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ABSTRACT

MARY C. HARRISON. Number rings and dedekind domains. (Under the direction
of DR. EVAN HOUSTON)

In this paper, we study number rings and their factorization properties. We begin

with an introduction to number fields and number rings. Then we consider the ring

Z[i], which is a unique factorization domain, where each element factors uniquely into

a product of prime elements. We classify all irreducible elements in this ring. Then

we consider an example of non-unique factorization in the ring Z[
√
−5], which is not a

unique factorization domain. Then we introduce the idea of a Dedekind domain. The

main discussion of the paper is to prove that number rings are Dedekind domains,

then to prove that in a Dedekind domain, every ideal factors uniquely into a product

of prime ideals. Then we consider an example of a ring that is not a Dedekind domain,

and we find an example of non-unique prime ideal factorization. Finally, we conclude

by proving how the primes split in the quadratic fields.
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CHAPTER 1: INTRODUCTION

Definition 1. A number field is a subfield of C having finite degree over Q.

We know that every number field has the form Q[α] for some α ∈ C, where α is

the root of some polynomial over Q [3, Theorem 2, Appendix 2]. If we suppose α is the

root of some irreducible polynomial f of degree n, thenQ[α] is naturally a vector space

over Q with basis 1, α, . . . , αn−1, since 0 = f(α) = anα
n + an−1α

n−1 + . . .+ a1α+ a0,

thus αn (and any higher powers) can be written as a linear combination of the basis

vectors. Hence every element in the number field Q[α] can be expressed as

a0 + a1α + ...+ an−1α
n−1

where each ai ∈ Q.

Quadratic fields are the number fields having the form Q[
√
m], where m is a

square-free integer. When m > 0, we call Q[
√
m] a real quadratic field, and if

m < 0, we call it an imaginary quadratic field. Another type of number field is a

cyclotomic field. These are the fields of the form Q[ω], where ω = e2πi/m. Q[ω] is

called the mth cyclotomic field.

These number fields all contain a ring, called a number ring, having a unique

factorization property. This ring consists of the algebraic integers in the field. Note

that for the purposes of this paper, all rings considered will be commutative rings

with unity.

In the following chapter, we introduce the notion of an algebraic integer and a

number ring. We will study some properties of these and as an example, we will find

all the algebraic integers in the quadratic fields. Then, we will define embedding,

trace, norm, and discriminant, and prove some results about them. These results will

be useful for proving theorems in Chapter 5.
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In Chapter 3 we study an example of a specific quadratic number ring, Z[i], that

is a unique factorization domain. This means every element factors uniquely into

a product of irreducible elements. Eventually, we want to discuss the factorization

properties of general number rings, which do not always have the same factorization

properties as Z[i].

Chapter 4 gives an example of a ring, Z[
√
−5], that does not have the same

factorization properties as Z[i], because we can find an example of elements that do

not factor uniquely into irreducible elements.

In Chapter 5 we have the main discussion of the paper. Armed with many

definitions and preliminary results, we will prove that number rings satisfy the three

qualifications of a Dedekind domain: they are Noetherian, integerally closed, and

every nonzero prime ideal is maximal. Then we will show that in a Dedekind domain,

every ideal factors uniquely into a product of prime ideals. This done, we can refer

back to Chapter 4 and see that the ring discussed there, although factorization into

irreducible elements may not be unique, factorization of ideals into products of prime

ideals is always possible and unique.

In Chapter 6 we look at an example of a ring that is not a Dedekind domain,

Z[
√
−3] therefore we can find an example of an ideal that cannot be factored uniquely

into prime ideals.

Finally, in Chapter 7 we consider the “splitting” of primes in quadratic fields. In

particular, we will describe how each extension of an ideal of Z factors into prime

ideals in a quadratic number ring.
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CHAPTER 2: NUMBER RINGS

Definition 2. A complex number is an algebraic integer if it is the root of some monic

(with leading coefficient 1) polynomial having coefficients in Z. It is true, as we will

see in this section, that every algebraic integer is the root of some monic irreducible

polynomial with coefficients in Z. If α is an algebraic integer, we say α is integral

over Z.

The following will allow us to prove that every algebraic integer is the root of a

monic irreducible polynomial with coefficients in Z.

Definition 3. An element f(x) ∈ Z[x] is said the be primitive if the greatest common

divisor of its coefficients is 1.

Lemma 4. (Gauss) If f(x), g(x) ∈ Z[x] are primitive, then so is f(x)g(x).

Proof. Let f(x) and g(x) be primitive, and let h(x) = f(x)g(x) and suppose to the

contrary that some prime p divides the coefficients of h(x). Reducing coefficients

modulo p, we have 0 = h(x) = f(x) · g(x). Now, since the ring Zp[x] has no zero

divisors, we must have either f(x) or g(x) is the zero polynomial. That is, p divides

the coefficients of f(x) or g(x), contradicting the assumption that both are primitive.

So h(x) must also be primitive.

Lemma 5. Let f(x) ∈ Z[x]. If f(x) is irreducible in Z[x], then it is also irreducible

in Q[x].

Proof. Since f(x) is irreducible in Z[x], then it is primitive. Suppose to the contrary

that f(x) = g(x)h(x), where g(x), h(x) ∈ Q[x]. Choose positive integers a, b such

that ag(x), bh(x) ∈ Z[x]. Then choose positive integers c, d such that a
c
g(x), b

d
h(x)

are primitive in Z[x]. Then ab
cd
f(x) = a

c
g(x) · b

d
h(x), and by lemma 4, ab

cd
f(x) is
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primitive in Z[x], so ab
cd

must equal 1. Thus we have f(x) = a
c
g(x) · b

d
h(x). Since f(x)

is irreducible in Z[x], we must have either a
c
g(x) = 1 or b

d
h(x) = 1. That is, either

f(x) or g(x) is a constant polynomial in Q[x]. Thus f(x) is irreducible in Q[x].

Theorem 6. Let α be an algebraic integer. The monic irreducible polynomial over Q

having α as a root lies in Z[x].

Proof. Let f(x) ∈ Z[x] be a monic polynomial of minimum degree having α as a root.

Since f(x) is monic, it is also primitive. Now if f(x) is reducible in Z[x], then since

it is primitive, we would have a factorization f(x) = g(x)h(x), where g(x) and h(x)

have smaller degree than f(x). Then α is a root of g(x) or h(x), contradicting that

f(x) is of minimum degree. Thus f(x) is irreducible in Z[x]. Now by Lemma 5, f(x)

is also irreducible in Q[x], and thus f(x) is the minimum polynomial of α.

Now we can use the preceding theorem to classify all the algebraic integers in a

quadratic field.

