the order O(N log(N)) and this is

in contrast to the straightforward evaluation of the sums which give rise to O(N2)

number of operations.

The methodology cannot only be applied when it’s not possible to get an explicit

form for characteristic function. However, the fact remains that the FFT is the most

fast and efficiently method for options price.



CHAPTER 3: FFT APPROACH FOR VALUATION OF COMMODITY AND

FUTURES OPTIONS UNDER A REGIME-SWITCHING MODEL

In this chapter, we use FFT approach to value commodity and futures options price,

where the log of the underlying commodity spot price is governed by a regime-

switching Ornstein-Uhlenbeck process. This Chapter is organized as follows. In

the first section, we state our motivation. Section 2 presents the model dynamics.

In Section 3, we first derive the valuation of commodity options via inverse Fourier

transform approach. Then the value of futures option price is derived. The final

section makes concluding remarks.

3.1 Motivitation

In the previous chapter, we described how one can price, very fast and efficiently,

European call options where the underlying asset price is governed by a regime-

switching geometric Brownian motion using the theory of characteristic functions

and FFT. We have developed a solid understanding of the current frameworks for

pricing European call options using FFT, and we have provided the mathematical

and practical background necessary to apply and implement the technique. FFT

method is particularly interesting in case of advanced equity models, like the future

contracts, its stochastic volatility extension, and many other models like the Heston

model, where no closed-form solutions for call options exist.

An important advantage of the method is that we only need as input the charac-

teristic function of the dynamics of the underlying model. If one wants to switch to

another model, only the corresponding characteristic functions needs to be changed
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and the actual pricing algorithm remains untouched.

Macroeconomic conditions could have significant impacts on commodity prices.

An early work which highlights the link between business cycles and commodity

prices was attributed to the paper by Fama and French [23]. From a practical per-

spective, it is of interest to model and investigate the impacts of structural changes in

macroeconomic conditions on commodity prices. The basic idea of regime-switching

models is that one set of model parameters is in force at a time depending on the state

of the underlying state process at that time. The state process is usually described

by a Markov chain.

In this chapter, we consider an observable Markovian regime-switching Ornstein-

Uhlenbeck model (MRSOU) for evaluating European-style commodity options and

futures options. The main feature of our model is that model parameters, the mean-

reverting level and the volatility of the commodity spot price, are governed by an

observable continuous-time finite-state Markov chain. We then discuss the valuation

of commodity options and commodity futures options using inverse Fourier transform.

In the final section, we provide concluding remarks. All proofs in this chapter are

standard and involve the use of standard mathematical techniques.

3.2 Model dynamics

We consider a continuous-time economy with a finite time horizon T := [0, T ∗], where

T ∗ <∞. Uncertainties in the economy are described by a complete probability space

(Ω,F ,P), where P is the real-world probability measure. Let α(·) = {α(t)|t ∈ T }

be an observable continuous-time finite-state Markov chain with state space ε =

{e1, e2, ..., eN} ⊂ RN , where ei is the unit vector in RN with one in the i-th position

and zero elsewhere. In particular, there could be just two states for α(·), write

α(t) = (1, 0)
′

and α(t) = (0, 1)
′

for any t ∈ T , where (1, 0)
′

denotes the transpose of

(1, 0). State 1 and State 2 represent a “good” economy and a “bad” one, respectively.
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From Elliott et al.[15] in Appendix B, a martingale representation for the Markov

chain α(·) is given by

α(t) = α(0) +

∫ t

0

Qα(u)du+M(t), t ∈ T (3.1)

where Q := [qij]N×N is a constant rate matrix of the Markov chain and {M(t)|t ∈ T }

is a martingale under P . The element qij inQ is the constant intensity of the transition

of the chain α(·) from State ej to State ei.

We consider commodities that are not investment assets, such as agricultural prod-

ucts, oil or metals. Evidence from futures prices (Bessembinder et al. [2]) highlights

that the spot prices of these commodities follow mean reverting processes. Hence the

main model feature is mean reversion in commodity prices, indeed mean reversion

toward a regime-switching mean price level. We now present an observable Marko-

vian Regime-Switching Ornstein-Uhlenbeck model proposed by Schwartz [45] for a

commodity futures pricing. In the proposed model by Schwartz [45] θ and σ are

constant, which seems restrictive. We use this model to stress the mean reverting

character of commodity spot prices. In fact Bessembinder et al. [2] indeed provided

evidence from futures prices supporting such mean-reversion in commodity prices.

The model in this section extend and complement the one in Schwartz [47]. The

spot price process parameters can switch regime. This section presents a commodity

futures pricing model that extends one of the models proposed by Schwartz [47].

We define the commodity spot price as St = eXt . The process for Xt is assumed

to be

dXt = β
(
θt −Xt

)
dt+ σtdWt, (3.2)

where Wt is a Wiener process under the risk-neutral probability measure. θt is the long
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term mean level. All future trajectories of Xt will evolve around a mean level θt in the

long run; and let β be the parameter controlling the speed of mean reversion for the

logarithmic commodity price process, where β > 0. The instantaneous volatility of

the model is σt. It measures instant by instant the amplitude of randomness entering

the system.

We assume that {θt|t ∈ T } changes over time according to the state process of

{α(t)|t ∈ T } as follows:

θt = 〈θ, α(t)〉

where 〈·, ·〉 is the scalar product RN . Here θ = (θ1, θ2, ..., θN)
′ ∈ RN with θi > 0, for

each i = 1, 2, ..., N . In particular, θi is the mean-reversion level of the commodity

process corresponding to the i-th state of the economic condition.

Define {σt|t ∈ T } as the volatility of the commodity price. Again we suppose

that this volatility changes over time according to the state process of the economy

as follows:

σt = 〈σ, α(t)〉

where σ = (σ1, σ2, ..., σN) ∈ RN with σi > 0.

The solution to the stochastic differential equation (3.2) is given by the following

equation:

XT = e−β(T−t)Xt + β

∫ T

t

θue
−β(T−u)du+

∫ T

t

σue
−β(T−u)dWu (3.3)

3.3 Valuation of commodity futures and options

Our goal in this section is to evaluate the prices of commodity options and futures

options at time 0, denoted by C(0, T ) and Cf (0, T, U), respectively. The valuation of
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the two options at an arbitrary time t ∈ [0, T ], where T < T ∗ can be conducted in

a similar fashion. The mathematical results presented in this section are similar to

those in, for example, Fan et al. [25], Section 4 therein. In Fan et al. [25], the FFT

approach was used to value European call options in a Markovian regime-switching

stochastic interest rate environment. Hence, the expressions of the characteristic

functions and the option prices presented here are not exactly the same as those in

Fan et al. [25].

Under the risk-neutral probability measure P , the prices of a T -maturity futures

contract and a T -maturity European-style commodity option at time 0 are given as

follows:

F (0, T ) = E{ST} (3.4)

and

C(0, T ) = E
{

e−rT
(
ST −K

)+}
, (3.5)

where ST is the terminal commodity price; K is the strike price of the commodity

option; E is the expectation with respect to the risk-neutral probability measure P .

Consider a European-style futures option with a strike price Kf , the terminal payoff

function at the maturity time T of the option is (F (T, U) − Kf )
+, where F (T, U)

represents the futures price with maturity time U at time T . Then the price of the

futures option at time 0 is given by

Cf (0, T, U) = E
{

e−rT
(
F (T, U)−Kf

)+}
. (3.6)
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3.3.1 Valuation of commodity options

Following the notation in the previous chapter, write κ = ln(K), the dampened

commodity option price is given by

c(κ) = eρκC(O, T ) (3.7)

where ρ is called the dampening coefficient and assumed to be positive. To obtain a

square integrable function, the dampening coefficient ρ is selected and the dampened

commodity pricing formula is defined. We derive an explicit formula for the Fourier

transform of c(κ) next. Let Fα := {Fα(t)|t ∈ T } and FS := {FS(t)|t ∈ T } be the

natural filtrations generated by {α(t)|t ∈ T } and {St|t ∈ T } respectively. As usual,

we assume that the filtrations given above are right-continuous and P-complete. We

define an enlarged filtration G := {Gt|t ∈ T } by letting Gt := Fα(t) ∨ FS(t). Here

A ∨ B represents the minimal σ-field containing both the σ-fields A and B.

Let fFα(T )(x) be the conditional density function of XT given Fα(T ). Then, the

dampened commodity Fourier transform is given by

ĉ(u) =

e−rT E
{
φFα(T )(−i(1 + ρ)− u)

}
(ρ− iu)(1 + ρ− iu)

(3.8)

where

φFα(T )(ν) = E{eiνXT |Fα(T )} =

∫ ∞
−∞

eiνxfFα(T )(x)dx (3.9)

is the conditional characteristic function of XT given Fα(T ). See chapter 1 section

1.3.2 for details of calculation in (3.8).

Note that given Fα(T ), XT has Gaussian distribution with mean

E{XT |Fα(T )} = e−βTX0 + β

∫ T

0

θu e
−β(T−u) du (3.10)
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and variance

Var(XT |Fα(T )) =

∫ T

0

σ2
u e
−2β(T−u) du. (3.11)

It follows that

φFα(T )(ν) = exp
(
iνE{XT |Fα(T )} − 1

2
ν2Var(XT |Fα(T ))

)
= exp

(
iν
(
e−βTX0 + β

∫ T

0

θue
−β(T−u)du

)
− 1

2
ν2
∫ T

0

σ2
u e
−2β(T−u) du

)
. (3.12)

For each t ∈ [0, T ] and ν ∈ R, let G(t, ν) =
(
g1(t, ν), g2(t, ν), ..., gN(t, ν)

)
, where

gj(t, ν) for each j = 1, 2, ..., N is

gj(t, ν) = iν β θj e
−β(T−t) − 1

2
ν2 σ2

j e
−2β(T−t).

Therefore,

φFα(T )(ν) = exp

(
iν e−βTX0 +

∫ T

0

〈G(t, ν), α(t)〉dt
)
. (3.13)

Substituting (3.13) in (3.8) implies

ĉ(u) =

e−rT E
{

exp

(
iν e−βTX0 +

∫ T
0
〈G(t, ν), α(t)〉dt

)}
(ρ− iu)(1 + ρ− iu)

(3.14)

where ν = −(u+i(1+ρ)). In order to derive an explicit formula for ĉ(u), it’s necessary

to calculate the expectation given in (3.14). To this end, we use a modification to

the proof of Lemma A1 in Buffington and Elliott [5]. Let diag(G(t, ν)) denote the

diagonal matrix with diagonal elements given by the components of G(t, ν), 1 =
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(1, 1, ..., 1)
′

and I denote the (n× n)-identity matrix. Let’s define

W (t, ν) := exp

(∫ t

0

〈G(s, ν), α(s)〉ds
)
α(t), W (0, ν) = α(0). (3.15)

Consequently,

dW (t, ν) = 〈G(t, ν), α(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), α(s)〉ds
)

dα(t).

