
A NAVIGATION SYSTEM FOR LOW-COST AUTONOMOUS
ALL-TERRAIN-VEHICLES

by

Shantanu Mhapankar

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. James M. Conrad

Dr. Hamed Tabkhi

Dr. Aidan Browne

ii

©2019
Shantanu Mhapankar

ALL RIGHTS RESERVED

iii

ABSTRACT

SHANTANU MHAPANKAR. A navigation system for low-cost autonomous
all-terrain-vehicles. (Under the direction of DR. JAMES M. CONRAD)

In the last decade, there has been significant research work in the field of autonomous

on-road vehicle, but, research in automating off-road vehicles has been largely un-

touched. The main aim of this thesis was to propose a robust framework for an

off-road All-Terrain Vehicle (ATV) that can be used for navigation across all types of

terrain. The ATV would navigate to the destination by following various way-points.

This framework consists of a Global Positioning System (GPS) and an Inertial Mea-

surement Unit (IMU). The GPS and Inertial Navigation System (INS) are two basic

navigation systems. Due to their complementary characteristics in many aspects, a

GPS/INS integrated navigation system is more accurate and dependable than having

just either one of them. A sensor fusion was implemented for GPS and accelerometer

to predict position and velocity using Kalman filtering. After the data was received

from the Kalman filtering, and the main controller, i.e. the brain, could compare this

data with the position of the GPS way-point and makes decisions regarding which

direction the ATV was to be steered. All the actuators of the ATV are controlled by

a micro-controller and the brain sends appropriate commands to the microcontroller

controlling the actuators. This microcontroller then generates signals for either brak-

ing, changing the speed or moving the steering wheel depending on the actuator to

which it is connected. All the sensors and actuator controllers are plug-and-play mod-

ules that are connected to a single Controller Area Network (CAN) bus, and thus can

easily be removed, added, or upgraded. A library was built such that the controllers

could only call Application Program Interface (API) functions, thus simplifying de-

bugging the code, adding modularity to the program, and improving readability.

iv

ACKNOWLEDGEMENTS

I would like to first thank Dr. James M. Conrad for his constant guidance and advice

offered throughout this research work. I would like to thank Dr. Hamed Tabkhi and

Dr. Aidan Browne for serving on my committee.

I would also like to thank my colleague, Karim Erian for his valuable inputs. Also, I

am thankful to Sushil Sundaram for the help he provided with understanding Kalman

filtering.

I also want to thank my family without whose constant financial and mental sup-

port, this wouldn’t have been possible.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Objective of this work 2

1.3. Contribution 3

1.4. Thesis Organization 4

CHAPTER 2: HARDWARE OVERVIEW 5

2.1. The ATV 5

2.2. Controller Board 7

2.3. GPS 9

2.4. IMU 11

CHAPTER 3: API LIBRARY IMPLEMENTATION 14

CHAPTER 4: NAVIGATION SYSTEM 19

4.1. GPS 19

4.1.1. Initial Settings 19

4.1.2. Distance Calculation 20

4.1.3. Bearing Angle 23

4.2. IMU 24

4.2.1. Calibration 27

vi

4.2.2. Sensor Bias 31

4.2.3. Euler vs Quaternion 32

4.3. GPS and IMU together 38

4.4. Kalman Filtering 39

4.5. Kalman Model 40

4.5.1. Prediction 41

4.5.2. Update 41

4.6. Implementation 43

CHAPTER 5: TESTING AND RESULTS 50

CHAPTER 6: CONCLUSION 64

REFERENCES 66

APPENDIX A: APIs 70

vii

LIST OF FIGURES

FIGURE 2.1: The ATV 5

FIGURE 2.2: Throttle with servo attached. 6

FIGURE 2.3: Steering controller with CAN Bus. 7

FIGURE 2.4: Braking System. 8

FIGURE 2.5: TI MSP430F5529 9

FIGURE 2.6: GPS position calculation. 10

FIGURE 2.7: Adafruit Ultimate GPS 11

FIGURE 2.8: Adafruit Triple-Axis Magnetometer HMC5883L 12

FIGURE 2.9: Adafruit BNO055 Absolute Orientation Sensor 13

FIGURE 3.1: Turning on LEDs at P1.0 and P2.0 14

FIGURE 3.2: Using APIs for turning on the LEDs 15

FIGURE 3.3: Digital output implementation in the library 15

FIGURE 3.4: Register Accessing 16

FIGURE 3.5: GPGGA and GPRMC decoded. 17

FIGURE 4.1: Raw NMEA strings received from GPS 19

FIGURE 4.2: NMEA data after only GPGGA and GPRMC were enabled 21

FIGURE 4.3: Java Implementation of Vincenty. 23

FIGURE 4.4: System Architecture of BNO055 25

FIGURE 4.5: Sensor Fusion. 26

FIGURE 4.6: BNO055 Un-calibrated Magnetometer Readings 28

FIGURE 4.7: BNO055 Calibration Status register description. 29

viii

FIGURE 4.8: BNO055 Calibrated Magnetometer Readings 29

FIGURE 4.9: Offset And Radius Register Readings After Calibration 30

FIGURE 4.10: Accelerometer Bias Reading. 31

FIGURE 4.11: Gyroscope Bias Reading. 31

FIGURE 4.12: Magnetometer Bias Reading. 32

FIGURE 4.13: Euler Angle Axes. 33

FIGURE 4.14: Euler Bias Reading. 34

FIGURE 4.15: Declination Angles Across USA. 35

FIGURE 4.16: Euler Angle BNO055 Bug. 36

FIGURE 4.17: Comparing Quaternion with Euler. 37

FIGURE 4.18: Illustration of heading angle and bearing angle. 38

FIGURE 4.19: Actual path compared to the GPS readings. 40

FIGURE 4.20: Two Step Kalman Process 41

FIGURE 4.21: Flow of Kalman filtering 43

FIGURE 4.22: LIA and GRV registers as shown in BNO055 datasheet. 45

FIGURE 4.23: Absolute Acceleration Bias 47

FIGURE 4.24: Kalman filter Implementation Flow. 49

FIGURE 5.1: Latitude and Longitude with a standard fix. 50

FIGURE 5.2: Latitude and Longitude with differential fix. 51

FIGURE 5.3: DGPS And Standard GPS Plotted On The Map. 52

FIGURE 5.4: Map of two lat long points. 52

FIGURE 5.5: GPS path comparison 53

FIGURE 5.6: Original GPS readings. 54

ix

FIGURE 5.7: Kalman filtered every 500ms. 55

FIGURE 5.8: Testing environment for the straight path. 56

FIGURE 5.9: Navigation System vs Mobile phone readings on a trail. 57

FIGURE 5.10: Heading angle comparison. 57

FIGURE 5.11: The trail where the Kalman filtering was tested. 58

FIGURE 5.12: Distance calculation on Google Map. 59

FIGURE 5.13: Start of the code. 59

FIGURE 5.14: Reading when near the waypoint. 60

FIGURE 5.15: The location where the system was tested for GPS outages. 61

FIGURE 5.16: Results obtained from the system when GPS was manually
switched off.

62

x

LIST OF TABLES

TABLE 5.1: Comparison of the ATVs navigation and Mobile Phone data. 54

xi

LIST OF ABBREVIATIONS

API Application Programming Interface.

ATV All Terrain Vehicle.

BSL Basic Software Layer.

CAN Controller Area Network.

CEP Circular Error Probability.

DGPS Differential Global Positing System.

ECE Electrical and Computer Engineering.

EPS Electronic Power Steering.

ETCS Electronic Throttle Control System.

GPGGA Global Positioning System Fix Data

GPGLL Geographic position, latitude / longitude.

GPGRS GPS range residuals for each satellite.

GPGSA GPS DOP and active satellites.

GPGST Pseudorange measurement noise statistics.

GPGSV GPS Satellites in view.

GPIO General Purpose Input Output.

GPRMC Recommended minimum specific GPS/Transit data.

GPS Global Positing System.

GPVTG Track made good and ground speed.

xii

HWI Hardware Interface.

I/O Input/Output.

I2C Inter-Integrated Circuit.

IMU Inertial Measurement Unit.

INS Inertial Navigation System.

NDOF Nine Degrees of Freedom.

NMEA National Marine Electronics Association.

PPS Pulse Per Second.

PWM Pulse Width Modulation.

SoC System on Chip.

SPI Serial Peripheral Interface.

UART Universal Asynchronous Receiver Transmitter.

USCI Universal Serial Communication Interface.

UTC Coordinated Universal Time.

WDT Watchdog Timer.

CHAPTER 1: INTRODUCTION

Autonomous vehicles have been a subject of substantial research and development

in the last few years. Technology giants like Google, Microsoft, Tesla, Argo, Lyft,

Uber, Samsung, and Apple have been working towards making these vehicles deploy-

able on roads [1]. Not only has the use case been to drive humans around but

Toyota has come up with self-driving boxes to make deliveries easier [2]. These

vehicles are called "e-Palette", and after recent announcement of deals with Amazon,

Pizza Hut, and Uber, one can expect them to be seen everywhere. Making vehicles

autonomous has abundant use. Instead of wasting time driving to work, something

productive can be accomplished in that period of time. Disabled people who have

to use public transportation or ask help from family or friends, could eventually use

these autonomous vehicles and get to work with ease [3].

1.1 Motivation

For the aforementioned autonomous vehicles, the path is decided via detailed road

maps, lane following and a group of sensor information [4, 5]. However, an All Terrain

Vehicle (ATV) is designed for use on rough grounds where normal cars would have

trouble navigating. The lower pressure and deep threads on the ATV tires make them

the perfect candidate to maneuver off-road. Although the ATV was earlier sold as a

recreational vehicle for use in races, their usefulness has soon been realized. Border

patrol agents use ATV to make their way through rugged roads so that the inaccessible

areas of the border are covered and kept safe [6]. They are also used by emergency

medical rescue teams that operate in remote areas on rough terrains. Trailers pulled

by an ATV are used to carry medical equipment and transport injured people in a

2

safer manner through the bumpy terrains [7]. An ATV is useful in agriculture to

inspect crops, carry materials and perform various activities [8]. My motivation for

this thesis stems from the potential advantages in making the ATV run autonomously.

An autonomous ATV can be very useful in wildfire control by deploying them to the

forest areas to either aid firefighters or simply apply pesticides across a field. The

autonomous ATV can be used to pull a trailer carrying sensing equipment through

a pre-defined path and survey topography of nearby areas [9]. Currently, since map

data is unavailable for the ATV to choose its own path by, there needs to be another

solution so that it can go from point A to point B without a driver seated inside and

controlling it or by using a remote control.

