
MANIPULATION AND PERCEPTION SYNERGY FOR AUTONOMOUS
ROBOTS IN UNKNOWN ENVIRONMENTS

by

Huitan Mao

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2019

Approved by:

Dr. Jing Xiao

Dr. Srinivas Akella

Dr. Jianping Fan

Dr. Andrew Willis

ii

c©2019
Huitan Mao

ALL RIGHTS RESERVED

iii

ABSTRACT

HUITAN MAO. Manipulation and Perception Synergy for Autonomous Robots in
Unknown Environments. (Under the direction of DR. JING XIAO)

Intelligent robots have been increasingly used in unstructured and unknown envi-

ronments rather than being limited in well-controlled settings. The key to successful

autonomous robot operations in such environments is to combine robot manipulation

and perception in a synergy, such that the perception guides robot motion, and the

robot motion in turn enables better perception.

This dissertation first addresses how to perceive an unknown object effectively and

efficiently in an unknown environment through robot and object contact interaction.

The novel approaches introduced efficiently generate continuum wraps around un-

known objects based on contact interaction and use the resulting robot shape to

capture the object shape information to achieve effective object classification, recog-

nition and shape estimation. Additionally, experimental results also demonstrate

that object classification can be achieved through simulation-to-real-world transfer-

able learning.

This dissertation further considers appearance-based object modeling in cluttered

environments. Leveraging flexible continuum manipulation, an approach is intro-

duced to plan robot motion that positions a tip camera at suitable spots around

the target object to take RGBD images and register them to build and extend the

object 3D model progressively, while avoiding obstacles in unknown and cluttered

environments.

iv

This dissertation also addresses how to achieve more flexible and autonomous

robotic manipulation based on perception. A real-time adaptive motion planning ap-

proach is introduced to enable automatic conflict resolutions between task constraints

and obstacle avoidance based on real-time visual sensing. More natural robot motion

that seamlessly switches between task-constrained and non-task-constrained modes

is achieved for improved motion adaptiveness in dynamically unknown environments.

Last but not least, pose uncertainty reduction under complex contacts for fine

manipulation is also investigated. A novel force forecast approach that relates real-

world force sensing to a simulated world to enable pose uncertainty reduction is

introduced. This approach does not require knowing contact locations or pre-define

any contact types, and it can be directly applied to reduce pose uncertainty in real-

world contact-rich assembly tasks.

v

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my research advisor Dr. Jing

Xiao for her continuous support of my Ph.D. study. Her patience, enthusiasm, inspi-

ration, immense knowledge and rich experience in robotics make her a great mentor.

Without her patient guidance and persistent help, this dissertation would not have

been possible.

I would also like to thank the rest of my Ph.D. dissertation committee members:

Dr. Srinivas Akella, Dr. Jianping Fan, and Dr. Andrew Willis for their insightful

comments and encouragement, but also for their hard questions, which inspired me

to broaden my research horizons.

I am also grateful to Liqin Zhu, Jinglin Li, Zhou Teng, Mabel M. Zhang and

Junius Santoso for their excellent research collaborations. I also thank my labmates

and friends: Sterling McLeod, David Vutetakis, Rongcheng Lin, Andre Z. Sanchez,

Dapeng Chen, Saurav Agarwal, Sayantan Datta, Haofeng Jia, Qiuyu Chen and others

for all the inspiring discussions and happy moments we shared together.

Last but not least, I am especially grateful to my family: my caring mother Caimei

Si, my encouraging father Baiqing Mao, my pretty girlfriend Jing Chen for their love,

companionship and support throughout this dissertation research.

vi

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xvii

CHAPTER 1: INTRODUCTION 1

1.1. Perception for Manipulation 3

1.2. Manipulation-enabled Perception 4

1.3. Perception-guided Manipulation 6

1.4. Summary of Open Problems 8

CHAPTER 2: SHAPE-BASED OBJECT CLASSIFICATION AND
RECOGNITION THROUGH CONTINUUM MANIPULATION

11

2.1. Related Literature 12

2.2. Problem Formulation 14

2.3. Methodology 16

2.3.1. Touch-driven Whole Arm Wrapping 16

2.3.2. Chord Histogram Descriptor 19

2.3.3. Shape-based Classification of Object Classes 20

2.3.4. Object Recognition with Active Guidance 21

2.4. Experiments 22

2.4.1. Capturing Object Shape 22

2.4.2. Classification Performance 26

2.4.3. Recognition with Active Guidance 26

2.4.4. Real Robot Wraps 28

2.5. Summary 29

vii

CHAPTER 3: OBJECT SHAPE ESTIMATION THROUGH TOUCH-
BASED CONTINUUM MANIPULATION

31

3.1. Related Literature 32

3.2. Progressive Object Shape Estimation through Continuum Ma-
nipulation (POSE-CoM)

33

3.2.1. Touch-based Continuum Wrapping 34

3.2.2. Object Shape Data Collection and Generation 37

3.2.3. GPIS-based Shape Estimation 39

3.2.4. Active Object Exploration 40

3.3. Experiments 41

3.3.1. Shape Estimation Results 42

3.3.2. Significance of the Arm Points 46

3.4. Summary 47

CHAPTER 4: SIM-TO-REAL TRANSFERABLE OBJECT CLAS-
SIFICATION THROUGH TOUCH-BASED CONTINUUM
MANIPULATION

50

4.1. Approach 51

4.1.1. Manipulators and Sensors 51

4.1.2. Touch-based Continuum Wrapping 53

4.1.3. Classification of Unknown Objects 54

4.2. Experimental Results with Planar Wraps 54

4.3. Experimental Results with Spatial Wraps 56

4.3.1. Robot Arm Lifting 57

4.3.2. Classification Results 58

viii

4.4. Summary 60

CHAPTER 5: PROGRESSIVE OBJECT MODELING WITH A CON-
TINUUM MANIPULATOR IN UNKNOWN ENVIRONMENTS

62

5.1. Related Literature 62

5.2. Overview 63

5.2.1. Environment and Task 63

5.2.2. Approach 64

5.3. Perception-based Motion Planning and Execution 66

5.3.1. Distinguishing Target Object and Obstacles 66

5.3.2. Planning and Execution of Robot Arm Motion 67

5.4. Progressive Object Modeling 68

5.5. Experiments and Analyses 69

5.5.1. Progressive Object Modeling with a Continuum Arm 70

5.5.2. Refining Models by Global Optimization 75

5.6. Summary 76

CHAPTER 6: REAL-TIME CONFLICT RESOLUTION OF TASK-
CONSTRAINED MANIPULATOR MOTION IN UNFORESEEN
DYNAMIC ENVIRONMENTS

78

6.1. Related Literature 80

6.2. Task Constraints 82

6.3. A Review of RAMP 83

6.4. Task-constrained RAMP 85

6.4.1. Task-constrained Genetic Operators 85

6.4.2. Three Types of Goals 86

ix

6.4.3. Trajectory Generation and Evaluation 86

6.4.4. Trajectory Subpopulations for Conflict Resolution 88

6.5. Summary of Task-constrained RAMP 89

6.6. Overview of Experiments 93

6.7. Experiments of Transferring a Water Cup 94

6.7.1. Conflict Resolution with Ptc main 95

6.7.2. Conflict Resolution with Ptc main, Ptc temp and Pntc 97

6.8. Experiments of Closing a Drawer 100

6.9. Discussion and Performance Improvements 102

6.10.Summary 103

CHAPTER 7: REDUCING POSE UNCERTAINTY UNDER COMPLEX
CONTACTS VIA FORCE FORECAST

105

7.1. Related Literature 106

7.2. Uncertainty Reduction via Force Forecast 109

7.2.1. Force Forecast 110

7.2.2. Uncertainty Reduction 112

7.3. Application to Assembly 113

7.3.1. Problem Definition 114

7.3.2. Approach 115

7.4. Overview of Experimental Evaluation 117

7.5. Two-Pin Peg-in-Hole Assembly 118

7.5.1. Contact Reasoning and Uncertainty Reduction 118

7.5.2. Reducing Regression Model Complexity 119

x

7.5.3. Robotic Insertion 121

7.6. Three-Pin Peg-in-Hole Assembly 122

7.7. Summary 126

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 127

8.1. Contributions 127

8.2. Future Work 130

REFERENCES 133

xi

LIST OF FIGURES

FIGURE 1: A common setup of an autonomous robot system includes
a robot manipulator, a robot end-effector (hand), a robot controller
(partially seen in the image), a force/torque sensor and an RGB-D
camera.

2

FIGURE 2: An example of a two-pin peg-in-hole robotic assembly. Con-
tacts may occur at multiple regions at the same time, and the ar-
bitrary/irregular shape of the peg and hole further makes contacts
complex.

7

FIGURE 3: A continuum robot wraps a cylindrical object. 11

FIGURE 4: Illustration of the frame of seci and the control variables si,
κi and ϕi [56].

15

FIGURE 5: Chords collected on example wraps are shown in blue. The
normals at the sampled points are shown in green.

20

FIGURE 6: A few planes for a bottle are shown, which are generated by
rotating from the tabletop plane every α angle about x-axis (subfigure
(a)) or y-axis (subfigure (b)) until α reaches 90 degs(black planes).
These planes all pass through the robot base frame since the robot
base is fixed.

21

FIGURE 7: Example wraps used to encode object cross section shape into
the arm shape. Each category has two example wraps (from top left
to lower right): apple, banana, bottle, bowl, cup, donut, hammer,
mug, teapot, toilet paper rolls.

24

FIGURE 8: Snapshots of example motions of wrapping. Each row shows
one wrap from the initial configuration (left sub-figure) to the final
wrapping configuration (right sub-figure).

25

FIGURE 9: SVM confusion matrix. 27

FIGURE 10: Comparing real wraps and the corresponding simulated
wraps around a cylindrical object (top) and a rectangular object
(bottom) respectively. In each row from left to right: the segmented
RGBD point cloud of the OctArm wrapping the object, segmented
OctArm shape, reconstructed OctArm shape in simulation.

29

xii

FIGURE 11: Overview of the POSE-CoM approach. 34

FIGURE 12: The wrapping planes are systematically enumerated between
the table plane (grey background) and the black planes orthogonal
to the table plane. Left: each red plane is used to generate a clock-
wise continuum wrap. Right: each green plane is used to generate
a counter-clockwise continuum wrap. Note that the initial configu-
rations of the robot in Left and Right are different. The frame at
the robot base is the global coordinate system.

35

FIGURE 13: A few examples of the wrapping planes (grey) and their cor-
responding continuum wraps. These planes also uniquely cut through
the object (a bottle) and pass through the fixed robot base. The
frame at the robot base is the global coordinate system.

35

FIGURE 14: Illustration of an enclosing motion. Left: Robot at the ini-
tial configuration. Middle: The robot makes first contact by curving
section 1 (black). Right: The robot makes the second contact by
curving section 3 (green) without penetrating into the object.

36

FIGURE 15: Illustration of an advancing motion. Left: the robot section
end points are indicated in yellow, the contact points are in red, and
the new endpoint positions are indicated in green. Right: the new
arm configuration solved using constrained inverse kinematics based
on the new endpoint positions (green).

37

FIGURE 16: Left: the dashed line is the backbone of the continuum
robot. The blue dots are the arm points systematically sampled on
the arm backbone. The red dots are the contact points between
the robot and the object. Right: the interpolated above-surface
and below-surface points from the contact point along the contact
normal.

38

FIGURE 17: Object mesh models: (left to right) bottle, apple, sphere,
bunny, pentagon, vase.

41

FIGURE 18: Snapshots of the motion of example continuum wraps. Each
subfigure is a wrap from the initial configuration (left) to the wrap-
ping configuration (right).

42

FIGURE 19: Shape estimation results for the bottle, colored by
uncertainty.

43

xiii

FIGURE 20: Shape estimation results for the sphere, colored by
uncertainty.

43

FIGURE 21: Shape estimation results for the apple, colored by
uncertainty.

44

FIGURE 22: Shape estimation results for the bunny, colored by
uncertainty.

44

FIGURE 23: Shape estimation results for the pentagon, colored by
uncertainty.

45

FIGURE 24: Object mesh models reconstructed from shape estimation
results using Marching Cubes’ algorithm [70], colored by elevation.

45

FIGURE 25: Comparing example wraps on the original mesh model and
the reconstructed model. (a) wrap on the original apple model (b)
wrap on a reconstructed apple model (c) wrap on the original vase
model (d) wrap on a reconstructed vase model.

47

FIGURE 26: Shape estimation results of the vase, colored by uncertainty. 48

FIGURE 27: Shape estimation results of the vase without using arm
points, colored by uncertainty.

48

FIGURE 28: An object (a transparent water bottle) was placed near the
base of arms for manipulation: (a) a touch sensor was mounted in
the middle of each origami module in a 3-section arm, (b) a touch
sensor was mounted at the distal end of each module in a 4-section
arm. The diameter of the continuum section is 7 cm. (c) A list of
objects used in the experiments.

53

FIGURE 29: A few examples of the planar continuum wraps generated
on different objects in simulation. The simulated arm has 3 sections
and each section is colored in white for the first half and in green for
the second half.

55

FIGURE 30: The motion snapshots of the continuum wraps generated
on the real objects. The rightmost sub-figure in each row shows the
final wrapping configuration.

55

xiv

FIGURE 31: The spatial wraps in simulation. Each row in each subfigure
is the three wraps around the same object. The simulated arm has
3 sections and each section is colored in white for the first half and
in green for the second half.

57

FIGURE 32: The motion snapshots of (a) planar and (b) spatial contin-
uum wraps around the bottle, where the top and bottom rows show
the motion of the same wrap from two view angles respectively, (c)
final configurations for the remaining objects with planar wraps, (d)
spatial wrap final configurations.

58

FIGURE 33: Overview of the progressive modeling approach. The blocks
for perception are in yellow, and those for robot motion are in red.

65

FIGURE 34: Top view of environments with different target objects, ob-
stacles, and robot arm initial configurations.

71

FIGURE 35: Snapshots of the arm motion and the sensed object surfaces
in Task 1.

71

FIGURE 36: Snapshots of the arm motion in Task 2-1. 72

FIGURE 37: Illustration of the shape of the coffee can and the arm mo-
tion. The white dots in (b) correspond to three goal points the arm
tip tries to reach in three consecutive sensings.

72

FIGURE 38: Snapshots of the arm motion in Task 2-2. 73

FIGURE 39: The built models. 74

FIGURE 40: Comparison of the models obtained before and after global
optimization. As indicated in (a), the two surfaces circled in the
model before global optimization are not tightly connected, which is
corrected in (b).

75

FIGURE 41: The statistical analyses of the models obtained before and
after the global optimization.

77

FIGURE 42: Transferring a water cup to a goal location. The end-effector
has to constrain orientation angles to prevent spilling water.

79

xv

FIGURE 43: Illustration of conflict resolution mechanism. The blue and
green solid lines indicate task-constrained motion from Ptc main and
Ptc temp respectively, and the yellow solid lines indicate the non-task-
constrained motion. The blue dashed lines indicate the motion that
would be executed if the conflict between the tasks did not exist (any
more). Task constraints are released or resumed at the intersection
of the blue and yellow solid lines. The arrows indicate the motion
direction.

91

FIGURE 44: Motion snapshots of transferring a water cup. Each row
corresponds to one program run. Only Ptc main is used.

94

FIGURE 45: We used ABB IRB 6-axis robot with a 3-finger Yale Open-
Hand [74]. A person moves the box using the pole attached to the
box to disrupt the robot motion. The top surface of the white box is
designated as a safe spot to place down the cup.

97

FIGURE 46: Transferring the water cup with a dynamic obstacle. Ptc main,
Ptc temp and Pntc are used. Non-task-constrained motion is not trig-
gered in subfigure (a) and triggered in (b).

97

FIGURE 47: Motion snapshots in the task of closing a drawer. The
simulated ABB robot is in orange. Each row corresponds to one
program run. Last two rows show the same run in simulation and
real world. The yellow bottle on the real robot indicates the end-
effector pose.

100

FIGURE 48: Joint angles. (a) and (b) were obtained from real experi-
ments. (c) and (d) were from simulation.

101

FIGURE 49: An overview of pose uncertainty reduction via force forecast,
which includes haptic simulation and force calibration.

109

FIGURE 50: Left: A two-pin peg represented using Octree level 5.
Right: The red object is peg at wTp interacting with the hole (gray).
The yellow object is a virtual peg at a physically correct contact pose
wT ′p that satisfies the non-penetration and time history constraints.
The pose difference between the red and the yellow pegs is used to
compute initial contact force fc.

112

FIGURE 51: Pegs and holes used in the experiments. 117

FIGURE 52: Total errors of (∆α+ ∆β) for γ = 7 (◦) visualized in a heat
map (using the linear regression model and 1% of data for training).

121

xvi

FIGURE 53: Motion snapshots of two-pin insertion with uncertainty re-
duction for the goal pose and compliant motion. Ground truth
(α, β) = (9,−13). Predicted (α, β) = (7,−15). γ = −1 (◦). (1)
indicates the contact states encountered during direct insertion. (2)
and (3) indicate the compliant execution of the robot motion under
the contacts established in (1). (4) shows the inserted peg structure.

122

FIGURE 54: Motion snapshots of three-pin peg-in-hole insertion via
uncertainty reduction of the goal pose and compliant transition.
Ground truth (α, β) = (9,−7). Predicted (α, β) = (13,−3). γ = 0
(◦). (1) shows the start of the insertion; (2) shows the motion blocked
by the contacts; (3) shows the compliant transition; (4) shows the in-
serted peg structure.

125

xvii

LIST OF TABLES

TABLE 1: The average number of chords and wraps used per object in
each category for training the classifier, and the average time Twrap
per wrap for motion planning + collision detection.

26

TABLE 2: Active recognition performance (horizon=5). Pred. indicates
the predication. Prob. indicates the probability. Object paper indi-
cates toilet paper.

28

TABLE 3: The total number of contact points and arm points collected on
each object, the total number of wraps, and the average time Twrap
per wrap for (motion planning + collision detection).

45

TABLE 4: Average distances between the wrapping configurations of a
reconstructed model and the original mesh model. # wraps indicates
the number of wraps used to reconstruct the model.

47

TABLE 5: Object dimension, number of intermediate configurations to
generate the wraps, SVM prediction and its probability using 1 planar
wrap for each object.

56

TABLE 6: Object dimension, average number of intermediate configura-
tions to generate one wrap, SVM prediction and its probability using
3 spatial wraps for each object.

60

TABLE 7: Total number of images captured, the short distance ∆s used,
and the total time for motion planning Tmp.

73

TABLE 8: Comparison of literature on task-constrained planning in dy-
namic environments.

81

TABLE 9: Statistics of the experiments of transferring a water cup and
closing a drawer.

95

TABLE 10: Summary of what are assumed and not assumed on pose
uncertainty reduction in multi-peg-in-hole tasks.

115

TABLE 11: Uncertainty reduction in two-pin assembly. A fully connected
neural network (32− 32− 3) with 2 hidden layers (32 neurons each)
with ReLu activation is used as the regression model to predict 3D
forces. Trained with 300 epoches.

119

xviii

TABLE 12: Comparison of different regression models in two-pin assem-
bly. ∆α, Trained with 300 epoches.

120

TABLE 13: Summary of 10 robotic insertion experiments with goal-pose
uncertainty reduction.

123

TABLE 14: Uncertainty reduction in three-pin assembly. A fully con-
nected neural network (16−16−3) with 2 hidden layers (16 neurons
each) with ReLu activation is used as the regression model to predict
3D forces. Trained with 1, 000 epoches.

124

TABLE 15: Comparison of regression models in three-pin assembly.
Trained with 1, 000 epoches.

124

CHAPTER 1: INTRODUCTION

Robots are ubiquitous nowadays. On industrial manufacturing floors, robot arms

with payloads ranging from a few milligrams to hundreds of kilograms have relieved

people from repetitive and intensive labour work. In hospitals, surgical robots have

also been revolutionizing how surgeries are done with the benefits of faster recovery

and shorter hospital stay. In e-commerce warehouses, logistics dispatch centers, and

marine ports, hundreds of unmanned ground vehicles (UGVs) are running continu-

ously to fetch packages or cargo containers, and transport them to their destinations

with motions coordinated to maximize time efficiency. In vast farmlands, unmanned

aerial vehicles (UAVs) also find their great use of detecting plant diseases or agricul-

tural pests with their on-board cameras and computer vision techniques. In lakes,

water reservoirs, and the ocean, unmanned surface vessels (USVs) are used effectively

for rescue, water quality inspection, ocean garbage collection, remote sensing, and so

on. In our daily lives, many robotic devices, from mobile robots for vacuum cleaning

to UAVs for personal photo shooting, also improve our quality of life.