Theorem 7. Let m ∈ Z be square-free. The set of algebraic integers in Q[
√
m] is

{a+ b
√
m : a, b ∈ Z} if m ≡ 2 or 3(mod 4)

{a+ b
√
m

2
: a, b ∈ Z, a ≡ b(mod 2)} if m ≡ 1(mod 4)

Proof. Let α = r + s
√
m be an algebraic integer with r, s ∈ Q First, note that

x2 − 2rx+ r2 −ms2 (2.1)

is the monic irreducible polynomial of α. Indeed, any polynomial of smaller degree

would not have rational coefficients, and any monic polynomial of degree 2 having α

as a root must be the same as (2.1). So by Theorem 6, we must have 2r, r2−ms2 ∈ Z.

Since we know r, s ∈ Q, we can write s = a
c
, where a, c ∈ Z are coprime.

First, note that since 2r ∈ Z, we have (2r)2 = 4r2 ∈ Z. Then since r2−ms2 ∈ Z,

we also have 4r2 − 4ms2 ∈ Z, thus 4ms2 ∈ Z. We will proceed by considering two

cases.

Case 1: Suppose c is odd. If c > 1, then c - 4 so c2 - 4. Also c2 - m since m is
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square-free, but we may have c | m. Then 4ms2 ∈ Z =⇒ 4ma2

c2
∈ Z =⇒ c2 | 4ma2.

Since neither c nor c2 divide 4, we have c2 | ma2 and since c2 - m, we either have

c2 | a2 or c | a2. In either case, since a and c are coprime, and c > 1 we have a

contradiction, so c = ±1. Then s ∈ Z. Now, since r2 −ms2 ∈ Z and ms2 ∈ Z, then

r2 ∈ Z =⇒ r ∈ Z.

Case 2: Suppose c is even. Then c = 2k for some integer k. Again, since

4ms2 ∈ Z, we have 4ma2

4k2
∈ Z, which implies that 4k2 | 4ma2. Then since m is

squarefree, we must have k | a, say a = jk for some integer j. Then s = a
c
= jk

2k
= j

2
.

Switching notation, we get s = a
2
. Now, since 2r is an integer, then either r ∈ Z or

r = b
2
for some integer b. Since r2 −ma2

4
∈ Z and m is squarefree, this implies that

r2 6∈ Z, so r 6∈ Z. Then r = b
2
for some integer b.

So there are only two cases. If s ∈ Z then r ∈ Z. This case, as we will see shortly,

occurs only when m ≡ 2 or 3(mod 4). Otherwise, s = a
2
and r = b

2
. Then we have

4r2 − 4ms2 ≡ 0(mod 4) =⇒ b2 ≡ ma2(mod 4). And since every square is congruent

to 0 or 1 modulo 4, and since b 6= 0, we have m ≡ 1(mod 4). On the other hand,

if m ≡ 1(mod 4), then if s = a
2
and r = b

2
for odd integers a, b, then for r + s

√
m

to be integral over Z, from equation (1), we need only show that r2 − ms2 ∈ Z.

To that end, observe that r2 − ms2 = b2−ma2
4

, and since m ≡ 1(mod 4), we have

b2 − ma2 ≡ b2 − a2 ≡ 1 − 1 = 0(mod 4), since a, b are odd, so their squares are

congruent to 1 modulo 4. So 4 | b2 −ma2. Finally we have r2 −ms2 = b2−ma2
4
∈ Z,

thus r + s
√
m is integral over Z. This completes the proof.

Theorem 8. The following are equivalent for α ∈ C:

(1) α is an algebraic integer.

(2) The additive group of the ring Z[α] is finitely generated.

(3) α is a member of some subring of C having finitely generated additive group.

(4) αA ⊆ A for some finitely generated additive subgroup A ⊆ C.

This is Theorem 2 in Number Fields by Daniel A. Marcus [3].
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Corollary 9. If α and β are algebraic integers, then so are α + β and αβ.

Proof. We know by (2) that the additive groups of Z[α] and Z[β] are finitely generated.

Then so is the additive group of Z[α, β]. Finally, since Z[α, β] contains α+β and αβ,

by (3), this implies that they are algebraic integers.

Definition 10. Let A denote the set of all algebraic integers, that is, the complex

numbers that satisfy a monic polynomial over Z. Then the intersection of A with any

given number field K is called the number ring corresponding to the number field K.

Corollary 9 shows that this intersection A ∩ K is truly a ring. Later, as the

main discussion of this paper, we will show that these number rings have special

factorization properties.

Theorem 11. Let K be a number field of degree n over Q. Then there are exactly n

embeddings (1-1 homomorphisms) of K into C [3].

Definition 12. Let K be a number field with degree n over Q. By the previous

theorem, we know there are n embeddings of K into C, say σ1, . . . , σn. For α ∈ K,

we define the trace of α relative to K by TrK(α) = σ1(α) + . . . + σn(α). We define

the norm of α relative to K to be NK(α) = σ1(α) · . . . · σn(α).

Note that the norm function is multiplicative, which follows easily from the

definition.

Example 13. In the quadratic field Q[i], we know there are exactly two embeddings

of Q[i] into C. We have

σ1(a+ bi) = a+ bi

σ2(a+ bi) = a− bi

It is easy to see that these are both 1-1 homomorphisms, so these are the embeddings

of Q[i] into C. Then we can calculate trace and norm of any element in Q[i].

TrK(a+ bi) = σ1(a+ bi) + σ2(a+ bi) = (a+ bi) + (a− bi) = 2a, and

NK(a+ bi) = σ1(a+ bi) · σ2(a+ bi) = (a+ bi)(a− bi) = a2 + b2.
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The following lemma gives us a property of norm that will be needed to prove a

result in the next chapter.

Lemma 14. α ∈ Z[i] is a unit ⇔ N(α) = 1.

Proof. Suppose α = a + bi is a unit. Then there exists β ∈ Z[i] such that αβ = 1.

Now, we have N(α)N(β) = N(1) = 1, so N(α) must be a unit in Z. This implies

N(α) = 1 since norm is positive and 1 and -1 are the only units in Z. For the other

direction, suppose N(α) = 1. Then 1 = N(α) = a2 + b2, where a, b ∈ Z. This implies

a = ±1 and b = 0 or a = 0 and b = ±1. In the first case, α = ±1, which is a unit

in Z[i]. In the second case, α = ±i, which is also a unit in Z[i]. So α is a unit ⇔

N(α) = 1.

Definition 15. Let K be a number field and let (α1, ..., αn) be an n-tuple of ele-

ments in K. Let A be the n × n matrix whose i, jth entry is TrK(αiαj). Then the

discriminant of (α1, ..., αn) (with respect to K) is defined by disc(α1, ..., αn)=det(A).

Theorem 16. With the notation from the definition above, let B by the n×n matrix

whose i, jth entry is σi(αj). Then disc(α1, ...αn)=det(B)2.

