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ABSTRACT

RAY GABRIEL ABNEY FIALLOS. Nonpropagating Excitations in 2-D. (Under
the direction of DR. GREGORY GBUR)

Nonpropagating excitations have been studied in 1-D and in 3-D, but not so much in

2-D. So, this thesis concerns 2-D nonpropagating excitations. In particular, we con-

struct nonpropagating excitations confined to an annulus under a time-independent

scheme, and then we construct nonpropagating excitations confined to a sector of an

annulus under a time-dependent scheme. In the time-dependent scheme, we have our

nonpropagating excitation orbit the center of our annulus, demonstrating for the first

time a nonpropagating excitation with significant translational motion.

In this thesis, we also reproduce the results of a 2009 paper involving 1-D non-

propagating excitations, and we extend the theory in this 2009 paper concerning 1-D

nonpropagating excitations to 2-D nonpropagating excitations.
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CHAPTER 1: INTRODUCTION

When a driving force is applied to a bounded region on, say, a string, one would

expect waves to propagate from the region being excited; but this does not necessarily

have to happen. Under certain circumstances when a driving force is applied to a

bounded region, a wave results only within this bounded region with no disturbance

being found outside. Under these circumstances, that which creates our driving force

is known as a nonradiating source and the wave that results is known as a nonprop-

agating excitation. (Note that in some literature, it is the driving force itself that

is defined as the nonradiating source. The term nonradiating source can be used

interchangeably for either the driving force or for whatever is creating the driving

force.)

In this paragraph and in the couple that follow, we draw from two writings [1, 2]

of Gbur our brief discussion of the history of the study of nonpropagating excitations

and why the study of nonpropagating excitations is important. In the early 1900’s,

Sommerfeld and other scientists first put forth theories concerning the extended rigid

electron. Then in 1910, Ehrenfest in his paper [3] was the first researcher to recognize

that these charge distributions considered by Sommerfeld and others could oscillate

in certain ways and not radiate. Later, in 1933, Schott showed in [4] how it is possible

for a spherically charged shell to move in a periodic orbit, namely to move about in

a wobbling sort of motion, without radiating. In 1948, Bohm and Weinstein showed

in [5] that certain rigid charge distributions can oscillate and not radiate, even in

the absence of all forces other than their own retarded fields. In 1964, Goedecke in

[6] derived a criterion for absence of radiation from arbitrary time-periodic charge-

current distributions. In his paper, Goedecke also demonstrated that it is possible to
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have an asymmetric, spinning, extended charge distribution that does not radiate.

Some of the scientists who studied nonpropagating excitations and nonradiating

sources believed that nonradiating charge distributions could be used as models for

elementary particles. Schott suggested in [4] that nonradiating charge distributions

could make for a stable model of the neutron and other atomic nuclei. Bohm and

Weinstein suggested in [5] that some kinds of mesons could be electrons in a particu-

lar excited state of self-oscillation, with the electrons being the nonradiating sources.

And Goedecke suggested in [6] that, from theory concerning nonradiating charge dis-

tributions, there could arise a “theory of nature” in which all stable particles are

“nonradiating charge-current distributions whose mechanical properties are electro-

magnetic in origin.”

The existence (or nonexistence) of nonradiating sources is also important to the

solution of the inverse source problem. The term inverse source problem is defined in

[2] as “the determination of the properties of a radiation source from measurements

of the field radiated by that source.” In 1973, Friedlander wrote [7], a paper in

which he discussed the mathematics of nonradiating sources and the inverse source

problem. Also in 1973, Devaney and Wolf gave necessary and sufficient conditions for

monochromatic current distributions to be nonradiating in their paper [8]. And in

1977, Bleistein and Cohen in [9] concluded that inverse source problems are nonunique

whenever their corresponding direct problems admit nonradiating sources.

In more recent times, we have the studies of [10, 11, 12], which all concern nonprop-

agating excitations in 1-D. These three papers were written between 1998 and 2009.

Some of these papers, namely [11, 12], specifically talk about nonpropagating excita-

tions on long strings. Published in 2003, [1] discusses nonpropagating excitations and

invisibility. And written within the last five years, we have [13, 14, 15], all of which

concern nonradiating anapoles. The authors of [15] make use of the theorems found

in [8].
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Nonpropagating excitations in 1-D and in 3-D have been covered in the literature,

but 2-D nonpropagating excitations have not been studied in detail. ([2] gives a lit-

tle bit of discussion about 2-D nonpropagating excitations; but, to our knowledge,

there is no other literature discussing 2-D nonpropagating excitations.) So, in this

thesis, we concern ourselves with nonpropagating excitations in 2-D. This thesis con-

cerns itself mostly with constructing nonpropagating excitations. In Chapter 2, we

reproduce and discuss the 1-D results obtained by Moses, Gan, and Gbur in [10]; in

Chapter 3, we construct 2-D time-independent nonpropagating excitations confined

to an annulus; and in Chapter 4, we construct 2-D time-dependent nonpropagating

excitations confined to a sector of an annulus. Up to this point, all studies concern-

ing nonpropagating excitations and nonradiating sources have concerned themselves

with monochromatic excitations or very small vibratory motions. But here, and for

the first time, we demonstrate a nonpropagating excitation that moves in an orbiting

motion, showing translational motion.



CHAPTER 2: THE 1-D SCHEME

In this chapter, we discuss nonpropagating excitations in 1-D. Our discussion in

this chapter will draw from [10], the paper published in 2009 by Dylan Moses, Choon

How Gan, and Gregory Gbur. In the research for this thesis, the first thing we

wanted to do was to reproduce the results of [10]. This said, in Section 2.1 we will

discuss the theory of 1-D nonpropagating excitations as put forward by [10]; and in

Sections 2.2 and 2.3, we will construct some nonpropagating excitations according

to the amplitude construction and force construction methods outlined in [10]. It is

upon the theory and work in this chapter that we base our work found in the next

two chapters.