1.2 Objective of this work

The objective of this thesis is to build a functioning autonomous ATV that can

traverse from one point to the other without any human assistance. As an ATV

is used in unpaved regions, the major challenge is to work without a definite road

map and lanes. The idea is to use GPS and compass sensor data to help the vehicle

compensate for the lack of a detailed road map [10]. The first step is to control the

ATV by making its actuators electronically driven rather than manually. Further-

more, a communication protocol is to be used that will reduce the number of I/O

ports used and the number of interconnections. The standard for an in-vehicle net-

work is the Controller Area Network (CAN) protocol [11]. Once the vehicle can be

controlled electronically with an efficient communication protocol, the next step is

to use a robust system that the ATV can use to navigate on the ground. As there

is a lack of map data, GPS way-points are added across various points between the

starting point and the destination [12, 13]. This provides a path that the ATV can

use for navigating. The ATV itself uses a GPS to locate its own position; however,

the GPS position alone is not sufficient. The ATV still needs to know which direction

to move in to pass the way-points and reach the destination. For this purpose, a

3

magnetometer sensor on the IMU is used. The magnetometer sensor provides axis

data which can be used to calculate the angle from the North direction [14, 13]. This

robust system of GPS and an IMU sensor provides data to the main controller. The

main controller compares this data with GPS way-point data and makes decisions

on whether to brake, increase or decrease the speed, or just change the direction in

which the ATV is moving.

1.3 Contribution

The work on the topic began with studying the work done by earlier teams and

finding ways to improve them [15, 16, 17]. After going through the available options,

a low power and low cost embedded micro-controller MSP430 was decided to be

used to control the actuators on the ATV. An Hardware Interface (HWI) layer was

implemented for GPIO, PWM, and WDT on MSP430 to control the actuators. The

library was arranged in a way that each module had separate files such that even

digital input and digital output had different source files. This made it easier to

debug. To implement the CAN protocol, Microchip’s MCP2515 was selected as the

CAN module. An SPI driver was built using of the HWI layer mentioned above as

MCP2515 uses SPI protocol for communication with the MSP430 board. The next

step was to work on GPS and IMU modules. The GPS module transmits data to the

controller that it is connected to by using UART protocol while the IMU module uses

I2C protocol. Drivers for both the protocols were written and the library was updated

with them in it. The APIs for GPS and IMU were built on top of these communication

drivers[18]. They were tested and results were generated to check their accuracy. The

results obtained were very noisy and the GPS data took a second to update. The IMU

provides acceleration and this data was used to predicted positions. Thus, a sensor

fusion using Kalman filter was implemented to fuse these error-prone measurements

and get a more accurate estimate of the system at a much higher frequency. Used

the Kalman filtered position and orientation to help the ATV navigate.

4

1.4 Thesis Organization

This thesis is divided into 6 chapters. Chapter 1 introduces the topic, states the

motivation behind it, the objective and the contribution towards it. Chapter 2 covers

the hardware overview of the ATV and the sensors used. Chapter 3 looks at API

library development. Chapter 4 looks at the GPS and IMU sensors in-depth and

how they can be fused using Kalman filters. Chapter 5 shows the results obtained in

different scenarios. The thesis ends with Chapter 6 showing stating the conclusion.

CHAPTER 2: HARDWARE OVERVIEW

2.1 The ATV

Figure 2.1: The ATV [16].

The ATV used in this project was a Honda "Four Trax Rancher EPS" vehicle

provided by Zapata Engineering as can be seen in Figure 2.1. A good amount of work

was already completed by previous teams to control the ATV’s three main actuators -

the throttle, the steering, and the brake. The ATV utilizes a ‘drive by wire’ Electronic

Throttle Control System (ETCS) that replaces the mechanical linkage between the

accelerator pedal and the throttle [19]. ETCS uses an all-electronic system equipped

6

Figure 2.2: Throttle with servo attached [15].

with various sensors to detect throttle position. This position information is then

passed to a computer which moves the throttle with a DC motor. For the purpose

of controlling the throttle, the ETCS behavior is represented by an electrical servo

motor controlled by an embedded board. Another advantage of this throttle system

is that when the throttle is not engaged, the vehicle slowes to a stop, which reduces

the use of brakes. This throttle control was already implemented [15], and the only

thing changed was the controller board. This ATV is also equipped with a steering

assist and electronic power steering (EPS) module. A torque sensor is attached to the

steering. When the vehicle handle is moved, torque is applied to the steering shaft.

The EPS powers the motor in response to this torque. The steering controller went

through many iterations. A single channel H-bridge that had three FETs in each

leg of the H-bridge was originally used to control the steering [15]. However, it had

overheating issues and became less responsive to control commands [16]. A closed

7

Figure 2.3: Steering controller with CAN Bus [17].

loop system for error feedback was developed with signal conditioning based on the

motor error feedback [16]. However, a change in resistance at the torque sensor was

noticed whenever the steering was moved [17]. The change was noted and emulated

using a circuit that switched between the resistances for moving left and right. The

circuit is shown in Figure 2.3. The current systems talks to the steering controller via

CAN Bus. The CAN Bus sends PWM signals and based on the value of this PWM

signal, the resistance is switched to move either left or right. The braking system was

previously implemented as a linear actuator to the foot brake which was controlled by

an H-bridge [15] as shown in Figure 2.4. Overheating issues were noticed again, and

this H-bridge was replaced with a Pololu motor controller. Currently, there’s work

ongoing to design a better implementation of the braking system.

2.2 Controller Board

The earlier team worked with Renesas board RX63N to move the vehicle using

a remote control [17]. For this project, however, it was decided to go with Texas

8

Figure 2.4: Braking System [15].

Instruments low-power microcontroller family - MSP430 Launchpad [20]. Initially,

the project started by choosing MSP430G2553 as the controller board to be used.

MSP430G2553 has a flash memory of 16KB and RAM of 512B. MSP430 uses the

Universal Serial Communication Interface (USCI) for its serial communication mod-

ules. This includes I2C, SPI, and UART. MSP430G2553 uses two blocks for USCI

- A and B. This limits the number of communication protocols that can be used at

the same time to two. USCI_A provides support for SPI and UART while USCI_B

provides support for SPI and I2C. The number of I/O pins available out on the

launchpad is only 14. On reviewing the options, a more powerful MSP430 Launch-

pad, MSP430F5529 as shown in Figure 2.5, was selected. This Launchpad has a

total of 35 usable I/O pins. Moreover, it consists of four USCI blocks - USCI_A0

and USCI_A1 each supporting UART, and SPI while USCI_B0, and USCI_B1 each

9

Figure 2.5: TI MSP430F5529

support I2C, and SPI. It also features a flash memory of 128KB and a RAM of 8KB

+ 2KB which is considerably higher than that of the MSP430G2553. The board also

features both 3.3V and 5V on its Launchpad. This eliminates the need for a voltage

converter, in-case any sensor module needs it. This board was the most used compo-

nent in this ATV project, since the sensor modules were interfaced to these boards.

Moreover, even the actuators are controlled via signals from this board. All these

boards were connected to the main embedded controller via a CAN bus.

2.3 GPS

For absolute positioning of the vehicle, a GPS module is needed. GPS is a satellite-

based navigation system that provides location and time information. Satellites circle

the Earth twice a day in a precise orbit and transmit a unique signal and parameters

that allow for precise location decoding. On the other hand, GPS receivers, apply

trilateration to calculate the exact location as shown in Figure 2.6. The amount

of time taken to receive a transmitted signal is used to measure the distance [22].

10

Figure 2.6: GPS position calculation [21].

The module chosen was Adafruit’s Ultimate GPS as shown in Figure 2.7. Adafruit

has built this breakout board around the MediaTek’s all-in-one GPS system on a

chip (SoC) - MTK3339. This module can track up to 22 satellites on 66 channels,

and has a high-sensitivity receiver [23]. It has an update rate of 1 to 10 Hz. The

position accuracy claimed in the datasheet to be up to 3 meters at 50% Circular

Error Probability (CEP). It comes with a multi-tone active interference canceller to

reject external RF interference with comes from nearby components [24]. This helps

improve GPS reception without the need for a hardware design change. It can cancel

up to twelve independent channels interference. The Time To First Fix (TTFF) is

typically 1 second. It also uses an embedded assist system for quick positioning by

saving predicted GPS position information into memory. This information will be

used for position when there’s no position data from the satellites and also improves

TTFF in such areas. This module also features a built-in antenna that gives it -165

dB sensitivity however, an external 3V active antenna can be connected via the uFL

connector for higher accuracy. It automatically detects the active antenna and makes

the switch. A data-logging capability is also present. It uses its own Flash memory for

logging GPS data in the format: Coordinated Universal Time (UTC), date, latitude,

longitude, and height with a max logging time frame of 16 hours. All the embedded

board needs to do is to pass a "Start logging" command and can go to sleep to save

power. This data is logged every 15 seconds and when a fix is present. Unfortunately,

that time interval is hard-coded into the firmware of the GPS and can’t be changed

11

Figure 2.7: Adafruit Ultimate GPS

to 1 second to suit the project. While the earlier version (PA6C) featured this data-

logging ability, it lacked an external antenna support. One more advantage of the

PA6H version of MTK3339 is that it has pulse per second (PPS) output. It indicates

the start of a second. The PA6H module provides highly accurate 1PPS timing on

the PPS pin to synchronize to GPS time after 3D-Fix. The module operates at a

voltage range of 3.3V to 5VDC. It also has an optional footprint for a coin cell to run

the RTC to allow warm start. The GPS outputs data at a default baud rate of 9600.

The data output follows the National Marine Electronics Association (NMEA) 0183

protocol. The module communicates with the MSP430 using TTL Serial.

2.4 IMU

To get the orientation of the vehicle with respect to magnetic North, a magne-

tometer is needed. Magnetic North refers to the Earth’s magnetic pole position and

differs from true North by about 11.5 degrees [25]. The difference between magnetic

North and true North can be +/-25 degrees. This difference is known as the decli-

nation angle. The X-axis points forward, Y-axis points right and the Z-axis points

downwards. To calculate the true heading angle, x and y components of the magne-

tometer were obtained and heading is calculated from that and then the declination

12

Figure 2.8: Adafruit Triple-Axis Magnetometer HMC5883L

angle is either subtracted or added. The project started with work on Adafruit’s

HMC5883L as shown in Figure 2.8 which is a triple-axis magnetometer. This module

communicates using I2C communication protocol. Once an I2C driver was written

for MSP430, the values received from HMC5883L were used to calculate the heading

angle. When the module is placed flat on the surface, the heading angle received is

correct. However, once there is tilt, the heading angle shows incorrect reading. As

the vehicle is expected to move in uneven terrains, tilt-compensation was vital to this

project. To compensate for the tilt, an accelerometer needs to be added. So it was

decided to move to an IMU BNO055.

