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ABSTRACT

SAUMYA KANDARP MANIAR. Randomized Numerical Linear Algebra for Kernel
Matrix Compression. (Under the direction of DR. DUAN CHEN)

Matrices are used significantly as a medium to store data in many applications like

Data Science, Computer Science, Statistics, and Applied Mathematics. Matrix com-

putations like matrix multiplication, matrix inversion, eigenvalue decomposition, sin-

gular value decomposition are very substantial in real-world applications. Unfortu-

nately, many of these matrix operations are so time and memory expensive that they

are prohibitive when the scale of data is large. Sometimes, when the data has a large

amount of meaningless information called noise, machine-precision matrix operations

are not necessary, and one can sacrifice a reasonable amount of accuracy for com-

putational efficiency. In addition to the applications mentioned above, in Machine

Learning, Linear Algebra, Partial Differential Equations, and Optimization, the data

usually boils down to an m×n matrix A, and often it is very helpful to derive matrix

approximations to our original matrix A when our data is seemingly unmanageable.

We try to get an approximation matrix Ak which has a particular rank k (consider-

ably smaller than m and n), in other words, low-rank approximation. Methods like

Singular Value Decomposition and QR Decomposition can be used to achieve such

matrix approximations. But, such algorithms usually take a lot of time (superlinear

in the number of nonzero elements of the matrix). We want to optimize our algo-

rithms to be used in various applications where data sets are framed by extremely

large matrices.

So, in this thesis, we primarily focus on applying a new approach called Random-

ized Numerical Linear Algebra. We will introduce two different methods, the first

method known as Random projections and the second known as Random Sampling.

Random projections have recently emerged as a powerful method for dimensionality
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reduction. We will present some experimental results carried out on matrices gener-

ated by Kernel functions and work on a specific type of kernel function called Green’s

function. We will try to execute low-rank approximation on them using Randomized

Numerical Linear Algebra and show some approximation errors to better understand

the nature of the new approach known as RandNLA. We will try to show that using

a sparse random matrix gives additional computational savings. By projecting the

data onto a random lower-dimensional subspace yields results comparable to conven-

tional dimensionality reduction methods such as SVD and QR: the similarity of data

vectors is preserved well under random projection. This approach is computationally

significantly less expensive than the conventional approach.

Keywords: Singular value decomposition, Rank, QR decomposition, Spectral

norm, Frobenius norm, Complexity, Taylor series approximation, Column selection,

Randomized algorithms, Random projections, Random Sampling, Leverage Score

Sampling, Randomized SVD.
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CHAPTER 1: INTRODUCTION

1.1 Purpose of research

In the field of Data Science, Computer Science, Statistics, and Applied Mathemat-

ics, the heavy volume of aggregating information is becoming a tedious task, and the

ability to collect, store, and manage large data sets is challenging. This demands

faster and better algorithms in order to extract and interpret important information

from different data sets. A lot of times, we express our data in the form of an m× n

matrix A, and it can be burdensome to work on matrix computations if m and n are

seemingly large (> 106).

Often it is very helpful to get matrix approximations to our original matrix A,

i.e., we try to get an approximation which has a particular rank k, considerably

smaller thanm and n, in other words, low-rank approximation. Methods like Singular

Value Decomposition and QR Decomposition can be used to achieve such matrix

approximations. But such algorithms usually take a lot of time which is superlinear

(An algorithm which has time complexity greater than O(n) is said to have a super-

linear complexity) in the number of nonzero elements of the matrix (O(n3) operations

are required for n×n matrices). We want to optimize our algorithms and our goal is

to bring the time complexity down to O(n2), so it can be useful in applications where

data sets are framed by extremely large matrices.

So, in this thesis, we primarily focus on a new approach called Randomized Nu-

merical Linear Algebra and we will introduce two methods (1). Random projections

and (2). Random Sampling, and present some experimental results carried out on

matrices generated by kernel functions. Random projections have recently emerged

as a powerful method for dimensionality reduction.
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We will discuss kernel functions and how we can approximate them using low-rank

approximation. We will show some experimental results and approximation errors to

better understand the nature of the new approach commonly known as RandNLA.