2.1 Theory

We first consider an infinitely long string. For waves on this string, we have the

wave equation
∂2

∂x2
y(x, t)− 1

v2
∂2

∂t2
y(x, t) = q(x, t), (2.1)

where v is the speed of the wave and q(x, t) is the driving force that creates the

wave whose amplitude is y(x, t). Now assume that our driving force is of monochro-

matic form q(x, t) = q(x) exp (−iωt). Then, at steady state, we have that y(x, t) =

y(x) exp (−iωt) and our problem now concerns studying solutions of the 1-D Helmholtz

equation
d2

dx2
y(x) + k2y(x) = q(x), (2.2)

where k = ω/v.

We now consider a closed interval [a, b] on our infinitely long string. From [16], we
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have that the solution of equation (2.2) within [a, b] is

y(x) =
1

2ik

∫ b

a

q(x′) exp (ik|x− x′|)dx′. (2.3)

For x < a, equation (2.3) becomes

y(x)|L =
exp (−ikx)

2ik

∫ b

a

q(x′) exp (ikx′)dx′; (2.4)

and for x > b, equation (2.3) becomes

y(x)|R =
exp ikx

2ik

∫ b

a

q(x′) exp (−ikx′)dx′. (2.5)

Equations (2.4) and (2.5) are proportional to the Fourier transform of the force den-

sity,

q̃(K) =

∫ b

a

q(x′) exp (−2πiKx′)dx′. (2.6)

In this chapter, we will concern ourselves with functions q(x) for which we have

q̃(k′) = 0 or q̃(−k′) = 0, (2.7)

where k′ = k/2π. From equations (2.4) and (2.5), if we have both of the conditions

(2.7), then equations (2.4) and (2.5) are both zero and we have a nonpropagating

excitation. On the other hand, if we only have one of the conditions of (2.7), then

only one of the equations (2.4) and (2.5) is zero and we have what is called a directional

excitation, a wave that propagates in only one direction but not in the other. For

both nonpropagating and directional excitations, these equations demonstrate that

the phenomena are the result of a special wave interference effect in which the waves

produced by all points in the source region combine to form complete destructive

interference.
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2.2 The Amplitude Construction Method

From [11], we have that, if y(x) is a nonpropagating excitation, then it will satisfy

the boundary conditions

y(a) = y(b) = 0,
dy

dx

∣∣∣∣
x=a

=
dy

dx

∣∣∣∣
x=b

= 0. (2.8)

So the amplitude construction method of finding a nonpropagating excitation is to

define any function y(x) that would satisfy the boundary conditions (2.8). Once

we have our y(x), we put it through our Helmholtz equation (2.2) to determine the

nonradiating source q(x) that would generate our y(x).

At this point it would be good to mention that, for the rest of this chapter, we will

have a = −x0 and b = x0; the purpose being, as the authors of [10] say, “to easily

consider, without any loss of generality, nonpropagating excitations of even and odd

symmetry.”

We define our nonpropagating excitations as piecewise continuous functions of the

form

y(x) =

 f(x) x ∈ [−x0, x0],

0 otherwise,
(2.9)

where f(x) is a polynomial of the form

f(x) =
N∑
n=0

cnx
n, (2.10)

where cn ∈ C. We need to determine what our cn’s are and how many terms we need

for our polynomial f(x). In order for our y(x) as defined by equation (2.9) to fulfill

the boundary conditions (2.8), we need f(x) as defined by equation (2.10) to satisfy

the conditions (2.8). We try the form

f(x) = cmx
m + cm+2x

m+2 + cm+4x
m+4. (2.11)

So putting our f(x) through the boundary conditions (2.8) and then setting x = x0,
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we end up with the system of equations

cmx
m
0 + cm+2x

m+2
0 + cm+4x

m+4
0 = 0,

mcmx
m−1
0 + (m+ 2)cm+2x

m+1
0 + (m+ 4)cm+4x

m+3
0 = 0.

(2.12)

So, solving our system of equations for cm, cm+2, and cm+4 and letting cm = A,

cm+2 = B, and cm+4 = C; we have A = Cu41, B = −2Cu21, and our free variable

C = 1. And, of particular importance are the definitions u = kx, u0 = −kx0,

u1 = kx0, k = 1/x0, and x0 = 1. Thus, u = x/x0.

As for the number of terms in our polynomial in equation (2.11), we need at least

three. If, say, we did not have the term cm+4x
m+4 in our polynomial f(x), then this

would give us the system of equations

cmx
m
0 + cm+2x

m+2
0 = 0,

mcmx
m−1
0 + (m+ 2)cm+2x

m+1
0 = 0.

(2.13)

Our system of equations above only has a nontrivial solution for cm and cm+2 if its

determinant equals zero; or, rather, if 2x2m+1
0 = 0. We cannot have 2x2m+1

0 = 0 since

x0 6= 0. Thus, we need at least three terms.

Now, going back to our nonpropagating excitation y(x), which we will redefine in

terms of u (like in [10]), from equation (2.9) we get

y(u) =

 Aum +Bum+2 + Cum+4 u ∈ [u0, u1],

0 otherwise.
(2.14)

Then we take our y(u) and put it through our Helmholtz equation to get our q(u)

(keeping in mind that there is a second derivative in the Helmholtz equation; which,

due to our change of coordinates u = kx, requires that we multiply this derivative by

k2). Thus, we arrive at our first reproduced results, as shown in Figure 2.1. These

results are identical with the corresponding results obtained in [10].