Most of the aforementioned applications require a robot to operate in unstructured

environments with unknowns and uncertainties, which require a robot to be able to

perceive its environment through sensing and decide its motion in real-time adap-

tively. For example, when a mobile robot enters an unknown space, visual sensors

are often necessary to guide the robot’s initial movement. As the robot moves, visual

2

Figure 1: A common setup of an autonomous robot system includes a robot manip-
ulator, a robot end-effector (hand), a robot controller (partially seen in the image),
a force/torque sensor and an RGB-D camera.

sensors (carried by the robot) can also gather new information and hence can be

used to further guide the robot motion. Therefore, interleaving robot perception and

motion is key to performing a task in unknown and unstructured environments.

Fig. 1 shows a common setup of an autonomous robot system, where a few sen-

sors (force/torque and RGBD) are used to perceive the environment and guide the

robot manipulator motion. A dexterous robot hand is often equipped for object

and environment interaction. Such an autonomous system is characterized by syn-

ergistic integration of perception and manipulation (action) to function effectively in

unknown and unstructured environments. Robot perception provides information to

guide or initiate the manipulation, and manipulation can be planned and controlled

intelligently to facilitate perception.

3

1.1 Perception for Manipulation

Visual perception captures appearance of an environment using cameras, depth

sensors, laser range finders, and other sensors. Such information is often interpreted

to provide explicit meanings for object recognition, pose estimation [118], scene un-

derstanding [111], or even the entire reconstruction and mapping of 3D environments

[89]. For robotic manipulation tasks, visual perception often deals with scenes clut-

tered with multiple objects stacking together or occluding each other [117, 134]. In

GPS-denied environments, vision is used as the main sensing modality for robot local-

ization, which is often considered in simultaneous localization and mapping (SLAM)

problems [7].

More recently, with the development of deep neural networks, end-to-end visuo-

motor control policies also provide new capabilities for robot perception and manip-

ulation, for instance, for in-hand manipulation [6] or bin picking in cluttered envi-

ronments [54]. These end-to-end control policies take raw visual images as input

and directly output manipulator motor toques. However, training such systems end-

to-end cannot be easily done in real world, and training in simulation cannot be

transferred easily to real world. Additionally, the obtained policies may be difficult

to interpret, and safety measures are hard to be incorporated.

Tactile perception complements visual perception to provide local contact informa-

tion. The most common form is a single contact sensor working as a bump switch

[75]. Tactile arrays extend this by placing many single contact sensors near one an-

other and forming an array [65, 66], or integrating sensors with different modalities

4

(force, proximity, temperature and accelerometer) into an array [43]. However, these

tactile arrays can only form rigid contacts when they are touching other objects or

environments. More recently, Gelsight [141] sensors overcome this problem by build-

ing passive compliance into the sensors, so that they can passively conform to the

shape of the contact region to obtain contact information more accurately. Perceiv-

ing contact information with sensors directly mounted on robotic hands facilitates

manipulation of grasped objects, such as detection of object slippage and compliant

grasping [21, 55, 108].

Force/torque sensors are used to sense external contact forces and torques, and

they are usually installed between the last link of the robot arm and its end-effector

[140]. Similarly, torques at each robot arm joint can be used to provide a measure of

contact impact by equipping a torque sensor at each joint or estimating the torque

value from the motor currents [103]. Such indirect contact sensing is often used to

facilitate robot control in contact-rich tasks (such as robotic assembly [103]).

1.2 Manipulation-enabled Perception

Manipulation can also facilitate perception. Touch-based manipulation can aid

object perception thanks to the rich information embedded in contacts. For example,

recognition and reconstruction of local surface patches were achieved in [41, 34] based

on touch-enabled exploration motion. Object (or environment) models were estimated

in [20, 137]. The robot end-effector tool calibration and its kinematics estimation

can be achieved by making and maintaining contacts [46, 66]. Many object fine

property perception problems have been investigated by using Gelsight sensors to

5

directly capture contact information, such as surface texture recognition [67], hardness

estimation [145, 143], clothing material perception [142]. Object localization and

pose estimation is achieved effectively through touch-based robot contact interaction

(for example [95, 88]), especially in environments where vision sensing is ineffective.

However, the aforementioned literature only uses a robot end-effector to touch an

object at discrete locations, and thus it is a slow process to collect sufficient contact

information to capture the global shape information of the object. Unlike conventional

robot arms, continuum robots [101, 130, 42, 128] are suitable for whole-arm object

manipulation, and therefore, rich contact information can be obtained efficiently. The

existing manipulation planning literature for continuum robots [63, 62, 60] mainly

considers how to plan collision-free robot motion for manipulating an object with a

known model.

Therefore, there exists an open problem on how to use touch information to au-

tomatically and progressively wrap around an unknown object using a flexible con-

tinuum robot, and how to use the result of such continuum wrapping manipulation

to achieve object perception in terms of classification, recognition, and shape esti-

mation. Chapter 2, 3 and 4 further motivate this open problem and introduce novel

approaches to address them.

Vision-based object perception is often facilitated by using robots to move cameras

to desired locations. For example, in view planning problems [127, 126], vision sensors

can be moved to locations where the information gain in an unknown environment

is optimized. Instead of moving a camera, object modeling can also be achieved

with robot motion that moves a grasped object in front of a camera [73, 33, 117].

6

Therefore, through coupling robot action and visual perception, sensing ranges can

be expanded, and more efficient and effective sensing can be achieved. However, the

aforementioned literature on vision-based object modeling commonly assumes that

the object is stand alone in isolation so that there is no need to consider obstacles.

For the vast literature on motion planning for manipulation, the target object model

is assumed known and so are obstacle models to some extent.

Therefore, there exists an open problem on how to manipulate an unmodeled object

in a cluttered environment with unknown obstacles. Chapter 5 further motivates this

problem and introduces an approach on progressive object modeling with a continuum

robot in unknown and cluttered environments.

1.3 Perception-guided Manipulation

Visual perception guides many robot actions, especially for robot real-time motion

planning in dynamically changing environments [125]. For instance, to bring a glass

of water to a customer in a crowded restaurant, a robot waiter will have to avoid

unforeseen moving obstacles based on visual or range sensing. In such dynamically

changing environments, motion planners not only need to react promptly based on

perception information but also generate smooth and safe robot motion that satis-

fies other constraints, such as robot kinematics constraints, obstacle avoidance, task

constraints and so on. Although there exist algorithms for planning task-constrained

motion (such as [48, 109, 148, 23]) and for planning robot motion in dynamic envi-

ronments (such as [30, 92, 136]), they are not best equipped to tackle the general

challenge of resolving conflicts between satisfying task constraints and avoiding un-

7

foreseen dynamic obstacles.

Therefore, there exists an open problem about how to design a mechanism that

resolves the conflicts on-the-fly for task-constrained manipulation in dynamically un-

known environments. Chapter 6 further motivates this problem and introduces ap-

proaches to address it.

Figure 2: An example of a two-pin peg-in-hole robotic assembly. Contacts may occur
at multiple regions at the same time, and the arbitrary/irregular shape of the peg
and hole further makes contacts complex.

Tactile and contact sensing are crucial for robotic grasping, in-hand manipulation,

assembly [22, 103, 132], etc. Contacts for those tasks are typically complex and occur

at multiple regions at the same time (see Fig. 2 for an example). The complex nature

of such contacts makes many contact-rich manipulation tasks challenging. Moreover,

uncertainties associated with an object pose can easily make any predefined manipu-

lation procedures invalid. The existing literature on contact representation and state

computation [135, 116, 40, 71] are based on primitive contact types. However, identi-

fying such primitive and well-formed contacts is practically difficult. For sensor-based

contact-rich manipulation (such as local adjustments or compliant motion [108, 65]),

8

existing methods either require tactile sensors to directly perceive local contact infor-

mation [37] or have restrictive assumptions on contact locations [139, 20] or predefined

contact types [140].

Therefore, there exists an open problem about how to use complex contact infor-

mation that can only be sensed indirectly to reduce pose uncertainty. Chapter 7

further reviews literature on this and presents a novel approach to address it.

1.4 Summary of Open Problems

The open problems addressed in this dissertation are summarized as follows,

1. Manipulation-enabled perception

(a) There exists an open problem on how to automatically and progressively

wrap around an unknown object using a flexible continuum robot based on

touch information, and how to use the result of such continuum wrapping

manipulation to achieve object perception (Chapter 2, 3 and 4).

(b) There exists an open problem on how to manipulate an unmodeled object

in a cluttered environment with unknown obstacles (Chapter 5).

2. Perception-guided manipulation

(a) There exists an open problem on how to design a mechanism that resolves

the conflicts on-the-fly for task-constrained manipulation in dynamically

unknown environments (Chapter 6).

(b) There exists an open problem on how to actively use complex contact in-

formation that can only be sensed indirectly to reduce pose uncertainty

9

(Chapter 7).

Each subsequent chapter is further described below.

Object classification and recognition with touch-based continuum manipulation is

presented in Chapter 2. The main idea is that the shape of an object can be effec-

tively and efficiently captured by the shapes of a continuum manipulator wrapping

around the object. A real-time, progressive touch-based motion planning algorithm

is presented, and it enables a continuum manipulator to wrap around an object based

on tactile sensing. The shapes of different continuum wraps around different objects

are used to train a classifier of object categories very efficiently. An algorithm for

active guidance of object recognition is also introduced, and it allows an object to be

recognized with just a few continuum wraps.

Object shape estimation with touch-based continuum manipulation is presented

in Chapter 3. Unlike shape estimation using contact points collected through the

end-effector of a conventional, articulated manipulator, the shape estimation through

continuum manipulation is both more efficient and effective by deliberate use of the

robot proprioception data in addition to contact information collected at each robot

intermediate motion step.

Chapter 4 presents experiments demonstrating that the shape-based classifier trained

solely from simulation is able to generalize to classifying real-world objects. Since

conducting many real-world continuum wraps can be time-consuming, it is signifi-

cant that a classifier trained purely in simulation shows considerable effectiveness in

classifying real objects. This could make classifier training more efficient and feasible

10

for classifying a large number of categories of many real objects from touch-based

continuum wrapping.

Chapter 5 presents a general approach to simultaneously planning collision-free

continuum robot motion and achieving effective visual perception for on-site model

building in unknown cluttered environments. By interleaving manipulation and per-

ception, a continuum robot with a fixed base is able to gradually maneuver through

the unknown space without colliding with obstacles and sense the unmodeled target

object from different viewpoints. The model of the target object is progressively built

as the robot arm moves.

Chapter 6 introduces a real-time motion planning approach that enables auto-

matic conflict resolutions between task constraints and obstacle avoidance based on

real-time visual sensing information. More natural robot motion that seamlessly

switches between task-constrained and non-task-constrained motion is achieved for

better adaptiveness in dynamically unknown environments.

Chapter 7 presents a novel force forecast approach that relates the real world

force sensing to a simulated world to enable pose uncertainty reduction in real-world

contact-rich tasks. This approach does not require information of contact locations

or pre-define any contact types. Real-world experiments demonstrate that challeng-

ing multiple-pin peg-in-hole assembly tasks can be accomplished with reduced pose

uncertainty using the introduced approach.

Chapter 8 summarizes the contributions of this dissertation and discusses the future

work.

CHAPTER 2: SHAPE-BASED OBJECT CLASSIFICATION AND
RECOGNITION THROUGH CONTINUUM MANIPULATION

In this chapter, we address the problem of automatic object classification and recog-

nition based on shape information obtained with a continuum manipulator guided by

tactile sensing. Humans and animals often rely on touching an object and exploring

its shape to recognize it when vision cannot be effective (due to poor illumination,

transparent object surfaces, and heavy occlusion). There exists research on detecting

and identifying objects through grasping with tactile sensors attached to a robotic

hand or gripper, but it usually requires a lot of grasps to capture the shape infor-

mation of an object [147]. With a continuum manipulator, whole-arm grasping or

wrapping of an object can be conducted to capture more contact points at once,

and when the continuum manipulator wraps around an object, its own shape, being

compliant to the shape of the object, is indicative of the shape of the object.

Figure 3: A continuum robot wraps a cylindrical object.

12

Hence, this study is focused on using continuum robot manipulation for shape-

based object modeling and recognition, which has not been studied before. We intro-

duce a strategy to enable a continuum manipulator wrap around a target object based

on sensed contact points between the continuum manipulator and the object (Fig. 3),

interleaving contact sensing and manipulator motion planning and execution.

Once a whole-arm wrapping of the target object is achieved by the continuum

manipulator, the shape of the manipulator is captured and encoded as a shape feature

of the object. That is, our strategy uses the continuum arm as a tool to “measure” the

object shape. Such a strategy has the advantage of capturing shapes of objects that

are hardly visible, such as transparent objects, as long as the continuum manipulator

itself is visible. We further present an algorithm to systematically generate whole-

arm wraps of objects and train a support vector machine (SVM) for classification of

object categories based on the shape information of the wraps.

For object recognition, we introduce an active algorithm of conducting wrappings

of a target object selectively by maximizing the probability of recognition and mini-

mizing the movement cost of the continuum robot. Simulation and real experiments

demonstrate the effectiveness of our approach.

2.1 Related Literature

We provide a review of related work in continuum manipulation and shape-based

object classification and recognition.

Due to the inherent compliance in a continuum manipulator [101, 130, 42, 128], it

can wrap around an object in a whole-arm grasp and deform its shape to comply to

13

the object shape. There exist several autonomous algorithms of generating contin-

uum graspings [58, 57, 59] and conducting task-constrained inspection tasks [60] of

known objects in known environments. More recently, the study in [56] analytically

formulates the constraints that have to be satisfied to fetch an object in an unknown

cluttered environment perceived through an RGBD camera on the tip of the contin-

uum manipulator, and in [76], an approach is introduced to model an unknown object

automatically on-site with an RGBD sensor carried by a continuum manipulator in

a cluttered environment.

Traditionally, object shape has been described analytically (such as [87]). Whereas,

in many robotics applications, it is difficult to obtain such analytical object shape

information, and hence shape is mostly recognized by vision. The closest related

work to this study from the vision literature is [121], which used chords within object

contours to characterize the shape of a 2D object. For the purpose of manipulation,

work has been done in object detection for grasping [149], grasping by contour [12],

grasping unknown objects by shape [97, 25], object classification from single grasps

[69], and detecting grasping points on novel objects [104]. A survey explores various

vision-based methods for grasping [13].

Touch sensing has been shown to be effective in exploring the shape of an object.

There is work on guiding compliant motion of a robot finger or end-effector by tracking

tactile features [91, 65] and for grasping unknown objects [108]. There is also work

on recognition and reconstruction of curved surface patches through touch [34, 41].

In order to ensure a complete coverage of a target area by touch, a grid is often

used to enumerate the poses for a robotic hand equipped with tactile sensors to visit

14

the target area [85, 5, 147]. However, these methods do not take advantage of the

adjacency information of contacts. In [10], dynamic potential fields are used to guide

touch-based exploration of an object to build an object model as a contact point

cloud. Initialized as a uniformly attractive grid, the field is updated as the sensed

contacts increase and generate repulsive forces to drive the robotic hand to explore

unvisited areas.

To deal with the noise and non-uniform distribution of tactile data, filtering based

on Gaussian Process (GP) [98] is effective in active tactile exploration to reject any

measurements that do not reduce the uncertainty significantly. Originated from GP,

a probabilistic model of uncertainty based on Gaussian Process Implicit Surfaces

(GPIS) [131] is used in [11, 35, 137] to guide the haptic exploration towards high

uncertainty.

In contrast to greedy exploration approaches, [146] used a lookahead policy to

predict a sequence of actions optimal for high recognition certainty and low cost in a

few future steps. It used a triangle histogram descriptor [147] for tactile recognition.

2.2 Problem Formulation

Our goal is to recognize the category of an object by conducting just a few con-

tinuum wraps around the object. For training, we systematically let the continuum

arm wrap around each object in many different ways, and we use a chord histogram

to describe the shape of the continuum arm wrapping around the object each time.

For testing, given an object of unknown category, we actively select continuum wraps

to collect its shape information until the object category can be recognized with high

15

confidence.

We consider a continuum arm with a fixed base and n-sections. Each section

seci, i = 1, . . . , n is a circular arc when intact, which can be described by three

controllable variables: length si, curvature κi, and orientation ϕi. Each section is

bounded by its base point and end point. A frame is attached to the base point of seci

with the z axis tangential to seci as illustrated in Fig. 4. The arm configuration of an

n-section continuum manipulator can be represented as {(s1, κ1, ϕ1),, (sn, κn, ϕn)}

[42, 59].

We assume that the continuum arm is covered by tactile sensors to detect the

contact made with an object. A contact region is denoted as contact = {p,n, t,b},

where p is its center position, n, t, and b are the normal, tangential, and binormal

unit vectors respectively. In simulation, contacts between a continuum manipulator

and an object represented in polygonal mesh can be efficiently detected using the

algorithm presented in [62].

Figure 4: Illustration of the frame of seci and the control variables si, κi and ϕi [56].

The target objects considered in this work are mostly rigid objects (represented

in meshes) with sizes that can be partially wrapped around by the continuum ma-

nipulator with a fixed base. However, the approach can be extended to a continuum

16

manipulator with a mobile base.

2.3 Methodology

In this section, we present our approaches in detail.

2.3.1 Touch-driven Whole Arm Wrapping

We use a progressive strategy to generate a whole arm wrap of an unknown object

based on touch. The arm is initially placed near the target unknown object in a

straight-line configuration (see Fig. 8 for an example). This strategy then alternates

between generating two types of motion in small steps: enclosing and advancing,

to start and gradually deepen the wrap around the object until the arm conforms to

the shape of the object sufficiently. Our algorithm is outlined in Algorithm 1.

For enclosing, the arm tries to make contact with the target object by curving

its section(s). First, sec1 is curved through increasing its curvature κ1 by a small

amount ∆κ (if sec1 is not at its curvature limit). As the result, if the arm is in

contact with the object at d locations, the set of contact regions is saved as C =

{contact1, . . . , contactd}. Next, if seci (1 < i ≤ n) is the arm section immediately

after the current furthest contact (i.e., closer to the arm tip than the furthest contact),

seci is also curved in order to form more contacts until it is either stopped by a contact

or reaches its curvature limit, and the process repeats until either secn is in contact

or reaches its curvature limit. Note that in curving a section, the section length s is

also increased by a small amount ∆s to reach further as the curvature κ is increased.

By curving and extending the arm sections, the arm closes in upon the object until

it contacts the object as much as possible.

17

Next, for advancing the arm, our algorithm finds a new arm configuration that

moves the robot a small step forward. It first finds new positions for the endpoints

of the arm sections using the following strategy. For all the m contacts that happen

on secn (last section), the position of the secn’s endpoint (arm tip) is extrapolated

m times along the direction of (ni + ti + bi), i = 1, . . . ,m by a small distance δ each

time. The obtained new position will enable the robot arm move forward to facilitate

the further motion of enclosing. Similarly, we use the contact points that happen

on other sections of the arm to extrapolate the positions of the section endpoints

closest to them. If there are endpoints whose positions are not modified based on the

contact information, their new positions are obtained by moving the current endpoint

position by a small amount δ along the tangential direction of the section arc at this

endpoint, i.e., along the z-axis of the local frame at the endpoint. Note that always

using the contacts on secn to obtain the new position of the arm tip prevents the

arm tip from penetrating into the object, which could happen if the tip’s position is

simply extended along the tip’s z-axis.

Once the new positions of all section endpoints are obtained, the corresponding new

arm configuration can be solved by constrained inverse kinematics [60]. The robot

is then moved to the new arm configuration, preparing itself for the next enclosing

motion step.

Algorithm 1 terminates when the z-axis of the tip frame has rotated more than

a threshold θ from the initial direction zs to its current direction or when it fails to

solve the whole arm configuration due to the robot’s physical limits. θ can be used

to control how much coverage of the object surface is needed in a wrap of the object.