We will try to show that using a sparse random matrix gives additional computational

savings and show that projecting the data onto a random lower-dimensional subspace

yields results comparable to conventional dimensionality reduction methods such as

SVD and QR: the similarity of data vectors is preserved well under random projection.

This approach is computationally significantly less expensive than the conventional

approach. We show that experimentally with Random projection.

Big Data applications suffer from performance issues [1]. We will describe a faster

way of performing Singular Value Decomposition, by approximating the matrix of

interest with a low-rank one, which is computationally easier to deal with. This

will be done by using algorithms to sample a set of relevant columns from the total

number of columns of the matrix of interest and then constructing the approximation

from these sampled columns. We choose some random matrix independent of the

data set, multiply with the data set, and get a randomized compression. From this

compression, we can still extract enough information to do some sort of reasonable

data analysis.
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1.2 Low-rank approximation and its applications

Let A be an m×n matrix. Let k << min(m,n). If A satisfies any of the following

conditions,

1. The columns of A span a subspace of Rm of dimension k.

2. The rows of A span a subspace of Rn of dimension k.

then low-rank approximation of A means

A
m×n
≈ B

m×k
C
k×k

D
k×n

(1.1)

A
m×n
≈ B

m×k
D′
k×n

(1.2)

The storage of an m×n matrix A needs mn locations; however, the reduced matrix

Ak, only requires mk+nk locations for storage, which can cause significant reduction

when k is small. There are a number of areas where low-rank approximation finds

applications. Some of them are listed below.

Applications of Low-rank approximation

Image Compression

An image can be illustrated by an m × n matrix A whose (i, j)th entry is related

to the brightness of the pixel (i, j). The purpose behind Image Compression is to

compress the image illustrated by a large matrix to a new matrix which corresponds

to a lower-order rank approximation. The quality of the image is tolerable here [2].

Image Restoration

The goal of Image Restoration is to return the original image from a blurry image

corrupted by noises. These noises represent the smaller or unimportant singular

values, and their removal can result in the rank-k approximation of A which leads to

noise-free images. The need for Image Restoration is seen in practical applications
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like clinical diagnosis [2].

Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an approach for analyzing a collection of docu-

ments that are supposedly connected. Latent refers to "hidden" and so this method

tries to extract the latent features from that data set which cannot be directly mea-

sured. Suppose we have a raw text data. The Latent Semantic Indexing begins with

generating an m× n document-term matrix, where m is the document each contain-

ing n terms, and Aij is the frequency of the jth term in the ith document. The

notion behind this matrix is that text documents can be represented as points in the

Euclidean space. The second step is to do Singular Value Decomposition to find the

set of best k terms that describe the documents relating to the k singular vectors of

A and remove the rest of the noise in terms of the extra word usage[3].
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1.3 Review of relevant background

Vector norms

Let x ∈ Rn. Suppose xi, where i = 1, 2, ..., n, is the ith element of x. Then the

default norm for vectors is the Euclidean norm, namely the l2 norm is given by

||x|| =

(
n∑
i=1

x2i

)1/2

(1.3)

And in general the lp norm is given by

||x||p =

(
n∑
i=1

|xi|p
)1/p

(1.4)

Matrix norms

Let A be an m × n matrix, where A(i, j) is the entry in the ith row and the jth

column, respectively. Then the Frobenius norm of A is defined as

||A||F =

(
m∑
i=1

n∑
j=1

|A(i, j)|2
)1/2

(1.5)

and the spectral norm is given by

||A||2 = max
x 6=0

||Ax||2
||x||2

(1.6)

Matrix and vector norms provide us with a sense of measure of the matrix and the

vector respectively. We want to be as close as possible to this optimal value when we

use our algorithms [1].
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Singular Value Decomposition

Suppose we have an m × n matrix A and r = rank(A). The Singular Value De-

composition (SVD) is a factorization of a matrix into two orthogonal matrices and a

diagonal matrix. The Singular Value Decomposition of A is

A = UΣV T =
r∑
i=1

σiuiv
T
i (1.7)

where U ∈ Rm×r and V ∈ Rr×n are orthogonal matrices and Σ ∈ Rr×r is a diagonal

matrix with r = rank(A). The r diagonal entries of the matrix Σ are denoted by σi,

for i = 1, 2, ..., r , where r = min(m,n) and σi are called the singular values of A.

