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ABSTRACT

HOSSEIN HEMATIALAM. Knowledge extraction and analysis of medical text with
particular emphasis on medical guidelines. (Under the direction of DR. WLODEK

ZADROZNY)

In this dissertation document, we describe the potential for Information Extraction,

Information Retrieval, and Machine Learning methods to improve the process of

analyzing medical texts and, in particular, Clinical Practice Guidelines (CPGs). We

present the results of three in-depth studies consisting of dozens of experiments on

finding condition-action and other conditional sentences in guideline documents. We

are improving the state-of-the-art results (up to 25%) and showing for the first time

the applicability of domain adaptation and transfer learning to this problem.

We also present new methods for identifying inconsistencies in disagreements be-

tween medical guidelines, and for analyzing them using a combination of machine

learning, information retrieval, and text mining methods. We show the need for a

formal distinction between contradictions and disagreements in natural language texts

to formally reason between contradictory medical guidelines.

We introduce new representations for collections of guideline documents and an al-

gorithm for comparing collections of documents. We use these to investigate concep-

tual distances between guidelines for the same conditions. Throughout this process,

we prove the hypothesis that the difference in recommendations largely (by 69% to

86%) correlates with the differences in concepts used by the medical bodies authoring

the guidelines.

Finally, we show the applicability of text analysis methods to practical problems of

analyzing textual information in electronic health records. We achieved 83% accuracy

in matching medical records with a list of pre-defined conditions in an EHR system,

resulting in clinical system support changes in one of the leading US hospitals.
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CHAPTER 1: INTRODUCTION

1.1 Overview of the Problem Space of this Dissertation

Natural language understanding (NLU) is one of the great unsolved problems of

artificial intelligence. We, humans, have not (yet?) constructed machines capable of

engaging in intelligent conversation or in-depth reading of a novel. Even for technical

jargons, which do not contain metaphors or poetic comparisons, the NLU problem is

still unsolved.

In this dissertation, we look into the problem of understanding medical texts from

different perspectives. At this point, there is no single approach that would allow us

to create practical models of such texts. For example, being able to do entity and

relationship extraction (which is the focus of Chapters 6 and 7) is not sufficient to

understand the conceptual relations between full texts of medical documents, such as

clinical guidelines (Chapter 4).

We devote a large portion of our research to medical guidelines for several rea-

sons. They directly affect the patients, but they often contradict each other because

different professional medical societies focus on different aspects of patient health.

Moreover, not much research has been done on understanding the texts of the guide-

lines, one reason being, the lack of annotated corpora.

Therefore, we look at medical guidelines from several complementary perspectives.

As with any issue, we can take top-down and bottom-up approaches, and we do both.

We compute conceptual distances between full documents to verify the hypothesis

that different training contributes to differences in recommendations (Section 4.3),

and we attempt to find the specifics of contradictions between sentences in different

guidelines (Section 3.2).
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In our experiments, we employ different types of tools. We use Information Ex-

traction tools to address a practical problem of understanding free-text notes from

transfusions in a Duke University hospital (Chapter 7) in order to understand adher-

ence to the appropriate clinical guidelines and to modify the structure of the electronic

health records system. On the other end of the spectrum, we use very recently devel-

oped deep learning techniques to find condition-action sentences in medical guidelines

(Chapter 5). We also experiment with applying information retrieval techniques both

for fine-grained detection of contradictions (Section 3.3), and to better understand

the space of medical guidelines (Chapter 6).

Overall, this dissertation provides a comprehensive look at extraction of different

types of knowledge from medical texts, and in particular, from medical guidelines. It

also discusses most of the modern machine learning techniques and their applicabil-

ity to natural language processing in this domain. The dissertation also introduces

practical and already implemented methods (Chapter 7), as well as more speculative

ones (Chapters 3, 4, and 6), which we hope will eventually influence the field and,

among other things, reduce treatment variabilities.

The presented contributions include:

• Three in-depth studies of finding condition-action and other conditional sen-

tences in medical guidelines. Here we improved state of the art up to 25%

(Chapter 5).

As part of these studies, we developed two new annotated guideline documents,

which gained the acceptance of other researchers [4, 3]. The newest results are

currently in process of being submitted to BMC Bioinformatics.

• A novel model of extraction of contradictions and disagreements from medical

guidelines (Section 3.3) and a formal model allowing logical reasoning about

degrees of disagreement (Section 3.2) (Published in IWCS 2017—12th Interna-
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tional Conference on Computational Semantics).

• A preliminary study of a semantic search engine (Chapter 6) which should

enable non-specialist finding guidelines, and snippets of interest relevant to

answering both medical and public health questions, such as changes in drug

recommendation or diffusion of medical innovation (on-going work).

• A study, with a Duke University researcher, of text notes from transfusion proce-

dures showing high accuracy of a specially-developed data extraction and classi-

fication model, which achieved 95% accuracy in extracting numerical condition

and 83% in matching medical records with a list of standardized conditions.

Furthermore, this study’s results have already resulted in changes to the EHR

system in a Duke University hospital. (And an article about it is under review

in Journal of Biomedical Informatics).

• A very novel (and somewhat speculative) model, developed with a researcher

at University of Central Florida medical school showing that the authors of

medical guidelines should be viewed as epistemological near peers. That is, the

difference between guidelines can, to a large extent (69%–86%), be attributed

to the difference between the concepts used by different medical specialties.

(Published in Applied Sciences 11, no. 5 (2021)).

1.2 Dissertation Structure

The remainder of this dissertation is organized as follows:

In Chapter 2, we review the definition of Clinical Practice Guidelines and related

systems. We provide a summary of available text analysis methods.

In Chapter 3, we propose a formal representation of contradictions and disagree-

ments in text. We also introduce an architecture for identifying contradictions and

disagreements in medical guidelines. We report an experiment of adapting the pro-
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posed architecture on finding agreements and disagreements between medical guide-

lines.

In Chapter 4, we introduce a natural language processing approach to represent

medical guidelines as embeddings and a novel graph-based similarity model for com-

paring collections of documents. We report the evaluation of our approach on three

sets of medical guidelines: breast cancer screening, lower back pain management

guidelines, and hypertension management guidelines.

Motivated by [8], we address the problem of identifying condition-action statements

in Chapter 5. We propose an automated process to identify conditional and condition-

action statements from medical guidelines using classical machine learning models

and deep learning language representation models. We report the evaluation of the

proposed methods on extracting conditional and condition-action statements from

three sets of medical guidelines: asthma, hypertension, and rhinosinusitis guidelines.

In Chapter 6, we present a process of creating and indexing medical statements.

Our proposed process provides semantic indexing and can handle different formats of

textual information like narrative text and tables. We used the proposed process to

create a corpus of medical guidelines. We provide some examples on the capabilities

of our system.

In Chapter 7, we introduce a semi-automated method for matching free-text ele-

ments of medical records in a patient blood management system. We also report our

analysis of the repetition of the conditions appeared in the records. This analysis

helps to identify new treatment services and new thresholds for blood product orders.

In Chapter 8, we conclude the dissertation by highlighting our contributions and

possible future directions.



CHAPTER 2: PRELIMINARIES: CLINICAL PRACTICE GUIDELINE AND

TEXT ANALYSIS METHODS

In this chapter, we are going to review medical guideline and NLP analysis and

computational linguistic techniques which help us in the process of retrieving and

extracting knowledge from medical texts.

Since 2010, on average, more than 1,200 new practice guidelines have been indexed

in PubMed 1 each year. There is a considerable number of medical guidelines for each

disease. For example, more than 200 guidelines are indexed in PubMed for diagnosis

of breast cancer. Besides the large number of available guidelines from different

organizations, each guideline is being updated regularly. An automated process of

analyzing guidelines is necessary for studying and controlling the impact of medical

guidelines on evidence-based medicine and public health, due to the enormous number

of medical guidelines available.

We first review the definition of Clinical Practice Guidelines and its role in the deci-

sion making process. After that, we will review available NLP analysis and computa-

tional linguistic techniques to retrieve and extract knowledge from medical guidelines.

2.1 Clinical Practice Guidelines — the Focus of This Dissertation

The Institute of Medicine (IoM) defined practice guidelines as “systematically de-

veloped statements to assist practitioner and patient decisions about appropriate

health care for specific clinical circumstances” [9]. In 2011, the institute’s committee

updated the Clinical Practice Guideline(CPG) definition to reflect a better current

consensus on what constitutes CPG. In a new definition, CPGs are “statements that

include recommendations, intended to optimize patient care, that are informed by a
1https://pubmed.ncbi.nlm.nih.gov/
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systematic review of evidence and an assessment of the benefits and harms of alter-

native care options” [10]. The Institute of Medicine introduced five dimensions to

categorize CPGs [11]:

• Clinical orientation: the main focus of a CPG can be a clinical condition [12], a

technology (broadly defined) [13], or a process [14].

• Clinical purpose: CPGs may advise about screening and primary prevention [15,

16], diagnosis [17, 18], treatment and management (including secondary pre-

vention) [19], or more discrete aspects of health care.

• Complexity: CPGs may be relatively straightforward in presentation [15] and dis-

cussion or be full of lengthy narrative and documentation, considerable detail,

or complex logic [19].

• Format: CPGs can be presented in free-text, tables, charts, or by other means.

• Intended users: CPGs are intended to be used by practitioners [19, 15], patients [20],

or others.

Different medical societies develop CPGs. Since they employ experts with different

specialties and sub-specialties, different methods, and different evidence, we might see

disagreement between guidelines. For example, the American College of Radiology

recommends that women Aged 50 to 75 get a mammography annually while the

American College of Physicians recommends mammography once every two years for

that group. These disagreements might contribute to overdiagnosis or overtreatment

since they raise uncertainty.

CPGs are the primary knowledge source for computer-based clinical decision sup-

port systems (CDSSs) [21]. CDSSs are “software that is designed to be a direct aid

to clinical decision-making in which the characteristics of an individual patient are

matched to a computerized clinical knowledge base, and patient-specific assessments
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or recommendations are then presented to the clinician and/or the patient for a de-

cision” [22]. Deciding which questions to ask, tests to order, procedures to perform,

treatment to indicate, or which alternative medical care to try, are examples of clinical

decisions which CDSSs try to answer. CDSSs generally fall into two categories [23] :

• “Determining what is true about a patient (usually what the correct diagnosis

is)."

• “Determining what to do for the patient (usually what test to order, whether to

treat, or what therapy plan to institute)."

Most of the questions physicians need to consult with CDSSs about are from the

latter category. CPGs are most useful at the point of care [24] and answering what

to do questions with recommendations.

2.2 Information Extraction and Other Text Analysis Tasks

In this section, we review Information Extraction (IE) as a powerful tool in ex-

tracting knowledge from medical texts. Any process that selectively structures and

combines data that is found, explicitly stated or implied, in one or more texts is called

Information Extraction [25]. IE is different from Information Retrieval (IR) because

the IR goal is to retrieve relevant documents, but IE’s goal is to extract relevant

information. Different goals result in different techniques adopted by these technolo-

gies. The combining of IR and IE provides more powerful tools for users to seek

information. While IR systems rely on information theory, probability theory, and

statistics, IE systems apply NLP analysis and computation linguistic techniques and

theories to extract desired information from texts. The input for an IE system can be

unstructured data (e.g., free-text), semi-structured data (e.g., tables), or structured

data (e.g., HTML pages).

Message Understanding Conferences (MUC) inspired researchers to focus on the

development of the IE systems. MUCs introduced several important IE tasks [26]:
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named entity recognition, coreference resolution, template element construction, tem-

plate relation construction, and scenario template production. Named entity recog-

nition and coreference resolution grab more attention from the NLP community.

2.2.1 Named Entity Recognition

Named Entity Recognition and Classification (NERC) is a subtask of IE which

identifies references to the entities in text. For example, the sentence “Apple Inc. was

founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in 1976.” is annotated as

“ Inc.]organization was founded by [Steve Jobs]person, [Steve Wozniak]person, and [Ronald

Wayne]persom in [1976]time.” by a NERC tagger. The task of recognition of named

entities was added to the Sixth Message Understanding Conference MUC (MUC-6).

Early systems [27, 28, 29] used handcrafted rule-based algorithms to perform the

task. More studies [30, 31, 32] illustrate that machine learning techniques, especially

supervised learning ones, can be used to perform the task and induce rule-based

systems. [33, 34] reviewed early NERC studies. Recently, researchers applied deep

learning techniques on NER tasks. li et al. [35] provided a survey on deep learning

for NER.

Biomedical named entity recognition (Bio-NER) is a key element in extracting

knowledge from medical guidelines. Bio-NER systems extract different biomedical

entity types (e.g., disease and gene) from text. MetaMap [36] and cTAKES [37] are

two well-known Bio-NER tools which extract biomedical entities and normalize them

to the unified medical language system (UMLS) [38] concepts.

2.2.2 Part of Speech Tagging

Part of speech tagging (POS) is the process of labeling each word of a sentence,

with its grammatical speech role such as verb. POS taggers usually take advantage

of the grammatical or semantic context of the terms [39]. There are many available

datasets of part-of-speech labels. A popular one in the modern English language is
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Penn Treebank where the tagset size is 48 [40].

An example of part of speech tagging for the following sentence [41] is computed

using Python NLTK [42]:

“Many studies comparing different inhaled steroids are of inadequate design and

have been omitted from further assessment.”

[(‘Many’, ‘JJ’), (‘studies’, ‘NNS’), (‘comparing’, ‘VBG’), (‘different’, ‘JJ’), (‘in-

haled’, ‘JJ’), (‘steroids’, ‘NNS’), (‘are’, ‘VBP’), (‘of’, ‘IN’), (‘inadequate’, ‘JJ’), (‘de-

sign’, ‘NN’), (‘and’, ‘CC’), (‘have’, ‘VBP’), (‘been’, ‘VBN’), (‘omitted’, ‘VBN’),

(‘from’, ‘IN’), (‘further’, ‘JJ’), (‘assessment’, ‘NN’), (‘.’, ‘.’)]

In this example JJ stands for adjective, NNS for noun plural, VBG for verb gerund,

VBP for verb present, IN for preposition, NN for noun singular, CC for coordinating

conjunction, and VBN for verb, past participle.

2.2.3 Parsing

In natural language processing, parsing refers to syntax analysis of a sentence.

Intuitively, a tree diagram can represent the syntax where every word is tagged with

the part of speech. The primary step of a parser is lexical analysis to extract the

tokens, which can be considered as a word-level segmentation in discourse analysis.

The next step is the syntax analysis of the sentence and extraction of its constituent

components based on a specific grammar. In practice, many of the parsers take

advantage of some statistical methods to hire an existing trained corpus. Here, a

trained corpus contains large numbers of annotated words - e.g., Penn Treebank [40]

which includes 4.5 million tagged English words. When dealing with a large corpus,

parsing is costly; therefore, in practice, different parsing algorithms should consider

a trade-off between the computational cost and the accuracy [43].

The parse tree output for the following sentence [41] is using Stanford NLP Parser

is shown in Figure2.1:

“If bp is greater than 50, follow the instruction.”
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Figure 2.1: A parsed tree for the following sentence: “If bp is greater than 50, follow
the instruction.”

2.2.4 Coreference Resolution

The task of resolving noun phrases to the entities that they refer to is called corefer-

ence resolution. For example, in the sentence “John wants to marry Maria because he

is in love with her”, he refers to John, and her refers to Maria. Coreference resolution

helps NLP researchers in areas such as NERC and question answering. The early
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studies [44, 45] focused on pronoun resolution and used linguistic-based approaches.

Machine learning approaches such as Naive Bayes’, clustering, and decision trees were

adopted to perform the task by [46, 47, 48].

2.2.5 Discourse/Text Segmentation

In order to analyze and understand the syntactic and semantic structure of a dis-

course, a text is required to be partitioned into meaningful units. This process is

referred to as text or discourse segmentation. Segmentation can be applied to dif-

ferent levels of abstraction such as word, sentence, intent, topic, and conversation.

The result of a segmentation task is boundaries of the segments of the discourse.

Some written languages have explicit boundary cues such as white space in English

for word-level segmentation. However, these explicit boundaries do not exist equally

for every level of abstractions and in all languages. This is one of the problems that

makes the task non-trivial.

Focusing on the English language, both syntactic and semantic cues have been

used for segmentation tasks. In lower-level segmentations such as word-level, white

space, and some other delimiters like hyphens give a simple but relatively accurate

result. However, moving to the higher level of abstraction, these explicit cues are less

accurate, and the task becomes more ambiguous. Thus, more complicated methods

might be required in this case. For instance, sentence segmentation relies primar-

ily on punctuations, specifically full stop, question, or exclamation marks. But the

ambiguity of compound sentences as well as using the same punctuation in other

parts of the sentence will increase the need for the other complementary rules and

learnings. Moving upward to topic segmentation, the problem becomes even more

complicated as the human readers also might have different ideas about the segments

and boundaries. Generally, the rule-based approaches are accurate enough for word

and sentence segmentation, but topic segmentation methods are mostly probabilistic

and rely on machine learning approaches [49, 50].
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As an example, consider the following paragraph [41]:

“Many studies comparing different inhaled steroids are of inadequate design and

have been omitted from further assessment. In view of the clear differences between

normal volunteers and asthma patients in the absorption of inhaled steroids, data

from normal volunteers have not been taken into account. Only studies in which

more than one dose of at least one of the inhaled steroids or both safety and efficacy

had been studied together in the same trial were evaluated. Non-blinded studies

also had to be considered because of the problems of obtaining competitors’ delivery

devices. All comparisons used BDP-CFC (chlorofluorocarbons) as the reference.”

The sentence segmentation using Python NLTK would be: [Many studies compar-

ing different inhaled steroids are of inadequate design and have been omitted from

further assessment.] [In view of the clear differences between normal volunteers and

asthma patients in the absorption of inhaled steroids, data from normal volunteers

have not been taken into account.][Only studies in which more than one dose of at

least one of the inhaled steroids or both safety and efficacy had been studied together

in the same trial were evaluated.][Non-blinded studies also had to be considered be-

cause of the problems of obtaining competitors’ delivery devices.][All comparisons

used BDP-CFC (chlorofluorocarbons) as the reference.]

And considering the first sentence, the word segmentation, known as tokenizer,

using the same library would be: [’Many’, ’studies’, ’comparing’, ’different’, ’inhaled’,

’steroids’, ’are’, ’of’, ’inadequate’, ’design’, ’and’, ’have’, ’been’, ’omitted’, ’from’,

’further’, ’assessment’, ’.’]

2.2.6 Sentiment Analysis

A major aspect of understanding a discourse is analyzing it based on the attitude

of the author toward a subject or entity. Sentiment analysis and opinion mining are

the computational approaches to capture people’s opinions, attitudes, and sentiments.

While these two concepts are sometimes being used interchangeably, some researchers
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believe their goals are different [51]. Based on their argument, in opinion analysis, we

are looking for the reason as well as the attitude and sentiment. Generally, the target

of sentiment analysis is extracting people’s opinion towards an entity, identifying the

expressed sentiment for that, and classification of the polarity of these sentiments [52].

The popular approaches in text mining used to be mainly lexicon-based [53]. Machine

learning [54] approaches are becoming more popular in recent years. A lexicon-based

approach takes advantage of available dictionaries and statistical methods, while a

machine learning-based approach utilizes machine learning algorithms that are trained

on a labeled corpus to extract the polarity features. According to IBM Watson

analyzer [55], the following sentence [41] holds a negative sentiment of -0.56 on the

scale of -1 to +1.

“Many studies comparing different inhaled steroids are of inadequate design and

have been omitted from further assessment.”

2.2.7 Terminology Extraction

Terminology extraction refers to the methods that retrieve a basic vocabulary for

a domain-specific corpus [56] [57]. Providing a list of possible candidate terms, the

algorithm needs to validate those terms in different ways. It is necessary to review

the relationships among those terms that represent any domain concept. In the

path to refine the candidate terms, one may need to answer a few questions. To

what extent is a (short) list of terms covering the domain? To what extent do these

terms refer to a similar (but not the same) domain? To what extent might they

refer to a completely different domain? Answering these questions, we may come up

with a measure of quality for the terminology extraction process. In other words, a

reliable design of the terminology extraction process should provide precise answers to

these questions. There are many linguistic and statistical algorithms for terminology

extraction. In linguistic approaches, good candidate terms are being considered based

on their syntactic characteristics. Thus, this approach requires a step of parsing the
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corpus. On the other hand, the statistical approach, as its name suggests, relies

on term frequencies. In the simplest example, the n-grams will be filtered based

on term frequency-inverse document frequency (TF-IDF). Note that in many cases,

the statistical and linguistic algorithms are being combined in hybrid approaches.

Considering the following two paragraphs [41]:

"Many studies comparing different inhaled steroids are of inadequate design and

have been omitted from further assessment. In view of the clear differences between

normal volunteers and asthma patients in the absorption of inhaled steroids, data

from normal volunteers have not been taken into account. Only studies in which

more than one dose of at least one of the inhaled steroids or both safety and efficacy

had been studied together in the same trial were evaluated. Non-blinded studies

also had to be considered because of the problems of obtaining competitors’ delivery

devices. All comparisons used BDP-CFC (chlorofluorocarbons) as the reference.

BDP and budesonide are approximately equivalent in clinical practice, although

there may be variations with different delivery devices. There is limited evidence

from two open studies of less than ideal design that budesonide via the turbohaler

is more clinically effective. However, at present a 1:1 ratio should be assumed when

changing between BDP and budesonide."

The suggested terminology using IBM Watson Analyzer [55] top terminology would

be:

“different inhaled steroids” with a score of 0.94, “normal volunteers” with a score of

0.74, “delivery devices” with a score of 0.72, and “comparing different inhaled steroids”

with a score of 0.67.

2.2.8 Language Representation Models

Word Embeddings are distributional semantic models which aim to map words, n-

grams, phrases, or other units of meaning in a text to vectors. In an early study [58],

authors introduced a new method for indexing and retrieval to overcome the deficien-
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cies of term-matching retrieval systems. In this subsection, we present two state-of-

the-art models for word embedding and a recent language representation model.

Mikolov et al. [59] proposed two model architectures, Continuous Bag-of-Words

(CBOW) and Continuous Skip-gram, for computing vector representations of words

from a corpus. In CBOW, the model predicts the current word based on the surround-

ing words. The skip-gram model predicts a surrounding window of context words.

CBOW represents frequent words better, and skip-gram can predict rare word rep-

resentation with higher accuracy [59]. Word2Vec models can be used for NLP tasks

such as word similarity tasks.

