
THROUGHPUT OPTIMIZATION FOR DATA COLLECTION IN WIRELESS
SENSOR NETWORKS

by

Siyuan Chen

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Yu Wang

Dr. Teresa Dahlberg

Dr. Weichao Wang

Dr. Jiang (Linda) Xie

Dr. Wei Zhao



ii

c© 2012

Siyuan Chen

ALL RIGHTS RESERVED



iii

ABSTRACT

SIYUAN CHEN. Throughput optimization for data collection in wireless sensor
networks.

(Under the direction of DR. YU WANG)

Wireless sensor networks are widely used in many application domains in

recent years. Data collection is a fundamental function provided by wireless sensor

networks. How to efficiently collect sensing data from all sensor nodes is critical to the

performance of sensor networks. In this dissertation, we aim to study the theoretical

limits of data collection in a TDMA-based sensor network in terms of possible and

achievable maximum capacity. Various communication scenarios are considered in our

analysis, such as with a single sink or multiple sinks, randomly-deployed or arbitrarily-

deployed sensors, and different communication models. For both randomly-deployed

and arbitrarily-deployed sensor networks, an efficient collection algorithm has been

proposed under protocol interference model and physical interference model respec-

tively. We can prove that its performance is within a constant factor of the optimal

for both single sink and regularly-deployed multiple sinks cases. We also study the

capacity bounds of data collection under a general graph model, where two nearby

nodes may be unable to communicate due to barriers or path fading, and discuss per-

formance implications. In addition, we further discuss the problem of data collection

capacity under Gaussian channel model.
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CHAPTER 1: INTRODUCTION

A wireless sensor network (WSN)[2, 3, 4, 5] is a network consisting of a set of

sensor nodes and is usually distributed randomly or strategically over a geographical

area where traditional wired or wireless networks are difficult to be established or

even unavailable. A sensor is a kind of computing device that is made up of sensing

component, computing component, communication component, memory and power

component and is able to perform data sensing, first stages of processing, and routing.

The main difference between sensor networks and traditional wired and wireless

network is that a sensor is a very tiny and cheap device which has limited battery

resource, limited memory storage and limited sensing range. Thus, a single sensor can

only sense and collect some special events in its sensing range, which is significantly

smaller than the target region area that needs to be monitored. To solve these

weakness, a sensor must work in cooperation with other sensors to provide services

by communicating with each other. As a result, a wireless sensor network often

includes a large number of sensor nodes.

Due to its wide-range potential applications [6, 7, 8, 9, 10, 11, 12, 13] , such as

wildlife tracking [10], volcanic activity monitoring [11, 12], sensor-based structure

health monitor [13] and so on, wireless sensor network has recently emerged as a pre-

mier research topic. In these application scenarios, a sensing system usually requires

that all of the wireless sensor nodes send their sensing data into a single sink node

or multiple sink nodes in order to perform further analysis. For example, Automated

Local Evaluation in Real-Time (ALERT) is a very famous system using sensor net-

works to transmit environmental data to a central computer in real time which was
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developed by the National Weather Service [14, 5]. Sensors in the ALERT contin-

uously sense local water level and temperature, and transmits data from the their

location to the sink. In United States, ALERT has been widely used for flood alarm-

ing. Another well-known system of wireless sensor networks is the network deployed

at Reventador volcano to monitor the volcano’s activity [11], as show in Figure 1.1

[1]. Every sensor will relay the data to the sink (the red equipment)in the network

when it detects an event. The sink will forward the data it has collected to base

station for analyzing. From these examples above, data collection is one of the most

common services used in wireless sensor network applications. Most of the sensor

applications require the data’s timeliness which means the data generated by sensors

need to arrive at sinks as quickly as possible. And if the data can not be sent to sinks

before its deadline, the data will probably be meaningless and be dropped. However,

a wireless sensor network could cover a vast expanse and the scale of wireless sensor

network may achieves tens of thousands of sensors. It is possible that the distance

between the location of a sensor and the sink is very long. Information generated

from such sensors may need numerous sensors’ relays to reach the sink, and the delay

of such information will be extremely large. Therefore, the largest delay of a given

sensor network is a critical problem. Furthermore, most applications need sensors

sense and generate data from their surrounding and forward it to sinks ceaselessly.

Here, we call the data rate at the sink to continuously receive multiple snapshot from

sensors in a long period as capacity of data collection. We are also interested in the

capacity limit of a wireless sensor network under different interference models.

More formally, the delay of data collection is the time to transmit one single

snapshot to the sinks from the snapshot generated at sensors. Considering the size of

data in the snapshot, we can define delay rate as the ratio between the data size and

the delay. Clearly, large delay rate is desired. When multiple snapshots from sensors

are generated continuously, data transport can be pipelined in the sense that further
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Figure 1.1: Data collection process in a WSN deployed at a volcano.[1]

snapshot may begin to be transported before the sink receiving the prior snapshot.

The maximum data rate at the sinks to continuously receive the snapshot data from

sensors is defined as the capacity of data collection. Notice that the capacity is always

larger than or at least equal to the delay rate. Both delay rate and capacity reflect

that how fast the sinks can collect data from all sensors. It is critical to understand

the limitations of many-to-one information flows and devise efficient data collection

algorithms to maximize performance of wireless sensor networks.

There already exists several literature about capacity problems in wireless net-

works [15, 16, 17, 18, 19, 20, 21, 22]. But they mainly focus on the capacity problem

for unicast, multicast or broadcast in wireless ad hoc networks. Capacity limits of

data collection in random wireless sensor networks have been studied in the literature

[23, 24, 25, 26, 27, 28]. In [23, 24], Duarte-Melo et al. first studied the many-to-one

transport capacity in dense and random sensor networks. But they only considered

the simplest case with a single sink under the protocol interference model(ProIM). El

Gamal [25] studied the capacity of data collection subject to a total average transmit-

ting power constraint where a node can receive data from multiple source nodes at a
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time. Recently, Barton and Zheng [26] also investigated the capacity of data collection

under general physical layer models (e.g. cooperative time reversal communication

model) where the data rate of an individual link is not fixed as a constant W but

dependent on the transmitting powers and transmitting distances of all simultaneous

transmissions. Both [25] and [26] assumed complex physical layer techniques, such as

antenna sharing, channel coding and cooperative beam-forming. More related work

could be found in Section 2.

This dissertation focuses on the fundamental capacity problems of data collection.

We are interested in the theoretical upper bounds of the data collection capacity for

a given sensor network, which answers the question that how fast the data generated

by sensors can be sent to the sink theoretically. Such network capacity results are not

only important in theory, but also provide practical guidelines for protocol design in

real wireless sensor networks. We will also design efficient collection algorithms and

scheduling mechanisms to achieve or approach to such upper bounds.

1.1 Network Model

We focus on the theoretical capacity boundary of data collection in wireless sensor

networks. For simplicity, a simple and general model that is widely used in the

community is introduced. We consider a static sensor network which includes n

wireless sensor nodes V = {v1, v1, · · · , vn} and a sink set S. Here, we assume that

both sensor nodes and sink nodes are deployed in a plain area. At regular time

intervals, each sensor node measures the field value at its position and transmits the

value to one of the sinks. We first adopt a fixed data-rate channel model where each

wireless node can transmit at W bits/second over a common wireless channel. Then

we discuss the data collection capacity problem under a varying data-rate channel

model-Gaussian Channel Model. We also assume that all packets have a unit size of

b bits and each sensor has a fixed transmission power P . Time is partitioned into

slots with t = b/W seconds. Accordingly, only one packet can be transmitted in each
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Figure 1.2: An example of protocol interference model.

time slot between two neighboring nodes. TDMA scheduling is used at MAC layer.

1.2 Communication Models

There are three different communication models that are widely used in wire-

less sensor networks: protocol interference model (ProIM) [15, 23, 24, 27], physical

interference model (PhyIM) [15] and Gaussian channel model [29, 30].

Under protocol interference model, a fixed transmission range r and interference

range R are defined such that a node vj can successfully receive the signal sent by

node vi only if ||vi − vj|| ≤ r and no node expect vi within a distance R from vj is

transmitting simultaneously. Here, ||vi−vj|| is the Euclidean distance between vi and

vj. We show an example in Figure 1.2, in Figure 1.2(a), the circle of real line is the

transmission range of node v1 while the circle of dashed line means the interference

range of v1. Only the receiver v2 is in the transmission range of its sender v1, v2 can

get the data successfully as shown in Figure 1.2(b). And the Figure 1.2(c) illustrates

that since the distance between v2 and v3 is less than interference R, v2 can not

receive the data from v1 if v3 is transmitting at the same time. In this dissertation,

for simplicity, we assume that R
r

is a constant α which is larger than 1.

In physical interference model, node vj can correctly receive signal from a sender

vi if and only if, given a constant η > 0, the SINR (Signal to Interference plus Noise
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Ratio)

P · ||vi − vj||−β

B ·N0 +
∑

k∈I P · ||vk − vj||−β
≥ η,

where B is the channel bandwidth, N0 > 0 is the background Gaussian noise, I is the

set of actively transmitting nodes when node vi is transmitting, β > 2 is the pass loss

exponent, and P is the fixed transmission power. We assume that each node uses the

same transmission power and the background noise N0 is a fixed constant.

For both protocol interference model and physical interference model, as long as

the value of a given conditional expression (such as transmission distance or SINR

value) reaches some threshold, the sender can send data successfully to a receiver

at a specific constant rate W due to the fixed rate channel model. However, fixed

rate channel model may not capture well the feature of wireless communication. As a

result, a more realistic channel model: Gaussian channel model is introduced. In such

model, it determines the rate under which the sender can send its data to the receiver

reliably, based on a continuous function of the receiver’s SINR. Any two nodes vi and

vj can establish a direct communication link vivj, over a channel of bandwidth W , of

rate

Wij = W log2

(
1 +

P · l(vi, vj)
N0 +

∑
k∈I P · l(vk, vj)

)
.

Where N0 is the background Gaussian noise, I is the set of actively transmitting

nodes when node vi is transmitting, l(vi, vj) = min{1, ||vi − vj||−β} is the pass loss

between node vi and vj, and β > 2, and P is the fixed transmission power. This

model assigns a more realistic transmission rate at large distance than the fixed rate

channel model( protocol interference model and physical interference model).

1.3 Capacity and Delay

We formally define the delay and capacity of data collection in sensor networks.

Each sensor measures independent field values at regular time intervals and sends

these values to one sink node. The union of all sensing values from n sensors at
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a particular time is called snapshot. The task of data collection is to deliver these

snapshots to sinks.

Definition 1. The delay of data collection ∆ is the time transpired between the time a

snapshot is taken by the sensors and the time the sinks have all data of this snapshot.

Definition 2. The delay rate of data collection Γ is the ratio between the data size of

one snapshot n · b and the delay ∆.

It is clear that we prefer smaller delay and larger delay rate so that the sink can

get each snapshot more quickly.

On the other hand, the data transport can be pipelined in the sense that further

snapshots may begin to transport before the sinks receive prior snapshots completely.

Therefore, we need to define a new data rate of continuously data collection.

Definition 3. The usage rate of data collection U is the number of time slots needed

at sinks between completely receiving one snapshot and completely receiving next

snapshot at the sinks.

Thus, the time used by sinks to successfully receive a snapshot is T = U × t.

Notice that due to pipelining, T is always smaller than or equal to ∆. Clearly, small

usage rate and T are desired.

Definition 4. The capacity of data collection C is the ratio between the size of data

in one snapshot and the time to receive such a snap shot (i.e., nb
T

) at the sinks.

Thus, the capacity C is the maximum data rate at the sinks to continuously receive

the snapshot data from sensors. Clearly, C is at least as large as the delay rate Γ,

and is usually substantially larger.

In this dissertation, we analyze the delay rate and capacity for data collection in

both random and arbitrary wireless sensor networks under various communication

models. Notice that in our definitions we require data from every sensor to reach the

sink in the same rate, thus, the fairness among all sensors is guaranteed.
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1.4 Dissertation Organization

The rest of this dissertation is organized as follows. We first review related work on

capacity analysis of wireless networks in Section 2. We study the data collection and

data aggregation capacity of random sensor networks under various communication

models in Section 3. In Section 4, we then discuss the collection capacity in arbitrary

sensor networks under different interference models. We conclude the dissertation in

Section 5 by summarizing the completed work and some possible future work.



CHAPTER 2: RELATED WORK

In this chapter, we briefly review existing results on capacity analysis in wireless

networks or wireless sensor networks.