The singular values satisfy the property σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0 [4].

The best rank-k approximation of A (UΣkV
T ) can be denoted as

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k (1.8)

QR Decomposition

QR decomposition gives out an orthogonal matrix and an upper triangular matrix.

Let A be an m× n matrix with m ≥ n. The QR decomposition of A is

A = QARA, QA ∈ Rm×n, RA ∈ Rn×n (1.9)

The columns of QA are orthonormal, i.e., QT
AQA = I, and the matrix RA is upper

triangular, i.e., for all i < j,Rij = 0 [4].

Big-Oh Notation

The Big-Oh notation tells us about the efficiency of an algorithm. It gives us the

complexity in terms of time and space. When we talk about Big-Oh notation, we are

usually talking about the worst-case scenario. A trend in the speed of algorithms is
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shown here.

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(2n) < O(n!)

In simple words, Big-Oh notation is used to classify algorithms based on the number

of operations, conditions or comparisons[5].

Time and memory complexities

Time complexities: For an m×n matrix A and an n×k matrix B, the operation

AB leads O(mnk) float operations in general. For QR decomposition and SVD with

an m× n matrix, it will be O(mn2).

Memory complexities: For an m × n matrix A, the storage required is O(mn)

locations.



CHAPTER 2: METHODOLOGY

2.1 Idea behind Matrix Sketching

Matrix Sketching is a straightforward and systematic method to reduce the columns

of a matrix by accepting a small amount of error compared to the original matrix.

We will later introduce two methods of matrix sketching: (1). Random projections

and (2). Random Sampling.

We choose some random matrix independent of the data set, multiply with the

original matrix, and get a randomized compression. From this compression we can

still extract enough information to do some sort of reasonable data analysis. Suppose

A ∈ Rm×n is a matrix.

C
m×s

= A
m×n

S
n×s

(2.1)

where S ∈ Rn×s is a sketching matrix.

Theoretical properties

The sketching matrix is beneficial if it possesses any of the two properties mentioned

below:

Subspace Embedding

For a fixed m × n (m << n) matrix A and any m-dimensional vector y, the

inequality given below holds with high probability

1

γ
≤ ||y

TAS||22
||yTA||22

≤ γ (2.2)

where S ∈ Rn×s (s << n) is a certain sketching matrix. Intuitively, for all n dimen-

sional vectors x in the row space of A (a rank m subspace within Rn), the length of
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vector x does not change much after sketching: ||x||22 ≈ ||xS||22 [4].

Low-rank approximation

Let A be any m× n matrix and k be any positive integer far smaller than m and

n. Let C = AS ∈ Rm×s, where S ∈ Rn×s is a certain sketching matrix and s ≥ k.

The Frobenius norm error bound given below holds with high probability for some

η ≥ 1

||A− CC†A||2F ≤ η||A− Ak||2F (2.3)

Intuitively, the low-rank approximation property represents that the columns of Ak

are almost in the column space of C = AS. This property helps us in solving the

k-SVD more effectively for (k ≤ s) which will be shown later in this thesis [4].
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2.1.1 Random projections

Random projections have recently emerged as a powerful method for dimensionality

reduction. It is a simple and computationally efficient way to reduce the dimension-

ality of data by giving a small amount of error for faster processing times and a

manageable size of data.

We will present some experimental results on using Random projections as a di-

mensionality reduction tool in a number of cases, where the high dimensionality of

the data would otherwise lead to burdensome computations. We show that project-

ing the data onto a random lower-dimensional subspace yields results comparable to

conventional dimensionality reduction methods such as SVD. The similarity of data

vectors is preserved well under random projections.

The idea behind Random projections comes from the Jhonson-Lindenstrauss lemma.

The lemma states that any n points in high dimensional Euclidian space can be ran-

domly projected onto (k = O( logn
ε2

))-dimensional Euclidean space, where the pairwise

distance between any two points changes only by a factor not more than (1 ± ε),

where ε ∈ (0, 1). This is a very useful dimensionality reduction tool [6].