The amplitude construction method can also be used to create directional excita-
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(a) (b)

Figure 2.1: The graphs that result from using the amplitude construction method
to generate a nonpropagating excitation. (a) Our nonpropagating excitation y(u)
plotted against u for the cases m = 1 and m = 2. (b) Our nonradiating source q(u)
that generates our nonpropagating excitation y(u) above for the cases m = 1 and
m = 2.

tions. Equation (2.4) implies that every wave propagating to the left of [a, b] has the

form y(x)|L = A0 exp (−ikx), where A0 ∈ C is a constant. Thus, constructing a (left-

going in this case) directional excitation using the amplitude construction method

amounts to finding a y(x) such that

y(x0) = 0, dy
dx

∣∣
x=x0

= 0,

y(−x0) = A0 exp (ikx0),
dy
dx

∣∣
x=−x0

= −ikA0 exp (ikx0).
(2.15)

Right-going directional excitations are created in a similar fashion.

Thus, we define

y(u) =


0 if u ≤ u0,

A(u− u1)m +B(u− u1)m+2 + Ceiu if u0 < u < u1,

Ceiu if u ≥ u1.

(2.16)

Equation (2.16) defines a right-going directional excitation. For equation (2.16), some

constants have been redefined. We now choose k = 4/x0. We also have A = AR+ iAI

and B = BR + iBI with

AR =
C[2∆u sinu0 − (m+ 2) cosu0]

2(−2∆u)m
, (2.17)



9

5 10 15 20
u

-1.0

-0.5

0.5

1.0

1.5

2.0

y(u)

(a) (b)

Figure 2.2: The graphs that result from using the amplitude construction method
to generate a directional excitation. (a) Our directional excitation going toward the
right. Here, m = 2. (b) The real and imaginary parts of our nonradiating source q(u)
that generates our graph above.

AI = −C[2∆u cosu0 + (m+ 2) sinu0]

2(−2∆u)m
, (2.18)

BR =
C[m cosu0 − 2∆u sinu0]

2(−2∆u)m+2
, (2.19)

BI =
C[m sinu0 + 2∆u cosu0]

2(−2∆u)m+2
, (2.20)

with ∆u = (u1−u0)/2 6= 0. C and u are as they were before. Thus, we get the results

of Figure 2.2. Note that, while Figure 2.2a is identical with its counterpart in [10],

Figure 2.2b is slightly different from its counterpart in [10]. In Figure 2.2b, neither

of the graphs go to zero as u approaches 4; but they do in the corresponding graph

in [10]. However, the graphs of Figure 2.2b are at least qualitatively the same as the

corresponding graph in [10]. This said, seeing that we have meticulously checked our

calculations and the Mathematica script that created Figure 2.2, we conclude that

the figure in [10] corresponding with Figure 2.2b has an error.

2.3 The Force Construction Method

The force construction method creates nonpropagating excitations by taking a non-

radiating source q(x) and using equation (2.3) to find the nonpropagating excitation

y(x). So, really, it works like the amplitude construction method, but backwards. An

advantage of the force construction method is that we can work with sources q(x)
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that are in principle easier to construct experimentally.

In [10], the authors start off with the step function

S(u) =

 1 if |u| ≤ 1,

0 if |u| > 1.
(2.21)

Using this step function S(u), they construct a nonradiating source

q(x) =
N∑
n=1

anS

(
x− xn
σn

)
, (2.22)

where N is the total number of steps in our force distribution q(x), where an is the

height of the nth step, and where σn is the half-width of the nth step, as illustrated

in Figure 2.3. A nonpropagating excitation will result for the case N = 1 if

kσ1 = mπ, (2.23)

where m ∈ Z−{0} and where k is the wave number of our nonpropagating excitation.

Figure 2.3: A general example of what a plot of q(x) ought to look like, as found in
[10]. Here, q(x) is a real-valued function and N = 5.

In the case of 2N steps, the force is defined as

qe/o(x) =
N∑
n=1

an

[
S

(
x− xn
σn

)
± S

(
x+ xn
σn

)]
, (2.24)

where the ± is taken positive if we want an even function or taken negative if we
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want an odd function. And we have the Fourier transforms of equation (2.24)

q̃e(±k′) =
N∑
n=1

4anσn cos (2πk′xn)sinc(2k′σn), (2.25)

q̃o(±k′) = ±
N∑
n=1

4ianσn sin (2πk′xn)sinc(2k′σn); (2.26)

where

sinc(x) =
sin(πx)

πx
. (2.27)

We need at least two nonzero an in order to satisfy the nonpropagating condition,

which will give us four steps for qo and three steps for qe.

Thus, our first force distribution q(x) is the even function

qe(x) =


0 if x ∈ (−∞,−x0) ∪ (x0,∞),

a1 if x ∈ [−x0,−x0 + 2σ1) ∪ [x0 − 2σ1, x0],

a2 if x ∈ [−x0 + 2σ1, x0 − 2σ1),

(2.28)

where σ1 = x0/4; and our second force distribution is the odd function

qo(x) =



0 if x ∈ (−∞,−x0) ∪ (x0,∞),

a1 if x ∈ [−x0,−x0 + 2σ1),

a2 if x ∈ [−x0 + 2σ1, 0),

−a2 if x ∈ [0, x0 − 2σ1),

−a1 if x ∈ [x0 − 2σ1, x0],

(2.29)

where σ1 = x0/5. In both cases, we let a1 = 1 and we have k′x0 = 1.2; and to

determine our a2’s (which are different for the even and odd cases), we have q̃(k′) = 0

and then we solve for a2 in terms of a1. This gives us

a2 = a1

(
1 +

sin(2πk′x0)

sin(2πk′(2σ1 − x0))

)
(2.30)

for qe(x) and

a2 = a1

(
1 +

1− cos(2πk′x0)

cos(2πk′(2σ1 − x0))− 1

)
(2.31)
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Figure 2.4: (a) The graph of the real part of the ye(x) that results from using the
force construction method on qe(x). (b) The graph of qe(x) itself. (c) The graph of
the real part of the yo(x) that results from using the force construction method on
qo(x). (d) The graph of qo(x) itself.

for qo(x). Thus, putting qe(x) and qo(x) through equation (2.3) to get our correspond-

ing ye(x) and yo(x), we get the graphs of Figure 2.4. The graphs of Figure 2.4 are

identical with the corresponding graphs found in [10].