Note that under P ,

dα(t) = Q
′
α(t)dt+ dM(t),

and that

〈G(t, ν), α(t)〉W (t, ν) = diag(G(t, ν))W (t, ν)

for all t ∈ T . Then

dW (t, ν) = 〈G(t, ν), α(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), α(s)〉ds
)
Q

′
α(t)dt

+ exp

(∫ t

0

〈G(s, ν), α(s)〉 ds
)

dM(t)

= diag(G(t, ν))W (t, ν) dt+Q
′
W (t, ν) dt

+ exp

(∫ t

0

〈G(s, ν), α(s)〉 ds
)

dM(t)

=
[
diag(G(t, ν)) +Q

′
]
W (t, ν)dt+ exp

(∫ t

0

〈G(s, ν), α(s)〉 ds
)

dM(t).

By taking integration from both sides, we have

W (t, ν) = W (0, ν) +

∫ t

0

[
diag(G(s, ν)) +Q

′
]
W (s, ν) ds
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+

∫ t

0

exp

(∫ s

0

〈G(u, ν), α(u)〉 du
)

dM(s)

= α(0) +

∫ t

0

[
diag(G(s, ν)) +Q

′
]
W (s, ν) ds

+

∫ t

0

exp

(∫ s

0

〈G(u, ν), α(u)〉 du
)

dM(s).

The final integral is a martingale, so taking the expectation under P gives:

E{W (t, ν)} = α(0) +

∫ t

0

[
diag(G(s, ν)) +Q

′]E{W (s, ν)} ds.

Hence E{W (t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N with initial condition:

dE{W (t, ν)}
dt

=
[
diag(G(t, ν)) +Q

′]E{W (t, ν)}, E{W (0, ν)} = α(0). (3.16)

Suppose Φ(t, ν) denotes the fundamental matrix solution of

dΦ(t, ν)

dt
=
[
diag(G(t, ν)) +Q

′]
Φ(t, ν), Φ(0, ν) = I.

If
[
diag(G(t, ν)) + Q

′]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Φ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t, ν) of the linear

matrix differential Eq. (3.16) provided that the coefficient matrix is continuous which

in our case it is. Now, E{W (t, ν)} can be represented in terms of the fundamental

matrix solution Φ(t, ν) as below:

E{W (t, ν)} = Φ(t, ν)α(0).
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Since 〈α(T ),1〉 = 1, we have

E
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)}

= E
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
〈α(T ),1〉

}
= E

{〈
exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
α(T ),1

〉}
=

〈
E
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
α(T )

}
,1

〉
=
〈
E{W (T, ν)},1

〉
=
〈
Φ(T, ν)α(0),1

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the commodity option is given by:

ĉ(u) =

exp

(
− rT + iν e−βTX0

)〈
Φ(T, ν)α(0),1

〉
(ρ− iu)(1 + ρ− iu)

(3.17)

where ν = −(u+ i(1 + ρ)).

3.3.2 Valuation of futures options

In this subsection we consider the valuation of commodity futures options. We wish

to evaluate the time-zero value of a standard European call option on the future price

F (T, U) with strike price Kf and maturity at time T . That is to evaluate:

Cf (0, T, U) = E
{

e−rT
(
F (T, U)−Kf

)+}
.

As seen before, the dampened commodity futures options price is given by:

cf (κf ) = eρf κf Cf (0, T, U), (3.18)

where κf = ln(Kf ). Let’s define Yt := ln
(
F (t, U)

)
for each t ∈ T and let fFα(T )(y) be
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the conditional density function of YT given Fα(T ). Now we derive an explit formula

for the Fourier transform of the dampened commodity futures options.

ĉf (u) =

∫ ∞

−∞

e−iuκf c(κf ) dκf

=

∫ ∞

−∞

e−iuκf eρfκf E
{

e−rT (eYT − eκf )+
}

dκf

= E

{∫ ∞

−∞

e−iuκf eρfκf E
{

e−rT (eYT − eκf )+
∣∣∣∣Fα(T )

}
dκf

}

= E

{∫ ∞

−∞

e−iuκf eρfκf e−rT

∫ ∞

κf

(
ey − eκf

)
fFα(T )(y) dy dκf

}

= e−rT E

{∫ ∞

−∞

fFα(T )(y)

∫
y

−∞

(
ey e(ρf−iu)κf − e(1+ρf−iu)κf

)
dκf dy

}

= e−rT E

{∫ ∞

−∞

fFα(T )(y)

(
e(1+ρf−iu)y

(ρf − iu)
− e(1+ρf−iu)y

(1 + ρf − iu)

)
dy

}

= e−rT E

{(
ψFα(T )(−i(1 + ρf )− u)

(ρf − iu)
−
ψFα(T )(−i(1 + ρf )− u)

(1 + αf − iu)

)}

=

e−rT E
{
ψFα(T )(−i(1 + ρf )− u)

}
(ρf − iu)(1 + ρf − iu)

(3.19)

where

ψFα(T )(ν) = E{eiνYT |Fα(T )} =

∫ ∞
−∞

eiνyfFα(T )(y)dy (3.20)

is the conditional characteristic function of YT given Fα(T ). In order to derive an

explicit formula for ĉf (u), we need to derive an analytical formula of the characteristic

function of the logarithmic commodity futures price, in other words ln
(
F (T, U)

)
.

To do so, first we need to derive the time-t price of a T -maturity futures contract.



50

In other words,

F (t, T ) = E{ST |Gt} = E
{
E{ST |Fα(T ) ∨ FS(t)}|Gt

}

Where we used tower property for the second equality because Gt ⊂ Fα(T ) ∨ FS(t).

Since ST = eXT and given the initial condition at time t, XT has a Gaussian distri-

bution with mean

E{XT |Fα(T )} = e−β(T−t)Xt + β

∫ T

t

θu e
−β(T−u) du, (3.21)

and variance

Var
(
XT |Fα(T )

)
=

∫ T

t

σ2
u e
−2β(T−u) du, (3.22)

then, it’s easy to see that

E{ST |Fα(T )} = exp

(
E{XT |Fα(T )}+

1

2
Var
(
XT |Fα(T )

))
= exp

(
e−β(T−t)Xt + β

∫ T

t

θu e
−β(T−u) du

+
1

2

∫ T

t

σ2
u e
−2β(T−u) du

)
. (3.23)

Then the time-t price of a T -maturity futures contract is given by

F (t, T ) = E{ST |Gt} = E
{
E{ST |Fα(T ) ∨ FS(t)}|Gt

}
= E

{
exp

(
e−β(T−t)Xt + β

∫ T

t

θu e
−β(T−u) du

+
1

2

∫ T

t

σ2
u e
−2β(T−u) du

)∣∣∣∣Gt}.
Let’s define N(s) =

(
n1(s), n2(s), ..., nN(s)

)
for each s ∈ [0, T ], where for each
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j = 1, 2, ..., N ,

nj(s) = β θj e
−β(T−s) +

1

2
σ2
j e
−2β(T−s).

Therefore

F (t, T ) = E
{

exp

(
e−β(T−t)Xt +

∫ T

t

〈N(s), α(s)〉 ds
)∣∣∣∣Gt}. (3.24)

In order to derive an explicit formula for F (t, T ), It’s necessary to calculate the

expectation given in (3.24). To do this end, we adopt the same methodology used

in previous subsection. Let diag(N(t)) denote the diagonal matrix with diagonal

elements given by the components of N(t). Let’s define

H(t, u) = exp

(∫ u

t

〈N(s), α(s)〉ds
)
α(u), H(t, t) = α(t).

Consequently,

dH(t, u) = 〈N(u), α(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), α(s)〉ds
)

dα(u).

Note that under P ,

dα(u) = Q
′
α(u)du+ dM(u),

and that

〈N(u), α(u)〉H(t, u) = diag(N(u))H(t, u)
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for all t ∈ T . Then

dH(t, u) = 〈N(u), α(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), α(s)〉ds
)
Q

′
α(u)du

+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dM(u)

= diag(N(u))H(t, u) du+ Q
′
H(t, u) du

+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dM(u)

=

[
diag(N(u)) +Q

′
]
H(t, u) du+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dM(u).

By taking integration from both sides, we have

H(t, u) = H(t, t) +

∫ u

t

[
diag(N(s)) + Q

′
]
H(t, s) ds

+

∫ u

t

exp

(∫ τ

t

〈N(s), α(s)〉 ds
)

dM(τ)

= α(t) +

∫ u

t

[
diag(N(s)) + Q

′
]
H(t, s) ds

+

∫ u

t

exp

(∫ τ

t

〈N(s), α(s)〉 ds
)

dM(τ).

The final integral is a martingale, so taking expectation under P conditioning on

Gt gives:

E{H(t, u)|Gt} = α(t) +

∫ u

t

[
diag(N(s)) + Q

′ ]E{H(t, s)|Gt} ds.

Hence E{H(t, u)|Gt} satisfies the following homogeneous system of linear ODEs

of order one and dimension N :

dE{H(t, u)|Gt}
du

=
[
diag(N(u)) + Q

′ ]E{H(t, u)|Gt} (3.25)

with the initial condition E{H(t, t)|Gt} = α(t). Suppose Ψ(t, u) denotes the funda-
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mental matrix solution of

dΨ(t, u)

du
=
[
diag(N(u)) + Q

′ ]
Ψ(t, u), Ψ(t, t) = I.

If
[
diag(N(u)) + Q

′]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Ψ(t, u) is

Ψ(t, u) = exp(∆ (u− t)).

In general, there exists a unique fundamental matrix solution Ψ(t, u) of the lin-

ear matrix differential Eq. (3.25) as the coefficient matrix is continuous. Now,

E{H(t, u)|Gt} can be represented in terms of the fundamental matrix solution Ψ(t, u)

as below:

E{H(t, u)|Gt} = Ψ(t, u)α(t).

Finally

F (t, T ) = E
{

exp

(
e−β(T−t)Xt +

∫ T

t

〈N(u), α(u)〉 du
)∣∣∣∣Gt}

= exp

(
e−β(T−t)Xt

)
E
{

exp

(∫ T

0

〈N(t), α(t)〉 du
)∣∣∣∣Gt}

= exp

(
e−β(T−t)Xt

)
E
{

exp

(∫ T

t

〈N(u), α(u)〉du
)
〈α(T ),1〉

∣∣∣∣Gt}
= exp

(
e−β(T−t)Xt

)
E
{〈

exp

(∫ T

t

〈N(u), α(u)〉du
)
α(T ),1

〉∣∣∣∣Gt}
= exp

(
e−β(T−t)Xt

)〈
E
{

exp

(∫ T

t

〈N(u), α(u)〉du
)
α(T )

∣∣∣∣Gt},1〉
= exp

(
e−β(T−t)Xt

)〈
E{H(t, T )|Gt},1

〉
= exp

(
e−β(T−t)Xt

)〈
Ψ(t, T )α(t),1

〉
.
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Then under the risk-neutral probability measure P , the time-T price of a U -

maturity futures contract is given by:

F (T, U) = E{SU |GT} = exp

(
e−β(U−T )XT

)
×
〈
Ψ(T, U)α(T ),1

〉
= exp

(
e−β(U−T )

[
e−βTX0 + β

∫ T

0

θue
−β(T−u)du

+

∫ T

0

σue
−β(T−u)dWu

])
×
〈
Ψ(T, U)α(T ),1

〉
= exp

(
e−β U X0 + e−βU β

∫ T

0

θue
β udu

+ e−βU
∫ T

0

σue
β udWu

)
×
〈
Ψ(T, U)α(T ),1

〉
.

where T < U < T ∗.