Proof. It can be verified that BtB = A, where A is as in the definition above. Then

det(B)2 =det(B)det(B) =det(Bt)det(B) =det(BtB) =det(A) =disc(α1, ...αn).
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CHAPTER 3: CLASSIFICATION OF ALL IRREDUCIBLE ELEMENTS IN Z[i]

Definition 17. A domain D is called a unique factorization domain (UFD), if each

element of D factors uniquely into a product of irreducible elements.

Definition 18. An integral domain D is called a Euclidian domain if there is a func-

tion d from the nonzero elements of D to the nonnegative integers such that:

(1) d(a) ≤ d(ab) for all nonzero a, b ∈ D

(2) If a, b ∈ D, b 6= 0, then there exist elements q, r ∈ D such that a = bq + r, where

r = 0 or d(r) < d(b).

Lemma 19. [2, Corollary to Theorem 18.4] Every Euclidian domain is a UFD.

Theorem 20. Z[i] is a UFD.

Proof. In Gallian’s Contemporary Abstract Algebra, Example 7 in Chapter 18 tells us

that Z[i] is a Euclidian domain, therefore, by the preceding lemma, it is a UFD.

Since Z[i] is a UFD, we can express every element of Z[i] as a unique product of

irreducible elements. In this section, we will fully classify these irreducible elements

in Z[i]. At this point, we can discuss a corollary of Theorem 20 that will be useful

for classifying the irreducible elements in Z[i].

Corollary 21. Every prime p ≡ 1(mod 4) is a sum of two squares.

Proof. Let p ≡ 1(mod 4). Then p = 4k + 1 for some k ∈ Z. Since Z∗p is a cyclic

group under multiplication, we can find a generator, say a ∈ Zp. Then each element

1, 2, ..., p − 1 ∈ Zp is congruent to one of a1, a2, ..., ap−1 modulo p, in no particular

order [1, Corollary to Theorem 8.6]. So we have

(p− 1)! = (p− 1)(p− 2)...(2)(1)

≡ a1a2...ap−1
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= a
1
2
(p−1)p

= a
1
2
(4k)(4k+1)

= (a4k
2+k)2

Now, by Wilson’s Theorem [1, Theorem 5.4], (p − 1)! ≡ −1(mod p), so we have

−1 ≡ (a4k
2+k)2(mod p). To simplify notation, we will say −1 ≡ n2(mod p) for some

integer n.

Now, we will show that p cannot be irreducible in Z[i]. To this end, first we will

show that irreducible elements in a UFD are also prime. Let p be some irreducible

element, and suppose p | ab for some a, b. Then ab = pk for some k. Then let

a = a1a2...an, b = b1b2...bm, k = k1k2...kj, where ai, bi, ki are all irreducible for every

i. Then

p(k1k2...kj) = (a1a2...an)(b1b2...bm)

Since factorization into irreducible elements is unique, and every element in the equa-

tion is irreducible, we must have p = ai for some i or p = bi for some i. Then p | a or

p | b, which implies that p is prime. So irreducible elements in a UFD are prime.

Now suppose to the contrary that p is irreducible in Z[i]. Then p is prime in

Z[i]. Since p | n2 + 1 from above, we have p | (n+ i)(n− i), and since p is prime, we

have p | n + i or p | n− i. If p | n + i, then n + i = p(a + bi) for some a + bi ∈ Z[i].

Then n + i = ap + bpi =⇒ bp = 1, which implies that p is a unit, a contradiction.

A similar contradiction results if p | n− i. Either way there is a contradiction, so we

must have that p is reducible in Z[i].

Finally, since p is reducible in Z[i], we can write p = (a+bi)(c+di) where a+bi and

c+di are not units. Taking the norm of this equation, we have p2 = (a2+ b2)(c2+d2)

which implies that p = a2 + b2 = c2 + d2. So p is the sum of two squares.

Lemma 22. If N(α) = p, where p is prime, then α is irreducible.

Proof. LetN(α) = p, where p is prime, and suppose to the contrary that α is reducible
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in Z[i]. Then α = βγ, where β and γ are both non-units. Then N(α) = N(βγ) =

N(β)N(γ). Now from lemma 14 we have N(x) = 1 ⇔ x is a unit, so N(β) 6= 1 and

N(γ) 6= 1. Then β and γ both have norm greater than 1 =⇒ N(α) is not prime, a

contradiction. So α must be irreducible.

Lemma 23. If N(α) = p2, where p is a prime in Z such that p ≡ 3(mod 4), then α

is irreducible in Z[i].

Proof. Suppose α = βγ. We want to show either β or γ is a unit. Since p2 = N(α) =

N(β)N(γ), then either N(β) = p and N(γ) = p or one of N(β), N(γ) is p2 and the

other is 1. In the second case, either β or γ is a unit, and we’re done. Consider the

first case. Set β = c + di, so we have p = N(β) = c2 + d2. But p ≡ 3(mod 4), and

this kind of prime cannot be expressed as the sum of two squares [1, Theorem 13.2

(Fermat)]. So we have a contradiction. Therefore either β or γ is a unit and α is

irreducible.

Equipped with the preceding theorem and lemmas, we can now prove the main

result of this section.

Theorem 24. The irreducibles in Z[i] are the elements of the form

α = p, where p is prime in Z and p ≡ 3(mod 4)

α = pi, where p is prime in Z and p ≡ 3(mod 4)

α = a+ bi, where a 6= 0, b 6= 0, and N(a+ bi) = a2 + b2 = p, where p is prime.

Proof. Consider α = a+ bi. First, suppose b = 0. Then α = a. If a is not prime, then

clearly it is reducible. Suppose a is prime. First, if a = 2 then 2 = (1 + i)(1 − i),

so α is reducible. If a 6= 2, then either a either has the form 4k + 1 or 4k + 3. If a

has the form 4k + 3, then N(α) = a2 and where a is prime and a ≡ 3(mod 4). So by

Lemma 23, a = α is irreducible. If a has the form 4k + 1 by Corollary 21 we know

that it can be written as the sum of two nonzero squares, say a = x2 + y2. Then

(x+ yi)(x− yi) = x2 + y2 = a = α. So α is reducible.

Now, suppose a = 0. Then α = bi. If b is not prime, then clearly it is reducible,
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and therefore α is reducible. Suppose b is prime. Then, as above, b either has the

form 4k + 1 or 4k + 3. If b has the form 4k + 3, N(α) = b2, where b is prime and

b ≡ 3(mod 4). So by Lemma 23, bi = α is irreducible. If b has the form 4k + 1, then

as above, b = x2 + y2 for nonzero x and y, so (x + yi)(y + xi) = x2i + y2i = bi = α,

so α is reducible.