And with the force construction method, we can also make directional excitations.

Let

q(x) =

 a1 + ia2sgn(x) if − x0 ≤ x ≤ x0,

0 otherwise,
(2.32)

where sgn(x) is the signum function. We have q̃(−k′) = 0 and solve for a2 in terms

of a1 to get

a2 =
a1 sin (2πk′x0)

cos (2πk′x0)− 1
. (2.33)

Then we have a1 = 1 and k′x0 = 1.25. Thus, using the force construction method on

our new q(x), we have the graphs of Figure 2.5. Here we have another instance of our
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results not matching the results obtained in [10]. When we enter into Mathematica a2

defined according to equation (2.33), our other constants, and q(x) defined according

to equation (2.32); Figures 2.5b and 2.5c are mirror images of the corresponding

figures in [10] while Figure 2.5a is identical with the corresponding figure in [10].

Again, we have checked our calculations and our Mathematica script and everything

looks fine. So there must be another error in [10].

-1.5 -1.0 -0.5 0.5 1.0 1.5
x / x0

0.2
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0.6

0.8

1.0

Re[qc (x)]

(a)
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(b)
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0.03
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(c)

Figure 2.5: (a) The real part of our force, (b) the imaginary part of our force, and
(c) the real part of our directional excitation created by our force with the force
construction method.



CHAPTER 3: THE 2-D TIME-INDEPENDENT SCHEME

In this chapter, we deal with two-dimensional nonpropagating excitations confined

to an annulus. In our research, this was the first new thing we wanted to study.

The scenarios studied in this chapter are more realistic and more complex than the

1-D cases, but simpler to calculate than 3-D cases. Furthermore, even-dimensional

radiation problems have characteristics that are different from odd-dimensional ra-

diation problems (see Chapter 19 of [17]). This gives us even more reason to study

nonpropagating excitations in 2-D. Section 3.1 discusses the theory behind our work

and Section 3.2 discusses the numerical experiments we did. Our work in this chapter,

namely our work with nonpropagating excitations on an annulus, sets us up to study

orbiting nonpropagating excitations in Chapter 4.

3.1 Theory

The two-dimensional wave equation is

∇2U(r, t)− 1

v2
∂2

∂t2
U(r, t) = q(r, t), (3.1)

where U(r, t) is the displacement of the wave with r ∈ R2, and where, once again, v

and q(r, t) are the velocity of the wave and the driving force, respectively. We want

to have the monochromatic U(r, t) = u(r)e−iωt; and this leads us, like in Chapter 2,

to concern ourselves with the now two-dimensional Helmholtz equation

∇2u(r) + k2u(r) = q(r), (3.2)
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where k is the wave number. The general solution of equation (3.2), as [17] tells us,

is the Green’s formula

u(r) =

∫
R

G(r, r′)q(r′)d2r′, (3.3)

where R is our region of integration, where

G(r, r′) = iπH
(1)
0 (k|r− r′|) (3.4)

is the Green’s function of the 2-D Helmholtz equation, and where H(1)
0 is a Hankel

function. Equation (3.3) above is analogous to equation (2.3) of Chapter 2.

To make the math easier, we will be doing most of our work for this chapter in

polar coordinates. This means that u(r) = u(r, θ), q(r) = q(r, θ), and that equation

(3.2) becomes [
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
u(r, θ) + k2u(r, θ) = −4πq(r, θ), (3.5)

with the Laplacian

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
. (3.6)

This said, we would like to find nonpropagating excitations that are nonzero on

the annular domain

D = {(r, θ)|a ≤ r ≤ b, 0 ≤ θ ≤ 2π} , (3.7)

with inner radius a and outer radius b. So finding such nonpropagating excitations

amounts to finding functions u(r, θ) such that the boundary conditions

u(a, θ) = u(b, θ) = 0, ur(a, θ) = ur(b, θ) = 0 (3.8)

are satisfied. The boundary conditions (3.8) are analogous to the boundary conditions

(2.8) of the previous chapter.
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3.2 Computations

Our numerical experiments roughly followed this format: First we defined a func-

tion u(r, θ) satisfying the boundary conditions (3.8). Then, having our u(r, θ), we put

it through equation (3.5) to find our force q(r, θ). Finally, having our q(r, θ), we put

it through equation (3.3) to reproduce the u(r, θ) with which we began, confirming

that we in fact have a nonpropagating excitation as predicted. So, drawing parallels

with our work in Chapter 2, the first part of our experiments for this chapter, the

part where we find q(r, θ) from u(r, θ), is analogous to the amplitude construction

method; and the last part of our experiments, finding u(r, θ) using q(r, θ), is like the

force construction method. All of the results appearing in this thesis for all of the

numerical experiments were computed with Mathematica.

In our numerical experiments, we tested four functions that were all based on

polynomials. All of these functions followed the general form

u(r, θ) =

 f(r) if r ∈ [a, b],

0 otherwise.
(3.9)

So, in defining these functions u(r, θ), we needed to find functions f(r) that satisfy

the boundary conditions (3.8).

It is easy enough to find functions f(r) for our u(r, θ)’s. All we have to do is to

follow the approach taken in Chapter 2. First, we let

f(r) = cm(r −K)m + cm+2(r −K)m+2 + cm+4(r −K)m+4, (3.10)

where

K =
a+ b

2
. (3.11)

Then we put our f(r) through the boundary conditions (3.8) so that we have the
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system of equations

cm

(
a− b

2

)m
+ cm+2

(
a− b

2

)m+2

+ cm+4

(
a− b

2

)m+4

= 0, (3.12)

mcm

(
a− b

2

)m−1
+(m+2)cm+2

(
a− b

2

)m+1

+(m+4)cm+4

(
a− b

2

)m+3

= 0, (3.13)

where we would like to solve for the coefficients cm, cm+2, and cm+4. Solving, we get

cm = cm+4
(a− b)4

16
, cm+2 = −cm+4

(a− b)2

2
, (3.14)

and our free variable cm+4 = 1. Thus, we have an f(r) to substitute into equation

(3.9) so as to create our u(r, θ)’s.