Note that given Fα(T ), YT = ln(F (T, U)) has Gaussian distribution with mean

E{YT |Fα(T )} = e−β UX0 + β

∫ T

0

θu e−β(U−u) du+ ln〈Ψ(T, U)α(T ),1
〉

(3.26)

and variance

Var(YT )|Fα(T )) =

∫ T

0

σ2
u e
−2β(U−u) du. (3.27)

It follows from (3.26) and (3.27) that

ψFα(T )(ν) = exp

(
i ν E{YT |Fα(T )} − 1

2
ν2 Var(YT |Fα(T ))

)
= exp

(
i ν e−β UX0 + i ν β

∫ T

0

θu e−β(U−u) du

)
× 〈Ψ(T, U)α(T ),1

〉i ν
× exp

(
− 1

2
ν2
∫ T

0

σ2
u e−2β(U−u) du

)
. (3.28)

Define Z(ν) = (Z1(ν), Z2(ν), ..., ZN(ν)) and z(t, ν) = (z1(t, ν), z2(t, ν), ..., zN(t, ν))
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for each ν ∈ R and t ∈ τ , where Zj(ν) and zj(t, ν) for each j = 1, 2, ..., N are

Zj(ν) = Z(ej, ν) = exp
(
i ν e−β UX0

)
× 〈Ψ(T, U) ej,1

〉i ν
(3.29)

and

zj(t, ν) = z(t, ej, ν) = i ν βe−β(U−t)θj −
1

2
ν2e−2β(U−t)σ2

j . (3.30)

Therefore,

ψFα(T )(ν) = Z(α(T ), ν) exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)
. (3.31)

Substituting (3.31) in (3.19) implies

ĉf (u) =

e−rT E
{
Z(α(T ), ν) exp

(∫ T
0

〈
z(t, ν), α(t)

〉
dt

)}
(ρf − iu)(1 + ρf − iu)

(3.32)

where ν = −(u+ i(1 + ρf )).

As we have seen before, in order to derive an explicit formula for ĉf (u), It’s

necessary to calculate the expectation given in (3.32). Let diag(z(t, ν)) denote the

diagonal matrix with diagonal elements given by the components of z(t, ν). Let’s

define

Γ(t, ν) = exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
α(t), Γ(0, ν) = α(0). (3.33)

Applying Itô differentiation rule to Γ(t, ν) gives us

dΓ(t, ν) =
〈
z(t, ν), α(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dα(t).
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Note that under P ,

dα(t) = Q
′
α(t)dt+ dM(t),

and that

〈
z(t, ν), α(t)

〉
Γ(t, ν) = diag(z(t, ν)) Γ(t, ν)

for all t ∈ T . Then

dΓ(t, ν) =
〈
z(t, ν), α(t)

〉
Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
Q

′
α(t)dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dM(t)

= diag(z(t, ν)) Γ(t, ν) dt+Q
′
Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dM(t)

=

[
diag(z(t, ν)) +Q

′
]

Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dM(t).

By taking integration from both sides, we have

Γ(t, ν) = Γ(0, ν) +

∫ t

0

[
diag(z(s, ν)) +Q

′
]

Γ(s, ν) ds

+

∫ t

0

exp

(∫ s

0

〈
z(u, ν), α(u)

〉
du

)
dM(s)

= α(0) +

∫ t

0

[
diag(z(s, ν)) + Q

′
]

Γ(s, ν) ds

+

∫ t

0

exp

(∫ s

0

〈
G(u, ν), α(u)

〉
du

)
dM(s).
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The final integral is a martingale, so taking expectation under P gives us:

E{Γ(t, ν)} = α(0) +

∫ t

0

[
diag(z(s, ν)) +Q

′ ]E{Γ(s, ν)} ds.

Hence E{Γ(t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dE{Γ(t, ν)}
dt

=
[
diag(z(t, ν)) +Q

′ ]E{Γ(t, ν)} (3.34)

with initial condition E{Γ(0, ν)} = α(0). Suppose Υ(t, ν) denotes the fundamental

matrix solution of

dΥ(t, ν)

dt
=
[
diag(z(t, ν)) +Q

′ ]
Υ(t, ν), Υ(0, ν) = I.

If
[
diag(z(t, ν)) + Q

′ ]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Υ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Υ(t, ν) of the linear

matrix differential Eq. (3.34) if the cofficient matrix in continuous which in our case

it is. Now, E{Γ(t, ν)} can be represented in terms of the fundamental matrix solution

Υ(t, ν) as below:

E{Γ(t, ν)} = Υ(t, ν)α(0).

Using 〈α(T ),1〉 = 1 implies:

E
{
Z(α(T ), ν)exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)}
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= E
{
Z(α(T ), ν)exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)
〈α(T ),1〉

}
= E

{〈
exp

(∫ T

0

〈z(t, ν), α(t)〉dt
)
α(T ), Z(ν)

〉}
=

〈
E
{

exp

(∫ T

0

〈z(t, ν), α(t)〉dt
)
α(T )

}
, Z(ν)

〉
=
〈
E{Γ(T, ν)}, Z(ν)

〉
=
〈
Υ(T, ν)α(0), Z(ν)

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the futures option is given by:

ĉf (u) =
e−rT

〈
Υ(T, ν)α(0), Z(ν)

〉
(ρf − iu)(1 + ρf − iu)

, ν = −(u+ i(1 + ρf )). (3.35)

3.4 Conclusions

In this chapter, we discussed the valuation of European-style call options on commod-

ity spot price and futures price in a Markovian regime-switching Ornstein-Uhlenbeck

model. The model parameters were assumed to be modulated by an observable con-

tinuous time finite-state Markov chain, whose states represent the states of an econ-

omy. The main feature of our study is that the regime-switching effect is emphasized,

i.e., the structural changes of macroeconomic conditions could be incorporated in the

model. We applied the inverse Fourier transform to evaluate the prices of commod-

ity options and futures options. We my further our work to investigate the valua-

tion of American-style options under Markovian regime-switching Ornstein-Uhlenbeck

model, since as we know, most of commodity options traded in NYMEX/CME are

American-style options.



CHAPTER 4: FFT APPROACH FOR PRICING COMMODITY AND FUTURES

OPTIONS UNDER A REGIME-SWITCHING MODEL WITH STOCHASTIC

INTEREST RATE MODEL

In this chapter, we investigate the pricing of European-style commodity and futures

options under a Markovian regime-switching Ornstien-Ohlenbec model with a Marko-

vian regime-switching Vasicek interest rate model. The model parameters, including

the mean reversion level, the volatility of the stochastic interest rate, and the volatil-

ity of the commodity price process are modulated by an observable continuous-time

finite-state Markov chain. We employ the concept of stochastic flows to derive an

exponential affine form of the price of a zero-coupon bond. Then, we represent the

exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations. Furthermore, we give the forward measure when

taking the zero-coupon bond as the numéraire. Then we adopt similar methodology

used in Chapter 3 to find a closed-form expression for the characteristic function of

the logarithmic terminal commodity and futures price.

4.1 Motivitation

Option valuation has been an important problem in the theory and practice of fi-

nancial economics. A major breakthrough in this area was made by Fischer Black,

Myron Scholes, and Robert Merton [3]. Despite the practical importance of the

Black–Scholes–Merton model, its underlying assumptions, including the constant in-

terest rate and volatility, are not consistent with empirical observations. It is phe-

nomenal that interest rates have become volatile in the past few decades. Many
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stochastic interest rate models have been introduced in the literature. Some popular

short rate models include those proposed by Vasicek [49], Cox et al. [11], Hull and

White [33], amongst others. The main feature of these models is that the short rate

process, commonly described as a diffusion process, is mean-reverting. This means

that the short rate process will eventually revert to a long-term value. This property

is a “stylized” fact of the empirical behavior of interest rates.

Structural changes in economic conditions affect stochastic evolution of interest

rates over time. Regime-switching models may be used to describe such impacts.

This class of models was popularized by Hamilton [29] in financial econometrics.

There has been some interest in pricing bonds and related options in Markovian

regime-switching stochastic interest rate models. Elliott and Mamon [17] considered

a Vasicek model, with the mean-reverting level being modulated by a continuous-time,

finite-state Markov chain, while a regime-switching Hull-White model was considered

in Elliott and Wilson [22].

Using the concept of stochastic flows, Elliott and Siu [18] discussed a bond valu-

ation problem under a regime-switching Hull–White short rate model and a regime-

switching Cox–Ingersoll–Ross model. Siu [48] proposed a general short rate model

incorporating jumps of the interest rate due to some extraordinary market events

or economic cycles. More specifically, Siu [48] derived a bond pricing formula under

a jump-augmented Vasicek model, a kind of jump-diffusion-type short rate models,

using techniques in stochastic flows. Shen and Siu [47] employed a partial differen-

tial equation approach to derive exponential-affine formulas for a zero-coupon bond

and a longevity bond, respectively, while Shen and Siu [46] considered the valu-

ation of a bond option under a regime-switching Hull–White model. Elliott and

Siu [21] considered the valuation of bond options in a Markovian regime-switching

Heath–Jarrow–Morton (HJM) model and derived semi-analytical formulas for pricing

bond options using the Fourier transform space.



61

4.2 The model dynamics

As described in the previous chapter, we consider a continuous-time economy with

a finite time horizon T , i.e., T := [0, T ∗], where T ∗ < ∞. Suppose (Ω,F ,P) is a

complete probability space, where P is a risk-neutral probability measure. Here, we

start with a risk-neutral probability as in some literature on stochastic interest rate

models. We assume the state of an economy is modeled by an observable continuous-

time finite-state Markov chain α(·) = {α(t)|t ∈ T }. The state space of the chain

is denoted by S := {s1, s2, ..., sN}, representing N different observable states of an

economy. Without loss of generality, using the convention in Elliott et al. [15],

we identify the state space of the chain with a finite set of standard unit vectors

ε := {e1, e2, ..., eN} ⊂ RN , where the j-th component of ei is the Kronecker delta δij,

for each i, j = 1, 2, ..., N . Let Q := [qij]i,j=1,2,...,N denote the generator or rate matrix

of the chain α(·). Then, Elliott et al. [15] in Lemma 1.1 Appendix B obtained the

following martingale dynamics for the chain α(·):

α(t) = α(0) +

∫ t

0

Qα(u)du+M(t) (4.1)

for all t ∈ T . Here {M(t)|t ∈ T } is an RN -valued martingale with respect to the

filtration generated by α(·) under the measure P .

We now present the Markovian regime-switching models for the dynamics of the

underlying logarithmic commodity spot price and the stochastic interest rate. Let y
′

be the transpose of a vector or a matrix y. Denote {µ(t)|t ∈ T } and {γ(t)|t ∈ T }

as the mean reversion level and the volatility of the short rate process, respectively.