The BNO055 consists of an accelerometer, a magnetometer, and a coriolis vibrating

gyroscope instead of just a magnetometer in HMC5883L. The acceleration is mea-

sured by measuring the change in capacitance. A mass attached to a string moves

when acceleration is applied thus changing the capacitance. For a gyroscope, there is

displacement of mass when the external angular rate is applied. This displacement

changes capacitance which corresponds to angular rate. The magnetometer gives a

reading based on changes caused due to magnetic force.Therefore, this IMU module

can measure tangential acceleration, rotational acceleration and, strength of the local

13

Figure 2.9: Adafruit BNO055 Absolute Orientation Sensor

magnetic field. One of the major reason for choosing Bosch’s BNO055 over other IMU

modules was that it possesses a high-speed ARM Cortex-M0 processor that does a

lot of the math in itself. This reduces the need for doing math on the MSP430 which

is a huge plus as the memory is limited. Also, this sensor works on I2C protocol like

HMC5883L so there was no need to write another communication driver.

CHAPTER 3: API LIBRARY IMPLEMENTATION

Figure 3.1: Turning on LEDs at P1.0 and P2.0

The ATV can be controlled by controlling its three actuators - a brake actuator,

steering actuator, and, throttle actuator. To control these, an MSP430 is used. Pro-

gramming the MSP430 involves changing registers specific to the module used. To set

a pin as high or low, there are certain steps. Since the port pins are multiplexed, the

select register (PxSEL) is cleared to specify the pin function as a GPIO. Then, the

direction register (PxDIR) is set to assign the pin direction as an output pin. After

this, to turn the pin low or high, the out register (PxOUT) is set to the desired value.

Configuring a pin as digital input or output is essential to most applications and is

used more than a few times. This is where the usage of an application programming

interface (API) becomes necessary. An API in simple terms is a well-defined function

or a set of such functions that do exactly what is stated. In the library, a simple API

call gpioSetOP is used to set a pin as output and gpioSetVal is used to set the value

of the pin. Instead of code as seen in Figure 3.1, a much better readable and under-

standable code is seen in Figure 3.2 where there are APIs that hide the abstraction

15

Figure 3.2: Using APIs for turning on the LEDs

Figure 3.3: Digital output implementation in the library

below it. The implementation for these function is done in the library and is shown

in Figure 3.3. The aim of building this library was to make it as standardized as

possible so other teams could build on it in the future.

A Basic Software Layer (BSL) was created which involved libraries for digital input,

digital output, pulse width modulation, and communication protocol like UART, SPI,

and I2C. The reason for implementing the drivers for digital input and digital output

separately instead of having one GPIO driver file is because it makes bug fixing and

making changes to the code much easier. If there is a bug in the digital output driver,

just that driver and its dependent files need to be recompiled not other files. On top

of this basic software layer, higher level drivers for CAN bus, GPS, and IMU modules

were built.

16

(a) MSP430G2553

(b) MSP430F5529

Figure 3.4: Register Accessing

As mentioned earlier, the change from MSP430G2553 to MSP430F5529 was made.

The libraries were already written for MSP430G2553 at that point. The only thing

needed to be changed after that was port addresses in a header file and register

accessing. This is because for some reason the register offsets in MSP430G2553 merge

two ports and access it in such a way that each port has a register one after the other.

Whereas in MSP430G2553 the ports aren’t merged. The code for register access can

be seen in Figure 3.4. The GPS module communicates via UART protocol. A GPS

driver was written on top of the HWI. This GPS driver initializes the UART driver

to a baud rate of 9600 as the module runs at that speed by default. Since the NMEA

messages outputted by the GPS start with a ’$’, the received character isn’t added to

any buffer until ’$’ is received. Once the start of that message is received, the rest of

the data is filled into the buffer until a newline character, ’\n’ is received. This means

a full NMEA message has been received. Since the GPS module was set to output

just GPGGA (Global Positioning System Fix Data) and GPRMC (Recommended

minimum specific GPS/Transit data) messages, the parsing code checks which one is

17

(a) GPGGA

(b) GPRMC

Figure 3.5: GPGGA and GPRMC decoded [26].

received and then extracts latitude, latitude direction, longitude, longitude direction,

time and speed from them. The decoding of GPGGA, and GPRMC is shown in

Figure 3.5. The latitude and longitude values received were in degrees, minutes,

and seconds format. The GPS driver converts them into decimal degrees and then

uses these values to get distance and bearing angle between two points. The BNO055

IMU communicates using I2C communication. The BNO055 driver initializes the I2C

driver by passing the slave address it wants to communicate to. This slave address

is the I2C address of BNO055 which is 0x28. There’s a sequence that needs to be

18

followed during this communication. For writing to a register of the slave via I2C,

first, set the start bit and the transmit bit in the control register. Then, send the

register to write to. Followed by the value to set the register to. And finally, set

the stop bit in the control register. For reading a register via I2C, the start bit and

the transmit bit is set. Then, the register address is written. Once this is done, the

transmit bit in the control register is cleared to read from the register. Once the

register is read, the stop bit is set. While this seemed simple enough, the values

received didn’t match the ones expected. This was due to the fact that MSP430

modules need the stop bit sent before reading the last byte from the register. The

I2C driver was also used for controlling the new braking system which uses T’Rex

motor controller. However, for that application, it was simply sending the motor

values for the brake and no register writing was required. Lastly, the CAN module

MCP2515 uses SPI communication which provides full duplex communication and

thus, higher speed.

CHAPTER 4: NAVIGATION SYSTEM

4.1 GPS

4.1.1 Initial Settings

Figure 4.1: Raw NMEA strings received from GPS

Adafruit’s Ultimate GPS used in this project gives output via NMEA frames. By

default, GPS displays NMEA data like GPGLL (Geographic position, latitude / lon-

gitude), GPGRS (GPS range residuals for each satellite), GPGGA, GPGSA (GPS

DOP and active satellites), GPRMC, GPVTG (Track made good and ground speed),

and GPGSV (GPS Satellites in view). You can see the raw output in Figure 4.1.

Among all these NMEA sentences, GPGGA provides the essential longitude, and lat-

20

itude data on current fix and GPRMC gives velocity information. Since these were

the two NMEA sentences that position data is extracted from, other NMEA sentences

were turned off. This is done by passing sending the packet format shown in 4.1

$PMTK314, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ∗ 28 (4.1)

In this equation, ’$’ is the preamble and PMTK is the talker ID. Packet type 314

was used to set the NMEA output frequency desired of each NMEA message. The

next 8 bits were used to set the frequency of GPGLL, GPRMC, GPVTG, GPGGA,

GPGSA, GPGSV, GPGRS, and GPGST (Pseudorange measurement noise statistics).

The value of frequency can be 0 to 5 where 0 means disabled, 1 means output once

every one position fix, 2 means output once every two position fixes, 3 means output

once every three position fixes, 4 means output once every four position fixes, and

5 means output once every five position fixes. However, GPGST data even when

enabled was not received. For this project, GPGGA and GPRMC were set to output

once every position fix as shown in Figure 4.2. It was suggested in the Adafruit

Ultimate GPS overview page that for reading just the GPGGA and GPRMC output,

the position fix update rate can be increased to 5Hz as opposed to the default 1Hz.

However, it is kept to 1Hz in the project to compensate for time being spent in parsing

the NMEA sentences to get desired values from them. To change the fix update rate,

the command "$PMTK220,val" can be sent to the GPS module via UART where val

corresponds to the value of update time in milliseconds. So for updating each second,

i.e. at a 1Hz frequency, it is set to "$PMTK220,1000".

4.1.2 Distance Calculation

The latitude and longitude values received from the NMEA messages were in the

form of degrees, minutes, and seconds. To convert them to decimal degrees, the

equation 4.2 was used where d is the degree, m is minutes, s is seconds and dd is

21

Figure 4.2: NMEA data after only GPGGA and GPRMC were enabled

decimal degree.

dd = d+m/60 + s/3600 (4.2)

The result received in dd is then multiplied by ’-1’ if the direction is either South

or West. This conversion takes place for both longitude and latitude. Once the

conversion is done, the next step is distance calculation. It is assumed that the final

destination is known by the vehicle. Work is currently ongoing to build a network

that transmits way-points GPS data to the vehicle which will eventually be merged.

To calculate the distance between two latitude and longitude points, there are two

very famous formulas: Haversine formula and Vincenty formula.

The Haversine formula uses the great-circle distance between two latitude and

longitude points [27]. This formula assumes that the Earth is a perfect sphere. It

22

gives distance by calculating the shortest distance between two points via a line over

the sphere. The latitude and longitude points were firstly converted to radians by

multiplying them by ’0.0174533’. The delta of the latitude and longitude is taken by

subtracting the two points as shown in Equation 4.3.

dlat = lat1 − lat2,

dlon = lon1 − lon2

(4.3)

Using these delta values and the point values, the Haversine formula listed in Equa-

tions 4.4, 4.5, and 4.6 can be applied. As can be seen in Equation 4.6, Earth’s radius

is multiplied by y. However, Earth’s radius depends upon the specific location on

Earth. It varies from 6356.75 km at the poles to 6378.13 km at the equator. This

introduces small errors when the distance is large. However, for small distances, it

seemed to give accurate distance readings.

x = sin(dlat/2) · sin(dlat/2) + cos(lat1) · cos(lat2) · sin(dlong/2) · sin(dlong/2) (4.4)

y = 2 · arctan2(sqrt(x), sqrt(1 − x)) (4.5)

distance = Earthradius · y (4.6)

A more accurate formula is Vincenty’s formula, which assumes that the Earth is

an oblate spheroid. And which more closely matches the Earth’s real shape [28].

However, after looking at the huge computation needed for Vincenty formula in Figure

4.3, there were doubts whether a microcontroller could handle such recursive and

extensive math and the delay would cause. Also, as stated above, the Haversine

formula seemed to give accurate values for short distances. According to [30], the

difference in the accuracy is just 0-0.034%. However, the Vincenty formula was found

to take twice the amount of time as compared to the Haversine formula. It is assumed

23

Figure 4.3: Java Implementation of Vincenty [29].

that the way-points will be at short distances. Hence, because of the simplicity of

Haversine formula and the fact that it works well for small distances, it was chosen

to calculate distance.

4.1.3 Bearing Angle

While Haversine’s formula provides distance, there’s still direction to be calculated.

Bearing angle is used for this purpose. Bearing is calculated clockwise from the true

North direction. It gives a value in degrees in the range of 0 to 360. This means that

0◦ points to the North, 90◦ points to the East, 180◦ points to the South and 270◦

points to the West. Bearing is given by the Equation 4.7. Here, X and Y were given

by Equations 4.8 and 4.9. dlat and dlon correspond to the delta values of the two

points as shown in Equation 4.3.

β = arctan2(X, Y) (4.7)

24

X = cos(lat2) ∗ sin(dLon) (4.8)

Y = cos(lat1) ∗ sin(lat2) − sin(lat1) ∗ cos(lat2) ∗ cos(dlon) (4.9)

The bearing now calculated is the initial bearing angle. For final bearing, the initial

bearing is calculated from the endpoint to the start point and reversed. However,

the ATV’s position acts as the start point and each way-point acts as the end point.