The lemma: For any 0 < ε < 1 and any integer n, let k be a positive integer such

that

k ≥ 4(ε2/2− ε3/3)−1 lnn (2.4)

then for any set V of n points in Rd, there is a map f : Rd → Rd such that for all

u, v ∈ V ,

(1− ε)|| u− v ||2 ≤ || f(u)− f(v) ||2 ≤ (1 + ε)|| u− v ||2. (2.5)

The reader interested in understanding the proof is advised to refer to [6].

We will introduce the basic MATLAB code to perform Random projection on

a matrix and obtain a high-quality sketch of A. This method is called Gaussian

projection.
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MATLAB code:

function [C] = GaussianProjection(A, s)

n = size(A, 2);

S = randn(n, s) / sqrt(s);

C = A * S;

The time cost for this code is O(mns). It is easy to implement and gives us a

high-quality sketch of A. It is interesting to note that the time complexity can be

very high when m and n are comparatively larger. And the C matrix will result in a

dense matrix even if A is sparse [4].

Now, we will put up some basic algorithms to further work from the Random pro-

jections to obtain a low-rank approximation of the matrix A. Algorithm 1 is proposed

by [7] and then we propose two similar but much simpler algorithms.

Algorithm 1:

Step - 1: Input: an m× n matrix A and the target rank k.

Step - 2: Draw an n× s sketching matrix S

Step - 3: C = A ∗ S;

Step - 4: QR Decomposition: [QC ,RC ] = qr(C), where QC ∈ Rm×s, C ∈ Rm×s

Step - 5: k−SVD: [ Ū
s×k

Σ̃
k×k

Ṽ
n×k

] = svds(QT
CA
s×n

, k);

Step - 6: Ũ = QCŪ ∈ Rm×k;

Step - 7: return ŨΣ̃Ṽ ≈ Ak.
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Algorithm 2:

Step - 1: Input: an m× n matrix A and the target rank k.

Step - 2: SVD: [UΣV T ] = svds(A, k);

Step - 3: Draw an n× s sketching matrix S

Step - 4: C = A ∗ S;

Step - 5: QR Decomposition: [QC ,RC ] = qr(C), where QC ∈ Rm×s, C ∈ Rm×s

Step - 6: U = QC ∈ Rm×k;

Step - 7: return UUTA ≈ Ak

Algorithm 3:

Step - 1: Input: an m× n matrix A and the target rank k.

Step - 2: SVD: [UΣV T ] = svd(A);

Step - 3: Draw an n× s sketching matrix S

Step - 4: C = A ∗ S;

Step - 5: QR Decomposition: [QC ,RC ] = qr(C), where QC ∈ Rm×s, C ∈ Rm×s

Step - 6: k−SVD: [UC
m×k

Σ
k×k

VC
s×k

] = svds( C
m×s

, k);

Step - 7: return UCUT
CA ≈ Ak.

Notice that the accuracy of the randomized k−SVD depends only on the quality

of the sketch matrix C. Suppose QC is the orthonormal basis of C and the column

space of C. The formal derivation of the algorithm can be found in [4].
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2.1.2 Random Sampling

Unlike Random projection, Random Sampling selection does not require to look for

each and every record of the matrix A, and it preserves the important properties of A.

Majorly Randomized Numerical Linear Algebra research pays attention to sketching

a matrix by keeping only a few of its rows and/or columns [8]. We are going to talk

about a Random Sampling technique known as Leverage Score Sampling.

This method reveals influential rows and columns of a matrix. By influential we

mean, for the rows and columns being picked they give better approximations while

working with singular vectors and singular values.

Leverage scores are basically statistic and in the algorithms that we will work, we

use them as a sampling probability, so we will only keep scores with high probability,

and we will check whether it gives us interesting results [4].

Before talking about the sampling method, we would like to discuss what leverage

scores are. Suppose we have an m×n matrix A, with r = rank(A) < n, and V ∈ Rn×r

contains the right singular vectors, and let vi denote the ith row of the matrix V as

a row vector. The column leverage scores of A can be defined as a row vector.

li = ||vi||22, for i = 1, 2, · · · , n (2.6)

Similarly, the row leverage scores of A will be

pj = ||uj||22, for j = 1, 2 · · · ,m (2.7)

for the left singular vectors U ∈ Rm×r, uj denote the jth row of the matrix U as a

row vector.