2.1 Capacity Analysis in Wireless Networks

Gupta and Kumar initiated the research on capacity of wireless ad hoc networks

by studying the fundamental capacity limits in the seminal paper [15] under both

protocol interference model and physical interference model. They mainly focused

on the capacity of unicast that every node in the network chose a destination and

sent its packet. In the case of random networks, where n nodes were independently

distributed over a unit area, they showed that both the upper bound and lower bound

of capacity are Θ( W√
n logn

), while in the case of physical interference model, the upper

bound is O(
√
n) and lower bound is Ω( W√

n logn
).

The authors also studied the unicast capacity in arbitrary networks in [15], where

n nodes were arbitrarily located in a unit area and each node had an arbitrarily

chosen destination. They showed the capacity could achieve Θ(
√
n) under protocol

interference model. And under physical interference model, the capacity of upper

bound and low bound are O(n1− 1
α ) and Ω(

√
n) respectively.

A number of following papers studied capacity under different communication

scenarios in random wireless networks: unicast [16, 17] and multicast [18, 19, 20]

Grossglauser et al. [16] examined the asymptotic unicast capacity in large wireless

ad hoc networks and showed that the average long-term unicast throughput was kept

constant even when the density of nodes increased by introducing mobility into the

network model. In their algorithm, the source node didn’t transmit packet to the
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destination node until their distance was within O( 1√
n
), when the network was dis-

tributed in a unit area. Liu et al. [17] studied the unicast capacity of a wireless ad hoc

network with infrastructure which had n ordinary nodes and b base stations. For the

one dimensional network model, they showed that the gain in capacity is increasing

significantly with the number of base stations as long as b log b ≤ n. However, in the

two-dimensional model, a hybrid wireless network requires a large number of base

stations b = Ω(
√
n) to obtain a linear capacity increase.

The multicast means that in a wireless network with n nodes, each node randomly

picks k − 1 nodes as destination from the other n− 1 nodes and sends its packet. Li

et al. [18] studied asymptotic multicast capacity for the large-scale random wireless

networks. They showed the total multicast capacity is Θ(
√

n
logn
· W√

k
), when k =

O( n
logn

) and Θ(W ) when k = Ω( n
logn

). Then [19] studied the multicast capacity for

the hybrid random wireless networks which consisted n ordinary wireless nodes and m

base stations, which derived analytical upper bounds and lower bounds on multicast

capacity in the case of base stations were distributed regularly in a grid. Shakkottai

et al. [20] studied the multicast capacity of random networks with the number of

source nodes nε for some ε > 0, and the number of receivers per source n1−ε. And

they proposed a comb-based architecture for multicast routing which achieves the

upper bound for capacity in an order sense.

Broadcast capacity in an arbitrary network was studied in [21, 22]. Both of the

two papers showed that the broadcast capacity of a given network is Θ(W ). And

if every node in the network served as a source and broadcasted, the capacity per

flow is Θ(W/n). To achieve such capacity, [21] presented a broadcast scheme based

on Minimum Connected Dominating Set. For random networks, the same capacity

bounds can be obtained.
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2.2 Capacity of Data Collection in Wireless Sensor Networks

In this dissertation, we focus on the capacity of data collection which is an all-to-

one communication scenario. Capacity of data collection in random wireless sensor

networks was studied in [23, 24, 25, 26, 28, 27, 31, 32, 33, 34]. In [23, 24], Duarte-Melo

et al. first studied the many-to-one transport capacity in random sensor networks un-

der protocol model and gave the result of overall capacity of data collection as Θ(W ).

They also showed that compressing data are inefficient to improve the capacity when

the density of the sensor network increases to infinity in [24]. El Gamal [25] stud-

ied data collection capacity subject to a total average transmitting power constraint.

They relaxed the assumption that every node can only receive a packet from one

source node at a time. It was shown that the capacity of random networks scales as

Θ(log nW ) when n goes to infinity and the total average power remains fixed. Their

method uses antenna sharing and channel coding. Barton and Zheng [26] also investi-

gated data collection capacity under more complex physical models (non-cooperative

SINR model and cooperative time reversal communication (CTR) model). They first

demonstrated that Θ(log nW ) is optimal and achievable by using CTR for a regular

grid network in [28], then showed that the capacities of Θ(log nW ) and Θ(W ) are

optimal and achievable by CTR when operating in fading environments with power

path-loss exponents that satisfy 2 < β < 4 and β ≥ 4 for random networks [26].

Liu et al. [27] recently introduced the capacity of a more general some-to-some com-

munication paradigm in random networks where there are s(n) randomly selected

sources and d(n) randomly selected destinations. They derived the upper and lower

bounds for such a problem. Note that data collection is a special case for their prob-

lem when s(n) = n and d(n) = 1. Most recently, Ji et al. [31, 32, 33, 34] also

studied data collection methods in random wireless sensor networks under different

communication models. In [31], an order-optimal continuous data collection method

was proposed for single-radio multi-channel wireless sensor networks under proto-
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col model and a pipeline scheduling algorithm for data collection was proposed for

dual-radio multi-channel networks under protocol model. In [32], a cell-based path

scheduling algorithm was proposed for data collection under physical model which

can achieve Θ(W ) of capacity, then a segment-based pipeline scheduling algorithm

using compressive data gathering technique to further improve the collection capacity

was presented. In [33], Ji and Cai investigated the achievable data collection capacity

for asynchronous wireless sensor networks under generalized physical model by giving

a scalable distributed data collection algorithm with Θ(W ) of achievable capacity. In

[34], Ji et al. considered data collection capacity under a probabilistic network model

where the successful transmission over a link is a random variable related to the

SNIR. They proposed two scheduling algorithms (a cell-based multipath algorithm

and a zone-based pipeline algorithm) for such a model. All research above (including

this paper itself) shares the standard assumption where large number of sensor nodes

are randomly and uniformly distributed in a plane. Such assumption is useful for

simplifying the analysis and deriving nice theoretical limitations, but may be invalid

in some practical sensor applications.

For capacity of data collection with aggregation, there are also several studies.

Giridhar and Kumar [35] investigated a general aggregation problem in random sen-

sor network where a symmetric function of the sensor measurements is used for data

aggregation. It was shown that for random planar network, the maximum rate for

computing divisible functions (a subset of symmetric functions) is Θ( W
logn

). In addi-

tion, using a technique called block-coding, they further showed that type-threshold

functions can be computed at a rate of Θ( W
log logn

) in the physical model. Mosci-

broda [36] further studied the aggregation capacity for arbitrarily deployed networks

(named as worst-case capacity) under both protocol and physical models. He showed

that the worst-case capacities of data aggregation are Θ(W
n

) under protocol model

and Ω( W
log2 n

) under physical model respectively. Notice that the worst-case capacity
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definition in his paper was in terms of the union of all arbitrary networks instead of

any fixed arbitrary network.

Finally, there are also some results [37, 38, 39] on how to schedule data aggregation

in sensor network such that the delay or latency is minimized. In [37], Huang et al.

developed a algorithm which had the latency bound 23R + ∆ − 18 , where ∆ is

the maximum node degree and R is the network radius. In [38], the minimum data

aggregation time problem was proved NP-hard and aggregation schedules of latency

at most (∆ − 1)R was proposed. In [39], the authors propose a new tree based

approximation algorithm guaranteed performance ratio 7∆
log2|S| + c, where S is the set

of sensors containing data, ∆ is the maximal node degree, and c is a constant.



CHAPTER 3: DATA COLLECTION FOR RANDOM WSNS

We first consider the simplest situation: data collection under protocol interference

model in a random wireless sensor network. We will consider different communication

models, and in most cases, we will give order-optimal data collection schemes.

3.1 Preliminaries

In this section, we first introduce the network model, the communication model

and a partition method which will be used for collection methods and theoretical

analysis.

3.1.1 Network Model and Communication Model

We focus on the capacity bound of data collection in random wireless sensor net-

works that n wireless sensor nodes V = {v1, v1, · · · , vn} are randomly and uniformly

deployed in a square of unit area, which is called random dense network [42]. While

the k sink nodes S = {s1, s2, · · · , sk} can be distributed either regularly or randomly.

We adopt the protocol interference model in our analysis first, and study the data

collection problem under physical interference model later. Recall that in protocol

interference model [23, 24, 27], all nodes are assumed to have uniform interference

range R. When node vi transmits to node vj, node vj can receive the signal suc-

cessfully if no node within a distance R is transmitting simultaneously. And R
r

is a

constant α which is larger than 1.

3.1.2 A Grid-Partition Method

We introduce a classical grid-partition method which is essential for our data

collection methods and theoretical analysis. As shown in Figure 3.1, the network

(e.g., the unit square) is divided into a2 micro cells of the size d × d. Here a = 1/d.
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Figure 3.1: Grid partition of the WSN: a2 cells with cell size of d× d.

We assign each cell a coordinate (i, j), where i and j are between 1 and a, indicating

its position at jth row and ith column.

The following lemma gives a guidance of the cell size.

Lemma 1. [43] Given n random nodes in a unit square, dividing the square into micro

cells of the size
√

3 logn
n
×
√

3 logn
n

, every micro cell is occupied with probability at

least 1− 1
n2 .

Therefore, if d =
√

3 logn
n

(i.e., a =
√

n
3 logn

), every micro cell has at least one node

with high probability (the probability converges to one as n −→∞).

In order to make the whole network connected, the transmission range r need to

be equal or larger than
√

5d so that any two nodes from two neighboring cells are

inside each other’s transmission range. Hereafter, we set r =
√

5d =
√

15 logn
n

. In

practice, the transmission range of a sensor device may be fixed. In such case, The

above equation can still be hold by adjusting the deployment density (i.e., n).

Then we can derive the upper bound of the number of nodes inside a single cell.
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Lemma 2. Given n random nodes in a unit square, dividing the unit square into

micro cells of the size
√

3 logn
n
×
√

3 logn
n

, the maximum number of nodes in any cell

is O(log n) with probability at least 1− 3 logn
n

.

Proof. The proof is straightforward from Lemma 3, thus we ignore the detail. Note

that the number of balls γ = n and the number of bins δ = a2 = n
3 logn

.

Lemma 3. [44, 45] Randomly putting γ balls into δ bins, with probability at least

1− 1
δ
, the maximum number of balls in any bin is O(γ

δ
+ log δ).

Lemma 2 indicates the number of nodes inside any cell is bounded from above by

O(log n) with high probability.

3.2 Data Collection with Single Sink

In this section, we consider the simplest situation: data collection under protocol

interference model in a sensor network where a single sink s1 located in cell (p, q) is

used as the collector to collect all sensing data. We first construct a data collection

scheme whose delay and delay rate are O(nt) and Ω(W ) respectively, and then prove

that these values are order-optimal.

3.2.1 Data Collection without Aggregation

As shown in Figure 3.1, we consider the data collection of nodes from four different

directions (i.e., quadrants) to s1. For the purpose of analysis, we only concentrate on

the direction which has the largest number of sensors, e.g., the shaded rectangle in

Figure 3.1, since the sink can perform collection on each direction in turn and it only

adds a constant 4 in the analysis. Our collection algorithm has two phases. In the

first phase (Phase I), every sensor sends its data up to the highest cell in its column

(in the pth row) as shown in Figure 3.2 (a) and (b), and in the second phase (Phase

II), all data is sent via cells in the pth row to the sink as shown in Figure 3.2 (c) and

(d). We define the time needed for these two phases as T1 and T2, respectively.

By Lemma 2, the number of nodes in each cell is at most O(log n). Every node
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(a) Phase I, 1st time slot (b) Phase I, 2nd time slot
(p, q)

(0, 0)

(p, q)

(0, 0)

(c) Phase II, 1st time slot (d) Phase II, 2nd time slot

Figure 3.2: Our collection method: [Phase I] each node sends its data to its upper
cell; [Phase II] each node in the top row sends its data to its right cell.
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needs one time-slot t to send one packet to its neighbor in the next cell. However, due

to wireless interference, when a node vi transmits a packet to vj, the nodes within

R distance from vj can not transmit any packets in the same time slot. Thus, every

(R
d

+ 2)× (R
d

+ 1) cells (we call it an interference block hereafter) can only have one

node send a packet to its upper neighbor in every time slot t during Phase I. In Figure

3.2, bold lines show interference blocks. Remember that R
r

= α and r
d

=
√

5, so R
d

is

also a constant
√

5α. And a packet in the lowest row (i.e. cell (0, k)) has to walk q

cells to reach nodes in the highest cell in the rectangle. Hence,

T1 ≤ (
R

d
+ 2)× (

R

d
+ 1)× t×O(log n)× q

= tO(log n)q ≤ O(t log n)a

=

√
n

3 log n
O(t log n) = O(t

√
n log n).