For this reason, only the initial bearing is of importance. atan2 returns values in

the range -180◦ to +180◦, which needs to be normalized to 0◦ to 360◦. This can be

achieved by the Equation 4.10. The modulo operator (%) makes sure that when the

bearing angle is 0◦ to 180◦, the same value is returned despite adding 360. While,

if the bearing angle is in the range -180◦ to -1◦, the modulo operator here will give

values in the range of 180◦ to 159◦.

β = (β + 360)%360; (4.10)

4.2 IMU

The IMU BNO055 has a powerful microcontroller of its own and can either work in

a non-fusion mode or a fusion mode. In non-fusion mode, it outputs raw 3-axis values

for accelerometer, gyroscope and magnetometer. To get the heading angle from this

module, the magnetometer values can be used. Michael [25] provides the formula for

getting the desired angle as shown in Equation 4.11 where θ is the heading angle.

θ = arctan(y/x) (4.11)

However, this formula fails when x = 0 and gives same angle for when x,y = 1, 1 and

when x,y = -1,-1 [31]. This can be fixed by using arctan2.

θ = arctan 2(y/x) (4.12)

25

Figure 4.4: System Architecture of BNO055

This module communicates using I2C communication protocol. Once an I2C driver

was written for MSP430, the values received from BNO055 were used to calculate

heading angle using the Equation 4.12. However, this is still not tilt-compensated.

To compensate for the tilt, an accelerometer needs to be added. Equations 4.13,

4.14, 4.15, can be used to get tilt-compensated heading angle. ax, ay, and, az were

the x-axis, y-axis and z-axis values of the accelerometer in radians. Similarly, mx,

my, and, mz were the x-axis, y-axis and z-axis values of the magnetometer [32]. To

convert the accelerometer readings to radians, they were divided by 57.30.

xc = mx cos(ay) +my sin(ay) sin(ax) −mz cos(ax) sin(ay) (4.13)

yc = my cos(ax) +mz sin(ax) (4.14)

θ = arctan 2(yc/xc) (4.15)

26

Figure 4.5: Sensor Fusion [21].

However, looking at the architecture of BNO055 in Figure 4.4, it already has a data

fusion algorithm for fusing either all three of the sensors together or any two of them

as shown in Figure 4.5.

While there are different fusion modes, they provide heading of the sensor in either

Quaternion data or in Euler angles. This is used to get an absolute orientation of the

module in space. The orientation can be either an absolute orientation or relative

orientation in fusion mode. Absolute orientation means the position of the module

with respect to the Earth and its magnetic field. This is used to calculate the heading

angle to the magnetic North pole. Relative orientation gives out values based on how

the module was initially placed. The fusion mode used is Nine Degrees of Freedom

(NDOF) which has 9 degrees of freedom and fused absolute orientation data is cal-

culated from accelerometer, gyroscope, and the magnetometer. This mode has the

Fast Magnetometer calibration turned on which results in the quick calibration of the

magnetometer and increases output data accuracy. This mode also comes with high

robustness from magnetic field distortions. All this comes at the cost of slightly higher

27

current consumption when compared to other fusion modes. NDOF_FMC_OFF

mode switches off fast magnetometer calibration and saves current.

4.2.1 Calibration

Although the BNO055’s sensor fusion firmware runs the calibration algorithm for

the accelerometer, gyroscope, and magnetometer to remove the offsets, the data-sheet

recommends initial calibration steps to be taken when the device boots up. For the

accelerometer, the data-sheet recommends to place the device in 6 different stable

positions for a period of few seconds and move slowly between these stable positions

to allow the accelerometer to calibrate. While the 6 positions can be in any direction,

it is recommended that the device is lying perpendicular to either x-axis, y-axis or

z-axis at least once. The gyroscope is the easiest to calibrate. It just needs to be

kept stable for a few seconds for it to calibrate. The magnetometers, in general, are

susceptible to both hard-iron and soft-iron distortions. The initial calibration is most

important for the magnetometer as the accelerometer and the gyroscope are much

less susceptible to disturbances. To get the proper heading angle, the magnetometer

is calibrated at the start by making a few random moments or just making an ’8’

in the air. The raw magnetometer readings were taken from the BNO055 after a

distortion was observed. The module was spun along the z-axis [33] and the x-axis

and y-axis was plotted to see how calibration affects the magnetometer. The x and y

reading as seen in Figure 4.6 was not centered but a slight shift towards the left and

down was noticed. After this, the sensor was moved around in random 8 shapes until

it was calibrated as suggested in the data sheet. The BNO055 stores the calibration

status in a register called ’CALIB_STAT’. This is an 8-bit register whose register

description is shown is Figure 4.7. As soon as the magnetometer is calibrated, the

last two bits should display 1.

Once the magnetometer was calibrated, the same readings were taken again by

spinning the module around the z axis. The plotted x and y reading seen in Figure

28

Figure 4.6: BNO055 Un-calibrated Magnetometer Readings

4.8 which were much more centered and good enough to use for calculating the heading

angle. The data sheet also mentions that this calibration needs to be performed each

time the module boots up. However, for use in an autonomous vehicle, a manual

calibration on each power-up cannot be done. Upon reading the datasheet further, it

was found that after calibration, the same calibration profile can be reused on each

power up. The calibration profile is nothing but the sensor offsets and sensor radius

registers. Once all the bits of the calibration status register were read as ’1’, i.e.

not only accelerometer, gyroscope, and magnetometer are set but also the system

29

Figure 4.7: BNO055 Calibration Status register description [34].

Figure 4.8: BNO055 Calibrated Magnetometer Readings

30

Figure 4.9: Offset And Radius Register Readings After Calibration

was calibrated, the offset registers and radius registers were read. The BNO055

needs to be switched from operation mode to configuration mode before this can

be done. The three sensors have their offset registers for each axis. Thus a total

of 9 8-bit offset registers and 4 radius registers were read. The values from these

registers are stored in the EEPROM or could just be hard coded so that they were

set on each power up. The values received after reading these 13 registers stayed

nearly the same on each reading when the module was kept in a stable position after

calibration except for the magnetometer registers. This can be seen in the Figure

4.9. The accelerometer and gyroscope offset registers remain almost the same. The

gyroscope readings were single digit hence not visible in the graph. However, there’s

a change seen in the magnetometer offset readings and especially the radius reading.

This suggests that although saving and reading the offset registers will work fine in

a normal power up case, but, when the magnetometer will come across a distortion,

the saved magnetometer offset values won’t be useful anymore. Luckily though once

the BNO055 internal calibration routine is done, it overwrites the offsets and radius.

However, the readings before that cannot be trusted.

31

Figure 4.10: Accelerometer Bias Reading.

4.2.2 Sensor Bias

The raw readings were taken from the IMU sensor and plotted while it was sta-

tionary. When the module is kept stationary on a flat surface, gravity is the only

acceleration which is 9.8g, there is no angular velocity and the magnetic field is

static. The output can be seen in Figures 4.10, 4.11, 4.12. Small offsets on either

Figure 4.11: Gyroscope Bias Reading.

32

Figure 4.12: Magnetometer Bias Reading.

side on an average were noticed even after calibration. These offsets are called sensor

biases.

4.2.3 Euler vs Quaternion

Initially, the plan was to use Euler angles that the BNO055 outputs in the NDOF

mode it is set in and check for bias. The Euler angle values were read from the MSB

and LSB registers of x-axis, y-axis, and z-axis. Where x-axis is the heading angle, y-

axis is the roll and z-axis is the pitch. Looking at Figure 4.13, yaw or heading angle is

the rotation about z-axis i.e it increases if moved clockwise, pitch represents rotation

about the y-axis, and roll is the rotation about the x-axis. It is very important to

calibrate before reading these registers. If the IMU is not calibrated, it considers

the current position as 0◦ and thus gives relative heading instead of absolute heading

angle which is needed. As can be seen from the bias readings in Figure 4.14, the data

received is very stable. The sensor fusion algorithm in the BNO055 makes sure the

bias offsets were removed and stable readings were received. The Yaw or the heading

angle reading received in the Figure is 242◦. This angle was verified with a compass

33

Figure 4.13: Euler Angle Axes [35].

reading on a personal mobile phone which displayed 250◦. This is due to magnetic

declination. While the GPS NMEA messages ideally have the magnetic declination

for the location it measures in the GPRMC packet, it was found that Adafruit’s GPS

module disables it. The declination angle across the US can be seen in Figure 4.15.

However, magnetic declination changes only by a few degrees every year. Thus, it

can be used directly for now instead of replacing the GPS to get declination from it.

Using the declination calculator on National Oceanic and Atmospheric Organization

[37], the declination received was 7.82◦ W for Charlotte, NC. It was also mentioned

that this values change by about 0.03◦ per year. Since this declination is to the

West of true North, it must be compensated by adding the declination to the heading

angle. If the declination was to the East of true North, it must be subtracted from

the heading angle. Hence, the heading angle becomes 242 + 7.82 = 249.82◦ which

is what the phones compass displays. During testing, the IMU would not display

the same angle at the exact same position sometimes. Upon reading more about

34

Figure 4.14: Euler Bias Reading.

Euler angles [35], the case of gimbal locking came forward. For Euler angles to give

correct representation, they need to be at least partially perpendicular. The Euler

angle rotation matrix in 3 dimensions is represented by the Equation 4.16 where R is

the rotation matrix, x is the roll, y is the pitch and z is the yaw. However, consider

a condition where the pitch is up by an angle of 90◦. The yaw angle now becomes

parallel to the roll angle. Equation 4.17 shows the rotation matrix when pitch is 90,

which converts to Equation 4.18 where the output for changes in x and z results in

the same matrix.

R =


1 0 0

0 cos(x) − sin(x)

0 sin(x) cos(x)

 ∗


cos(y) 0 sin(y)

0 1 0

− sin(y) 0 cos(y)

 ∗


1 0 0

0 cos(x) − sin(x)

0 sin(x) cos(x)

 (4.16)

35

Figure 4.15: Declination Angles Across USA [36].

R =


1 0 0

0 cos(x) − sin(x)

0 sin(x) cos(x)

 ∗


0 0 1

0 1 0

−1 0 0

 ∗


1 0 0

0 cos(x) − sin(x)

0 sin(x) cos(x)

 (4.17)

R =


0 0 1

sin(x+ z) cos(x+ z) 0

− cos(x+ z) sin(x+ z) 0

 (4.18)

Readings for the Euler angles were taken again to make sure this was the issue as seen

in Figure 4.16. The Yaw angle drops suddenly after a point. However, the BNO055

does not fail when the pitch angle was 90◦ but when the angle went to -135◦. This is

a math bug in the firmware 0x0311 of the BNO055 and Adafruit suggests not to go

beyond +/-45◦. Although it was initially thought the change in reading was due to

gimbal locking in in BNO055, it became apparent that was actually due to a math bug

in BNO055’s firmware. Due to this, it was decided to use Quaternion angles instead.