Global Vectors for Word Representation (GLoVe) [60] is an unsupervised learning

algorithm that aims to represent words with vectors. The authors proposed a weighted

least squares regression model which uses word-word co-occurrence statistics to pro-

duce a word vector space. The model was evaluated with word analogies [59], word

similarity, and named entity recognition tasks.

BERT [61] is a language representation model developed by the Google AI lan-

guage group. Unlike most of the word embedding models, BERT is not a feature-

based model. Feature-based models provide pre-trained representation as additional

features for task-specific architectures [61]. The pre-trained BERT representation is

designed to be fine-tuned with just one additional output layer to create models for

NLP tasks.

BERT introduced the “masked language model” (MLM) to pre-train deep bidirec-

tional representations by jointly conditioning on both left and right context in all

layers [61]. Since it aims to extract long contiguous sequences, BERT was trained on

English Wikipedia and the BooksCorpus [62].

BERT outperformed previous state-of-the-art models, such as OpenAI GPT[63]

and ELMO [64], on all General Language Understanding Evaluation(GLUE) [65]

benchmark datasets. The GLUE benchmark includes datasets for the evaluation of
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various NLP tasks such as question answering, sentiment analysis, recognizing textual

entailment, and semantic textual similarity.

NLP community provides various software and services to perform IE tasks. NLTK

[42], OpenNLP [66], GATE [67], Google Cloud Natural Language, and AllenNLP [68]

are some examples of those systems.

2.3 Information Retrieval

In this section, we present different aspects of Information Retrieval systems. Infor-

mation Retrieval (IR) is the activity of searching for documents, information within

documents, information within relational databases, text, metadata, multimedia files,

or any information space [69]. The idea of using machines to access large amounts of

stored knowledge was introduced by Vannevar Bush in 1945 [70]. The term “informa-

tion retrieval” was defined by Mooers [71] in 1950 as follows: “Information retrieval

is the name of the process or method whereby a prospective user of information is

able to convert his need for information into an actual list of citations to documents

in storage containing information useful to him.”

Figure2.2 illustrates the architecture of a general IR system. In this architecture,

the user submits a query to the retrieval system. The retrieval system uses the indexed

data to retrieve documents that are probably relevant to the query and compute a

relevance score for each retrieved document. The documents will be presented to the

user. An IR system implements in 3 processes:

1. Indexing process: representing documents in a summarized content form.

2. Query formulation process: representing the user information need.

3. Matching process: retrieval of relevant documents that satisfies user information

needs.
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Figure 2.2: Architecture of a general IR system

2.3.1 Indexing Process

Salton [72] introduced a blueprint for automatic indexing method:

1. Identify individual word in the document (Tokenizing)

2. Remove stop words

3. Stemming and reducing the terms to their root

4. Index multi-word phrases

5. Replace low-frequency terms with thesaurus classes

6. Replace high-frequency terms by phrases

7. Compute IDF measure for all terms

8. Assign to each document the corresponding single terms, phrases, and classes

with IDF weights
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2.3.2 Document and Query Modeling

A document or query should be represented in a form that is understandable by

an IR system. IR systems can be classified based on underlying conceptual models.

Boolean model, the vector-space model, and probabilistic models are some of the

commonly used models [73]. The inference network model [74] is another model

which can implement most of the techniques used by IR systems.

2.3.2.1 Boolean Model

In a Boolean model, the presence and absence of a term in a document is represented

by 1 and 0 respectively [75]. Users define queries by using a combination of Boolean

ANDs, ORs, and NOTs over a set of keywords. IR systems label documents as either

relevant or irrelevant. Even though Boolean systems are efficient, easy to implement,

and yield good performance in certain situations, they have several shortcomings,

e.g., there is no inherent notion of the document ranking.

2.3.2.2 Vector Space Model

The vector space model was introduced by Salton et al. [76] in 1975. This model

was created to overcome the weakness of the Boolean model. The Vector Space model

represents documents and queries by vectors of terms in |V |-dimensional space (V is

the set of all terms in the documents and queries). If a text contains a term, the

term gets a non-zero value in the vector that represents that text. The model ranks

documents based on their similarity to the user query. The similarity score can be

calculated as the angle between two vectors representing the query and the document.

For calculating the angle, one can use the cosine function:

di = (w1,i, w2,i, ..., wt,i)

q = (w1,q, w2,q, ..., wt,q)
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cosine_similarity(di, q) =
di.q

||di|| × ||q||
=

Σwn,iwn,q√
Σw2

n,i

√
Σw2

n,q

Salton et al. [76] adapted a term weighting procedure [77] to introduce term weight

scheme know as tf-idf. A term weighting system is proportional to multiplying stan-

dard term frequency fki by a factor inversely related to document frequency dk of the

term k (fki .IDFk). IDFk was defined as:

IDFk =
⌈
log2 n

⌉
−
⌈
log2 dk

⌉
+ 1.

Even though the Vector Space model is simple and fast, it has its own weaknesses

(e.g., the assumption of independence between terms.)

2.3.2.3 Probabilistic Model

Maron and Kuhns proposed a technique called “Probabilistic Indexing” [78] in 1960.

The technique allows a machine to make statistical inferences and ranks documents

based on the probability that the document will satisfy the given query. Similar to a

vector space model, documents and queries are represented by vectors. Introducing

binary independence retrieval (BIR) will cover some basic concepts of probabilistic

IR. The probability of relevance for document di w.r.t to query qk is P (R|qk, di).

The basic assumption for this model is that terms are distributed differently within

relevant and non-relevant documents [79]. By applying Bayes’ theorem and using

odds instead of probabilities, the relevance measure will be:

O(R|qk, di) =
P (R|qk, di)
P (R|qk, di)

=
P (R|qk)
P (R|qk)

.
P (di|R, qk)
P (di|R, qk)

Fuhr discussed assumptions, probabilistic parameters, and learning strategies of some

other probabilistic IR models in [79]. Some probabilistic models can be found in [80,

81, 82, 83].
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2.3.3 Query Expansion

User queries are usually short and do not necessarily use the same words as indexed

document terms. Furnas et al. [84] called this issue the vocabulary problem. Syn-

onymy (the same word with different meanings) and polysemy (different words with

the same meaning) are two components of the vocabulary problem, which may result

in a decrease in recall and precision, respectively [85]. Several approaches have been

proposed to deal with the vocabulary problem: automatic query expansion, inter-

active query refinement, relevance feedback, word sense disambiguation, and search

results clustering [85].

Automatic query expansion (AQE) automatically expands the original query by

using other terms that would represent the user information needed to better retrieve

more relevant documents. Query expansion improves the effectiveness measures of

the IR system (e.g., F-measure) [86, 85]; however, it may decrease precision [87].

Carpineto and Giovanni [85] reviewed different aspects of AQE.

Interactive query expansion (IQE), like AQE, generates some features to be used in

reformulating the user query, but the user in this approach makes the final decision.

This interaction gives users more control over the query processing.

Some users may not be able to formulate their information need into a query, but

they would quickly recognize that the retrieved document is relevant to their need.

These users can provide Relevance Feedback (RF) to IR systems to improve the

results in quantity and quality. The IR system uses the information provided by RF

to justify the query by adding terms to it or adjusting the weight of terms. Harman

explored some methods for ranking terms by using RF in [88, 89]. Ruthven and

Lalmas [90] reviewed RF methods and use of them in IR systems.

Ambiguity is a problem when a computer wants to understand natural language.

A query, which is formulated by a user, may create the same problem. Word sense

disambiguation (WSD) is the ability to identify which sense of a word is used in
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context in a computational manner [91]. Weiss [92] started using disambiguators to

resolve word sense in IR systems. Navigli [91] overviewed supervised, unsupervised,

and knowledge-based approaches in WSD.

Clustering engines consider clustering as a postprocessing step to rerank the re-

trieved documents [93, 86] or provide an interactive interface for users to choose the

area of interest [94, 95]. The latter approach is called search result clustering. Search

results clustering (SRC) combines query-based and category-based search to provide

clustered results for users with weakly specified or ambiguous queries. Carpineto et

al. [96] mentioned the search aspects where SRC can be most useful as follow: fast

subtopic retrieval; topic exploration; and alleviating information overlook. Reviews

of SRCs are found in [96, 97, 98, 99].

2.3.4 Measures for Information Retrieval

The most common measures for evaluating IR systems are the Information Extrac-

tion performance metrics of precision, recall, and F-measure.

Precision is the proportion of the set of documents that are both relevant to a

query and retrieved by the system out of all documents which are retrieved:

Precision =
Relevant ∩ Retrieved

Retrieved

Recall is the proportion of the set of documents that are both relevant to a query

and retrieved by the system out of all documents which are relevant to that query:

Recall =
Relevant ∩ Retrieved

Relevant

A common aim of every IR system would be to maximize both precision and recall.

Any system can be tuned to focus on one metric more than the other. The importance

of a metric depends on the system goal. For example, in a patent retrieval system,

recall is crucial for users.
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F-measure is the weighted harmonic mean of recall and precision:

Fβ = (1 + β2)
precision× recall

(β2 × precision) + recall

β allows one to weigh either precision or recall more heavily. (F1 score) is the harmonic

mean of precision and recall where β is 1.

F1 =
2× precision× recall
precision + recall

Some other measures for evaluating information Retrieval systems [100]:

• Average precision: a single-valued measure to evaluate ranked retrieval. It is com-

puted by measuring precision at different recall points and averaging.

• Mean Average Precision: mean of the average precision for each query of a set of

queries.

• Precision at k: the number of relevant results on the first k retrieved documents.

2.4 Summary

This chapter reviewed the Clinical Practice Guidelines, Information Extraction

tools, and Information Retrieval systems as the three main components of this dis-

sertation. IE and IR provide us powerful tools to extract and retrieve knowledge

from medical texts automatically. As mentioned earlier, automatic processes of an-

alyzing CPGs are inevitable due to the growth rate of guidelines and disagreements

between them. In the following chapters, we will report our works in different aspects

of analyzing medical texts, mainly medical guidelines, using Information Extraction,

Information Retrieval, and Machine Learning methods.



CHAPTER 3: SEMANTIC MODELING OF CONTRADICTIONS AND

DISAGREEMENT: A CASE STUDY OF MEDICAL GUIDELINES

3.1 Introduction

In this chapter, we take the perspective of building a natural language understand-

ing system that can adequately represent disagreements. This work is motivated by

the challenge of automatically identifying and representing contradictions in medical

guidelines. On the practical side, we expect this research to eventually result in a

more prominent solution that can provide decision support for patients and physi-

cians and help identify and reason with contradictory advice in their specific cases.

However, the proposed solution applies more generally to natural language semantics.

Disagreements in medical guidelines raise uncertainty in disease screening and treat-

ment. Uncertainty derived from the lack of guidelines consistency among different ex-

pert groups is confusing for patients and contributes to overdiagnosis. For example,

the ACOG recommends that women over age 40 get mammography annually but the

USPSTF recommends clinicians base screening decisions for women aged 40 to 49 on

the women’s individual risk profile and preferences.

Marneffe et al. [101] and Kloetzer et al. [102] contributed on representing contra-

dictions in NLP. The former proposed a taxonomy of linguistic expressions of contra-

diction, potentially useful when dealing with the linguistic diversity of the guidelines.

The latter shows methods for large-scale acquisition of contradictory patterns. We

believe such distributional methods might add coverage to our approach and comple-

ment the IR method we are currently using. Neither of these works makes a formal

distinction between contradictions and disagreements. On the formal side, clearly,

there is a large body of work on contextualizing the truth of propositions, for exam-
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ple, in modal and para-consistent logics 1.

In this chapter, we propose a novel formal analysis of types of contradictions in

texts. Namely, we introduce and formally characterize the distinction between con-

tradictions and disagreements. This distinction is generally applicable to all semantic

processing of natural language text and is orthogonal to other typologies of contra-

dictions, e.g., [101]. We also propose an architecture and a method for identifying

contradictions and disagreements in medical guidelines. Results from an implemented

system show the feasibility of the proposed approach.

Dealing with multiple guidelines for the same condition can be reduced to analyzing

the guidelines pairwise. Thus with two texts of such guidelines, we propose the

following:

1. Identify candidate sentences related to the same condition or the same action;

2. Compute candidate contradictions and disagreements (using techniques of in-

formation retrieval and statistical language modeling);

3. Identify the specific contradictions and disagreements computationally, using

different, deeper modes of analysis based on semantic representation informed

by formal representations of disagreements and contradictions ;

4. A method for automated reasoning with disagreements and contradictions in

computational settings focused on the identification areas of agreement and

disagreement, including their origins.

3.2 Formal Representation of Disagreement and Contradiction

We need a formal representation of contradictory guidelines to be able to reason

about them. This section proposes a way to reason with partially contradictory
1https://plato.stanford.edu/entries/possible-worlds/, and https://plato.stanford.

edu/entries/logic-paraconsistent/
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information based on a formal distinction between disagreements and contradictions

and formalized using a combination of propositional calculus and lattice theory.

Let’s consider a few examples of actual sentences containing disagreements or con-

tradictions. For clarity of exposition, we will always present contradictions between

pairs of documents, such as guidelines.

Example 1. We will use an example from a CDC table comparing “Breast Cancer

Screening Guidelines for Women” provided by seven different accredited medical bod-

ies. 2 There we find contradictory recommendations for “women aged 50 to 74 with

average risk” coming from two (of the seven) different organizations):

(a) Screening with mammography and clinical breast exam annually.

(b) Biennial screening mammography is recommended.

Example 2. Consider the question about the recommended number of minutes of

physical activity. Again, the guidelines might differ : One organization is recom-

mending a minimum of 150 minutes per week, and another one recommends 150-300

minutes per week. Someone exercising 30 min per day, six days a week, satisfies

both guidelines. The guidelines don’t agree 100%, but intuitively they are not 100%

contradictory either.

Disagreements vs Contradictions:

To capture the intuitive distinction between Examples 1 and 2, we say that two

guidelines are contradictory if it is impossible for both guidelines to be followed.

Two guidelines are in disagreement if there are patients where the two guidelines are

possible to be followed and patients for which this is impossible. As it turns out,

we can represent this distinction formally, in logic, making it broadly applicable in

semantics, using the following idea:
2https://www.cdc.gov/cancer/breast/pdf/BreastCancerScreeningGuidelines.pdf
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• Contradiction is present if there is no model for the joint theory expressed in

two text segments (coming from different guidelines).

• Disagreement is present if the sets of models, for the predicates present in both

text segments, are different for each segment, but a model can be created sat-

isfying both segments.

Formalization: We start by assuming that, at least initially, we do not need the

full power of first order logic (FOL) or a stronger logical system. So, the basis of

our representation will be a formal language of propositions. Thus, we do not have

variables or quantifiers. However, to be able to reflect the disagreements, we need to

augment it with a representation of parameters. For example, we would like to be

able to distinguish between a recommendation of a minimum of 30 minutes of daily

exercise and another one of 20 minutes. At the same time, we need to be able to

notice that both recommendations pertain to the recommended dose of exercise.

To this end, we assume that our representation language contains propositional

symbols p, q, r, ..., p1, p2, ... and symbols representing parameters a, b, c, a1, a2, etc.

We have special parameters o1, o2, and..., which will later represent the provenance

of recommendations. This will allow us to find the sources of contradictions and

disagreements.

We assume the standard inference rules of propositional logic. (The added param-

eters don’t extend the power of the system beyond propositional calculus). To reason

about disagreements, we will need to introduce additional rules of inference.

Example 1 continued: Let p stand for screening mammography is recommended ;

o1, o2 represent the provenance of the recommendations (a) and (b) respectively; and

a, b stand for annually and biennally. We then have the formal representation of the

respective guidelines as p(a, o1) and p(b, o2).

We need means to represent the fact that these guidelines are formally contra-
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dictory. This cannot simply be done due to having different constants/parameters

inside the parentheses (and ignoring the o’s). To see that, consider a similar rep-

resentation of doses of daily recommended exercise. Here, we would also have two

distinct provenances and two distinct values; however, intuitively, we could recognize

a disagreement and not a contradiction since anyone exercising 30 min or more is also

exercising 20 min or more.

To proceed, we need to make two additional assumptions, namely that no par-

ticular guidelines document can have internal contradictions. That is, the set of all

pi(a
i
j, o) for a particular o is never contradictory (viewed as statements in classical

propositional logic).

And the second assumption is that the parameters come in different sorts, which we

will represent by capital letters followed by a colon, e.g., A : a1. More importantly, we

assume elements of any particular sort form a lattice (or at least meet semi-lattice).

For any set of parameters of a particular sort (e.g., time, duration, dosage, etc.) a1∧a2

is defined, and every such lattice has a minimal element ⊥.

In the example representations of mammography the meet of biennial and annual

is ⊥. However, the meet of “20 min or more” and “30 min or more” is the latter.

This mechanism allows us to make a formal distinction between contradictions and

disagreements.

p(A : a1, o1) and p(A : a2, o2) are contradictory if a1 ∧ a2 = ⊥

p(A : a1, o1) and p(A : a2, o2) disagree if taking a1 ∧ a2 = a, we have a 6= ⊥ and

either a 6= a1 or a 6= a2.

These definitions are naturally extended to multi-parameter cases by defining the

contradiction as a situation, where the meet of at least one type of parameter is ⊥; and

the disagreement, when there’s no contradiction and at least one type of parameter

contains a disagreement.
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To do some elementary reasoning about disagreement, we need an inference rule

capable of relating two formulas with different parameters. To keep track of prove-

nances, we need to allow propositions with multiple labels, e.g., {o1, o2}. This is

nicely combined in a single inference rule:

p(A : a1, o1), p(A : a2, o2) Lattice ∧
p(A : a1 ∧ a2, {o1, o2})

If the formula p has more than one parameter, we apply this rule for each parameter

separately.

With this inference rule, we are getting the following:

• The set of derivable (using the above rule) contradictory propositions corre-

sponds to the ones that have ⊥ as at least one parameter.

• The set of disagreements corresponds to the derivable propositions with two or

more provenance parameters and a disagreement for one or more sorts.

• For any fixed provenance o, we have the full power of inference rules of propo-

sitional calculus applied to sentences of the form p(a, o) where a stands for a

collection of parameters of different sorts.

3.3 Finding Contradictions and Disagreements

Having solved the problem of formally representing contradictions and disagree-

ments and having created a formal method of keeping track of their provenances, we

now focus on the language understanding part.

The results presented in this section are preliminary in two ways: First, we have

not completed a translation from a semantic representation produced by NLP tools

to a logical form amenable to reasoning with the parameterized propositional logic

of the previous section. We assume this can be done using existing methods, as

described in publications ranging from standard textbooks [103] to complex NLP

architectures [104].
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Figure 3.1: The architecture used to evaluate extraction of contradictions in medical
guidelines.

Second, our methods for finding contradictions and disagreements, even though not

trivial, very likely can be improved. Nevertheless, the results are promising.

Figure 3.1 shows a novel architecture consisting of several well-known components.

We follow the approach presented earlier: We use the text analysis tools for feature

generation and concept identification. The Lucene search engine was used for finding

similar sentences based on indexed semantic features (and words). For example, given

the query “mammography is recommended for women age 40-49” we search multiple

guidelines and identify sentences for further analysis. This analysis was done through

recommendation matching (“mammography recommended”), and condition matching

(“age 40-49” or “age”) allows the system to decide if the given guidelines document

recommends a procedure or not. Similarly, we can identify partial matches, e.g., “age

40-49” and “age over 40”.

Evaluation: At this point, we only evaluated this method on finding agreement

and disagreement on twelve example recommendations sentences and breast cancer

screening guidelines produced by seven different medical organizations. 3 This gives

us only 84 data points. However, the results are promising: The system produced only

four errors (two false positives and two false negatives), thus on this – admittedly,
3https://www.cdc.gov/cancer/breast/pdf/BreastCancerScreeningGuidelines.pdf
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simple – data set achieved an impressive accuracy of 95%.

3.4 Conclusion and Discussion

Motivated by analysis of medical guidelines, we introduced the formal distinction

between disagreements and contradictions. We presented a new system for finding

both and results of a preliminary evaluation. The new formal representation and

the general architecture of the system are potentially broadly applicable to NLP, for

example, to question answering, where an answer can be extracted from texts that

disagree on details but broadly provide the same answer or recommend the same

action.

We need to address some limitations we faced in our experiment. In evaluation, we

used simple sentences, but texts might contain information in multiple sentences, and

thus increasing the difficulty of matching. We do not have reliable ways of converting

longer texts intended for human reading into a semi-structured representation suitable

for text mining (for example, dealing with tables). While solutions to these problems

exist, they are not perfect and will likely decrease the system’s accuracy.



CHAPTER 4: CONCEPTUAL DISTANCES BETWEEN MEDICAL

RECOMMENDATIONS: EXPERIMENTS IN MODELING MEDICAL

DISAGREEMENT

Using natural language processing tools, we investigate the semantic differences in

medical guidelines for three decision problems: breast cancer screening, lower back

pain, and hypertension management. The recommendation differences may cause

undue variability in patient treatments and outcomes. Therefore, having a better

understanding of their causes can contribute to a discussion on possible remedies.

We show that these differences in recommendations are highly correlated with the

knowledge brought to the problem by different medical societies, as reflected in the

conceptual vocabularies used by the different groups of authors. While this chapter is

a case study using three sets of guidelines, the proposed methodology is broadly appli-

cable. Technically, our method combines word embeddings and a novel graph-based

similarity model for comparing collections of documents. For our main case study,

we use the CDC summaries of the recommendations (concise documents) and full

(long) texts of guidelines represented as bags of concepts. For the other case studies,

we compare the full text of guidelines with their abstracts and tables, summarizing

the differences between recommendations. The proposed approach is evaluated using

different language models and different distance measures. In all the experiments, the

results are highly statistically significant. We discuss the significance of the results,

their possible extensions, and connections to other domains of knowledge. We con-

clude that automated methods, although not perfect, can be applied to conceptual

comparisons of different medical guidelines and can enable their analysis at scale.
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4.1 The Problem and the Method

This work investigates a natural question. We are asking whether differences in

medical recommendations arise from differences in knowledge brought to the problem

by different medical societies. To answer this question at scale, we need an automated

method to measure such differences. This work aims to present such a computational

method and use a collection of case studies to evaluate its performance.

Our method uses the standard natural language processing approach to represent

words and documents as embeddings and combines it with a graph comparison algo-

rithm. We evaluate our approach on three sets of medical guidelines: breast cancer

screening, lower back pain management guidelines, and hypertension management

guidelines.