Finally, suppose a 6= 0 and b 6= 0, and gcd(a, b) = 1 (otherwise α is clearly

reducible). If N(α) = a2 + b2 = p, then α is irreducible by Lemma 22. Now, suppose

α = a+ bi is irreducible, and suppose for contradiction that N(α) = pq, where p and

q are primes. Note that

N(α) = a2 + b2 = (a+ bi)(a− bi) = pq

Now, since Z[i] is a PID and a + bi is irreducible, it is also prime. Then a + bi

divides either p or q. Say a + bi | p. Then (a + bi)(c + di) = p =⇒ p = (ac− bd) +

(ad+ bc)i, which gives us equations

ac− bd = p (3.1)

ad+ bc = 0 (3.2)

Solving (3.2) for d and plugging into (3.1), we have ac+ b2c
a

= p. Multiplying by

a
c
yields a2 + b2 = pa

c
. We also have a2 + b2 = pq, so pq = pa

c
=⇒ q = a

c
=⇒ c = a

q
.

Similarly, solving (3.2) for c and plugging into (3.1) gives −a2d
b
− bd = p. Multiplying

by b
d
gives −a2− b2 = pb

d
, and since a2+ b2 = pq, we have pq = −pb

d
=⇒ q = − b

d
=⇒

d = − b
q
.

Then we have p = (a+bi)(c+di) = (a+bi)(a
q
− b

q
i), but gcd(a, b) = 1 =⇒ q = 1.

So N(α) = pq = p.

Thus α = a+ bi is irreducible ⇔ N(α) = p.
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CHAPTER 4: EXAMPLE OF NON-UNIQUE FACTORIZATION

Not all rings have the same unique factorization properties that Z[i] has. In

this ring, factorization into irreducible elements is unique since it is a UFD. There

are, however, rings in which we can find examples of factorization into irreducible

elements that is not necessarily unique. We will discuss one such example here.

In the ring Z[
√
−5], we have

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

Now, to show that this is truly an example of non-unique factorization, we must

show that 2, 3, 1 +
√
−5, and 1 −

√
−5 are not associates of each other, which is

clear, and that they are irreducible in Z[
√
−5]. Then we have found an example of

non-unique factorization into irreducible elements. To that end, we will first consider

two lemmas.

Lemma 25. If β | α in Z[
√
−5] then N(β) | N(α).

Proof. Since β | α, there is some γ ∈ Z[
√
−5] such that α = βγ. Now, since norm is

multiplicative, we have N(α) = N(βγ) = N(β)N(γ). Thus N(β) | N(γ).

Lemma 26. There are no elements with norm 2 or 3 in Z[
√
−5].

Proof. If we suppose there is an element whose norm is 2, then N(a + b
√
−5) =

a2 + 5b2 = 2. If b ≥ 1 then a2 + 5b2 ≥ 5, so b must be 0. Then we have a2 = 2, but

there is no such integer a. So there is no element of norm 2.

Similarly, if we have an element with norm 3, then b = 0, and a2 = 3, and again,

there is no such a. So there are no elements of norm 2 or 3 in Z[
√
−5].

Now, we have N(2) = 4, N(3) = 9, N(1 +
√
−5) = 6, and N(1 −

√
−5) = 6. If

any of these elements is reducible, then it has a factor whose norm is either 2 or 3,
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since 2 and 3 are the only factors of 4, 9 and 6. But by Lemma 26, there are no such

elements. So 2, 3, 1 +
√
−5, and 1 −

√
−5 are irreducible in Z[

√
−5], and we have

found an example of non-unique factorization.
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CHAPTER 5: DEDEKIND DOMAINS

We turn now to the main discussion of this paper: that number rings, although

they are not necessarily UFDs, do have special factorization properties that we will

discuss here. We begin with some definitions.

Definition 27. The set of algebraic integers in a subfield K of C is called the integral

closure of Z in K. A ring R is said to be integrally closed in its quotient field S if no

element of S \R satisfies a monic polynomial with coefficients in Z.

Example 28. Take for example R = Z[
√
−3]. This ring has quotient field Q[

√
−3].

We know from Theorem 7 that this field contains algebraic integers that are not in

Z[
√
−3]. For example, α = 1+

√
−3

2
is integral over Z. Indeed, if f(x) = x2 − x + 1,

then

f(α) = f

(
1 +
√
−3

2

)
=

(
1 +
√
−3

2

)2

−
(
1 +
√
−3

2

)
+ 1

=
1

4
+

1

2

√
−3− 3

4
− 1

2
− 1

2

√
−3 + 1 = 0

Thus the ring Z[
√
−3] is not integrally closed.

Theorem 29. If K is a number field, then the ring R of algebraic integers in K has

quotient field K.

Proof. Since K is a field, we know the quotient field of R is contained in K. To show

K is contained in the quotient field of R, let α ∈ K be algebraic over Q. We want to

show that α is in the quotient field of R. We have the equation

αn + an−1α
n−1 + ...+ a1α + a0 = 0 (5.1)

with each ai ∈ Q. Choose b ∈ Z such that bai ∈ Z for every i. Multiply (5.1) by bn to
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get (bα)n+ ban−1(bα)
n−1 + ...+ bn−1a1(bα) + bna0 = 0. This shows that bα is integral

over Z. Then we must have bα = r ∈ R, so α = r/b is in the quotient field of R.

Definition 30. A prime ideal of an integral domain is an ideal I having the property

that if a, b ∈ R and ab ∈ I, then either a ∈ I or b ∈ I.

Example 31. In Z, the prime ideals are the ideals that are generated by the prime

elements in Z.

Let I = (p) be the ideal in the integers generated by the prime p. We know that

if ab ∈ I, then we must have ab = pk for some k ∈ Z. We know by Euclid’s Lemma

that if a prime divides a product elements, then it must divide one of the elements,

so either p | a, which implies a ∈ I or p | b which implies b ∈ I.

Any other ideal in the integers cannot be prime, because if it is generated by

an element that is not prime, say I = (pq), where p and q are non-units, then the

element pq is in I, but neither p nor q is in I.

Definition 32. A ring is said to be Noetherian if it satisfies the ascending chain

condition for ideals. That is, if we have I1 ⊆ I2 ⊆ . . . Ik ⊆ Ik+1 ⊆ . . ., then there

must be some n such that In = In+1 = . . .

It is well known that a ring R is Noetherian if and only if every ideal of R is

finitely generated. This equivalent definition will be useful for our purposes.

Definition 33. A Dedekind domain is an integral domain that is Noetherian, inte-

grally closed, and having the property that every nonzero prime ideal is maximal.

Since our goal is to show that every number ring is a Dedekind domain, we

need to show that every number ring satisfies the three conditions listed above. The

following lemmas and theorems deal with these conditions. First we’ll need some

framework for the proofs.
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Definition 34. Let R be a domain. An R-module is a set M, equipped with the binary

operation + on M and scalar mulitiplication R×M →M such that

(1) M is an abelian group under +

(2) (r + s)m = rm+ sm for each r, s ∈ R and m ∈M

(3) r(m+ n) = rm+ rn for each r ∈ R and m,n ∈M

(4) (rs)m = r(sm) for each r, s ∈ R and m ∈M

(5) 1m = m for each m ∈M

Definition 35. An R-module is said to be Noetherian if it satisfies the ascending

chain condition on submodules. That is, every strictly increasing sequence of sub-

modules eventually terminates. Equivalently, an R-module is Noetherian if every

submodule is finitely generated.