18

Algorithm 1: Touch-driven Whole Arm Wrapping

1 tipRotatedAngle = 0;
2 while tipRotatedAngle < θ do
3 Contacts = ∅; Pnew = ∅; i = 1; k = 0;

// enclosing motion step

4 repeat
5 if seci is not at curvature limit then
6 Curve seci by increasing κi by ∆κ;
7 else if i < n then
8 i = i+ 1;
9 if seci is not at length limit then

10 Extend seci by increasing si by ∆s;
11 if arm is in contact with the object at C = {contact1, . . . , contactd} then
12 Contacts← Contacts ∪ C;
13 if secj is the closest in-contact sec to the tip and j < n then
14 i = j + 1;

15 until secn is in contact with the object or reaches its curvature limit ;
// advancing motion step

16 while k < |Contacts| do
17 if contactk is on secn then
18 m← n;
19 else
20 m← index of the section endpoint closest to contactk;
21 P← the position of the ith endpoint;
22 Pm ← P + δ(nk + tk + bk);
23 Pnew ← Pnew ∪Pm; k = k + 1;

24 end
25 for each remaining section endpoint do
26 m← its section index;
27 P← its current position;
28 z← the z axis at the endpoint; Pm ← P + δz ;
29 Pnew ← Pnew ∪Pm;

30 end
31 armConfig = constrainedIK(Pnew);
32 if Failed to find a valid armConfig then
33 Set Flag “No IK found” and exit;
34 else
35 Move the arm to armConfig;
36 tipRotatedAngle← angle from initial zs to current z axis at tip;

37 end

19

2.3.2 Chord Histogram Descriptor

We use a chord histogram to characterize the shape of the continuum manipulator

when it wraps around an object in some way. The chord histogram we propose is in-

spired by chordiograms [121] used for object recognition in 2D images. Chordiogram

is a histogram computed from geometric relationships described by chords, which are

segments connecting point pairs on the contour of an object. It had been extended to

3D tactile recognition in [147], which used 3D triangles instead of planar 2D chords

– the disadvantage is that the surface normals are dropped from the original chor-

diogram. However, without normals, the lengths and angles used in [147] can only

capture the size and shape, and not surface curvature. As we believe that the cur-

vature information is an important feature, we extend the 2D chordiograms into 3D

Chord historgrams in this chapter.

In our 3D extension, we use the length, endpoint angles, and endpoint surface

normals of the 3D chords. We parameterize each chord as (l, cθ, cφ, n0θ, n0φ, n1θ, n1φ).

l is the length of a chord. c, n0, n1 are the chord and the normals at its two endpoints.

(θ, φ) parameterizes an angle on a sphere, represented as polar coordinates for the

fewest parameters.

At each wrap, a set of points are sampled along the medial axis of the continuum

arm contacting the object, and each pair of points makes a chord. Fig. 5 shows

chords collected on example wraps. The sampling density of points cannot be too low

to lose information of the arm shape and cannot be too high to introduce redundancy

in the chords. In practice, we filter the chords that are too similar to other chords.

20

(a) Too few chords. (b) Too many chords.

Figure 5: Chords collected on example wraps are shown in blue. The normals at the
sampled points are shown in green.

After an object is wrapped around several times, the sets of chords collected are

binned into a 7D histogram. Each dimension of the histogram represents a parameter.

Principal Component Analysis (PCA) is applied to the data to reduce redundancy.

2.3.3 Shape-based Classification of Object Classes

We train a support vector machine (SVM) [105] to classify object classes based on

the shapes of the continuum robot when it wraps around each object, represented as

chord histograms.

During training, each object is placed in the workspace of the arm. A number of

touch-driven whole arm wraps are conducted to capture the object shape. Each of

them is a wrap on a certain plane, and it captures the shape of the object cross section

cut by this plane. Different planes for wrapping are systematically enumerated in the

robot workspace to capture the object shape as completely as necessary. Each plane

is determined by rotating the tabletop plane by α angle about the x-axis and y-axis

respectively (Fig. 6). Angle α can be used to determine how densely these planes

are enumerated. Note that a wrap is only generated if the cross section of the object

21

shape cut by the plane is not empty.

(a) The robot wraps in clockwise
directions to capture one side of
the object geometry.

(b) The robot wraps in counter-
clockwise directions to capture
the other side of the object ge-
ometry.

Figure 6: A few planes for a bottle are shown, which are generated by rotating from
the tabletop plane every α angle about x-axis (subfigure (a)) or y-axis (subfigure (b))
until α reaches 90 degs(black planes). These planes all pass through the robot base
frame since the robot base is fixed.

At the end of each wrap, a set of chords formed by pairs of points on the arm

is recorded as an observation, later used for active guidance of object recognition.

After all wraps are conducted on an object, the chords are used to obtain the chord

histogram, one per object.

2.3.4 Object Recognition with Active Guidance

Given a new object, object recognition can be conducted by having the continuum

robot wrap around the object to obtain chord histograms and supplying the chord

histograms to the trained SVM classifier. One important question is how to conduct

the wrapping and how many wraps are needed for recognition.

We propose a strategy to actively guide the process of determining wraps of the

object for recognition. The core idea is that observations of an object’s shape and

the actions taken to wrap around the object are related. We formulate the problem

22

as a Markov Decision Process (MDP), which searches for a sequence of actions, that

minimizes an objective function that trades off between minimum movement cost

and maximum recognition certainty. We use the Monte Carlo tree search [17] to

find such policy. The robot action is defined as a wrapping plane in which a new

continuum wrap is about to be generated. The output of the tree search is a sequence

of such actions for the robot to execute. My collaborator Mabel Zhang and Kostas

Daniilidis contributed to the design of the method used in object recognition with

active guidance. Please see original paper [80] for detailed description of this part.

2.4 Experiments

We implemented our algorithms in C++ and Python under ROS on a 3.4GHz

CPU, and tested them on a 3-section continuum manipulator. We use the dataset

from [147]. In total, there are 185 objects from 10 categories: 12 apples, 6 bananas,

51 bottles, 21 bowls, 10 cups, 10 donuts, 28 hammers, 32 mugs, 6 teapots and 9 toilet

paper rolls. Each object has the same relative pose to the robot base in the training

and testing stage.

2.4.1 Capturing Object Shape

Table 1 shows the average number of wraps and chords conducted per object in each

category for training the classifier. Each object requires only 10 or fewer wraps, and

depending on the object dimension, there can be 1, 500 to 3, 000 chords to describe

the shapes of the wraps of each object in our dataset. Some objects, which are flat

(such as donuts), typically need fewer wraps, while objects that are tall, such as

hammers, need more wraps. We use a bin size 7 in constructing the 7D chordiogram.

23

PCA extracted 101 principal components out of 77 to cover 95% of variance, which

further reduces the redundancy in the chordiogram and speeds up the computation.

The time for each wrapping motion, which involves planning and collision checking

for detecting contacts, is typically about a few hundreds ms.

In contrast, using a conventional robotic hand to capture the shape of an object

through touch requires 364−760 wrist poses per object [147] and an average of 20 mins

to perform grasping from those poses to collect contact points in physical simulation,

not including the time necessary for grasp planning to enable a manipulator reach

those desired wrist poses around each object. Clearly, the introduced novel method

with a continuum manipulator is far more efficient in capturing shape information of

an object due to the rich information content of each wrap and the efficient planning

algorithm for wrapping. The classifier training time is significantly smaller with our

approach.

Fig. 7 shows some wraps achieved using Algorithm 1 to capture the object shape

in different cross sections. For some objects, such as apples and bowls, the wraps

are closely conformed to the object contour, and for some others, the wraps also

successfully encode the shapes of critical part information (such as the handle in

cups, mugs and teapots). Fig. 8 shows the snapshots of a few example robot motions

from the initial configuration to the final wrapping configuration. Each row shows a

wrap. Note that in the last row, the wrap actually stopped inside the mug, which may

capture that the mug is hollow. The parameters in Algorithm 1 used are: θ = 270

degrees, ∆k = 1e− 3 (1/cm) , ∆s = 1e− 4 cm, δ = 0.1 cm. Animated robot motion

can also be found in the video attached to [80].

24

Figure 7: Example wraps used to encode object cross section shape into the arm
shape. Each category has two example wraps (from top left to lower right): apple,
banana, bottle, bowl, cup, donut, hammer, mug, teapot, toilet paper rolls.

25

Figure 8: Snapshots of example motions of wrapping. Each row shows one wrap from
the initial configuration (left sub-figure) to the final wrapping configuration (right
sub-figure).

26

Table 1: The average number of chords and wraps used per object in each category
for training the classifier, and the average time Twrap per wrap for motion planning
+ collision detection.

Category average # chords average # wraps Twrap(ms)
apple 2676 10 400

banana 1816 9.7 190
bottle 1760 10 130
bowl 2090 9.6 230
cup 2317 10 540

donut 1365 5.1 200
hammer 1711 10 110

mug 2557 10 530
teapot 2350 9.8 1200

toilet paper 2944 10 260

2.4.2 Classification Performance

The average classification accuracy across 100 random splits of 50% training and

50% testing set is 75.9% using a linear SVM. The accuracy is slightly higher than

the 74.7% reported in [147], where a triangle histogram is built from many contacts

sampled on the object using a conventional robotic hand. As shown from the con-

fusion matrix in Fig. 9, the classifier does well on classifying apples, bottles, bowls,

donuts, hammers, and mugs. However, it does poorly on bananas, cups, teapots and

toilet paper rolls, which is likely due to the lack of enough training objects in those

categories.

2.4.3 Recognition with Active Guidance

Five objects (a bottle, a hammer, a cup, a bowl, and a mug) are used to test our

active recognition algorithm. The results are summarized in Table 2. Since we used

a maximum of 10 wraps per object during training, we set the horizon to be 5 at

testing. The top 3 predictions sorted by their probabilities are reported.

27

Figure 9: SVM confusion matrix.

For each object, each iteration is a new tree search and outputs a sequence of

wrapping planes for the robot. After the robot conducts wrapping of the object

along each of the plane, the chords describing the shape of the arm in the final

wrap are collected. A histogram is built with all the chords collected and fed to

the classifier to make the prediction. If the prediction is strong, i.e., the probability

for the predicted category is more than 0.5 and at least 3 times higher than the

probability of the next category, the recognition process is terminated. Otherwise,

a new tree search is conducted in the next iteration. The search results guide the

robot to conduct additional wraps, and the corresponding new chords are added to

the existing histogram to make a new prediction, i.e., the histogram is accumulated

in iterations. This process is repeated until a strong prediction is made.

As the histogram becomes more filled in with more iterations, the recognition

28

probability also increases. For objects that the classifier does well, such as hammers

and bowls, they may be recognized correctly as soon as iteration 1. The results from

3 iterations for all the tested objects are presented.

Note that a tree with depth 5 can output 5 wrapping planes to be used by the

robot at most. We filter the duplicate planes as they do not provide new shape

information. In any iteration, if all the wrapping planes found have already been

used in the previous iterations, we put a 0 as the number of wraps, as shown in

iteration 3 for object mug.

Table 2: Active recognition performance (horizon=5). Pred. indicates the predica-
tion. Prob. indicates the probability. Object paper indicates toilet paper.

Object
iteration1 iteration2 iteration3

pred. prob. # wraps pred. prob. # wraps pred. prob. # wraps

bottle
bottle 0.39

3
bottle 0.42

1
bottle 0.7

2mug 0.19 mug 0.14 mug 0.05
banana 0.08 banana 0.1 teapot 0.04

hammer
hammer 0.77

2
hammer 0.81

2
hammer 0.83

1bottle 0.04 bottle 0.03 banana 0.03
cup 0.03 banana 0.03 bottle 0.02

cup
cup 0.51

3
cup 0.56

2
cup 0.57

3mug 0.09 mug 0.11 mug 0.12
bowl 0.08 bowl 0.06 bowl 0.06

bowl
bowl 0.52

5
bowl 0.65

1
bowl 0.75

2apple 0.12 paper 0.09 paper 0.05
paper 0.12 apple 0.07 apple 0.04

mug
mug 0.46

3
mug 0.69

2
mug 0.69

0apple 0.14 cup 0.08 cup 0.08
cup 0.12 teapot 0.07 teapot 0.07

2.4.4 Real Robot Wraps

We tested using the real OctArm robot to wrap two real objects, one cylindrical and

one rectangular by teleoperation, and captured the wraps using a Microsoft Kinect.

We also save the arm configurations of the wraps. Fig. 10 compares the image of

a wrap for each object by the real robot to the corresponding simulated version at

29

the same arm configuration. Even though each real wrap is slightly deformed upon

contacting the object, the similarity between the real wrap and the simulated wrap,

which does not consider deformation, is still very high. This means that the shape

descriptor of the simulated wrap is very similar to that of the real one in capturing the

real object shape, which indicates the real-world feasibility of the introduced method

for object recognition based on continuum arm wraps.

Figure 10: Comparing real wraps and the corresponding simulated wraps around a
cylindrical object (top) and a rectangular object (bottom) respectively. In each row
from left to right: the segmented RGBD point cloud of the OctArm wrapping the
object, segmented OctArm shape, reconstructed OctArm shape in simulation.

2.5 Summary

In this chapter, we present a shape-based object classification and recognition ap-

proach through continuum manipulation. The main idea is that the shape of an

object can be effectively and efficiently captured by the shapes of a continuum ma-

nipulator wrapping around the object. A real-time, progressive touch-based motion

planning algorithm enables a continuum manipulator to wrap around an object based

30

on tactile sensing. The shapes of different continuum wraps around different objects

are used to train an classifier of object categories very efficiently, and the effectiveness

has been tested with 185 objects of 10 categories. An algorithm for active guidance

of object recognition allows an object to be recognized with just a few continuum

wraps.

CHAPTER 3: OBJECT SHAPE ESTIMATION THROUGH TOUCH-BASED
CONTINUUM MANIPULATION

In this chapter, we address the problem of estimating the shape of an unknown

object through obtaining object shape information from touch-based continuum ma-

nipulation, which has not been studied before. Information of object shape is crucial

for many robotic tasks. A grasp can be planned to fetch an object with a known

shape. When planning a path, collision can be checked against an object using its

shape and configuration. Information of object shape also facilitates object detection,

recognition, and pose estimation. Usually, the shape of an object is either provided as

a priori knowledge or acquired by object model building through sensing, especially

vision and tactile sensing.

By wrapping around an object (see Fig. 3 for an example), a continuum manipula-

tor makes many more contacts with an object than a conventional robot end-effector.

Moreover, the manipulator shape itself in a wrapping configuration is also indicative

of the object shape. Our approach, called progressive object shape estimation through

continuum manipulation (POSE-CoM), extends the Gaussian Process Implicit Sur-

faces (GPIS) [131] method by explicitly incorporating the continuum robot arm shape

in addition to the contact points made between the robot and the object in each wrap

to estimate the overall object shape. The approach is shown to be both more efficient

and more accurate over existing methods for touch-based object shape estimation.

32

3.1 Related Literature

Vision sensing has been widely used for object model building. An object appear-

ance model can be built by either moving an RGB-D camera around the target object

[89] or moving the object with a turntable [24, 107]. Through robotic manipulation

to change the bottom surface of a table-top object, an automatic approach interleav-

ing perception and manipulation [117] is able to build the entire surface model of

the object. However, vision sensing can be ineffective for transparent objects or in

environments with poor illumination and specularity conditions.

Tactile sensing is useful for exploring object shapes and building object models

when vision is ineffective, for example through touch-based guarded moves [20] and

compliant motion [91, 65]. In [34], recognition of curved surfaces through touch

is achieved by matching contact points to principal-curvature-based local geometry

features. Similar features are also shown to be useful in reconstructing the local

surface patch by fitting a high-order polynomial [41].

In order to guide touch-based exploration, i.e., to decide where to touch next to

collect contact points, there are several methods. One method uses a dynamic poten-

tial field [10], where a uniformly attractive potential field is updated as more contacts

are made and generates repulsive forces to push the touch-enabled hand to visit un-

explored areas. Gaussian Process (GP) [98] is used to drive active exploration into

uncertain areas. In [137], discrete touch probings of the end-effector are progressively

generated to reduce the uncertainty of the interest area using GP regression. In [39],

it is shown that GP classification can also effectively bias the exploration towards the

33

boundaries of the objects, which are more informative of the object shape. Extended

from GP, a probabilistic model of uncertainty based on Gaussian Process Implicit

Surfaces (GPIS) [131] is used to guide the active exploration and modeling of an

object [26, 20] or serve as a framework of data fusion from sensors with different

modalities [31].

However, using only the robot end-effector to touch a target object usually only

makes a couple contact points per probing, and thus it is a slow process to collect

sufficient contact points to capture the global shape of the object by changing the

end-effector pose after each probe. The process also does not explicitly utilize the

adjacency information of nearby contact points. Unlike conventional robotic manipu-

lators, continuum robots [101, 130, 42, 128] are suitable for whole-arm manipulation

to wrap around an object, so that rich contact information can be obtained efficiently.

3.2 Progressive Object Shape Estimation through Continuum Manipulation

(POSE-CoM)

An overview of our approach is presented in Fig. 11. First, touch-based contin-

uum wrapping progressively moves the continuum robot to a wrapping configura-

tion based on contact points made between the robot and the object. Next, object

shape data collection gathers contact points and the shape information from the

continuum wrap. Shape estimation uses the data collected so far in a probabilistic

framework based on Gaussian Process Implicit Surfaces(GPIS) to estimate the over-

all shape of the object. Active guidance uses the result of estimation to decide

the next continuum wrap to cover the most uncertain region of the object and collect

34

more data for estimation. The process repeats until either the estimated object shape

has low uncertainty or the robot has exhausted the possible wraps.

Initialization

Touch-based con-
tinuum wrapping

Object shape
data collection

Shape estimation
based on the

accumulated data

End

Active
guidance

Low uncertainty or No more wraps

Figure 11: Overview of the POSE-CoM approach.

3.2.1 Touch-based Continuum Wrapping

A continuum wrap of an object here is defined as a planar whole-arm grasp by the

continuum manipulator around a cross section of the object, which further defines a

wrapping plane.

Given a continuum manipulator with a fixed base, its workspace can be decomposed

into discrete wrapping planes, as shown in Fig. 12. We denote the set of wrapping

planes as WP = {wp1, . . . , wpc}. On each wrapping plane, the continuum robot can

generate a wrap of an object around the cross section on the plane. See Fig. 13 for

some example wraps on different wrapping planes of an object.

35

Figure 12: The wrapping planes are systematically enumerated between the table
plane (grey background) and the black planes orthogonal to the table plane. Left:
each red plane is used to generate a clockwise continuum wrap. Right: each green
plane is used to generate a counter-clockwise continuum wrap. Note that the initial
configurations of the robot in Left and Right are different. The frame at the robot
base is the global coordinate system.

Figure 13: A few examples of the wrapping planes (grey) and their corresponding
continuum wraps. These planes also uniquely cut through the object (a bottle) and
pass through the fixed robot base. The frame at the robot base is the global coordinate
system.

For initialization, an initial set of wrapping planes WP0 ⊂ WP are randomly

selected, and the continuum robot generates wraps on those wrapping planes one by

one, while accumulating shape data of the object from each wrap. The data are then

used to conduct shape estimation. The result is further used to guide the selection

of the next wrapping plane by Active guidance (see Section 3.4), and so on.

Now, given a wrapping plane and an initial arm configuration, we use a motion

planning strategy to generate a continuum wrap of an object progressively as guided

by the contact points made along the way. Detailed description is presented in Al-

gorithm 1. Overall, the continuum manipulator alternates between the enclosing

36

motion step and the advancing motion step on the wrapping plane until a wrap

is achieved. Illustration of the two types of motion is presented next.

Enclosing motion step brings the robot into contact with the object as much as

possible to create contact points. This is achieved by having the robot curve its

sections one by one to make contact with the object until no further contact points

can be made. Fig. 14 shows an example of such an enclosing motion.

Figure 14: Illustration of an enclosing motion. Left: Robot at the initial configura-
tion. Middle: The robot makes first contact by curving section 1 (black). Right:
The robot makes the second contact by curving section 3 (green) without penetrating
into the object.

Advancing motion step takes advantage of the contacts made in the enclosing

motion step to move the robot forward to a new arm configuration towards wrapping

around the object. The new arm configuration is achieved by (1) moving the endpoint

of each robot section a small distance from its current position along the direction n+t

of the closest contact point, where n and t denote the normal and the tangential unit

vectors of the contact point respectively1; (2) solving the resulting arm configuration

by the constrained inverse kinematics [60] corresponding to the new endpoint positions

1The direction of t is flipped if the dot product between t and the z-axis of the local frame on
the section endpoint closest to the contact point is negative, to ensure that the robot moves towards
a wrapping configuration.

37

from (1).