36

Figure 4.16: Euler Angle BNO055 Bug.

Quaternion is a four-dimensional complex number which consists of one scalar and

three vector components. This is shown in Equation 4.19 where w, x, y, and z are

real numbers and i, j and k are Quaternion units [38].

q = (w, xi, yj, zk) (4.19)

The real numbers are normally in the range of -1 to 1. The absolute values of these

when added together equal to 1.

√
w2 + x2 + y2 + z2 = 1 (4.20)

The Quaternion matrix can be converted to a rotational matrix using the Equation

37

Figure 4.17: Comparing Quaternion with Euler.

4.21 [39].

R =


w2 + x2 + y2 + z2 2(xy − wz) 2(wy + xz)

2(xy + wz) w2 − x2 + y2 − z2 2(−wx+ yz)

2(−wy + xz) 2(wx+ yz) w2 − x2 − y2 + z2

 (4.21)

To get yaw, pitch, and roll from Quaternion data, Equations 4.22, 4.23 and 4.24 were

used.

roll = arctan 2(2 ∗ (w ∗ x+ y ∗ z), 1 − 2 ∗ (x ∗ x+ y ∗ y)) (4.22)

pitch = arcsin(2 ∗ w ∗ y − x ∗ z) (4.23)

yaw = arctan 2(2 ∗ (w ∗ z + x ∗ y), 1 − 2 ∗ (y ∗ y + z ∗ z)) (4.24)

Using these Equations, the values from the Quaternion registers were read and con-

verted to yaw, pitch and roll. To check for the math bug that Euler readings had,

the module was again moved by -135◦ pitch and Quaternion angles still displayed the

38

expected values as can be seen in Figure 4.17.

4.3 GPS and IMU together

Figure 4.18: Illustration of heading angle and bearing angle.

Once data from GPS and INS is received, the next step is to make sense of it. The

GPS provides latitude and longitude points for the ATV. The latitude and longitude

points for the destination is also know. Using these two points, distance is calculated

using Equation 4.6, and bearing angle using the Equation 4.7. The bearing angle is

the angle that the ATV needs to point to, to get to the next way-point. Heading

angle is received from the IMU. The heading angle indicates the angle the ATV is

pointing relative to true North. From these two angles, the angle the vehicle needs to

move to can be calculated. The illustration of this can be seen in Figure 4.18. Point

A is the point the ATV is at; i.e. the latitude and longitude from the GPS module

in the ATV. Point B is the destination and where the ATV needs to go to. Here, to

figure out the angle to steer to, the Equation 4.25.

SteeringAngle = BearingAngle−HeadingAngle. (4.25)

39

Negative steering angle indicates that the ATV should steer left and a positive angle

indicates that the ATV should turn right.

4.4 Kalman Filtering

The data received from the GPS contains noise as seen in Figure 5.3. GPS readings

were taken along a trail and the actual path compared to the GPS readings was

plot as shown in 4.19. The GPS readings looked a bit noisy and jumpy around

the expected path line. Averaging these reading would just add the noise into the

readings. Moreover, this would slow down the whole process as the controller would

now take several readings and then output the averaged reading. This is undesirable.

It also does not solve the problem of not having GPS readings at regular distance

intervals on the path as can be seen in the Figure 4.19. To rectify this, IMU readings

can be used to estimate the position using the Equation of motion 4.26 where x is

the position, v is the velocity in meter per seconds, ∆t is the time interval, and a is

the acceleration per second squared. The Equation 4.27 is used for getting velocity.

x′ = x+ v∆t+
1

2
a∆t2 (4.26)

v′ = v + a∆t (4.27)

However, the IMU itself consists of a lot of noise as Figures 4.10, 4.10, and 4.10 show.

Using just either of the IMU and GPS sensor by itself is not enough to correct the

readings. The accelerometer requires initial position and velocity to estimate the next

point and correct GPS errors. The output from the accelerometer can be read at a

considerably higher frequency than the GPS readings. However, the noise associated

with the accelerometer indicates that using just the acceleration would cause the noise

to accumulate and this will cause drift. Due to this, after a few seconds, the position

estimate will be quite off from the actual position. Thus, GPS readings are required

to avoid drift errors and the accelerometer readings are required to correct GPS noise.

40

Figure 4.19: Actual path compared to the GPS readings.

This can be done by fusing the two sensor data. Upon reading more about it, the

most popular technique for position based sensor fusion was using a Kalman filter

[40, 41, 42]. Kalman filter can be used when there is uncertain information about

some dynamic system, and a good estimate needs to be made about the next step.

Kalman filter uses mathematical models to fuse error-filled real-time measurements

from various sensors to get an estimate of the data needed. The future estimate

data is based on the current state and changes in the sensor values at the current

timestamp. It then compares the estimated state with the data received and adjusts

its own estimate [43].

4.5 Kalman Model

Initially, the system is represented by matrices A, B, and H. State vector X gives

an initial state estimate of the system. Initial error estimate of the system is given by

matrix P. Error estimates for process and measurement are given by matrices Q and R

respectively [43]. The Kalman filter works recursively in two steps: (1) Prediction and

(2) Update shown in Figure 4.20. At each step, control vector ’u’ and measurement

vector ’z’ are passed into the filter. The Kalman then outputs current estimate of the

41

Figure 4.20: Two Step Kalman Process

state and current estimate of the error in the system.

4.5.1 Prediction

The first step in prediction is to predict the next state. The state of the Kalman

filter is given by the Equation 4.28 where Xpredicted is the predicted state, A is the

state transition matrix, Xn-1 is the previous state at time step n-1, B is the control

matrix, and un is the control vector at time step n.

Xpredicted = AXn−1 + Bun (4.28)

The next step is to predict how much error is there in the system. The covariance

prediction matrix at n is given by the Equation 4.29 where A is the state transi-

tion matrix, Pn−1 is the covariance matrix at the previous time step n-1, AT is the

transpose of state transition matrix, and Q is the process variance matrix.

Ppredicted = APn−1A
T + Q (4.29)

4.5.2 Update

During the update step, the Kalman gain is updated to moderate the prediction.

It indicates the amount of trust on a particular sensor. This is given by the Equation

4.30 where K is the Kalman gain, Ppredicted is the predicted covariance, HT is the

transpose of the observation matrix, and S−1 is the inverse of innovation covariance

matrix. This innovation covariance matrix is given by the Equation 4.31 where R is

42

the estimated measurement error covariance matrix.

K = PpredictedHTS−1 (4.30)

S = HPpredictedHT + R (4.31)

To get new estimate of the state of the system, the state matrix is updated using the

Equation 4.32 where ỹ is the innovation matrix and is given by the Equation 4.33.

This is Kalman filtered out estimate. Here, zn is the measurement vector.

Xn = Xpredicted + Kỹ (4.32)

ỹ = zn − HXpredicted (4.33)

Finally, the error covariance matrix is updated using the Equation 4.34 to get new

error estimate. Where ’I’ is an identity matrix.

Pn = (I − KH) Ppredicted (4.34)

The flow of the filtering can be seen in Figure 4.21. To sum it all up,

u: Control Vector (Input)

z: Measurement Vector (Input)

X: State Estimate (Output)

P : Error covariance Estimate For State (Output)

A: State Transition Matrix

B: Control Matrix

H: Observation Matrix

Q: Process Error covariance Estimate

R: Measurement Error covariance Estimate

43

Figure 4.21: Flow of Kalman filtering

S: Innovation covariance

y: Innovation Matrix

4.6 Implementation

Implementing the Kalman filter for this project meant identifying what the various

matrices mentioned in the previous section would translate to. Looking at the Kalman

Equations again, for Equation 4.28, Xn would denote the predicated state of the ATV,

A would be matrix that predicts the new state using Equation of motion as given in

4.26. Xn−1 denotes the state of the ATV at a previous time step n-1. B is the control

matrix that predicts the change in motion. un is the acceleration input at time n.

To predict the error covariance in 4.29, A is the same as the previous Equation, Pn−1

the previous state error estimate, AT is the transposed matrix of A. Q is the error

covariance for noise in the accelerometer readings. It is the standard distribution

of noise of the accelerometer data. R is the covariance matrix for error estimate

in the GPS readings. u is the acceleration input and z is the GPS input. Raw

44

acceleration data consists of linear acceleration and gravity acceleration. To strip out

the acceleration due to gravity the Quaternion output from the BNO055 is used. The

gravity component is calculated using the Equations 4.35, 4.36, and 4.37 where gx,

gy, and gz are the gravity component.

gx = (2.0 ∗ (q.y ∗ q.w − q.x ∗ q.z)) (4.35)

gy = (2.0 ∗ (q.x ∗ q.y + q.y ∗ q.z)) (4.36)

gz = (q.x ∗ q.x − q.y ∗ q.y − q.z ∗ q.z + q.w + q.w) (4.37)

Linear acceleration can be obtained by subtracting the raw acceleration with these

gravity components as seen in Equations 4.38, 4.38, and 4.38.

acclx = (−1 ∗ (a.x + gx)) (4.38)

accly = (−1 ∗ (a.y − gy)) (4.39)

acclz = (−1 ∗ (a.y − gz)) (4.40)

The BNO055 however, in sensor fusion mode, provides the two acceleration data in

separate registers. LIA registers hold data for linear acceleration and GRV registers

hold data for gravity acceleration as seen in Figure 4.22. The received data is divided

by 100 to as 1m/s2 is equal to 100LSB. This acceleration is however relative to the

body of the ATV and not Earth-referenced. To convert these linear acceleration

data to Earth-referenced data in the North-East-Down (NED) reference frame, the

Equations 4.41, 4.42, and 4.43 were used. Since it is in NED frame, the up acceleration

45

(a) Linear Acceleration Register

(b) Gravity Acceleration Register

Figure 4.22: LIA and GRV registers as shown in BNO055 datasheet. [34]

is multiplied by ’-1’.

acceast = (1.0 − 2.0(q.y × q.y + q.z × q.z)) × acclx

+2.0(q.x× q.y − q.w × q.z) × accly

+2.0(q.x× q.z + q.w × q.y) × acclz

(4.41)

accnorth = (2.0(q.x× q.y + q.w × q.z)) × acclx

+(1.0 − 2.0(q.x× q.x+ q.z × q.z)) × accly

+2.0(q.y × q.z − q.w × q.x) × acclz

(4.42)

46

accup = −1 × (2.0(q.x× q.z − q.w × q.y)) × acclx

+2.0(q.y × q.z + q.w × q.x) × accly

+(1.0 − 2.0(q.x× q.x+ q.y × q.y)) × acclz

(4.43)

The North and East components need to be compensated for the magnetic declination.