Suppose that

µ(t) = 〈µ, α(t)〉
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and

γ(t) = 〈γ, α(t)〉

where 〈·, ·〉 is the scalar production RN . Here µ = (µ1, µ2, ..., µN)
′ ∈ RN with µi > 0,

and γ = (γ1, γ2, ..., γN)
′ ∈ RN with γi > 0 for each i = 1, 2, ..., N . The mean reversion

coefficient η describing the speed of mean reversion for short rate price process is

assumed to be a positive constant.

Let σ(t) and θ(t) be the volatility and the mean reversion level of the underlying

logarithmic commodity spot price at time t. Again suppose that

σ(t) = 〈σ, α(t)〉

and

θ(t) = 〈θ, α(t)〉

where σ = (σ1, σ2, ..., σN)
′ ∈ RN with σi > 0 and θ = (θ1, θ2, ..., θN)

′ ∈ RN with

θi > 0 for each i = 1, 2, ..., N . In particular, θi is the mean reversion level of the

commodity process corresponding to the i-th state of the economic condition for each

i = 1, 2, ..., N . Let β be the parameter controlling the speed of mean reversion for

the logarithmic commodity price process, where β > 0.

We define the commodity spot price as S(t) = eX(t). Then, we assume that under

the risk-neutral probability measure P , the dynamics of the underlying logarithmic

commodity spot price and the short rate price process are given by

dX(t) = β
(
θ(t)−X(t)

)
dt+ σ(t)dWS(t) (4.2)

dr(t) = η
(
µ(t)− r(t)

)
dt+ γ(t)dWr(t) (4.3)
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where WS := {WS(t)|t ∈ T } and Wr := {Wr(t)|t ∈ T } are two standard Brownian

motions with respect to their right-continuous, P-complete, natural filtrations un-

der P . Furthermore, we suppose that the two Brownian motions WS and Wr are

correlated, and the instantaneous correlation coefficient ρ(t) at time t is given by

ρ(t) = 〈WS,Wr〉 =

∫ t

0

ρ(s)ds,

where ρ(t) = 〈ρ, α(t)〉 and ρ := (ρ1, ρ2, ..., ρN) ∈ RN with −1 < ρi < 1.

{〈WS,Wr〉(t)|t ∈ T } is the (predictable) quadratic covariation between WS and

Wr. Consequently, the correlation coefficient between the spot price and the short

rate depends on the state of an economy.

Let Fα = {Fα(t)|t ∈ T }, FS = {FS(t)|t ∈ T } and F r = {F r(t)|t ∈ T } be

the natural filtrations generated by {α(t)|t ∈ T }, {S(t)|t ∈ T } and {r(t)|t ∈ T }

respectively. As usual, we assume that the filtrations given above are right-continuous

and P-complete. Define two enlarged filtrations G = {G(t)|t ∈ T } and H = {H(t)|t ∈

T } by letting

G(t) := F r(t) ∨ Fα(t)

and

H(t) := F r(t) ∨ FS(t) ∨ Fα(t).

Here A ∨ B represents the minimal σ-field containing both the σ-fields A and B.

4.3 Bond pricing and the forward measure

In this section, we shall employ the concept of stochastic flows to derive an expo-

nential affine form of the price of a zero-coupon bond. Then, we shall represent the
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exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations. Furthermore, we give the forward measure when

taking the zero-coupon bond as the numéraire. To do this end, we adopt the same

methodology used in Elliott and Siu [18], Shen and Siu [21 & 22] and Siu [48].

4.3.1 Stochastic flows and bond prices

Let rt,s(r) be a version of stochastic interest rate process rt,s, s ≥ t, with initial

condition rt,t(r) = r ∈ R. Then, from (4.3),

rt,s(r) = r +

∫ s

t

η
(
µ(u)− rt,u(r)

)
du+

∫ s

t

γ(u)dWr(u). (4.4)

Write

Dt,s =
∂rr,s(r)

∂r

for the derivative of the map r −→ rt,u(r). Differentiating (4.4) with respect to r

gives

Dt,s = 1− η
∫ s

t

Dt,udu,

with initial condition Dt,t = 1.

So,

Dt,s = e−η(s−t).

Here, Dt,s is a deterministic real-valued process.
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The price at time t ∈ T of any contingent claim V ∈ L2(Ω,F ,P) is

P (t) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)
V

∣∣∣∣G(t)

]

Here, E[·] represents an expectation with respect to the risk-neutral measure P .

Letting V (ω) = 1, for each ω ∈ Ω, the price of a zero-coupon bond at time t with

maturity at time T is:

P (t, T ) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣G(t)

]
.

Since (r, α(·)) is a two-dimensional Markov process with respect to the enlarged

filtration G(t) , given that r(t) = r and α(t) = α,

P (t, T ) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣α(t) = α, r(t) = r

]
= P (t, T, r, α).

Define B(t, T ) as the following path integral:

B(t, T ) =

∫ T

t

Dt,ud(u) =
1

η
(1− e−η(T−t)),

so it is a real-valued deterministic process.

Since the exponential is bounded,

∂P (t, T, r, α)

∂r
=

(
−
∫ T

t

Dt,udu

)
E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣α(t) = α, r(t) = r

]
= −B(t, T )P (t, T, r, α). (4.5)

Integrating (4.5) in r gives

P (t, T, r, α) = Ã(t, T, α)exp(−B(t, T ) r) = exp

(
A(t, T, α)−B(t, T ) r

)
,
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where A(t, T, α) = ln[Ã(t, T, α)].

Consider the discounted bond price back to time zero:

P̃ (t, T, r, α) = exp

(
−
∫ t

0

r0,u(r)du

)
P (t, T, r, α) = E

[
exp

(
−
∫ T

0

rt,u(r)du

)∣∣∣∣G(t)

]
.

Here, P̃ (t, T, r, α) is a (G,P)-martingale.

Write P̃i = P̃ (t, T, r, ei) for i = 1, 2, ..., N and P̃ = (P̃1, P̃2, ..., P̃N)
′ ∈ RN . Apply-

ing Itô’s differentiation rule to P̃ (t, T, r, α)

P̃ (t, T, r, α) = P̃ (0, T, r0, α0) +

∫ t

0

∂P̃

∂u
du+

∫ t

0

∂P̃

∂r
η
(
µ(u)− r(u−)

)
du

+

∫ t

0

∂P̃

∂r
γ(u) dWr(u) +

∫ t

0

〈
P̃, Qα(u)

〉
du+

∫ t

0

〈
P̃, dM(u)

〉
= P̃ (0, T, r0, α0) +

∫ t

0

∂P̃

∂r
γ(u) dWr(u) +

∫ t

0

〈
P̃, dM(u)

〉
+

∫ t

0

{
∂P̃

∂u
+
∂P̃

∂r
η
(
µ(u)− r(u−)

)
+ 〈P̃, Qα(u)〉

}
du

Note that P̃ (t, T, r, α) is a (G,P)-martingale. So, the bounded variation terms,

which are not martingales, in the above stochastic integral representation for P̃ (t, T, r, α)

must sum to zero. Therefore,

∂P̃

∂t
+
∂P̃

∂r
η
(
µ(t)− r(t−)

)
+

1

2

∂2P̃

∂r2
γ2(t) + 〈P̃, Qα〉 = 0

Write, for each i = 1, 2, ..., N , Pi = P (t, T, r, ei) and P = (P1, P2, ..., PN)
′ ∈ RN .

Then,

exp

(
−
∫ t

0

r0,u(r)du

){
∂P

∂t
− r(t−)P +

∂P

∂r
η
(
µ(t)− r(t−)

)
+

1

2

∂2P

∂r2
γ2(t) + 〈P, Qα〉

}
= 0
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So, we have the following regime-switching partial differential equation (PDE) for

P (t, T, r, α)

∂P

∂t
− r(t−)P +

∂P

∂r
η
(
µ(t)− r(t−)

)
+

1

2

∂2P

∂r2
γ2(t) + 〈P, Qα〉 = 0

with terminal condition

P (T, T, r(T ), α(T )) = 1.

Equivalently, the vector of bond prices P satisfies the following system of N cou-

pled PDEs

∂Pi
∂t
− r(t−)Pi +

∂Pi
∂r

η
(
µi − r(t−)

)
+

1

2

∂2Pi
∂r2

γ2i + 〈P, Q ei〉 = 0

with terminal condition

P (T, T, r(T ), ei) = 1, i = 1, 2, ..., N.

Note that the bond price has the following Markovian regime-switching exponen-

tial affine form

P (t, T, r, α) = exp
(
A(t, T, α)−B(t, T ) r

)
.

Recall that Ã(t, T, α) = exp
(
A(t, T, α)

)
. Let Ãi = Ã(t, T, ei) for i = 1, 2, ..., N

and Ã = (Ã1, Ã2, ..., ÃN)
′ ∈ RN . Note that

∂P

∂t
= P

(
∂A

∂t
− r∂B

∂t

)
,

∂P

∂r
= −B P,
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∂2P

∂r2
= B2P.

Then, A(t, T, α) satisfies the following Markovian regime-switching ordinary dif-

ferential equation (ODE)

dA

dt
− µ(t)

(
1− e−η(T−t)

)
+

1

2η2
γ2(t)

(
1− e−η(T−t)

)2
+ e−A〈Ã, Qα〉 = 0

with A(T, T, α(T )) = 0.

Write, for each i = 1, 2, ..., N , Ai = A(t, T, ei) and A = (A1, A2, ..., AN)
′ ∈ RN .

Then, the vector of coefficients A satisfies the following system of N coupled ODEs

dAi
dt
− µi

(
1− e−η(T−t)

)
+

1

2η2
γ2i
(
1− e−η(T−t)

)2
+ e−Ai〈Ã, Q ei〉 = 0 (4.6)

with A(T, T, ei) = 0 for each i = 1, 2, ..., N .

Write, for each i = 1, 2, ..., N ,

Fi(t) = µi
(
1− e−η(T−t)

)
+

1

2η2
γ2i
(
1− e−η(T−t)

)2
.

Consider the following diagonal matrix

diag
(
F (t)

)
= diag

(
F1(t), F2(t), ..., FN(t)

)
.

Substituting Ãi = exp(Ai) for each i = 1, 2, ..., N into (4.6), Ã satisfies the fol-

lowing homogeneous system of linear ODEs of order one and dimension N

dÃ(t)

dt
=

[
diag

(
F (t)

)
−Q′

]
Ã(t), Ã(T ) = 1

where 1 = (1, 1, ..., 1)
′ ∈ RN .
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Define

∆(t) = diag
(
F (t)

)
−Q′

If we let τ = T − t, then dτ = −dt. So

dÃ(τ)

dτ
= −∆(τ) Ã(τ), Ã(0) = 1.

Suppose Φ(t) denotes the fundamental matrix solution of

dΦ(τ)

dτ
= −∆(τ) Φ(τ), Φ(0) = I (4.7)

where I is the n× n-identity matrix.