In our experiments, the first thing we do is define our constants. In all of our

experiments, we always have for our outer radius b = 3. For the inner radius, we test

for a = 0, 1; and we also test for m = 0, 1. Since our u(r, θ)’s depend on the values a

and m, this thus gives us four u(r, θ)’s to test. We denote the u(r, θ) with m = 0 as

u0(r, θ), and we denote the u(r, θ) with m = 1 as u1(r, θ). Figure 3.1 shows u0(r, θ)

and u1(r, θ) plotted against r with θ = 0 for a = 0, 1, and Figure 3.2 gives 3-D plots

of these same functions for a = 0, 1.

Next we put our functions through equation (3.5) to get our forces q0(r, θ) and

q1(r, θ), corresponding with u0(r, θ) and u1(r, θ), respectively. In all of our experi-

ments, we put for convenience k = 1 as our wave number. Now, when we put our

functions through equation (3.5), Mathematica will, in the case of q0(r, θ) and a = 1

for example, give us a result like

q0(r, θ) = − 1

4π


Indeterminate r = 1 or r = 3

97− 24
r
− 96r + 38r2 − 8r3 + r4 1 < r < 3

0 True.

(3.15)

This was a problem we were calculating q0(r, θ) and q1(r, θ). This problem arises

because the second derivative in the Helmholtz equation is discontinuous. To resolve
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Figure 3.1: Plotted against r with θ = 0, (a) u0(r, θ) with a = 0, (b) u1(r, θ) with
a = 0, (c) u0(r, θ) with a = 1, and (d) u1(r, θ) with a = 1.

this issue, we just substitute “Indeterminate” with a 0; and we are allowed to make

such a substitution because for all of our forces, regardless of the values of a or m,

we have

lim
r→a−

q(r, θ) = lim
r→b+

q(r, θ) = 0. (3.16)

Thus, after making the appropriate substitutions, we get for a = 0 the forces

q0(r, θ) = − 1

4π

 r4 − 6r3 + 25r2 − 54r + 36 0 < r < 3

0 elsewhere,
(3.17)

and

q1(r, θ) = − 1

4π

 r5 − 15r4

2
+ 43r3 − 267r2

2
+ 162r − 54 0 < r < 3

0 elsewhere;
(3.18)
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(a) (b)

(c) (d)

Figure 3.2: (a) u0(r, θ) with a = 0, (b) u1(r, θ) with a = 0, (c) u0(r, θ) with a = 1,
and (d) u1(r, θ) with a = 1.

and we get for a = 1 the forces

q0(r, θ) = − 1

4π

 r4 − 8r3 + 38r2 − 96r − 24
r

+ 97 1 < r < 3

0 elsewhere,
(3.19)

and

q1(r, θ) = − 1

4π

 r5 − 10r4 + 63r3 − 228r2 + 399r + 57
r
− 290 1 < r < 3

0 elsewhere.
(3.20)

Figure 3.3 shows the graphs of our two forces for a = 0, 1. Note the discontinuity in

each of the graphs of Figure 3.3.

This is the point where we use our forces q(r, θ) to reproduce our nonpropagating
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Figure 3.3: Plotted against r with θ = 0, (a) q0(r, θ) with a = 0, (b) q1(r, θ) with
a = 0, (c) q0(r, θ) with a = 1, and (d) q(r, θ) with a = 1.

excitations u(r, θ). Thus, we define our Green’s function

G(x, y, x′, y′) = iπH
(1)
0

(
k
√

(x− x′)2 + (y − y′)2
)
. (3.21)

Since our forces are functions of r and θ, to convert a point (x, y) in Cartesian

coordinates to a point (r, θ) in polar coordinates, we keep in mind the conversions

r =
√
x2 + y2, θ = atan2(y, x). (3.22)

Now, in the case of a = 0, we have instances where both arguments of atan2(y, x)

are zero, which will result in Mathematica giving us an error message. So, in the case

of a = 0, instead of having θ = atan2(y, x), we have θ = 0. From the definitions of

our forces q(r, θ) in equations (3.17) through (3.20), we are allowed to make such a

substitution since our forces do not actually depend on θ. From here, we define our
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integrand

I(x, y, x′, y′) =


0 if |r′| < a or |r′| > b,

A(x, y, x′, y′) if |r− r′| > 0 and a ≤ |r′| ≤ b,

B(x, y, x′, y′) if |r− r′| = 0 and a ≤ |r′| ≤ b;

(3.23)

where

A(x, y, x′, y′) = G(x, y, x′, y′)q(
√

(x′)2 + (y′)2, atan2(y′, x′)) (3.24)

and

B(x, y, x′, y′) =
4.43i√
k∆x

q(
√

(x′)2 + (y′)2, atan2(y′, x′)), (3.25)

and where

|r′| =
√

(x′)2 + (y′)2, |r− r′| =
√

(x− x′)2 + (y − y′)2. (3.26)

We accordingly swap the terms atan2(y, x) with 0 in the case a = 0. Now, as the

reader may have observed, when |r − r′| = 0, we substitute our Green’s function

with the term 4.43i/
√
k∆x, where the purpose of the term ∆x will be explained

momentarily. The reason for this substitution is that the Hankel function blows up

when |r− r′| = 0.