Leverage score sampling is a way to select rows/columns of A with probability pro-

portional to its leverage scores. MATLAB code performing Leverage Score Sampling
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according to column leverage scores can be seen below. It gives a new matrix C

which has significantly reduced columns, therefore occupying less space compared to

the matrix A yet maintaining important properties of the original matrix.

MATLAB code[4]:

function [C, idx] = LeverageScoreSampling(A, s)

n = size(A, 2);

[ , ,V] = svds(A, k)

leverage scores = sum(V2, 2);

prob = leveragescores/sum(leveragescores);

idx = randsample(n, s, true, prob);

idx = unique(idx); C = A(:, idx) ;

Algorithm: This algorithm is inspired by combining the works of [4] and [3].

Given a matrix A ∈ Rm×n, our primary goal is to estimate the top k singular values

and the complementary singular vectors in a constant number of passes through the

data.

Input: A ∈ Rm×n, s, k ∈ Z+, such that, 1 ≤ s ≤ n, {pi}ni=1, such that pi ≥ 0 and∑
i pi = 1

Output: Hk ∈ Rm×k and σt(C), t = 1, · · · , k

1. [∼,∼, V ] = svds(A, k)

2. Compute leverage scores (column): li = ||vi||22;

3. Generate probability distribution of the leverage scores: pi = li∑
i li
;
∑

i pi = 1

4. Randomly sample the columns according to the probability distribution pi: s =

randsample(n, s, true, pi)

5. Eliminate duplicate columns: s = unique(s)

6. C = A(:, s); such that C ∈ Rm×s
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7. Compute CTC and its SVD; say CTC =
∑s

t=1(C)ytyt
T
.

8. Compute ht = Cyt/σt(C); for t = 1, · · · , k.

9. Return Hk, where H
(t)
k = ht, and σt(C), t = 1, · · · , k.

10. Return H(t)
k H

(t)T
k A ≈ Ak.

The additional time and additional space will be O(s2m + s3) and O(ms + s2)

respectively. The plan here is to pick s columns of the matrix A by Leverage Score

Sampling, and generate a new matrix C. Later on, we will compute the matrix CTC

and its SVD to find the right singular vectors of C, and from that point, we compute

the singular values and left singular vectors of C which will be approximations to

singular values and left singular vectors to the matrix A.

We then compute the Hk matrix in order to get the rank-k approximation of the

original matrix. But Leverage score sampling can be as expensive as SVD, so it is

a drawback of this method [4]. This algorithm can be easily implemented in the

MATLAB software.



CHAPTER 3: APPLICATIONS AND RESULTS

In this section, we will talk about the kernel functions and give specific reasons

why we can use them to address low-rank approximation and show how we generate

our data set. In the end we will show some interesting results and figures after having

applied the algorithms.

3.1 Kernel functions

Kernel functions show a way to operate the data on the original space while pro-

jecting it into a higher dimensional space [9]. It allows us to retrieve important

information without computing the coordinates of the data in the original space but

by simply computing the inner products between the images of all pairs of data in the

feature space. Kernel functions give us a chance to operate computationally effective

than the original function for the computation of the coordinates. Examples of some

common kernel functions are:

• Polynomials of degree d

K(x, y) = (x · y)d (3.1)

• Polynomials of degree d

K(x, y) = (x · y + 1)d (3.2)

• Gaussian kernels

K(x, y) = exp(−||x− y||
2

2σ2
) (3.3)

An example of kernel function is Green’s function of the Laplace operator. We will

discuss upon that in detail shortly.
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3.2 Why kernel functions are compressible?