In the beginning of Phase II, all data are already at cells of the top row. The

sink s1 lies in the same row with these cells. We now estimate the time T2 needed for

sending all data to s1. Each cell in the top row has at most qO(log n) nodes’ data

and the interference block is 1× (R
d

+ 2) now. Similarly, we can get

T2 ≤ (
R

d
+ 2)× t× qO(log n)× p

= O(t log n)qp ≤ a2O(t log n)

=
n

3 log n
O(t log n) = O(nt).

Therefore, the total time needed to collect b-bits information from every sensor

in the shaded rectangle to the sink is T1 + T2 = O(nt). The other three directions

need at most 3 times of such time. Thus, the total delay ∆col for the sink to receive

a complete snapshot is at most O(nt). Consequently, the total delay rate of this



19

collection scheme is

Γcol =
nb

∆col

= Ω(
nb

nt
) = Ω(W ).

It has been proved that the upper bound of delay rate or capacity of data collection

is W [23, 24]. It is obvious that the sink cannot receive at a rate faster than W since

W is the fixed transmission rate of individual link. Therefore, the delay rate of our

collection scheme achieves the order of the upper bound, and the delay rate of data

collection is Θ(W ). Notice that even for individual sensors the lowest achievable delay

rate of our method is Θ(W/n) which also meets the upper bound. In other words,

our approach can achieve the order-optimal capacity for each individual sensor too.

Next, we consider the situation with pipelining. It is clear the upper bound of

capacity is still W . Since our above scheme already reaches the upper bound, the

pipelining operation can only improve the capacity within a constant factor.

With pipelining, in Phase I, the sensor can begin to transfer the data to its up-cell

from next snapshot after sensors in its interference block finish their transmissions of

previous snapshot. Whenever the cells in the top row receive p · b data (every cell in

the top row receives a data from its lower cell), Phase II can begin at the top row.

We consider the improvements of pipelining on both phases. With the pipelining, the

time T ′1 for the highest cell to receive a new set of p · b data in Phase I is

T ′1 ≤ (
R

d
+ 2)× (

R

d
+ 1)× t×O(log n) = O(t log n).

And the time T ′2 for the sink to receive a new set of p · b data in Phase II is

T ′2 ≤ max{nt, (R
d

+ 2)× t× p} = O(nt).

Therefore, the total time for sink to receive p · b data is T ′1 + T ′2 = O(nt). Thus, the
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capacity of our method with pipelining is still

Ccol =
p · b

T ′1 + T ′2
= Ω(W ).

This also meets the upper bound W in order.

In summary, we have the following theorem:

Theorem 1. Under protocol interference model, the delay rate Γ and the capacity C

of data collection in random sensor networks with a single sink are both Θ(W ).

3.2.2 Data Collection with Aggregation

In this section, we investigate a different data collection problem where each sensor

can aggregate its received data (multiple packets) into a single packet. For example,

if the sink just wants to know the maximal temperature in the deployed field, then

each sensor can send out the maximal sensing value towards the sink instead of all

values which it receives from other sensors. Hereafter, we will use this example as the

running example of our analysis.

Here, we study both delay rate and capacity of data aggregation with a single

sink. The definitions of delay rate and capacity are similar to those of data collection

in Section 3.1. Notice that when the sink receives the maximal value (just b bits)

of a snapshot of the field (n sensors), we still count the size of all values from that

snapshot as the size of the received data. Thus, the delay rate is nb
∆

and the capacity

is nb
T

.

It seems that data aggregation is quite similar to broadcast, since both usually use

a tree structure and the aggregation tree can be treated as a reversed broadcast tree.

However, the capacity of data aggregation is completely different with the capacity

of broadcast. Notice that in a broadcast tree a node can send its packet to all its

children within one slot, while in an aggregation tree the children need multiple slots

to send data to its parent due to interference among them. Therefore, the capacity
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Figure 3.3: Our aggregation method: [Phase II] each selected node aggregates data
to its upper cell; [Phase III] each selected node in the top row aggregates data to its
right cell.

of aggregation is much smaller than the broadcast capacity Θ(nW ) [21, 22, 46].

3.2.2.1 Delay Rate of Data Aggregation

We first consider the delay rate of data aggregation. We assume that a single

sink s is located in cell (p, q) and only need to consider data aggregation from the

direction which has the largest number of sensors. Our aggregation scheme has three

phases and uses the same partition method as in Section 3.2.

First, each micro cell chooses a sensor which collects data from all the other sensors

in the same micro cell and aggregates into one packet. Based on Lemma 3, each micro

cell has at most O(log n) nodes. Assume that T ′′1 is the time needed to collect data

inside each cell. Because of the interference range R, T ′′1 is at most

(
R

d
+ 1)2 ·O(log n) · t.

Second, every selected node waits for all data in the same snapshot from cells,

which are below its own cell and within the same column, and then aggregates them

with its value into a single packet and sends the packet to its upper cell. See Fig-
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ure 3.3(a) for illustrations. At the end of this phase, all value has been aggregated at

the top row where the sink sits. The time needed for this phase T ′′2 is bounded from

above by

(q − 1)× t× (
R

d
+ 1) = Θ(

√
n

log n
t),

since for every R
d

+ 1 columns only one node can transmit due to interference, as

shown in Figure 3.3(a).

Third, as shown in Figure 3.3(b), the information is aggregated via cells one by

one in the top row. The time needed T ′′3 is at most

(p− 1)× t = Θ(

√
n

log n
t).

Therefore, the total delay ∆agg ≤ T ′′1 + T ′′2 + T ′′3 = O(
√

n
logn

t). The delay rate is

Γagg =
nb

∆agg

= Ω(
√
n log n ·W ).

Next, we prove that this delay rate is order optimal. Notice that for one snapshot

data aggregation is completed when the sink has the aggregated value of all data

in the snapshot. Let Tcomplete denote the time that all data of one snapshot are

aggregated in the sink and Tfarthest be the time needed for the value of the farthest

node reach the sink. To compute the aggregated value, all values from the snapshot

is needed. Therefore, Tfarthest ≤ Tcomplete. Based on the network model, the farthest

node from the sink is located in one corner of the field with high probability. We

denote the distance between the farthest node and the sink as L. It is easy to show

that the minimum value of L is
√

2−d
2

(when the sink is in the center of the field),

i.e. L ≥
√

2−d
2

. See Figure 3.4 for illustrations. Notice that when n goes to infinite,

L ≥
√

2
2

.

Since the transmission range is r, the data in the farthest node needs at least L
r
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√

2−d
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(b) L =
√

2−d
2

Figure 3.4: Minimum value of L is
√

2−d
2

.

time slots to reach the sink. Hence,

Tfarthest ≥
L

r
· t =

L

r
· b
W
≥
√

2
2

r
· b
W

=

√
n

30 log n
· b
W
.

Consequently, we have

Tcomplete ≥ Tfarthest ≥
√

n

30 log n
· b
W

Therefore, the delay rate of data aggregation is at most

nb

Tcomplete
≤ nb√

n
30 logn

· b
W

= Θ(
√
n log n ·W ).

Therefore, our data aggregation algorithm can achieve the upper bound of delay

rate Θ(
√
n log n ·W ).

3.2.2.2 Capacity with Pipelining

We now describe our aggregation algorithm with pipelining. In the above algo-

rithm, sensors will not start sending data in the next snapshot until the sink receives

the aggregated value for all data in the previous snapshot. However, with pipelining,
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a sensor can begin to send (or aggregate) data in the next snapshot before the aggre-

gated value of the previous snapshot reaches the sink. Actually, it can begin to send

if the aggregated data of the previous snapshot are far away enough. Thus, all three

phases in the above algorithm can be pipelined.

At the beginning of each snapshot, each micro cell will choose a node to collect

data from all the other nodes in the same micro cell and aggregates into one packet.

The time required is (R
d

+ 1)2 ·O(log n) · t = O(t log n).

For Phase II and Phase III if the aggregated values in previous snapshot are one

interference block ahead (above or right in Figure 3.3), the values from next snapshot

can be sent or aggregated. The time difference between such two snapshots will be

bounded by (R
d

+ 1)2 · t.1 This is much smaller than the time used for the aggregation

of data in a cell (O(t log n)). Thus, in a cell, when the aggregation of data from

one snapshot finishes, the aggregated values of previous snapshot are already far

away from this cell and can not cause any interference with current transmissions

originated from this cell.

Therefore, at most every Θ(t log n) the sink can collect one snapshot data with

pipelining. Then the capacity of our data aggregation method is nb
Θ(t logn)

= Θ( n
logn

W ).

Next, we prove that the upper bound of data aggregation with pipelining is

O( n
logn

W ). In other words, our schemes achieves the optimal order.

Consider n sensors are randomly distributed in the unit square. If we divide the

region into disks with radius R
2

= α
√

15 logn
4n

, every such disk has average 15πα2 logn
4

sensors. Due to Pigeonhole principle, there exists some disks that have Θ(log n)

sensors. Now let D be such a disk. When one sensor in D sends its data packet to a

destination, all of the other Θ(log n) sensors cannot send their data. The aggregation

of these Θ(log n) sensors will cost at least Θ(log nt), i.e., Tagg ≥ Θ(log nt). Thus, the

capacity Cagg is less than or equal to O( n
logn

W ) for sure.

1We can also think of this as the case where each cell has a single sensor. Then the rate of
receiving data at the sink is a constant dependent on R.
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In summary, we have the last theorem as follows.

Theorem 2. Under protocol interference model, the delay rate Γ and the capacity C

of data aggregation in random sensor networks with a single sink are Θ(
√
n log nW )

and Θ( n
logn

W ) respectively.

Notice that for data collection the delay rate and the capacity are in the same

order (Theorem 1), i.e., pipelining can improve only a constant factor of the data

rate. However, for data aggregation, it is very interesting to see that pipelining

can increase the data rate in order of Θ(
√

n
log3 n

). This is because there is room

for capacity improvement with data aggregation. Notice that the throughput in the

non-aggregation case and aggregation case are limited differently.

3.3 Data Collection with Multiple Sinks

Now we consider networks with multiple sinks (e.g., k sinks). With more sinks,

the collection task can be divided into small sub-tasks (i.e., collections in sub-areas)

and each sub-task will be assigned to a single sink. Multiple sinks can collect data

from their areas simultaneously if they are not interfering with each other. This can

increase the capacity and decrease the delay of data collection. We will derive the

bounds of data collection for multiple sinks using the results in the case with a single

sink (Section 3.2). Since in both cases the delay rate and the capacity are always

in the same order, here we will not distinct them and only use the term of capacity.

Two scenarios are studied: sinks are regularly deployed on a grid or are randomly

deployed in the field.

3.3.1 Multiple Sinks on Grid

When sinks are displayed regularly on a
√
k ×
√
k grid, the capacity of collection

depends on the number of sinks k. Here, we divide the unit area into k sub-areas

which are 1√
k
× 1√

k
squares. There are two cases: k < n

15(α+1)2 logn
or k ≥ n

15(α+1)2 logn
.

Case 1: When k < n
15(α+1)2 logn

, k < 1
(R+r)2 since R = αr and r =

√
15 logn

n
.

Thus, the area of each sub-area assigned to a sink is larger than or equal to (R+ r)2.
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Therefore, we can perform the data collection in each sub-area without interfering

with neighboring sub-areas. Since we have k sub-areas, the total delay rate and the

total capacity of the whole area are at most k ·Θ(W ) = Θ(kW ).

Case 2: When k ≥ n
15(α+1)2 logn

, k ≥ 1
(R+r)2 . Thus the area of each sub-area

is smaller than (R + r)2, which indicates that there will be interference between

neighboring sub-areas. Therefore, the total delay rate or capacity is bounded by

1
(R+r)2 ·Θ(W ) = Θ( n

logn
W ) from above, due to interference.

To achieve these upper bounds, the collection method for a single sink case can

be used. When k < n
15(α+1)2 logn

, we partition the field into k sub-areas with size of

1√
k
× 1√

k
and every sink performs the collection method to collect their sub-areas.

When k ≥ n
15(α+1)2 logn

, we partition the field into 1
(R+r)2 sub-areas with size of (R +

r)× (R+ r) as shown in Figure 3.5. Then 1
(R+r)2 sinks can be selected to perform the

collection method. Note that one selected sink may still cause interference with other

selected sink in an adjacent block. However, the number of such adjacent selected

sinks is bounded by eight. Thus, a simple scheduling can avoid the interference and

the capacity of data collection is still in order of the theoretical bound. Figure 3.5

shows a possible scheduling where only one of nine selected sinks collects data from

its surrounding blocks.