Fig. 15 shows an example of advancing motion. The robot backbone(dashed line)

is colored using black, red and green for sections 1, 2 and 3 respectively. As the result

of the previous enclosing motion step, the robot is in contact with the object at the

red points on sections 2 and 3. Now, for the end point of each section in contact,

its new position (green) is determined by a translation of a small distance from its

current position (yellow) along n + t of the closest contact point. For section 1 that

is not in contact, its new endpoint position is obtained by a small translation from

the current endpoint position along the z axis of its local frame.

Figure 15: Illustration of an advancing motion. Left: the robot section end points
are indicated in yellow, the contact points are in red, and the new endpoint positions
are indicated in green. Right: the new arm configuration solved using constrained
inverse kinematics based on the new endpoint positions (green).

3.2.2 Object Shape Data Collection and Generation

Two types of shape data are collected in our approach (see Fig. 16(a)):

1. contact points made between the robot and the object during wraps, and

2. arm points sampled along the backbone of the robot when the robot is in the

38

(a) (b)

Figure 16: Left: the dashed line is the backbone of the continuum robot. The blue
dots are the arm points systematically sampled on the arm backbone. The red dots are
the contact points between the robot and the object. Right: the interpolated above-
surface and below-surface points from the contact point along the contact normal.

configuration of a complete wrap, i.e., points indicative of the robot shape.

We denote the collected points from all wraps made (both the contact points and

the arm points) as Xcol = {xi}, where xi ∈ R3, i = 1, 2, . . . A potential function value

yi ∈ Y ⊂ R associated with xi is defined as follows, based on GPIS[131].

yi =



1 if xi is above the surface

0 if xi is on the surface

−1 if xi is below the surface

(1)

The contact points that happen on the object surfaces have y = 0, while the arm

points sampled on the backbone of the continuum robot have y = 1 (since the arm

does not penetrate into the object).

We further generate the above-surface and below-surface points for each contact

point along the contact normal (see Fig. 16(b) for an illustration) and denote the

39

set of such generated points Xgen ⊂ R3. Now let T be the set of all points that are

collected and generated so far: T = {xi, yi} ,xi ∈ Xcol ∪Xgen, yi ∈ Y, i = 1, 2, . . .

Note that initially T only contains points collected and generated from the few

initial wraps. As each new wrap is conducted (based on active guidance – see Section

3.4), more points are added to T to facilitate more accurate shape estimation.

3.2.3 GPIS-based Shape Estimation

Estimation of an object’s shape is done by finding the points with zero y value

(i.e., the isosurface) in a 3D region of interest. GPIS is used to learn such a mapping

f(x): x ∈ R3 to y ∈ R based on the data in T . It is fully defined by a Gaussian

Process (GP) [98] with a mean function µ(x) and a covariance function k(xi,xj),

where j = 1, 2, ... The prior µ(x) is zero. k(xi,xj) is chosen to be the commonly used

squared exponential kernel, and a noise ε ∼ N (0, σ2
n) is also included:

k(xi,xj) = σ2
fexp(−

(xi − xj)
2

2l2
) + σ2

nδij (2)

where δij is the Kronecker delta, which is 1 iff i = j and 0 otherwise.

The hyper parameters
{
σf , l, σn

}
are then optimized by maximizing the log-marginal

likelihood[98] using the data in T , i.e., the training data.

Next, the zero-mean isosurface is extracted as the current estimation of the object

shape by querying the GPIS model with τ testing points from a 3D region, which is

known to contain the object or is within the reachable region of the robot.

For a testing point x?, the predicted distribution is a Gaussian with the mean µ(x?)

in Eq. (3) and the variance σ2(x?) in Eq. (4)

40

µ(x?) = kT?K
−1Y (3)

σ2(x?) = k?? − kT?K
−1k? (4)

where k? is a covariance matrix between m training points and τ testing points

[k?]i=1...m,j=1...τ = k(xi,x?j), K is a covariance matrix between training points

[K]i,j=1...m = k(xi,xj) and k?? is a covariance matrix between testing points

[k??]i,j=1...τ = k(x?i,x?j). Note that the number of training points m increases after

new wraps are conducted.

Each testing point corresponding to a zero mean of Eq. (3) is a point on the

estimated object shape, and the associated posterior variance of Eq. (4) defines the

uncertainty of the point due to few data points nearby or large shape change.

3.2.4 Active Object Exploration

Our approach actively determines the next wrapping plane to conduct another

touch-based continuum wrap based on a measure of uncertainty. Denote the set of

the available wrapping planes WPa as WPa = WP \WP0.

For each available plane wpi ∈ WPa, let Pi be the set of points on wpi that are also

on the zero-mean isosurface, then the uncertainty measure ui of wpi is computed as

the average standard deviation σ(q),∀q ∈ Pi.

Let wpj be the wrapping plane with uj = maxi(ui), then wpj is chosen as the next

wrapping plane to conduct a continuum wrap, and a new iteration in the POSE-CoM

process (Fig. 11) starts. The newly collected and generated data from the new wrap

41

are added to the training set T , and the GPIS model is in turn updated. WPa is also

updated by removing wpj (after it has been used).

The POSE-CoM process (Fig. 11) is repeated until the maximum uncertainty uj

is below a predefined threshold or WPa = ∅.

3.3 Experiments

We implemented our approach in C++ and Python under ROS and tested it on a

3.4GHz CPU with 16GB RAM. Objects of various shapes are used (Fig. 17).

Figure 17: Object mesh models: (left to right) bottle, apple, sphere, bunny, pentagon,
vase.

To initialize the POSE-CoM process, we randomly select 4 wrapping planes in the

robot workspace for the continuum robot to generate touch-based wraps and collect

data. Next, a GPIS model is trained and queried in the region of [(0.0−1.0), (0.0−1.0),

(0.0 − 0.8)](dm). The simulated continuum robot has the following parameters: the

width of each section is 0.5 (cm), the length of each section can vary from 2 to 15

(cm), the curvature of each section can vary from 0 to 0.1 (cm−1), and the orientation

of each section can vary from −π to π. It typically takes 3 to 15 mins to train a

GPIS model. The next wrapping plane is selected according to the active strategy

in Section 3.2.4, then touch-based continuum wrapping is conducted, and the POSE-

CoM process repeats. The process is terminated when 1) the maximum uncertainty

42

measure uj is below a predefined threshold 0.15, or 2) all the wrapping planes in the

robot workspace have been used at least once to generate continuum wraps. Fig.

18 shows the snapshots of robot motion for example continuum wraps. The video

accompanied to [77] shows the animated motion of the example continuum wraps.

(a) bottle (b) bunny

(c) apple (d) vase

Figure 18: Snapshots of the motion of example continuum wraps. Each subfigure is
a wrap from the initial configuration (left) to the wrapping configuration (right).

3.3.1 Shape Estimation Results

For objects with simple shape geometry, such as the bottle (Fig. 19) and the sphere

(Fig. 20), with just a few wraps, the estimated shape is already similar to the actual

shape. In Fig. 19, the object shape uncertainty keeps decreasing (i.e., the blue parts

in Fig. 19 keep increasing) as more wraps are conducted until all available wraps are

exhausted. The maximum uncertainty measure uj starts being 0.38 and reaches 0.32

at the end. Note that the part near the origin (where the robot arm base is) is more

uncertain (colored mostly red), which is due to that the robot cannot reach this area

as it is too close to the robot base. In Fig. 20, note how the fifth wrap (counted

from left) in Fig. 20(d) helps reduce the uncertain (red) area in Fig. 20(a). The

43

POSE-CoM process is terminated after 7 wraps as uj reaches 0.14 (below threshold

0.15).

(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Figure 19: Shape estimation results for the bottle, colored by uncertainty.

(a) 4 wraps (b) 5 wraps (c) 7 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Figure 20: Shape estimation results for the sphere, colored by uncertainty.

For objects with more complex shapes, such as the apple (Fig. 21), bunny (Fig.

22), pentagon (Fig. 23), and hollow vase (Fig. 26), more varied wraps are needed

to better capture certain details for more accurate shape estimation results. For

44

example, wraps are needed around the stalk of the apple, the ears of the bunny, and

the entrance of the hollow vase, to better capture those details. However, the GPIS

modeling tends to blur the connection between a detail and the main shape because

the prediction assumes smooth connection. Thus, the estimation results of a complex

shape tend to resemble certain bounding envelopes of the actual shape.

(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Figure 21: Shape estimation results for the apple, colored by uncertainty.

(a) 6 wraps (b) 9 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Figure 22: Shape estimation results for the bunny, colored by uncertainty.

Table 3 shows that a total of 500 to 900 points are used to estimate the shape

45

(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Figure 23: Shape estimation results for the pentagon, colored by uncertainty.

Table 3: The total number of contact points and arm points collected on each object,
the total number of wraps, and the average time Twrap per wrap for (motion planning
+ collision detection).

Object # contact points # arm points # wraps Twrap(ms)
bottle 143 150 12 135
apple 259 172 12 425
sphere 267 113 7 246
bunny 264 172 12 432

pentagon 141 167 12 132
vase 153 160 12 278

(a) bottle (b) apple (c) sphere (d) bunny (e) pentagon (f) vase

Figure 24: Object mesh models reconstructed from shape estimation results using
Marching Cubes’ algorithm [70], colored by elevation.

of an object2. It would be very time-consuming if those points were collected by a

conventional manipulator making point contacts with the object [137, 20, 39, 147].

2Recall that one above-surface point and one below-surface point are generated for each contact
point along the contact normal.

46

However, our approach is very efficient by using continuum wraps automatically gen-

erated from our motion planning algorithm. Table 3 also shows that it is very fast to

plan a touch-based continuum wrap.

Fig. 24 shows the reconstructed mesh models from the shape estimation results

using the Marching Cubes’ algorithm [70]. As explained earlier, those models capture

enveloping contours of the actual shapes because sharp details were blurred by the

GPIS modeling under noisy observations.

If the reconstructed model is identical to the original mesh model of an object,

given the same arm initial configuration, model location, and the wrapping plane,

the final wrapping configuration Cr of the reconstructed model should be the same

as the final wrapping configuration Co of the original mesh model. Therefore, the

distance of normalized configurations ‖Cr
′ − Co

′‖, where Cr
′

and Co
′

are obtained

by normalizing the component values in Cr and Co, is indicative of how accurate the

shape estimation is. We use the average distance of multiple wraps as a parameter to

measure the accuracy of shape estimation indirectly, as shown in Table 4. It is clear

that model quality improves as more wraps are used to reconstruct the model. Fig.

25 compares example wraps visually.

3.3.2 Significance of the Arm Points

Fig. 27 shows the shape estimation results of the hollow vase using only contact

points. Since the object is hollow, continuum wraps cannot make a large number of

contacts, and thus the shape estimation result is inaccurate. However, the arm shape

at a wrapping configuration itself is indicative of the object shape, and the arm points

47

Table 4: Average distances between the wrapping configurations of a reconstructed
model and the original mesh model. # wraps indicates the number of wraps used to
reconstruct the model.

Object
Intermediate Model 1 Intermediate Model 2 Final Model
wraps avg. dist. # wraps avg. dist. # wraps avg. dist.

bottle 4 0.31 8 0.27 12 0.27
apple 4 0.44 8 0.36 12 0.28
sphere 4 0.28 5 0.26 7 0.24
bunny 6 0.57 9 0.47 12 0.31

pentagon 4 0.34 8 0.19 12 0.16
vase 6 0.48 9 0.41 12 0.31

Figure 25: Comparing example wraps on the original mesh model and the recon-
structed model. (a) wrap on the original apple model (b) wrap on a reconstructed
apple model (c) wrap on the original vase model (d) wrap on a reconstructed vase
model.

can be used to compensate for the lack of sufficient contact points and determine the

object geometry. As shown in Fig. 26, our approach using both arm points (robot

proprioception) and contact points better captured the vase shape and also captured

the hollowness of the vase using as few as 6 wraps. Whereas, without using the arm

points, as shown in Fig. 27, the hollowness of the vase could not be captured even

with 12 wraps.

3.4 Summary

We have presented an approach POSE-CoM of progressive object shape estimation

through touch-based continuum manipulation and a GPIS-based probabilistic model.

48

(a) 6 wraps (b) 9 wraps (c) 10 wraps (d) 12 wraps

(e) Left to right: the first conducted wrap to the last conducted wrap.

Figure 26: Shape estimation results of the vase, colored by uncertainty.

(a) 6 wraps (b) 9 wraps (c) 10 wraps (d) 12 wraps

Figure 27: Shape estimation results of the vase without using arm points, colored by
uncertainty.

49

Unlike shape estimation based on contact points collected through the end-effector

of a conventional, articulated manipulator, shape estimation through continuum ma-

nipulation is both more efficient and effective by deliberate use of the robot proprio-

ception data in addition to contact information, as demonstrated in the experiments

on objects of various shapes.

CHAPTER 4: SIM-TO-REAL TRANSFERABLE OBJECT CLASSIFICATION
THROUGH TOUCH-BASED CONTINUUM MANIPULATION

In Chapter 2, a shape-based approach for object classification and recognition

through continuum manipulation is introduced. The main idea is to use the contin-

uum robot as a tool to indirectly “measure” the object shape. That is, the shape of a

continuum arm during whole-arm wraps of a target object, which can be transparent

(and thus not visible), is used to indirectly characterize the shape of the object and

this information is used for classification and recognition. For an object of any shape,

a continuum wrap is generated automatically by a touch-based approach. However,

the work is tested only in simulation with the assumption that the continuum arm

is covered by tactile sensors. In reality, existing continuum manipulators are often

not equipped with tactile sensors. One difficulty is that the body of the robot is

deformable. A kinematics-based contact detection and localization approach for con-

tinuum robots is presented in [8], for which an external tracking system is required

but may not always be available in real-world scenarios.

In this chapter, we study touch-based identification of object categories using a

new form of continuum manipulator consisting of origami-based modules [102] and

tactile sensors attached at each section. Using these new manipulators with sparse

tactile sensing, we aim to achieve touch-based wrapping of objects and experimentally

validate the following conjecture: the shape-based classifier introduced in Chapter 2

51

and trained in simulation can be readily transferred to classifying real objects with

real touch-based continuum manipulation. We envision the robot to be used in a

search and rescue scenario where it could be exposed to low-light environment hence

could benefit from the touch-based manipulation.

4.1 Approach

We next explain the manipulators we built for this study, sensors, and the touch-

based motion planning strategy for generating continuum wraps, and the classification

method of unknown objects.

4.1.1 Manipulators and Sensors

The continuum manipulators we built for this study consist of multiple origami

continuum modules connected in series. Each continuum module contains a foldable

origami body, three brushed DC micro-motors with pulley systems, and a controller

board that offers on-board sensory measurements, feedback control, and module-to-

module communication. The foldable body is made out of Polyethylene terephthalate

(PET) films and constructed based on the Yoshimura crease pattern. This unique

tubular structure with a diameter of 7 cm is capable of bending in two directions

and extending/retracting, while maintaining its structure and resisting torsion. The

foldable structure is connected to an acrylic plate on the top and to the PCB on

the bottom where the motors are secured. Three nylon cables secured to the motor

shafts and spanning the length of the structure along the edges are used to drive the

segment. Each motor is equipped with a magnetic encoder for position control3.

3My collaborator Junius Santoso and Cagdas Onal at WPI contributed to the design and fabri-
cation of the continuum manipulator used in this study.

52

We built two continuum manipulators for this study. Fig. 28(a) shows the 3-

section manipulator used in the experiments with planar wraps, and each section

has an active white module with motors on it and a passive green foldable body to

expand the robot workspace. Improved from the 3-section manipulator, Fig. 28(b)

shows the 4-section manipulator used for generating spatial wraps benefiting to its

more compact and lightweight modules and larger touch sensor contact areas.

Each section is characterized using three parameters (s, κ, ϕ), where s is the section

length, κ is the curvature, and ϕ is the orientation angle [63, 102]. Using the inverse

kinematics of a continuum section developed in [102], we can then find the required

cable lengths (l1, l2, l3), that will shape the module into the desired configuration

(sd, θd, ϕd). The cable lengths are converted into encoder positions, which are then

sent to the low-level controller as reference signals.

We constructed the touch sensors acting as bumper switches using two copper

sheets adhered onto a parallel plate structure made out of the same material used for

the origami collapsible body. One copper sheet is connected to the control board’s

digital I/O pin while the other is connected to ground reference. When the copper

sheets touch each other due to depression of the structure, an electrical circuit is

completed hence signaling a touch on the continuum section. For each continuum

section we place the touch sensor at the module and sandwiched between consecutive

modules as shown in Fig. 28.

53

Figure 28: An object (a transparent water bottle) was placed near the base of arms
for manipulation: (a) a touch sensor was mounted in the middle of each origami
module in a 3-section arm, (b) a touch sensor was mounted at the distal end of each
module in a 4-section arm. The diameter of the continuum section is 7 cm. (c) A list
of objects used in the experiments.

4.1.2 Touch-based Continuum Wrapping

A general touch-based motion planning strategy is introduced in Chapter 2 for a

continuum manipulator to progressively generate wraps around an object under the

guidance of the contacts made along the way without knowing the object model.

Starting from the initial configuration, the robot motion alternates between the en-

closing motion step to make contacts with the object, and the advancing motion step

to move forward towards wrapping around the object, until a wrap is formed or no

further motion is feasible due to the physical limits of the manipulator. Such con-

tinuum wraps can be efficiently generated within hundreds of milliseconds (time of

planning and collision checking combined) in simulation (Chapter 2).

To achieve an advancing motion step, as described in Chapter 2, contact localization

54

and estimation of the tangential and normal directions of the local contact patches

are required; whereas, we relax this requirement in this chapter through extrapolating

the robot section endpoints based on their local frames. Therefore, our planner only

needs to know whether each manipulator section is in contact or not from the tactile

sensing to plan the next move, which makes it more effective to guide the manipulator

hardware to achieve touch-based continuum wraps.

4.1.3 Classification of Unknown Objects

As introduced in at the beginning of this chapter, we aim to experimentally validate

a shape-based classifier using continuum wraps (Chapter 2). The shape of the contin-

uum robot wrapping around an object is described by a chord histogram descriptor,

which approximates the robot shape using many 3D chords and statistically captures

its shape based on the chord parameters. We first trained a linear SVM classifier in

simulation using wraps generated around the simulated objects and next applied the

trained model to classify the real-world objects using real-world wraps. The objects

in simulation were scaled to roughly match the dimensions of the real-world objects.

4.2 Experimental Results with Planar Wraps

In our experiments with planar wraps, we used the 3-section manipulator as shown

in Fig. 28(a). The robot manipulator is initially set at a straight-line configuration

with full contraction, and the testing object is placed near the arm base. For each

section, s ∈ [0.085, 0.145](m), κ ∈ [−10.69, 10.69](1/m), and ϕ ∈ [−π, π].

A linear SVM classifier is trained in simulation using wraps from 10 water bottles,

10 boxes, and 6 teapots. For each object one wrap was generated. Fig. 29 shows a

55

few planar continuum wraps around the objects in simulation. We next conducted

classification of three different real-world objects: a teapot, a water bottle, and a card

box, through real-world continuum wraps.

Figure 29: A few examples of the planar continuum wraps generated on different
objects in simulation. The simulated arm has 3 sections and each section is colored
in white for the first half and in green for the second half.

The video attached to [75] shows the wrapping process of the real-world objects,

and Fig. 30 shows a few motion snapshots. Note that the goal of such wraps is to

encode the shape of an unknown object into the shape of the manipulator, as opposed

to achieving tight grasps of objects with known models [63]. Therefore, the wraps do

not need to be enclosing.

Figure 30: The motion snapshots of the continuum wraps generated on the real
objects. The rightmost sub-figure in each row shows the final wrapping configuration.

56

The final robot configurations commanded by the planner were used for classifica-

tion. Table 5 summarizes object and wrap information and the classification results.

It can be seen that the classifier learned solely from simulation is already effective

in classifying the real-world objects, as the probabilities of correct classification are

more than two times higher than that of a random guess (about 0.33). However,

the box was mis-classified to be a bottle because the contact on section 1, which

was closest to the base, was missed by the sensor, and therefore the planner kept

commanding section 1 to bend more while it was actually stopped by the contact.

Since the curvature of section 1 is a distinctive feature for classification as shown in

Fig. 30, the classifier with the inaccurate data of a larger curvature resulted in the

misclassification.

Table 5: Object dimension, number of intermediate configurations to generate the
wraps, SVM prediction and its probability using 1 planar wrap for each object.