The answer to this question matters because physicians with different specialties

follow different guidelines. This results in the undue variability of treatment. There-

fore, understanding what drives the differences in recommendation should contribute

to its reduction and to better patient outcomes [105, 106, 7].

4.1.1 Motivation

There are over twenty thousand clinical practice guidelines indexed by PubMed 1,

with over 1,500 appearing every year [107]. Since clinical practice guidelines are

developed by different medical associations, which count on experts with different

specialties and sub-specialties, there is a high possibility that there may be disagree-

ment in the guidelines. Indeed, as noted by [7], and discussed in [108, 6], breast

cancer screening guidelines contradict each other. Besides breast cancer screening

disagreements, which we model in this chapter, controversies over PSA screening,

hypertension, and other treatment and prevention guidelines are also well-known.

Figure 4.1 illustrates our point. We see disagreements in seven breast cancer screen-
1https://pubmed.ncbi.nlm.nih.gov/
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ing recommendations produced by seven different medical organizations. We inves-

tigate the hypothesis that the contradictory recommendations reflect the specialized

knowledge brought to bear on the problem by different societies.

Notice that the dominant view is to see expertise as a shared body of informa-

tion, and experts as epistemic peers [109] with identical levels of competence. Un-

der this paradigm of shared knowledge and inferential abilities, the medical bodies

should not differ in their recommendations. What they do is interesting and worth

investigating. Thus, this research is also motivated by the idea that epistemology

of disagreement [110, 109, 111] can be modeled computationally. On the abstract

level, medical disagreements are viewed as “near-peer” disagreement [112, 113, 114],

where we see expert groups as having partly overlapping knowledge. This work shows

that such more realistic and fine-grained models can also be studied computationally,

quantitatively, and at scale.

Figure 4.1: Note the contradictory recommendations in green and blue boxes. The
colors in the table come from [6], but the original table comes from the CDC [7].
Only a part of the table is reproduced here.
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4.1.2 Brief Description of the Proposed Method

In this study, we investigate the question of whether differences in medical recom-

mendations come from differences in specialized medical knowledge applied to specific

classes of patients, and whether such differences in specialties can be modeled com-

putationally.

Our idea is to model “specialized medical knowledge”, which we cannot easily ob-

serve, by the differences in the vocabulary used in medical guidelines. We then show

that these vocabularies, assembled in vector representations of these documents, pro-

duce the differences in recommendations. We evaluate our method using three case

studies: breast cancer screening guidelines, lower back pain management guidelines,

and hypertension management guidelines. In this study’s main track, we use the

breast cancer screening guidelines to present our approach and the evaluation, and

the additional evaluations on the other two sets of guidelines are presented.

More specifically, we computationally compare the full texts of guidelines with the

their recommendation summaries. For breast cancer screening, the summaries come

from the CDC [7]; for lower back pain management, they come from a summary

article [1]; and, for hypertension management, where we lack a tabular comparison,

we used the abstracts of the documents.

We see if the semantic similarities between the full documents follow the same pat-

tern as semantic similarities between the summaries. Note that each computational

comparison was made between two sets of documents and not individual documents.

This process involves several steps and is shown in Figure 4.2, for the breast cancer

screening guidelines. Thus, the vector representations of full texts of the guidelines

model the vocabularies as bags of concepts, and therefore cannot model specific rec-

ommendations: the concepts in the recommendations, such as “mammography” and

“recommend”, appear in all full texts, but specific societies may be either for mam-

mography or against it. The vector representations of recommendations model the
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differences in prescribed procedures, but not the vocabularies (see Tables 4.1 and 4.2

below).

Figure 4.2: The method of comparing concepts in full documents and recommenda-
tions contained in summaries. Note the difference in representations: the documents
are represented by a large number of high-dimensional (200) vectors with real valued
features, whereas the disagreement representations can be low-dimensional vectors
with discrete features (e.g., five-dimensional for the breast cancer screening guide-
lines). Our exposition will roughly follow the left-to-right order of this figure, using
the breast cancer screening guidelines as the motivating example.

Table 4.1: The table shows recommendations as follows: N—no recommendation;
b—both patient and doctor, shared decision; r—recommending mammography.

Guideline 40–49 50–74 75+ Dense Breast Higher Than Average Risk

AAFP b r b b N

ACOG r r b b r

ACP b r r N N

ACR r r r b r

ACS b r r b b

IARC b r N b r

USPSTF b r b b r
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Table 4.2: This table shows the number of differing feature values for pairs of guide-
lines, based on Table 4.1. The Jaccard distances between the documents are obtained
by dividing the value in the table by five (the number of features).

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0 2 3 3 2 2 1

ACOG 2 0 4 1 2 2 1

ACP 3 4 0 3 2 3 3

ACR 3 1 3 0 1 2 2

ACS 2 2 2 1 0 1 1

IARC 2 2 3 2 1 0 1

USPSTF 1 1 3 2 1 1 0

How do we know if vocabularies determine recommendations? We compute pair-

wise distances (cosine or word mover’s distance) between the full text vectors. In

parallel, we compute pairwise distances between the recommendation vectors. We

thus get two graphs, and their shapes can be compared. We show that the resulting

geometries are very similar and could not have been produced by chance.

This process is slightly modified for lower back pain management, where we start

with the tables of disagreement from the summary article [1]. For the hypertension

management guidelines, we use the graph of summaries that is generated from the

abstracts of full documents, because we do not have any tabular sets of comparisons

similar to [7, 1]. However, even with this change, the proposed method performs very

well. Notice that we use a large number of high-dimensional (200) real-valued vectors

to model full documents. By contrast, the vectors representing the recommendations

only have a smaller number of discrete-valued features (five for the breast cancer

screening and 12, 59, and 71 for lower back pain management).
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4.1.3 Summary of Contributions

The main contribution of this work is in proposing an automated and relatively

straightforward method of text analysis that (1) computes conceptual differences

between documents addressing the same topic (for example, breast cancer screening)

and (2) these automated judgments have a high correlation with recommendations

extracted from these documents by a panel of experts. We test the approach on

the already mentioned breast cancer screening recommendations, as well as in other

sets of experiments on lower back pain management and hypertension management

guidelines. As such, these results open the possibility of large-scale analysis of medical

guidelines using automated tools.

Another contribution is the articulation of a very natural graph clique-based algo-

rithm/method for comparing the similarity of two collections of documents. Given

two sets of documents, each of the same cardinality, and a mapping between nodes,

we compute the percent of similarity (or, equivalently, the distortion between the

shapes of the two cliques), and the chances that the mapping arose from a random

process.

We also document all steps of the process and provide the data and the code to

facilitate both extensions of this work and its replication (the GitHub link is provided

in Section 4.9).

4.1.4 Organization of the Chapter

In Section 4.2, we provide a brief overview of applications of natural language pro-

cessing to texts of medical guidelines, word embedding, and some relevant work on

disagreement. Afterward, we follow the left-to-right order of Figure 4.2 using the

breast cancer screening guidelines as the motivating example (other experiments are

described in the Section 4.7). Thus, Sections 4.3 and 4.4 explain our example data

sources: a CDC summary table of breast cancer screening guidelines and the corre-



38

sponding full text documents. In these two sections, we also discuss the steps in the

conceptual analysis of the table. First, the creation of a graph of conceptual distances

between the columns of the table, and then the encoding of full documents as vectors,

using two standard vectorization procedures. Our method of comparing summarized

recommendations and full guideline documents is presented in three algorithms and

discussed in Section 4.5.

After observing a roughly 70% similarity between the distances in the summaries

and the distances in the full documents, we prove in Section 4.6 that this similarity is

not accidental. We conclude in Sections 4.6 and 4.9 that this case study shows that

NLP Methods are capable of approximate conceptual analysis in this space (using

the section 4.7 for additional support). This opens the possibility of deepening this

exploration using more sophisticated tools such as relationship extraction, other graph

models, and automated formal analysis (as discussed in Sections 4.8 and 4.9).

In the section 4.7, we provide information about additional experiments we per-

formed to validate the proposed method. There, we first discuss a few variants of the

main experiment, where we filtered out some sentences from the full guidelines’ texts.

Then, we apply our method to two other collections of guidelines: namely, to hyper-

tension and low back pain management guidelines. All of these experiments confirm

the robustness of the proposed method and the system’s ability to computationally

relate background knowledge to actual recommendations.

4.2 Discussion of Prior Art

We are not aware of any work directly addressing the issue we are tackling in this

study; namely, the automated conceptual analysis of medical screening recommenda-

tions. However, there is a body of knowledge addressing similar issues individually,

which we summarize in this section.
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4.2.1 Text Analysis of Medical Guidelines

An overview article [115], from a few years ago, states that different types of analysis

of medical guidelines are both a central theme in applications of artificial intelligence

to medicine and a domain of research with many challenges. The latter include

building formal, computational representations of guidelines and a wider application

of natural language processing. From this perspective, our work is relevant to these

central and general themes.

A more recent and more technical work [116] focuses on finding and resolving

conflicting recommendations using a formal model and automated proof systems—

it relies on a manual translation into a formal language, Labelled Event Structure.

This is a very interesting work, somewhat in the spirit of our own attempts, using

a combination of NLP and information retrieval tools [6]. Another article [117],

dealing with contradictory recommendations, focuses on the semi-automatic detection

of inconsistencies in guidelines; these tools are applied to antibiotherapy in primary

care. Another recent application of natural language processing [118, 119] shows that

one can accurately measure adherence to best practice guidelines in the context of

palliative care, as well as try to assess the quality of care from discharge summaries.

More broadly, modern NLP methods have been applied to clinical decision support,

e.g., [120], with ontologies and semantic webs for concept representation; to clinical

trials [121]; and to automatic extraction of adverse drug events and drug-related

entities, e.g., using a neural networks model [122]. For document processing, we have,

e.g., a knowledge-based technique for inter-document similarity computation [123],

and a successful application of conceptual representations to document retrieval [124].

These show that the state-of-the-art systems are capable of performing statistical

analysis of sets of documents and a semantic analysis fitting the need for a particular

application. Our work extends both of these in a new direction and connects statistics

with semantics to analyze medical guidelines.
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4.2.2 Vector Representations of Documents Using Word Embeddings

Over the last ten years, we have witnessed a new era in automated semantic analysis

of textual documents [125]. While no system can claim to “really” understand natural

language, in several domains, such as data extraction, classification, and question an-

swering, automated systems dramatically improved their performance. In some cases,

they performed better than humans due to the unmatched pattern recognition and

memorization capabilities of deep neural networks (see, e.g., [126] for an overview).

Some of the simplest, easiest to use, and effective of these new methods are different

types of word and concept embeddings [127, 60, 128, 129]. Embeddings represent

words and concepts as dense vectors (i.e., a few hundred-dimensional real-valued

vectors). They are a preferred tool to make similarity judgments on the level of

words, phrases, sentences, and whole documents. They have been applied to medical

texts—see [130] for a survey.

Word embeddings have been widely used to compare documents, and in particular,

to compute their degree of similarity [131, 132]. Other methods proposed to compute

document similarity are based on using background knowledge [123].

This work uses both methods, namely human knowledge encoded in the CDC

table (Figure 4.1), and embeddings. For the former, we use five-dimensional feature

vectors representing differences in recommendations (Section 4.3). For the latter, we

use (several versions of) 200-dimensional embeddings of full documents (Section 4.4).

4.2.3 Other Work on Disagreements and Contradictions

A comprehensive review of medical disagreement with a focus on intervention risks

and the standards of care can be found in [133]. Once medical experts express their

disagreements, what happens next? Observations from disagreement adjudication

are analyzed in [134, 135], where the authors observe (among other things) that the

differences in experts’ backgrounds increase the degree of disagreement.
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If we broaden the context beyond medical disagreements to artificial intelligence,

there is a substantial amount of work on contradictory knowledge bases, as exem-

plified by [136, 137, 138]. Of particular interest may be proposals for real-valued

measures of contradictions in knowledge bases [139, 138]. However, in that particular

research avenue, the starting points are collections of facts and not recommendations;

moreover, natural language texts are not mentioned. We believe this type of work

will become more relevant as our capabilities to extract knowledge from text improve.

4.3 From Recommendations to Vectors of Differences and a Graph

We start with the simpler task of transforming the screening recommendations

(referenced above in Figure 4.1) to vectors of differences, representing the disagree-

ments in the recommendations, and then to a graph of their conceptual distances,

where, intuitively, the larger the number of recommendation differences, the bigger

the distance.

We will proceed in three steps: First, using a diagram (Figure 4.3) and a table

(Table 4.1) we make explicit the difference in recommendations in Figure 4.1. Second,

we transform the table into a count of differences (Table 4.2), and from that, we derive

distances between pairs of recommendations (Table 4.3). The graph representing the

recommendations will have nodes named after each organization (e.g., AAFP, ACOG,

etc.) and edges labeled and drawn with distances (Figure 4.4).
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Figure 4.3: Similarities and disagreements in summarized recommendations. The yel-
low coloring shows patient making decisions, the blue coloring shows explicit screening
recommendations. The concentric circles show different age groups. Red marks—
physician recommends, green marks—patient decides.

(a) Number of differing features. (b) Jaccard distances between summary

recommendations, as per Table 4.1.

Figure 4.4: In panel (a) we see a pictorial representation of the numbers of differing
features, per Tables 4.2 and 4.3. These differences between recommendations are
converted into distances (using the Jaccard measure), resulting in panel (b). Can we
replicate the geometric structure of panel (b) using automated tools? See Section 4.6
for an answer.
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Table 4.3: Normalized distances between the summarized guidelines computed using
Jaccard distances from Tables 4.1 and 4.2.

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0 0.0238 0.0357 0.0357 0.0238 0.0238 0.0119

ACOG 0.0238 0 0.0476 0.0119 0.0238 0.0238 0.0119

ACP 0.0357 0.0476 0 0.0357 0.0238 0.0357 0.0357

ACR 0.0357 0.0119 0.0357 0 0.0119 0.0238 0.0238

ACS 0.0238 0.0238 0.0238 0.0119 0 0.0119 0.0119

IARC 0.0238 0.0238 0.0357 0.0238 0.0119 0 0.0119

USPSTF 0.0119 0.0119 0.0357 0.0238 0.0119 0.0119 0

4.3.1 Computing the Differences in Recommendations

Figure 4.3 is another representation of the information in the CDC comparison

of the recommendations [7] earlier presented in Figure 4.1. It clearly shows the

differences between the guidelines (and it comes from [140]). As we can see, there

are two sides to the circle. The yellow side indicates the scenario where patients

will likely decide when breast cancer screening should be done. The purple color side

specifies the situation where breast cancer guideline providers most likely will demand

screening interventions. White radial lines indicate boundaries between the different

societies. The red color marks indicate that the physician decides. Green color marks

indicate patients’ decisions.

4.3.2 From Differences to Distances and a Graph

Table 4.1 represent the content of this analysis as a collection of features. Table 4.2

encodes these differences in recommendations as numbers of differing features between

pairs of recommendations. Then, Table 4.3 shows the distances between the guidelines

derived from Tables 4.1 and 4.2 using the Jaccard distance (the percentage of different
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elements in two sets):

dj(A,B) = 1− | A ∩B |
| A ∪B |

Given two recommendation summaries A and B, we compute the number of the

differing feature values from Table 4.2 and divide it by five. For example, for the

pair (AFP, ACR), we get 3/5. All these distances were normalized to sum to 1 and

shown in Table 4.3 (we are not assuming that distances are always symmetric. The

normalization does not change the relative distances, and in the comparisons with

the geometry of full documents, we only care about the relative distances.

Tables 4.1–4.3 represent the process of converting the information in Figure 4.3

into a set of distances. These distances are depicted graphically in Figure 4.4, where

we display both Jaccard distances between the recommendations and the number of

differing features as per Table 4.2.

In the following section, we will create a graph representation for the full documents

(Figure 4.5b). We will present our graph comparison method in Section 4.5. In

Section 4.6, we will assign numerical values to the distance between the two graphs,

and show that this similarity cannot be the result of chance.
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(a) Distances between the seven summary

recommendation guidelines.

(b) Distances between full document guide-

lines using WM distance and BioASQ em-

beddings with concepts (see text for expla-

nations) .

Figure 4.5: Visual comparison of the similarity/distance graphs based on human
analysis is shown in panel (a), and computer generated comparison from Table 4.5
is shown in panel (b), which suggest a similar geometry. As we rigorously show in
Section 4.6, this 69% similarity is not accidental ; the distortion is about 31%. Notice
that we are not pointing to the actual locations of similarities and differences in the
guideline documents. Instead, we are pointing to global (latent) differences stemming
from concepts appearing in them.

4.4 Transforming Full Guidelines Documents into Vectors and Graphs

In this study, we use both the CDC summaries ([7], reproduced and labeled in

Figures 4.1 and 4.3), and the full text of the guidelines used by the CDC to create

the summaries. The focus of this section is on the full guideline documents. The

detailed information about these guidelines is shown in Table 4.4.

Note that we are using the same acronyms (of medical societies) to refer to full

guideline documents in this section. This will not lead to confusion, as in this section,

we are only discussing full documents.
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Table 4.4: Guidelines with references. All the sources were last retrieved in summer
2020.

Guideline Abbreviation Full Name of the Organization Document Citation

ACOG The American College of Obstetrics and Gynecology [141]

AAFP American Academy of Family Physicians [142]

ACP American College of Physicians [143]

ACR American college of Radiology [144]

ACS American Cancer Soceity [145]

IARC International Agency for Research on Cancer [146]

USPSTF United States Preventive services Task Force [147]

4.4.1 Data Preparation for All Experiments

From the breast cancer screening guidelines listed in the CDC summary docu-

ment [7], the texts of the USPSTF, ACS, ACP, and ACR guidelines were extracted

from their HTML format. We used Adobe Acrobat Reader to obtain the texts from

the pdf format of the AAFP, ACOG, and IARC guidelines. Since the AAFP docu-

ments also included preventive service recommendations for other diseases (such as

other types of cancers), we added a preprocess step to remove those recommendations,

leaving the parts matching “breast cancer”.

4.4.2 Measuring Distances between Full Documents

When creating embedding representation of text, we replace each word or term with

its embedding representation. Thus, the full guideline document texts are represented

as a set of vectors. Our objective is to create a graph of conceptual distances between

the documents.

The two most commonly used measures of distance, cosine distance and word

mover’s distance, operate on different representations. The former operates on pairs

of vectors, and the latter on sets of vectors. Thus, we need to create two types of
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representations.

Given a document, the first representation takes the average of all its word (term)

embeddings. This creates a vector representing the guideline text. The second rep-

resentation simply keeps the set of all its embedding vectors.

The cosine distance between two vectors v and w is defined as:

cosd(v, w) = 1− cos(v, w)

We will also use the following variant of cosine distance to argue that the geome-

tries we obtain in our experiments are similar irrespective of distance measures (see

Section 4.6):

cosd′(v, w) = 1/cos(v, w)− 1

The word mover’s distance (WMD, WM distance), introduced in [148], is a variant

of the classic concept of “earth mover distance” from the transportation theory [149].

Sometimes, the term “Wasserstein distance” is also used. The intuition encoded in

this metric is as follows. Given two documents represented by their set of vectors,

each vector is viewed as a divisible object. We are allowed to “move” fractions of each

vector in the first set to the other set. The WM distance is the minimal total distance

accomplishing the transfer of all vector masses to the other set. More formally [148],

WM distance minimizes:

min
T≥0

n∑
i,j=1

Tijc(i, j)

Subject to :
n∑
j=1

Tij = di ∀i ∈ {1, ..., n}

n∑
i=1

Tij = d′j ∀j ∈ {1, ..., n}

Tij is the fraction of word i in document d traveling to word j in document d′;
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c(i, j) denotes the cost “traveling” from word i in document d to word j in document

d′; here the cost is the Euclidean distance between two words in the embedding space.

Finally, di is the normalized frequency of word i in document d (and same for d′):

di =
ci∑n
j=1 cj

We used the n_similarity and wmdistance functions from Gensim [150] as a tool

for generating vectors and calculating similarities/distances in our experiments.

4.4.3 Building Vector Representations of Full Documents

However, there is more than one way to create word embeddings; we experimented

with several methods. We used three language models of medical guidelines’ disagree-

ment: “no concept”, conceptualized, and BioASQ. (The details of these experiments

appear later in Table 4.6). The first two were Word2Vec embedding models trained

using the PubMed articles as described in Section . We will describe these mod-

els’ training process in Section 6.3.3. The third one used pre-trained BioASQ word

embeddings created for the BioASQ competitions [151]2.

Our first model, trained on PubMed, included only words, and no additional con-

ceptual analysis with MeSH3 was done. In the second, which was a more complex

model, MeSH terms were replaced with n-grams. For example, if breast and cancer

appeared next to each other in the text, they were replaced with breast-neoplasms

and treated as a concept.

4.4.4 Our Best Model: Using BioASQ Embeddings and Word Mover’s Distance

Table 4.5 shows (unnormalized) WM distances between the seven guidelines using

BioASQ embeddings. Figure 4.5 shows side by side the geometries of the two graphs:

one generated from the summary of full documents, using features derived from the
2http://BioASQ.org/news/BioASQ-releases-continuous-space-word-vectors-

obtained-applying-word2vec-pubmed-abstracts
3https://www.nlm.nih.gov/mesh/meshhome.html
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CDC summaries, and the second one based on the machine-generated representations

of the full guideline documents. To create Figure 4.5, for each metric, a diagram

representing the distance between the nodes (guidelines) and a diagram with the

labeled edges were drawn using the networkx library4. All values were normalized to

the same scale to allow visual comparison.

Table 4.5: This table shows the word mover’s distances between the guidelines using
BioASQ embeddings. This model also performed very well on the datasets in the
section 4.7.

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0.0 1.833953 1.903064 1.994837 1.866007 2.153458 1.681802

ACOG 1.833953 0.0 1.649276 1.290215 1.333061 1.773604 1.286168

ACP 1.903064 1.649276 0.0 1.856171 1.667579 1.956002 1.674375

ACR 1.994837 1.290215 1.856171 0.0 1.41020 1.873691 1.385404

ACS 1.866007 1.333061 1.667579 1.41020 0.0 1.676928 1.163601

IARC 2.153458 1.773604 1.956002 1.873691 1.676928 0.0 1.753758

USPSTF 1.681802 1.286168 1.674375 1.385404 1.163601 1.753758 0.0

The similarity is visible in a visual inspection, and will be quantified in Section 4.6

to be about 70%. However, before we provide the details of the experiments, we will

also answer two questions:

— How do we measure the distortion/similarity between the two graphs?