Therefore, we have our second theorem.

Theorem 3. Under protocol interference model, the delay rate Γ and the capacity C

of data collection in random sensor networks with k regularly-deployed sinks are

 Θ(kW ), when k < n
15(α+1)2 logn

Θ( n
logn

W ), when k ≥ n
15(α+1)2 logn

.

Since when k = Θ( n
logn

), the capacity (or delay rate) of two cases are all equal to
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R+r
sink

selected sink

active sink

Figure 3.5: When k is large, we partition the field into 1
(R+r)2 sub-areas. Each subarea

selects one sink as its selected sink (shown as a green triangle). Only one selected
sink inside nine subareas is active for data collection, shown as a blue triangle. It will
collect data from the surrounding 9 subareas using the method for single sink case.
Notice that the adjacent 9-subareas will not interfere with each other when applying
the collection method.

Θ(kW ) = Θ( n
logn

W ). Therefore, the above equations can also be written as follows:

 Θ(kW ), when k = O( n
logn

)

Θ( n
logn

W ), when k = Ω( n
logn

).

3.3.2 Randomly Deployed Multiple Sinks

Consider the scenario when k sinks are randomly distributed in the network. It

is clear that if k is very large, the capacity is still bounded by the interference area.

However, when the k is very small, the achievable capacity of collection may not reach

the upper bound of Θ(kW ) since the distribution of k sinks could be unbalanced in

the field. In that case, even though the two neighboring sinks may not interfere with

each other, they cannot fully operate over the whole period since some of them may

finish their collection earlier and have no data to collect.

We first derive the upper bound of data collection capacity. Since the interference
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range R = αr = α ·
√

15 logn
n

, we partition the whole area into interference blocks with

size of (R + r) × (R + r). Thus, there are B = n
15(1+α)2 logn

interference blocks. We

then consider three cases when we randomly put k sinks into B interference blocks:

Case 1: When k = o( n
logn

). For this case, the capacity of data collection is bounded

by Θ(kW ) from above since the collection rate of each sink is bounded by W . Notice

that data collection with a single sink is a special case when k = 1.

Case 2: When k = Θ( n
logn

). We calculate the probability that an arbitrary inter-

ference block has at least one sink.

Pr(an interference block has at least 1 sink)

= 1− (1− 1

B
)k = 1− (1− 1

Θ( n
logn

)
)k

= 1− (1− 1

Θ( n
logn

)
)Θ( n

logn
)

When n −→∞, this probability equals to 1− 1
e
. Let Pr be this probability. Then we

define the number of interference blocks occupied by at least one sink as a random

variable X. The expectation and variance of X are E[X] = Pr×B = (1− 1
e
) n

60α2 logn

and σ2 = Pr × (1− Pr)×B = 1
e
(1− 1

e
) n

60α2 logn
. Based on Chebyshev inequality, we

have the following:

Pr(|X − E[X]| ≥ ζσ) ≤ 1

ζ2
.

Let ζ = 1
2
·
√

(1− 1
e

) n
60α2 logn
1
e

, we have

Pr(|X − E[X]| ≥ 1

2
E[X]) ≤

4 · 1
e

(1− 1
e
) n

60α2 logn

which goes to 0 when n −→ ∞. That means 1
2
E[X] ≤ X ≤ 3

2
E[X] with high

probability. In other words, the number of occupied interference blocks is Θ( n
logn

).

Therefore, the capacity of data collection is bounded by Θ( n
logn

W ) (which is also
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Θ(kW )).

Case 3: When k = ω( n
logn

). We also consider the probability that an arbitrary

interference block has at least one sink.

Pr(an interference block has at least 1 sink)

= 1− (1− 1

Θ( n
logn

)
)k

= 1− (1− 1

Θ( n
logn

)
)
Θ( n

logn
)· k

Θ( n
logn

)

= 1− (1− 1

Θ( n
logn

)
)
Θ( n

logn
)·

Ω( n
logn

)

Θ( n
logn

) .

When n −→ ∞, this probability goes to 1. In other words, every interference block

has at least one sink with high probability. Thus, we can select only one sink in

each block to collect data at the same time. Then the capacity of data collection is

bounded by Θ( n
logn

W ) from above.

From the above analysis, we find that the capacity upper bounds for randomly

distributed case are the same with the ones for regularly distributed case. Next,

we present lower bounds of data collection capacity by giving our data collection

methods.

When k = O( n
logn

), we first partition the network into interference blocks with

size
√

3 log k
k
×
√

3 log k
k

. From Lemma 1, we know that each of the block is occupied

by at least one sink with high probability. Since k = O( n
logn

), the size of a block

is
√

3 log k
k

> R + r. Thus, we select one sink for each block, and use the same

technique for grid-deployed sinks (Section 3.3.1) to schedule a subset of selected sinks

to collect data from their surrounding area. The achieved capacity is Θ( k
log k

W ) since

the number of selected sinks are Θ( k
log k

). Notice that there is a gap between this lower

bound and the upper bound Θ(kW ). This is due to possible uneven distribution of

k sinks in this case, thus each sink may not have the same amount sensors (or areas)
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to perform collection in order to achieve Θ(kW ) capacity in total.

When k = ω( n
logn

), we first partition the network into interference blocks with size

(R + r)× (R + r). As show in Case 3, with high probability, each block has at least

one sink. Using the same collection method, the achievable capacity is Θ( n
logn

W ),

which meats the upper bound perfectly.

Theorem 4. Under protocol interference model, the delay rate Γ and the capacity C

of data collection in random sensor networks with k randomly-deployed sinks are

 Θ( k
log k

W ) ≤ C ≤ Θ(kW ), when k = O( n
logn

)

C = Θ( n
logn

W ), when k = ω( n
logn

).

In summary, with multiple sinks (either grid or random deployment of k sinks),

the capacity of data collection increases from that of the single sink case. When the

capacity is constrained by the number of sinks (i.e., k = O( n
logn

)), it is beneficial to

add more sinks. However, when the capacity is constrained by the interference among

sinks (i.e., k = ω( n
logn

)), adding more sinks has no substantial capacity improvement.

Similar observations have been obtained in [27] for many-to-many capacity.

3.3.3 Data Collection with Aggregation

We have already studied data collection capacity without aggregation, however,

results for the case with aggregation are easy to derive using the similar analysis in

Section 3.3. Here we just present the conclusion. The delay rate of data aggregation

in random sensor networks with k regularly-deployed sinks are

 Γ = Θ(k
√
n log nW ), when k = O( n

logn
)

Γ = Θ( n
√
n√

logn
W ), when k = Ω( n

logn
).
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The capacity of data aggregation of this case are

 C = Θ( kn
logn

W ), when k = O( n
logn

)

C = Θ(( n
logn

)2W ), when k = Ω( n
logn

).

The delay rate of data aggregation in random sensor networks with k randomly-

deployed sinks are

 Θ(k
√
n logn
log k

W ) ≤ Γ ≤ Θ(k
√
n log nW ), when k = O( n

logn
)

Γ = Θ( n
√
n√

logn
W ), when k = ω( n

logn
).

The capacity of data aggregation of this case are

 Θ( kn
log k logn

W ) ≤ C ≤ Θ( kn
logn

W ), when k = O( n
logn

)

C = Θ(( n
logn

)2W ), when k = ω( n
logn

).

3.4 Data Collection under Physical Interference Model

So far, we only consider the protocol interference model, which is an ideal but

unrealistic in wireless sensor networks, where the interference is modeled as a localized

phenomenon. However, a receiver can be interfered by a group of active transmitting

sensors even its location is extremely far away from the group sensors. For example,

when the scale of network is large and many sensors are sending signals at the same

time, several concurrent transmissions may interfere with another sensor which has

a long distance from all these active sensors. Thus, we need more accurate models

to reflect the influence of interference. In this section, we will extend our analysis

to a more general communication model: physical interference model, where SINR

is considered to capture the physical interference constraints in real communication

environment. In physical interference model, node vj can correctly receive the signal
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from the sender vi if and only if, given a constant η > 0, the SINR

P · ||vi − vj||−β

B ·N0 +
∑

k∈I P · ||vk − vj||−β
≥ η,

where B is the channel bandwidth, N0 is the background Gaussian noise, I is the set

of actively transmitting nodes when node vi is transmitting, β > 2 is the pass loss

exponent, and P is the fixed transmission power. And we assume that each sensor

uses the same transmission power P , and all N0, β and η are fixed constants. Notice

that values of P , N0, η, and transmission range r should satisfy that P ·r−β
BN0

≥ η. Thus,

r ≤ ( P
B·N0·η )1/β.

We again consider a sensor network with n sensor nodes V = {v1, v1, · · · , vn}

and a single sink s. Here, we assume that both sensor nodes and the sink node are

uniformly deployed in a square region with side-length a =
√
n, by use of Poisson

distribution with density 1 instead of n. This network model is called random extended

network [42] which is different from the random dense network we used in previous

sections. We still use the fixed data-rate channel model where each wireless node can

transmit at W bits/second over a common wireless channel.

3.4.1 Data Collection without Aggregation

We first consider data collection without aggregation by constructing a data col-

lection scheme whose delay rate is order-optimal. Our data collection scheme is again

based on a grid partition method which is very similar to the one used in Section 3.1.2.

3.4.1.1 Partition Method

As shown in Figure 3.6, the network (e.g., the a × a square) is divided into m2

micro cells of the size d × d. Here m = a/d. We assign each cell a coordinate (i, j),

where i and j are between 1 and m, to indicate its position at jth row and ith

column. Similarly to Lemma 1 and Lemma 2 in Section 3.1, we can get the following

two lemmas:

Lemma 4. [43] Given n random nodes in a
√
n×
√
n square, dividing the square into



33

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

(0, 0)

(0, m) (m, m)

(m, 0)

d

sink node s  in cell (p, q)

1/2
a=n

Figure 3.6: Grid partition of the sensor network: a2 cells with cell size of d× d.

micro cells of the size
√

3 log n×
√

3 log n, every micro cell is occupied with probability

at least 1− 1
n2 .

Lemma 5. Given n random nodes in a
√
n ×
√
n square, dividing the square into

micro cells of the size
√

3 log n×
√

3 log n, the maximum number of nodes in any cell

is O(log n) with probability at least 1− 3 logn
n

.

Therefore, if we set d =
√

3 log n (i.e., m =
√

n
3 logn

), every micro cell has at

least one node with high probability and its maximum number of nodes is O(log n)

with high probability. In order to make the whole network connected, the trans-

mission range r need to be equal or larger than
√

5d so that any two nodes from

two neighboring cells are inside each other’s transmission range. Hereafter, we set

r =
√

5d =
√

15 log n.

3.4.1.2 Data Collection Scheme

Same as the analysis in Section 3.2, we only concentrate one direction with the

largest number of sensors and assume that the sink is in the upper right corner of the

field. For our collection scheme, we first divide the field into big blocks with size L×L

as shown in Figure 3.7. We call these blocks interference blocks and L interference

distance. Thus, the number of interference blocks is d a2

L2 e. We label each block with

(i, j) where i and j are the indexes of the block as in Figure 3.7. In our collection
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ijd

L

(0,1)(0,0)

(1,0)

(i,j)

(a/2L,a/2L)

d

Figure 3.7: Grid partition of interference blocks with size of L× L.

scheme, we schedule data transmission in parallel at all blocks but make sure that

there is only one sensor in each interference block transferring at any time. To avoid

interference from senders in other interference blocks, we need interference distance

L larger than certain value.

id

L

(0,0)

3rd layer

1st layer

2nd layer

Figure 3.8: Simultaneous transmissions are around the center by layers.

Next, we derive the lower bound of interference distance such that all simultaneous

transmissions as shown in Figure 3.7 can be successfully received. Here, we consider

the SINR at the receiver in interference block (0, 0) (which is in the center of the field)

since it has the minimum SINR among all receivers. Similar with the technique used

in [47], we now label all simultaneous transmissions by layers from position (0, 0), as

shown in Figure 3.8. Based on physical interference model, its SINR is at least

P · r−β

B ·N0 +
∑

all layers i≥1 ciP · (di)−β
.
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Here, di is the minimum distance from a transmitter on ith layer to the receiver in

block (0, 0) and ci is the number of transmitters on ith layer. Therefore, we need to

derive L such that SINR ≥ η, i.e.,

∑
all layers i≥1

ci(di)
−β ≤ r−β

η
− BN0

P
.