We will use the Taylor series approximation to understand how we can apply low-

rank approximation to kernel matrices. A Taylor series approximation uses a Taylor

series to represent an approximation for a function. If we know the function value at

some point xo, (f(xo)) and the value of the derivative at the same point, (fx(xo)), we

can use these to approximate f(x) for other points x. It is important to note here

that this approximation is acceptable when x is relatively near xo. This 1st-degree

Taylor Polynomial is also called the linear approximation of f(x) for x near xo and

is given by [10]:

f(x) ≈ f(xo) + fx(xo)(x− xo) (3.4)

In order to get a better approximation of f(x) for x near xo we can further ap-

proximate our function to a 2nd-degree Taylor polynomial of f(x) at x = xo, which

is known as the quadratic approximation:

f(x) ≈ f(xo) + fx(xo)(x− xo) +
fxx(xo)

2
(x− xo)2 (3.5)

As one might have noticed, the approximation of our function gets closer to the

original function as we go for higher degree polynomials.

Now, suppose we have a two-variable function f(x, x′), we can use the Taylor series

approximation in two variables to approximate our function near the point (xo, x
′
o).
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Figure 3.1: To show Size/distance ratio

Let us say we want to show Taylor polynomial in 3rd-degree for our two-variable

function approximation. It is represented similarly to the equation above,

f(x, x′) ≈ f(xo, x
′
o) + fx(xo, x

′
o)(x− xo) + fx′(xo, x

′
o)(x

′ − x′o)

+
fxx(xo, x

′
o)

2
(x− xo)2

+
fx′x′(xo, x

′
o)

2
(x′ − x′o)2 + fxx′(xo, x

′
o)(x− xo)(x′ − x′o)

+
1

6
fxxx(xo, x

′
o)(x− xo)3 + 3fxxx′(xo, x

′
o)(x− xo)2(x′ − x′o)

+3fxxx′(xo, x
′
o)(x− xo)(x′ − x′o)2 +

1

6
fx′x′x′(xo, x

′
o)(x

′ − x′o)3

where fx(xo, x′o) is the partial derivative of f(x, x′) w.r.t x and fx′(xo, x′o) is the partial

derivative of f(x, x′) w.r.t x′ and so on.
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If we write the above equation in a matrix form (while ignoring the constants);

f(x, x′) ≈
1

x− xo

(x− xo)2


T

3×1


f(xo, x

′
o) fx′(xo, x

′
o) fx′x′(xo, x

′
o)

fx(x, x
′
o) fxx′(xo, x

′
o) fxx′x′(xo, x

′
o)

fxx(xo, x
′
o) fxxx′(xo, x

′
o) fxxx′x′(xo, x

′
o)


3×3


1

x′ − x′o

(x′ − x′o)2


3×1

Now, we want to generalize this for k terms;

f(x, x′) ≈

1

x− xo

(x− xo)2

. . .

(x− xo)k−1



T 

f(xo, x
′
o)

∂f(xo,x′o)
∂x′

. . . ∂k−1f(xo,x′o)
∂x′k−1

∂f(xo,x′o)
∂x

∂2f(xo,x′o)
∂x∂x′

. . .
...

...
... . . . ...

∂k−1f(xo,x′o)
∂xk−1 . . . . . . ∂2k−2f(xo,x′o)

∂xk−1∂x′k−1





1

x′ − x′o

(x′ − x′o)2
...

(x′ − x′o)k−1


There is a pattern here in the size of the matrices if we pay close attention, this

equation is of the form of the low rank matrix approximation as shown in the intro-

duction section.

A
m×n

= B
m×k

C
k×k

D
k×n

(3.6)

A
m×n

= B
m×k

D′
k×n

(3.7)

Whenever we talk about making an approximation, it is better to have some idea of

the size of the error we introduce. We need to know how adequate our approximation

is, which boils down to knowing how much our error is. Error is defined as the

difference between the original function and the approximating function.

Suppose Fn(x) is the nth degree Taylor polynomial for a function f(x) centered at

the point xo, the error is,

R = f(x)− Fn(x) (3.8)

It is interesting to note here that it is difficult to know the error if we do not know
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the value of the actual function, so we can only estimate the error. According to [10],

the error term is

|Rn| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣ (3.9)

which gives us a bound on the size of the error. Here we need to get the largest of

f (n+1)(c), for all c, where c is in between a and x. This looks similar to the (n+ 1)th

term of the Taylor series expansion.