— Could this similarity of shapes be accidental? How do we measure such proba-

bility?

4.5 Graph-Based Method for Comparing Collections of Documents

At this point, we have created two graphs, one showing the distances between

summary recommendations, and the other representing conceptual distances between
4https://networkx.github.io/
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documents. The procedure we used so far can be concisely expressed as Algorithm 1,

where given a set of documents, after specifying the Model (type of embeddings) and

a distance metric, we get an adjacency matrix containing the distances between the

nodes representing the documents. An example output of Algorithm 1 is shown in

Figure 4.4 above.

What remains to be done is to quantify the difference in shapes of these two graphs,

and then to show that the similarity we observe is not accidental. The methods used

in these two steps are described in Algorithms 2 and 3. The experiments and the

details of the performed computations will be presented in Section 4.6.

Algorithm 1 Computing Graph of Distances Between Documents.
Input: Guidelines: a set of guideline documents in textual format.

Model: a model to compute distances between two documents.

Output: AG — Adjacency matrix of distances between document guidelines.

1: for each pair of documents in Guidelines do

2: Compute the distance between the documents according to Model

3: Put the distance in AG

4: end for

5: return AG

We use a very natural, graph clique-based method for comparing the similarity of

two collections of documents. Given two sets of documents represented by graphs,

and a one-to-one mapping between nodes, in Algorithm 2, we compute the percent

distortion between the shapes of the two cliques—this is perhaps the most natural

similarity measure (similarity = 1 − distortion) for comparing the shapes of

two cliques of identical cardinality.
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Algorithm 2 Distance or Percentage Distortion between Two Complete
Graphs (cliques of the same size).
Note. For example, the distance between the two graphs in Figure 4.5 is 0.31, equiv-
alent to 31% distortion
Input: Adjacency Matrices A1, A2 of equal dimensions

Output: Graph distance/distortion D(A1,A2), as a value between 0 and 1.

1: Normalize the distances in A1 (by dividing each distance by the sum of distances

in the graph) to produce a new adjacency matrix AN 1

2: Normalize the distances in A2 to produce a new adjacency matrix AN 2

3: Set the value of graph_distance to 0.

4: for each edge in AN 1 do

5: Add the absolute value of the difference between the edge length and its coun-

terpart in AN 2 to the graph_distance

6: end for

7: return D(A1,A2) = graph_distance

Next, we need to compute the chance that the mapping arose from a random

process. This is because if the chances of the similarity arising from a random process

are small, we can conclude that a full document’s conceptual vocabulary determines

the type of recommendation given by a particular organization. In our case, the nodes

of both graphs have the same names (the names of the medical societies), but the

shapes of the graphs are different, one coming from human summaries and comparison

(Figure 4.1, Table 4.1) and the other from a machine produced conceptual distances.

Thus, the randomization can be viewed as a permutation on the nodes. When such

permutations do not produce similar structures, we can conclude the similarity of the

two graphs in Figure 4.5 is not accidental.

Next, in Algorithm 3, we compute the average distortion, and the standard devia-

tion of distortions, under the permutation of nodes. The input consists of two cliques

of the same cardinality. The distance measure comes from Algorithm 2.
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Algorithm 3 Computing Graph Distortion Statistics.
The input is two cliques of the same cardinality.
Input: Normalized Adjacency Matrices N1, N2 of equal dimensions

Output: Baseline for the graph distance, standard deviation of graph distances under

permutations of computed distances.

1: Set the value of graph_distances to an empty list.

We are permuting the labels of graph, leaving the lengths of the edges intact.

2: for each permutation N2p of the nodes of N2 do

3: Compute d = D(N1,N2p) using Algorithm 2

4: Append d to graph_distances

5: end for

6: Set

graph_distance_baseline = Mean(graph_distances)

std = StandardDeviation(graph_distances)

7: return graph_distance_baseline, std

4.6 Details of Experiments and Their Results

In Section 4.4 we described the procedure of creating the graph of full documents

and in Section 4.4.4 we referenced the best model, although the details of the methods

were presented in Section 4.5. This was not the only model we tried, and we will

now discuss other experiments; they all support the conclusion of the non-accidental

similarity of the graph of recommendations and the graphs of concepts. (As shown

later in Section 4.7, this model also performs very well on other sets of guidelines).

4.6.1 Steps Used in All Our Experiments and Evaluation

In all our experiments we used the procedure in Algorithm 2 to compute the dis-

tance/distortion between the two labeled graphs, using the matrix of conceptual dis-

tances between full documents and the matrix in Table 4.3. As mentioned earlier, for
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our best model the distortion was 0.31; therefore, the similarity was 0.69 (or 69%).

We then asked the question: Could this distortion be accidental? In other words,

could it be the case that we were lucky? If so, how lucky would we have to be? Since

the distance between nodes of both graphs are fixed (in a given experiment), the only

variable we can manipulate is the mapping from the nodes of one graph to another.

In other words, if we did not have the labels, what are the chances of finding the

right match from all possible labelings. We thus asked: Can other mappings pro-

duce similar results? To answer this question, we computed the average distortion

and the standard deviation, based on all possible permutation of nodes (5040 = 7!

permutations). The pseudo-code for this computation is shown in Algorithm 3.

In all experiments, the difference between our results and average distortion was

seven (or more) standard deviations. Therefore, we can conclude the that the match-

ing of the two geometries is not accidental and is highly significant.

4.6.2 Results of the Experiments

In this section we first discuss the statistical properties of the experiments to show

that our models capture statistically significant geometric correspondences between

the graph of recommendation summaries and the graph of conceptual distances be-

tween the full document guidelines. Table 4.6 shows results of the main series of

experiments we performed. Additional experiments are reported in section 4.7.



54

Table 4.6: This table shows the values obtained in multiple experiments. Column 2,
Distortion, shows the distortions of graphs produced using corresponding models
from Column 1. Average distortions per permutation are shown in Column 3. STD
is the standard deviation of the distortion per permutation of vertices. Note that
the distortion is somewhat depended on how we measure distances; however, the
shapes of the distributions are very similar. (The cosine measures are capitalized for
readability).

Model Distortion Distortion of Permutations STD

BioASQ_WMD 0.31393366 0.38137817 0.00901798

Conceptualized_WMD 0.33504400 0.39118512 0.00929325

NoConcept_WMD 0.34457155 0.38822718 0.00909964

BioASQ_CosD 0.41787106 0.59569767 0.01572929

Conceptualized_CosD 0.53452523 0.61350075 0.01626678

NoConcept_CosD 0.51399564 0.59093162 0.01538653

BioASQ_CosD’ 0.39343054 0.57170607 0.01494240

Conceptualized_CosD’ 0.47697532 0.55849892 0.01458596

NoConcept_CosD’ 0.47889093 0.55465835 0.01434584

Table 4.6 shows the results of the experiments with full text of the guidelines.

For our best model, BioASQ_WMD, we found a 69% similarity (top line), or 0.31

distance (distortion). As can be seen, the average distortion of permutations (using

the distances produced by BioASQ_WMD) is 38%; however, the standard deviation

of the distortions is less than 1%. Thus, the distance between our model and the

mean is about seven standard deviations. Therefore, we conclude that the similarity

between the shapes of the two graphs is extremely unlikely to be coincidental. Hence

the model represents a non-trivial similarity. Moreover, we performed the same kind

of analysis using different models, i.e., different embeddings and different distance

measures. Note that there is no natural transformation of WM distance applicable

here. Additionally, while the distances and distortions change, the chances of simi-

larities arising by accident are always smaller than 1/1000 (four standard deviations



55

from the mean of distortions). By this standard statistical criterion, no matter what

measures of distance we use, the similarity between two graphs, one from human

analysis [7] and the other from automated concept modeling, is non-trivial and not

accidental. This observation is amplified by the additional experiments reported in

section 4.7. We conclude that vector-based representation are capable of detecting

conceptual differences, i.e., the types and densities of concepts brought to the writing

of medical recommendations.

4.7 Additional Experiments

We performed several additional experiments, and we report on three of them in

this section. The first experiment is a variant of the one described above using the

CDC table in Figure 4.1. The second experiment is on lower back pain management

guidelines, for which we could find an online summary table similar to the one in

Figure 4.1. The third one is applying the graph comparison not to a table, but to

the guideline abstracts. We could not find a tabular comparison of the hypertension

management guidelines, so instead, we compared the concepts in full and abstracted

texts. This shows the potential applicability of the proposed approach to other situ-

ations, where we might be interested in conceptual comparisons of related collections

of documents.

4.7.1 Experimenting with the Full Texts of the Guidelines

We performed additional experiments with modified views of the full guideline

documents, as enumerated below. This was driven by the fact that the levels of

distances between full documents may change if we compute the similarities/distances

between selected sentences, which are explicitly related to the statements from the

CDC table in Figure 4.1. For these additional experiments, we split each full text

guideline document into two different subsets:

1. Related: containing sentences that are related to the CDC table by having
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common concepts, as represented by UMLS concepts. This was done in multiple

ways, giving us six possible experiments:

(a) The CDC recommendations table was considered as a single bag of con-

cepts. If a sentence in the full text had a minimum number of mutual

concepts with this bag, that sentence was considered a related sentence.

(b) If a sentence in the full text had a minimum number of mutual concepts

with at least one statement from the CDC table (again, viewed as a bag

of concepts), that sentence was considered a related sentence.

Different minimum numbers of mutual concept(s) were examined in our exper-

iment; that is the minimum was set to 1, 2, and 3.

2. Unrelated: the other sentences.

Unrelated sentences were not used for these additional experiments.

Concept extraction: For all experiments, we used MetaMap 5 to extract UMLS

concepts 6 and semantic types 7 in sentences. We only considered concepts with

informative (in our opinion) semantic types. This meant using concepts related to

diagnosis and prevention, for example “findings”, and not using ones related, e.g., to

genomics. Our final list had the following: [[diap], [hlca], [dsyn], [neop], [qnco], [qlco],

[tmco], [fndg], [geoa], [topp], [lbpr]].
5https://metamap.nlm.nih.gov/
6https://www.nlm.nih.gov/research/umls/index.html
7https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
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Table 4.7: Using sentences in recommendations and minimum mutual con-
cepts. This table shows the values obtained in additional experiments, where full
document guidelines were modified by attending to concepts in sentences (see above).
Column 1 refers to the number of concepts overlapping with summaries. Distortion
shows the distortions of graphs produced using corresponding models from Column
1. As before, in Table 4.6, the distortion depends on how we measure the distances;
however, the shapes of the distributions are very similar.

Min.

Mutual

Concepts

Model Distortion Distortion of Permutations STD

1

BioASQ CosD 0.526380991 0.602890558 0.011735664

Conceptualized_CosD 0.635564038 0.646721788 0.011417208

NoConcept_CosD 0.626087519 0.646906954 0.011131221

NoConcept_WMD 0.352402031 0.383852647 0.006550777

Conceptualized_WMD 0.359296888 0.390059373 0.006626223

BioASQ_WMD 0.336903254 0.384735148 0.006498348

2

BioASQ_CosD 0.449264689 0.572620976 0.010916054

Conceptualized_CosD 0.384945443 0.488740293 0.008608367

NoConcept_CosD 0.433167046 0.501788823 0.008699466

NoConcept_WMD 0.34284288 0.376371094 0.006467164

Conceptualized_WMD 0.330059701 0.373155641 0.006466969

BioASQ_WMD 0.32446554 0.38365857 0.006428759

3

BioASQ_CosD 0.468163076 0.537093759 0.010040669

Conceptualized_CosD 0.564019791 0.57488789 0.010091071

NoConcept_CosD 0.594326474 0.596293202 0.010300973

NoConcept_WMD 0.360513492 0.375067469 0.006461442

Conceptualized_WMD 0.37193217 0.383126986 0.006477258

BioASQ_WMD 0.34276229 0.375886963 0.006455091
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For full text guidelines (as per Table 4.4), the results of the experiments are shown

in Table 4.6 and discussed in Sections 4.6 and 4.9. Tables 4.7 and 4.8 are based on

the same type of comparisons as discussed in Section 4.6, except that we subtract the

Unrelated sentences from the full guidelines. Again, we observed that the similarity

is not accidental and that BioASQ embeddings with WM distance seem on average

to give the best performance.

Note the potentially important observation about Tables 4.6, 4.7 and 4.8: They

jointly show that the property we investigate, i.e., the conceptual distances between

guidelines, is indeed geometric, and therefore, the word “distances” is not merely a

metaphor. The correspondence between the two graphs is preserved no matter how

we set up the experiments. That is, as with geometric properties such as being

collinear or parallel, the structure remains the same when a transformation (such as

a projection) is applied to the points, even though some of the measurements might

change (e.g., measured distances, or the area of a parallelogram). The same happens

when we transform the documents by removing Unrelated sentences: the values of

distortions change, but the non-accidental correspondence with the summary graph

(Figure 4.5) remains invariant.
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Table 4.8: Using the whole summary recommendations and minimum mu-
tual concepts. This table shows the values obtained in additional experiments,
where the whole CDC summary was used to obtain sets of mutual concepts (see
above). Column 1 refers to the number of concepts overlapping with the summary.
Distortion shows the distortions of graphs produced using corresponding models
from Column 1. As before, in Tables 4.6 and 4.7 the distortion is somewhat de-
pended on how we measure distances; however, the shapes of the distributions are
very similar.

Min.

Mutual

Concepts

Model Distortion Distortion of Permutations STD

1

BioASQ_CosD 0.550516174 0.534742406 0.007178113

Conceptualized_CosD 0.568149311 0.547872282 0.007613218

NoConcept_CosD 0.559332088 0.54286484 0.007445151

NoConcept_WMD 0.351230589 0.388633467 0.006465622

Conceptualized_WMD 0.346202932 0.389016657 0.006561466

BioASQ_WMD 0.320392721 0.38253681 0.006475659

2

BioASQ_CosD 0.553091569 0.536791251 0.00725238

Conceptualized_CosD 0.558005588 0.543056307 0.00740679

NoConcept_CosD 0.550200164 0.539443354 0.007298594

NoConcept_WMD 0.341053017 0.380095604 0.006485268

Conceptualized_WMD 0.328265638 0.378358521 0.006481775

BioASQ_WMD 0.323598367 0.386020859 0.006486291

3

BioASQ_CosD 0.548898679 0.536773761 0.007261816

Conceptualized_CosD 0.555658633 0.544321589 0.007471369

NoConcept_CosD 0.548497913 0.540891385 0.007362149

NoConcept_WMD 0.351294868 0.377266094 0.006478541

Conceptualized_WMD 0.352791102 0.37921564 0.006506027

BioASQ_WMD 0.337147756 0.38514511 0.006439097
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4.7.2 Lower Back Pain Management Guidelines

In this experiment, we used the summary tables on “clinical practice guidelines

for the management of non-specific low back pain in primary care” from [1]. In the

cited paper, several comparisons are made between 15 clinical practice guidelines from

multiple continents and countries (Africa (multinational), Australia, Brazil, Belgium,

Canada, Denmark, Finland, Germany, Malaysia, Mexico, the Netherlands, Philippine,

Spain, the USA and the UK). In our experiments we used all of those for which

an English text was available: (GER) [152], (MAL) [153], (SPA) [154], (UK) [155],

(AUS) [156], (USA) [157], (CAN) [158], (DEN) [159], and (BEL) [160]. For this total

of nine guideline texts, we experimented with Table 1 (describing methodologies for

diagnosis) and Table 2 (treatment recommendations) from the article [1] containing,

respectively, 12 and 60 features; in addition, we created a super-table combining the

two tables and applied our method to it as well.

With the same process as described in Section 4.3 we converted the Tables 1 and

2 of [1] into Jaccard distances. Then, as before, we computed the distortion between

the graphs of the full text and the graphs of distances between the extracted features;

and, as before, we established that the probability of obtaining high similarity by

chance is extremely small. For Table 1 of [1] our best model BioAsq_WMD produced

about 28% distortion (or 72% similarity). Similar results hold for Table 2 and for the

combined table, although the actual distortion numbers differ. In all cases, for the

model BioAsq_WMD we found about 10-fold standard deviation, with distortion of

about 16% for Table 2 and about 14% for the aggregated tables combining Tables 1

and 2 of [1].

All other models used in Table 4.6 performed in line with the previous results,

with the only exception being the conceptualized models for Table 1 of [1], where for

Conceptualized_CosD and Conceptualized_CosD’ the distortion was slightly worse

than random. We do not have an explanation for this subpar performance, but we
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have seen a relatively weak performance of this model in Table 4.7. Table 4.9 shows

the Jaccard distances and Table 4.10 shows the performance of all models on the

combined table. Thus the performance of the model does not seem to degrade with

a large number of comparisons.

Table 4.9: Jaccard distances based on the combined Tables 1 and 2 from [1]. The
guidelines are about the management of non-specific lower back pain.

US DEN MAL CAN BEL GER UK SPA AUS

US 0 46 43 35 39 32 43 41 46

DEN 46 0 50 45 47 44 47 49 39

MAL 43 50 0 33 36 39 40 36 42

CAN 35 45 33 0 33 23 33 34 32

BEL 39 47 36 33 0 26 15 36 38

GER 32 44 39 23 26 0 30 33 35

UK 43 47 40 33 15 30 0 41 36

SPA 41 49 36 34 36 33 41 0 44

AUS 46 39 42 32 38 35 36 44 0
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Table 4.10: The performance of the algorithms on the combined Tables 1 and 2
from [1] is in line with the results in Section 4.6.2, except for the weaker showing of
the Conceptualized_WMD model.

Model Distortion Distortion of Permutations STD

BioASQ_WMD 0.14157219 0.16717125 0.00186797

Conceptualized_WMD 0.15689518 0.16098291 0.00179856

NoConcept_WMD 0.13946498 0.16067458 0.00180108

BioASQ_CosD’ 0.44899108 0.49891074 0.00595033

Conceptualized_CosD’ 0.31577959 0.35477261 0.00389520

NoConcept_CosD’ 0.27595783 0.33897971 0.00418504

BioASQ_CosD 0.40412785 0.45347124 0.00511851

Conceptualized_CosD 0.28283583 0.32039879 0.00342097

NoConcept_CosD 0.25530361 0.31717921 0.00378427

4.7.3 Comparing Hypertension Management Guidelines

In an additional experiment, we used a collection of hypertension management

guidelines from different countries, including the USA, Canada, Brazil, the UK and

Ireland [161, 162, 163, 164, 165, 166, 167, 168]. The corpus was created by searching

PubMed for ‘practice guideline’ as “publication type” and ‘hypertension’ and as the

“major MeSh” index. We selected eight of them from different medical bodies, where

the guidelines’ full texts were available. This corpus consists of the following eight

documents: CHEP2007 [161], the 2007 Canadian Hypertension Education Program;

AHA & ASH & PCNA [162], joint statement of the American Heart Association,

American Society Of Hypertension, and Preventive Cardiovascular Nurses Associ-

ation; BGAH [163], the Brazilian Guideline of Arterial Hypertension; CFP [164],

the 2013 Canadian screening recommendations; AAGBI & BHS [165], the 2016 joint

British and Irish guidelines; CHEP2009 [168], the 2009 Canadian Hypertension Ed-

ucation Program; AAP [166], 2017 guidelines focusing on children and adolescents;

and JNC [167], the 2014 evidence-based guidelines focusing on adults.
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Because we are not aware of any tabular summary of differences between hyperten-

sion guidelines, similar to the one shown earlier in Figure 4.1, we made the compar-

isons between full texts of the guidelines and their abstracts. That is, we created two

graphs of embeddings, as shown in Figure 4.6, and measured their similarity, as well

as the probability of the similarity arising by chance, as shown in Table 4.11. The

experiment shows that the concepts appearing in the guidelines’ abstracts strongly

correlate with the concepts used in the guidelines’ full texts. Moreover, the method,

described earlier in Section 4.5, which we used to find this correspondence was very

good at picking up this similarity; and, as before, a very good model was obtained

by using BioASQ embeddings with the Word Mover Distance (WMD).

(a) The graph of the conceptual dis-

tances between the full texts of hypertension

guidelines.

(b) The conceptual distances between the

abstracts of the hypertension guidelines.

Figure 4.6: For the graphs of the eight hypertension guidelines and their abstracts a
visual comparison is more difficult than it was earlier in Figure 4.5. Therefore, we
need a quantitative comparison, which is given in Table 4.11.
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Table 4.11: We see the robustness of the proposed method when comparing the
abstracts’ conceptual distances and the full documents of guidelines.

Model Distortion Distortion of Permutations STD

BioASQ_WMD 0.10722113 0.15779628 0.00339429

Conceptualized_WMD 0.22486228 0.30471905 0.00416548

NoConcept_WMD 0.10659179 0.15903103 0.00339359

BioASQ_CosD’ 0.63552553 0.67228101 0.00891151

Conceptualized_CosD’ 0.4750315 0.62258280 0.00850719

NoConcept_CosD’ 0.51297572 0.54567338 0.00727428

BioASQ_CosD 0.53894790 0.58653238 0.00754606

Conceptualized_CosD 0.34443154 0.47391939 0.00608174

NoConcept_CosD 0.42284040 0.45815692 0.00609919

4.8 Discussion

Our broad research objective is to create a computational model accurately repre-

senting medical guidelines’ disagreements. Since the creation of such accurate models

is beyond the current state of the art, in this study, we focused on an approximation,

i.e., a model that is simple and general enough to be potentially applicable in other

situations and which was useful for the question at hand, namely, whether conceptual

vocabulary determines recommendations.

As mentioned earlier, this work was partly motivated by epistemology of disagree-

ment and medical disagreement, viewed as “near-peer” disagreement. Our results

show that it is possible to build computational models of “near-peer” disagreement.

Additionally, they provide support for the empirical observations of disagreement

adjudication among medical experts [134, 135], where the authors observe that the

differences in experts’ backgrounds increase the degree of disagreement.

A limitation of the study lies in testing the proposed method on a small number

of case studies. In the main track, we focused on the CDC summaries of the breast

cancer screening guidelines, and, in section 4.7, we discuss our experiments on the
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lower back pain management and hypertension guidelines.

We showed that the method is robust in the case of these sample guidelines because

even with the change of metrics, the similarities remain statistically significant. How-

ever, this study only describes a few case studies and leaves it as an open question of

whether it will work equally well in other cases.