Notice that di = iL − 2d and ci = 8i. For example, there are 8 transmitters at the

first layer with distance at least L− 2d and 16 transmitters at the second layer with

distance at least 2L− 2d, and so on. Thus,

∑
i≥1

ci(di)
−β =

∑
i≥1

8i(iL− 2d)−β

≤
∑
i≥1

8i(iL− 2id)−β

= 8(L− 2d)−β
∑
i≥1

i−(β−1).

Since β > 2,
∑

i≥1 i
−(β−1) converges to a constant, let it be denoted by φ. Then we

only need

8φ(L− 2d)−β ≤ r−β

η
− BN0

P
,

to guarantee that the SINR at the receiver in the center is at least η. This can be

satisfied by setting

L ≥ (
1

8φ
· (r

−β

η
− BN0

P
))−

1
β + 2d.

Remember r ≤ ( P
B·N0·η )1/β, this makes sure we can find such suitable L. We can

further select L = ( 1
8φ
· ( r−β

η
− BN0

P
))−

1
β + 2d. Since r =

√
5d,

L

d
= (

1

8φ
· ((
√

5d)−β

ηd−β
− BN0

Pd−β
))−

1
β + 2

= (
1

8φ
· (5−β/2

η
− BN0d

β

P
))−

1
β + 2.
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When n→∞, this ratio goes to a constant, denoted by α.

(a, a)

(0, 0)

L

L

(a, a)

(0, 0)

L

L

(a) Phase I, 1st time slot (b) Phase I, 2nd time slot
(a, a)

(0, 0)

L

L

(a, a)

(0, 0)

L

L

(c) Phase II, 1st time slot (d) Phase II, 2nd time slot

Figure 3.9: Our collection method: [Phase I] each node send its data to its upper cell;
[Phase II] each node in the top row send its data to its right cell.

After having interference blocks, we can simply use the data collection scheme

which is already presented in Section 3.2.1. Such collection process is illustrated in

Figure3.9.

3.4.1.3 Analysis of Delay Rate and Capacity

Similar with the analysis of delay rate under protocol interference model, we also

define the time needed for the two phases as T1 and T2, respectively.
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By Lemma 5, we can get that:

T1 ≤ (
L

d
)2 × t×O(log n)×m

≤ O(t log n)m = O(t log n)

√
n

3 log n
= O(t

√
n log n).

and

T2 ≤
L

d
× t×mO(log n)×m ≤ m2O(t log n) = O(nt).

Therefore, the total time needed to collect b-bits information from every sensor

in the field to the sink is T1 + T2 = O(nt). Thus, the total delay ∆col for the sink to

receive a complete snapshot is at most O(nt). Consequently, the total delay rate of

this collection scheme is

Γcol =
nb

∆col

= Ω(
nb

nt
) = Ω(W ).

It has been proved that the upper bound of delay rate or capacity of data collection

is W [23, 24]. Therefore, the delay rate of our collection scheme achieves the order of

the upper bound, and the delay rate of data collection is Θ(W ).

With the pipelining, the time T ′1 for the highest cell to receive a new set of m · b

data in Phase I is

T ′1 ≤ (
L

d
)2 × t×O(log n) = O(t log n).

And the time T ′2 for the sink to receive a new set of a · b data in Phase II is

T ′2 ≤
L

d
× t×m = O(t

√
n

log n
).

Therefore, the total time for sink to receive m · b data is T ′1 + T ′2 = O(t
√

n
logn

). Thus,
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the capacity of our method with pipelining is still

Ccol =
m · b
T ′1 + T ′2

= Ω(W ).

We summarize the results in the following theorem:

Theorem 5. Under physical interference model, the delay rate Γ and the capacity C

of data collection in random sensor networks with a single sink are both Θ(W ).

3.4.2 Data Collection with Aggregation

We then investigate the data aggregation scenario where each sensor can aggregate

its received packets into a single packet. Here, we study both delay rate and capacity

of data aggregation with a single sink. The definitions of delay rate and capacity are

similar to those of data collection in Section 1.3.

We again assume that the sink s is located in cell (m,m). Our aggregation scheme

is the same with the one in Section 3.2.2, which includes three phases. The only

difference is that now the interference block is with size of L instead of R+r. However,

since L is in the same order of r, the previous analysis in Section 3.2.2 will stay the

same.

In summary, we have the following theorem for data aggregation.

Theorem 6. Under physical interference model, the delay rate Γ and the capacity C

of data aggregation in random sensor networks with a single sink are Θ(
√
n log nW )

and Θ( n
logn

W ) respectively.

3.5 Data Collection under Gaussian Channel Model

For both protocol interference model and physical interference model, as long as

the value of a given conditional expression (such as transmission distance or SINR

value) beyond some threshold, the transmitter can send data successfully to a re-

ceiver at a specific constant rate W due to the fixed rate channel model. While

widely studied, fixed rate channel model may not capture well the feature of wire-
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less communication. We now discuss the capacity bounds in random wireless sensor

networks under a more realistic channel model: Gaussian channel model. In such

model, it determines the rate under which the sender can send its data to the receiver

reliably, based on a continuous function of the receiver’s SINR. Again, we assume

every node transmits at a constant power P . Any two nodes vi and vj can establish

a direct communication link vivj, over a channel of bandwidth W , of rate

Wij = W log2

(
1 +

P · l(vi, vj)
N0 +

∑
k∈I P · l(vk, vj)

)
.

Where N0 is the background Gaussian noise, I is the set of actively transmitting

nodes when node vi is transmitting, l(vi, vj) = min{1, ||vi − vj||−β} is the pass loss

exponent and β > 2, and P is the fixed transmission power.

We consider a sensor network with n sensor nodes V = {v1, v1, · · · , vn} and a

single sink node s uniformly deployed in a square region with side-length a =
√
n

with density 1. At regular time intervals, each sensor node measures the field value

at its position and transmits the value to the sink node.

First, we give a lemma to derive the upper bound of capacity of data collection

under Gaussian channel model.

Lemma 6. An upper bound for data collection capacity under Gaussian channel model

is at most O((log n)W ).

Proof. We first order all the incoming links of sink s according to their length as

follows: ||v1, s|| ≤ ||v2, s|| ≤ · · · ≤ ||vn′ , s||. Here n′ is the number of incoming links

at sink s and n′ ≤ n. Next, we try to bound the SINR of the sink node s. For any
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link vis (i 6= 1), its SINR

SINRis ≤
P · l(vi, s)

N0 +
∑i−1

k=1 P · l(vk, s)−β

≤ P · l(vi, s)
N0 +

∑i−1
k=1 P · l(vi, s)−β

<
1

i− 1

Therefore, for i 6= 1,

Wis = W log2(1 + SINRis) < W log2(
i

i− 1
).

So the maximum rate at sink v0 is at most

W1s +
n′∑
i=2

W log2(
i

i− 1
)

= W1s +W log2(Πn′

i=2

i

i− 1
)

≤ max
i

(Wis) +W · log2(n′)

≤ max
i

(Wis) +W · log2(n)

And since maxi(Wis) ≤ O(W ), the upper bound of capacity is O((log n)W ).

In order to study the lower bound, we still need to introduce a partition method

which we already used in previous sections. As shown in Figure 3.6, the network (e.g.,

the a× a square) is divided into m2 micro cells of the size d× d. Here m = a/d. We

set d =
√

3 log n (i.e., m =
√

n
3 logn

), such that every micro cell has at least one node

and at most O(log n) nodes with high probability.

The data collection scheme under Gaussian channel model is still the same with

those under protocol or physical interference models but with different size of the

interference block. We now divide the field into big blocks with certain size L(d)×L(d)

as shown in Figure 3.7. We call suck blocks interference blocks. Thus, the number
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d

L(d)

Figure 3.10: Grid partition of interference blocks with size of L(d)× L(d).

of interference blocks is d a2

L(d)2 e. We label each block with (i, j) where i and j are

the indexes of the block as in Figure 3.7. In our collection scheme, we schedule data

transmission in parallel at all blocks but make sure that there is only one sensor in

each interference block transferring at any time.

We now prove that the transmission rate of each transmitting sensor node in such

data collection scheme is at least Ω(Wd−β), if L(d) = Cd and C is a constant and

bigger than 4.

Lemma 7. Given n random nodes in a
√
n ×
√
n square, in each interference block

Cd × Cd, there exists a node that can transmit at rate Ω(Wd−β) to any destination

in its adjacent cell.

Proof. Let us focus on one given sensor node vi which transmits to a destination vj

in vi’s adjacent cell. Its transmission rate is:

Wij = W log2

(
1 +

P · l(vi, vj)
N0 +

∑
k∈I P · l(vk, vj)

)
.
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Since the distance between vi and vj is at most
√

5d, P · l(vi, vj) ≥ P ·
√

5d =

Ω(d−β).

We also need to find the upper bound of the interference at the receiver vj. As

shown in the Figure 3.10, the transmitters in the adjacent eight interference blocks

are located at most L(d)− 2d from vj. Therefore,

∑
k∈I

P · l(vk, vj) ≤
∞∑
m=1

8mP (m · L(d)− 2d)−β

≤
∞∑
m=1

8mP (mC − 2)−βd−β

≤ 8P · d−β ·
∞∑
m=1

m(mC − 2)−β.

Since β > 2, the summation
∑∞

m=1 m(mC−2)−β converges to a constant L. Therefore,

∑
k∈I

P · l(vk, vj) ≤ 8PL · d−β = Ω(d−β).

And when n→∞, d→∞, hence,

P · l(vi, vj)
N0 +

∑
k∈I P · l(vk, vj)

= Ω(d−β).

Therefore, the transmission rate

Wij = Ω(W · d−β).

We use the same data collection scheme in Section 3.2. The total time we need

to collect all the n packets is

T ≤ t · C
√

n

3 log n
·O(log n) ·

√
n

3 log n
· b

Ω(W · d−β)
= O(nt · (log n)

β
2 ).
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Thus, the achieved capacity of data collection under Gaussian channel model is

Ω((log n)−
β
2W ).

In summary, the bounds of collection capacity could be revised as the following:

Theorem 7. Under Gaussian channel model, the upper bound and the lower bound

of data collection capacity for random wireless sensor networks are O((log n)W ) and

Ω((log n)−
β
2W ).

3.6 Summary

The summaries of data collection results under protocol interference model, phys-

ical interference model and Gaussian channel model in this section are shown in

Table 3.1, Table 3.2 and Table 3.3 respectively.

From the results in Table 3.1, the capacity of random wireless sensor networks

indeed increases with the number of sinks raising. But when the number of sinks

reaches a certain threshold ((k = Θ( n
logn

), the value of capacity trends toward a fixed

scale. And if the data can be aggregated, the capacity of collection can be enlarged

in order. These results can lead to better network planning and algorithm designing

in random wireless sensor networks’ applications.

From the results in Table 3.2, both the delay rate and the capacity under physical

interference model are the same with those results under protocol interference model.

From the results in Table 3.3, there is a gap between the upper bound and lower

bound of capacity under Gaussian channel model.
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Table 3.1: Summary of Delay Rate and Capacity in RWSN under ProIM
Task Sink Number k Delay Rate and Capacity
data collection k = 1 Γ = Θ(W )

C = Θ(W )
data collection k = O( n

logn
) and Γ = Θ(kW )

regularly-deployed C = Θ(kW )
data collection k = Ω( n

logn
) and Γ = Θ( n

logn
W )

regularly-deployed C = Θ( n
logn

W )

data collection k = O( n
logn

) and Θ( k
log k

W ) ≤ Γ ≤ Θ(kW )

randomly-deployed Θ( k
log k

W ) ≤ C ≤ Θ(kW )

data collection k = ω( n
logn

) and Γ = Θ( n
logn

W )

randomly-deployed C = Θ( n
logn

W )

data aggregation k = 1 Γ = Θ(
√
n log nW )

C = Θ( n
logn

W )

data aggregation k = O( n
logn

) and Γ = Θ(k
√
n log nW )

regularly-deployed C = Θ( kn
logn

W )

data aggregation k = Ω( n
logn

) and Γ = Θ( n
√
n√

logn
W )

regularly-deployed C = Θ(( n
logn

)2W )

data aggregation k = O( n
logn

) and Θ(k
√
n logn
log k

W ) ≤ Γ ≤ Θ(k
√
n log nW )

randomly-deployed Θ( kn
log k logn

W ) ≤ C ≤ Θ( kn
logn

W )

data aggregation k = ω( n
logn

) and Γ = Θ( n
√
n√

logn
W )

randomly-deployed C = Θ(( n
logn

)2W )

Table 3.2: Summary of Delay Rate and Capacity in RWSN under PhyIM
Task Sink Number k Delay Rate and Capacity
data collection k = 1 Γ = Θ(W )

C = Θ(W )
data aggregation k = 1 Γ = Θ(

√
n log nW )

C = Θ( n
logn

W )

Table 3.3: Summary of Capacity in RWSN under Gaussian Channel Model
Task Upper Bound Lower Bound

data collection O((log n)W ) Ω((log n)−
β
2W )



CHAPTER 4: DATA COLLECTION FOR ARBITRARY WSNS

We have studied the capacity of data collection on large-scale random wireless

sensor networks. However, all these results are based on a strong assumption that

sensors are deployed randomly in an environment and the number of nodes n must

be extremely large. But in many practical sensor applications, the sensor network

is not deployed uniformly and the number of sensors may not be large enough. For

example, wireless sensor networks are used to detect intruders and monitor the area

by deploying along the border line [48]. In that case, the sensors must be deployed

carefully on the border line to form a barrier. Our analysis result in Section 3 can

not hold and data collection algorithm in Section 3.2 is infeasible. Therefore, the

capacity of data collection in an arbitrary sensor network need to be reconsidered.