And then we finally calculate our Green’s formula equation (3.3) by approximating

our continuous integral by a sum over a finite grid. We calculate our Green’s formula

discretely for every node on a square grid that is 8 units on a side. The distance

between nodes going in the x-direction is ∆x and the distance between nodes going

in the y-direction is ∆y. At a point (xi, yi), we denote the value of our Green’s

function to be uG(xi, yi). Thus, at a point (xi, yi), we have

uG(xi, yi) =
N∑
m=1

N∑
n=1

I(xi, yi, x
′
m, y

′
n)∆x′∆y′, (3.27)

where ∆x′ = ∆y′ = 0.05 and where N = 8/∆x′ = 8/∆y′. Here, ∆x′ = ∆x and

∆y′ = ∆y. We need to have our values of ∆x,∆y small so that way we can have a
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(a) (b)

(c) (d)

Figure 3.4: (a) uG0 (x, y) with a = 0, (b) uG1 (x, y) with a = 0, (c) uG0 (x, y) with a = 1,
and (d) uG1 (x, y) with a = 1.

good approximation of our Green’s formulae.

And in Figure 3.4 we have our uG(x, y)’s plotted. Note the similarity between the

graphs of our Green’s formulae and the graphs of the functions u(r, θ) our Green’s

formulae are supposed to represent. Thus, we have reproduced our nonpropagat-

ing excitations u(r, θ) and verified that our construction method produces genuine

nonpropagating excitations.

Now, most of the results obtained for this thesis were obtained easily enough with a

Raspberry Pi 3 Model B computer, the same computer used to write this thesis. But,

while the Mathematica script used to obtain the results of this chapter were written

on this little computer, calculating any of the Green’s formulae for our u(r, θ)’s was

just too big a job even for a standard desktop computer. So the Green’s formulae for
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our four u(r, θ)’s and their corresponding graphs found in Figure 3.4 were calculated

using a server computer belonging to the Department of Mathematics and Statistics

of UNCC. Even using this server computer, it still takes about a day to obtain the

results for one or two u(r, θ)’s.



CHAPTER 4: THE 2-D TIME-DEPENDENT SCHEME

After having created nonpropagating excitations confined to an annulus, we wanted

to create nonpropagating excitations that were confined to a sector of an annulus. Not

only that, but we wanted this nonpropagating excitation to orbit the center of our

annulus; and for various nonpropagating excitations u(r, θ, t), we wanted to determine

their corresponding forces q(r, θ, t). Up to this point, the nonpropagating excitations

considered in other literature have involved oscillations in place or wobbling motions

like in the case of Schott’s spherical shell mentioned in [4]. But the nonpropagating

excitations considered in this chapter are different from all others previously consid-

ered in other literature because ours experience translational motion. In Section 4.1

we discuss the theory behind our work and in Section 4.2 we discuss the numerical

experiments we did.

Now, the reader may be a bit confused. The reader, from our definition of non-

propagating excitation in Chapter 1, may be under the impression that nonpropa-

gating excitations do not move, let alone orbit around the center of an annulus. The

excitations of this chapter still constitute nonpropagating excitations because these

excitations are confined only to the regions where their respective forces are applied.

The only difference now is that the forces are moving around.

4.1 Theory

Let

S = {(r, θ)|a ≤ r ≤ b, φ ≤ θ ≤ ψ} (4.1)

be the sector of our annulus

D = {(r, θ)|a ≤ r ≤ b, 0 ≤ θ ≤ 2π} (4.2)
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to which we would like to confine our nonpropagating excitation u(r, θ). Thus, the

problem of Chapter 3, the problem defined by equations (3.5) and (3.8), becomes[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
u(r, θ) + k2u(r, θ) = −4πq(r, θ), (4.3)

u(a, θ) = u(b, θ) = 0, ur(a, θ) = ur(b, θ) = 0, (4.4)

u(r, φ) = u(r, ψ) = 0, uθ(a, φ) = uθ(r, ψ) = 0. (4.5)

From our work in Chapter 3, finding a function u(r, θ) satisfying equations (4.3) and

(4.4) is straightforward. We want a function u(r, θ) = v(r)w(θ) such that v(r) satisfies

v(a) = v(b) = 0, v′(a) = v′(b) = 0, (4.6)

and w(θ) satisfies

w(φ) = w(ψ) = 0, w′(φ) = w′(ψ) = 0; (4.7)

and with our work from Chapter 3, we know just how to find such functions v(r), w(θ).

The boundary conditions (4.6) and (4.7) correspond with the boundary conditions

(4.4) and (4.5), respectively.

Having our function u(r, θ) = v(r)w(θ), we would like to approximate it using a

Fourier series. Thus, we have

wF (θ) =
∞∑

n=−∞

ane
inθ, (4.8)

with the Fourier coefficients

an =
1

2π

∫ ψ

φ

w(θ)e−inθdθ. (4.9)

Thus, we have

uF (r, θ) = v(r)wF (θ) = v(r)
∞∑

n=−∞

ane
inθ. (4.10)

Then we would like to make our u(r, θ) a function of time so that we have our non-
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propagating excitation orbit around the center of our annulus with angular frequency

ω. Thus, we have

wTF (θ, t) =
∞∑

n=−∞

ane
in(θ−ωt) (4.11)

so that

uTF (r, θ, t) = v(r)wTF (θ, t). (4.12)

Having our time-dependent function uTF (r, θ, t), we put it through the wave equa-

tion [
∇2 − 1

c2
∂tt

]
u(r, θ, t) = −4πq(r, θ, t) (4.13)

to compute our force q(r, θ, t). And, for a fixed time t, we see what our force looks

like for a corresponding nonpropagating excitation.

4.2 Computations

First, we define

vm(r) =

 cm(r −K)m + cm+2(r −K)m+2 + cm+4(r −K)m+4 if r ∈ [a, b],

0 otherwise
(4.14)

with

K =
a+ b

2
, cm = cm+4

(a− b)4

16
, cm+2 = −cm+4

(a− b)2

2
, cm+4 = 1.

(4.15)

In all of our trials, we always have b = 3; but in some trials we have a = 1 and in

others a = 5/2 to make our annulus as wide or narrow as we need it to be. Likewise,

in some trials, m = 0; and in others, m = 1.