If ∆(t) = ∆ (i.e. a constant matrix), the fundamental matrix solution Φ(t) is

Φ(t) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t) of the linear

matrix differential Eq. (4.7). Now, Ã can be represented in terms of the fundamental

matrix solution Φ(t) as below.

Ã(t) = Φ(t) Ã(0) = Φ(t)1.

So,

A(t, T, α) =
N∑
i=1

ln
(
〈Φ(t)1, ei〉

)
〈α, ei〉.

Therefore, the bond price is represented as the following Markovian regime-switching
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exponential affine form

P (t, T, r, α) = exp

( N∑
i=1

ln
(
〈Φ(t)1, ei〉

)
〈α, ei〉 −B(t, T ) r

)
.

So far, we employed the concept of stochastic flows to derive an exponential affine

form of the bond price when the short rate process is governed by a Markovian

regime-switching Vasicek model. Our model allowed the market parameters, including

the mean-reversion level and the volatility rate to switch over time according to

a continuous-time, finite-state Markov chain. We provided a representation to the

exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations.

4.3.2 Bond pricing and the forward measure

The following lemma was given in Shen and Siu [18, 21 & 22] and gives the dynamics

of the underlying commodity spot price, the interest rate, and the Markov chain under

a forward measure PT to be defined below.

Lemma 4.1. Let Λ(T ) denote the Radon–Nikodym derivative defined by

Λ(T ) =
dPT

dP

∣∣∣∣
G(T )

=
exp
(
−
∫ T
0
r(t) dt

)
E
[
exp
(
−
∫ T
0
r(t)dt

)] (4.8)

Under the following assumptions, we have

1. The Novikov condition is satisfied.

E
[
exp
(1

2

∫ T

0

γ2(t)B2(t, T )dt
)]
<∞.
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2. Ã(t, T, α) is a suitable function in the sense that

Ã(t, T, α(t))

Ã(0, T, α(0))
exp

(
−
∫ t

0

∂Ã
∂s

+QÃ(s, T, α(s))

Ã(s, T, α(s))
ds

)

for all t ∈ T is a (G,P)-martingale.

Then, under the forward probability measure P, the following results hold:

1. The dynamics of the underlying logarithmic of commodity spot price and the

short rate are given by

dX(t) =

(
β
(
θ(t)− x(t)

)
− ρ(t)γ(t)σ(t)B(t, T )

)
dt+ σ(t)dW T

S (t) (4.9)

dr(t) =

(
η
(
µ(t)− r(t)

)
− γ2(t)B(t, T )

)
dt+ γ(t)dW T

r (t) (4.10)

where

W T
S (t) = WS(t) +

∫ t

0

ρ(s)γ(s)B(s, T )ds, t ∈ T ,

and

W T
r (t) = Wr(t) +

∫ t

0

γ(s)B(s, T )ds, t ∈ T ,

are PT -standard Brownian motions with instantaneous correlation coefficient

ρ(t) at time t, i.e., 〈W T
S ,W

T
r 〉 =

∫ t
0
ρ(s)ds.



72

2. The rate matrix of the chain X is Q
′
(t) = [qTij(t)]i,j=1,2,...,N

qTij(t) =


qij
Ã(t, T, ej)

Ã(t, T, ei)
i 6= j

−
∑
k 6=i

qik
Ã(t, T, ek)

Ã(t, T, ei)
i = j

and the martingale dynamics of the chain is given by

α(t) = α(0) +

∫ t

0

Q
′
(s)α(s)ds+MT (t)

for all t ∈ T where {MT (t)|t ∈ T } is an RN -valued, (Fα,PT )-martingale.

Proof. The proof is given in Lemma 3.3 of Fan et al. [25] and follows the same

arguments in Lemma 3.2 in Shen and Siu [47]. So we do not repeat it again here.

4.4 Valuation of commodity futures and options

In this section, we derive the price of a European-style commodity option and futures

option under the regime-switching stochastic interest rate model at time 0, denoted

by C(0, T ) and Cf (0, T, U), respectively. Under the risk-neutral probability mea-

sure P , the prices of a T -maturity futures contract and a T -maturity European-style

commodity option at time 0 are given as follows:

F (0, T ) = E{S(T )} (4.11)

and

C(0, T ) = E
{(

e−
∫ T
0 r(t)dt

)(
S(T )−K

)+}
, (4.12)

where S(T ) is the terminal commodity price; K is the strike price of the commodity

option; E[·] is the expectation with respect to the risk-neutral probability measure P .
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Consider a European-style futures option with a strike price Kf , the terminal payoff

function at the maturity time T of the option is (F (T, U) − Kf )
+, where F (T, U)

represents the futures price with maturity time U at time T . Then the price of the

futures option at time 0 is given by

Cf (0, T, U) = E
{(

e−
∫ T
0 r(t)dt

)(
F (T, U)−Kf

)+}
. (4.13)

By change of measures defined in the earlier section, (4.12) and (4.13) become

C(0, T ) = P (0, T )ET
{(
S(T )−K

)+}
, (4.14)

and

Cf (0, T, U) = P (0, T )ET
{(
F (T, U)−Kf

)+}
(4.15)

where ET is an expectation under the forward measure PT .

4.4.1 Valuation of commodity options

From now on, all the calculations are pretty similar to chapter 3 section 3.

Following the notation in previous chapter, write κ = ln(K), the dampened com-

modity option price is given by

c(κ) = e%κC(O, T ) (4.16)

where % is called the dampening coefficient and assumed to be positive. To obtain a

square integrable function, the dampening coefficient % is selected and the dampened

commodity pricing formula is defined. The problem how to choose the value of the

coefficient % is explained in details in chapter 2. We derive an explicit formula for the
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Fourier transform of c(κ) next. Let fFα(T )(x) be the conditional density function of

X(T ) given Fα(T ). Then, the dampened commodity Fourier transform is given by

ĉ(u) =

∫ ∞

−∞

e−iuκ c(κ) dκ

= P (0, T )

∫ ∞

−∞

e−iuκ e%κ ET
{

(eX(T ) − eκ)+
}

dκ

= P (0, T )ET
{∫ ∞

−∞

e−iuκ e%κ ET
{

(eX(T ) − eκ)+
∣∣∣∣Fα(T )

}
dκ

}

= P (0, T )ET
{∫ ∞

−∞

e−iuκ e%κ

∫ ∞

κ

(
ex − eκ

)
fFα(T )(x) dx dκ

}

= P (0, T )ET
{∫ ∞

−∞

fFα(T )(x)

∫
x

−∞

(
ex e(%−iu)κ − e(1+%−iu)κ

)
dκ dx

}

= P (0, T )ET
{∫ ∞

−∞

fFα(T )(x)

(
e(1+%−iu)x

(%− iu)
− e(1+%−iu)x

(1 + %− iu)

)
dx

}

= P (0, T )ET
{(

φFα(T )(−i(1 + %)− u)

(%− iu)
−
φFα(T )(−i(1 + %)− u)

(1 + %− iu)

)}

=

P (0, T )ET
{
φFα(T )(−i(1 + %)− u)

}
(%− iu)(1 + %− iu)

(4.17)

where

φFα(T )(ν) = ET{eiνX(T )|Fα(T )} =

∫ ∞
−∞

eiνxfFα(T )(x)dx (4.18)

is the conditional characteristic function of X(T ) given Fα(T ).

Note that given Fα(T ), X(T ) has Gaussian distribution with mean

ET{X(T )|Fα(T )} = e−βTX(0) +

∫
T

0

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du
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and variance

Var(X(T )|Fα(T )) =

∫ T

0

σ2(u) e−2β(T−u) du.

It follows that

φFα(T )(ν) = exp

(
iνET{X(T )|Fα(T )} − 1

2
ν2Var(X(T )|Fα(T ))

)

= exp

(
iν
(
e−βTX(0) +

∫
T

0

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

)
− 1

2
ν2
∫ T

0

σ2(u) e−2β(T−u) du

)
. (4.19)

For each t ∈ T and ν ∈ R, let G(t, ν) =
(
g1(t, ν), g2(t, ν), ..., gN(t, ν)

)
, where

gj(t, ν) for each j = 1, 2, ..., N is

gj(t, ν) = iν e−β(T−t)( β θj − ρj γj σj B(t, T )) − 1

2
ν2 σ2

j e
−2β(T−t).

Therefore,

φFX(T )(ν) = exp

(
iν e−βTX(0) +

∫ T

0

〈G(t, ν), α(t)〉dt
)
. (4.20)

Substituting (4.20) in (4.17) implies

ĉ(u) =

P (0, T )ET
{

exp

(
iν e−βTX(0) +

∫ T
0
〈G(t, ν), α(t)〉dt

)}
(%− iu)(1 + %− iu)

,

ν = −(u+ i(1 + %)). (4.21)

In order to derive an explicit formula for ĉ(u), It’s necessary to calculate the

expectation given in (4.21). To do this end, we use a modification of proof of lemma
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1 in Buffington and Elliott [5]. Let diag(G(t, ν)) denote the diagonal matrix with

diagonal elements given by the components of G(t, ν), 1 = (1, 1, ..., 1)
′

and I denote

the (n× n)-identity matrix. Let’s define

W (t, ν) = exp

(∫ t

0

〈G(s, ν), α(s)〉ds
)
α(t), W (0, ν) = α(0). (4.22)

Consequently,

dW (t, ν) = 〈G(t, ν), α(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), α(s)〉ds
)

dα(t).

Note that under PT ,

dα(t) = Q
′
α(t)dt+ dMT (t),

and that

〈G(t, ν), α(t)〉W (t, ν) = diag(G(t, ν))W (t, ν), ∀t ∈ T .

Then

dW (t, ν) = 〈G(t, ν), α(t)〉W (t, ν) dt+ exp

(∫ t

0
〈G(s, ν), α(s)〉ds

)
Q

′
α(t)dt

+ exp

(∫ t

0
〈G(s, ν), α(s)〉ds

)
dMT (t)

= diag(G(t, ν))W (t, ν) dt+Q
′
W (t, ν) dt

+ exp

(∫ t

0
〈G(s, ν), α(s)〉ds

)
dMT (t)

=

[
diag(G(t, ν)) + QT

]
W (t, ν) dt + exp

(∫ t

0
〈G(s, ν), α(s)〉 ds

)
dMT (t).
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By taking integration from both sides, we have

W (t, ν) = W (0, ν) +

∫ t

0

[
diag(G(s, ν)) + Q

′
]
W (s, ν) ds

+

∫ t

0

exp

(∫ u

0

〈G(s, ν), X(s)〉 ds
)

dMT (u)

= α(0) +

∫ t

0

[
diag(G(s, ν)) + Q

′
]
W (s, ν) ds

+

∫ t

0

exp

(∫ u

0

〈G(s, ν), X(s)〉 ds
)

dMT (u).

The final integral is a martingale, so taking expectation under forward measure

PT gives:

ET{W (t, ν)} = α(0) +

∫ t

0

[
diag(G(s, ν)) + Q

′ ]ET{W (s, ν)} ds.