Sin and Cos components of the declination again were extracted. These components

were then multiplied by the acceleration North and East values to get North and East

component of both the acceleration values using the Equations 4.44, 4.45, 4.46, and

4.44. The North and East components of both the axes were then added to get the

final declination compensated absolute acceleration values as seen in the eqauations

4.48, and 4.49.

deceasternN = sin(7.82 × (PI/180)) × acceast (4.44)

decnorthernE = − sin(7.82 × (PI/180)) × accnorth (4.45)

decnorthernN = cos(7.82 × (PI/180)) × accnorth (4.46)

deceasternE = cos(7.82 × (PI/180)) × acceast (4.47)

acceast = deceasternE + deceasternN (4.48)

accnorth = decnorthernE + decnorthernN (4.49)

The sensor was kept stationary and their linear acceleration output was read and

converted to the absolute acceleration using the Quaternion output. This data was

then plotted to get the bias of the system as shown in Figure 4.23. Once the de-

sired values were received from the GPS and IMU, it was time to run the Kalman

filter on them. Having one Kalman filter for all the axes combined would lead to 3

times the size of the matrices and would be complicated to debug. Instead, it was

chosen to apply a Kalman filter individually on each axis. For predicting latitude,

the absolute acceleration in the North direction is used. For predicting longitude,

47

Figure 4.23: Absolute Acceleration Bias

the absolute acceleration in the East direction is used. The absolute acceleration in

the up direction is used to predict the altitude. For this thesis, the measurement is

the GPS and control is the accelerometer. The control is used to estimate positions

and the measurement is used to update. The Kalman filter code waits for a valid

GPS reading before it initializes the three Kalman filters. Once a GPS reading is

received, matrix ’X’, i.e. the state matrix, is initialized with GPS position readings.

The matrix ’Q’, i.e. the error covariance matrix for the process is initialized with the

standard deviation received from bias readings of each accelerometer axis reading.

The standard deviation of the GPS cannot be measured in the same way that the

accelerometer standard deviation was received. This is due to the fact that if GPS

was kept stationary, it will acquire a better fix over time. For this reason, the GPS

standard deviation was received from the data-sheet. This was then initialized into

the ’R’ matrix which is the measurement covariance matrix. The process covariance

matrix was initialized as an identity matrix, to begin with.

During each prediction step, accelerometer reading for each axis was passed into

the separate Kalman filter. The state matrix and error matrix was updated during

48

this step with the time and accelerometer. During the update step, the GPS input

was converted to meters and passed into the ’z’ matrix and state and state covariance

matrices were updated. The predicted estimate was stored in the state matrix. To

predict latitude and longitude from the predicted position estimate, the Equations

4.50 and 4.51 were used [44]. Since North and East directions were considered positive

and South and West are negative, the East and then the NorthEast component were

calculated. To calculate the East position, the predicted longitude in meters was

passed into the Equations 4.50 and 4.51 as distance, and the bearing angle used was

90 degrees as it was the East direction. This gives latitude and longitude points in

the East. These points were then passed into the same Equations with a distance

which is the predicted longitude in meters and a bearing angle of 0 degrees to point

to the North. The resultant latitude and longitude were the final estimated points.

ϕ2 = asin (sinϕ1 · cos δ + cosϕ1 · sin δ · cos θ) (4.50)

where:

ϕ: Latitude

δ: d/R; d is the distance traveled and R is the Earth’s radius.

θ: Bearing angle.

λ2 = λ1 + atan 2 (sin θ · sin δ · cosϕ1, cos δ − sinϕ1 · sinϕ2) (4.51)

where:

ϕ: Latitude

λ: Longitude

δ: d/R; d is the distance traveled and R is the Earth’s radius.

θ: Bearing angle. Due to the fact that the Kalman filter operates on matrices and

since the data-type of GPS and accelerometer readings were of the datatype double,

49

Figure 4.24: Kalman filter Implementation Flow.

there were doubts whether an MSP430 could run it recursively. Since there was

already a bit of math done in the MSP430, it was chosen to implement the Kalman

filter on a Raspberry Pi 3. The flow for the code can be seen in Figure 4.24.

CHAPTER 5: TESTING AND RESULTS

To start the testing, the GPS module was kept stationary just outside the EPIC

building and powered on. On average the module took about 25 seconds after booting

up to start giving readings. However, the readings obtained were still a bit noisy.

The GPS device gives GPS reading quality indicator in GPGGA messages. When

there were no GPS readings, the quality indicator returns 0. As the readings start,

i.e. a fix is obtained, the quality could be either a standard position fix (1) or a

differentially corrected position fix (2). Differentially corrected position indicates

Figure 5.1: Latitude and Longitude with a standard fix.

51

Figure 5.2: Latitude and Longitude with differential fix.

that a Differential GPS (DGPS) is being used to provide increased accuracy over a

standard fix. It uses fixed known positions to give the difference between the position

indicated by the satellite and the known position. The position is then adjusted and

pseudo-range errors are eliminated. The difference in the readings for a standard

fix and a differential fix can be seen in Figures 5.1 and 5.2. These points were

then plotted on a map and it was clearly seen how error prone standard fix was and

DGPS provided much better readings. This can be seen in the Figure 5.3. To test the

distance and bearing formulas, two latitude, longitude points were taken along a track

and the distance and bearing angle were measured. The start point was (35.308742, -

80.744580) and the end point was (35.308603, -80.744221) as can be seen in the Figure

5.4. The distance received from Vincenty’s formula was 39.487991 yards while the

distance received from the Haversine formula was 39.4356955. This gives a difference

52

Figure 5.3: DGPS And Standard GPS Plotted On The Map.

Figure 5.4: Map of two lat long points [44].

of 0.05229549 yards which is not significant. These distances were also compared to

the distance Google map shows, i.e. 39.4 yards, which was close to the distances

53

Figure 5.5: GPS path comparison

calculated from the formulas. The Figure 5.4 also shows the bearing angle between

the two points. The next step was to test the GPS module with another reference.

For this reason, GPS readings were taken from a mobile phones’ GPS module using

the MATLAB application. The data rate was set to 1Hz to match the data rate of

the sensor in comparison. Along the same route, the GPS sensor readings were taken.

The data from this was plotted and a difference of about 2 meters was observed. As

seen in Figure 5.5, the red dots were Adafruit’s Ultimate GPS readings and the black

dots were GPS readings from a mobile phone. The comparison of the data received

from two systems is shown in the Table 5.1 where ’P’ is the distance between the

two positions and ’O’ is the orientation difference. The next step was to test the

Kalman filtering process real-time. The sensor readings were taken outdoors. The

data from the GPS and IMU was sent to the Raspberry Pi via serial communication.

54

Table 5.1: Comparison of the ATVs navigation and Mobile Phone data.

Navigation System Mobile Phone Sensors P O
(35.30951, -80.7422), 126.62 (35.30952, -80.7422), 128.32 2.45 1.7
(35.30951, -80.7423), 126.56 (35.30952,-80.74222), 130.52 1.78 3.96
(35.30951, -80.7422), 128.50 (35.30952,-80.74223), 131.27 2.20 2.77
(35.30951, -80.7422), 128.06 (35.30951,-80.74224), 131.58 1.99 3.52
(35.30951, -80.7422), 130.37 (35.30950,-80.74224), 132. 14 2.377 1.77
(35.30948, -80.7422), 130.59 (35.30949,-80.74225), 128.62 3.32 1.97
(35.30949, -80.7422), 129.94 (35.30947,-80.74226), 129.56 3.88 0.38
(35.30947, -80.7422), 133.31 (35.30945,-80.74227), 135.34 4.22 2.03
(35.30946, -80.7422), 132.17 (35.30944,-80.74227), 136.35 3.41 4.18
(35.30944, -80.7423), 131.29 (35.30942,-80.74228), 130.48 3.40 0.81
(35.30942, -80.7423), 130.08 (35.30940,-80.74229), 127.71 3.62 2.37
(35.3094, -80.7423), 128.38 (35.30939,-80.74230), 124.12 2.89 4.26
(35.30938, -80.7423), 125.13 (35.30938,-80.74230), 126.75 1.96 1.62
(35.30936, -80.7423), 127.56 (35.30937,-80.74231), 131.96 2.16 4.4
(35.30935, -80.7423), 130.44 (35.30936,-80.74232), 130.48 2.65 0.04
(35.30934, -80.7423), 130.06 (35.30935,-80.74233), 132.48 1.83 2.42

Figure 5.6: Original GPS readings.

55

Figure 5.7: Kalman filtered every 500ms.

Based on these readings the Kalman estimates and the original GPS readings were

stored in a file to verify the correctness. The original GPS readings can be seen in the

Figure 5.6. The accelerometer data was sent once every 50milliseconds and the GPS

data once every second. The Kalman filtered readings based on both these sensors

were plotted once every 500milliseconds. The Kalman readings were plotted in blue

and the GPS readings in red. The Kalman was able to predict points in between

GPS readings as seen in Figure 5.7. After testing the system in a straight line, the

next step was to get results on a path involving some turns. For this purpose, the

navigation system, and mobile phone were steered across a trail as seen in Figure

56

Figure 5.8: Testing environment for the straight path.

57

Figure 5.9: Navigation System vs Mobile phone readings on a trail.

Figure 5.10: Heading angle comparison.

5.9. The red dots indicate the mobile phone positions, the red dots indicate the

navigation system positions, and the blue dots indicate the Kalman filtered readings

which were outputted every 500 milliseconds. Distance between these points was

calculated using the Haversine formula, and then plotted on a map. The Kalman

58

Figure 5.11: The trail where the Kalman filtering was tested.

59

Figure 5.12: Distance calculation on Google Map.

Figure 5.13: Start of the code.

60

Figure 5.14: Reading when near the waypoint.

filtered readings can be seen plotted between the GPS module readings as expected,

and smoothing the GPS module data jumps. The heading angle difference between

the Navigation System, and Mobile Phone is shown in 5.10, and were found to be

very similar with a deviation of about 15 degrees max. Once the system was tested

with a straight path, and a turning path, the distance calculation, and steering angle

determination was integrated into the code. The path was first put on Google maps to

61

Figure 5.15: The location where the system was tested for GPS outages.

62

Figure 5.16: Results obtained from the system when GPS was manually switched off.

get the distance as seen in Figure 5.12. The code was then run by moving along that

path. The beginning of the code can be seen in Figure 5.13. The distance displayed

by the Raspberry Pi seemed to match the distance showed on Google maps. The

code only displays the data during Kalman update stage as printing every 50ms is

not ideal. A screenshot of the system display when it reaches near the waypoint can

be seen in Figure 5.14. The next test was to check how the system works when the

GPS module doesn’t output data. For this, the GPS was disconnected manually for

roughly 4 to 5 seconds and the Kalman filter was still able to predict the position

using accelerometer. This can be seen in the Figure 5.16. This testing was done in

63

an environment seen in Figure 5.15.