Lemma 36. Let R be a Noetherian domain, and let M be a cyclic R-module (that is,

M = Rα for some α ∈M). Then M is a Noetherian R-module.

Proof. Let N be a submodule ofM . We will show that N is finitely generated. Write

M = Rα and let I = {x ∈ R : xα ∈ N}. Then I is and ideal of R, and since

R is Noetherian, I is finitely generated, say I = (a1, ...an) with ai ∈ R. Now let

β ∈ N . Then since β ∈ M also, we have β = rα for some r ∈ R. Then r ∈ I, so

r = r1a1 + ... + rnan with ri ∈ R. Finally, β = rα = r1a1α + ... + rnanα, so N is

finitely generated (by a1α, . . . anα) as desired.

Lemma 37. Let M be a Noetherian R-module and let N be a submodule. Then N is

a Noetherian R-module as well.

Proof. A submodule of N is automatically a submodule of M , so it is finitely gener-

ated, and N is therefore Noetherian.

Definition 38. Let M be an R-module, and let N be a submodule. Then, since M is

an abelian group under addition, we can form the quotient group M/N . This is natu-

rally an R-module (r(α+N) = rα+N for r ∈ R,α ∈M), called the quotient module

of M with respect to N .
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Lemma 39. Let M be an R-module. If M has a submodule N such that N and M/N

are Noetherian, then M is Noetherian.

Proof. Let L be a sumbodule ofM . To showM is Noetherian, we need to show that L

is finitely generated. Note that L∩N is finitely generated since N is Noetherian. Now,

claim L/(L∩N) ∼= (L+N)/N . Granting this, since (L+N)/N is a sumbodule ofM/N ,

L/(L∩N) is finitely generated. Write L/(L∩N) = R(α1+L∩N)+. . .+R(αr+L∩N)

and L ∩ N = Rαr+1 + . . . + Rαn. Let β ∈ L, then β + L ∩ N = a1(α1 + L ∩ N) +

. . .+ ar(αr + L ∩N) for ai ∈ R, that is,

β = a1α1 + . . .+ arαr + γ

for some γ ∈ L ∩ N . But γ may be written as a linear combination of αr+1, . . . , αn,

so β is a linear combination of α1, . . . , αn and thus L is finitely generated.

To prove the claim, define h : L → (L + N)/N by h(l) = l + N . Then this

mapping is well-defined since f, g ∈ L such that f = g implies that f +N = g +N .

Now, clearly, if l ∈ L ∩ N then l ∈ N so l ∈ ker(h). Now let l ∈ ker(h). Then

h(l) = 0 + N which implies that l ∈ N . So ker(h) = L ∩ N and the claim follows

from the First Isomorphism Theorem [2, Theorem 10.3].

Lemma 40. Let R be a Noetherian domain, and let M be a finitely generated R-

module. Then M is a Noetherian R-module.

Proof. If M is generated by a single element, then by Lemma 36, M is Noetherian.

Now we will induct on n, the number of generators of M . Suppose the result holds

for n − 1. Then let M =
∑n

i=1Rαi. Again, we know that Rα1 is Noetherian by

Lemma 36. Also the quotient module M/Rα1 can be generated by n− 1 elements, so

by our induction assumption, this module is also Noetherian. Then, by Lemma 39,

M is Noetherian.

Theorem 41. Every number ring is a Noetherian ring.

Proof. Let R denote the ring of algebraic integers in a number field K. To show that

R is Noetherian, we want to show that every ideal is finitely generated.
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First we will show that R is a Noetherian Z-module. Then, since ideals of R

are simply R-submodules of R, they are also Z-submodules of R, so they are finitely

generated by the definition of Noetherian.

To show R is Noetherian, we will show that R is itself a finitely generated Z-

module. Then by Lemma 40, since Z is Noetherian, R is Noetherian as a finitely

generated Z-module.

To show that R is finitely generated, we will show that it is a submodule of some

finitely generated Z-module. Then clearly R must also be finitely generated. For this,

take {α1, ..., αn} to be a vector space basis for K over Q. By Theorem 29, K is the

quotient field of R, so there exists some a ∈ R such that aαi ∈ R for every i. Then

{aα1, ..., aαn} is also a basis for K over Q, and we can change notation and assume

that the αi are in R.

Now take some α ∈ R, and express it as α = c1α1 + ... + cnαn, for ci ∈ Q. Let

d = disc(α1, ..., αn). We claim that dci ∈ Z for every i. Granting this claim, we have

α = (dc1)(
α1

d
) + ...+ (dcn)(

αn
d
)

putting α in the finitely generated Z-module Z(α1

d
)+...+Z(αn

d
), completing the proof.

We turn now to the claim. Let σ1, ..., σn be the embeddings of K into C. Apply

each σi to α = c1α1 + ... + cnαn. Then for 1 ≤ j ≤ n we have the equation σj(α) =

c1σj(α1)+ ...+cnσj(αn). Using Cramer’s Rule to solve for cj yields cj =
dj
e
, where e is

the determinant of the matrix A whose i, jth entry is σi(αj) and dj is the determinant

of the matrix formed from A by replacing the jth column of A by σi(α). By theorem

16, e2 = d. Now e and dj are in R. Moreover, dcj = dje =⇒ dcj ∈ R. On the other

hand, dcj ∈ Q, and we therefore have dcj ∈ Z (since Z is integrally closed in Q). This

proves the claim.

Theorem 42. Let R be the ring of integers in the number field K. Then R is inte-

grally closed.

Proof. We know from Theorem 29 that R has K as its field of fractions. Let some
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element α ∈ K be integral over R. Then we have

αn + an−1α
n−1 + ...+ a1α + a0 = 0 (5.2)

for ai ∈ R. Let M be the ring Z[a0, a1, ..., an−1, α], that is, the smallest subring of C

containing all the elements a0, a1, ..., an−1, α. Since M is a ring and α ∈ M , we have

αM ⊆M . If we show that M is a finitely generated Z-module, then we have that α

is integral over Z by Theorem 8, from which we have α ∈ R, completing the proof.