Hence ET{W (t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dET{W (t, ν)}
dt

=
[
diag(G(t, ν)) + Q

′ ]ET{W (t, ν)}, ET{W (0, ν)} = α(0). (4.23)

Suppose Φ(t, ν) denotes the fundamental matrix solution of

dΦ(t, ν)

dt
=
[
diag(G(t, ν)) + Q

′ ]
Φ(t, ν), Φ(0, ν) = I.

If
[
diag(G(t, ν)) + Q

′ ]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Φ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t, ν) of the linear

matrix differential Eq. (4.23). Now, ET{W (t, ν)} can be represented in terms of the
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fundamental matrix solution Φ(t, ν) as below:

ET{W (t, ν)} = Φ(t, ν)α(0).

Since 〈α(T ),1〉 = 1, we have

ET
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)}

= ET
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
〈α(T ),1〉

}
= ET

{〈
exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
α(T ),1

〉}
=

〈
ET
{

exp

(∫ T

0

〈G(t, ν), α(t)〉dt
)
α(T )

}
,1

〉
=
〈
ET{W (T, ν)},1

〉
=
〈
Φ(T, ν)α(0),1

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the commodity option is given by:

ĉ(u) =
P (0, T ) exp

(
iν e−βTX(0)

)〈
Φ(T, ν)α(0),1

〉
(%− iu)(1 + %− iu)

, ν = −(u+ i(1 + %)). (4.24)

4.4.2 Valuation of futures options

In this subsection we consider the valuation of commodity futures options. We wish

to evaluate the time-zero value of a standard European call option on the future price

F (T, U) with strike price Kf and maturity at time T . That is to evaluate:

Cf (0, T, U) = P (0, T )ET
{(

F (T, U)−Kf

)+}
.
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As seen before, the dampened commodity futures options price is given by:

cf (κf ) = e%f κf Cf (0, T, U), (4.25)

where κf = ln(Kf ). Let’s define Y (t) := ln
(
F (t, U)

)
for all t ∈ T . The Fourier

transform of the dampened commodity futures options is given by

ĉf (u) =

P (0, T )ET
{
ψFα(T )(−i(1 + %f )− u)

}
(%f − iu)(1 + %f − iu)

(4.26)

where

ψFα(T )(ν) = ET{eiνY (T )|Fα(T )} =

∫ ∞
−∞

eiνyfFα(T )(y)dy (4.27)

is the conditional characteristic function of Y (T ) given Fα(T ). See chapter 1 section

1.3.2 for details of calculation in (4.26).

In order to derive an explicit formula for ĉf (u), we need to derive an analytical

formula of the characteristic function of the logarithmic commodity futures price, in

other words ln
(
F (T, U)

)
.

To do so, first we need to derive the time-t price of a T -maturity futures contract.

In other words,

F (t, T ) = ET{S(T )|H(t)} = ET
{
ET{S(T )|Fα(T ) ∨ FS(t) ∨ F r(t)}|H(t)

}
where we used tower property for the second equality because H(t) ⊂ Fα(T ) ∨

FS(t) ∨ F r(t). Since S(T ) = eX(T ) and under forward measure PT , the conditional

distribution of X(T ) given Fα(T ) is a Gaussian distribution with mean

ET{X(T )|Fα(T )} = e−β(T−t)X(t) +

∫ T

t

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du
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and variance

Var(X(T )|Fα(T )) =

∫ T

t

σ2(u) e−2β(T−u) du,

then, it’s easy to see that

ET {S(T )|Fα(T ) ∨ FS(t) ∨ Fr(t)}

= exp

(
ET {X(T )|Fα(T )}+

1

2
Var
(
X(T )|Fα(T )

))
= exp

(
e−β(T−t)X(t) +

∫ T

t
(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
e−β(T−u) du

+
1

2

∫ T

t
σ2(u) e−2β(T−u) du

)
. (4.28)

Then the time-t price of a T -maturity futures contract is given by

F (t, T ) = ET {S(T )|H(t)} = ET
{
ET {S(T )|Fα(T ) ∨ FS(t) ∨ Fr(t)}|H(t)

}
= ET

{
exp

(
e−β(T−t)X(t) +

∫ T

t
(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
e−β(T−u) du

+
1

2

∫ T

t
σ2(u) e−2β(T−u) du

)∣∣∣∣H(t)

}
.

Let’s define N(s) =
(
n1(s), n2(s), ..., nN(s)

)
for each s ∈ [0, T ], where for each

j = 1, 2, ..., N ,

nj(s) = (β θj − ρjγjσjB(s, T )) e−β(T−s) +
1

2
σ2
j e
−2β(T−s).

Therefore

F (t, T ) = ET
{

exp

(
e−β(T−t)X(t) +

∫ T

t

〈N(s), α(s)〉 ds
)∣∣∣∣H(t)

}
. (4.29)
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In order to derive an explicit formula for F (t, T ), It’s necessary to calculate the

expectation given in (4.29). To do this end, we adopt the same methodology used

in previous subsection. Let diag(N(t)) denote the diagonal matrix with diagonal

elements given by the components of N(t). Let’s define

H(t, u) = exp

(∫ u

t

〈N(s), α(s)〉ds
)
α(u), H(t, t) = α(t).

Consequently,

dH(t, u) = 〈N(u), α(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), α(s)〉ds
)

dα(u).

Note that under PT ,

dα(u) = Q
′
α(u)du+ dMT (u),

and that

〈N(u), α(u)〉H(t, u) = diag(N(u))H(t, u)

for all t ∈ T . Then

dH(t, u) = 〈N(u), α(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉ds
)
Q

′
α(u)du

+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dMT (u)

= diag(N(u))H(t, u) du+ Q
′
H(t, u) du

+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dMT (u)

=

[
diag(N(u)) +Q

′
]
H(t, u) du+ exp

(∫ u

t

〈N(s), α(s)〉 ds
)

dMT (u).
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By taking integration from both sides, we have

H(t, u) = H(t, t) +

∫ u

t

[
diag(N(s)) + Q

′
]
H(t, s) ds

+

∫ u

t

exp

(∫ τ

t

〈N(s), α(s)〉 ds
)

dMT (τ)

= α(t) +

∫ u

t

[
diag(N(s)) + Q

′
]
H(t, s) ds

+

∫ u

t

exp

(∫ τ

t

〈N(s), α(s)〉 ds
)

dMT (τ).

The final integral is a martingale, so taking expectation under PT conditioning

on H(t) gives:

ET{H(t, u)|H(t)} = α(t) +

∫ u

t

[
diag(N(s)) + Q

′ ]ET{H(t, s)|H(t)} ds.

Hence ET{H(t, u)|H(t)} satisfies the following homogeneous system of linear ODEs

of order one and dimension N :

dET{H(t, u)|H(t)}
du

=
[
diag(N(u)) + Q

′ ]ET{H(t, u)|H(t)} (4.30)

with initial condition ET{H(t, t)|Ht} = α(t). Suppose Ψ(t, u) denotes the fundamen-

tal matrix solution of

dΨ(t, u)

du
=
[
diag(N(u)) + Q

′ ]
Ψ(t, u), Ψ(t, t) = I.

If
[
diag(N(u)) + Q

′ ]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Ψ(t, u) is

Ψ(t, u) = exp(∆ (u− t)).

In general, there exists a unique fundamental matrix solution Ψ(t, u) of the linear
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matrix differential Eq. (4.30). Now, ET{H(t, u)|H(t)} can be represented in terms of

the fundamental matrix solution Ψ(t, u) as below:

ET{H(t, u)|H(t)} = Ψ(t, u)α(t). (4.31)

Using (4.31) implies that

F (t, T ) = ET
{

exp

(
e−β(T−t)X(t) +

∫ T

t

〈N(u), α(u)〉 du
)∣∣∣∣H(t)

}
= exp

(
e−β(T−t)X(t)

)
ET
{

exp

(∫ T

0

〈N(t), α(t)〉 du
)∣∣∣∣H(t)

}
= exp

(
e−β(T−t)X(t)

)
ET
{

exp

(∫ T

t

〈N(u), α(u)〉du
)
〈α(T ),1〉

∣∣∣∣H(t)

}
= exp

(
e−β(T−t)X(t)

)
ET
{〈

exp

(∫ T

t

〈N(u), α(u)〉du
)
α(T ),1

〉∣∣∣∣H(t)

}
= exp

(
e−β(T−t)X(t)

)〈
ET
{

exp

(∫ T

t

〈N(u), α(u)〉du
)
α(T )

∣∣∣∣H(t)

}
,1

〉
= exp

(
e−β(T−t)X(t)

)〈
ET{H(t, T )|H(t)},1

〉
= exp

(
e−β(T−t)X(t)

)〈
Ψ(t, T )α(t),1

〉
.

Then under the forward measure PT , the time-T price of a U -maturity futures

contract is given by:

F (T,U) = ET {S(U)|H(T )} = exp

(
e−β(U−T )X(T )

)
×
〈
Ψ(T,U)α(T ),1

〉
= exp

(
e−β(U−T )

[
e−β(T )X(0) +

∫ T

0
e−β(T−u)

(
βθ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
du

+

∫ T

0
σ(u)e−β(T−u)dW T

S (u)

])
×
〈
Ψ(T,U)α(T ),1

〉
= exp

(
e−β U X(0) + e−βU

∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ e−βU
∫ T

0
σ(u)eβ udW T

S (u)

)
×
〈
Ψ(T,U)α(T ),1

〉
.

where T < U < T ∗.
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Note that given Fα(T ), Y (T ) = ln(F (T, U)) has Gaussian distribution with mean

ET{Y (T )|Fα(T )} = e−β U X(0) + e−βU
∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ e−βU
∫ T

0

σ(u)eβ udW T
S (u) + ln〈Ψ(T, U)α(T ),1

〉
(4.32)

and variance

Var(Y (T )|Fα(T )) =

∫ T

0

σ2(u) e−2β(U−u) du. (4.33)

It follows from (4.33) and (4.34) that

ψFα(T )(ν) = exp

(
i ν E{Y (T )|Fα(T )} − 1

2
ν2 Var

(
Y (T )|Fα(T )

))
= exp

(
i ν e−β U X(0) + i ν e−βU

∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ i ν e−βU
∫ T

0

σ(u)eβ udW T
S (u)

)
× 〈Ψ(T, U)α(T ),1

〉i ν
× exp

(
− 1

2
ν2
∫ T

0

σ2(u) e−2β(U−u) du

)
.

Define Z(ν) = (Z1(ν), Z2(ν), ..., ZN(ν)) and z(t, ν) = (z1(t, ν), z2(t, ν), ..., zN(t, ν))

for each ν ∈ R and t ∈ τ , where Zj(ν) and zj(t, ν) for each j = 1, 2, ..., N are

Zj(ν) = Z(ej, ν) = exp
(
i ν e−β Ux(0)

)
× 〈Ψ(T, U) ej,1

〉i ν
(4.34)

and

zj(t, ν) = z(t, ej, ν) = i ν e−β(U−t)(β θj − ρjγjσjB(t, T ))− 1

2
ν2e−2β(U−t)σ2

j . (4.35)
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Therefore,

ψFα(T )(ν) = Z(X(T ), ν) exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)
. (4.36)

Substituting (4.36) in (4.26) implies

ĉf (u) =

P (0, T )E
{
Z(α(T ), ν) exp

(∫ T
0

〈
z(t, ν), α(t)

〉
dt

)}
(%f − iu)(1 + %f − iu)

(4.37)

where ν = −(u + i(1 + %f )). As we have seen before, in order to derive an ex-

plicit formula for ĉf (u), It’s necessary to calculate the expectation given in (4.37).