Unlike our earlier work [6], in this study, we have not performed any logical analysis

of the guidelines. We also did not use text mining to extract relations from the guide-

lines’ content. Although our focus was on concepts appearing in guidelines, we did not

point to specific vocabulary differences. Instead, we measured semantic differences

between guidelines using the distances between their vectorial representations. This

has to do with the fact that, even though NLP methods have progressed enormously

over the last decade [125], they are far from perfect. In our experiments, we used

some of the simplest semantic types of words and simple collocations represented as

vectors in high-dimensional spaces. This simplicity is helpful, as we can run several

experiments and compare the effects of using different representations and metrics.

This gives us the confidence that the similarities we are discovering tell us something

interesting about guideline documents.

4.9 Conclusions

This work investigates the question of whether the disagreements in medical rec-

ommendations, for example, in breast cancer screening or back pain management

guidelines, can be attributed to the differences in concepts brought to the problem

by specific medical societies (and not,e.g., the style or formalization of recommenda-

tions). Our experiments answered this question in the affirmative and showed that a

simple model using word embeddings to represent concepts could account for about

70% to 85% of disagreements in the recommendations. Another contribution is the

articulation of a very natural graph clique-based algorithm/method for comparing

the similarity of two collections of documents. Given two sets of documents, each
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of the same cardinality, and a mapping between nodes, we computed the percent of

distortion between the shapes of the two cliques and the chances that the mapping

arose from a random process. We also documented all of the steps of the process and

provided the data and the code (https://github.com/hematialam/Conceptual_

Distances_Medical_Recommendations) to facilitate both extensions of this work

and its replication.

Our work extends the state-of-the-art computational analysis of medical guidelines.

Namely, instead of semi-automated conceptual analysis, we demonstrated the feasibil-

ity of automated conceptual analysis. That is, in our study, we used a representation

derived from a (relatively shallow) neural network (BioASQ embeddings [151]), and

knowledge-based annotations derived from MetaMap8. Our results, detailed in Sec-

tion 4.6 and in section 4.7, show that both can be useful as representations of our set

of guidelines. Overall, they show similar performance in modeling conceptual simi-

larities. However, the BioAsq_WMD model, using the BioASQ embeddings and the

Word Mover’s Distance, seems to be most stable, as it performed very well in all our

experiments.

Although this study is a collection of three case studies, bound by a common

method, it could be a good starting point for an analysis of other medical guidelines

and perhaps other areas of expert disagreement. The methods described in this

chapter are easy to use and rely on well-known tools such as word embeddings and

MetaMap. They can also be extended and improved to produce more accurate and

deeper analyses due to the fast progress in text mining and deep learning techniques.

From the point of view of methodology of analyzing medical guidelines, this work

contains the first computational implementation of the “near-peer” model mentioned

earlier. To our knowledge, ours is the first proposal to use automated methods of text

analysis to investigate differences in recommendations.

8https://metamap.nlm.nih.gov/



CHAPTER 5: IDENTIFYING CONDITIONAL AND CONDITION-ACTION

STATEMENTS IN MEDICAL GUIDELINES

This chapter proposes an automated extraction method using linguistic features

to identify informative Statements, conditional and condition-action statements, and

medical guidelines. The process includes three steps. In the first step, candidate sen-

tences are selected based on a modifier word’s appearance (e.g., "if") for conditions.

In the second step, linguistic features are extracted from candidate sentences using

Information Extraction methodologies. In the third step, we use supervised machine

learning techniques to classify candidate sentences as to whether they express condi-

tions and actions. With a domain expert’s help, we annotated three sets of guidelines

to create gold standards to measure our condition-action extracting models’ perfor-

mance. The sets of guidelines are: hypertension [167], chapter 4 of asthma [41], and

rhinosinusitis [169]. chapter 4 of asthma guideline was selected for comparison with

prior work of Wenzina and Kaiser [8]. The method was evaluated by extracting con-

ditional and condition-action statements from these guidelines using several machine

learning methods.

5.1 Introduction

Clinical decision support systems (CDSSs) typically address two major tasks: diag-

nosis — determining “what is true “about a patient; and recommendation — determin-

ing “what to do (or not)” for the patient. Medical guidelines provide the conceptual

link between a diagnosis and a recommendation. For example, they may include

sentences such as this:

"In the population aged 18 years or older with CKD and hypertension,
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initial (or add-on) antihypertensive treatment should include

an ACEI or ARB to improve kidney outcomes"

The italics show the diagnosis part, i.e., a condition, and the courier font a rec-

ommendation, i.e., an action. This chapter focuses on automated identification of

condition-action sentences in medical guidelines. We present results of three studies,

which use different text analytics techniques, and show that:

• Modern deep learning techniques using attention-based models give substantial

improvements in accuracy (6-11%) and F1-score (17-25%) over earlier machine

learning methods.

• Transfer learning can potentially be used on text of medical guidelines in new

domains, even with small amounts of available training data. Namely, training

on two guideline documents produces results better than hand-coded rules and

comparable to standard machine learning methods, even though they only have

445 words in common, and their distributions are completely different.

The three studies use, respectively, syntactic, semantic, and deep learning methods,

evaluated on a set of three annotated medical guidelines. Our main contribution is to

show the applicability of the recently developed techniques, namely neural network

transformers and transfer learning, to this particular problem, and in comparing them

with alternatives based on older machine learning techniques.

In another contribution, we have released two annotated guidelines used in these

experiments, adding to the one previously published data set of [8].

5.1.1 Motivation

There are over 35,000 clinical practice guidelines indexed by PubMed1, with over

1500 appearing every year [107]. Such guidelines may disagree on their recommen-

dations, as documented in prior work, including ours, [7, 170, 6]. Controversies over
1(https://pubmed.ncbi.nlm.nih.gov/)
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prostate screening (PSA), breast cancer screening, hypertension, and other treatment

and prevention guidelines are well-known. In addition, clinical recommendations are

often in conflict when managing comorbidities [171].

Notice that the disagreements focus on actions, i.e., what to do in particular situ-

ations (conditions of the patient). For example, for what ages and breast conditions

should mammography be recommended.

We believe patient outcomes would be improved, overtreatment would be reduced,

and possibly better processes for creating treatment guidelines could be established

if only we could better reason about individual guidelines and guidelines corpora. In

particular, it is natural to imagine decision support systems for healthcare profession-

als [23] accessing properly indexed and contextualized condition-action statements.

Therefore, we should understand whether, and how, such condition-action statements

can be automatically extracted from texts.

5.1.2 Organization of this Chapter and Brief Description of the Studies

After establishing some preliminaries and discussing related work in Section 5.2, we

will methodically describe each of our set of experiments. In each study, multiple ma-

chine learning models are evaluated. Our studies progress through different methods

of machine learning, starting with learning patterns based on part-of-speech (Study

1), adding syntactic and semantic information (Study 2), and several experiments in

transfer learning using deep learning methods (Study 3).

In these studies, we focus on condition-action (CA), condition-consequence (CC),

and action (A) sentences. For comparison with other works, and for easier sum-

marization, we will refer to these classes as conditional sentences; and when finer

distinctions are needed, we will use abbreviations. Thus, the class consisting of CC

and CA classes will be abbreviated as CCA; and in a few instances, we will also dis-

cuss class CCA+A. With this naming convention, we now can summarize the topics

of studies:
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Study 1. (Described in Section 5.4.) Identifying conditional and condition-

action statements using domain-independent syntactic features, part-of-speech

(POS) tags.

Study 2. (Described in Section 5.4.3.) Identifying conditional and condition-

action statements using both domain-independent features and UMLS semantic

types.

Study 3. (Described in Section 5.5.3.) Experimenting with deep learning,

domain adaptation, and machine learning transfer learning.

– Experiment 1. Identifying conditional and condition-action statements

using pretrained transformer models.

– Experiment 2. Identifying conditional and condition-action statements

using pretrained transformer models and features from Study 1 and Study

2.

– Experiment 3. Repeating Experiments 1 and 2 by training classifiers

on two guidelines (rhinosinusitis+hypertension), and testing them on the

third guideline (asthma).

All these experiments use three clinical guidelines: asthma, rhinosinusitis, and

hypertension.

The data and its preparation are discussed in Section 5.3. Afterwards, we describe

the experiments in Sections 5.4– 5.5. In particular, Section 5.5.3 describes several

experiments in domain adaptation and transfer learning. Discussion and Conclusions

follow in Sections 5.6 and 5.7.

5.2 Preliminaries and Related Work

This work focuses on a specific text analytics problem, namely, on finding sentences

with condition-action recommendations in medical guidelines. For this purpose, we
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use a variety of classification techniques ranging from traditional methods such as lo-

gistic regression and random forest to new deep learning and transfer learning methods

introduced in the last few years.

Its motivation, as stated earlier, comes from two directions: clinical decision sup-

port and natural language processing. As such, it belongs to the broad category of

applications of artificial intelligence in medicine, and in particular, in clinical decision

support.

The specific techniques of supervised machine learning used in this chapter comprise

both the classical approaches such as logistic regression and random forest, and more

recently introduced deep learning methods involving domain adaptation and transfer

learning. All of these are applied to the task of classifying sentences as to whether

they express a condition and action or not.

Therefore, in the preliminaries, we need to cover both topics: natural language

processing of medical text, as well as the newer machine learning techniques, including

their applications to medical text, also in the context of clinical decision support.

5.2.1 Five Decades of Automated Analysis of Medical Texts

Text analysis of medical records is already mentioned in a 1975 article by N.Sager

[172, 173], and included extracting information to populate relational databases. Over

the five decades of research in this space, many new techniques have been developed

and applied to medical texts.

Even though no system can claim to “really” understand natural language, the

progress has been very fast in the last ten years [125], where in several domains,

such as data extraction, classification and question answering, automated systems

have dramatically improved their performance, in some cases performing better than

humans. This progress is chiefly due to the unmatched pattern recognition and mem-

orization capabilities of deep neural networks (see, e.g., [126] for an overview).

If we focus on medical texts, we see that modern NLP methods have been applied
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to clinical decision support, e.g., [120], to clinical trials [121], to automatic extraction

of adverse drug events and drug-related entities [122], and to other areas [174, 175].

5.2.2 Analysis of Medical Guidelines

A recent overview of research on clinical guidelines and its applications can be

found in [176, 177]. However, over the past few decades, many problems have been

encountered and approaches have been tried to represent and execute clinical guide-

lines over patient-specific clinical data. They include document-centric models, deci-

sion trees and probabilistic models, and “Task-Network Models” (TNMs) [178], which

represent guideline knowledge in hierarchical structures containing networks of clin-

ical actions and decisions that unfold over time. A general-purpose architecture for

syntax-semantic translation of medical guidelines sentences, using classical NLP tech-

niques, and based on GATE [179], has been recently proposed in [180]. A methodology

for using linguistic patterns in guideline formalization to aid the human modelers and

reduce human modeling effort has been proposed in [181]. A method to identify activ-

ities to be performed during a treatment which are described in a guideline document

appears in [129], used relations of the UMLS Semantic Network [182].

Most related to our work has been a proposal [8] for a rule-based method to identify

conditional activities in guideline documents. In their experiment, with document-

specific rules, they achieved a recall of 75%, a precision of 88%, and 81% F-score on

the same chapter of asthma guidelines which is used in our research.

Similarly, the use of specific heuristic patterns has been shown to lead to a relatively

high 85.54% accuracy in identifying recommendation statements in the hypertension

guideline [4]. Ensemble learning was applied [3] to the same set of three guidelines

as used in this chapter, achieving 80-84% accuracy. Part of the ensemble was a

deep learning module, but it was the weakest overall performer. These results were

obtained on the same guidelines as in our experiments, but at different granularity,

namely on classes of combined action and conditional sentences (CCA+A). As we
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show later in Section 5.6, our current methods provide about 5% – 11% improvement

over these results.

Our own earlier work [2] reported lower results than [8]. The difference was due to

our using of completely automated feature selection when training on an annotated

corpus and not relying on manually created extraction rules. In addition, the results

in [8] demonstrate recalls on specific patterns. Thus, if applied to all activities in

their annotated corpus, their recall was shown to be 56%, and on our annotated

corpus, it was 39%. As we show later in this chapter, in Section 5.5, we can achieve

the F1 scores of 81% and higher, using completely automated methods- even purely

transfer-based methods can produce a 67% F1 score and 68% recall.

5.2.3 Deep Learning Methods, Domain Adaptation and Transfer Learning

There are plenty of overviews of deep learning methods, e.g., [183, 184]. In our

experiments, we use pretrained transformer models such as BERT [185] and BioBERT

[186], which are relatively well-known. However, we need to discuss the concepts of

transfer learning and domain adaptation, which are the focus of some experiments

reported in this chapter.

We will start by observing that the two concepts overlap and are often used in-

terchangeably. In particular, in natural language processing, as observed by [187],

transfer learning is sometimes referred to as domain adaptation. Wikipedia tries to

make a distinction. It explains that the basic idea of domain adaptation is to learn a

model on a dataset, in a way that would make it applicable in other, related situations.

For example, adapting spam filtering models from one set of users to another.2 On the

other hand, transfer learning “focuses on storing knowledge gained while solving one

problem and applying it to a different but related problem, “for example, “knowledge

gained while learning to recognize cars could apply when trying to recognize trucks”.3

2https://en.wikipedia.org/wiki/Domain_adaptation
3https://en.wikipedia.org/wiki/Transfer_learning
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For the purpose of this study, we adopt the definition from a 2015 survey of the

topic [188]: “domain adaptation is a subcategory of transfer learning. In domain

adaptation, the source and target domains all have the same feature space (but dif-

ferent distributions); in contrast, transfer learning includes cases where the target

domain’s feature space is different from the source feature space or spaces” (our em-

phasis). We can contrast this with the traditional machine learning which generally

assumes that the data is in the i.i.s. form (independent and identically distributed),

and that from sampled, labeled data we can train a good model for test data.

Domain adaptation and transfer learning are very active areas of research [189].

We also observe their growing importance for natural language processing [190, 191]

and in clinical NLP. For example, [192] argue that “researchers in clinical NLP should

treat domain adaptation, transfer learning, etc. as a first-class problem rather than

a niche area", and [193] as ‘worth exploring’.

In our case, Experiment 1 of Study 3 (Section 5.5.1), where we used pretrained deep

learning models to find conditional sentences, is an example of domain adaptation.

We also perform two experiments in transfer learning in Study 3. In Experiments 2

(Section 5.5.2), we add features from Study 1 and 2, which are not used for training

of the deep learning models. In Experiment 3 (Section 5.5.3), we train on a data set

combining two guideline documents and test on a different document, showing earlier

(Section 5.3) that the two frequency distributions of words are very different.

5.3 The Data

In this section, we discuss the data. First, we discuss the sources of our data and

its basic statistical information. Next, to show that our experiments fall under the

category of transfer learning, we discuss the differences between feature distributions

used in the experiment of Study 3 (Section 5.5).
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5.3.1 The Dataset of Three Annotated Guidelines

We used three medical guidelines documents to create gold standard datasets and

(in 2017) made them publicly available4. We annotated three sets of guidelines to

create gold standards to measure the performance of our condition-action extracting

models. The sets of guidelines are: hypertension [194], Chapter 4 of asthma [195], and

rhinosinusitis [169]. Chapter 4 of the asthma guidelines was selected for comparison

with prior work of Wenzina and Kaiser [8]. Each sentence was annotated by one

domain expert and us, with disagreements of less than 10 percent. We have annotated

the guidelines for the conditions, consequences, modifiers of conditions, and type of

consequences.

Our data preparation process proceeded as follows: we started by converting the

guidelines from PDF or HTML to the text format, editing sentences only to manage

conversion errors, most of which were bullet points. Tables and some figures posed a

problem, which were simply treated as unstructured text.

The next step, the annotation of the guidelines text, focused on determining

whether there were condition statements in the candidate sentences or not. The

instruction to the annotators was to try to paraphrase candidate sentences as sen-

tences with “if condition, then consequences.” If the transformed/paraphrased sen-

tence conveyed the same meaning as the original, we considered it to be a condition-

consequence sentence, and we could annotate the condition and consequence parts.

For example, the sentence “Beta-blockers, including eye drops, are contraindicated

in patients with asthma” from [195] can be paraphrased to “If patients have asthma,

then beta-blockers, including eye drops, are contraindicated”. The paraphrased sen-

tence conveys the same meaning. So, it became a condition-consequence sentence in

our dataset. On the other hand, for example, we cannot paraphrase “Further, the
4They are at https://data.world/hematialam/condition-action-data. To the best of our

knowledge, these three annotated documents are the only such dataset, besides the original annota-
tions from [8]
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diagnostic criteria for CKD do not consider age-related decline in kidney function as

reflected in estimated GFR” from [195] to an if-then sentence; it, therefore, belongs

to the category no condition (nor action).

Table 5.1: Examples of classified sentences and their classes/types.

Type Example

Condition-Action Timely referral is indicated if chronic or recurrent symptoms
severely affect the patient’s productivity or quality of life.

Condition-Consequence Most patients with uncomplicated viral URIs do not have fever.

Action Adjustment is necessary for fluticasone and mometasone and may
also be necessary for alternative devices.

No condition (nor action)
“Further, the diagnostic criteria for CKD do not consider

age-related decline in kidney function as reflected in estimated
GFR"

We annotated the type of sentences based on their semantics: We classified them

into four classes: condition-action (CA), condition-consequence (CC) 5, action (A),

and no condition nor action (NC)6. Examples of sentences we are trying to find are

shown in Table 5.1.

Table 5.2 contains the basic statistical information about the three guidelines. The

numbers do not add up, because certain types of sentences were omitted from the

annotation process (see [2]). This is, among others, due to the fact that, to be

interpreted, they require a model that crosses the sentence boundaries. For example,

“The most effective therapy is intranasal steroids.”

Table 5.2: Statistical information about annotated guidelines. Words – the total num-
ber of words in the document. Avg Length – average number of words per sentence
(applies to all sentences). CA condition-action (recommendation); CC condition-
consequence; A action; NC no condition (nor action).

Guidelines Words Avg Length Sentences CA CC A NC

Asthma 3621 16 224 38 7 8 117

Rhinosinusitis 19870 27 726 97 39 15 610

Hypertension 8182 34 238 63 14 1 200

5which includes effect, intention, and event.
6which includes all other sentences
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In all experiments, except for Experiment 3 in Study 3, described in Section 5.5.3,

the data was split 75% for training and 25% for testing. In Study 3, Experiment

3 tests domain adaptation/transfer learning, and therefore, the rhinosinusitis and

hypertension guidelines were used for training and the asthma guidelines for testing.

5.3.2 The Data from the Perspective of Domain Adaptation and Transfer

Learning

We plan to argue that our experiments in Section 5.5 prove the applicability of

transfer learning to the detection of sentences with conditions and actions (separately

or jointly). For this argument, we need to establish that the feature distribution of

training data is different than the test data and that their feature sets are different.

We will be using the following feature sets Study 3 (Section 5.5) where we are

experimenting with deep learning, domain adaptation, and machine learning transfer.

— Experiment 1: Identifying conditional statements using pretrained transformers

models. Here, the feature set consists of the vectors from BioBERT and other

transformer models. Clearly, the distribution of words in the BioBERT training

data (trained on a large set of diverse biomedical texts) is different than in the

selected three guidelines.

— Experiment 2: Identifying conditional statements using pretrained transformers

models and features from Study 1 and Study 2. Here, the features are the sum

of BioBERT vectors and the features from Study1 and (separately) the features

from Study 2. And, for the reason of vocabulary distribution alone, it can be

viewed as a case of domain adaptation, as defined earlier in Section 5.2.3.

— Experiment 3: transfer learning. It consists of repeating Study 2, Experiments

1 and 2 by training classifiers on two guidelines (rhinosinusitis+hypertension)

and testing them on the third guideline (asthma).
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Figure 5.1: Top panel: the frequency distribution on 445 words-in-common in the
training data (hypertension+rhinosinusitis; Series 1) and test data (asthma; Series
2). The bottom panel shows the large difference between the two distributions.

To establish the applicability of the concept of transfer learning to Experiment 3

(Study 3), we need to pay attention to feature distribution. In Experiment 3, the

combined rhinosinusitis and hypertension guidelines has a vocabulary of 2,719 words

(training set), while the asthma guidelines (test set) has a vocabulary of 661 words

(test set). So, intuitively, these distributions should be different, and this difference

is apparent in Figure 5.1.

This visual observation is indeed confirmed by the Kolmogorov-Smirnov test (K-S

test), showing the difference with the significance level better than 0.001 on the total

vocabulary. Even the distributions on the 445 words-in-common are very different

according to the K-S test, with a significance level of about 0.025. The restricted

distributions on the training and testing data set-based on the K-S test with a signif-

icance level of about 0.025. This is supported by another test on these two restricted

distributions. The Kullback–Leibler relative entropy (K-L divergence) is high in both

directions: training–testing has the value of 0.383, and for testing–training, we get

0.481. Thus, however we look at the distributions, they are very different.
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5.4 Using Syntactic and Semantic Features (Studies 1 and 2)

Our baseline, Study 1, recognized condition-action statements by applying classical

machine learning algorithms using a combination of domain-independent syntactic

and semantic features and extending our earlier results [2]. It also extended (and

improved) the results of [8] by using additional datasets, and it proved that find-

ing sentences with conditions and actions does not have to be tailored to a specific

document nor hand-coded in the form of regular expressions.

5.4.1 The Feature Set

We now briefly summarize these results, as they are given here for context and

completeness. To provide the required preliminaries for Study 2 (Section 5.4.3) and

Study 3 (Section 5.5), it is useful to discuss the features and methods used in [2].

The features, consisting of part-of-speech tags and syntactic patterns, were ex-

tracted from the sentences in the guidelines using the CoreNLP [196] shift-reduce

constituency parser. More specifically, they consisted of POS tags and sequences

POS tags (a modified algorithm, subsuming the one in [2], is shown in Section 5.4.3).

For example, we have the following set of features, derived from the parse tree shown

in Figure 5.2 for the sentence :“If bp is greater than 50, follow the instruction.”
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Figure 5.2: Example of the parse tree showing the part-of-speech (POS) features used
in Study 1, and syntactic structures used in Study 2.



81

Example 5.4.1 Example list of features:

[‘IN’, ‘NN’, ‘VBZ’, ‘JJR’, ‘IN’, ‘CD’, ‘,’, ‘VBP’, ‘DT’, ‘NN’, ‘.’,

‘IN-NN’, ‘IN-NN-VBZ’, ‘NN-VBZ’, ‘NN-VBZ-JJR’, ‘VBZ-JJR’, ‘VBZ-JJR-IN’,

‘JJR-IN’, ‘JJR-IN-CD’, ‘IN-CD’, ‘IN-CD-,’, ‘CD-,’, ‘CD-,-VBP’, ‘,-VBP’,

‘,-VBP-DT’, ‘VBP-DT’, ‘VBP-DT-NN’, ‘DT-NN’, ‘DT-NN-.’, ‘NN-.’]