On this basis, we can derive that for our case, the error term can be found as the

(n+ 1)th term in the equation above.

|Rn| =
∣∣∣∣(x− xo)n∂2nf(c, d)

∂xn∂x′n
(x′ − x′o)n

∣∣∣∣ (3.10)

Again it is important to note that the partial derivatives are not at the exact

(xo, x
′
o) but at some point (c, d), for all c, where c is in between xo and x; and for all

d, where d is in between x′o and x′.

According to the works by Dr. Duan Chen in [11] we will try to derive a bound to

minimize the error term. Suppose our function is
1

|x− x′|
,

∣∣∣∣ 1

(x− xo)n
∂2nf(c, d)

∂xn∂x′n
1

(x′ − x′o)n

∣∣∣∣ ≤ ∣∣∣∣ 1

r − r′

∣∣∣∣2n (3.11)

∣∣∣∣∂2nf(c, d)

∂xn∂x′n

∣∣∣∣ ≤ ∣∣∣∣(x− xo)n(x′ − x′o)n

(r − r′)2n

∣∣∣∣ (3.12)

This is nothing but the size/distance ratio which we will use extensively as a pa-

rameter in finding the results. When the ratio is smaller than 1 and n is bigger than

1, the error will be small enough, which allows us to do low-rank approximation on

our kernel matrix.
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3.3 Applications on Green’s function

According to Electrostatics, physically, Green’s function which is a solution to the

singular Poisson’s equation

∇2G = δ(x− x′)

is defined as the potential at the position vector x due to a point charge placed at

the position x′, where G is the Green’s function,

G(x, x′) =
1

|x− x′|

and δ(x − x′) is the Dirac Delta function. A Green’s function gives the response at

point x, due to a point charge that is located at x′. It is important to note here that

Green’s function does not change if we interchange the coordinates, which means

Green’s function are reciprocal G(x, x′) = G(x′, x).

So for our case, where we are using 400 different point charges spaced out on the

two boxes, we proceed and calculate Green’s function using the above equation.

The function

κ(r, r′) =
1

|r − r′|
(3.13)

depicts the interaction of the charged particles which we are using to create a distance

matrix which is of the size (400 × 400).

Here is the pictorial representation of our premise. We have point charges on both

the boxes which are denoted by ’∗’ in the figure above. A point charge is an idealized

model of a particle that has an electric charge and is a mathematical point with no

dimensions.
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Figure 3.2: Two boxes each having 400 charges on them

3.4 Results

We begin by using two boxes that contain a specific number of electric charges on

specific points. We create a matrix using Green’s function by the interaction of the

charged particles that act as our original dataset matrix (which we call the matrix A

throughout this thesis). Here, we fix the number of charges on the two boxes, the size

of the two boxes, and only manipulate the distances between them. In the second

figure, we have brought the two boxes closer by decreasing the distance between them,

which increases the size/distance ratio. To better apply and understand the nature

of our algorithms, we will work on this matrix to obtain matrix approximations.

After introducing the idea of Matrix Sketching and Column Selection in the previ-

ous section, we find the SVD of A ∈ R400×400, and check out the initial trend of the

first ’20’ singular values (given the large size of the matrix, we will ignore the noise).

Given our primary goal for this project, to somehow show that when we apply

Matrix Sketching on a certain matrix, we try and preserve the important properties

of our original data set, which we will show by extracting relative errors using the

Frobenius norms.
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The rank of our original dataset matrix is 33, which is found by a simple MATLAB

command rank(A). It is important to note here that this rank is according to a certain

tolerance, which is again easy to get from a basic MATLAB command (max(size(A))∗

eps(norm(A))). And in our case, that tolerance is 3.5527×10−13. The readers can feel

free to change the tolerance according to their preference. In the new-age computers,

according to the common machine-precision, one can go up to 10−16.