Now we will show that M is a finitely generated Z-module. Since a0 ∈ R, it is

an algebraic integer, so we have the equation

b0 + b1a0 + b2a
2
0 + ...+ bk0−1a

k0−1
0 + ak00 = 0 (5.3)

Let A be the Z-module Z+Za0 +Za20 + ...+Zak0−10 . Equation (5.3) shows that

ak00 ∈ A. Multiply everything by a0 to get

a0b0 + b1a
2
0 + b2a

3
0 + ...+ bk0−1a

k0
0 + ak0+1

0 = 0

which shows that ak0+1
0 ∈ A. Continuing this process, we see that A contains all pos-

itive powers of a0, thus A = Z[a0], so Z[a0] is finitely generated by 1, a0, ..., a
k0−1
0 . We

can apply this same arguments to any ai, so Z[ai] is finitely generated, and it follows

that Z[a0, a1, ..., an−1] is finitely generated, generated by the products ai00 a
i1
1 ...a

in−1
n−1

for 0 ≤ ij < kj for every j. Now we can use equation (5.2) to show M is finitely

generated by products ai00 a
i1
1 ...a

in−1
n−1 α

i for 0 ≤ ij < kj and 0 ≤ i < n.

Theorem 43. Every number ring R is a Dedekind domain.

Proof. By Theorem 41, we have that R is Noetherian. By Theorem 42 we also have

that R is integrally closed. Finally, we need to show that every nonzero prime ideal

in R is maximal. To do this, suppose P is a nonzero prime ideal of R.

Take some α ∈ P , α 6= 0. Then we have an equation of integrality

αn + an−1α
n−1 + ...+ a1α + a0 = 0

Thus a0 ∈ P and a0 ∈ Z. So P ∩ Z 6= {0}. Then P ∩ Z must be prime, because

if it isn’t, then P isn’t prime. Prime ideals in Z must be principal and maximal, say

P ∩Z = (p). Suppose for contradiction that P is not maximal. Then P ( I for some
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ideal I ( R. Note that since (p) ⊂ P and all prime ideals are maximal in Z, we must

have I ∩ Z = (p). Now choose some element r ∈ I \ P . Write the integral equation

anr
n + an−1r

n−1 + ...+ a1r + a0 = 0

From this we have −a0 = anr
n+ an−1r

n−1 + ...+ a1r ∈ I and we know a0 ∈ Z so

a0 ∈ (p) ⊂ P . Thus a0 ∈ P =⇒ anr
n+ an−1r

n−1 + ...+ a1r ∈ P . Now, factoring out

r we have anrn + an−1r
n−1 + ... + a1r = r(anr

n−1 + an−1r
n−2 + ... + a1). Now, since

we know r /∈ P , we must have anrn−1 + an−1r
n−2 + ...+ a1 ∈ P . This implies a1 ∈ P .

Continue. Eventually from this process we obtain r ∈ P , a contradiction. So P must

be maximal. Thus we have that R is a Dedekind domain.

Now that we have established that number rings are Dedekind domains, we will

discuss the significance of that fact. As shown in Chapter 3, we know that not every

number ring is a unique factorization domain. But now, since we know number rings

are Dedekind domains, we can look at their special factorization properties.

Definition 44. Let R be a domain with quotient field K, and I a nonzero ideal of

R. Set I−1 = {x ∈ K : xI ⊆ R}. Then I−1 is called the inverse of I. I is said to be

invertible if II−1 = R.

Theorem 45. In a Dedekind domain R, every ideal factors uniquely into a product

of prime ideals.

Proof. We will start by showing that for every ideal I there exist prime ideals

P1, P2, ..., Pk such that I ⊆ Pi for every i and P1 · ... · Pk ⊆ I. Suppose not. Then,

using the fact that R is Noetherian, choose an ideal J that is maximal among the

ideals for which there are no such prime ideals. In particular, J cannot be prime,

so we can find some a, b ∈ R \ J such that ab ∈ J . Then the ideals (J, a) and

(J, b) are strictly bigger than J . So, since J was a maximal offender, there exist

P1, P2, ..., Pr and Q1, Q2, ..., Qs such that (J, a) ⊆ Pi for every i, (J, b) ⊆ Qi for every

i, P1 · ... · Pr ⊆ (J, a) and Q1 · ... · Qs ⊆ (J, b). But then clearly we also have J ⊆ Pi

and J ⊆ Qi and P1 · ... · Pr · Q1 · ... · Qs ⊆ (J, a)(J, b) ⊆ J , contradicting that J was
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an offender.

Now, we claim that each maximal ideal is invertible. Let P be a maximal ideal,

a ∈ P , a 6= 0. Using what we proved above, there exist prime ideals P1, ..., Pk with

a ∈ Pi for every i and P1 · ... · Pk ⊆ (a) ⊆ P . Suppose k is minimal. Then Pi ⊆ P for

some i, say i = 1. Then P2 · ... · Pk 6⊆ (a) since k is minimal, and a−1P2 · ... · Pk 6⊆ R.

But a−1P2 · ... · Pk · P ⊆ R, so that a−1P2 · ... · Pk ⊆ P−1 \ R. That is, R ( P−1.

Now, because R ⊆ P−1, we have P ⊆ PP−1. If PP−1 6= R, then PP−1 must be in

some maximal ideal, for which P is the only candidate. So PP−1 ⊆ P which implies

P = PP−1. By theorem 8 this implies that P−1 is integral over R, contradicting that

R is integrally closed. So PP−1 = R, and thus P is invertible.

Now we claim that every nonzero ideal is the product of prime ideals. Suppose

not. Then let I be maximal among the ideals that cannot be expressed as a product

of primes. Then I itself clearly isn’t prime, so find some maximal prime ideal P such

that I ⊂ P . Consider IP−1. Clearly I ⊆ IP−1, and I 6= IP−1 (otherwise P−1 is

integral). So IP−1 ⊆ II−1 ⊆ R, so IP−1 is an ideal of R. Hence IP−1 is a product

of prime ideals. However, then I = (IP−1)P , since PP−1 = R, so I is a product of

prime ideals, contradicting our assumption. So every nonzero ideal is a product of

primes.

Finally, we will show that this representation of nonzero ideals into products of

prime ideals is unique. Suppose

I = P1 · ... · Pr = Q1 · ... ·Qs (5.4)

Then P1 · ... ·Pr ⊆ Q1. Hence Pi ⊆ Q1 for some i, say i = 1. Now, using the property

that every nonzero prime ideal is maximal, we know P1 is maximal, so we must have

P1 = Q1. Multiply (5.4) by P−11 , and we have P2 · ... ·Pr = Q2 · ... ·Qs. By induction,

r = s and after reordering, Pi = Qi for every i. This completes the proof.

Now, we refer back to the example considered in Chapter 4. We know from

Theorem 7 that Z[
√
−5] is a number ring. So although we were able to find an
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example of non-uninque factorization into irreducible elements, we now know that in

this ring, every ideal factors uniquely into a product of prime ideals. In Chapter 7,

we will see how some of the ideals in this ring factor into products of prime ideals.



23

CHAPTER 6: EXAMPLE OF A RING THAT IS NOT A DEDEKIND DOMAIN

We saw in Example 28 that the ring Z[
√
−3] is not integrally closed, so it is not

a number ring, and in this case it is not a Dedekind domain. In this ring, we do not

have unique factorization into prime ideals.