Next, we define

wn(θ) =

 dn(θ −H)n + dn+2(θ −H)n+2 + dn+4(θ −H)n+4 if θ ∈ [φ, ψ],

0 otherwise
(4.16)
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where

H =
φ+ ψ

2
, dn = dn+4

(φ− ψ)4

16
, dn+2 = −dn+4

(φ− ψ)2

2
, dn+4 = 1.

(4.17)

In all of our trials, we always have φ = 0; but we may have ψ = π/2 in some trials

and ψ = π/6 in others so that we can have a larger or smaller sector angle as needed.

Likewise, in some trials, n = 0; in others, n = 1.

Once we have our wn(θ), we then compute its Fourier series

wFn (θ) =
N∑

p=−N

(
1

2π

∫ ψ

φ

wn(θ′)e−ipθ
′
dθ′
)
eipθ. (4.18)

It is very important to get a very fine approximation of our wn(θ), or else our contour

plot of qmn(r, θ, t) will come out with too many artifacts. So, in some trials, N can

be as low as 6; and in other trials, N needs to be as high as 24.

At this point, we construct umn(r, θ) = vm(r)wn(θ) and uFmn(r, θ) = vm(r)wFn (θ)

and give their contour plots to make a comparison, as shown in Figure 4.1. Concerning

the plots of this chapter, there are a couple of things we need to keep in mind. First,

any white lines seen in our plots are artifacts. Secondly, when we talk about the plot

of a function, we are actually talking about the plot of the real part of that function.

So, in the case of uFmn(r, θ), Figure 4.1b is actually the plot of Re[uFmn(r, θ)].
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Figure 4.1: (a) Our nonpropagating excitation compared with (b) its Fourier series.
Here, m = n = 1.

Then we make a time-dependent version of wFn (θ). Thus we compute the Fourier

series

wTFn (θ, t) =
N∑

p=−N

(
1

2π

∫ ψ

φ

wn(θ′)e−ipθ
′
dθ′
)
eip(θ−ωt), (4.19)

where N is the same as in equation (4.18). Here we define ω = 2π so that our

nonpropagating excitation goes around our annulus only once as our time t goes from

0 to 1.

And once we have our wTFn (θ, t), we define our now time-dependent nonpropagating

excitation uTFmn(r, θ, t) = vm(r)wTFn (θ, t) and make contour plots of its real part for

various values of t between 0 and 1 inclusive, watching our nonpropagating excitation

go around the center of our annulus. And having our uTFmn(r, θ, t) and letting c = 1

be our wave speed, we put uTFmn(r, θ, t) through equation (4.13), the wave equation,

to get our function qmn(r, θ, t). Finally, we make contour plots of qmn(r, θ, t) for

various values of t between 0 and 1 inclusive. Figure 4.2 shows the real parts of

our nonpropagating excitation and its corresponding force orbiting the center of our

annulus.
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Figure 4.2: The left column shows our nonpropagating excitation uTF11 (r, θ, t) orbit-
ing the center of our annulus, and the right column shows the corresponding force
q11(r, θ, t) orbiting the same annulus. The first row corresponds to t = 0, the second
to t = 0.25, the third to t = 0.50, the fourth to t = 0.75, and the fifth row to t = 1.
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We followed this procedure for these four different functions: u00(r, θ) = v0(r)w0(θ),

u01(r, θ) = v0(r)w1(θ), u10(r, θ) = v1(r)w0(θ), and u11(r, θ) = v1(r)w1(θ). Figure 4.3

gives the contour plots for all four of these functions, Figure 4.4 gives the contour

plots for the time-dependent Fourier series of these functions, and Figure 4.5 gives

the contour plots of the qmn(r, θ, t)’s resulting from our four umn(r, θ)’s to be tested.

(a) (b)

(c) (d)

Figure 4.3: The plots of (a) u00(r, θ), (b) u01(r, θ), (c) u10(r, θ), and (d) u11(r, θ).



31

(a) (b)

(c) (d)

Figure 4.4: The plots of the time-dependent Fourier series of our nonpropagating
excitations. Plotted are (a) uTF00 (r, θ, t), (b) uTF01 (r, θ, t), (c) uTF10 (r, θ, t), and (d)
uTF11 (r, θ, t). At t = 0, the graph of each uTFmn(r, θ, t) above is identical with the
graphs of the corresponding uFmn(r, θ).
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(a) (b)

(c) (d)

Figure 4.5: The plots of the forces corresponding with our nonpropagating excita-
tions of Figure 4.3. Plotted are (a) q00(r, θ, t), (b) q01(r, θ, t), (c) q10(r, θ, t), and (d)
q11(r, θ, t).

For all of our figures above, we had a = 1 and ψ = π/2. However, we tested our

graphs with different values of a and ψ. All of these other trials with these other

values of a and ψ produced more contour plots than we can illustrate here. So we

will just leave it to Table 4.1 to give a summary of all of the different variables we

tested for our experiment.
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Table 4.1: All of the parameters tested in all of the trials of our experiment.

Trial No. m n a b φ ψ

1 0 0 1 3 0 π/2

2 0 0 1 3 0 π/6

3 0 0 5/2 3 0 π/2

4 0 0 5/2 3 0 π/6

5 0 1 1 3 0 π/2

6 0 1 1 3 0 π/6

7 0 1 5/2 3 0 π/2

8 0 1 5/2 3 0 π/6

9 1 0 1 3 0 π/2

10 1 0 1 3 0 π/6

11 1 0 5/2 3 0 π/2

12 1 0 5/2 3 0 π/6

13 1 1 1 3 0 π/2

14 1 1 1 3 0 π/6

15 1 1 5/2 3 0 π/2

16 1 1 5/2 3 0 π/6

We noticed three things in our results. First, most of the contour plots of this

chapter, in particular the plots of Figures 4.4 and 4.5, look like the Rising Sun Flag

or like dartboards. This dartboard pattern is a result of our use of the Fourier series

to approximate umn(r, θ), as we can see from Figure 4.6.
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(a)

(b)

Figure 4.6: Our use of the Fourier series is why our contour plots look like dartboards.
(a) The graph of the time-dependent wTF0 (θ, t) and w0(θ). The graph of wTF0 (θ, t)
ripples where the graph of w0(θ) is perfectly flat. (b) The plot of uTF00 (r, θ, t) exhibiting
a dartboard pattern. Here, a = 1, ψ = π/6, m = n = 0, and N = 14.