5.4.2 Evaluation Measures and Baseline Results

We will be using the following evaluation measures to report results of our experi-

ments: precision (P), recall (R), F1-measure, and accuracy (A).

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2 ∗ P ∗R
P +R

A =
TP + TN

N

In the above definitions, TP is the number of items (e.g., condition expressions) that

are correctly classified to a category, FP is the number of items that are misclassified,

and FN is the number of items misclassified to other categories (e.g., condition as

action or no-condition).

In our evaluation we used the scikit-learn implementation of the algorithms.

The results for extracting condition-action (CA) statements are shown in Table 5.3.

We achieved recall of 52%, precision of 81% for the class CA and F1-score of 63%.

Table 5.3: Classification results on annotated guidelines using only POS tags and
their combinations, focusing on the detection of condition-action sentences. These
baseline results are the core of Study 1.

Classifier Class Precision Recall F1-score Accuracy

Random Forest CA 0.95 0.42 0.58 0.86

Gradient Boosting CA 0.81 0.52 0.63 0.84

Logistic Regression on RF&GB CA 0.66 0.54 0.59 0.76
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Table 5.4 shows combined results on the CC and CA classes, shown as CCA.

Later, in Section 5.5, we show further improvements applying the three algorithms

mentioned here to the vector representations produced by the deep learning models.

In addition, we also show strong improvements on the combined classes CC, CA, and

A, used in [4, 3].

Table 5.4: Summary of classification results on annotated guidelines, using domain
independent syntactic features (Study 1), and based on [2]. The CA and CC classes
are combined and shown as CCA.

Classifier Class Precision Recall F1-score Accuracy

Random Forest CCA 0.72 0.44 0.56 0.85

Gradient Boosting CCA 0.62 0.44 0.52 0.83

Logistic Regression on RF&GB CCA 0.63 0.52 0.57 0.84

5.4.3 Identifying Conditional Statements Using Semantic Types (Study 2)

Study 2 extends Study 1 by adding semantic features, that is, it is applying the

domain knowledge to the process of finding condition-action sentences. For each

candidate, we extract POS tags and syntactic tags at the phrase or clause level (see,

Figure 5.2 and Example 5.4.2). We also use MetaMap7to extract UMLS semantic

types of entities. We add these features to the features from Study 1.

Algorithm 4 shows the steps and the preconditions of the extraction process; the

process requires the existence of specific syntactic modifiers. Here, IN denotes a

preposition or a subordinating conjunction, WRB stands for a Wh-adverb, WP for a

Wh-pronoun. and TO for the preposition ‘to’.
7https://metamap.nlm.nih.gov/



83

Algorithm 4
Input: Sentence

Output: Sentence type

1: Parse the Sentence.

2: if There is a modifier tagged as IN, WRB, WP, or TO then

3: Extract linguistic (syntactic and semantic) features from the sentence

4: Using the extracted features, detect the sentence in one of the two categories:

CA or CCA

5: return Sentence type

6: end if

7: return NC

In all experiments, after creating the lists of features for each sentence, we used

the Random Forest classifier and Gradient Boosting classifier to classify sentences in

our data sets. We also used the combined output probabilities from the first two

classifiers to create features for a logistic regression classifier (see Tables 5.5 and 5.5).

We used the features created by the transformer models in three types of experi-

ments:

1. We evaluate the performance of four classifiers, logistic regression, random for-

est, gradient boosting, and ensemble model using logistic regression on the

output probabilities from random forest and gradient boosting. We only use

the vectors created by the transformers as input to these four classical models.

2. We merged the features from Study 1 with the vectors from the transformer

models. We evaluate the performance of the classifiers mentioned above in

identifying conditional statements.

3. We used a combination of vectors and features from Study 2 to identify condi-

tional statements using the classifiers mentioned earlier.
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Example 5.4.2 shows the type of features that are added to the syntactic features

shown earlier in Example 5.4.1. Note that the two sentences are different.

Example 5.4.2 Additional features for the sentence:

If bp is greater than 50, follow the instruction.

–- [’SBAR_IN-S-,’, ’QP_JJR-IN-CD’]

–- [’SBAR-VP-.’, ’QP’]

–- [’if-[gngm]’, ’than-[fndg]’]

–- [’if_[fndg]’, ’if_[gngm]’, ’than_[fndg]’]

For the class CA (condition-action), we obtained a precision value of 88%, recall of

56%, and F1 score of 68% using gradient boosting and similar results using random

forest and logistic regression, as shown in Table 5.5. Thus adding semantic features

leads to at least 5% improvement (compared to Table 5.3).

We achieved a precision of 75%, a recall of 57 %, and an F1-score of 65% for

the combined class CCA of conditional statements; see Table 5.6, showing improved

results (over 10%), as compared to Table 5.4.

Table 5.5: Classification results on annotated guidelines, focusing on condition-action
sentences and using all features (semantic and syntactic); Study 2.

Classifier Class Precision Recall F1-score Accuracy

Random Forest CA 1.0 0.52 0.68 0.86

Gradient Boosting CA 0.88 0.56 0.68 0.85

Logistic Regression on RF&GB CA 0.77 0.60 0.67 0.81
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Table 5.6: This table shows the classification results on combined condition-
consequence and condition-action classes using all features (semantic and syntactic);
Study 2.

Classifier Class Precision Recall F1-score Accuracy

Random Forest CCA 0.81 0.48 0.60 0.87

Gradient Boosting CCA 0.72 0.54 0.62 0.86

Logistic Regression on RF&GB CCA 0.75 0.57 0.65 0.87

5.5 Deep Learning and Transfer Methods (Study 3)

This study uses pretrained deep neural language representation models. As before,

we use these models to identify various types of conditional statements, including

condition-action (CA) and condition-consequence (CC) statements.

Transfer learning through pretrained language models is a very common method

in NLP. Typically, a deep learning model for target tasks are partially pretrained

to create a language model and then fine-tuned on the supervised dataset. There

are many well-known such language models (representations) that provide similar

capabilities, but not necessarily a similar performance.

In our experiments, we used the following models: BERT [61], XLNet [197], Dis-

tilBERT [198], BioBERT v. 1.1 [186], SciBERT scivocab-uncased [199], as well

as BlueBERT base-PubMed and base-PubMed+MIMIC-III [200].

In contrast with the standard practice, because of the small size of our available data

(discussed in Section 5.3), we could not retrain the deep learning models. Instead,

we used the representations they produce to train a collection of standard classifiers,

such as logistic regression and random forest. In other words, for any sentence of

the guidelines, a deep learning model produced a vector. A learning algorithm views

each dimension as a feature, and assigns importance to individual features or their

collections. The result of this learning process is classifier.

In Experiment 1 of Study 3, we use pretrained deep learning models to find con-
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ditional sentences, which is an example of domain adaptation. We also perform

two experiments in transfer learning in Study 3. In Experiment 2, we add features

from Study 1 and 2, which are not used for training of the deep learning models

(although, in principle, they may be latently present in their neural representations

[201, 202, 203, 204]).

In Experiment 3 of that study, we train on a data set combining two guideline

documents and test on a different document. We showed earlier in Section 5.3 that

the two frequency distributions of words are very different.

As recommended in [61], for the BERT-based models, the final hidden states corre-

sponding to [CLS] token were used as the aggregate sequence representation for clas-

sification tasks. For the XLNet model, we used the final hidden states corresponding

to the last token. This method provides us, for each transformer model, a sentence

representation as a tensor of shape (1,768), i.e., a vector of 768 parameters/features.

5.5.1 Deep Learning. Study 3, Experiment 1

The results of two experiments using pretrained transformer models as a source of

features for logistic regression are shown in Tables 5.7 and 5.8. We only show results

using logistic regression, which is overall the best classifier in this context. The two

experiments provide a baseline for the conditional classes CA and CCA. We can see

that XLNet is the weakest overall performer and BioBERT the strongest.
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Table 5.7: This table illustrates the classification results on identifying condition-
action statements (CA) using transformer embeddings as features (Study 3, Experi-
ment 1 ). In this table, we only report results from the logistic regression classifier,
but use different vectorized representations of sentences coming from the models in
the first column.

Model Classifier precision recall F1-score Accuracy

BERT Logistic Regression 0.78 070. 0.74 0.92

DistilBERT Logistic Regression 0.80 0.80 0.80 0.93

XLNet Logistic Regression 0.60 0.56 0.58 0.87

BioBERT Logistic Regression 0.89 0.82 0.85 0.95

SciBERT Logistic Regression 0.75 0.72 0.73 0.91

BlueBert Logistic Regression 0.80 0.74 0.77 0.93

BlueBERTMIMIC Logistic Regression 0.75 0.72 0.73 0.91

Table 5.8: This table illustrates the classification results on identifying conditional
statements (CCA) using transformer embeddings as features (Study 3, Experiment 1
). In this table, we only report results from Logistic Regression classifier.

Model Classifier precision recall F1-score Accuracy

BERT Logistic Regression 0.74 0.79 0.77 0.91

DistilBERT Logistic Regression 0.80 0.78 0.79 0.92

XLNet Logistic Regression 0.61 0.64 0.62 0.85

BioBERT Logistic Regression 0.85 0.79 0.82 0.93

SciBERT Logistic Regression 0.70 0.74 0.72 0.89

BlueBERT Logistic Regression 0.81 0.72 0.76 0.91

BlueBERTMIMIC Logistic Regression 0.78 0.72 0.75 0.91

We view this experiment as our first rudimentary experiment in domain adaptation.

We note the large discrepancy in the size of the data (30K words vs. 20B words for

BioBERT) and a potential for noise from the vocabulary mismatch. However, despite

these potential problems, transformer-based models give a substantial boost in the

performance compared with Tables 5.5 and 5.6 from Study 2 (and Study 1).
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5.5.2 Deep learning. Study 3, Experiment 2

In Experiment 2, we add to transformer vectors the syntactic and semantic features

from Study 1 and Study 2. As before, the data was split 75% for training and 25%

for testing. We use the transformer models as the source of vectors, and each vector

consists of 768 numerical features. To these vectors, we add the features from Study

1 and Study 2 and then apply logistic regression as the learning mechanism. We can

view this experiment as another case of domain adaptation, as the new feature set

adds UMLS concepts, and the distribution of common features is different as well.

Also, BioBERT was not trained on identifying conditional sentences, so the task is

new as well.

The results are better than in the earlier experiments in Study 2, reported in

Tables 5.5 and 5.6. However, we can see from Tables 5.9 and 5.10 that these additional

features decrease the performance of BioBERT (perhaps because some of them are

implicitly encoded in BioBERT vectors). Interestingly enough, they improve the

performance of other models, even though they are known to also encode syntactic

and semantic information (as shown in previously cited [201, 202, 203, 204]).
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Table 5.9: This table illustrates the classification results on identifyng condition-
action statements (type CA) using different features (Study 3, Experiment 2). In this
table, we only report results from the Logistic Regression classifier.

Model

Transformer

vectors

Adding

features from

Study 1

Adding

features from

Study 2

F1 Accuracy F1 Accuracy F1 Accuracy

BERT 0.74 0.92 0.81 0.94 0.82 0.94

DistilBERT 0.80 0.93 0.74 0.92 0.80 0.94

XLNet 0.58 0.87 0.67 0.90 0.67 0.90

BioBERT 0.85 0.95 0.79 0.93 0.81 0.94

SciBERT 0.73 0.91 0.78 0.93 0.76 0.93

BlueBERT 0.77 0.93 0.76 0.93 0.79 0.94

BlueBERTMIMIC 0.73 0.91 0.76 0.93 0.80 0.94

Table 5.10: This table illustrates the classification results on identifying conditional
statements (type CCA) using different features (Study 3, Experiment 2). In this
table, we only report results from the Logistic Regression classifier.

Model

Transformer

vectors

Adding

features from

Study 1

Adding

features from

Study 2

F1 Accuracy F1 Accuracy F1 Accuracy

BERT 0.77 0.91 0.77 0.91 0.81 0.93

DistilBERT 0.79 0.92 0.77 0.92 0.78 0.92

XLNet 0.62 0.85 0.63 0.85 0.66 0.90

BioBERT 0.82 0.93 0.80 0.92 0.80 0.93

SciBERT 0.72 0.89 0.77 0.91 0.79 0.92

BlueBERT 0.76 0.91 0.79 0.92 0.81 0.93

BlueBERTMIMIC 0.75 0.91 0.71 0.90 0.73 0.90
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5.5.3 Extracting Conditional Statements using Transfer Learning

Based on the 2015 survey of the topic [188], we defined transfer learning as focused

on cases where the target domain’s feature space is different from the source feature

space or spaces.

In Study 3, Experiment 3 tests the applicability of transfer learning by using the

rhinosinusitis and hypertension guidelines for training and the asthma guidelines for

testing. As observed earlier in Section 5.3.2, the training and testing data sets have

different vocabularies, different distributions (established by Kolmogorov-Smirnov

test, and by K-L divergence), and even different distributions on the common vo-

cabulary as shown in Figure 5.1, and confirmed by the K-S test.

Table 5.11: Study 3. Experiment 3. On the class of conditional sentence (CCA), 72%
F1 and 87% accuracy (A) shows applicability of machine learning transfer; it beats
results of Study 2 Table 5.6 of 65%. Syntactic and semantic features from Study 2
were used in the first and third experiments.

Model Classifier P R F1 A

All Study 2 features

Random Forest 1.0 0.11 0.20 0.72

Gradient Boosting 0.82 0.34 0.48 0.77

Logistic Regression on RF&GB 0.85 0.32 0.47 0.77

BioBERT (only)

Logistic Regression 0.85 0.62 0.72 0.87

Random Forest 0.56 0.11 0.19 0.74

Gradient Boosting 0.58 0.47 0.52 0.77

Logistic Regression on RF&GB 0.56 0.49 0.52 0.76

BioBERT + all Features

Logistic Regression 0.91 0.47 0.62 0.85

Random Forest 0.75 0.07 0.12 0.75

Gradient Boosting 0.62 0.44 0.52 0.78

Logistic Regression on RF&GB 0.64 0.47 0.54 0.79

As we can see in Tables 5.11 and 5.12, we get results comparable to Study 2, which

shows that out of the box transfer learning on unseen documents, and with completely
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different distribution of features, can perform on the level of classical algorithms

trained under the i.i.s. (independent and identically distributed) assumption with

75%-25% train-test split.

Table 5.12: Study 3. Experiment 3. On the class of condition-action (CA) sentences
the 67% F1 score shows the applicability of transfer learning to this class, closely
matching the 68% F1 score of Table 5.5. Syntactic and semantic features from Study
2 were used in first and third experiments.

Model Classifier P R F1 A

All Study 2 features

Random Forest 1.0 0.03 0.05 0.78

Gradient Boosting 0.89 0.21 0.34 0.82

Logistic Regression on RF&GB 0.89 0.21 0.34 0.82

BioBERT (only)

Logistic Regression 0.65 0.68 0.67 0.85

Random Forest 0.50 0.29 0.37 0.78

Gradient Boosting 0.50 0.50 0.50 0.78

Logistic Regression on RF&GB 0.51 0.50 0.51 0.78

BioBERT+all Features

Logistic Regression 0.71 0.53 0.61 0.85

Random Forest 0.53 0.21 0.30 0.78

Gradient Boosting 0.61 0.53 0.56 0.82

Logistic Regression on RF&GB 0.57 0.42 0.48 0.80

5.6 Discussion

In this section, we summarize our work from the point of view of comparison with

prior art. Our results (Table 5.13 and Table 5.14) show that significant improvements

of the prior art are possible using domain adaptation and transfer methods. We start

with the pioneering work of Wenzina and Kaiser [8], who proposed a heuristic-based

information extraction method for identifying condition-action statements.



92

Table 5.13: This table illustrates the improvements in classification results on identi-
fying condition-action statements.

Experiment Classifier Features F1 F1-gain A A-gain

Study 1 GB POS tags 0.63 0 0.84 0

Study 2 R Semantic + Syntactic 0.68 +5% 0.86 +2%

Study 3 Ex. 1 LR BioBERT vectors 0.85 +17% 0.95 +9%

Table 5.14: This table illustrates the classification results on identifying conditional
statements.

Experiment Classifier Features F1 F1-gain A A-gain

Study 1 LR on R & GB POS tags 0.57 0 0.84 0

Study 2 LR on R & GB Semantic + Syntactic 0.65 8% 0.87 3%

Study 3 Ex. 1 LR BioBERT vectors 0.82 17% 0.93 6%

The authors calculate a score for statements based on the appearances of trigger

words (“if” and “should”) and sequences of semantic types from UMLS. They achieved

a recall of 75%, a precision of 88%, and 81% F1 score on the same chapter of asthma

guidelines as the one used in our research. Their results only demonstrate recall on

activities with specific patterns — the appearance of the trigger words “if” or/and

“should.”

However, if we consider all activities in their annotated corpus, the recall drops to

56%. Furthermore, we disagree with some of their annotations. We believe there are

more condition-action statements in the chapter of asthma guidelines. If we apply

their approach to our annotated corpus, which we used in our experiments, their recall

will be 39%. In the experiments reported in this chapter, we achieved precision of

89%, recall of 82%, and an 85% F1 score on identifying condition-action statements.

Hussain et al. [4] used only the hypertension guideline annotations from our gold

standard dataset to develop a heuristic model for identifying medical recommenda-

tions. In their study, they considered all condition-action, condition-consequence, and
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action statements as recommendations. They achieved 85.54% accuracy in detecting

recommendations using ten heuristic patterns identified manually by authors.

Hussain and Lee [3] proposed two methods to detect recommendations from clinical

practice guidelines. They were defined in [4, 3] as the combined classes CCA+A, i.e.,

condition-consequence, condition-action and action.

In their experiment, first they used the TF-IDF vectors of preprocessed sentences as

features for machine learning models. Second, they added aspects (UMLS concepts)

of the tokens to the sentences and used the TF-IDF vectors of the modified sentences.

They trained and evaluated their models on hypertension and rhinosinusitis guideline

annotations from our gold standard dataset. They achieved approximately 80% ac-

curacy for the first experiment and 84% accuracy for the second one. Although deep

learning was used as a part of an ensemble learning model [3], it was the weakest

overall performer.

In contrast, using the transfer method described earlier, with BioBERT vectors as

features for a logistic regression classifier, we achieved, as shown in Table 5.15, a 91 %

accuracy in detecting recommendations. They are defined in [4, 3] as consisting of the

combined classes CCA+A, i.e., condition-consequence, condition-action and action.

However, we should note that accuracy is perhaps a less informative measure than

F1, in cases of imbalanced classes. For example, in the top row of Table 5.7, we see

the 78% accuracy of random forest with an abysmal 5% F1 score.
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Table 5.15: This table illustrates the classification results on identifying recommen-
dations, defined in [3] and [4], as CCA+A . This experiment uses as features the
embeddings from the transformer models, as previously shown in Study 3, Example
1.

Model & Classifier data features precision recall F1-score Accuracy

Logistic Regression Hypertension
BioBERT

vectors
0.94 0.75 0.83 0.91

Logistic Regression
Hypertension &

rhinosinusitus

BioBERT

vectors
0.77 0.65 0.71 0.87

Logistic Regression
Hypertension &

rhinosinusitus

BlueBERT

vectors
0.88 0.64 0.74 0.89

Logistic Regression

Hypertension &

rhinosinusitus &

Asthma

BioBERT

vectors
0.79 0.73 0.76 0.90

Logistic Regression

Hypertension &

rhinosinusitus &

Asthma

SciBERT

vectors
0.81 0.75 0.78 0.91

Heuristic model [4] Hypertension
heuristic

patterns
- - - 0.86

Ensamble learner[3] Hypertension
TF-IDF from

sentences
- - - 0.80

Ensamble learner [3]
Hypertension &

rhinosinusitis

TF-IDF from

sentences and

concepts

- - - 0.84

5.7 Conclusions

In this chapter, we showed that modern deep learning methods, when applied to

the text of clinical guidelines, yield substantial improvements in our ability to find

sentences expressing the relations of condition-consequence, condition-action, and

action.

As shown in a series of experiments, a combination of machine learning domain

adaptation and transfer can improve the ability to automatically find conditional

sentences in clinical guidelines. We showed substantial improvements over the prior

art (+5% minimum, +25% maximum), and discussed several directions of extending

this work, including addressing the problem of paucity of annotated data.
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In summary, we presented three studies using syntactic, semantic, and deep learning

methods, and performed an in-depth evaluation on a set of three annotated medical

guidelines. Despite the limitation of having only a small set of annotated data, we

showed the applicability of the recently developed techniques, namely neural net-

work transformers and transfer learning to the problem of detection of conditional

sentences.



CHAPTER 6: FROM KNOWLEDGE EXTRACTION TO INFORMATION

RETRIEVAL AND INSIGHTS

In this chapter, we discuss the problem of finding relevant recommendations. As

discussed earlier, the volume of medical texts, including clinical guidelines and case

studies, is rapidly increasing. While current information retrieval tools provide good

search capabilities on the level of documents, fine-grained access to specific recom-

mendations, e.g., condition-action sentences, is difficult without additional instru-

mentation.

Therefore, it should be possible to use semantic indexing tools to provide such

access. In the remainder of the chapter, we discuss a prototype of a semantic search

engine, which is capable of:

1. Retrieving statements based on keywords, semantic concepts, and semantic

types.

2. Providing different relevance metrics.

3. Providing metadata about the document, e. g. indexed MeSH terms.

4. Indexing and retrieving table data.

From the public health perspective, policy makers in health care face some chal-

lenges when dealing with various medical guidelines for the same condition. They

need to find answers to these questions: Are guidelines for the same condition truly

comparable? If there is a disagreement, can we identify potential reasons for it? Can

we track the progression of recommendations? What is the average time of universal
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adoption of innovations in medicine? With the help of text analytics capabilities, a

repository of medical guidelines could help researchers investigate these questions.

Thus, we start with an overview of PubMed, discuss prior art, and proceed to

the description of our fine-grained semantic search engine. We continue to discuss

possible applications, including answering certain questions from the public health

perspective.

6.1 PubMed – a Dominant Paradigm in Medical Search

PubMed is a search engine that is developed and maintained by the National Center

for Biotechnology Information (NCBI) at the National Library of Medicine (NLM).

PubMed provides access to the MEDLINE database, which includes bibliographic

information for journals covering life sciences with a concentration on biomedicine.