Consider the ideal I = (2, 1 +
√
−3). First, we show that I2 = 2I. Noting that

−2 + 2
√
−3 = 2 + 2

√
−3− 4, we have

I2 = (22, (1 +
√
−3)2, 2(1 +

√
−3))

= (4,−2 + 2
√
−3, 2 + 2

√
−3)

= (4, 2 + 2
√
−3)

= (2(2), 2(1 +
√
−3))

= 2I

so I2 = 2I. Also, we can clearly see that I 6= (2), since (2) = {2a+2b
√
−3 : a, b ∈ Z},

and this set clearly does not contain the element 1 +
√
−3 ∈ I.

Now we will show that I is prime. Since elements in I have the form 2(a +

b
√
−3) + (1 +

√
−3)(c+ d

√
−3) = (2a+ c− 3d) + (c+ d)

√
−3, we can see from here

that I is the set of a + b
√
−3 such that a ≡ b(mod 2). Now take some product of

elements (a+ b
√
−3)(c+ d

√
−3) = (ac− 3bd) + (bc+ ad)

√
−3 ∈ I. Then ac− 3bd ≡

bc+ ad(mod 2). Now if a 6≡ b and c 6≡ d(mod 2), then there are four options for what

a, b, c, and d are equivalent to modulo 2, but in any case we get a contradiction. So

we must have either a ≡ b or c ≡ d(mod 2). Thus one of the two elements from the

product is in I, and I is prime.

Now, we will start by showing that if we could factor each ideal into a product

of primes in this ring, then that factorization would not be unique. Suppose to the
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contrary that (2) can be written as a product of prime ideals. Then (2) = P1·P2·. . .·Pk.

Then we have I ·I = (2) ·I = P1 ·P2 · . . . ·Pk ·I and since I is a prime ideal, we have two

distinct prime ideal factorizations of the same ideal since I 6= (2) = P1 · P2 · . . . · Pk.

We can show further that the ideal (2) cannot be written as a product of primes

at all. Let P be some prime ideal containing (2). Then (2) ( P since (2) is not itself

prime. Take some element a + b
√
−3 ∈ P \ (2). Then at least one of a, b is odd.

Suppose a = 2k + 1 and b = 2j. Then 1 = (2k + 1 + 2j
√
−3) − (2k + 2j

√
−3) ∈ P ,

contradicting that P is prime. If a = 2k and b = 2j + 1 then
√
−3 = (2k + (2j +

1)
√
−3) − (2k + 2j

√
−3) ∈ P , which implies −3 =

√
−3
√
−3 ∈ P which would give

1 = 3 − 2 ∈ P , resulting in a contradiction again. Then a and b must both be odd.

Then since (2) is made of all a + b
√
−3 such that a and b are even, we have that

P = I since I is the set of all elements such that a and b have the same parity.

Thus I is the only ideal that contains (2), so if (2) is a product of prime ideals,

it must be a power of I. But (2) ( I, and I2 = (4,−2 + 2
√
−3, 2 + 2

√
−3) ( (2),

and then Ik ( (2) for all k ≥ 2. It follows that (2) cannot be written as a product of

prime ideals.
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CHAPTER 7: SPLITTING OF PRIMES IN QUADRATIC FIELDS

Now, since we know that in a number ring every ideal factors uniquely into a

product of prime ideals, we can consider how this looks in the number rings corre-

sponding to quadratic fields.

Lemma 46. Let R be the ring of algebraic integers in Q[
√
m] (m squarefree), and let

p be prime. Then R/pR is naturally a 2-dimensional vector space over Z/pZ.

Proof. R/pR is naturally a Z/pZ-module with scalar multiplication (z + pZ)(r +

pR) = zr + P for z ∈ Z and r ∈ R. Since R is generated over Z by two elements

(either {1,
√
m} or {1, 1+

√
m

2
}, depending on m), R/pR is generated over Z/pZ by two

elements. So that dimZ/pZR/pR ≤ 2. On the other hand, we can show that 1 + pR

and
√
m+ pR are linearly independent over Z/pZ. Indeed, if we have

(a+ pZ)(1 + pR) + (b+ pZ)(
√
m+ pR) = pR

then, multiplying and simplifying, we have a+ pR+ b
√
m+ pR = 0, thus a+ b

√
m+

pR = 0, which implies that a+ b
√
m ∈ pR. Thus p | a and p | b, so our original scalar

terms were 0, and we have that the two elements are linearly independent. Thus

dimZ/pZR/pR = 2.

The following is Theorem 25 in Marcus’ Number Fields [3]. We will give a proof

based on what we have developed in this paper.
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Theorem 47. Let p be prime and let R = A ∩Q[
√
m].

If p | m, then pR = (p,
√
m)2 (1)

If p = 2 and m is odd, then

2R =


(2, 1 +

√
m)2 if m ≡ 3 (mod 4) (2)(

2, 1+
√
m

2

)(
2, 1−

√
m

2

)
if m ≡ 1 (mod 8) (3)

prime if m ≡ 5 (mod 8) (4)

If p is odd, p - m, then

pR =


(p, n+

√
m)(p, n−

√
m) if m ≡ n2 (mod p) (5)

prime if m is not a square mod p (6)

Proof. For (1), since (p,
√
m)2 = (p2, p

√
m,m) and p | m, we have (p,

√
m)2 ⊆ pR.

On the other hand, since the gcd of any two integers can be expressed as a linear

combination of those elements, (p,
√
m)2 contains the gcd of p2 and m, which is p,

so it contains pR. It remains only to show that (p,
√
m) is maximal (and therefore

prime).

To do that, first suppose to the contrary that
√
m ∈ pR. If m ≡ 2 or 3(mod 4)

then
√
m = p(a + b

√
m) where a, b ∈ Z. This implies that 1 = pb where p > 1 and

b is an integer, which is a contradiction. If m ≡ 1(mod 4), then
√
m = p(a

2
+ b

2

√
m)

where a and b are integers. This implies that 1 = pb
2
, and 2 = pb for some integer b,

so p must be 2, but we have p | m and m is odd. So we have a contradiction in this

case as well. Thus
√
m 6∈ pR. Thus pR ( (p,

√
m). We also have (p,

√
m) ( R, since

any integer that isn’t divisible by p will not be in (p,
√
m). So we have the ascending

chain pR ( (p,
√
m) ( R, and then (0) = pR/pR ( (p,

√
m)/pR ( R/pR. And since

these are all proper subspaces, and the dimension of R/pR is 2, there is no room for

anymore ideals in this chain, thus (p,
√
m) is maximal, and hence it is prime.

For (2), we have (2, 1 +
√
m)2 = (4, 2 + 2

√
m, 1 + m + 2

√
m) ⊆ 2R. To show

containment in the other direction, we observe that (1 +m + 2
√
m)− (2 + 2

√
m) =

m− 1 ≡ 2(mod 4), so the ideal contains 4 and an element equivalent to 2 mod 4, so



27

it contains the gcd of those two elements, which is 2. Thus 2R ⊆ (2, 1 +
√
m)2 and

we have 2R = (2, 1 +
√
m)2.