CHAPTER 6: CONCLUSION

The aim of this Thesis was to build a navigation system and a standardized API

library that can be used to make an ATV autonomous. The initial phase of the

work was to understand the previous work, and control the actuators with embedded

boards. The BSL built using just API calls proved very useful for debugging during

this initial phase. The modularity added by the BSL was demonstrated when a switch

in the controller board was made, and the only change needed to be made was the

way the registers were accessed. The API library was built in such way that only

the base register access layer and the communication protocols was dependent on

the embedded board used. Higher level libraries like those used for CAN bus, brake,

throttle and the navigation system were independent of the embedded platform used.

The next step was to build a navigation system using this BSL. A GPS sensor,

and INS system was used for this purpose. The NMEA frames received from the

GPS were studied, and the ones not useful for this application were disabled. A

parsing mechanism was implemented that would extract the desired data from the

NMEA frames enabled. Using this, the position, and speed were obtained from the

GPS module. The methods for distance calculation were studied, and tested for

their accuracy, and memory usage on the MSP430. The Haversine formula, and

the Vincenty formula were used to obtain distance between two GPS points and

their outputs were compared to Google maps. The Haversine formula proved to give

accurate readings for the distance the waypoints were assumed to be under. The

Haversine formula also wasn’t computation heavy like the Vincenty formula. Bearing

angle from the ATV to the waypoint was also determined and tested.

For the IMU, the BNO055 was chosen to avoid dealing with a lot of floating point

65

math in the microprocessor. While the BNO055 performs its own sensor fusion on a

ARM Cortex M0 processor, there were still errors associated with their Euler angles.

To avoid this, the Quaternion output was used and converted to rotational matrix in

the MSP430. While the GPS sensor and the INS in general were a popular choice for

navigation, the results were very noisy.

To make the system efficient, a Kalman filter was implemented by using accelerom-

eter values to estimate positions. For this purpose, the accelerometer values were con-

verted to an absolute Earth-referenced form such that they provide the same values in

any orientation. Making the accelerometer orientation independent was to make sure

the modules remained interchangeable. Once the Kalman filter was studied, the next

step was to determine error of the sensors to input into the filter. The accelerometer

was kept stationary and the Earth-referenced readings on each axis were taken. While

the expected output was 0 on each axis, the actual output values ranged from -0.09

to +0.09. For the GPS, while the GPS errors are broadcast in the GPGST field for

costly receivers, this field was found to be absent from the Adafruit’s GPS module.

However, the datasheet mentioned the GPS readings to be accurate up to 3 meters

50 % CEP. This was used in error matrix for the GPS. The accelerometer data was

received at 20Hz and the GPS data was received every 1Hz. Prediction was made

every 50ms, i.e., every time the acceleration data was received. However, the Kalman

output was set to once every 500s. The accelerometer data suffers from drift over-

time. This is why only the accelerometer couldn’t be used to predict position. The

GPS data outputted every 1 second is used to update the Kalman filter. Although

the GPS data is noisy, the errors do not compound overtime. The whole Kalman

filtered system was tested outdoors with real-time data and smoother positions were

observed when compared to the GPS readings. The Kalman filter was also able to

predict positions in between GPS readings fairly accurately.

66

REFERENCES

[1] K. Cheung, “World’s Top 33 Companies Working on Self
Driving Cars.” https://algorithmxlab.com/blog/2018/12/14/
worlds-top-33-companies-working-on-self-driving-cars/, Dec. 2018.

[2] A. Hawkins, “Toyota’s e-Palette is a weird, self-driving modular
store on wheels.” https://www.theverge.com/2018/1/8/16863092/
toyota-e-palette-self-driving-car-ev-ces-2018, Jan. 2018.

[3] B. Merrill, “Disabled Americans deserve the benefits of self-driving
cars.” https://thehill.com/blogs/congress-blog/technology/
407362-disabled-americans-deserve-the-benefits-of-self-driving-cars,
Sept. 2018.

[4] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, et al., “Towards fully autonomous driving: Systems
and algorithms,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 163–
168, IEEE, 2011.

[5] J. Zhao, B. Liang, and Q. Chen, “The key technology toward the self-driving car,”
International Journal of Intelligent Unmanned Systems, vol. 6, no. 1, pp. 2–20,
2018.

[6] K. Angelova, “US-Mexico Border Patrol Agents Have
Sweet Rides.” https://www.businessinsider.com/
us-mexico-border-patrol-uses-cool-atvs-2013-4, Apr. 2013.

[7] A. Speier, “Patient Access and ATV.” https://www.firerescuemagazine.com/
articles/print/volume-8/issue-3/vehicle-operation-and-apparatus/
patient-access-atvs.html.

[8] D. Murphy, “The Safe Use of ATVs in Agriculture.” https://extension.psu.
edu/the-safe-use-of-atvs-in-agriculture, June 2014.

[9] J. Darukhanawala, “Honda Showcases Self-driving ATV Concept.”
https://www.zigwheels.com/news-features/news/hondas-new-autonomous-
atv-concept-to-aid-largescale-operations-unveiled-at-2019-ces/32717/, Jan.
2019.

[10] T. Ort, L. Paull, and D. Rus, “Autonomous Vehicle Navigation in Rural Envi-
ronments without Detailed Prior Maps,” in International Conference on Robotics
and Automation, 2018.

[11] D. Silver, “Self-Driving Cars; CAN Bus.” https://medium.com/
self-driving-cars/can-bus-22024d35ce63, July 2016.

67

[12] W. Rahiman and Z. Zainal, “An overview of development GPS navigation for
autonomous car,” in 2013 IEEE 8th Conference on Industrial Electronics and
Applications (ICIEA), pp. 1112–1118, IEEE, 2013.

[13] F. Beainy and S. Commuri, “Development of an autonomous ATV for real-life
surveillance operations,” in 2009 17th Mediterranean Conference on Control and
Automation, pp. 904–909, IEEE, 2009.

[14] D. Li, “Research on applications of LBS based on electronic compass assisted
GPS,” in 2009 International Symposium on Information Engineering and Elec-
tronic Commerce, pp. 599–602, IEEE, 2009.

[15] R. A. McKinney, M. J. Zapata, J. M. Conrad, T. W. Meiswinkel, and S. Ahuja,
“Components of an autonomous all-terrain vehicle,” in Proceedings of the IEEE
SoutheastCon 2010 (SoutheastCon), pp. 416–419, IEEE, 2010.

[16] A. Cortner, J. M. Conrad, and N. A. BouSaba, “Autonomous all-terrain vehicle
steering,” in 2012 Proceedings of IEEE Southeastcon, pp. 1–5, IEEE, 2012.

[17] J. R. Henderson, J. M. Conrad, and C. Pavlich, “Using a CAN bus for control of
an All-terrain Vehicle,” in IEEE SOUTHEASTCON 2014, pp. 1–5, IEEE, 2014.

[18] K. H. Erian, S. Mhapankar, S. Gambill, and J. M. Conrad, “System Integra-
tion over a CAN Bus for a Self-Controlled, Low-Cost Autonomous All-terrain
Vehicle,” in IEEE SoutheastCon 2019, pp. 1–8, IEEE, 2019.

[19] “Honda, Technology.” https://www.honda.co.nz/about-honda/technology/.

[20] “MSP430.” https://www.ti.com/store/ti/en/p/product/?p=
MSP-EXP430F5529LP.

[21] “Model IMU, GPS, and INS/GPS.” https://www.mathworks.com/help/
fusion/gs/model-imu-gps-and-insgps.html.

[22] “What is GPS?.” https://www8.garmin.com/aboutGPS/.

[23] “Adafruit Ultimate GPS - One GPS to rule.” https://learn.adafruit.com/
adafruit-ultimate-gps/overview.

[24] “PA6H GPS Standalone Module Data Sheet.” https://cdn-shop.adafruit.
com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf.

[25] M. J. Caruso, “Applications of magnetoresistive sensors in navigation systems,”
tech. rep., SAE Technical Paper, 1997.

[26] D. DePriest, “GPS Data.” https://www.gpsinformation.org/dale/nmea.htm.

[27] R. W. Sinnott, “Virtues of the Haversine,” Sky Telesc., vol. 68, p. 159, 1984.

68

[28] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations,” Survey review, vol. 23, no. 176, pp. 88–93,
1975.

[29] C. Veness, “Vincenty solutions of geodesics on the ellipsoid.” https://www.
movable-type.co.uk/scripts/latlong-vincenty.html.

[30] H. Mahmoud and N. Akkari, “Shortest path calculation: a comparative study for
location-based recommender system,” in 2016 World Symposium on Computer
Applications & Research (WSCAR), pp. 1–5, IEEE, 2016.

[31] “Wikipedia - atan2.” https://en.wikipedia.org/wiki/Atan2.

[32] T. Zaman, “Calculating heading with tilted compass.” http://www.timzaman.
com/2011/04/21/heading-calculating-heading-with-tilted-compass/.

[33] W. Holder, “Calibrating the Compass.” https://sites.google.com/site/
wayneholder/self-driving-rc-car/calibrating-the-compass.

[34] Bosch Sensortech, BNO055 data sheet, 6 2016. Rev. 1.4.

[35] “Understanding Euler Angles.” http://www.chrobotics.com/library/
understanding-euler-angles.

[36] R. Curtis, “OA Guide to Map and Compass - Part 2.” http://www.princeton.
edu/~oa/manual/mapcompass2.shtml.

[37] “Magnetic Declination Estimated Value.” https://www.ngdc.noaa.gov/
geomag/calculators/magcalc.shtml.

[38] K. Shoemake, “Animating rotation with Quaternion curves,” in ACM SIG-
GRAPH computer graphics, vol. 19, pp. 245–254, ACM, 1985.

[39] M. Hughes, “Capturing IMU Data with a BNO055 Absolute Ori-
entation Sensor.” https://www.allaboutcircuits.com/projects/
bosch-absolute-orientation-sensor-bno055/.

[40] M. Amin, M. B. I. Reaz, M. Bhuiyan, and S. Sheikh Nasir, “Kalman filtered
GPS accelerometer based accident detection and location system: A low-cost
approach,” Current science, vol. 106, pp. 1548–1554, 06 2014.

[41] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe, “GPS/IMU data fusion
using multisensor Kalman filtering: introduction of contextual aspects,” Infor-
mation fusion, vol. 7, no. 2, pp. 221–230, 2006.

[42] H. Hermsen, “Using gps and accelerometer data for rowing race tracking,” Dept
of Artificial Intelligence, 2013.

[43] G. Czerniak, “Kalman Filter Guide.” http://greg.czerniak.info/guides/
kalman1/.

69

[44] C. Veness, “Calculate distance, bearing and more between Latitude/Longitude
points.” https://www.movable-type.co.uk/scripts/latlong.html.

70

APPENDIX A: APIs

Input/Output Code APIs are as follows:

1 void pinSetIP (unsigned i n t port , i n t pin) ; // Sets a pin in

input mode .

2 void gpioSetIP (unsigned i n t port , i n t pin) ; // Sets a pin in

gpio input mode .

3 i n t gpioGetVal (unsigned i n t port , i n t pin) ; // Gets the value

o f a pin .