Figure 3.3: Two boxes each having 400 charges on them (close)

Results with Random projections

Having introduced the algorithms in the Methodology section, we put some inter-

esting results here in the form of a table. In this table, we are showing some relative

errors between the original matrix and the new rank-k approximating matrix in terms

of the Frobenius norms (||A−Ak||F/||A||F ). We perform the algorithms by generating

different data sets with varying the distance between the centers of the two boxes as

well as governing the size of the matrix. The results obtained are worked by getting

various rank-k approximations over the given size/distance ratios.
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Table 3.1: Relative error with Random projections

Target rank (k) of the matrix Size/distance

ratio

Relative error

with Random

projections

33 0.6438 1.1768× 10−15

15 0.6438 1.01496×10−15

5 0.6438 3.684× 10−16

33 0.3358 8.07027×10−16

15 0.3358 9.0703× 10−15

5 0.3358 1.07027×10−10

When the target rank k is above 15, we find that the approximation error between

the two matrices to be of the order 10−15. To back the results shown in the table, we

present some figures generated from MATLAB after executing the algorithms. These

figures depict the trend in the singular values of the normal SVD compared to the

Randomized SVD implemented on the new matrix obtained from after sketching.

The result and the figure shown above are when our boxes are placed far from each

other as shown in figure (1). We will further show results changing the size/distance

ratio of our boxes containing 400 point charges. When we try to overlap the boxes,

it is clear that the original dataset matrix will not generate any results since |r − r′|

will be zero for certain entries, which result in 1
|r−r′| being undefined, so we will try

and maintain a certain distance between our two boxes.

The following three figures are for the size/distance ratio = 0.6438 (as shown in

figure 3.1), with the respective rank-k approximations,
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Figure 3.4: Trend in singular values for rank 33

Figure 3.5: Trend in singular values for rank 15
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Figure 3.6: Trend in singular values for rank 5

The following three figures after Figure 3.6 are for the size/distance ratio = 0.3358,

with the respective rank-k approximations,
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Figure 3.7: Trend in singular values for rank 33

Results with Random Sampling

Table 3.2: Relative error with Random Sampling

Rank (k) of the matrix Size/distance

ratio

Relative error

with Random

Sampling

33 0.6438 9.11× 10−4

15 0.6438 3.04× 10−2

5 0.6438 1.646× 10−1

33 0.3358 1.785× 10−5

15 0.3358 1.26× 10−2

5 0.3358 2.7× 10−2
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Figure 3.8: Trend in singular values for rank 15

Figure 3.9: Trend in singular values for rank 5



CHAPTER 4: DISCUSSION and CONCLUSION

We began with using kernel functions and we showed why we can apply low-rank

approximation on kernel matrices. After having a clear path and reason to work on,

we created a general dataset matrix to show some experimental results by working on

the interaction between point charges on two boxes. After successfully creating the

matrix, we performed certain algorithms based on Random projections and Random

Sampling.

As one can notice in the figures generated through the Random projection algo-

rithms, it is apparent that we do not find many differences between the singular

values in the Regular SVD and the Randomized SVD. It is also evident that the first

singular value starts at nearly the same point for both of our decompositions. We

can certainly generate more results just by manipulating our rank, size, and distance

parameters, creating new ratios, and eventually finding new relative errors.

It is interesting to note that the results obtained in Random Sampling are com-

paratively worse than Random projections which is because random sampling only

uses partial information from the matrix, while random projection uses the whole ma-

trix. Although the sampling method results in lower accuracy compared to Random

projections, it reduces the entry visit of the matrix.

There is potential to increase accuracy in the Random sampling method by reducing

the size/distance ratio by creating a hierarchical structure. We selected two different

boxes and generated a dataset matrix by spacing them out. To add to that, we can

work upon a single box and generate data from the same group of points, in a way

creating a hierarchical structure between the same set of points. To explain in terms

of our example, we can work on one of the boxes as our primary and we can produce
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new data just by making the point charges interact with themselves and use low-rank

approximation.

For the SVD for a regular n×n matrix, we know that the time complexity is O(n3).

By implementing Random projections and Random Sampling, we successfully bring

down the time complexity to O(n2). This can result in a significant drop in time

and help run algorithms in a faster way for large scale data sets, where information

processing is a problem. For the scope of future work, we can further increase the

speed of our algorithms and bring this down to O(n) by going a step ahead in Random

Sampling and executing the ConstantTime SVD Algorithm. This algorithm helps in

sampling the rows of the matrix, after the column sampling step.

Finally, we can conclude that, though having certain errors and scope for future

work, the new approach Randomized Numerical Linear Algebra does have good results

and it can be used to achieve low-rank approximation in a faster manner than the

conventional approach.
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