Object dimension(cm) # of configurations SVM Prediction Probability
bottle 8 × 8 × 24 59 bottle 0.81
box 27 × 16 × 26 61 bottle 0.83

teapot 24 × 18 × 21 42 teapot 0.71

4.3 Experimental Results with Spatial Wraps

We use the 4-section robot arm (Fig. 28(b)) to conduct spatial continuum wraps

around the objects to collect spatial shape information. The arm sections of this

robot are more compact (rather than having two modules connected as one robot

section) and lightweight, which makes it more suitable for spatial wraps. It also

overcame the problems of missed contacts with increased contact areas of the touch

57

sensors. Different wraps covering different areas on the objects were conducted to

collect object spatial shape information. The 3D chords generated from different

wraps are accumulated into one histogram as an overall representation of the object

shape. We next explain how the robot arm is lifted to conduct spatial wraps and

present the object classification results.

4.3.1 Robot Arm Lifting

The arm is lifted up by keeping the first module of the robot at a certain config-

uration during the experiment and then changed when switching to other wrapping

planes. See Fig. 32(b) for such examples when the robot arm is lifted up. The benefit

of having this additional module is that the other modules (section 2, 3 and 4) can

be fully used for generating the wraps, and they only need to undergo less strain

and stress when wrapping around the objects. Alternatively, the modules could be

mounted vertically to minimize the effect of gravity; however this configuration can-

not always be possible in a real life scenario, hence we decided to proceed with the

former.

(a) bottles (b) boxes (c) teapots

Figure 31: The spatial wraps in simulation. Each row in each subfigure is the three
wraps around the same object. The simulated arm has 3 sections and each section is
colored in white for the first half and in green for the second half.

58

Figure 32: The motion snapshots of (a) planar and (b) spatial continuum wraps
around the bottle, where the top and bottom rows show the motion of the same wrap
from two view angles respectively, (c) final configurations for the remaining objects
with planar wraps, (d) spatial wrap final configurations.

4.3.2 Classification Results

We trained a linear SVM classifier using the same set of training objects used

in Section 4.2, and the shape of each object was captured using 3 wraps. Fig. 31

shows the wraps around the training objects generated in simulation. Fig. 32 shows

examples of such planar and spatial wraps around the real world objects. For testing

dataset, we considered 3 object categories and 3 objects from each category (Fig.

59

28(c)).

The video attached to the original paper [75] shows the motion process of the

continuum wraps. As mentioned earlier, such wraps are the result of local motion

generation, and they are just used to encode the object shape onto the robot arm

shape. Therefore, some (for instance the wraps around the boxes) may only locally

conform the robot shape to the object shape and achieve partial wrapping of the

object.

We noticed that the robot final wrapping configurations deviate from the robot

motion commands sent by the motion planner (major cause for the mis-classification

of the box in Section 4.2). There are two main reasons. First, our robot arms

currently do not have the proprioceptive sensors to achieve precise closed-loop control.

Second, some contacts may be missed by the current sparse touch sensing on our

robot arms. Therefore, in order to more precisely identify the final robot shape, we

used an external vision tracking system to identify the robot final configuration when

the wrapping process is terminated. This wrapping configuration is next used for

generating the 3D chords and conducting the final object category classification.

Table 6 summarizes the objects used, the average number of robot configurations

to generate the wraps, and the SVM prediction results. Overall, the classifier was

able to correctly recognize 2 bottles, 3 boxes, and 2 teapots. The boxes are easier to

be correctly identified since the robot arm conforms to the side surfaces of the boxes

and therefore has distinctive straight sections in contact. The wraps of the bottles

and the teapots typically have more curved robot sections but differ in lengths due to

their dimensions. The confusion of classifying the bottles and the teapots is because

60

sometimes the handles of the teapots (more distinctive features) are not captured.

This can be improved by using longer robot sections and more dense touch sensing.

Table 6: Object dimension, average number of intermediate configurations to generate
one wrap, SVM prediction and its probability using 3 spatial wraps for each object.

Object dimension(cm) avg. # of config. SVM Prediction Probability
bottle1 8 × 8 × 24 45 bottle 0.52
bottle2 9 × 9 × 21 43 teapot 0.56
bottle3 8 × 8 × 21 40 bottle 0.51
box1 27 × 16 × 26 12 box 0.74
box2 25 × 21 × 17 10 box 0.71
box3 27 × 10 × 18 15 box 0.78

teapot1 24 × 18 × 21 36 teapot 0.46
teapot2 21 × 15 × 21 40 teapot 0.51
teapot3 22 × 16 × 16 38 bottle 0.51

4.4 Summary

Our results have demonstrated that the shape-based classifier trained solely from

simulation is able to generalize to real-world objects. This confirms our two key in-

sights. First, because object classification is based on the shapes of the continuum

arm wrapping around the objects and not the shapes of the objects directly, the

classifier has the advantage of avoiding direct sensing and perception of the shape of

an unknown target object as well as the associated limitations (such as low object

visibility) and all the sensing uncertainties involved that can negatively affect clas-

sification accuracy. Second, the continuum wraps generated on objects in the same

category have similar shapes, which are captured by the intrinsic parameters of the

continuum arm, no matter if the objects wrapped are virtual or real.

Since conducting many real-world continuum wraps can be time-consuming, it is

61

significant that the classifier trained purely in simulation showed considerable effec-

tiveness in classifying real objects. This could make classifier training more efficient

and feasible for classifying a large number of categories of many real objects from

touch-based continuum wrapping.

CHAPTER 5: PROGRESSIVE OBJECT MODELING WITH A CONTINUUM
MANIPULATOR IN UNKNOWN ENVIRONMENTS

In this chapter, we address autonomous and progressive model building of an object

in an unknown, cluttered environment using a multi-section continuum manipulator.

We consider that an RGB-D camera is mounted on the tip of the continuum manipu-

lator for perception. Our approach plans the robot arm motion to position the camera

at suitable spots around the target object to take images and register those images

to build and extend a 3-D model of the object gradually, while avoiding obstacles.

5.1 Related Literature

In related work, researchers have studied view planning [127, 126] to find the best

set of views to capture the surface appearance of an isolated object, object model

building[127, 89] of an isolated object, and object manipulation through percep-

tion and learning[36], compliance with soft hands [14] or through exploiting envi-

ronment constraints [28] without explicit model building. Some recent work of object

modeling[49, 73, 16] uses a robot hand to hold the object for pose change, but the

hand can also occlude the object. More recently, interleaving visual perception and

robotic manipulation is studied in [117] to achieve complete object modeling. How-

ever, a common underlying assumption is that the object is stand alone in isolation

so that there is no need to consider obstacles. UAVs are also considered to model

open and large environments [100, 29], but they are not suitable to maneuver in a

63

narrow and cluttered space to model small daily objects. For the vast literature on

motion planning for manipulation, object model is assumed known and so are obsta-

cle models to some extent. How to manipulate an unmodeled object in a cluttered

environment with unknown obstacles is an open problem.

Continuum manipulators [101, 122, 130] can deform continuously and are inherently

compliant [82, 83], which are more suitable to maneuver in a cluttered environment.

So far most existing work on autonomous object manipulation using a continuum

manipulator assumes that the object model and the environment are known (i.e.,

with known models) [124, 120, 61, 64] or fully visible through some external sensor

(such as an overhead camera) [57], and only recently, manipulating a known object

situated in an unknown, cluttered environment is addressed [56]. There is no work

on handling an object without a known model in a cluttered space with a continuum

manipulator.

5.2 Overview

We first present the environments and tasks considered in this chapter, and next

provides an overview of the introduced approach.

5.2.1 Environment and Task

The environment considered in this study is an unknown cluttered space contain-

ing multiple obstacles and a single target object. The task is to use a continuum

manipulator to approach the target object and build a model for it, while avoiding

obstacles. We further assume the following:

1. The continuum manipulator has a fixed base.

64

2. All the objects in the environment are static.

3. The target object to be modeled can be wrapped around by the robot arm either

in one direction, clockwise or counter-clockwise, or both directions to form a

closed loop coverage of the side surface4.

4. An RGB-D camera is attached to the tip of the robot so the robot is able to

sense the surroundings as it moves, called a tip camera in this study.

5. The robot arm is initially positioned, by human assistance, outside of the un-

known task space with its tip camera facing the target object.

Some typical environments and tasks are shown in Fig. 34. The same kinematics

model of an n-section continuum manipulator described in Chapter 2 is used.

5.2.2 Approach

In order to address the autonomous and progressive modeling of an object in an

unknown and cluttered environment, sensing and robotic manipulation have to be

interleaved closely in that sensing guides the manipulation and the manipulation in

turn enables further sensing in cluttered space. Fig. 33 presents an overview of our

proposed approach.

Starting with an initial RGB-D image of the target object taken at the initial

configuration of the robot (see assumption (5) in Section 5.2.1), the robot’s tip camera

is adjusted to first sense the environment and distinguish the target object among the

sensed obstacles (Section 5.3.1). Then the tip camera is steered towards the target

4This notion indicates the projected directions of the arm’s spatial motion on a plane.

65

Start

Adjust Robot

Initial Configuration

Sense Environment

Sense Target Object

Build/Update Model

Plan Robot Arm

Motion Execute

Partial Plan

Successful?

Loop Closing? Arm Limit?

First Time?

Optimize Model

End Abort

Retrieve Arm

yes

no

no

yes

yes

yes

no
no

Figure 33: Overview of the progressive modeling approach. The blocks for perception
are in yellow, and those for robot motion are in red.

object again to take an RGB-D image, and the captured target object point cloud is

registered with the previous partial model (or image) of the object (see Section 5.4).

66

Next, the robot arm motion is planned and executed based on the updated partial

object model for a short distance (See Section 5.3.2).

As the above procedure is iterated, more and more images of the target object are

captured, and if the number of captured images is sufficient to make a closed loop

coverage of the side surface of the object, the obtained object model is refined by a

global optimization algorithm.

There are two cases when a closed loop cannot be reached in the current direction

of wrapping the target object: (1) the arm extends to its physical limit before closing

the loop, and (2) there is not enough space between the target object and obstacles

to allow the arm move forward (i.e., no more collision-free motion forward for the

arm can be found). In both cases, the arm is retrieved and re-positioned to allow for

moving in the other direction around the object to continue object model building.

If loop closing cannot be achieved from both directions around the object, the

program ends with a partial object model (or disconnected partial models) without

optimization.

5.3 Perception-based Motion Planning and Execution

We first explain to how to distinguish target objects and obstacles, and next explain

the approach of robot motion planning and execution.

5.3.1 Distinguishing Target Object and Obstacles

Distinguishing the target object from surrounding obstacles is the first task for the

continuum robot arm to accomplish towards perception-guided object modeling. By

initially making the tip camera facing the target object, a point cloud of the target

67

object can be obtained and marked. When it is time to sense the environment (as

shown in the first yellow box of the flowchart in Fig. 33), the camera is turned to face

the space between the target object and obstacles, and the obstacle point clouds are

sensed, clustered, and distinguished from the object point cloud based on Euclidean

distance. For each subsequent sensing of the environment as the robot arm moves,

the clusters in the newly sensed point clouds are either merged (registered) with the

existing ones or saved as new clusters (i.e. new obstacles are discovered). Clustering

based on Euclidean distance is computed efficiently using K-d tree data structure.

5.3.2 Planning and Execution of Robot Arm Motion

Starting from an initial configuration of the continuum manipulator, Algorithm

2 first plans a collision-free arc for the robot arm to follow. Such an arc is computed

through searching in the sensed cluttered space, taking into account the partial object

model, obstacles, and robot arm constraints [56]. Collision detection between the arc

and obstacles or object is checked efficiently based on the algorithm in [62].

Next, the robot executes a small portion of the planned motion by making the tip

follow the arc and conform one or multiple sections to the curvature and orientation

of the planned arc. The resulting arm configuration can be found using constrained

inverse kinematics [61]. The short distance ∆s, for which the robot arm moves along

the planned arc, can be scaled to guarantee that there is enough overlap between two

consecutive images taken of the target object.

As the robot arm moves along the first arc, the visible region of the target object

and environment grows. Thus, robot motion is further planned. After each new

68

sensing, our Algorithm 2 searches another collision-free arc to replace the current

arc, such that the updated arc starts from the same position as the current arc but

is flatter (smaller curvature) and longer to take advantage of the updated sensed

space. The robot arm is then made to follow and conform to the updated arc. If no

such replacement arc can be found due to inevitable collision with the obstacles or

exceeding the arm limits, Algorithm 2 plans a new arc for the robot arm to follow

once the robot’s tip reaches the end of the current arc, and the new arc maintains

tangential continuity at its connection to the end of the current arc.

Therefore, motion planning alternates between finding a replacement for the current

arc or a new arc. By first exhausting the possibilities of updating the current arc that

the robot arm followed before adding a new arc, Algorithm 2 generates an efficient

motion for the continuum arm to observe a target object with as few robot sections

mobilized as possible. To move the robot along a planned arc can be done either

with a closed-loop controller or without one because our model building strategy (see

Section 5.4) is robust to motion uncertainty.

If the space between the object and obstacles is too small at some point so that

no collision-free path can be found for the arm to move forward, Algorithm 2 exits

and reports no motion.

5.4 Progressive Object Modeling

The objectives of progressive object modeling are (1) to build a 3D point cloud

model of the target object, and (2) to obtain the 6D pose (i.e., position and orienta-

tion) of the target object, both reasonably accurately, in the presence of uncertainties

69

Algorithm 2: Planning and Execution of Robot Arm Motion

1 if no previous path for the robot arm then
2 Plan the first arc for the robot arm;
3 else
4 Update the current arc the robot arm follows;
5 if updating fails then
6 Plan a new arc;

7 if no collision-free path can be found then
8 Set flag ”No Motion” and exit;
9 Move the robot arm forward along the newly updated or planned arc for a short

distance ∆s;

in robot pose (e.g., caused by payload and motion error) and camera pose w.r.t. the

robot. In order to achieve both objectives, we use a two-step approach:

1. forward pairwise registration of the current point cloud of the partial object

model (starting from the first object image) to each newly obtained object

image as the robot arm moves;

2. global optimization of the registration results from closed-loop images captured

to increase accuracy of both the 3D object model and its 6D pose.

My collaborator Zhou Teng contributed to this section. Please see original paper

for detailed description [76] of the method used in this section.

5.5 Experiments and Analyses

We have implemented and tested our approach of progressive object modeling in an

augmented reality scenario, where a simulated continuum manipulator with a fixed

base is situated in a sensed real environment with a real target object of unknown

model and real surrounding unknown obstacles. A small and light-weight RGB-D

camera is assumed carried by the continuum manipulator (such as the OctArm) at

70

its tip to sense the target object and the environment. All images of the target object

are real images taken by a Microsoft Kinect camera, where the relative configuration

of the camera with respect to the object (or vice versa) for each image is determined

by planning the simulated robot.

5.5.1 Progressive Object Modeling with a Continuum Arm

From each real RGB-D image of the target object, the corresponding 3D object

point cloud is obtained5 for object model building. On the other hand, sensing of the

obstacles as the robot moves is simulated. We first obtain a real 3D point cloud for

each obstacle offline, which is unknown to the motion planner of the continuum arm.

Then, at each environment sensing step of the robot’s operation, the camera is turned6

to view the space between the target object and the obstacles, and the portion of each

obstacle point cloud in the viewing frustum of the simulated camera is extracted for

robot motion planning. The robot arm only needs to avoid the obstacle points during

its motion without caring about differentiating the obstacles.

Fig. 34 shows two table-top task environments in overhead views unknown to the

continuum robot manipulator, where a three-section simulated continuum robot is at

its initial configuration in the sensed real world. The target object is a milk box and

a coffee can in Task 1 (Fig. 34(a)) and Task 2 (Fig. 34(b) and (c)) respectively.

In order to achieve the closed-loop coverage of the side surface in Task 2, the robot

needs to move around the target object in two directions, first clockwise and then

5Since the tip camera is close to the target object, only the target object (no obstacles) appears
in the real RGB-D image, which simplifies segmentation.

6The simulated camera at the tip of the continuum arm has an additional actuated degree-of-
freedom to turn left and right.

71

(a) Task 1 in Env. 1 (b) Task 2-1 in Env. 2 (c) Task 2-2 in Env. 2

Figure 34: Top view of environments with different target objects, obstacles, and
robot arm initial configurations.

(a) Initial arm
configuration.

(b) The arm fol-
lows the planned
arc.

(c) The planned
arc is updated.

(d) The arm fol-
lows a new arc.

(e) The arm fin-
ishes observing the
object.

Figure 35: Snapshots of the arm motion and the sensed object surfaces in Task 1.

counter-clockwise, which we call subtasks Task 2-1 (Fig. 34(b)) and Task 2-2 (Fig.

34(c)) respectively.

In Task 1, the robot arm is initially positioned outside the unknown cluttered

space. With the initial model of the target object and the sensed obstacles, the robot

arm starts moving onto the first planned collision-free arc (Fig. 35(b)). As more

sensings are enabled, an updated arc is planned (Fig. 35(c)) for the robot arm to

follow until a new arc is necessary (Fig. 35(d)). In the end, the robot arm is able to

make a closed loop coverage of the side surface of the milkbox (Fig. 35(e)). The final

refined model after global optimization is shown in Fig. 39(a). Note that the milk

72

box is too tall for the tip camera to sense the top surface.

(a) Initial arm config-
uration.

(b) The arm moves
and senses.

(c) The arm reaches its
physical limit.

Figure 36: Snapshots of the arm motion in Task 2-1.

In Task 2-1, the arm gradually moves around the object from the concave side in

clockwise direction (Fig. 36). As shown in Fig. 37(b), the arm initially follows the

red arc, which is then updated to be the yellow arc when another sensing is made.

Eventually, the arm is able to maneuver through the concave side by following the

green arc. Due to the section length limit, the arm stops after it covers the concave

side, resulting in an incomplete coverage of the side surface of the coffee can.

(a) Coffee can has both concave
and convex sides.

(b) Cross section top view. The
arm sequentially follows the red,
yellow and green arc.

Figure 37: Illustration of the shape of the coffee can and the arm motion. The
white dots in (b) correspond to three goal points the arm tip tries to reach in three
consecutive sensings.

73

(a) Initial arm configuration. (b) The arm moves on the first planned arc.

(c) The arm moves on the second
planned arc.

(d) The arm moves on the third
planned arc.

Figure 38: Snapshots of the arm motion in Task 2-2.

Table 7: Total number of images captured, the short distance ∆s used, and the total
time for motion planning Tmp.

Task # images ∆s(cm) Tmp(ms)
1 11 3 20

2-1 5 6 23
2-2 7 6 31

To enable the tip camera to sense the coffee can from the other direction, the initial

configuration of the arm is reset as displayed in Task 2-2. As shown in Fig. 38, the

arm is able to observe the unmodeled part of the coffee can by moving in the counter-

clockwise direction. By combining the images captured in Task 2-1 and Task 2-2,

the complete model (Fig. 39(b)) of the side surface is obtained, which also includes

some portion of the top surface.

Table 7 shows the number of images captured, the short distance ∆s used, and the

74

(a) Milk box. (b) Coffee can.

Figure 39: The built models.

total time for planning the robot arm motion in the experiments. ∆s is set to be

both sufficiently small to ensure a sufficient overlap between the images captured in

two consecutive sensings and also large enough to be efficient. Choosing ∆s as 3cm

in Task 1 and 6cm in Task 2 provides roughly a 25◦ to 30◦ change of viewing angle

between two consecutive images. The total time Tmp is the sum of the planning time

for every arc for the arm to move along to capture all the images of the target object,

which is very short and indicates that our algorithm is a real-time motion planning

algorithm.

The most time-consuming process is image registration for model building. De-

pending on the size of the sensed point clouds and whether the ASIFT keypoint

matching provides a good initial estimate for the ICP algorithm, the time cost for

conducting one pairwise registration varies from 2 to 3 minutes. Refining the entire

model using the global optimization algorithm is much faster and typically requires

a total of 1 to 1.5 minutes.

The video attached to [76] shows the 3D arm motion of our presented experiments

here.

75

5.5.2 Refining Models by Global Optimization

With an initial object model obtained after a sequence of pairwise registration,

the model is further refined using the global optimization algorithm. Using the milk

box as an example, we next explain how the model is improved both visually and

statistically. As shown in Fig. 40, the initial model is subject to the artifact like the

loose connection between the two surfaces as indicated in (a), which is corrected in

the refined model (Fig. 40(b)).