Let diag(z(t, ν)) denote the diagonal matrix with diagonal elements given by the

components of z(t, ν). Let’s define

Γ(t, ν) = exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
α(t), Γ(0, ν) = α(0). (4.38)

Applying Itô differentiation rule to Γ(t, ν) gives

dΓ(t, ν) =
〈
z(t, ν), α(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dα(t).

Note that under PT ,

dα(t) = Q
′
α(t)dt+ dMT (t),

and that

〈
z(t, ν), α(t)

〉
Γ(t, ν) = diag(z(t, ν)) Γ(t, ν)
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for all t ∈ T .Then

dΓ(t, ν) =
〈
z(t, ν), α(t)

〉
Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
Q

′
α(t)dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dMT (t)

= diag(z(t, ν)) Γ(t, ν) dt+Q
′
Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dMT (t)

=

[
diag(z(t, ν)) + Q

′
]

Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s, ν), α(s)

〉
ds

)
dMT (t).

By taking integration from both sides, we have

Γ(t, ν) = Γ(0, ν) +

∫ t

0

[
diag(z(s, ν)) + Q

′
]

Γ(s, ν) ds

+

∫ t

0

exp

(∫ τ

0

〈
z(s, ν), α(s)

〉
ds

)
dMT (τ)

= α(0) +

∫ t

0

[
diag(z(s, ν)) + Q

′
]

Γ(s, ν) ds

+

∫ t

0

exp

(∫ τ

0

〈
G(s, ν), α(s)

〉
ds

)
dMT (τ).

Taking expectation under PT gives:

ET{Γ(t, ν)} = α(0) +

∫ t

0

[
diag(z(s, ν)) + Q

′ ]ET{Γ(s, ν)} ds.

Hence ET{Γ(t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dET{Γ(t, ν)}
dt

=
[
diag(z(t, ν)) + Q

′ ]ET{Γ(t, ν)} (4.39)
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with initial condition ET{Γ(0, ν)} = α(0). Suppose Υ(t, ν) denotes the fundamental

matrix solution of

dΥ(t, ν)

dt
=
[
diag(z(t, ν)) + Q

′ ]
Υ(t, ν), Υ(0, ν) = I.

If
[
diag(z(t, ν)) + QT

]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Υ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Υ(t, ν) of the linear

matrix differential Eq. (4.39). Now, ET{Γ(t, ν)} can be represented in terms of the

fundamental matrix solution Υ(t, ν) as below:

E{Γ(t, ν)} = Υ(t, ν)α(0).

Using 〈α(T ),1〉 = 1 implies:

E
{
Z(α(T ), ν)exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)}
= E

{
Z(α(T ), ν)exp

(∫ T

0

〈
z(t, ν), α(t)

〉
dt

)
〈α(T ),1〉

}
= E

{〈
exp

(∫ T

0

〈z(t, ν), α(t)〉dt
)
α(T ), Z(ν)

〉}
=

〈
E
{

exp

(∫ T

0

〈z(t, ν), α(t)〉dt
)
α(T )

}
, Z(ν)

〉
=
〈
E{Γ(T, ν)}, Z(ν)

〉
=
〈
Υ(T, ν)α(0), Z(ν)

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model with stochas-
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tic interest rate, the price of the futures option is given by:

ĉf (u) =
P (0, T )

〈
Υ(T, ν)α(0), Z(ν)

〉
(%f − iu)(1 + %f − iu)

, ν = −(u+ i(1 + %f )). (4.40)



CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS

This dissertation is concerned with pricing of European-style derivatives such as

call, commodity, and futures options under different regime-switching models. Only

regime-switching models are considered in this thesis. We assume the Markov chain

is observable.

Possible furture research directions are as follows:

One can demonstrate the practicality of the model via numerical examples. It is

also possible to apply the techniques developed here to American options. It is also

possible to consider the hedging of these products under regime-switching models.

Static hedging and dynamic hedging are two main types of hedging. We could inves-

tigate the static hedging and the dynamic hedging of standard options, exotic options

and insurance products with embedded option features and provide comparisons of

these hedging strategies.
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APPENDIX A: PROOF FOR THE PAIR OF EQUATIONS (2.40)

Recalling that for the initial state α(0) = j0 we define

φj0(θ, T ) = E(eiθT1|α(0) = j0), j0 = 1, 2.

Let J ∼ exp(λ1) be the first time jumping from state 1 to state 2. Then

φ1(θ, T ) = E
[
eiθT1

∣∣∣∣α(0) = 1

]

= E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T} + eiθT I{J≥T}

∣∣∣∣α(0) = 1

]

= E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 1

]
+ eiθTP(J ≥ T )

=

∫ T

0

E
[
e
iθ

(
t+

∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 2

]
λ1e
−λ1tdt+ eiθT e−λ1T

=

∫ T

0

eiθTλ1e
−λ1tE

[
eiθ

∫ T
t I{α(s)=1}ds

∣∣∣∣α(t) = 2

]
dt+ eiθT e−λ1T

=

∫ T

0

eiθTλ1e
−λ1tφ2(θ, T − t)dt+ eiθT e−λ1T

Note that since J is exponentially distributed with rate λ1, hence

E
[
I{J≥T}

∣∣∣∣α(0) = 1

]
= P(J ≥ T ) = e−λ1T .

The fourth equality holds by well know property of expectations.

E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 1

]

= E

[
E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(J) = 2

]∣∣∣∣∣α(0) = 1

]
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= E

[
E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(J) = 2

]]

=

∫ T

0

E
[
e
iθ

(
t+

∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 2

]
λ1e
−λ1tdt

Following the same methodology we will get the second equality for φ2(θ, T ). Now

let’s assume J ∼ exp(λ2) be the first time jumping from state 2 to state 1. Then

φ2(θ, T ) = E
[
eiθT1

∣∣∣∣α(0) = 2

]

= E
[
e
iθ

( ∫ T
J I{α(s)=1}ds

)
I{J<T} + eiθ0I{J≥T}

∣∣∣∣α(0) = 2

]

= E
[
e
iθ

( ∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 2

]
+ P(J ≥ T )

=

∫ T

0

E
[
e
iθ

( ∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 1

]
λ2e
−λ2tdt+ e−λ2T

=

∫ T

0

λ2e
−λ2tE

[
eiθ

∫ T
t I{α(s)=1}ds

∣∣∣∣α(t) = 1

]
dt+ e−λ2T

=

∫ T

0

λ2e
−λ2tφ1(θ, T − t)dt+ e−λ2T

Note that since J is exponentially distributed with rate λ2, hence

E[I{J≥T}|α(0) = 2] = P(J ≥ T ) = e−λ2T .



APPENDIX B: PYTHON CODE FOR FFT METHOD IN CHAPTER 2

The Python code used throughout was generated using Python 3.5.2 64bits, Qt 5.6.0,

PyQt5 5.6 on Darwin through the Anaconda Navigator 1.3.1 distribution, available at

https://anaconda.org/anaconda/anaconda-navigator/files?version=1.3.1. I

hope this information will help any reader to replicate our result without any trouble.

The following is the code that generated the data seen in Table 2.3 and Tabel 2.4.

import numpy as np

from math import pi

from scipy.interpolate import interp1d

from time import time

t0 = time()

class FFT_Euro:

def __init__(self, m1, m2, r1, r2, sig1, sig2, l1, l2, a, w, T):

self.m1 = m1

self.m2 = m2

self.r1 = r1

self.r2 = r2

self.sig1 = sig1

self.sig2 = sig2

self.l1 = l1

self.l2 = l2

self.a = a

self.w = w

self.T = T

def A(self):

m1, m2, r1, r2, sig1, sig2, a, w = self.m1, self.m2, \

self.r1, self.r2, self.sig1, self.sig2, self.a, self.w
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value = ((m1 - m2) + (0.5 + a) * (sig1**2 - sig2**2)) * -w \

+ 0.5 * 1j * w**2 * (sig1**2 - sig2**2) \

+ ((r1 - r2) - (1 + a) * (m1 - m2) \

- 0.5 * a * (1 + a) * (sig1**2 - sig2**2)) * 1j

return value

def B(self):

m2, r2, sig2, a, w = self.m2, self.r2, \

self.sig2, self.a, self.w

value = 1j * -w * (m2 + (0.5 + a) * sig2**2) -\

0.5 * w**2 * sig2**2 + (1 + a) * m2 - \

r2 + 0.5 * a * (1 + a) * sig2**2

return value

def price(self):

l1, l2, T, a, w = self.l1, self.l2, self.T, self.a, self.w

A = self.A

B = self.B

#-----------------------------------------------

# Prepare phi function according to

# equation 2.22-2.23 paper 2006

#-----------------------------------------------

s1 = 0.5 * ((1j * A() - l1 - l2) - \

np.sqrt((l1 + l2 - 1j * A())**2 \

+ 4 * 1j * A() * l2))

s2 = 0.5 * ((1j * A() - l1 - l2) + \

np.sqrt((l1 + l2 - 1j * A())**2 \

+ 4 * 1j * A() * l2))

phi0 = (1/(s1-s2)) * ((s1 + l1 + l2) * np.exp(s1 * T)\
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- (s2 + l1 + l2) * np.exp(s2 * T))

phi1 = (1/(s1-s2)) * ((s1 + l1 + l2 - 1j * A())\

* np.exp(s1 * T) - (s2 + l1 + l2 - 1j * A())\

* np.exp(s2 * T))

#--------------------------------------------------

# Prepare characteristic function of

# modified price equation 2.24 paper 2006

#--------------------------------------------------

D = np.exp(B()*T) / (a**2 + a - w**2 - (1j * (1 + 2 * a) * w))

q0 = D * phi0

q1 = D * phi1

#--------------------------------------------------

# Prepare a mesh in the frequency (w)

# & space (k) domain

#--------------------------------------------------

S0 = 100.0

N = int(2**12)

h = 0.1534

dk = (2.0 * pi) / (h * N)

kmin = (-N/2) * dk

kmax = ((N/2)-1) * dk

wmax = (N-1) * h

k = np.linspace(kmin, kmax, N)

w = np.linspace(0, wmax, N)

dw = np.zeros(N)

dw[0] = 1/3

for j in range(1,N):
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if (j % 2 == 0):

dw[j] = 2/3

else:

dw[j] = 4/3

#----------------------------------------------

# Prepare the A vector for

# Python’s FFT implementation

#----------------------------------------------

I = np.zeros(N)

for i in range(N):