In arbitrary sensor networks, sensors’s distribution may be very strange and uneven,

as show in Figure 4.1 (b). How to efficiently collect data in such arbitrary sensor

networks seems more difficult than that in random sensor networks.

(a) A connected random node graph (b) A connected arbitrary node graph

Figure 4.1: Random graph vs arbitrary graph.
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4.1 Preliminaries

We use the network model mentioned in Section 1.1: a wireless sensor network

consists n sensor v1, v2, · · · , vn and a sink set S; both sensor nodes and sink nodes

are deployed in a plain area; at regular time intervals, each sensor node measures

the field value at its position and transmits the value to one of the sinks; a fixed

data-rate channel model is adopted where each wireless node can transmit at W

bits/second over a common wireless channel; all packets have a unit size of b bits

and each sensor has a fixed transmission power P ; time is partitioned into slots with

t = b/W seconds. The only difference between the model we used in this section

and the model in Section 3 is that in this section we assume that these n sensors are

arbitrarily distributed but not randomly and uniformly distributed.

Under protocol interference model, since every node has a fixed transmission power

P , a fixed transmission range r can be defined such that a node vj can successfully

receive the signal sent by node vi only if ||vi−vj|| ≤ r. Here, ||vi−vj|| is the Euclidean

distance between vi and vj. We call this model disk graph model. We further define

a communication graph G = (V,E) where V is the set of all nodes (including the

sink) and E is the set of all possible communication links. We assume graph G is

connected. We use protocol interference model for simplifying the analysis. Thus,

all nodes have a uniform interference range R and node vj can receive the signal

successfully from node vi if no node within a distance R from vj is transmitting

simultaneously. Similarly with Section 1.2, we assume that R
r

is a constant α which is

larger than 1. Let δ(vi) be the number of nodes in vi’s interference range (including

vi itself) and ∆ be the maximum value of δ(vi) for all nodes vi, i = 0, 1, · · · , n.

4.2 Data Collection under Protocol Interference Model

We first consider the case that there only exists one sink in the sensor network. It

has been proved that the upper bound of data collection capacity for random networks

with a single sink is W in Section 3. It is obviously that this upper bound also holds
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Figure 4.2: The number of interference nodes for a node vj is bounded by a constant
on a path Pi.

for any arbitrary network. The reason is that sink s1 cannot receive at rate faster

than W since W is the fixed transmission rate of individual link. Through this work,

we plan to construct a scheduling scheme to achieve capacity in the same order of the

upper bound, i.e. Θ(W )

We propose a simple BFS-based data collection method and demonstrate that it

can achieve the capacity of Θ(W ) under our network model: disk graph model. Our

data collection method includes two steps: data collection tree formation and data

collection scheduling.

4.2.1 Data Collection Tree - BFS Tree

The data collection tree used by our method is a classical Breadth First Search

(BFS) tree rooted at the sink s1. The time complexity to construct such a BFS tree

is O(|V |+ |E|). Let T be the BFS tree and vl1, · · · , vlc be all leaves in T . For each leaf

vli, there is a path Pi from itself to the root s1. Let δPi(vj) be the number of nodes

on path Pi which are inside the interference range of vj (including vj itself). Assume

the maximum interference number ∆i on each path Pi is max{δPi(vj)} for all vj ∈ Pi.

Hereafter, we call ∆i path interference of path Pi. Then we can prove that T has a

nice property that the path interference of each branch is bounded by a constant.

Lemma 8. Given a BFS tree T under the protocol interference model, the maximum

interference number ∆i on each path Pi is bounded by a constant 8α2, i.e., ∆i ≤ 8α2.
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Proof. We prove by contradiction with a simple area argument. Assume that there

is a vj on Pi whose δPi(vj) > 8α2. In other words, more than 8α2 nodes on Pi are

located in the interference region of vj. Since the area of interference region is πR2,

we consider the number of interference nodes inside a small disk with radius r
2
. See

Figure 4.2 for illustration. The number of such small disks is at most πR2

π( r
2

)2 = 4α2

inside πR2. By the Pigeonhole principle, there must be more than 8α2

4α2 = 2 nodes

inside a single small disk with radius r
2
. In other words, three nodes vx, vy and vz on

the path Pi are connected to each other as shown in Figure 4.2. This is a contradiction

with the construction of BFS tree. As shown in Figure 4.2, if vx and vz are connected

in G, then vz should be visited by vx not vy during the construction of BFS tree. This

finishes our proof.

(a)

V

0V

0V

0V

data

slot 2

slot 3

slot 1

(b)

(c)

(d)

0

∆Path P with    = 3

Slot 1

i                i

Slot 2

Slot 3

Figure 4.3: Scheduling on a path: after ∆i slots the sink gets one data.

4.2.2 Branch Scheduling Algorithm

We now illustrate how to collect one snapshot from all sensors. Given the collection

tree T , our scheduling algorithm basically collects data from each path Pi in T one

by one.

First, we explain how to schedule collection on a single path. For a given path Pi,

we can use ∆i slots to collect one data in the snapshot at the sink. See Figure 4.3 for

illustration. In this figure, we assume that R = r, i.e., only adjacent nodes interfere

with each other. Thus ∆i = 3. Then we color the path using three colors as in Figure

4.3(a). Notice that each node on the path has unit data to transfer. Links with the
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same color are active in the same slot. After three slots (Figure 4.3(d)), the leaf node

has no data in this snapshot and the sink got one data from its child. Therefore, to

receive all data on the path, at most ∆i × |Pi| time slots are needed. We call this

scheduling method Path Scheduling.

Now we describe our scheduling algorithm on the collection tree T . Remember T

has c leaves which define c paths from P1 to Pc. Our algorithm collects data from

path P1 to Pc in order. We define that i-th branch Bi is the part of Pi from vli to the

intersection node with Pi+1 for i = [1, c− 1] and c-th branch Bc = Pc. For example,

in Figure 4.4(b), there are four branches in T : B1 is from vl1 to va, B2 is from vl2 to

s1, B3 is from vl3 to vb, and B4 is from vl4 to s1. Notice that the union of all branches

is the whole tree T . Algorithm 1 shows the detailed branch scheduling algorithm.

Figure 4.4(c)-(j) give an example of scheduling on T . In the first step (Figure 4.4(c)),

all nodes on P1 participate in the collection using the scheduling method for a single

path (every ∆1 slots, sink s1 receives one data). Such collection stops until there is no

data in this snapshot on branch B1, as shown in Figure 4.4(d). Then Step 2 collects

data on path P2. This procedure repeats until all data in this snapshot reaches s1

(Figure 4.4(j)).

Algorithm 1: Branch Scheduling on BFS Tree

1 Input: BFS tree T .
1: for each snapshot do
2: for t = 1 to c do
3: Collect data on path Pi. All nodes on Pi transmit data towards the sink s1

using Path Scheduling.
4: The collection terminates when nodes on branch Bi do not have data for

this snapshot. The total slots used are at most ∆i · |Bi|, where |Bi| is the
hop length of Bi.

5: end for
6: end for
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4.2.3 Capacity Analysis

We now analyze the achievable capacity of our data collection method by counting

how many time slots the sink needs to receive all data in one snapshot.

Theorem 8. The data collection method based on path-scheduling in BFS tree can

achieve data collection capacity of Θ(W ) at the sink.

Proof. In Algorithm 1, the sink collects data from all c paths in T . In each step

(Lines 3-4), data are transferred on path Pi and it takes at most ∆i · |Bi| time slots.

Recall that Path Scheduling needs at most ∆i · k time slots to collect k packets

from path Pi. Therefore, the total number of time slots needed for Algorithm 1,

denoted by τ , is at most
∑c

i=1 ∆i · |Bi|. Since the union of all branches is the whole

tree T , i.e.,
∑c

i=1 |Bi| = n. Thus, τ ≤
∑c

i=1 ∆i|Bi| ≤
∑c

i=1 ∆̃|Bi| ≤ ∆̃n. Here

∆̃ = max{∆1, · · · ,∆c}. Then, the delay of data collection D = τt ≤ ∆̃nt. The

capacity C = nb
D
≥ nb

∆̃nt
= W

∆̃
. From Lemma 8, we know that ∆̃ is bounded by a

constant. Therefore, the data collection capacity is Θ(W ).

Remember that the upper bound of data collection capacity is W , thus our data

collection algorithm is order-optimal. Consequently, we have the following theorem.

Theorem 9. Under protocol interference model and disk graph model, data collection

capacity for arbitrary wireless sensor networks is Θ(W ).

4.3 Data Collection under Physical Interference Model

For the arbitrary wireless sensor networks, we only consider the protocol interfer-

ence model, which is an ideal and simple model. We can extend our analysis to the

physical interference model by applying a technique introduced by Li et al. [46] when

they studied the broadcast capacity of wireless networks. In physical interference

model, node vj can correctly receive signal from a sender vi if and only if, given a
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constant η > 0, the SINR

P · ||vi − vj||−β

B ·N0 +
∑

k∈I P · ||vk − vj||−β
≥ η,

where B is the channel bandwidth, N0 is the background Gaussian noise, I is the set

of actively transmitting nodes when node vi is transmitting, β > 2 is the pass loss

exponent, and P is the fixed transmission power. We can prove the following theorem

which indicates that data collection capacity under physical interference model is still

Θ(W ).

Theorem 10. Under physical interference model and disk graph model, data collection

capacity for arbitrary wireless sensor networks is Θ(W ).

Proof. To give an upper bound on the capacity of data collection, we will show that

we can set an artificial transmission range r0 and an artificial interference range R0

such that (1) the receiving node vj of a sender vi is within distance r0, and (2)

a transmitting node vk will cause interference at node vj within distance R0. I.e.,

if there is any interference among nodes in protocol interference model with these

artificial ranges, there is also interference among them in physical interference model.

Given P , N0, and η, we choose artificial ranges as follows:

r0 ≤ (
P

B ·N0 · η
)1/β and R0 < (

η · P
P −B ·N0 · η

)1/β.

Notice that the definition of R0 is valid since P −B ·N0 · η > 0.

First, if the receiving node vj within distance of d from the sender vi can correctly

decode the signal, P ·d−β
BN0

≥ η. Obviously if d ≤ r0 ≤ ( P
B·N0·η )1/β, P ·d−β

BN0
≥ η holds.

Thus r0 is the maximum distance of a successful communication.

Second, if a receiving node vj is within a distance R0 of a transmitting node vk

and vi is the legitimate sender of vj, the SINR at node vj is at most P
BN0+P ||vk−vj ||−β

≤
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P

BN0+PR−β0

, since the maximum strength of the signal from vi received at node vj is

at most P . Given R0 < ( η·P
P−B·N0·η )1/β, thus the SINR < η. Therefore, the node vj

cannot receive data from vi correctly due to the interference from vk.

By artificially setting r0 and R0 (which are both constants), we convert the phys-

ical interference model into a protocol interference model. Using previous proofs in

protocol interference model, it is straightforward to show that the upper bound on

the capacity under disk graph model is bounded by Θ(W ) where the constant behind

the Θ() is related to R0

r0
.

To give a lower bound on the capacity of data collection, we then set an artificial

transmission range r1 and an artificial interference range R1 such that, when all

simultaneously transmitting nodes are separated by a distance R1, and the receiving

nodes of a transmitting node is within r1, the SINR of every receiving node is at least

η. In other words, if there is no interference among nodes in the protocol interference

model with artificial ranges r1 and R1, there is no interference among the nodes in

the physical interference model as well.

V’
k

Vk

V
j

R
2

R
2

1/2
(3/4)

Figure 4.5: Illustration of positions of active transmitting nodes causing the maximum
interference at vj. Here only nodes in one 60◦ direction from vj are shown.