Each article in MEDLINE is indexed with Medical Subject Headings (MeSH). MED-

LINE introduced “publication type” as an indexing term to facilitate queries on tri-

als [205]. PubMed also provides links to full-text articles in PubMed Central or other

resources. PubMed Central (PMC) is a free full-text archive of articles that concen-

trate on biomedical and life science research. MEDLINE/PubMed data and PMC

articles are available for download via the NLM website.1 As of April 2021, there

are more than 32 million citations available on PubMed (April 2021); PMC provides

access to more than 6 million full-text records.

Millions of users use PubMed and PMC to retrieve medical literature each day [206].

On the one hand, retrieving relevant literature has become more challenging due

to the growth rate of biomedical literature [207].

On the other hand, although PubMed and PMC are comprehensive repositories

of documents, they provide the relevant documents, not the relevant statements.

Users interested in finding specific types, e.g., recommendations or evidence, must

go through additional steps to retrieve those statements.
1https://www.nlm.nih.gov/
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6.2 Related Works

In this section we review some of the works related to enhancing the process of

retrieving documents from PubMed. Earlier works focused on improving the relevance

of the retrieved document using additional information extracted from the literature.

In recent years, we have seen more interest in sentence-level information retrieval

systems.

Ohta et al. [208] developed MEDIE, a search engine for MEDLINE. MEDIE was

introduced with three types of search: keyword search, semantic search, and GCL

search. Semantic search provides results based on the appearances of gene and disease

entities. GCL search utilized parsed trees to provide results representing the relation

between entities as requested in the query. Semantic MEDLINE [209] is a search

engine that provides semantic relation of medical concepts as a connected graph of

concepts. It uses SemRep [210] system to extract the semantic relationships between

concepts that appeared in MEDLINE abstracts. A review of more traditional search

engines is available in [207].

Muller et al. [211] introduced Textpresso, an ontology-based information retrieval

and extraction system for biological literature. It provides a sentence-level semantic

search engine. The authors labeled and indexed keywords with 33 categories from

their ontology. They populated an ontology on biological concepts and relations.

Their work has some limitations. First, retrieval is done at the document-level. After

that, keywords, not semantic types, are highlighted in the sentences of the document.

Second, semantic search can be done only on semantic type, not medical concepts.

Siadaty et al. [212] implemented a sentence-level search engine for MEDLINE.

They designed a relevance metric based on the words’ co-occurrence in the title of

the article, a sentence of the abstract, the abstract of the article, and the indexed

MeSH terms. The authors used a SQL database and SQL queries to store the data

and search the repository. They evaluated their search engine by conducting two
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case studies. Their result shows a significant improvement in precision for retrieving

relevant documents compared to PubMed results.

LitSense [206] is another example of sentence-level retrieval systems. It uses a com-

bination of the traditional term-weighting approach and a neural embedding model

to retrieve and rank sentences from a unified repository of PubMed abstracts and

PMC full-text articles. It retrieves sentences using Solr and reranks them based on

their similarities with the query using a Sent2Vec model. It does not provide the

capability of searching for medical types or relations.

EVIDENCEMINER [213] was developed to retrieve textual evidence from PubMed

abstracts and PMC articles. It performs a keyword search and ranks the retrieved

statements based on the textual evidence patterns. Since EVIDENCEMINER focuses

on retrieving evidence, it has some limitations in retrieving other types of statements,

i.e., recommendations. EVIDENCEMINER was used by Wang et al. [214] to provide

a textual evidence retrieval system for Covid-19 literature.

None of the reviewed work addressed the information residing in tables. We believe

tables are a crucial part of literature knowledge when users search for a specific

statement type, i.e. evidence or recommendation.

6.3 Semantic Medical Guideline Information Retrieval System

In this section, we report our process of creating a repository of medical guidelines

and the methods we use to retrieve statements from the guidelines. First, we show

the data gathering process and how we processed the data. After that, we intro-

duce a model to enable formulating data from tables. We continue by describing

the Word2Vec models we created to provide alternatives to, rather than TF-IDF,

relevance measures. In the end, we show how we created our search engine.
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6.3.1 Data Acquisition and Preparation

To proceed with the data gathering process, we downloaded the PubMed annual

baseline dataset (Januray 2020). The dataset included more than 28 million citations.

Each citation in PubMed has a unique ID which is called PMID. For each entry in the

PubMed dataset, we extracted the PMID and all available information from MeSH

indexes, publication types, abstracts, and PMCIDs. PMCID is the unique ID for each

article in the PMC.

We were interested in collecting full-text clinical practice guidelines. CPGs are

indexed as “Guideline” or “Practice Guideline” in PubMed. There were 29,434 articles

with “Guideline” or “Practice Guideline” as the publication type in the extracted

entries. Out of these 29,434 entries, 1,901 articles had PMCID and a link to the

article’s PMC web page.

At first, we tried to extract the text of each article from PMC bulk articles packages,

which are available from PMC FTP web service. Unlike the PubMed dataset, the

PMC dataset does not use the same structure for every entry. Some article text file

names were the PMCID of the article, and the journal name and date of publication

were used for some other file names. This inconsistency led us to try an alternative

approach. We used PMCIDs to download HTML pages from the PMC website.

We collected 1,901 HTML web pages. For extracting the text of the article, we

used HTML tags to find the body text. Each section of the article is embedded inside

a <div> tag with a class attribute which starts with “tsec,” and the type of that

section is available inside a <h2> tag. Since we already had extracted the abstract of

each article, we skipped the abstraction section on the web page. We also extracted

the References section separately. All other sections were considered as the body text

of the articles. Regular expressions were used for cleaning HTML tags.

After the previous steps, we noticed two issues. First, the size of the text file was

notably small for some articles. We found out that some old articles are not converted
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to HTML format in the PMC. Those articles’ PMC web pages include only links to

images or PDF files of the scanned version. We determined that we have enough

materials to work on without considering these guidelines. We skipped those articles,

but it is possible to use OCR tools to extract those articles’ text if needed. Second,

there are many tables in the guidelines we have gathered, and the extracted text does

not represent table information accurately. So, we needed a model to extract and

represent tables.

6.3.2 Processing Tables

We need a model which enables us to keep relations inside tables. Figure 6.1 shows

an example table in a guideline. Although each cell in a table represents a data point,

it needs to be combined with other elements of the table to convey the information

correctly. Generally, each cell relates to the first-column cell on the same row, the

header cell on the same column, and the caption. We defined a model to formalize

data in a table in a textual format.
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Figure 6.1: An example table from (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409140/)

For each column, the header cell is the aggregation of cells from the top-down with a

delimiter. For example, for the table in Figure 6.1, “cancer site”, “5-y relative survival

(95% CI) –> 1975-1977”,“5-y relative survival (95% CI) –> 2006-2012”, “Change over

time (95% CI) –> Absolute, %”, and “Change over time (95% CI) –> Proportional,

%” are considered as the header cells.

For each cell on the first column, the header cell is going to be added to the cell.

For example, for the table in Figure 6.1, “Cancer site –> Lung and bronchus” is the

first-column cell for the second row.

Finally, each cell, except the ones in the first column and header, is considered as
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a data point. Each data point is stored as a line in the below format:

“Caption:() ##:## table_cell:() ##:## first_column:() ##:## first_row:() ”

We applied our model to the articles we had selected. Out of 1,461 guidelines,

1,024 one had at least 1 table. We extracted 4,981 tables with 116,010 data points

from the downloaded HTML webpages. For example, below is an instance data point

for the table in Figure 6.1:

“Caption: Changes in 5-year relative survival (%) for the most common cancers, all

stages, all ages, SEER 9*, 1975-2012 ##:## table_cell: 18.7 (18.4 to 19.1) ##:##

first_column: Cancer site –> Lung and bronchus ##:## first_row: 5-y relative

survival (95% CI) –> 2006-2012 ”

6.3.3 Training Word Embedding Models

We believe that we can benefit from word embedding models when we want to find

statements with mutual context. We used the Python implementation of Word2Vec

model library (Gensim) [150] to train word embedding models. Since we focus on

the biomedical domain in our research, we chose the PubMed dataset as our corpus

resources. As it was mentioned before, PubMed provides access to abstracts of articles

which are indexed in MEDLINE. We extracted abstracts of more than 17 million

articles which were available in the PubMed dataset with their PIDs.

We considered some general preprocessing steps before we start training our models:

1. Each abstract were split into sentences.

2. Punctuations were removed.

3. Stop words were removed.

4. Characters were converted to lower cases.

We trained four different Word2Vec models. Each one is designed to be used for

various studies. The first model was the baseline model. A corpus was created using
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sentences from the abstracts. The corpus was used by Gensim [150] library to train

the Word2Vec model. The output model had 468,869 distinctive words.

In the second model, each PMID was considered as a concept. Each PMID was

paired with each word in its abstract and the pair was added to the corpus as a

training sentence. The output model had 17,422,292 terms and concepts. With this

approach, we created Doc2Vec alongside the Word2Vec that we had in the same

vector space.

We tried to conceptualize the corpus we had in order to capture the semantic aspect

of the text corpus more thoroughly. We used NLM Medical Subject Headings (MeSH)

terms as our vocabulary for biomedical concepts. The MeSH vocabulary included

29,351 concepts (December 2018). Each concept has various types of representation.

For example, cancer, cancers, neoplasms, tumor, and 12 other entry terms represent

the MeSH term neoplasms. We extracted 219,499 entry terms for all MeSH terms

and created a dictionary from entry terms to related MeSH term. We also considered

MeSH terms with more than one word as n-grams. By replacing entry terms with

MeSH terms, we conceptualized our corpus. We trained two models similar to the

previous models with the new corpus. The model with PMIDs had 17,425,309 terms

and concepts. The other model’s vocabulary length was 471,886.

6.3.4 Implementing the Search Engine

We used a Solr instance for indexing our corpus. Each split sentence and each

table data point were considered as a document. For each document, UMLS terms

and semantic types were extracted using MetaMap. Each document was indexed

with its UMLS terms and semantic types. A total number of 655,351 documents were

indexed in this process.

We scored the similarity between sentences of each pair with the Word2Vec models

we have trained. We are able to use two models (conceptualized and not conceptual-

ized) and four methods for calculating similarities:
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1. n_similarity function from Gensim at the sentence level.

2. n_similarity function from Gensim at the clause or phrase level.

3. averaging the cosine similarity between a term in the query and the most similar

word in the result at the sentence level.

4. averaging the cosine similarity between a term in the query and the most similar

word in the result at the clause or phrase level.

6.4 Applications

This section provides some examples of how we can benefit from the medical guide-

line repository and semantic search capabilities. First, we formulate some semantic

queries to illustrate the advantages of semantic search. Second, we investigate the

adoption/discussion of asthma medicine during a timeline.

6.4.1 Semantic Search

We created a simple UI to illustrate some of the advantages of performing the

semantic search. We provide a query expansion suggestion option for users who are

not familiar with UMLS concepts and MeSH terms of their query. It returns the

UMLS concepts, UMLS semantic types, and MeSH terms in the user’s query.

Breast Cancer Screening:

Let’s assume we are interested in finding information (i.e., recommendations or

evidence) for breast cancer screening from evidence-based guidelines. We need to

formulate a query to retrieve the most relevant statements. Figure 6.2 shows our

formulated query. We need to search for all representations of breast cancer in the

guidelines. We can achieve this by searching for malignant neoplasm of the breast as

a UMLS concept. After that, we are interested in evidence based guidelines. We add

the evidence based medicine to the indexed_mesh box to filter out the guidelines not

tagged as EBM in PubMed. Finally, since we are interested in screening methods,
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Figure 6.2: A simple search engine UI. Query can be used for keyword searches.
UMLS semantic types and concepts are designed for semantic search. MeSH can
filter guidelines based on their indexed MeSH type in PubMed. Query Suggestion
can be used to translate users’ queries into UMLS concepts and MeSH terms.

we use UMLS semantic type diap (diagnostic procedure) to find concepts related to

screening.

By using the described query, we retrieved 65 statements from our corpus. Fig-

ure 6.3 shows some of the retrieved statements. Note that the first result is coming

from a table.
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Figure 6.3: First five statements retrieved for breast cancer screening from evidence-
based guidelines. The first retrieved statement is a formulated table information from
table caption, first row, first column, and the cell.
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Keyword Search vs Semantic Search:

We used the conditional statements from Chapter 5 as our query statements. We

believe that conditional statements are the most informative pieces of each guideline.

We used the indexed corpus and performed the keyword search and semantic search

on our sentences. The whole sentence was the query for keyword search, and UMLS

terms with semantic types were used as queries for semantic search. For each search,

we paired the top 100 search results with the query statements as the candidate pairs.

We had some overlap in the search results for keyword search and semantic search.

We scored the similarity between sentences of each pair with the Word2Vec model

((not conceptualized) we have trained. We used “n_similarity function from Gensim

at the sentence level” for calculating similarities.

We provide one example here to illustrate some differences between keyword search

and semantic search. We used the below statement as our query: “The panel also

recognizes that an SBP goal of lower than 130 mm Hg is commonly recommended for

adults with diabetes and hypertension.”

Our best result in the keyword search did not appear in the top 100 results in the

semantic search: “For patients with diabetes mellitus who are at least 18 years of age,

the panel originally appointed by the National Heart, Lung, and Blood Institute to

review the evidence on treatment of hypertension recommends initiating pharmaco-

logic treatment to lower BP at SBP of >=140 mm Hg or DBP of >=90 mm Hg and

to treat to a goal SBP of <140 mm Hg and a goal DBP <90 mm Hg.”

Our best result in the semantic search was the 4th retrieved document in keyword

search results: “(C) Goals A goal SBP <130 mmHg is appropriate for most patients

with diabetes.”

Our 4th retrieved document in semantic search did not appear in keyword search

results: “(C) Goals A goal systolic blood pressure <130 mmHg is appropriate for most

patients with diabetes.”



109

Drug-Drug Interaction:

In order to retrieve information about drug-drug interactions, we searched our

repository for statements that mentioned interaction and have at least a concept

tagged as phsu (Pharmacologic Substance). We retrieved 115 statements. After that,

we excluded negative sentences, e.g., ‘Riociguat has no pharmacodynamic interaction

with warfarin.’ We collected 95 sentences with positive mentions of interaction and

pharmacologic substances, e.g., ‘Due to effects on protein binding, there is a potential

interaction with warfarin requiring careful monitoring.’

6.4.2 Case Study: Asthma Medicine

Since we have access to each guidelines’ published year, we can analyze temporal

changes between guidelines during the time. We selected the changes of recommended

medications in asthma guidelines to investigate our system’s capabilities.

We retrieved 1,400 statements by searching for concepts tagged as “phsu” (Phar-

macologic Substance) in guidelines indexed as Asthma guidelines. Figure. 6.4 shows

the word cloud of these concepts in our retrieved statements.

Figure 6.4: Word cloud of Pharmacologic Substances based on their frequencies in
guidelines tagges as Asthma guidelines.
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Table 6.1 shows some of the drugs approved by FDA after 2004 and the time they

were introduced. Our extracted list of drugs from guidelines has some common items

with the drugs as shown in Table 6.1,e.g., Budesonide/formoterol and Fluticasone.

Table 6.1: Asthma Medicine Products Approved by the U.S. FDA [5]

Drug type Year product name Drug(s)

Hydrofluoroalkane Metered Dose

Inhaler

2005 Xopenex HFA Levalbuterol tartrate

2006 Aerospan Flunisolide

2006 Advair HFA Fluticasone propionate/salmeterol

2006 Flovent HFA Fluticasone propionate

2006 Symbicort Budesonide/formoterol

2008 Alvesco Ciclesonide

2010 Dulera Mometasone/formoterol fumarate

2014 Asmanex HFA Mometasone furoate

Dry Powder Inhalers

2005 Asmanex Twisthaler Mometasone furoate

2006 Exubera Recombinant human insulin

2006 Pulmicort Flexhaler Budesonide

2006 Foradil Certihaler Formoterol fumarate

2010 Aridol Mannitol

2011 Arcapta Neohaler Indacaterol maleate

2013 Tobi Podhaler Tobramycin inhalation powder

2013 Breo Ellipta Fluticasone furoate/vilanterol

2014 Incruise Ellipta Umeclidinium

2014 Afrezza Human recombinant insulin

In order to visualize the temporal changes of appearances of extracted drugs in

asthma guidelines, we created a heat map of frequencies of each concept in each

guideline. Figure 6.5 shows the created heat map.
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Figure 6.5: We show a heat map of the frequencies of the drugs in each guideline.
Each guideline is represented by “Year::PMID”. For all frequencies higher than 10, we
used dark green in order to emphasize the appearances of concepts better.
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From the public health perspective, as users with no medical background, by look-

ing at the Figure 6.5 we can extract some knowledge about the discussion of drugs

in the guidelines such as:

1. Substances, such as Agonist and Budesonide/formoterol, were not mentioned

in the guidelines until 2009.

2. Discussion over formoterol was increased from 2005 to 2012.

3. Interest in montelukast was decreased since 2005.

4. We can observe that the focus of the substances in the item labeled as “2013 ::

23457669” is clearly different than the other guidelines. When we look at the

index MeSH terms for the guidelines, we can see “2013 :: 23457669” is the only

guideline focused on diagnosis exclusively.

We can expand this experiment by searching for co-occurrences of a drug and a

symptom/disease in order to track the discussion of treatment for symptom/disease

by a specific drug. We retrieved 574 statements with co-occurrences of a concept

tagged as “phsu” and a concept tagged as “dsyn”/“sosy”. Figure. 6.6 illustrate the

created heat map from frequencies of pairs of drug-disease or drug-symptom in our

guidelines.
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Figure 6.6: A heatmap of frequencies of a Pharmacologic Substances and a disease
or a symptom in asthma guidelines in our repository. Values more than 10 are being
shown in dark green. Each guideline is represented by “Year::PMID”.

Similar to Figure 6.5, Figure 6.6 can help us understand the change of focus in

asthma medicine better. For example, although fluorides were mentioned in guide-

lines from 2005, but it was not discussed with asthma until 2009.
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6.5 Discussion

Since we do not have a gold standard at this point, we cannot evaluate the perfor-

mance of the semantic search and the relevance measures numerically at this point.

But we can make the below observations by reviewing the results of a sample query

list:

• Both keyword and semantic search retrieve short sentences that have a common

word or concept in the query with a high relevance metric. This issue came from

the fact that Solr is using TF-IDF scores for ranking documents.

• When two statements have a similar length, cosine similarity at the sentence

level works fine. But if the length of the query and result are not similar,

sentence level similarity calculation does not perform well.

• Semantic search is able to retrieve results with different representation terms of

the same concept.

• Generally, each metric performs well on some examples.

From the public health perspective, we showed that we can provide raw materials

to answer some of the policy makers’ questions about the adaptation of the drugs.

But we should mention some challenges we faced in that experiment:

• MetMap is a useful tool in extracting concepts, but it is not perfect. For ex-

ample, in Figure 6.5, we can see that EXCEL is labeled as a drug, but it is the

name of a trial in the document.

• Physicians are interested in knowing the background information, such as the

reliability of the guideline or the authors’ background. At this point, our system

doesn’t provide these types of information.
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• To perform a temporal analysis on medicine, we should add more medical guide-

lines to our repository. For example, as shown in Figure 6.5, we miss guidelines

from 2005 to 2009.



CHAPTER 7: IMPROVING BLOOD TRANSFUSION MEDICAL RECORDS

USING TEXT ANALYSIS

7.1 Introduction

The electronic health record (EHR) is the primary source of patient medical in-

formation. While efficiencies of data control have been created with templates and

structured data, much of the EHR still consists of free-text information. In the

clinical laboratory, it is required to have a reason why a test or treatment is being

provided for billing and quality assurance reasons. Most lab orders are structured

with standardized diagnosis coding applied for order justification, such as CPT or

ICD-10 codes.

There are four common blood components that are used in patient care. They

are derived from separating whole blood from blood donors to maximize the stor-

age potential for each component. Red blood cells (RBCs) are the most commonly

transfused blood component, used to replace patient RBCs that may be lost due to

bleeding or not manufactured by the patient (often due to chemotherapy treatments).

Platelets (PLTs) are small cell fragments important in blood clotting that are neces-

sary to support cancer treatment and cardiac surgery. Plasma is the liquid portion

of blood that contains all of the coagulation factors needed to make a strong blood

clot, and cryoprecipitate (CRYO) is a derivative of plasma that is concentrated in

key coagulation factors, both used to treat bleeding patients. One laboratory order

that still involves significant clinical variability in decision-making is blood transfu-

sion. Blood transfusion has been noted as one of the most overused treatments in

healthcare [215].

To address the overuse of transfusion, much work has been done providing more
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specific guidance on when a blood transfusion is appropriate [216, 217, 218]. This has

resulted in many institutions adopting a clinical indication field in the computerized

provider order entry system (CPOE) when ordering a blood transfusion. By including

standardized indications as choices for this field, it applies a clinical decision support

(CDS) tool. The standardized options (i.e. predefined reasons) inform the ordering

provider “here are the reasons we approve for blood transfusion.” Table 7.1 shows the

the products and their standardized options.

However, the evidence-based guidelines do not cover all clinical situations, and

there are always new or uncommon reasons that would be burdensome to include

as standardized options. The choice of “other” with a free-text field for explanation

has been included for these situations. The explanation could then be reviewed by a

physician for clinical judgment.



118

Table 7.1: Blood Transfusion Indications from the CPOE. The “Other – ...” fields
are the source of free-text data used in our analysis.