(a) Before (b) After

Figure 40: Comparison of the models obtained before and after global optimization.
As indicated in (a), the two surfaces circled in the model before global optimization
are not tightly connected, which is corrected in (b).

Two statistical analyses are conducted to quantify the improvement of the model

quality by applying the global optimization algorithm to reduce the accumulative

error of the pairwise registration. In the first analysis, the mean distances of all the

points to their K-nearest neighbors are computed for the models obtained before and

after the global optimization. As shown in Fig. 41(a), the plotted curve is shifted to

the left after the optimization, which indicates that the points are distributed closer

to their neighbors. This reflects that for the same object points appearing in different

76

images, the distances between their 3D positions obtained from those different images

are further reduced in the model after optimization (with the ideal case being zero

distance, see Fig. 40 again for example).

The second analysis is based on the number of neighbors of all the points, which

are searched in the radius of 3mm. As seen from Fig. 41(b), the plotted curve of the

refined model is shifted to the right compared to the model before the optimization.

Therefore, the points in the refined model have more neighbors within 3mm radius,

which also shows that the points are located in the closer proximity of their neighbors.

5.6 Summary

This chapter presents a general approach of progressive object modeling with a

continuum manipulator in unknown and cluttered environments. By interleaving

manipulation and perception, a continuum robot with a fixed base is able to gradually

maneuver through the unknown space without colliding with the objects and sense

the unmodeled target object from different viewpoints. The model of the target object

is progressively built as the robot arm moves. The obtained model, which might be

partial, is further refined using a global optimization algorithm after the closed-loop

coverage of the side surface is achieved. The experiments of modeling real objects

from real RGB-D images taken based on the planned motion of the continuum robot

demonstrate the effectiveness of the introduced approach, which can be applied to a

real continuum robot.

77

(a) The mean distance to K-nearest neighbours of all
the points (K = 100).

(b) The number of neighbors of all the points searched
within 3mm radius.

Figure 41: The statistical analyses of the models obtained before and after the global
optimization.

CHAPTER 6: REAL-TIME CONFLICT RESOLUTION OF
TASK-CONSTRAINED MANIPULATOR MOTION IN UNFORESEEN

DYNAMIC ENVIRONMENTS

In order for robots to work in human-centered environments, they must be able to

perform tasks under constraints imposed by the tasks while avoiding unforeseen dy-

namic obstacles (such as moving human customers and moved chairs in a restaurant)

at the same time. For instance, to bring a glass of water to a customer, a robot ma-

nipulator has to maintain the task constraints in terms of keeping orientation angles

of the end-effector within a certain range to prevent spilling (see Fig. 42 for an exam-

ple) while avoiding unforeseen moving obstacles. To open or close a drawer, the robot

manipulator has to constrain both the position and orientation of the end-effector to

move within the confinement of the cabinet while also avoiding unforeseen moving

obstacles. Although there exist algorithms for planning task-constrained motion and

for planning robot motion in dynamic environments, they are not best equipped to

tackle the general challenge of resolving conflicts between satisfying task constraints

and avoiding unforeseen dynamic obstacles.

In this chapter, we introduce an algorithm that incorporates task constraints in the

general RAMP approach [125] to (1) planning task-constrained manipulator motion

in environments with dynamically unknown obstacles, and (2) seamlessly resolving

the conflicts between task constraints and obstacle avoidance by allowing the robot

to change goals on-the-fly through releasing and resuming task constraints. The

79

Figure 42: Transferring a water cup to a goal location. The end-effector has to
constrain orientation angles to prevent spilling water.

new algorithm, which we call task-constrained RAMP, takes advantage of the core

strength of RAMP to continuously improve diverse manipulator trajectories so that

the robot can avoid unforeseen dynamic obstacles through rapidly switching to a

better trajectory while performing task constrained motion safely. In doing so, the

algorithm enables conflict resolution to allow the robot temporarily released from task

constraints in a safe way for both the robot and the environments, which is adaptive

to circumstances, and resume the task constrained motion whenever possible. In

[23, 52, 93], as summarized in Table 8, such flexibility of allowing the tasks to be

released and resumed again is not provided, hence the robot will have to come to

an emergency stop due to imminent collision if the conflicts between task constraints

and obstacle avoidance arise and persist. However, emergency stops can also make

the robot more vulnerable to being hit by obstacles. Our task-constrained RAMP

algorithm avoids undesired robot stops by enabling the manipulator to change goals

on the fly to avoid the obstacles under reduced or no task constraints before resuming

the task.

The effectiveness of task-constrained RAMP is verified on a six degrees-of-freedom

80

manipulator with a fixed base (i.e., a non-redundant manipulator) performing two

tasks: transferring a cup of water (which imposes orientation constraint on the end-

effector) and closing a drawer (which imposes position and orientation constraint on

the end-effector) in an environment with a dynamic obstacle of unknown motion. For

both tasks, our experiments show that the introduced algorithm resolves the conflicts

between the task constraints and obstacle avoidance seamlessly. Both simulation and

real-world robot experiments are conducted for validation.

6.1 Related Literature

Planning with task constraints : most of the literature does not consider dynamic

environments. Sampling-based methods are focused on how to efficiently acquire

configuration space samples that satisfy specified task constraints[48, 109, 9, 110, 38,

32, 84, 23]. Jacobian-based projection operators have been shown to be effective in

achieving such goals[109, 9], where iterative procedures are used to gradually project

a free configuration sample onto the constraint manifolds. There is also work to

approximate or parameterize the constraint manifolds in different ways [110, 38, 32,

84]. However, the approximated or parameterized constraint manifolds may not be

feasible in unforeseen dynamic environments of moving obstacles.

Optimization-based methods take an initial trajectory and try to locally optimize

the trajectory under multi-criteria objective functions[148, 99, 44]. Jacobian pseudo-

inverse based optimization[148] achieves this in a local reactive manner and may be

stuck when different criteria or constraints are conflicting, which requires a careful

design of mechanisms for switching priorities [106, 86]. Covariant Hamiltonian op-

81

timization for motion planning (CHOMP)[99], stochastic trajectory optimization for

motion planning (STOMP)[44], and many of their variants [19, 94] require precom-

puted representation of the environments to conduct gradient-based or gradient-free

local optimization, which may not be real-time for handling dynamically changing

and uncertain environments.

Table 8: Comparison of literature on task-constrained planning in dynamic environ-
ments.

Ref. Online sensing Data structure Methods Real experiments
[23] No Tree Sampling No
[52] Yes Road map Local controller Yes
[93] Yes Road map Optimization Yes

Planning in dynamic environments without task constraints : Some variants of

sampling-based methods, such as dynamic rapidly exploring random trees [30, 92, 112]

and dynamic probabilistic road maps [53], maintain a group of trees or graphs and

conduct fast replanning and rewiring in reaction to the dynamic changes in the envi-

ronment. In the spirit of artificial potential field, the elastic strip method[15] allows

the trajectories to be deformed locally in the same homotopy class to avoid dy-

namic obstacles. The elastic road map method[136, 52] maintains a low-dimensional

workspace graph that can move the nodes (i.e., milestones) in response to dynamic

changes. Reactive control methods (for example [133, 45]) have been successful in

many visual-servo tasks (like playing ping-pang) by locally adapting to new changes.

Reinforcement learning based control approaches (such as [96]) also provide a new

way for online motion generation of 3D reaching tasks at the cost of long training

time, generalization difficulty and non-smooth robot motion. The real-time adaptive

82

motion planning (RAMP) approach [125, 81] simultaneously conducts planning and

execution to adapt to dynamic environments of unforeseen moving obstacles.

Planning in dynamic environments with task constraints : In [23], an RRT-based

planner was presented and task constraints were satisfied through generating samples

in joint space. However, this is an offline algorithm, and it requires that the obstacle

trajectories are known beforehand. There is also work on planning the motion of a

mobile manipulator with task constraints in dynamic environments [52], taking advan-

tage of the many redundant degrees-of-freedom to facilitate obstacle avoidance under

task constraints. This approach consists of local reactive control based on sensing and

higher-level global planning integrated in a road map data structure. However, little

data and discussion were reported on how sensing, local reactive control, and global

planning interact to satisfy task constraints and obstacle avoidance. Moreover, local

reactive control can fail to resolve the conflict between task constraints and obstacle

avoidance especially if the robot does not have a sufficient number of redundant de-

grees of freedom. In [93], multiple trajectories extracted from a pre-built road map

were optimized in parallel to search for a feasible solution. However, the planning

times reported in static environments were about 10 to 25 seconds. Hence, it is not

fast enough to deal with unknown dynamic obstacles in an environment.

6.2 Task Constraints

When a robot manipulator performs a task, it usually involves the end-effector

holding an object or tool. Therefore, we consider the goal of a task as characterized

by two aspects: (1) the constrained attachment of an object or tool of the task to the

83

robot end-effector, and (2) the constraints imposed on the pose of the end-effector

because of the attachment, which we call the task constraints.

Task constraints are considered as kinematic restrictions on the pose of a robot end-

effector [109]. Denote a pose [x, y, z, α, β, γ] that specifies the end-effector position

[x, y, z] and orientation roll α, pitch β, and yaw γ in the task frame. We adopt

the concept of motion constraint vector C from [109] for specifying the task-specific

constraints, where C = [cx, cy, cz, cα, cβ, cγ]
T , and each element c in C is 0 if the

corresponding motion is free and 1 if constrained.

In this study, we also consider soft task constraints that can be violated to a small

extent. For example, when the end-effector holds a half-filled cup of water, it is

allowed to tilt the cup to some extent. Relaxing task constraints allows more motion

solutions, especially for planning in dynamically unknown environments.

6.3 A Review of RAMP

The real-time adaptive motion planning (RAMP) framework is a general, stochastic

framework inspired by evolutionary computation and applicable to anytime motion

planning of high degrees-of-freedom robots (e.g., mobile manipulators) in configu-

ration × time (CT) space with unknown dynamic obstacles. A robot trajectory in

RAMP is represented, at the high level, as a sequence of configurations, called knot

configurations, connecting the robot initial configuration to a goal configuration, with

appropriate time stamps added to each knot configuration. At the lower level, a

polynomial trajectory segment connects any two adjacent knot configurations. Each

trajectory is associated with a cost function taking into account multiple optimization

84

criteria. Motion planning and execution are conducted simultaneously. A group of

trajectories, called a population, is maintained and updated all the time as the robot

moves. The population consists of trajectories that are diverse and different from one

another to result in a global representation of the CT space. A trajectory is feasible

if it is collision-free; otherwise, it is infeasible. RAMP allows the population of tra-

jectories to include both feasible and infeasible ones. The core idea behind RAMP

is to enable trajectory switching to rapidly adapt to unforeseen changes in dynamic

environments: the trajectory being executed can always be changed (before its first

collision arrives) to the new best trajectory as the environment changes. Simultane-

ous planning and execution are achieved through interactions of the following three

types of cycles:

1. Sensing cycles repeatedly update perception of the environments to capture

changes.

2. Planning cycles repeatedly update and improve the trajectories based on sens-

ing.

3. Control cycles repeatedly determine the best trajectory to execute next and

switch the robot to that.

In each planning cycle, a randomly selected trajectory is updated by one of the fol-

lowing randomly selected genetic operators [125]: randomly Insert, Delete, or Change

a knot configuration, Swap the order of two randomly chosen adjacent knot config-

urations, Crossover two trajectories, and Stop robot motion at a randomly chosen

knot configuration for a random duration.

85

6.4 Task-constrained RAMP

We now incorporate task constraints into the RAMP framework.

6.4.1 Task-constrained Genetic Operators

Consider a manipulator arm. We use the following two new task-constrained op-

erators in addition to the original operators [125] to update its joint trajectories.

− Task-constrained Insert : Randomly generate and insert a new knot configura-

tion that satisfies the task constraints into a path.

− Task-constrained Change: Randomly change a knot configuration to a new one

that satisfies the task constraints.

To obtain manipulator joint configurations satisfying the task constraints, we sim-

ply sample end-effector poses that satisfy the task constraints in the workspace and

use inverse kinematics to obtain the corresponding joint configurations. If there are

many inverse kinematics solutions given one end-effector pose, we randomly select

one among all the solutions. Unlike directly sampling task-constrained joint config-

urations using computationally expensive and iterative procedures[109, 9, 110], our

strategy is simple and efficient but effective in achieving real-time adaptive perfor-

mance in dynamic environments.

Since RAMP has many planning cycles and the genetic operators are used many

times, it can tolerate sampling invalid end-effector poses with no inverse kinematics

solutions, which sometimes happen, as shown in the experiments.

86

6.4.2 Three Types of Goals

We define the following three types of goals:

1. main task-constrained goal gtc main: task-constrained robot goal configurations.

2. temporary task-constrained goal gtc temp: task-constrained robot configurations

designated as temporary goals.

3. non-task-constrained goal gntc: robot configurations not satisfying task con-

straints.

For example, in the task of transferring a water cup, gtc main means the final robot

configurations to place down the cup and gtc temp means other robot configurations

that are also suitable for putting down the water cup. gtc temp is useful for conflict

resolution as further explained in Section 6.5.

At a gntc configuration, the robot is either separated from the constraining ob-

ject/tool or the object/tool no longer constrains the end-effector, e.g., an empty cup

or a paint gun not emitting paint. gntc configurations are initially randomly generated

and updated later when the robot needs to release and resume task constraints (as

further explained in Section 6.5).

Task-constrained trajectories end at configurations of gtc main or gtc temp; whereas

non-task-constrained trajectories end at configurations of gntc.

6.4.3 Trajectory Generation and Evaluation

An initial population of arm trajectories are generated consisting of those from

an initial robot configuration to either a specified task-constrained goal configuration

87

or a randomly sampled non-task constrained goal configuration. Intermediate knot

configurations (which are task-constrained or non-task-constrained, depending on the

type of goal) are randomly generated on each trajectory. Next, time stamps are added

through connecting adjacent knot configurations by cubic splines, taking into account

the acceleration and velocity limits of a robot manipulator and their continuity.

We use a universal evaluation function Cost to measure the goodness of either

a feasible (i.e., collision-free) or an infeasible trajectory. A trajectory is evaluated

by considering the following cost terms: total duration D, total kinetic energy E =∑
ei, total cost V =

∑
vi of task constraint violation, total cost M =

∑
mi for

manipulability, total cost S =
∑
tsi for trajectory smoothness, and a collision cost

H, where ei, vi, mi, and tsi are defined below for the ith configuration qi:

1. ei = 1
2

∑j=n
j=1 Ijwj

2, where Ij is the moment of inertia of joint j, wj is the angular

velocity of joint j, and n is the number of joints.

2. vi is the difference between the ith end-effector pose and the task-constrained

pose expressed in position and Euler angle differences.

3. mi = 1√
detJJT

, which is the inverse of the manipulability measure[138]. J is the

Jacobian matrix at qi. The closer to a singularity, the larger is mi.

4. tsi =‖qi−1 − 2qi + qi+1‖2 [44].

H equals zero if the trajectory is collision-free and equals to Q
tcollide

if the trajectory

is not collision-free and has an earliest predicted collision at time tcollide. Q is a very

large penalty value.

88

The overall Cost of a trajectory is computed as a normalized weighted sum of D,

E, V , M , S, and H. A trajectory is task-constrained if it ends at a task-constrained

configuration, and its V cost is less than a threshold Vth. The overall cost function

promotes trajectories that are time and energy efficient, deviate as little as possible

from the hard task constraints, has high manipulability, and stay far away from

predicted collisions.

6.4.4 Trajectory Subpopulations for Conflict Resolution

Key to the adaptive capability of RAMP to environmental changes and effective

conflict resolution is to maintain a diverse population of trajectories, such that what-

ever changes occur in the environment or conflicts arise among the tasks, there are

most likely always trajectories suitable to the newly changed environment. The origi-

nal RAMP [125] maintains subpopulations of certain homotopic diversity to be adap-

tive to unexpected moving obstacles. In this work, we use the following three new

types of subpopulations,

1. subpopulation Ptc main containing task-constrained trajectories ending at gtc main.

2. subpopulation Ptc temp containing task-constrained trajectories ending at gtc temp.

3. subpopulation Pntc containing non-task-constrained trajectories ending at gntc.

Ptc temp is used to promote the population diversity for better adaptability to the

unknown environments and also prepares the manipulator for conflict resolution when

no trajectories in Ptc main are collision-free. For example, if the manipulator cannot

reach the final goal to deliver the cup without spilling water, RAMP may drive the

89

robot to reach places corresponding to gtc temp configurations while still maintaining

the task constraints. When the manipulator reaches such places, RAMP may even

release the robot from task constraints by letting the manipulator place down the cup

so that it is free to conduct non-task-constrained-motion to avoid obstacles.

We allow these different subpopulations to co-exist in RAMP for achieving conflict

resolution seamlessly between task constraints and obstacle avoidance, as further

explained in Section 6.5.

6.5 Summary of Task-constrained RAMP

After the initialization of trajectory population P , which includes a task-constrained

subpopulation Ptc = Ptc main∪Ptc temp and a non-task-constrained subpopulation Pntc,

P is further evolved and improved through a number of iterations of offline planning

cycles to increase the overall fitness of trajectories (similar to Algorithm 3 Offline

Planner in [125]).

Two global flags Ftc and Frelease are used in our algorithm. Ftc indicates whether the

robot is currently task constrained. It is initially set to true and may be toggled as the

robot moves to enable the switch between task-constrained and non-task-constrained

motions. Frelease indicates whether the task constraints can be released at any time.

It is determined based on the task requirements and fixed during the task execution.

Next the robot starts to move along the current best trajectory and kicks off on-line

simultaneous planning and execution, and the sensing, planning, and control cycles

interact until the final goal of task-constrained operation is reached.

In each planning cycle, an operator is randomly selected, based on which, a tra-

90

jectory (or two – if the operator is crossover) is (are) randomly selected in the cor-

responding subpopulation (i.e., Ptc main, Ptc temp or Pntc) and applied the operator to

obtain a new trajectory τnew, which is then evaluated (Section 6.4.3). If τnew is worse

than the worst trajectory in the subpopulation of its parent trajectory, it is discarded;

otherwise, it replaces a non-best trajectory in the same subpopulation, and if τnew is

infeasible, it can only replace an infeasible and non-best trajectory.

In each control cycle, as summarized in Algorithm 1, each trajectory in P is first

updated such that the beginning configuration is the current robot configuration with

the current state (i.e., joint angles and velocities) and evaluated by taking into account

the latest sensing information.

If the current best trajectory τtc main best ∈ Ptc main does not have an imminent

collision (which is defined as having the earliest predicted colliding time less than a

threshold), the robot is switched to follow τtc main best.

If the τtc main best has imminent collision, conflict resolution is evoked (illustrated

in Fig. 43).

If the best task-constrained trajectory τtc temp best ∈ Ptc temp does not have imminent

collision, the robot is next switched to execute τtc temp best. While the robot moves

on τtc temp best and more control cycles are conducted, if conflicts are automatically

resolved (for example the obstacles moved away), τtc main best ∈ Ptc main no longer has

imminent collision. Hence the robot is switched to execute τtc main best as illustrated in

the dashed line in Fig. 43. On the other hand, if the robot has already reached the end

of τtc temp best ∈ Ptc temp, the robot arm can move without the task constraints and then

the robot is switched to τntc best ∈ Pntc (i.e. the robot motion is not subject to task

91

Figure 43: Illustration of conflict resolution mechanism. The blue and green solid
lines indicate task-constrained motion from Ptc main and Ptc temp respectively, and the
yellow solid lines indicate the non-task-constrained motion. The blue dashed lines
indicate the motion that would be executed if the conflict between the tasks did not
exist (any more). Task constraints are released or resumed at the intersection of the
blue and yellow solid lines. The arrows indicate the motion direction.

constraints); gntc is set to reach the end-effector pose where the task constraints are

released (Algorithm 4). While the robot moves, RAMP continuously improves P until

the best task-constrained trajectory τtc main best ∈ Ptc main no longer has imminent

collision. Then the robot arm moves back to gntc to resume the task constraints

(Algorithm 5), and the robot follows τtc main best ∈ Ptc main to reach the final goal

gtc main.

Overall, our approach achieves real-time conflict resolution in two levels. (1) Intra-

population conflict resolution by switching trajectories : each subpopulation contains

many and different trajectories and the robot arm can always switch to the best trajec-

tory in the same subpopulation. (2) Inter-population conflict resolution by switching

subpopulations : the robot arm can switch to other subpopulations if current subpop-

92

ulation is entirely infeasible. Both are demonstrated in the experiments presented

next.