Consider vi transmits signal to vj and there are other active transmitting nodes

vk. Thus, the interference at the receiver vj by all other transmitting nodes vk ∈ I

is
∑

vk∈I P · ||vk − vj||
−β. Since every pair of active transmitting nodes need to be

separated by at least R2 = R1 − r1, the maximum number of active transmitting

nodes are distributed in a regular triangulation pattern as shown in Figure 4.5. To
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calculate the upper bound of the maximum interference at vj, we move every active

transmitting node vk to the position of v′k on a circle centered at vj, as shown in

Figure 4.5. On the i-th circle from vj (whose radius is i
√

3
2
R2 ), there are 6i active

nodes. Therefore, the maximum interference at vj is at most

∞∑
i=1

6i · P (i

√
3

2
R2)−β =

6P

(
√

3
2
R2)β

∞∑
i=1

1

iβ−1
≤ 6P

(
√

3
2
R2)β

ζ.

Here ζ is a constant bound of
∑∞

i=1
1

iβ−1 for β > 2. Thus, the SINR at vj is at least

P · ||vi − vj||−β

B ·N0 + 6P

(
√

3
2
R2)β

ζ
≥ Pr1

−β

B ·N0 + 6P

(
√

3
2
R2)β

ζ
.

The last inequality is due to ||vi − vj|| ≤ r1. To make the SINR value ≥ η, we need

r1 ≤ (
P

(B ·N0 + 6P

(
√

3
2
R2)β

ζ) · η
)1/β.

Then we can carefully choose r1 and R2 such that the above inequation holds. Notice

that r1 need to be larger than 1 to satisfy P · r1
−β < P . Since η < P

B·N0
, we can

choose sufficiently large constant R2 such that P
B·N0+ 6P

(

√
3

2 R2)β
ζ
> η. Then we can set

R1 = r1 +R2.

By artificially setting r1 and R1, we can convert the physical interference model

into a protocol interference model. Using previous collection algorithms for protocol

interference model, it can be shown that the lower bound Θ(W ) on the capacity of

data collection under disk graph model is achievable.

4.4 Data Collection for General Graph Model

In previous part of Section 4, our collecting algorithm and analysis are based on

a unit disk graph where two nodes can communicate if and only if their distance is



55

less than or equal to transmission range r.However, a disk graph model is idealistic

since in practice two nearby nodes may be unable to communicate due to various

reasons such as barriers and path fading. Therefore, in this section, we consider a

more general graph model G = (V,E) where V is the set of sensors and E is the

set of possible communication links. Every sensor still has a fixed transmission range

r such that the necessary condition for vj to receive correctly the signal from vi is

||vi − vj|| ≤ r. However, ||vi − vj|| ≤ r is not the sufficient condition for an edge

vivj ∈ E. Some links do not belong to G because of physical barriers or the selection

of routing protocols. Thus, G is a subgraph of a disk graph. Under this model,

the network topology G can be any general graph (for example, setting r = ∞ and

putting a barrier between any two nodes vi and vj if vivj /∈ G). Notice that even

though we still consider the protocol interference model, our analysis still holds for

arbitrary interference graph.

In general graph model, the capacity of data collection could be W
n

in the worst-

case. We consider a simple straight-line network topology with n sensors as shown

in Figure 4.6(a). Assume that the sink v0 is located at the end of the network and

the interference range is large enough to cover every node in the network. Since the

transmission on one link will interfere with all the other nodes, the only possible

scheduling is transferring data along the straight-line via all links. The total time

slots needed are n(n + 1)/2, thus the capacity is at most nb
n(n+1)t/2

= Θ(W
n

). Notice

that in this example, the maximum interference number ∆ of graph G is n. It seems

the upper bound of data collection capacity could be W
∆

. We now show an example

whose capacity can be much larger than W
∆

. Again we assume all n nodes with the

sink interfering with each other. The network topology is a star with the sink v0 in

center, as shown in Figure 4.6(b). Clearly, a scheduling that lets every node transfer

data in order can lead to a capacity W which is much larger than W
∆

= W
n

. From

these two examples, we find that the capacity problem for general graph model is
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more complexity. We study the problem under both protocol interference model and

Gaussian channel model.

VVn V 0V2 1 0VV1

V2

Vn

(a) Straight-line Topology (b) Star Topology

Figure 4.6: The optimum of BFS-based method under two extreme cases.

Under protocol interference model, we analyze the upper bound and lower bound

of the collection capacity for the general graph model.

4.4.1 Upper Bound of Collection Capacity

We first present a tighter upper bound of data collection capacity for general graph

model than the natural one W . Consider all packets from one snapshot, we use pi

to represent the packet generated by sensor vi. For any vi, let l(vi) be its level in

the BFS tree rooted at the sink v0 ( which is the minimum number of hops required

for packet pi or a packet at vi to reach v0). We use D(v0, l) to represent a virtual

disk centered at the sink node v0 with radius of hop distance l. The critical level (or

called the critical radius) l∗ is the greatest level l such that no two nodes within l

level from v0 can receive a message in the same time slot, i.e., l∗ = max{l|∀vi, vj ∈

D(v0, l) cannot receive packets at the same time}. The region defined by D(v0, l
∗) is

called critical region. See Figure 4.7 for illustration. For any packet pi originated at

node vi, we define

λ∗i =

 l(vi) if vi ∈ D(v0, l
∗)

l∗ + 1 otherwise.

Here, λ∗i gives the minimum number of hops needed to reach the sink v0 after packet

pi reaches the critical region around v0. Let λ∗ = maxi{λ∗i }. Then we can prove the
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following lemma on the lower bound of delay for data collection.
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(a) critical region around sink v0

V
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0
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(b) a tree view of critical region

Figure 4.7: Illustration of the definition of critical region, i.e. l∗. The grey area is
the critical region, where no any two nodes can receive a message in the same time
slot due to interference around v0.

Lemma 9. For all packets from one snapshot, the delay to collect them at sink v0

D ≥ t
∑
i

λ∗i .

Proof. It is clear the critical region around the sink v0 is a bottleneck for the delay.

Any packet inside the critical region can only move one step at each time slot. First,

the total delay must be larger than the delay which is needed for the case where

all packets originated outside critical region are just one hop away from the critical

region. In other words, assume that we can move all packets originated outside critical

region to the surrounding area without spending any time. Then each packet pi needs
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λ∗i time slots to reach the sink. By the definition of the critical region, no simultaneous

transmissions around the critical region (1-hop from it) can be scheduled in the same

slot. Therefore, the delay is at least the summation of λ∗i .

Let ∆∗ =
∑
i λ
∗
i

n
, we have a new upper bound of data collection capacity, C ≤ W

∆∗
≤

W . Notice that ∆∗ ≥ 1 and it represents the limit of scheduling due to interference

around the sink (and its critical region).

4.4.2 Lower Bound of Collection Capacity

The data collection algorithm based on branch-scheduling in BFS tree can still

achieve the capacity of W
∆̃

. However, in general graph model ∆̃ is not bounded by

a constant any more, and it could be O(1) or O(n). Thus, there is a gap between

our lower bound of data collection W
∆̃

and the natural upper bound W . Considering

both examples shown in Figure 4 of the paper, BFS-based method matches their

tight upper bounds Θ(W
n

) and W . For the star topology, even though the sink has

the maximal interference ∆ = n, each individual path has the path interference

∆i = 1 which leads to capacity of W
1

= W . For the straight-line topology, the path

interference of the single path ∆i = n, thus the capacity is W
n

. In both cases, W
∆̃

matches the optimal capacity. However, similar to W
∆

, W
∆̃

is still not a tight bound

too. We will show such an example in Figure 4.8.

Now we modify the basic Path Scheduling of the BFS-method to achieve better

collection capacity. Recall that in Section IV.B we claim that the path scheduling for

a path Pi can be done in ∆i · |Pi| time slots. However, we can perform path scheduling

in the following way to save more slots. Assume that path Pi = v0, v1, v2, · · · , v|Pi|.

Let δPik = max{δPi(v1), · · · , δPi(vk)}, i.e., δPik is the maximum interference number

among first k nodes v1 to vk in path Pi. Clearly, δPik ≤ δPik+1. In the first step, using

δPi|Pi| slots, every node on the path transfers its data to its parent in the BFS tree. After

the first step, the leaf v|Pi| already finishes its task in this round and has no data from

current snapshot. In the second step, using δPi|Pi|−1 slots, the current snapshot data
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will move one more level up along the path in BFS tree. Repeat these steps until all

data along this path reach the sink. It is easy to show that the total number of time

slots used by the above procedure is
∑|Pi|

k=1 δ
Pi
k . Since δPik ≤ ∆i,

∑|Pi|
k=1 δ

Pi
k ≤ ∆i · |Pi|.

V0

r

log n

rrrrrrr

n − log n
r

1VnV n−logn+1V

n−lognV

Figure 4.8: Illustration of the advantage of a new path scheduling.

Figure 4.8 shows an example where
∑|Pi|

k=1 δ
Pi
k is much smaller than ∆i · |Pi|. Again

we have n sensors and the sink distributed on a line P as shown in the figure. Assume

that R = r. On the left side, there are log n nodes close to each other, thus their

δ(vi) = log n except for δ(vn−logn+1) = log n + 1. On the right side, every node has

δ(vi) = 3. Thus, ∆ = log n+ 1 and ∆ · |P | = Θ(n log n). In addition, δPk = log n+ 1

for k = n− log n+ 1, · · · , n and δPk = 3 for k = 3, · · · , n− log n, δP2 = 2, and δP1 = 1.

Therefore,
∑|P |

k=1 δ
P
k = (log n + 1) log n + 3(n − log n) − 3 = Θ(n). It is obvious that∑|P |

k=1 δ
P
k = Θ(n) is smaller than ∆ · |P | = Θ(n log n) in order.

Using the above new path scheduling analysis, we now derive a tight lower bound

for our BFS-based method. Recall that our method transfers data based on branches

in BFS tree T . Given T , there are c paths Pi and c branches Bi as shown in Figure

3(a) and 3(b) in the paper. Then the total number of time slots used by Algorithm

1 with new path scheduling is at most

c∑
i=1

|Pi|∑
k=|Pi|−|Bi|+1

δPik .

It is clear that this number is much smaller than
∑c

i=1 ∆i · |Bi| from previous analysis.

Notice that for path Pi our algorithm (Line 3-4 in Algorithm 1) will terminate the

transmission until the branch Bi does not have data for current snapshot and switch



60

to next path Pi+1. Thus, the index of k is only from |Pi| to |Pi| − |Bi|+ 1. Therefore,

the capacity achieved by our algorithm is at least

W∑c
i=1

∑|Pi|
k=|Pi|−|Bi|+1

δ
Pi
k

n

.

Let ∆∗∗ =
∑c
i=1

∑|Pi|
k=|Pi|−|Bi|+1

δ
Pi
k

n
which can be derived given the BFS tree. We now

have a new lower bound of collection capacity as W
∆∗∗

. Here ∆∗∗ is a kind of weighted-

average of the maximum interference among paths Pi and branches Bi in the BFS

tree. We then have the following relationship:

n ≥ ∆ ≥ ∆̃ ≥ ∆∗∗ ≥ 1,

among the maximum interference number ∆ in the whole graph, the maximum in-

terference number ∆̃ in the paths/braches of BFS tree, and the “average” maximum

interference ∆∗∗ in the paths/branches of BFS tree. These three interference numbers

can be different from each other in order.

Now we introduce a new greedy-based scheduling algorithm which is inspired by

[40]. The scheduling algorithm still uses the BFS tree as the collection tree. All

messages will be sent along the branch towards the sink v0. For n messages from

one snapshot, it works as follows. In every time slot, it sends each message along

the BFS tree from the current node to its parent, without creating interference with

any higher-priority message. The priority ρi of each packet pi is defined as 1
l(vi)

. It is

clear that packets originated from the children of the sink have the highest priority

ρi = 1 while packets originated from other nodes have lower priority ρi < 1. For two

packets with the same priority (on the same level in the BFS tree), ties can be broken

arbitrarily. Given a schedule, let vτj be the node of packet pj in the end of time slot

τ . The detailed greedy algorithm is given in Algorithm 2.
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Algorithm 2: Greedy Scheduling on BFS Tree

1 Input: BFS tree T .
1: Compute the priority ρi = 1/l(vi) of each message pi.
2: for each snapshot do
3: while ∃pj such that vτj 6= v0 do
4: for all such pi in decreasing order of priority ρi do
5: if sending pi from node vτi will not create interference with any

higher-priority messages that are already scheduled for this time slot
then

6: node vτi sends pi to its parent par(vτi ) in T .
7: end if
8: end for
9: τ = τ + 1.
10: end while
11: end for

Now we analyze the capacity achieved by this greedy data collection method.