I[i] = i

A_vector0 = np.exp(-1j * I * pi) * q0 * dw * N

A_vector1 = np.exp(-1j * I * pi) * q1 * dw * N

#-----------------------------------------------

# Compute the DFT of A_vector

# and retrieve its real part

#----------------------------------------------

a_vector0 = np.fft.ifft(A_vector0)

a_vector1 = np.fft.ifft(A_vector1)

a_vector0 = np.real(a_vector0)

a_vector1 = np.real(a_vector1)

#---------------------------------------------

# Convert the a_vector into a

# value vector of European option

#--------------------------------------------

V_vector0 = (h * S0 / pi) * np.exp(-a * k) * a_vector0

V_vector1 = (h * S0 / pi) * np.exp(-a * k) * a_vector1
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#-------------------------------------------

# Obtain a continuous value f

# unction using interpolation

#-------------------------------------------

# This is linear interpolation.

K_vector = S0 * np.exp(k)

V0 = interp1d(K_vector, V_vector0)

V1 = interp1d(K_vector, V_vector1)

return V0, V1, K_vector

if __name__==’__main__’:

l1 = 20.0

l2 = 30.0

m1 = r1 = 0.05

m2 = r2 = 0.1

sig1 = 0.5

sig2 = 0.3

T = 1.0

S0 = 100.0

K = [74.082, 81.873, 90.484, 100.0, 110.517, 122.140, 134.986]

N = int(2**12)

h = 0.1534

dk = (2.0 * pi) / (h * N)

kmin = (-N/2) * dk

kmax = ((N/2)-1) * dk

wmax = (N-1)*h

k = np.linspace(kmin, kmax, N)

w = np.linspace(0, wmax, N)
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a = 1.0

print (’\n European Call Option Price via FFT method ’)

print (’\n Strike Price STATE 1 STATE 2 \n’)

for n in range(7):

callprice = FFT_Euro(m1, m2, r1, r2, sig1, sig2,\

l1, l2, a, w, T)

V0, V1, K_vector = callprice.price()

print (’%20f %20.10f %20.10f \n’ % (K[n] ,V0(K[n]), V1(K[n])))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)



APPENDIX C: PYTHON CODE FOR MCS IN CHAPTER 2

The following is the codes that generated the data seen in Table 2.3, Tabel 2.4, Table

2.1 and Tabel 2.2. Monte Carlo algorithm relies on repeated random sampling to

obtain numerical results. Its essential idea is using randomness to solve problems

that might be deterministic in principleI. As we said before, it’s very time consuming

versus FFT is less than a second and it’s not feasible in most practical use in real

time. Other reason makes FFT more useful is that simulating of random variable in

MC makes slightly different answers each try, while we always get the same results in

FFT.

This code is created for MC simulations with different strike prices in Table 2.3

and Tabel 2.4.

import numpy as np

import random

from time import time

t0 = time()

# Given parameters

T = 1.0

S0 = 100.0

Initial_State = 1.0

sig1 = 0.5

sig2 = 0.3

r1 = mu1 = 0.05

r2 = mu2 = 0.1

n = 100000

Strikes = [74.082, 81.873, 90.484, 100.0, 110.517, 122.140, 134.986]

l1 = 20.0

l2 = 30.0
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#np.random.seed(19)

print (’\n European Call Option Price under RSGBM via MC method ’)

print (’\n Strike Price STATE 1 \n’)

for j in range(7):

K = Strikes[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(np.log(S0))

Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*np.log(p)/l1

else:

ExpRV = -1*np.log(p)/l2

#If the next state change is before maturity,

# increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:

if Curr_State==1:
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tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:

Curr_State = 1

# Obtain a pseudo-random sample from

# standard normal distribution

SimRand = float(np.random.standard_normal(1))

#Calculate our terminal log stock price

LogStock = LogStock + (mu1 - 0.5 * sig1**2) * tau1 + \

(mu2 - 0.5 * sig2**2) * (T-tau1) \

+ SimRand*np.sqrt(tau1*sig1**2 \

+ (T-tau1)*sig2**2)

#Calculate terminal option value

TermValOneRun = np.maximum(0, np.exp(LogStock) - K)

#Add terminal option value running total

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n) * np.exp(-1 * ((tau1 * r1 )+...

r2*(T-tau1)))

print (’%20f %20.10f \n’ % (K ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)
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This code is created for MC simulations with different maturities in Table 2.1 and

Tabel 2.2.

import numpy as np

import random

from time import time

t0 = time()

# Given parameters

Maturities = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

Initial_State = 2.0

sig1 = 0.2

sig2 = 0.3

r1 = mu1 = 0.1

r2 = mu2 = 0.1

n = 100000

K = 90.0

l1 = 1.0

l2 = 1.0

#np.random.seed(19)

print (’\n European Call Option Price under RSGBM via MC method ’)

print (’\n Maturity STATE 2 \n’)

for j in range(6):

T = Maturities[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(np.log(S0))
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Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*np.log(p)/l1

else:

ExpRV = -1*np.log(p)/l2

#If the next state change is before maturity,

# increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:

if Curr_State==1:

tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:
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Curr_State = 1

# Obtain a pseudo-random sample from

# standard normal distribution

SimRand = float(np.random.standard_normal(1))

#Calculate our terminal log stock price

LogStock = LogStock + (mu1 - 0.5 * sig1**2) * tau1 + \

(mu2 - 0.5 * sig2**2) * (T-tau1) \

+ SimRand*np.sqrt(tau1*sig1**2 \

+ (T-tau1)*sig2**2)

#Calculate terminal option value

TermValOneRun = np.maximum(0, np.exp(LogStock) - K)

#Add terminal option value running total

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n) * np.exp(-1 * ((tau1 * r1 )+...

r2*(T-tau1)))

print (’%20f %20.10f \n’ % (T ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)



APPENDIX D: PYTHON CODE FOR ANALYTICAL PRICES IN CHAPTER 2

The following is the code that generated the data seen in Table 2.1 and Tabel 2.2.

# first page

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 1/3) = 4.668503519321425

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 1) = 4.685170185988092

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 0) = 4.6601701859880915

# var(0.2, 0.3, 1, 1/3) = 0.07333333333333333

import numpy as np

from math import log, pi

def mu(S0, d0, d1, r, sig0, sig1, T, t):

value = log(S0)+(d1 - d0 - 0.5 * (sig0**2 - sig1**2)) * t \

+ (r - d1 - 0.5 * sig1**2)*T

return value

def var(sig0, sig1, T, t):

value = (sig0**2 - sig1**2) * t + sig1**2 * T

return value

# second page

# call0(100,0 , 0, 0.1, 0.2, 0.3, 1, 1, 1, 90) =21.075037242396174

# call1(100,0 , 0, 0.1, 0.2, 0.3, 1, 1, 1, 90) = 22.002645343515372

import numpy as np

from math import pi, log

from scipy.integrate import quad

from parameters import mu, var

def integrand0(y, S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

m0T = mu(S0, d0, d1, r, sig0, sig1, T, T/3)

mT = mu(S0, d0, d1, r, sig0, sig1, T, T)

v0T = var(sig0, sig1, T, T/3)
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vT = var(sig0, sig1, T, T)

a = (1/np.sqrt(2*pi*v0T)) * np.exp(-(log(y+K)-m0T)**2 / (2*v0T))

b = (1/np.sqrt(2*pi*vT)) * np.exp(-(log(y+K)-mT)**2 / (2*vT))

value = (y/(y+K)) * (a * (1-np.exp(-l0*T)) + b * np.exp(-l0*T))

return value

def call0(S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

return np.exp(-r*T) * quad(integrand0, 0, np.inf, \

args=(S0, d0, d1, r, sig0, sig1, T, l0, l1, K))[0]

def integrand1(y, S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

m0T = mu(S0, d0, d1, r, sig0, sig1, T, T/3)

m0 = mu(S0, d0, d1, r, sig0, sig1, T, 0)

v0T = var(sig0, sig1, T, T/3)

v0 = var(sig0, sig1, T, 0)

a = (1/np.sqrt(2*pi*v0T)) * np.exp(-(log(y+K)-m0T)**2 / (2*v0T))

b = (1/np.sqrt(2*pi*v0)) * np.exp(-(log(y+K)-m0)**2 / (2*v0))

value = (y/(y+K)) * (a * (1-np.exp(-l1*T)) + b * np.exp(-l1*T))

return value

def call1(S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

return np.exp(-r*T) * quad(integrand1, 0, np.inf, \

args=(S0, d0, d1, r, sig0, sig1, T, l0, l1, K))[0]

# third page

import numpy as np

from price import call0, call1

from time import time

t0 = time()

def main():

d0 = d1 = 0
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l0 = l1 = 1.0

sig0 = 0.2

sig1 = 0.3

T = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

K = 90.0

r = 0.1

V0 = np.zeros((6))

V1 = np.zeros((6))

print (’\n European Call Option Price under RS

GBM-Analytical Solutions ’)

print (’\n Strike Price STATE 1 STATE 2 \n’)

for i in range(6):

V0[i] = call0(S0, d0, d1, r, sig0, sig1, T[i], l0, l1, K)

V1[i] = call1(S0, d0, d1, r, sig0, sig1, T[i], l0, l1, K)

print (’%20f %20.10f %20.10f \n’ % (T[i] ,V0[i], V1[i]))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)

main()



APPENDIX E: PYTHON CODE FOR SEMI-MC SIMULATIONS IN CHAPTER 2

This approach only takes random sampling of the Markov chain and then takes ad-

vantage of the availability of analytical formula (therefore exact) of the conditional

price. Thus semi-Monte Carlo simulation outperforms Monte Carlo method. As we

can see the obtained results from FFT and semi-MC simulation are so closed to each

other than the results obtained from MC simulations.

The following is the code that generated the data seen in Table 2.1 and Tabel

2.2 for for semi-MC simulations with different maturities. One can simply obtain the

data generated in Table 2.3 and Tabel 2.4 for semi-MC simulations with different

strike price.

from scipy import log, sqrt, exp

import random

from time import time

from scipy.stats import norm

t0 = time()

# Given parameters

Maturities = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

Initial_State = 2.0

sig1 = 0.2

sig2 = 0.3

r1 = mu1 = 0.1

r2 = mu2 = 0.1

n = 100000

K = 90.0

l1 = 1.0

l2 = 1.0
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#np.random.seed(19)

print (’\n European Call Option Price under

RSGBM via Semi-MC method ’)

print (’\n Maturity STATE 2 \n’)

for j in range(6):

T = Maturities[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(log(S0))

Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*log(p)/l1

else:

ExpRV = -1*log(p)/l2

#If the next state change is before maturity,

# increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:
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if Curr_State==1:

tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:

Curr_State = 1

LT = mu1 * tau1 + mu2 * (T-tau1)

VT = sig1**2 * tau1 + sig2**2 * (T-tau1)

RT = tau1 * r1 + r2 * (T-tau1)

d1 = (log(S0/K) + LT + (0.5 * VT)) / sqrt(VT)

d2 = d1 - sqrt(VT)

TermValOneRun = S0 * exp(-(RT - LT)) * norm.cdf(d1) \

- K * exp(-RT) * norm.cdf(d2)

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n)

print (’%20f %20.10f \n’ % (T ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)