The second thing we noticed was that, for a given umn(r, θ), changing the size of

the sector of our annulus did not change the basic form of our force qmn(r, θ, t). For

example, consider the forces q00(r, θ, t) generated by the function u00(r, θ) first in the

case a = 1, ψ = π/2 and then in the case a = 5/2, ψ = π/6, as shown in Figure 4.7.

(Remember, for all of our trials, we always had b = 3, and φ = 0.) In the case of

a = 5/2, ψ = π/6, the form of qmn(r, θ, t) is just like that of qmn(r, θ, t) in the case of
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a = 1, ψ = π/2 except that qmn(r, θ, t) is “squished” into a smaller area in the case

of a = 5/2, ψ = π/6. So what this tells us is that we can make our sector whatever

shape we want or as small as we want and still have a nonpropagating excitation.

(a) (b)

Figure 4.7: Our force q00(r, θ, t) on two different sectors of our annulus. (a) The
sector of our annulus with a = 1 and ψ = π/2, and (b) a close-up of the sector of our
annulus with a = 5/2 and ψ = π/6.

And finally, the third thing we noticed is that there appear to be equal amounts of

positive and negative force in the plots of our forces. This makes sense because the

destructive interference that makes our nonpropagating excitations nonpropagating

is apparently created by a cancellation of waves from positive and negative sources.



CHAPTER 5: CONCLUSIONS

Thus, we have managed to construct two-dimensional nonpropagating excitations,

even two-dimensional nonpropagating excitations that orbit, exhibiting translational

motion. We can even construct orbiting two-dimensional nonpropagating excitations

on as small a sector of an annulus as we would like. From here, we ought to be able

to construct 2-D nonpropagating excitations that move in other motions like a figure

eight pattern or a square pattern. The new nonpropagating excitations considered

in this thesis were general, not applied to any particular branch of physics. Similar

nonpropagating excitations should exist for electromagnetic waves and gravitational

waves, which can all be reduced in special cases to wave equations with a source term.
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APPENDIX: WHEN THE HANKEL FUNCTION’S ARGUMENT IS ZERO

The discussion that follows comes from [18].

We start off with our Helmholtz equation

[
∇2 + k2

]
u(r) = −4πq(r), (A.1)

whose solution is the Green’s formula

u(r) =

∫
D

G(r, r′)q(r′)d2r′, (A.2)

where D is the region of integration and G is a Green’s function. The way we

compute equation (A.2) is that we discretize our region D into smaller sections Dj

so that D =
⋃
j Dj, and we compute

u(ri) =
∑
j

∫
Dj

G(ri, r′)q(r′)d2r′. (A.3)

Now, when j 6= i, we treat the terms in our summation approximately as constants.

On the other hand, when j = i, we treat these terms separately. Thus, we end up

with

u(ri) =
∑
j 6=i

G(ri, rj)q(rj)∆A+ q(ri)
∫
Di

G(ri, r′)d2r′, (A.4)

where ∆A is the area of the region Dj.

In 2-D, we have that G(ri, rj) = iπH
(1)
0 (k|ri−rj|), where H(1)

0 is a Hankel function.

So, if we wrote equation (A.4) only as

u(ri) =
∑
j

G(ri, rj)q(rj)∆A, (A.5)

in those moments when i = j, the argument of our Hankel function would become

zero, which would make the Hankel function blow up. Here, we come up with a way

around this problem.
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Figure 1: Our region Dj. Here, a is the length of the side of our region and φ is the
angle ρ makes with the x-axis.

So we want to compute the term
∫
Di
G(ri, r′)d2r′ of equation (A.4). Thus, we define

Q =
1

a2

∫
Di

G(ri, r′)d2r′. (A.6)

Let G = iπH
(1)
0 (kρ). We will get to the purposes of a and ρ in a moment. Assymp-

totically, we have

H
(1)
0 (kρ) ∼

√
2

πkρ
(A.7)

so that

G ∼ i

√
2π

kρ
. (A.8)

Thus,

Q = i

√
2π

k

1

a2

∫ ρ(φ)

0

∫ 2π

0

1

ρ1/2
ρdρdφ

= 4i

√
2π

k

1

a2

∫ π/4

−π/4

2

3
(ρ(φ))3/2dφ

=
8i

3

√
2π

k

1

a2

∫ π/4

−π/4
(ρ(φ))3/2dφ.

(A.9)

Let a be the length of the side of the square region Dj, let ρ be the radius of the

circle in Figure 1, and let φ be the angle between the x-axis and the segment whose

length is ρ, as shown in Figure 1. We have that
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cosφ =
a

2ρ(φ)
(A.10)

so that

ρ(φ) =
a

2 cosφ
. (A.11)

Thus,

Q =
8i

3
√

8

√
2π

ka

∫ π/4

−π/4
(cosφ)−3/2dφ, (A.12)

where, using Mathematica, we have that∫ π/4

−π/4
(cosφ)−3/2dφ = 1.875. (A.13)

Thus,

Q =
4i

3

√
π

ka
(1.875) =

4.43i√
ka
. (A.14)

Making the appropriate substitutions, we have

u(ri) =
∑
j 6=i

G(ri, rj)q(rj)a2 + q(rj)Qa2, (A.15)

where we make the substitution

G(ri, rj) =

 G(ri, rj) for i 6= j,

Q for i = j.
(A.16)

Note that in equation (A.15), where we once had ∆A as in equation (A.4), we now

have a2.