Product Standardized Reason

CRYO

Bleeding with Fibrinogen < 200 mg/dL

Uncontrolled hemorrhage/massive transfusion

Bleeding with Uremia

Factor deficiency, approved by coagulation service attending (970-2414)

Other - enter reason and attending MD in comments

RBCs

Hgb < 7.0 g/dL

Hgb < 8.0 g/dL and Coronary Artery Disease

Hgb < 8.0 g/dL in outpatient/oncology patient

Hgb < 10.0 g/dL and Symptomatic Anemia – please describe (including Attending MD name)

Uncontrolled hemorrhage/massive transfusion

Erythrocytapheresis

ECMO

Intra-uterine Transfusion (IUT)

Perioperative/procedural bleeding

Perioperative/procedural bleeding

Other - enter reason and attending MD in comments

Plasma

PT INR > 2.0 on Warfarin, with bleeding (give 10-20 mL/kg)

PT INR > 1.5 x normal AND uncontrolled bleeding (describe) (give 10-20 mL/kg)

PT INR > 1.5 x normal AND prior to non-elective invasive procedure-describe (give 10-20 mL/kg)

PT INR > 1.3 x normal with CNS/ocular trauma, bleed or surgery

Uncontrolled hemorrhage/massive transfusion

Plasma for therapeutic plasma exchange (call Blood Bank to confirm)

Other - enter reason and attending MD in comments

PLT

PLT < = 10K

PLT < = 50K and bleeding – please describe in comments

PLT < 50K and pending invasive procedure or surgery

PLT < 100K and neurosurgical procedure

Uncontrolled hemorrhage/massive transfusion

Other - enter reason and attending MD in comments

Problem statement:

On review over 8,000 orders in a 12 month period (20% of blood orders) had an

indication of “Other” with free-text attached. The manual review suggested that
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there were repeating themes in the free-text. The question arose as to whether these

"Other" reasons could be automatically analyzed, grouped or mapped to preexisting

EHR options. If so, the new frequently used reasons would be added to the standard

drop down options. In addition, the results of this analysis would be used to educate

providers to choose the standardized answers.

We seek to analyze the text to quantify commonly appearing free-text answers.

Our idea is to extract conditions from each reason and compare bags of conditions to

identify similarities between reasons. For example, we have ‘PLT < 100K and neuro-

surgical procedure’ as a predefined reason in our dataset. It includes two conditions:

‘PLT <100’ and ‘neurosurgical procedure’. In our dataset, we also have ‘Neuro-

surgery 8/2 plt goal > 100 for 2 weeks’ as a free-text reason. These two reasons

provide identical conditions with different language.

We need to extract conditions from reasons and normalize them to enable compar-

isons and mappings. For example, ‘plt goal >100’ should be normalized into ‘PLT

< 100’ to be matched with the predefined reason’s condition.

In the first example, ‘PLT <100K’ is a numerical condition and ‘neurosurgical

procedure’ is a conceptual condition.

We define the former, a numerical condition, as a chunk of text which includes 3

components: A numerical value, a comparative sign, and a medical concept. The lat-

ter, a conceptual condition, is any combination of medical concepts, such as diseases

or symptoms, which describe the patient’s condition.

7.2 Overview of Prior Art

Natural processing methods have been applied to medical texts for about half a

century. Text analysis of medical records is already mentioned in a 1975 article

by N.Sager [172, 173], and included extracting information to populate relational
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databases. Since then, many new techniques have been developed, and applied to

medical texts.

The state-of-the-art of text analysis in the context of electronic medical records

is reviewed in [219] and contains an observation that “statistical analyses or ma-

chine learning, followed by NLP techniques, are gaining popularity over the years in

comparison with rule-based systems.” Since the early 2010s, which this observation

correctly characterizes, this trend accelerated and has been amplified by the use of

deep learning [125].

For improved accuracy of classification and data extraction, the statistical tech-

niques often rely on preprocessing aimed at extraction of important entities. For

example, MetaMap1, or GATE-based TextHunter [220] can be used to extract con-

cepts to be used in a classification task, as in [221] for pneumonia identification from

narrative reports, or in [222] in the context extracting symptoms of mental illness

from clinical text.

Rotmensch et al. [223] proposed an automated process to create a knowledge

graph linking diseases and symptoms using probabilistic models on electronic medical

records (EMRs). They used string-matching to extract concepts (in different forms

such as acronyms and ICD-9 codes). In the next step, they used statistical models

to relate diseases and symptoms. Finally, they translated the statistical models into

knowledge graphs. The authors evaluated their knowledge graph by comparing it

against a subset of Google health knowledge graph and a clinical evaluation from

domain experts. They achieved a precision of 0.23 for a recall of 0.5 against GHKG.

In the clinical evaluation, they achieved a precision of 0.87 for a recall of 0.5.

Chen et al. [224] proposed a methodology on analyzing a health knowledge graph,

proposed by Rotmensch et al. [223], relating diseases and symptoms extracted from

EHRs. They evaluated the knowledge graph by computing the F1 measure for each
1https://metamap.nlm.nih.gov/
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disease. They found out that like sample size and the number of co-occurring diseases

in patients.

Ma et al. [225] introduced a framework consisting of rule-based and machine learn-

ing models to capture disease as a causal chain of abnormal states from electronic

health records (EHRs). They utilized text mining abilities, i.e., Word2Vec and regular

expression, to detect and expand abnormal states. The authors reported a significant

positive impact of each text mining method on retrieving abnormal states.

Bjarnadottir et al. [226] used text mining to find related content related to fall risk

and prevention in medical notes. They extracted unigrams, bigrams, and trigrams

from a pre-processed dataset on nursing notes. They used NOTEEVENT nursing

notes from Medical Information Mart for Intensive Care (MIMIC) III open-source

dataset [227] to evaluate their work. They report the frequencies of n-grams related

to risk factors, events, and prevention detected in a notes lexicon of words and terms

that are clinically or theoretically related to patient falls.

Cobb et al. [228] used a bag of words and a bag of concepts (UMLS concepts) as

features to predict the outcomes during patient care. They achieved an F1 score of

0.5 on predicting the outcomes utilizing SVM and Nearest Centroid classifiers.

Transfusion studies that have looked at manual text entry for order indications have

used manual review and classification of the text [229]. A Canadian group developed

a computerized audit tool that still required manual extraction of key elements from

the order indication then applied an algorithm to judge appropriateness [230]. No

applications of computerized text analysis can be found in this setting, and this article

is the first study of this kind.

7.3 Classification objectives and Process

The first objective of our text analysis process is to map the free-text reasons

to predefined reasons (i.e. reasons which show up as options in EHR). The second

objective is to detect repetitive reasons, that is frequently appearing free-text reasons,
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Figure 7.1: A proposed architecture for mapping reasons to standardized options
(predefined reasons).

to be possibly added to the list of standardized options.

Some of the free-text order reasons echo predefined transfusion reasons with a slight

change of language or format. For example, ‘plt goal > 100’ is a representation of

‘PLT < 100’. Such reasons include conditional statements of conceptual entities

(e.g., quantitative concepts), procedures, diseases, and symptoms. Therefore, by

normalizing the language used in the free-text reasons, we should be able to match

those reasons with their counterparts in the predefined categories.

For finding repetitive reasons, we performed statistical analysis of the appearance

of concepts as bags of concepts and bags of numerical conditions.

7.3.1 Mapping to Predefined Reasons

Our idea is to transform reasons into normalized (conceptualized) bags of condi-

tions and compare them to bags of conditions from predefined reasons. We divided

conditions into two forms: conceptual conditions (e.g., diseases) and numerical con-

ditions.

The process of mapping free-text reasons to predefined reasons includes several

steps shown in Figure 7.1. We used MetaMap to extract UMLS concepts from each

statement. Using UMLS concepts enabled us to match acronyms (e.g., BMT and

‘bone marrow transplant’) and synonyms (e.g., ‘hemorrhage’ and ‘bleeding’). We
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faced two problems using MetaMap for extracting concepts. First, not all concepts

mapped by MetaMap are important for us. Second, MetaMap has some limitations

in resolving word-sense disambiguation.

To resolve these limitations, we start with the pre-analysis step in our experiment.

In this step, we selected a list of UMLS informative, in our opinion, concepts to be used

in the next steps: ‘Deficiency Aspects’, ‘Plasma Exchange’, ‘Coronary Arterioscle-

rosis’, ‘Open Approach’, ‘Extracorporeal Membrane Oxygenation’, ‘On Warfarin’,

‘Neurosurgical Procedures’, ‘Elective Procedure’, ‘Elective Surgical Procedures’, ‘Pe-

rioperative Procedures’, ‘International Normalized Ratio’, ‘Operative Surgical Proce-

dures’, ‘Fibrinogen Concentrate (human)’, ‘Eye Injuries’, ‘Central Nervous System’,

‘Anemia’, ‘Blood Transfusion, Intrauterine’, ‘Uremia’, ‘Massive Blood Transfusion’,

‘Non-invasive’, ‘Injury of Central Nervous System’, ‘Factor’, ‘Hemorrhage’, ‘Uncon-

trolled’, ‘Symptomatic’, ‘Invasive’, ‘Ocular (qualifier)’, and ‘Erythrocytapheresis’.

To resolve the word-sense disambiguation problem, we manually checked concepts

from predefined reasons and repetitive concepts extracted from free-text reasons.

For example, we found that both ‘PT’ (Prothrombin time) and ‘Pt’ (Patient) were

mapped to ‘Physical Therapy’ by MetaMap. We made a list of misplaced concepts

to be used in the next steps.

In the next part of the pre-analysis step, we address the limitations of numerical

conditions. First, we need to find the concepts that appear in numerical conditions.

In our list of predefined reasons, we have four concepts that appeared in the numerical

conditions: ‘Fibrinogen’, ‘Hgb’, ‘PT INR’, and ‘PLT’. After we have our target list

of concepts for numerical conditions, we should address the below limitations for

extracting numerical conditions:

• Missing comparative signs for numbers. For example, ‘PLT 12’ was typed by

physicians instead of ‘PLT = 12’.

• For ‘PLT’ product, since the product and concept are the same, some orders
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are missing ‘PLT’ as a concept in the reason and they start with comparative

signs or a number.

• Different representations of concepts. For example, ‘PLTs and ‘Platelet’ are

other terms for ‘PLT’ in our dataset.

• Orders which set a threshold of concepts.

To resolve the first limitation, we considered cardinal numbers and the nouns next to

them in the reasons with no comparative signs as numerical condition candidates. If

a reason starts with a comparative sign or a number under the ‘PLATELET’ product,

we added ‘PLT’ to the start of the reason to address the second limitation.

To find the terms which represent our list of concepts for numerical conditions, we

extracted all numerical condition candidates and manually check the list of concepts

to find the other terms representing our list of numerical concepts.

We noticed some reasons asked for some concepts to be set at some threshold (e.g.,

‘BMT pt requires plt > 50’). To handle the extraction of numerical conditions for

these types of reasons, we reversed the comparative sign of the numerical condition

if a trigger term, such as keep, maintain, or requires, appeared before the condition.

We pre-processed statements by removing stop words, replacing comparative signs

with their meaning, removing punctuation, replacing concepts with ‘preferred_name’

(provided by MetaMap), and replacing capital letters with lower cases. We also

divided predefined reasons, which include alternatives. For example, ‘Uncontrolled

hemorrhage/massive transfusion’ was divided into ‘Uncontrolled hemorrhage’ and

‘massive transfusion.’

In the next step, we extracted conditions as numerical conditions and concep-

tual conditions from each statement. For extracting numerical conditions, we de-

fined 3 parts for each condition: concept, comparative operator, and value. We used

CoreNLP to parse each statement and find these parts. Comparative operators were
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found under ‘JJD’ or ‘RBR’ tags. Values were tagged as ‘CD’. Concepts were ex-

tracted as noun phrases placed on the left side of the comparative operator. Each

numerical condition was stored as a tuple for each statement. For each reason, UMLS

concepts with semantic types included in the list created in the pre-analysis step were

extracted and stored as a bag of concepts for that statement. For example, (’PLT’,

’Less than’, ’100’) was stores as the numerical condition for ‘plt goal >100’.

In the last step, we scored the similarities between free-text reasons and each pre-

defined reason. For the bag of concepts, we defined the similarity score between a

free-text reason and a predefined reason as the number of mutual conditions over the

number of concepts from that reason. For example, ‘Hgb 7.0 and actively bleeding’

and ‘Hgb < 7.0 g/dL’ have one mutual concept (‘Hgb’). The similarity score for this

pair will be 0.33 since the reason has 3 concepts (‘Hgb’, ‘actively’, and ‘bleeding’).

For the numerical conditions, we used the numerical subsumption to test if the nu-

merical condition from a free-text reason fits the numerical condition from predefined

reasons. For example, both ‘ ‘PLT = 30’ ’and ‘ ‘PLT ≤ 40’ ’ fit “PLT ≤ 50”, i.e. are

subsumed by the last condition.

7.3.2 Detecting Repetitive Reasons

To provide candidate repetitive reasons, we followed similar steps, with some

changes, to the matching process. Figure 7.2 shows these steps.

To find our relevant list of concepts, we start with the pre-analysis step in this

experiment. In this step, instead of using a list of concepts, we selected a list of

UMLS informative, in our opinion, semantic types to be used in the next steps. The

list includes below semantic groups and semantic types:

• Conceptual Entity : [qnco], [qlco], [tmco], [ftcn], [bdsy]

• Finding: [fndg], [sosy], [lbtr]

• Health Care Activity : [hlca], [lbpr], [topp], [diap]
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Figure 7.2: A proposed architecture to generate candidates for new standardized
options.

• Pathologic Function : [dsyn], [neop], [patf]

• Injury or Poisoning : [inpo]

• Pharmacologic Substance and body Substance: [phsu], [bdsu]

After cleaning reasons by removing stop words, punctuations, and symbols, we

extract concepts using MetaMap. We also extract numerical conditions by the method

we used in 7.3.1.

At the last step, instead of mapping reasons, we provide statistical information for

the bag of concepts to be considered for candidate generation.

7.4 Results

In this section, we review the results of the two experiments explained in the

previous sections.

7.4.1 Mapping to a Predefined Reason

Our data set includes 3,908 reasons tagged as free-text or other reasons. We were

able to extract at least one numerical condition from 1,476 reasons. We mapped 1,105

of those conditions to their counterparts for predefined reasons. After adding the con-

ceptual score to the numerical score, we had 79 perfect matches (e. g. “Neurosurgery

8/2 plt goal > 100 for 2 weeks” and “PLT < 100K and neurosurgical procedure”) and
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1,206 partial matches(e. g. “fibrinogen < 100” and “Bleeding with Fibrinogen < 200

mg/dL”). We could not find a counterpart for 371 numerical conditions because either

the numerical concept was not in our list or the condition did not fit any numerical

condition.

We detected 2,432 reasons without any numerical condition. We divided the results

for these reasons into four categories:

• perfect match: we were able to match 202 reasons.

• conceptual match with a predefined reason with a numerical condition: we got

conceptual score = 1 for 36 reasons. Some of these reasons include a numerical

condition, but our algorithm could not formulate it (e.g., “Hgb-7.1 Dr. Phys33”)

• Partial match (conceptual score < 1): 634 reasons were partially matched with a

predefined reason based on some mutual concepts. For example, ‘symptomatic

anemia; transfusion dependent’ fits some part of “Hgb < 10.0 g/dL and Symp-

tomatic Anemia – please describe including Attending MD name.”

• No match: For 1,560 reasons, we could not find any mutual concept with the

predefined reasons.

We selected a random subset of 400 reasons(about 10% of the dataset) to evaluate

numerical condition extraction and our mapping process.

We extracted numerical conditions from 149 reasons. two extracted conditions were

selected incorrectly. Out of 251 reasons without numerical conditions, 231 reasons

had no numerical conditions. 20 reasons had numerical conditions, and we could not

extract them because they were mentioned in an unstructured format. For example,

we could not detect the numerical condition in “Hgb steadily downtrending now 7.3

pt very tachycardic strong suspicion patient is bleeding”. We achieved 95% accuracy

in detecting numerical conditions.
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Out of the 149 reasons that we extracted numerical conditions from, we could

match 144 of them with their counterparts in the predefined reasons correctly. This

means that we achieved 97% accuracy in comparing numerical conditions.

All 400 reasons were examined by a domain expert to evaluate if the mapped reason

is the preferable choice for a reason or not. Table 7.2 shows the evaluation results

of reasons in different categories. We achieved 83% accuracy in mapping free-text

reasons to a predefined reason.

Table 7.2: Classification results on free-text reasons. Conceptual Match: How the
concepts in a reason match with the concepts from the assigned predifned reason.
Numerical Match: whether a reason and its assigned predefined reason match or
not. Has a Numerical Condition: Whether a reason has a numerical condition or
not. Frequency : reports of the reasons classified based on Conceptual Match and Has
a Numerical Condition. Mapped Correctly : The number of reasons from that class
which our domain expert agrees that the mapped reason is the preferable choice for
a reason.

Conceptual Match Numerically Matched Has a Numerical Condition Frequency Mapped Correctly

Yes Yes Yes/No 39 39

Yes No Yes/No 5 4

Partially Yes Yes/No 129 119

Partially No Yes/No 49 27

No No Yes/No 178 143

7.4.2 Repetitive Reasons

We provide the statistics of repetitive concepts in four categories: Numerical con-

cepts, pairs of a numerical concept and one medical concept, individual concepts, and

pairs of concepts. Table 7.3 shows the frequencies of detected repetitive concepts in

different product orders. For concepts, we present any concept with frequency greater

than 20. We set the threshold 10 for Pairs of concepts and Pairs of a numerical

concept and one medical concept. We listed any numerical condition with frequency

more than 5.
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Table 7.3: Frequencies of the repetitive concepts for different products in the blood
management system.

Repetitive Concept Category Product Repetitive Concept Frequency

Numerical concepts
PACKED RBC Age 18

PACKED RBC Neonatal transfusion age 6

Pairs of a numerical concept

and one medical concept

PACKED RBC Hgb & ABMT 72

PLATELETS Platelets & BMT 41

Concepts

PLATELETS Aspirin 86

PLASMA (FFP) ECMO 80

PLATELETS Bone marrow transplantation 61

PACKED RBC Gastrointestinal 41

PACKED RBC Hypotension 40

PACKED RBC Autologous bone marrow transplant 38

PLATELETS ECMO 34

PLATELETS Thrombocytopenia 26

PLATELETS Plavix 24

PLATELETS Defibrotide 21

Pairs of concepts
PLATELETS aspirin & Neurosurgical procedures 36

PLASMA (FFP) ECMO & Vascular cannula removal 14

7.5 Discussion and Conclusion

Manual analysis of free-text data is labor-intensive and inefficient. While individual

review aids in specific order inquiry and allows for direct education, it will not identify

patterns of orders and shifts in practice. The ability to automate this analysis and

review a large set of data allows for ordering patterns that may require addressing.

Once trained, a number of concepts appeared that were reasonable indications for

transfusion that are not included in formal guidelines, which also meant they were

not in the formal list of transfusion reasons. The analysis also identified concepts

that may have been included in the indication for one blood product type but not

in another; ECMO (extracorporeal membranous oxygenation) was codified for RBC

orders, but not platelets – both products are often indicated to support the ECMO

procedure.

By quickly classifying order indications into concept groups, reasons that are out-
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side the norm can be more easily identified. Addressing and eliminating these indi-

cations quickly reduces unnecessary transfusions, which in turn, reduces transfusion

risk to patients and eliminates the added cost of transfusion.

In this experiment, we used MetaMap to detect medical concepts. As mentioned

earlier, MetaMap is not perfect in resolving word-sense disambiguation. We chose to

manually resolve misannotations in the post-processing step since we needed to cover

a limited number of concepts, and we knew all forms of representation of them.

We achieved 95% accuracy in extracting numerical conditions using the syntactic

structure of the reasons. Using the proposed method, we were able to map 83% of

the reasons in our test dataset to the preferable standardized option.

This chapter showed that using text analysis techniques can help patient manage-

ment systems detect records that do not match their health system goals. This will

help physicians prevent overtreatment. Also, the textual analysis we presented in

this chapter helped to modify standardized options to include repetitive justifiable

reasons.



CHAPTER 8: SUMMARY OF DISSERTATION, OPEN PROBLEMS, AND

FUTURE DIRECTIONS

In this dissertation, we addressed some problems resulting from the enormous num-

ber of guidelines available in the medical domain. We utilized NLP capabilities to an-

alyze medical guidelines and differences between guidelines addressing the same topic,

namely, disagreements between guidelines, conceptual distances between guidelines,

and identifying informative segments of the guidelines. In addition, we introduced

a sentence-level information retrieval system for a corpus of medical guidelines. Fi-

nally, we showed that text analysis capabilities can be used in other medical texts to

improve patient care and decision-making.

Some of the contributions and possible future directions of this dissertation are as

follows:

• A novel formal analysis of types of contradictions in texts. Namely, we in-

troduce and formally characterize the distinction between contradictions and

disagreements alongside a proposed architecture to identify contradictions and

disagreement in medical guidelines.

We showed the feasibility of using the proposed architecture with a simple ap-

proach, but a more thorough evaluation should be done on the task in the future.

Perhaps, creating gold standard datasets on disagreements and contradictions

between guidelines is the first step.

• An automated method of text analytics for computing conceptual differences

between documents addressing the same topic. We showed that the differences

in recommendation in guidelines can be computed to a large scale (69% to 86%)
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from the concepts used in the text. Additionally, we introduced a novel graph

clique-based algorithm/method for comparing the similarity of two collections

of documents.

An obvious extension of this work would be to compare other groups of guide-

lines, e.g., European medical societies vs. US medical societies. We know that

for years their recommendations, e.g., on managing blood cholesterol, differed.

Another potential extension would be to experiment with other representations,

such as more complex word and document embeddings, or with more subtle se-

mantic representations based on entity and relationship extraction or formal

models, cf. [231], and on formal modeling of contradictions, like the ones dis-

cussed in Chapter 3.

• Showing the applicability of the new neural network transformers and transfer

learning in identifying informative statements. We improve state of the art on

identifying conditional or condition-action statements by 5% to 25%.

The open issues and possible extensions of this work can go in several directions.

The most obvious next step, after identifying conditional sentences, is to extract

the specifics: conditions, actions, and consequences.

A discourse-oriented direction of analysis would allow us to find conditions, ac-

tions, and consequences spread over paragraphs or sections of texts. Combining

discourse analysis with the extraction of specific entities and events should re-

sult in improved accuracy of both classification and extraction, and would open

the possibility of applications, e.g., analysis of electronic health records (EHR).

Finally, creating more annotated guidelines would lessen the problem of the lack

of data mentioned in Section 5.3.

• A sentence-level semantic search engine and a corpus of medical guidelines with

these capabilities: keyword and semantic search, alternative relevance scores,
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and handling table data.

Perhaps, evaluating the relevance measures and using the semantic search in-

troduced in 6.3.4 is the first possible future work. As it was discussed in 6.5,

we need to add more reliable guidelines to the repository.

• We developed a data extraction and classification model on mapping medical

records to a standardized list of blood transfusion orders. We achieved 83%

accuracy in finding the most preferable matched for free-text reasons. We also

proposed a method for extracting numerical conditions from the reasons. Our

evaluation shows a 95% accuracy of extracting numerical conditions.

Next steps for this study would include additional training on acronyms and

concepts. Our results show that the situations that can represent some concepts,

such as bleeding, are varied, and additional mapping can catch more of them.
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