Algorithm 3: A Control Cycle

1 update trajectories in P with the current robot state and evaluate P ;
2 update global flag Ftc;
3 if Ftc then
4 if τtc main best has no imminent collision then
5 execute τtc main best;
6 else if τtc temp best has no imminent collision then
7 execute τtc temp best;
8 if end of τtc temp best is reached then
9 invoke Algorithm 4 to release task constraints;

10 else
11 if Frelease then
12 invoke Algorithm 4 to release task constraints;
13 else
14 emergency stop;

15 else
16 if τntc best has no imminent collision then
17 execute τntc best;
18 if end of τntc best is reached and τtc main best has no imminent collision

then
19 invoke Algorithm 5 to resume task constraints;

20 else
21 emergence stop;

Algorithm 4: Releasing Task Constraints

1 detach tool/object from the robot end-effector;
2 add tool/object model to environment as a static obstacle;
3 set gntc to reach current end-effector pose;
4 Ftc ← false;

Algorithm 5: Resuming Task Constraints

1 attach tool/object to the robot end-effector;
2 remove tool/object model from environment;
3 Ftc ← true;

93

6.6 Overview of Experiments

We have implemented the introduced algorithm in C++ under ROS on a PC with

an Intel i7-7700HQ 8-core 2.8GHz CPU. We considered a task of transferring a water

cup (imposing end-effector orientation constraints) and a task of closing a drawer

(imposing end-effector position and orientation constraints) under different testing

scenarios. In all the experiments, an ABB IRB120 6-DOF manipulator was the one

running our algorithm, and the motions of dynamic obstacles were unknown to the

ABB robot.

Each trajectory in population P is initialized with 20 knot configurations. Each

program run starts with a number of offline planning cycles (which takes about 1.5

mins) in the static environment to take into account static obstacles and improve

overall trajectory quality based on the cost function of multiple optimization criteria.

This is an offline initialization process and not part of the real-time motion planning.

Next, the ABB robot and the dynamic obstacle start moving and the cycles of sensing,

planning and control start interacting to achieve real-time adaptiveness of the ABB

robot.

All the trajectories are discretized at every 0.3 secs for evaluation (Section 6.4.3).

Such fine time resolution ensures that both the knot configurations on the trajecto-

ries and the cubic splines are evaluated. If a trajectory has task-constrained knot

configurations but the interpolations between them violate the task constraints, this

trajectory still has a high cost of task constraint violation.

For safety, we limit the joint velocities of the ABB robot to 20% of their max-

94

imum ranges in trajectory generation. The workspace of the ABB robot used for

sampling task-constrained end-effector poses is a cubic volume with x=[−0.4, 0.4]m,

y=[−0.4, 0.4]m and z=[0.2, 0.7]m. The average success rate of the Task-constrained

Insert and Task-constrained Change operator is about 75.5% since some sampled

poses are not reachable by the robot under task constraints. Experimental results of

each task are described in details below. The video accompanied to [78] shows the

experiments presented.

6.7 Experiments of Transferring a Water Cup

Figure 44: Motion snapshots of transferring a water cup. Each row corresponds to
one program run. Only Ptc main is used.

We considered two sets of experiments for this task. Subsection 6.7.1 presents

experiments with only subpopulation Ptc main, i.e., the robot arm is only allowed to

switch trajectories in Ptc main to avoid the obstacle and directly transfer the water cup

to the final goal without placing down the cup and picking up again at some point

(motion behavior from Ptc temp and Pntc). Subsection 6.7.2 presents the experiments

using all three subpopulations Ptc main, Ptc temp and Pntc, and therefore allowing the

robot arm to switch among subpopulations in addition to switching trajectories inside

95

one subpopulation.

We considered soft task constraints by allowing the end-effector to tilt a maximum

±15 degrees from the upright direction. The start end-effector pose is [0.1, 0.3, 0.3, 0, 0, 0]

and the goal pose is [0.1,−0.3, 0.3, 0, 0, 0]. Position and orientation are in m and rad

respectively. The motion constraint vector C is [0, 0, 0, 1, 1, 0]T .

6.7.1 Conflict Resolution with Ptc main

Table 9: Statistics of the experiments of transferring a water cup and closing a drawer.

Water cup runs (Section 6.7.1) Drawer runs (Section 6.8)
1 2 3 4 5 1 2 3 4 5

Total run time(s) 7.08 6.97 10.80 10.55 27.46 23.60 17.81 18.50 18.77 24.64
of planning cyc. 27 33 46 52 107 46 48 46 51 60
of control cyc. 27 33 46 52 107 46 48 46 51 60

Avg. time of planning cyc.(s) 0.11 0.07 0.09 0.07 0.10 0.13 0.10 0.10 0.11 0.11
Avg. time of control cyc.(s) 0.15 0.14 0.14 0.14 0.15 0.38 0.27 0.31 0.26 0.29
Avg. control frequency(Hz) 3.82 4.74 4.26 4.93 3.90 1.95 2.70 2.49 2.72 2.44

Avg. tilted angle(deg) 7.73 6.63 8.93 8.99 13.99 NA NA NA NA NA
Total # of traj. switches 5 3 1 7 13 6 8 17 12 10

of traj. switch(traj. infeas.) 2 0 0 2 5 2 3 6 4 3
of traj. switch(better traj.) 3 3 1 5 8 4 5 11 8 7
of control cyc. from Pntc. 0 0 0 0 0 38 38 37 40 51

Here the ABB robot has to transfer a yellow water cup to the goal pose, avoid

a static object (the table) and the Barrett WAM, which is in a repetitive motion

mimicking a human worker doing pick-and-place tasks. The motion of Barrett WAM

is unknown to the ABB robot. The joint angles and velocities of the ABB robot and

Barrett WAM are updated at 10 Hz and 250 Hz respectively during sensing cycles.

Under the task-constrained RAMP with only one subpopulation Ptc main of 20

(evolving) trajectories, the ABB robot successfully finished the task without colli-

sion in 16 out of 20 consecutive program runs. The failures were mostly because the

robot did not switch the trajectories quickly enough, which could be improved with

increased control frequencies. Fig. 44 shows the motion snapshots of 3 successful pro-

96

gram runs. Table 9 summarizes the experimental statistics. The accompanying video

shows all 5 runs. It can be seen that the ABB robot has to adapt to the moving Bar-

rett WAM by switching trajectories multiple times while maintaining the end-effector

pose constraints. A trajectory switch can happen either because the trajectory being

executed becomes infeasible as a result of the dynamic obstacles or because a better

task-constrained trajectory with a lower overall cost appears in the population as the

result of online trajectory optimization in planning cycles. It is also clear that in

order to avoid the moving WAM, the ABB robot sometimes tilted its end-effector a

bit further away from the vertical direction to take advantage of the soft constraints.

The actual trajectories that the ABB robot executed were quite different in dif-

ferent program runs, which reflected the global nature of the RAMP algorithm and

demonstrated the intra-population real-time adaptiveness. For example, in run 1,

the ABB robot first moved sideways to wait until the WAM passed before it started

moving towards the goal. In run 2, the ABB robot avoided the WAM by elevating

the end-effector. In run 3, the ABB robot operated in a space that was far away from

the WAM, and as a result the number of trajectory switches is fewer than in the other

program runs (Table 9).

As shown in Table 9, the task took about a total of 10 secs to finish. The average

tilted angle (computed as max{roll, pitch}) is about 10 degs, within the specified

range. One planning cycle and one control cycle took about 0.1 secs and 0.15 secs

respectively, resulting in an average of 4 Hz control frequency.

97

Figure 45: We used ABB IRB 6-axis robot with a 3-finger Yale OpenHand [74]. A
person moves the box using the pole attached to the box to disrupt the robot motion.
The top surface of the white box is designated as a safe spot to place down the cup.

Figure 46: Transferring the water cup with a dynamic obstacle. Ptc main, Ptc temp
and Pntc are used. Non-task-constrained motion is not triggered in subfigure (a) and
triggered in (b).

6.7.2 Conflict Resolution with Ptc main, Ptc temp and Pntc

We constructed an experiment where the task-constrained RAMP had to use all

three subpopulations, Ptc main, Ptc temp and Pntc, to achieve conflict resolution. Each

subpopulation had 10 trajectories. Fig. 45 presents the overall setup. A white box

98

was placed at a flat place near the robot starting pose, its top was designated as a

temporary, safe place for the robot end-effector to put down the cup if needed, and

the corresponding arm configurations were determined as those of task-constrained

temporary goals gtc temp. A box moved by a person was used as a dynamic obstacle

and its pose was streamed at 100Hz by an external vision tracking system.

When the dynamic obstacle was not moved by the person, the robot arm perceived

this via online sensing, and hence just started moving the cup and reaching the final

goal pose without any behavior of obstacle avoidance or conflict resolution. Fig. 42

shows the snapshots of the motion. This execution of the overall task serves as a

baseline.

When the obstacle was being moved, the robot performed interesting motions of

obstacle avoidance and conflict resolution using Ptc temp and Pntc as shown in Fig. 46.

The axis with color bars in Fig. 46 indicates the decomposition of the subpopulation

usage in the whole process of the motion. The blue bar indicates motion from Ptc main,

the green from Ptc temp and the yellow from Pntc. In Fig. 46(a), the robot arm

sensed that the box was nearby, avoided the box and finally reached the final goal

pose without temporarily placing down the cup or using the non-task-constrained

trajectories from Pntc. The robot started by using trajectories from Ptc main to try

to reach the final goal directly and it had to switch between Ptc main and Ptc temp to

avoid the obstacle with the cup still grasped in hand. As the obstacle moved away

after control cycle 86, the robot had a clear path to reach the final goal. On average,

the control frequency is about 6.5 Hz, and the time of one control cycle is 0.12 secs.

On average, the tilted angle of the cup is 13.4 degs.

99

Fig. 46(b) shows more interesting robot motion for conflict resolution using Pntc.

At the beginning of the motion, the robot perceived that the box obstacle was blocking

all the trajectories in Ptc main, and therefore started to head to the temporary goal

with trajectories from Ptc temp. Since the box was constantly blocking Ptc main, the

robot reached the temporary goal gtc temp (the end of trajectories in Ptc temp) at control

cycle 24, and chose to put down the cup temporarily. Hence, the robot was released

from the task constraints and was able to conduct non-task-constrained motion to

avoid the obstacle using Pntc from control cycles 24 to 108. The robot next came

back to pick up the cup and reached the final goal at control cycle 205. On average,

the control frequency is about 4.1 Hz, and the time of one control cycle is 0.21 secs.

The average tilted angle is 12.5 degs along the task-constrained part of the executed

trajectory.

The different robot motion behaviors shown in Fig. 42 and Fig. 46 are results

achieved by our algorithm based on online sensing and the status of the subpopula-

tions. As shown in Fig. 42, if Ptc main contains trajectories good for both obstacle

avoidance and reaching the final goal, the robot will use it and directly go to the

final goal without using Ptc temp or Ptc ntc. As shown in Fig. 46(a), if the coordi-

nation of Ptc main and Ptc temp helps avoid the obstacle and also maintain the task

constraints, the robot will try to switch the trajectory or alternate between subpop-

ulations and reach the final goal without having to place down the cup. As shown in

Fig. 46(b), if no task-constrained trajectories satisfying both obstacle avoidance and

task constraints at the same time, and the conflicts exist for a long time, the mo-

tion to put down the cup at the temporary goal is triggered, and the robot conducts

100

non-task-constrained motion to avoid the dynamic obstacle. Task-constrained RAMP

continuously improves the trajectory population, and when the obstacle moves away,

the robot resumes task-constrained motion from Ptc main again.

6.8 Experiments of Closing a Drawer

Figure 47: Motion snapshots in the task of closing a drawer. The simulated ABB
robot is in orange. Each row corresponds to one program run. Last two rows show the
same run in simulation and real world. The yellow bottle on the real robot indicates
the end-effector pose.

The task is first run in simulation, where the ABB robot pushes the blue box

until it is between two other objects to mimic the task of closing a drawer. During

the whole motion, the robot has to avoid the static objects and a UAV of motion

unknown to the robot, which flies from left to right and may interfere with the task

of pushing the blue object. Gazebo broadcasts the states of the ABB robot, the UAV,

and the object poses at 50 Hz. The start end-effector pose is [0.3, 0.2, 0.2, 0, 0,−1.57],

and the goal pose is [0.3,−0.3, 0.2, 0, 0,−1.57]. Position and orientation are in m and

rad. The task constraint is C = [1, 0, 1, 1, 1, 1]T . In the simulation runs, all three

subpopulations (Ptc main, Ptc temp and Pntc) were used by task-constrained RAMP and

each contained 10 trajectories.

101

(a) Water cup run 1 in real exp. (b) Drawer run 2 in real exp.

(c) Drawer run 2 in simulation. (d) Drawer run 1 in simulation.

Figure 48: Joint angles. (a) and (b) were obtained from real experiments. (c) and
(d) were from simulation.

In order to give the robot maximum manoeuvring space, the temporary task-

constrained goal gtc temp configurations were chosen as those that enable the end-

effector to reach the starting pose. However, as shown in the experiments, the robot

directly switched to non-task-constrained motion to resolve the conflicts since they

were so severe that all the task-constrained trajectories in Ptc main and Ptc temp had

predicted collisions.

The ABB robot successfully finished the task without collision in 20 consecutive

program runs. Fig. 47 shows the motion snapshots of two successful runs, and Table

9 summarizes the statistics from five runs of experiments. The accompanying video

shows all 5 runs. It shows that the robot started by pushing the blue box, but quickly

102

it sensed that the UAV was flying towards it. As the result, the robot stopped pushing

the box for the time being and switched to non-task-constrained trajectories to avoid

the UAV. When the UAV was far away, the robot moved back to resume pushing the

box.

Note that the blue box being pushed was also considered as a static obstacle that

the robot had to avoid when the robot moved away from pushing and came back to

continue the pushing. Fig. 47(c) shows the real robot executing the same trajectories

executed in the simulation run 2 (Fig. 47(b)). We used the attached bottle to visualize

the end-effector poses (the bottle should stay upright during pushing). It can also be

seen from Fig. 47 and the accompanying video that task-constrained RAMP is able

to find different motions in response to the same UAV motion pattern, thanks to the

global and stochastic nature of our algorithm.

As shown in Table 9, the robot spent the majority of the control cycles executing

non-task-constrained trajectories from Pntc to avoid the UAV, which demonstrated

the importance of conflict resolution. Without the subpopulation Pntc, the whole

population of robot trajectories would converge to the end-effector straight-line mo-

tion to only fulfill the task constraints, and the robot would not be able to adapt to

the unexpected UAV motion.

6.9 Discussion and Performance Improvements

As shown in Fig. 44, Fig. 47, and the accompanying video, the ABB robot some-

times had some unnecessary motions rather than directly driving to the goal when

it was close to the goal, or the robot took a relatively long time to come back and

103

continue pushing the drawer after it moved away. This could be due to that the

population was still not diverse enough to contain more efficient trajectories. Since

RAMP is inherently parallel, and by leveraging massive parallelization on GPUs, the

processing speed can be vastly improved, and a larger population of trajectories can

be accommodated to improve the performance.

Fig. 48 shows the joint angles of a few program runs. We can see that the joint

motion obtained from real experiments is not as smooth as from the simulation in

Gazebo – note that Fig. 48(b) and (c) are both from the same run 2 of the drawer case.

There are two main reasons for this. (1) When switching a trajectory, currently the

real robot controller has to cancel the current control set point and apply a new one,

and this could result in the real robot slows down (or stops) before the new control set

point takes effect [3]. Using Externally Guided Motion (EGM) from ABB can provide

more smooth transitions when there are trajectory switches [1]. (2) Each control

cycle took 0.1 to 0.3 secs to compute, and thus the robot might be at a noticeably

different state compared to the state used for planning the trajectory switch earlier

in the control cycle. Again, making task-constrained RAMP more efficient through

parallel processing could resolve the issue. With greater computation speed, the time

threshold for imminent collision can be reduced with more accurate prediction of

obstacle motion and a strategy that fully exploits the robot acceleration capabilities.

6.10 Summary

In this chapter, we extend the RAMP framework by incorporating task constraints,

which enables a robot manipulator to perform tasks with constraints on its end-

104

effector effectively in unforeseen dynamic environments. The task-constrained RAMP

algorithm is validated in different example tasks and in different dynamically un-

known environments. The introduced algorithm is demonstrated to be able to resolve

conflicts between satisfying task constraints and avoidance of unexpected dynamic

obstacles seamlessly through real-time adaptiveness.

CHAPTER 7: REDUCING POSE UNCERTAINTY UNDER COMPLEX
CONTACTS VIA FORCE FORECAST

Robotic manipulation requires robots interacting with the physical world through

making contacts. Contacts are important for robotic grasping, in-hand manipulation,

assembly [22, 103, 132]. These contacts are typically complex and occur at multiple

regions at the same time (see Fig. 2 for an example). The complex nature of such

contacts makes many contact-rich manipulation tasks challenging. The uncertainty

associated with the object pose can easily make any predefined manipulation pro-

cedures invalid. On the other hand, information of contacts is useful for reducing

uncertainty.

In this chapter, we introduce a novel force forecast approach that relates the real

world force sensing to the simulated world to enable reduction of pose uncertainty.

This approach corrects the pose uncertainty in a real-world robotic assembly or ma-

nipulation task through finding the contact force in simulation that best matches the

measured contact force in real-world and adjusting the corresponding relative pose

of the parts to reduce uncertainty. Our approach does not make assumptions about

contact locations or pre-define any contact types. It also does not have any restriction

on the shape of peg and hole. Contact force forecast is achieved by first leveraging a

model-based haptic simulation algorithm [129] that generates the initial contact force

and next relating this force to the real contact force through calibration based on

106

force sensing. An interesting finding is that effective calibration can be achieved with

a simple regression model trained using a small number of force signals collected in

real world.

We apply this force forecasting approach to reducing pose uncertainty in challenging

two-pin and three-pin peg and hole assembly tasks. See Fig. 2 for an example. The

pegs and holes are of arbitrary and rather complex shape, and the assembly tasks

often have complex multi-region contacts. Real-world experiments demonstrate that

the assembly tasks can be accomplished with our approach and a compliant robot.

7.1 Related Literature

There have been continued research efforts on representing and computing contact

states, sensing contacts, and reducing uncertainty in robotic assembly tasks.

Contact representation and state computation : How to systematically rep-

resent contacts and compute possible contact states has been an active research topic.

Pioneering work investigated representations of contact states between polyhedral

objects [135] and curved objects [116]. Such contact state information is useful for

planning robot motion compliant to contacts [40] or simulating haptic response [71].

A graph-based contact transition representation can also be automatically generated

[115, 50], and it can be used for contact-based state estimation [68] or reducing un-

certainty in assembly tasks via contact state transitions [103]. These approaches are

built upon the concepts of principal contacts, which are formed by combining certain

primitive contacts. However, it is practically difficult to identify in real-time such

contacts that may occur simultaneously at multiple regions.

107

Direct contact sensing : With touch sensors, robots can directly detect contacts,

localize contact areas, and parse local contact information. For instance, a rigid touch

pad installed on the robot end-effector enables a robot arm to track a rope for tactile

servo [65]. More recently, the soft touch sensors (such as GelSight [141] and BioTac

[113]) attached to the robotic hands can passively conform to contact areas and

directly capture tactile images. Rich contact information embedded in these images

has been shown to be useful for many tasks, for example grasping slip detection [21],

object property perception [144], force estimation [72] and so on. However, when the

robot holds an object (or a tool) to interact with other objects in assembly tasks

or tool-based manipulation tasks, it is practically not feasible to cover the objects

(or tools being held by the robot) with many touch sensors. In such cases, contact

information can only be indirectly obtained.

Indirect contact sensing : Force/torque (F/T) sensors installed at the wrist of

a robot arm or joint torque sensors are usually used for this purpose. External con-

tacts or collisions with the environments can be detected if the sensor readings exceed

a threshold. Assume knowing where contacts would happen, there are methods to

achieve object tracking and state estimation [139], object modeling or reconstruc-

tion [20], and tool calibration [46, 66] with touch sensing alone or in combination

with vision. However, the assumption of known contact locations is restrictive. An

approach to relaxing such an assumption is presented in [140], where a data-driven

method is used to classify the contact types online based on F/T sensor readings.

From the contact type information, correct contact constraints can be imposed, and

object pose estimation can be made effective. However, the contact types were prede-

108

fined based on some contact primitives, and it is difficult to generalize the approach

to more complex contact scenarios.