Now we need to show that (2, 1+
√
m) is maximal. First, we can easily see that

1+
√
m 6∈ 2R since if it was, we would have 1+

√
m = 2(a+ b

√
m) which would give

a = b = 1
2
, which is not possible since m ≡ 3(mod 4). So we have 2R ( (2, 1 +

√
m).

We also know elements in this ideal have the form 2(a+b
√
m)+(1+

√
m)(c+d

√
m) =

(2a+ c+md)+(2b+ c+d)
√
m. Now, if (2, 1+

√
m) is not a proper ideal of R, then it

contains 1, in which case 2a+c+md = 1 and 2b+c+d = 0. Solve the second equation

for c and substitue into the first equation to get 1 = 2a−2b−d+md = 2a−2b+d(m−1)

and since m− 1 is even, this is a contradiction. So we have 2R ( (2, 1 +
√
m) ( R.

Now we can use the lemma like we did in (1) to show that (2, 1 +
√
m) is maximal

and therefore prime.

For (3), first note that m ≡ 1(mod 8) implies that m ≡ 1(mod 4). So 1 −m is

divisible by 4, and we have
(
2, 1+

√
m

2

)(
2, 1−

√
m

2

)
=
(
4, 1 +

√
m, 1−

√
m, 1−m

4

)
⊆ 2R.

Also since −(1+
√
m)− (1−

√
m)+4 = 2, we have 2R ⊆

(
2, 1+

√
m

2

)(
2, 1−

√
m

2

)
. Thus

2R =
(
2, 1+

√
m

2

)(
2, 1−

√
m

2

)
.

Again, we must show that both
(
2, 1+

√
m

2

)
and

(
2, 1−

√
m

2

)
are maximal to show

they are prime. The proof is similar to the proofs in parts (1) and (2), so we omit it.

For (4), we note again that m ≡ 5(mod 8) implies that m ≡ 1(mod 4). Now we

need to show that 2 is prime in R. Let 2 |
(
a+b
√
m

2

)(
c+d
√
m

2

)
. So we have

2

(
e+ f

√
m

2

)
=

(
a+ b

√
m

2

)(
c+ d

√
m

2

)
(7.1)

Note that the pairs a, b and c, d and e, f all have the same parity. If a, b are even, then

we have
(
a+b
√
m

2

)
= 2

(
(a/2)+(b/2)

√
m

2

)
, so 2 divides on of the elements in the product

and is therefore prime, as desired. A similar result follows if c, d are even.

Suppose a, b, c, d are all odd. Clearing fractions and taking norms of (7.1), we

get 16(e2 − mf 2) = (a2 − mb2)(c2 − md2). Now, since e, f have the same parity,

e2 − mf 2 is always even, so we have 25 = 32 | (a2 − mb2)(c2 − md2). So we must
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have 23 = 8 divides one of the elements a2 −mb2 or c2 −md2. If 8 | a2 −mb2 then

we have a2 ≡ mb2(mod 8) and since b is odd, it’s coprime to 8, so we can divide

to get (a
b
)2 ≡ m(mod 8). But this gives a contradiction since all squares mod 8 are

congruent to 0, 1, 4. A similar contradiction arises if 8 | c2 −md2. Thus 2 is prime in

R and we have that 2R is a prime ideal.

For (5), we have (p, n+
√
m)(p, n−

√
m) = (p2, pn+p

√
m, pn−p

√
m,n2−m). We

have n2 ≡ m(mod p), so p divides n2−m and all other generators, so (p, n+
√
m)(p, n−

√
m) ⊆ pR. Now, this ideal also contains the element (pn+p

√
m)+(pn−

√
m) = 2pn.

So it also contains the gcd of p2 and 2pn, which must be p, since p is odd and p

clearly cannot divide n. So we also have pR ⊆ (p, n +
√
m)(p, n −

√
m) and thus

pR = (p, n+
√
m)(p, n−

√
m).

Now we only need to show that (p, n +
√
m) and (p, n−

√
m) are maximal and

therefore prime. Again, the proof is similar to the ones above, so it is omitted.

Finally, for (6), we just need to show that pR is maximal, and thus prime. Take

some a + b
√
m ∈ R \ pR. Then we claim that (p, a + b

√
m) = R. If this is the case,

then we have shown that pR is maximal and we’re done.

To prove the claim, first note that a2−mb2 = (a+b
√
m)(a−b

√
m) ∈ (p, a+b

√
m).

Now suppose to the contrary that p | a2 − mb2. Then if p divides b, it must also

divide a, contradicting that a+ b
√
m 6∈ pR. So p cannot divide b. Then we can find a

multiplicative inverse of b mod p, and we have (a
b
)2 ≡ m(mod p), contradicting that

m is not a square mod p. So p - a2 −mb2. Then (p, a + b
√
m) must contain the gcd

of p and a2 −mb2, which we have just shown is 1. This completes the proof of the

claim.

To apply this theorem, (1)-(4) are very straightforward applications, but for

(5) and (6) we need to know if m is a square mod p, which is the same thing as

determining if m is a quadratic residue of p. In more complicated cases, this can be

done with the help of Gauss’ Law of Quadratic Reciprocity [1, Theorem 9.9]. We will
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consider two simple examples.

Example 48. Take the number ring R = A ∩ Q[
√
15] = Z[

√
15]. Applying the

theorem, we have

2R = (2, 1 +
√
15)2 by (2)

3R = (3,
√
15)2 by (1)

5R = (5,
√
15)2 by (1)

7R = (7, 1 +
√
15)(7, 1−

√
15) by (5)

11R = (11, 2 +
√
15)(11, 2−

√
15) by (5)

The first three are direct applications of the theorem, for 7R, we need to know that

m = 15 is a square mod p = 7. This is easy, since 15 ≡ 1 ≡ 12(mod 7). For 11R, we

can see that 15 ≡ 4 ≡ 22(mod 11).

Example 49. We can also consider R = A ∩Q[
√
−3].

2R =

(
2,

1 +
√
−3

2

)(
2,

1−
√
−3

2

)
by (3)

3R = (3,
√
−3)2 by (1)

5R = prime by (6)

7R = (7, 2 +
√
−3)(7, 2−

√
−3) by (5)

Again, the first two are easily verified using the theorem, but for 5R and 7R we must

know if −3 is a quadratic residue of these primes. For 5R, we can quickly find all

quadratic residues:

12 ≡ 1(mod 5) 22 ≡ 4(mod 5)

32 ≡ 4(mod 5) 42 ≡ 1(mod 5)

so clearly −3 ≡ 2(mod 5) is not a quadratic residue of 5. For 7R, we have

−3 ≡ 4 = 22(mod 7), so −3 is a quadratic residue of 7.
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