4 void pinSetOP (unsigned i n t port , i n t pin) ; // Sets a pin in

output mode .

5 void gpioSetOP (unsigned i n t port , i n t pin) ; // Sets a pin in

output GPIO mode .

6 void gpioSetVal (unsigned i n t port , i n t pin , i n t va l) ; // Sets

an output pin as high or low depending on the value .

7 void p inSe tO f f s e tS e t (unsigned i n t port , i n t pin , i n t o f f s e t) ;

// Sets the r e g i s t e r o f f s e t f o r a p a r t i c u l a r port ’ s pin .

8 void p inSe tO f f s e tC l ea r (unsigned i n t port , i n t pin , i n t o f f s e t

) ; // Clear s the r e g i s t e r o f f s e t f o r a p a r t i c u l a r port ’ s

pin .

9 unsigned i n t p inSetOf f se tGet (unsigned i n t port , i n t pin , i n t

o f f s e t) ; // Gets the r e g i s t e r o f f s e t va lue f o r a

p a r t i c u l a r port ’ s pin .

10 void pinClearSEL (unsigned i n t port , i n t pin) ; // Clear s the

pin ’ s SEL r e g i s t e r .

11 void pinSetSEL (unsigned i n t port , i n t pin) ; // Sets the pin ’ s

SEL r e g i s t e r .

12 void pinSetREN(unsigned i n t port , i n t pin) ; // Sets the pin ’ s

71

REN r e g i s t e r .

13 void pinClearREN (unsigned i n t port , i n t pin) ; // Clear s the

pin ’ s REN r e g i s t e r .

14 void p inSetPu l l (unsigned i n t port , i n t pin , i n t mode) ; //

Sets the pin as a pul lup or pulldown .

15 void pinSetPWM(unsigned i n t port , i n t pin) ; // Sets a pin in

pwm mode by s e t t i n g the SEL r e g i s t e r , pe r iod and c l o ck .

16 void pwmSetDuty(unsigned i n t dutycyc l e) ; // Changes dutycyc l e

by s e t t i n g CCR1 r e g i s t e r .

Watchdog Timer Code APIs are as follows:

1 void wdtHold (void) ; // Holds the watchdog t imer .

2 void wdtStart (void) ; // S ta r t s the watchdog t imer by c l e a r i n g

the hold .

3 void wdtIn i t (i n t i n t e r v a l) ; // I n i t i a l i z e s the watchdog t imer

but doesn ’ t s t a r t i t .

4 void wdtResetTimer (void) ; // Resets the watchdog counter to

prevent r e s e t .

SPI Code APIs are as follows:

1 void sp iMas t e r In i t (void) ; // I n i t i a l i z e s the SPI as master .

2 void s p i S l a v e I n i t (void) ; // I n i t i a l i z e s the SPI as s l av e .

3 void sp iMas te rP in In i t (void) ; // Sets SEL & SEL2 to USCI mode

f o r MISO, MOSI & CLK. Sets SS pin to low .

4 void sp i S l a v eP i n I n i t (void) ; // Sets SEL & SEL2 to USCI mode

f o r MISO, MOSI & CLK.

5 void spiMasterConfigureCR (void) ; // Conf igures the SPI

con t r o l r e g i s t e r s to 3−pin , 8−b i t SPI master , sync by

72

c l o ck ; enable i n t e r r up t s .

6 void spiSlaveConf igureCR (void) ; // Conf igures the SPI con t r o l

r e g i s t e r s to 3−pin , 8−b i t SPI s lave , sync by c l o ck ;

enable i n t e r r up t s .

7 void s p i S e l e c t S l a v e (void) ; // Sets the SS pin to low to

s e l e c t the s l av e .

8 void sp iDe s e l e c t S l av e (void) ; // Sets the SS pin to high to

d e s e l e c t the s l av e .

9 uint8_t spiTransmitData (char data) ; // Checks i f TX bu f f e r i s

ready and then s e t s the UCA0TXBUF r e g i s t e r with the data

to send . Reads the RX r e g i s t e r to avoid overrun e r r o r .

10 void spiCheckTxReady (void) ; // Checks the UCTXIFG f l a g f o r

i n t e r r up t .

11 uint8_t spiRece iveData (void) ; // Gets the r e c e i v ed charac t e r

from UCRXBUF.

12 void spiCheckUSCI (void) ; // Checks the UCSTAT sta tu s r e g i s t e r

to make sure i t i s n ’ t busy .

I2C Code APIs are as follows:

1 void i2cConfigureCR (uint8_t add) ; // Conf igure the con t r o l

r e g i s t e r s to func t i on as I2C as master and s e t the c l o ck .

2 void i 2 c I n i t (uint8_t add) ; // I n i t i a l i z e the p ins and con t r o l

r e g i s t e r s and s e t ’ s the s l av e address .

3 uint8_t i2cRead (void) ; // Reads the RXBUF to get data sent

from s l av e .

4 void i2cWrite (uint8_t data) ; // Write to the TXBUF

5 void i2cSendStartTx (void) ; // Put the master in Tx mode and

73

send s t a r t cond i t i on .

6 void i2cSendStartRx (void) ; // Put the master in Rx mode and

send s t a r t cond i t i on .

7 void i2cSendStop (void) ; // Sends stop cond i t i on to stop I2C

communication

UART Code APIs are as follows:

1 void u a r t I n i t (void) ; // I n i t i a l i z e s the UART at with a baud

ra t e o f 9600 with p ins s p e c i f i e d in the RX & TX

p ind e s c r i p t o r .

2 void ua r tP in In i t (void) ; // Sets the p ins RX and TX SEL

r e g i s t e r .

3 void uartConfigureCR (void) ; // Conf igures the USCI r e g i s t e r

f o r c l o ck and baud ra t e .

4 void uartCheckTxReady (void) ; // Returns when TX bu f f e r i s

ready .

5 void uartCheckRxReady (void) ; // Returns when RX bu f f e r i s

ready .

6 uint8_t uartReceiveChar (void) ; // I f uartCheckRxReady

returns , r e turn the data in the RX bu f f e r .

7 void uartTransmitChar (uint8_t data) ; // I f uartCheckTxReady

returns , sends a cha rac t e r v ia UART.

GPS Code APIs are as follows:

1 void gp s I n i t (void) ; // I n i t i a l i z e s the s t r u c t u r e s to zero and

i n i t i a l i z e s UART.

2 void i n i t S t r u c t (s t r u c t gps_struct ∗gp) ; // Zeros out a l l the

e lements o f the gps s t r u c tu r e .

74

3 void initGGAStruct (s t r u c t gpgga_struct∗ gp) ; // Zeros out a l l

the e lements o f the gpgga s t r u c tu r e .

4 void initRMCStruct (s t r u c t gprmc_struct∗ gp) ; // Zeros out a l l

the e lements o f the gprmc s t r u c tu r e .

5 uint8_t gpsParseGGA(void) ; // Parses GPGGA UART message and

updates the gga s t r u c tu r e with time , l a t , l a t d i r e c t i on ,

long , long d i r e c t i o n and f i x qua l i t y .

6 uint8_t gpsParseRMC(void) ; // Parses GPRMC UART message and

updates the rmc s t r u c tu r e with la t , l a t d i r e c t i on , long ,

long d i r e c t i on , speed , course and s t a tu s .

7 s t r u c t gps_struct gpsReadNMEA(void) ; // Reads GPGGA & GPRMC

messages . Returns gps s t r u c tu r e o f both data merged .

8 s t r u c t gps_struct gpsReadNMEAGGA(void) ; // Reads only the

GPGGA message , pa r s e s i t and updates the gps_struct with

speed = 0 . 0 . Takes 1 second .

9 void gpsConvertData (double ∗ l a t i t ude , char ns , double ∗

l ong i tude , char we) ; // Convert la t , long from degree s to

decimal .

10 double gpsCovertToDec (double deg_point) ; // Converts degree s

passed to dec imals .

11 double gpsGetDistance (s t r u c t gps_struct ∗ a , s t r u c t gps_struct

∗ b) ; // Gets the d i s t anc e between two l a t long po in t s

us ing have r s ine formula .

12 double gpsGetBearing (s t r u c t gps_struct ∗ a , s t r u c t gps_struct ∗

b) ; // Ca l cu l a t e s the bear ing ang le from point a to b .

13 uint8_t gpsGetSeconds (s t r u c t gps_struct ∗ prev , s t r u c t

gps_struct ∗ curr) ; // Gets time d i f f e r e n c e between two

75

d i f f e r e n t r ead ings .

IMU Code APIs are as follows:

1 void bno055In i t (void) ; // I n i t i a l i z e s the I2C with the address

o f BNO055 , s e t s to normal power mode and then NDOF fu s i on

mode .

2 void bno055WriteReg (uint8_t reg , uint8_t data) ; // Writes a

cha rac t e r to a r e g i s t e r v ia I2C .

3 uint8_t bno055ReadReg (uint8_t reg) ; // Read a charac t e r from

a r e g i s t e r v ia I2C .

4 void bno055SetMode (uint8_t mode) ; // Sets the mode o f BNO055 .

5 void bno055SetExtCrystalUse (uint8_t u s ex ta l) ; // Sets the

ex t e rna l c r y s t a l use to e i t h e r 1 or 0 .

6 uint8_t bno055GetCalStat (void) ; // Gets the c a l i b r a t i o n

s t a tu s o f the a l l the s en so r s and system .

7 void bno055GetCalData (o f f s e t_data ∗ data) ; // Get o f f s e t

r e g i s t e r data . Used to read c a l i b r a t i o n p r o f i l e .

8 void bno055SetCalData (o f f s e t_data ∗ data) ; // Sets o f f s e t

r e g i s t e r data . Used to s t o r e c a l i b r a t i o n p r o f i l e .

9 void bno055GetEuler (euler_data ∗data) ; // Reads the eu l e r

r e g i s t e r data . Div ides by 16 .0 to convert as 1 degree = 16

LSB .

10 void bno055GetQuat (quat_data ∗data) ; // Reads the quatern ion

r e g i s t e r data . Div ides by 2^14 to convert to quatern ion

un i t s . Also conver t s i t to yaw , p i t ch and r o l l .

11 void bno055GetLinearAcc (acc_data ∗data) ; // Reads the l i n e a r

a c c e l e r a t i o n r e g i s t e r data . Div ides by 100 .0 as 1 m/ s^2 =

76

100 LSB .

12 void bno055GetRefAcc (quat_data data , acc_data l i n e a r a c c e l ,

acc_data ∗ ref_data) ; // Converts a c c e l e r a t i o n to earth−

r e f e r en c ed a c c e l e r a t i o n .

13 void bno055GetRawAcc (acc_data ∗data) ; // Reads the raw

a c c e l e r a t i o n r e g i s t e r data . Div ides by 100 .0 as 1 m/ s^2 =

100 LSB .

14 void bno055SetPower (uint8_t mode) ; // Sets the power mode o f

BNO055 .