Before presenting the analysis, we first introduce some new notations. For two nodes

vi and vj, h(vi, vj) denotes the shortest hop number from vi to vj in graph G. The

delay of packet pj is defined as the time until it reach the sink v0, i.e., Dj = t ·min{τ :

vτj = v0}.

j

Vi

λ iV

Figure 4.9: Illustration of the definitions of λi.

Let λi be the minimal hops that a packet needs to be forwarded from node vi

before a new packet at vi can be safely forwarded along the BFS tree. So λi =

max{l|∃vj, h(vi, vj) = l and transmission from vi to par(vi) interferes with transmis-
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sion from vj to par(vj)}+ 1. Here par(vi) is the parent of vi in T . See Figure 4.9 for

illustration. Here λi = 4 for vi. We define that λ = maxi{λi}. Both λ and λi are

integers (hop counts). In addition, we can prove that λ ≥ λ∗ in Lemma 10.

Lemma 10. Let λi be the minimal hops that a packet needs to be forwarded from

node vi before a new packet at vi can be safely forwarded along the BFS tree and let

λ = maxi{λi}, then λ ≥ λ∗.

Proof. Let vk be the node inside critical region with the largest level. We now consider

two cases.

Case 1: If there is a node outside the critical region, as shown in Figure 5(a) in

the paper, the transmission from vs to vk should interfere with the transmission from

vq to v0. Thus, in the view of vs, its λs ≥ l∗ + 1 = λ∗. Therefore λ ≥ λ∗.

Case 2: If all nodes are inside the critical region, again consider the vk with

largest level. Then λ = λk = l(vk) + 1 > l(vk) = λ∗.

Consequently, we conclude λ ≥ λ∗.

Packet pj is said to be blocked in time slot τ if, in time slot τ , pj is not sent out.

We define the following blocking relation on our greedy algorithm schedule: pk ≺ pj

if in the last time slot in which pj is blocked by the transmission of higher priority

packets in that time slot, pk is the one closest to pj in term of hops among these

packets (ties broken arbitrarily). The blocking relation induces a directed blocking

tree TD where nodes are all message pi and edge (pk, pj) representing pk ≺ pj. The

root pr of the tree TD is a message with highest priority (originated in a child of v0)

which is never blocked. Let P (j) the path in TD from pr to pj and h(j) be the hop

count of P (j). We then derive an upper bound on the delay Dj of packet pj in the

greedy algorithm.

Lemma 11. For each packet pj in the snapshot, its delayDj ≤ t·
∑

pi∈P (j) min{l(vi), λ}.
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Proof. We prove this lemma by induction on h(j). For any packet pj, if h(j) =

0, which means pj is the root pr of TD, it will not be blocked. So Dj = t ·

l(vj). Then consider the right side of the inequation t ·
∑

pi∈P (j) min{l(vi), λ} =

t · min{l(vj), λ}. Since pj is packet with highest priority, l(vj) = 1 and l(vj) ≤ λ.

Thus, t ·
∑

pi∈P (j) min{l(vi), λ} = t · l(vj) and the claim in this lemma holds for the

case where h(j) = 0.

If h(j) > 0, i.e., pj 6= pr, let τ be the last time slot in which pj is blocked by

packet pk, i.e., pk ≺ pj. Notice that t · h(vτk , v0) ≤ Dk − t · τ , otherwise pk would not

reach v0 by time Dk. Also h(vtj, v
t
k) ≤ λ − 1 since after pk moves one hop pj is safe

to move. From time slot τ + 1, pj may be forwarded towards v0 over one hop in each

time slot, and reach v0 at the earliest time slot,

Dj ≤ t · (τ + 1 + h(vtj, v0))

≤ t · (τ + 1 + h(vtk, v0) + h(vtj, v
t
k))

≤ t · (τ + 1) +Dk − t · τ + t · λ− 1

= Dk + t · λ.

On the other hand, Dj ≤ Dk + t · l(vj) because after pk reaches the sink v0, pj needs

at most l(vj) to reach the sink. Consequently, Dj ≤ Dk + t · min{l(vj), λ}. This

completes our proof.

Lemma 12. The data collection capacity of our greedy algorithm is at least λ∗

λ
W
∆∗

.
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Proof. Let pj be the packet having maximum Dj . By Lemma 11 and λ ≥ λ∗,

Dj ≤ t
∑

pi∈P (j)

min{l(vi), λ} ≤
λ

λ∗
t
∑
pi∈TD

min{l(vi), λ∗}

≤ λ

λ∗
t(

∑
vi∈D(v0,l∗)

l(vi) +
∑

vi /∈D(v0,l∗)

(l∗ + 1))

=
λ

λ∗
t
∑
i

λ∗i =
λ

λ∗
nt∆∗.

Thus, the capacity achieved by our greedy algorithm is at least nb
Dj

= λ∗

λ
W
∆∗

.

Remark: In summary, we show that under protocol interference model and gen-

eral graph model data collection capacity for arbitrary sensor networks has the fol-

lowing bounds:

Theorem 11. Under protocol interference model and general graph model, data col-

lection capacity for arbitrary sensor networks is at least λ∗

λ
W
∆∗

and at most W
∆∗

.

Here λ∗ describes the interference around the sink v0, while λ describes the in-

terference around a node vi. Since λ ≥ λ∗, λ∗

λ
≤ 1. For disk graph model, λ∗

λ
is

a constant. However, for general graph model it may not, thus, there is still a gap

between the lower and upper bounds (such an example is given in Section I of Sup-

plemental Material). We leave finding tighter bounds to close the gap as one of our

future works. For two examples in Figure 4.6, the greedy method matches the optimal

solutions in order. For the straight-line topology in Figure 4.6(a), λ∗ = λ = n and

∆∗ = Θ(n). Thus, the capacity λ∗

λ
W
∆∗

= Θ(W
n

) matches the upper bound. For the star

topology in Figure 4.6(b), λ∗ = λ = 1 and ∆∗ = 1. In this case, λ∗

λ
W
∆∗

= Θ(W ) also

matches the upper bound. Compared with the branch scheduling method, greedy

method can achieve much better capacity in practice, since greedy algorithm allows

packet transmissions among multiple branches of the BFS tree in the same time slot.

Compared with the lower bound λ∗

λ
W
∆∗

which we derive from greedy scheduling
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on BFS tree, this new lower bound W
∆∗∗

may be smaller in some cases. Consider

the example in Figure 4.8, λ∗

λ
W
∆∗

= Θ( W
logn

), while W
∆∗∗

= W
∆∗

= Θ(W ). However,

the reason is mainly due to the rough relaxation in our capacity analysis of greedy

scheduling.

In summary, the bounds of collection capacity could be revised as the following:

Theorem 12. Under protocol interference model and general graph model, data col-

lection capacity for arbitrary sensor networks is at least min(λ
∗

λ
W
∆∗
, W

∆∗∗
) and at most

W
∆∗

.

4.5 Data Collection under Gaussian Channel Model

We can also study the capacity bounds in arbitrary distributed wireless sensor

networks under Gaussian channel model for either disk graph model or general graph

model. The upper bound of data collection (Lemma 6) we get for random networks

still holds, since it is a very general result.

Theorem 13. An upper bound for data collection capacity under Gaussian channel

model is at most O((log n)W ).

The proof of this theorem is exactly same with the one of Lemma 6, thus we ignore

it here. A lower bound of data collection capacity in this model is still open.

4.6 Summary

In this section, we study the theoretical limits of data collection in terms of ca-

pacity for arbitrary wireless sensor networks. For protocol interference model, We

first propose a simple data collection method based on BFS tree to achieve capacity

of Θ(W ), which is order-optimal under protocol interference model and disk graph

model. However, when the underlying network is a general graph, we show that

Θ(W ) may not be achievable. We prove that a new BFS-based method using greedy

scheduling can still achieve capacity of Θ(λ
∗

λ
W
∆∗

) and also give a tighter upper bound

Θ( W
∆∗

). we also discuss the collection capacity under a more general model: physical
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interference model. By setting artificial transmission range and interference range,

we convert the physical interference model into a protocol interference model and

get the same collection capacity with that under protocol interference model. For

general graph model under protocol interference model, we derive the upper bound of

collection capacity and introduce a new data collecting algorithm to approximate the

upper bound. At last, we discuss the general upper bound of data collection under

Gaussian channel model.

Table 4.1 summarizes our results. All of our methods can achieve these results for

random networks too.

Table 4.1: Summary of Data Collection Capacity in Arbitrary WSNs
Network Model Interference Model Capacity C
Disk Graph Protocol Interference C = Θ(W )
Disk Graph Physical Interference C = Θ(W )

General Graph Protocol Interference Θ(λ
∗

λ
W
∆∗

) ≤ C ≤ Θ( W
∆∗

)
General Graph Gaussian Channel C ≤ O((log n)W )



CHAPTER 5: CONCLUSION

In this dissertation, we study theoretical limitations of data collection in terms of

capacity for both random and arbitrary wireless sensor networks under three different

kinds of communication models. We briefly summarize our completed work.

We make the following contributions for randomly distributed wireless sensor net-

works:

For sensor networks with k sinks under protocol interference model, when sensor

networks have regularly deployed sinks, we prove that the capacity increases to Θ(kW )

if k = O( n
logn

) and Θ( n
logn

W ) if k = Ω( n
logn

). These results show that (1) when k is

small the capacity is Θ(kW ) since there will be no interference among neighboring

sinks with high probability; however, (2) when k is large the capacity is bounded by

the number of interference areas instead of k.

For sensor networks with k sink under protocol interference model, when sen-

sor networks have randomly deployed sinks, we prove that the capacity is between

Θ( k
log k

W ) and Θ(kW ) if k = O( n
logn

) and Θ( n
logn

W ) if k = ω( n
logn

). Notice that there

is a gap between the upper bound and lower bound of data collection capacity when

k = O( n
logn

).

For sensor networks with a single sink under protocol interference model, with data

aggregation, the capacity of data collection is increasing. We theoretically prove that

the delay rate and the capacity of data aggregation are Θ(
√
n log nW ) and Θ( n

logn
W )

respectively. Thus, pipelining can increase the capacity in order of Θ(
√

n
log3 n

).

By penetrating the connection between protocol interference model and physical

interference model, we successfully convert the physical interference model into the
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protocol interference model so that our proposed data collection scheme still works

for the case with a single sink. Both the delay rate and the capacity under physical

interference model are the same with those under protocol interference model.

For sensor networks with a single sink under Gaussian channel model, we derive an

upper bound of O(log n)W ) and a lower bound of Ω((log n)−
β
2W ) for data collection.

For arbitrarily distributed wireless sensor networks, we make the following contri-

butions:

For arbitrary sensor networks under protocol interference model and disk graph

model (if two sensors are within the transmission ranges of each other then they

can communicate), we propose a simple data collection method which performs data

collection on branches of the Breadth First Search (BFS) tree. We prove that this

method can achieve collection capacity of Θ(W ) which matches the theoretical upper

bound.

For arbitrary sensor networks under physical interference model and disk graph

model, we prove that the capacity of data collection is still in the same order as the

one under protocol interference model.

Since the disk graph model is idealistic, we also consider a more practical network

model: general graph model. In the general graph model, two nearby nodes may be

unable to communicate due to various reasons such as barriers and path fading. We

first show that Θ(W ) may not be achievable for a general graph. Then we prove that

a greedy scheduling algorithm on BFS tree can achieve capacity of Θ(λ
∗

λ
W
∆∗

) while

the capacity is bounded by Θ( W
∆∗

) from above. Here, ∆∗, λ∗, and λ are three new

interference related parameters defined in Section 4.4.

Finally, we discuss the data collection capacity under Gaussian channel model (for

disk or general graph model) and derive an upper bound of data collection capacity

O((log n)W ).

There are still several open problems left as our future work:
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For random sensor network under Gaussian channel model, there is still a gap

between the upper and lower bounds, we are interested in reducing or filling it in the

future.

For arbitrary sensor network under protocol interference model and disk graph

model, we are interested in the capacity problem of data collection if there are multiple

sinks or the data can be aggregated.

For arbitrary sensor network under Gaussian channel model, we plan to design a

data collection scheme to match or approximate the upper bound.

In all of our results, we assume that underlying communication is always reliable.

However, recently, there is new results on capacity with probabilistic model []. It is

interesting to further study various capacity problems under such model.
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