Robotic assembly tasks: The rich contact information (mostly sensed indirectly)

can be leveraged to reduce object pose uncertainty. Contact transitions via robot

compliant motion (such as [27, 103, 132, 114]) have been shown to be useful to re-

duce uncertainty and accomplish some peg-in-hole tasks. Analytical approaches that

actively control the robot motion based on force feedback are also effective [18, 47],

but they require task-specific derivations and have restrictive assumptions on object

geometry. Assume that a peg is aligned with the hole, localization of the hole areas

(position uncertainty) can be achieved with visual servo [51] or exploration search

motion [90, 123]. Reducing orientation uncertainty is investigated in [140] but it has

restrictive assumptions on predefined contact types. More recently, reinforcement

learning approaches (such as [51, 119]) also showed promising results. However, the

learned policy is task-specific, and it typically requires significant training with robot

hardware to be transferred to a new task.

There is also existing work focusing on how to estimate or reconstruct forces, for

example through learning [113] or inverse finite element methods [72] to relate tactile

sensing data (direct contact sensing) to contact forces. However, how to relate contact

forces to reduction of relative pose uncertainty of contacting parts in multi-region

complex contacts is still a largely open problem.

109

7.2 Uncertainty Reduction via Force Forecast

An overview of uncertainty reduction via force forecast is presented in Fig. 49.

Measured relative pose Tm between objects (for assembly) or the robot hand and

object (for manipulation) is subject to uncertainty, and our goal is to reduce its

uncertainty based on the measured contact force fm. Due to uncertainty in Tm, it may

not be a contact pose (i.e., Tm can correspond to an interpenetration or non-contact

between the objects). A contact pose Tc neighboring to Tm is thus generated in the

model (i.e., simulated) world, and the corresponding contact force fc is obtained by a

model-based haptic simulation algorithm. fs is next obtained by calibrating fc using

a data-driven learning approach. If fs matches fm, Tc is the more accurate estimate of

object pose. Otherwise, another contact pose can be generated to continue searching

for fs that matches fm. The model-based haptic simulation and data-based force

calibration form the overall force forecast.

Robot with force

sensors holding an

object in contact

fm ≈ fs ?

Haptic Simulation

Relating Tm to

contact pose Tc and

corresponding fc

Force Calibration

Map fc to fs

by learning

Tc is more

accurate

Tm

fm

no

yes

fc
fs

Figure 49: An overview of pose uncertainty reduction via force forecast, which in-
cludes haptic simulation and force calibration.

We next explain the detailed approach.

110

7.2.1 Force Forecast

Consider two objects p and h for contact interaction in simulation. Without loss

of generality, we assume object p moves along trajectory τ and object h is fixed at a

measured pose wTh, where w indicates the world frame and τ includes a sequence of

poses of object p. wTh is subject to sensing uncertainty. We further assume object

mesh models of p and h are available and denote them as Mp and Mh respectively.

Object mesh models of industrial parts or 3D printed parts typically are easy to

obtain. Object mesh models can also be built automatically based on perceived

appearance [117, 77].

Haptic Simulation: A haptic simulation algorithm is used to generate initial con-

tact force fc in simulation given τ , wTh and object models Mp and Mh. We leverage

recent progress in haptic simulation presented in [129] for this purpose. This approach

uses object models represented as sphere trees, which provide a uniform representa-

tion for handling complex contact states. Sphere tree models can be automatically

constructed from mesh models [4].

For simplicity, in the rest of the chapter, we further use Mp and Mh as general

notations to indicate both the mesh models and the sphere-tree models built upon

the mesh models of objects p and h respectively. See Fig. 50(a) for a sphere tree

model of a two-pin peg.

As object p moves on trajectory τ , p contacts h (fixed at wTh) at time t with

pose wTp. Due to uncertainty in pose wTh, Mp may penetrate into Mh (or not in

contact with Mh) in simulation. A physically correct contact pose wT ′p is obtained by

111

minimizing elastic energy E stored in a virtual spring connecting object p at wTp and

at wT ′p while satisfying the non-penetration constraints [129]:

minimize: E(wTp,
w T ′p) (5)

subject to: Mp ∩Mh = ∅ (6)

With the sphere-tree models of objects, the non-penetration constraints in equa-

tion (6) are expressed uniformly as distance constraints between spheres in Mp and

Mh, regardless of the shapes of the objects. This optimization problem is solved

using quadratic programming with linearized constraints, and it can be computed

efficiently in about 1 kHz even under complex contact states [129]. The resulting wT ′p

corresponds to the object p staying in contact with object h at time t (instead of

penetrating into h in simulation).

The position difference between wTp and wT ′p is used to generate the contact force

fc based on the Hooke’s law (with estimated stiffness coefficients). See Fig. 50(b) for

an illustration.

Force Calibration: A data-driven regression model FC is used to take the simu-

lated contact force fc as an input and outputs a corresponding force fs that matches

a measured force fm, when the objects p and h are in contact.

This calibration is necessary because a discrepancy exists between initial contact

force fc in simulation and the corresponding measured forces fm in real world because

of the following reasons:

1. Sphere tree models approximate the shapes of objects.

112

Figure 50: Left: A two-pin peg represented using Octree level 5. Right: The red
object is peg at wTp interacting with the hole (gray). The yellow object is a virtual
peg at a physically correct contact pose wT ′p that satisfies the non-penetration and
time history constraints. The pose difference between the red and the yellow pegs is
used to compute initial contact force fc.

2. Linearized contact constraints are used to solve haptic simulation with quadratic

programming.

3. Stiffness coefficients are only estimated based on the Hooke’s law.

We trained a simple regression model with a small number of sensed forces collected

in real-world experiments to map initial contact force fc to fs, which better matches

measured force fm. Such calibration can be done effectively under complex contact

states, as shown in our evaluation (Section 7.5 and 7.6).

We next explain how to apply force forecast to reduce pose uncertainty.

7.2.2 Uncertainty Reduction

As mentioned earlier, we assume wTh is subject to uncertainty. wTh can be further

decomposed as wTh = Tnom ∆T , where Tnom denotes the nominal pose of object h

in the world frame, and ∆T denotes the uncertain transformation of the pose in the

local frame of object h. Tnom is known, for example from initial system calibration or

113

vision-based pose estimation. The goal is to estimate ∆T ∈ SE(3).

Algorithm 6 summarizes how to estimate ∆T by searching in forces computed

from different contacts. Consider a candidate set C = {ci}, i = 1 . . . n, where ci

is a set of parameter values representing the i-th candidate ∆Ti for ∆T . C can be

systematically generated by discretizing the parameters in their ranges of uncertainty.

For each ci ∈ C, the contact force fc encountered during the execution of trajectory τ

is computed in simulation. From force calibration, The corresponding fs that matches

the measured force fm is selected, and the corresponding set of parameter values c∗

is returned for the best estimation of ∆T . fs is computed from FC as explained in

Section 7.2.1.

Algorithm 6: Uncertainty Reduction

input : Pose candidate set C, measured contact force fm, object p trajectory τ ,
models Mp and Mh, calibration model FC;

output: estimated pose c∗;
1 F ← ∅;
2 for each c ∈ C do
3 move object h in simulation to wTh computed with uncertainty parameters c;
4 move object p along τ in simulation until contact;
5 compute fc with wTh, τ,Mp,Mh according to Section 7.2.1;
6 obtain fs by calibrating fc using FC;
7 F ← F ∪ (fs, c);

8 end
9 search in F for fs closest to fm and return its corresponding c as c∗;

7.3 Application to Assembly

We next apply pose uncertainty reduction via force forecast to complex multi-peg-

in-hole tasks with pegs and holes of arbitrary shape.

114

7.3.1 Problem Definition

Let p be a peg structure and h be a hole structure, where p may have multiple pins

and h may have multiple corresponding holes (for example, a two-pin or three-pin

peg and hole case). We assume a robot arm is used to hold the peg structure for

insertion, and the hole structure is at a fixed pose in the work space and will not

move during insertion. The relative pose between the peg structure and the hole

structure is computed as hTp = wT−1
h

wTp.

We assume that the peg structure p is rigidly attached to the robot end-effector,

and wTp is accurately known through the robot arm configuration. Whereas, the

configuration wTh of the hole structure is subject to sensing uncertainty, since it can

only be obtained through perception using external sensors.

As described in Section 7.2.2, the objective here is to estimate ∆T =
(Ru Pu

0 1

)
∈

SE(3), which depicts the uncertainty of both position and orientation. In this study,

we assume the peg structure is already near the hole area (i.e., Pu is small and close

to 0) and focus on reducing the orientation uncertainty Ru (as motivated in related

literature). We further express Ru = R(α)R(β)R(γ), where α, β, γ represent Euler

angles respectively.

We use c = {α, β, γ} to represent the uncertainty parameters of ∆T for simplicity.

Since the uncertainty is typically limited, α, β, γ are also within small ranges (such as

±15◦). Hence, a candidate set C can be generated by enumerating α, β, and γ with

a fine discretization.

We further assume that the robot holding the peg structure is equipped with a

115

force sensor, and when the peg structure contacts the hole structure, a contact force

fm can be sensed. Table 10 summarizes what we assume and do not assume. No

vision sensing is used for uncertainty reduction.

Table 10: Summary of what are assumed and not assumed on pose uncertainty re-
duction in multi-peg-in-hole tasks.

Assumed Not assumed

Robot with force sensing

Mp and Mh available Contact location
wTp is accurate Contact types
wTh is subject to uncertainty

Tnom is available and Pu is 0

7.3.2 Approach

See Algorithm 7. We denote the pose of the peg structure when the peg structure is

inserted into the hole structure (i.e. when assembly is completed) as a goal pose hTg.

The goal of a peg-in-hole assembly task is to put the peg structure at hTg. Note that

hTg is a sensed pose computed based on the current estimation of the hole structure

pose, which is subject to uncertainty.

A nominal trajectory τ that moves the peg structure towards the sensed goal pose

hTg for insertion can be generated. The motion consists of orienting the peg structure

to align it with the hole structure in its sensed pose and Cartesian space straight-line

motion for directly inserting the peg structure. If the uncertainty is sufficiently small,

insertion can be achieved directly. Otherwise, the motion of the peg structure will

be blocked by some contacts, and the contact force fm is obtained from robot sensor

(after the contacts are stabilized). Algorithm 6 (Section. 7.2.2) is next invoked to

analyze the uncertainty based on measured force fm, uncertainty parameter candidate

116

set C, trajectory τ , object models Mp and Mh, and the calibration model FC.

With the estimated pose uncertainty c∗, a new goal pose hT ′g is computed. The

robot is now put in compliant motion mode to move the peg structure from the

current contact configuration to the newly estimated goal pose hT ′g. The robot motion

(controlled in joint compliance mode), and the contacts already established between

the peg structure and the hole structure will collectively orient the peg structure

towards reaching the orientation of the new goal hT ′g. This can be achieved as long as

the external contact force does not exceed a safety limit. Insertion will be halted if

it is again blocked by the contacts, and another round of uncertainty reduction and

compliant motion can be repeated.

Algorithm 7: Multi-Peg-in-Hole Assembly with Uncertainty Reduction

1 move peg structure to default start pose;
2 generate uncertainty candidate set C for the hole structure;
3 move peg structure to sensed nominal goal pose hTg with trajectory τ ;
4 if hTg is reached then
5 insertion is finished
6 end
7 else // motion blocked by contacts.

8 obtain contact force fm from robot sensors;
9 c∗ ← UncertaintyReduction(C, fm, τ , Mp, Mh, FC);

10 compute new goal pose hT ′g based on c∗;

11 compliantly transit peg structure in place to reach the orientation of hT ′g;

12 move peg structure to reach position of hT ′g;

13 if hT ′g is reached then
14 insertion is finished
15 end
16 else
17 insertion is halted
18 end

19 end

117

7.4 Overview of Experimental Evaluation

Our experimental setup is shown in Fig. 2. A Franka Panda 7-DOF robot ma-

nipulator is used to hold the peg structure, and another ABB IRB 120 6-DOF robot

manipulator is used to hold the hole structure. We 3D printed the pegs and the holes

used in the experiments. See Fig. 51 for their shape. Note that the irregular shape

of the pegs and the holes make the contacts complex. Each hole is 2mm larger than

the peg. The two robot arm bases are calibrated.

Figure 51: Pegs and holes used in the experiments.

The orientation of the hole structure can be controlled precisely by the ABB arm

and used as the ground truth of the uncertainty for evaluating our approach. Note

that this information is not available to the Panda robot before or during the insertion.

The uncertainty range of α, β, γ considered in the experiments is ±15◦. The pose of

the hole structure is fixed (by the ABB arm) during each insertion.

The Panda robot is equipped with joint torque sensors for contact detection and

force estimation [2]. The force threshold for detecting external contacts is 15 N

throughout the experiments. The estimated forces are expressed in the Panda K

frame (near the wrist) [2] and transformed to the world frame through robot kine-

118

matics. The force captured by the Panda robot sensor after the contacts are stabilized

is used as the measured contact force fm. In simulation, the force computed when

the peg structure penetrated about 2cm into the hole structure is used as the contact

force fc.

7.5 Two-Pin Peg-in-Hole Assembly

We discretize α, β, γ each with a resolution of 2◦ over the range of ±15◦, which

leads to 3, 839 uncertain poses of the hole structure, taking into account the inverse

kinematics of the ABB arm holding the hole structure. The candidate set C used in

Algorithms 1 and 2 are created from the majority of those uncertain poses, while the

remaining smaller number of uncertain poses form the set Z for creating samples to

train the force calibration model FC.

To train FC, we use the ABB robot to move the hole structure to an uncertain

pose in Z and the Panda robot to move the peg structure to conduct a direct insertion

based on the nominal pose of the hole structure. With the computed force fc and the

measured force fm, we now have a tuple (c, fc, fm) for training. By exhausting the

uncertain poses in Z, we have a list of tuples for training FC.

7.5.1 Contact Reasoning and Uncertainty Reduction

Table 11 shows the uncertainty reduction results. A fully connected neural network

with 2 hidden layers (32 neuron each) with Rectified Linear Unit (ReLu) activation is

used as the regression model for force calibration. Mean absolute errors between forces

are used as the loss function. Stochastic gradient descent (SGD) with momentum is

used for training. ∆α, ∆β and ∆γ are the absolute errors (in ◦) between the predicted

119

α, β, and γ and their ground truth values computed on the test split of the dataset.

It can be seen that ∆α and ∆β are reduced from 30◦ (range of α and β is ±15◦) to

about 5◦ ± 5◦ (mean ± standard deviation). This confirms the effectiveness of using

computed realistic contact forces to reason about the actual orientation of the hole.

As shown in Table 11, force sensing alone is not effective for reducing the uncertainty

about the yaw (∆γ). This is because the contact forces are not distinctive enough,

and can be improved by equipping the robot with a camera to capture the top-view

images of the hole during insertion.

It is also interesting to see from Table 11 that the regression model can be trained

with a small number of contact forces collected in the real world, while still achieving

roughly the same level of uncertainty reduction. 1% split indicates about 40 data

samples for training and the rest for testing.

Table 11: Uncertainty reduction in two-pin assembly. A fully connected neural net-
work (32 − 32 − 3) with 2 hidden layers (32 neurons each) with ReLu activation is
used as the regression model to predict 3D forces. Trained with 300 epoches.

Training split (%) ∆α(◦) ∆β(◦) ∆γ(◦)

1 5.58 ± 5.83 5.43 ± 5.28 11.10 ± 8.13

2 5.64 ± 5.92 4.21 ± 5.31 11.72 ± 7.86

10 5.50 ± 5.99 4.37 ± 5.64 10.56 ± 8.13

30 5.71 ± 6.31 4.99 ± 6.76 10.71 ± 7.94

50 5.49 ± 6.23 4.71 ± 6.13 11.01 ± 8.22

7.5.2 Reducing Regression Model Complexity

We tested regression models of different complexity to understand which model is

sufficient to make the forces realistic. Table 12 shows the results with different neural

network structures. 8-8-3 indicates a fully connected neural network with 8 neurons

120

for each hidden layer, and outputs 3D forces (using ReLu activation). As we can see

from Table 12, roughly the same level of uncertainty reduction can be achieved even

when the neural network degenerates to a simple linear regression model. Fig. 52

visualizes the total error of (∆α + ∆β) for γ = 7◦ in a heat map (using the linear

regression model and 1% of data for training). About 85.5% of the testing poses have

total errors < 15◦. The poses still subject to large uncertainty can be further reduced

by conducting another round of contact and reasoning.

Table 12: Comparison of different regression models in two-pin assembly. ∆α, Trained
with 300 epoches.

Train split % Structure # of parameters ∆α(◦) ∆β(◦) ∆γ(◦)

50 8-8-3 155 5.48 ± 6.48 4.79 ± 6.24 11.37 ± 8.31

50 8-3 99 5.48 ± 6.28 5.12 ± 6.77 11.08 ± 8.42

50 3 21 5.45 ± 6.17 4.44 ± 5.80 10.96 ± 7.68

10 3 21 5.36 ± 5.69 4.68 ± 6.19 11.50 ± 8.48

1 3 21 5.49 ± 5.98 4.65 ± 5.65 11.31 ± 8.18

0.5 3 21 6.64 ± 5.96 7.05 ± 6.38 11.50 ± 8.17

Our results presented here suggest an interesting finding. Force calibration (map-

ping from haptic simulation algorithm outputs to realistic forces) is as simple as a

linear regression model and it can be trained effectively with a small number of forces

collected in the real world (about 40 force signals). One reason is that forces com-

puted by the haptic simulation algorithm are precise to the extent that they can be

used as good initial guesses to predict the realistic forces.

Through combining a model-based haptic simulation approach and a data-driven

regression model for capturing the unmodeled residual information synergistically,

our approach is able to compute realistic contact forces from simulated contacts that

correspond to real contacts, and the uncertainty associated with the roll and pitch of

the hole is reduced.

121

Figure 52: Total errors of (∆α + ∆β) for γ = 7 (◦) visualized in a heat map (using
the linear regression model and 1% of data for training).

7.5.3 Robotic Insertion

By reducing pose uncertainty, multi-peg-in-hole insertion can be achieved via com-

pliant transitions (with the Panda robot controlled in joint compliance mode). Fig.

53 shows snapshots of an insertion, and the video accompanied to [79] shows the

robot motion. Table 13 summarizes ten robotic insertion experiments. It can be

seen that, due to pose uncertainty of the hole structure, no direct insertion can be

achieved based on the nominal goal pose. By estimating pose uncertainty through

contact to obtain a new goal pose with reduced uncertainty, 8 out of 10 insertions

were accomplished by compliant motion.

Two insertions failed for poses 9 and 10. The main reason is that the external force

exceeded the safety limit (15 N) during the robot compliant transition. Note that the

122

joint compliance controller (of the Panda robot) that we used in these experiments

only passively allows the contact forces to be within a fixed limit while pursuing

a joint position-controlled goal. A more sophisticated force control strategy that

actively regulates contact forces (such as [114]) can be integrated to achieve more

robust compliant robot motion and make the insertion process more successful.

Figure 53: Motion snapshots of two-pin insertion with uncertainty reduction for the
goal pose and compliant motion. Ground truth (α, β) = (9,−13). Predicted (α, β) =
(7,−15). γ = −1 (◦). (1) indicates the contact states encountered during direct
insertion. (2) and (3) indicate the compliant execution of the robot motion under the
contacts established in (1). (4) shows the inserted peg structure.

7.6 Three-Pin Peg-in-Hole Assembly

We further tested our approach on a three-pin peg-in-hole assembly task. We

discretize α and β with a resolution of 2◦ over a range of±15◦ for each and with γ = 0◦.

This results in 240 uncertain hole orientations, considering the inverse kinematics of

the ABB robot, which are used to form the candidate set C and also the set Z for

123

Table 13: Summary of 10 robotic insertion experiments with goal-pose uncertainty
reduction.

Case
Pose uncertainty (α, β in ◦)

Direct Compliant
True Predicted

1 (9,−13) (7,−15) × X

2 (7, 1) (3, 1) × X

3 (11,−11) (13,−15) × X

4 (9,−9) (9,−7) × X

5 (−11,−7) (−15,−3) × X

6 (9, 1) (5, 1) × X

7 (−13, 7) (−15, 1) × X

8 (−7,−13) (−13,−7) × X

9 (7, 3) (9, 11) × ×
10 (−5,−7) (−15,−5) × ×

training the force calibration model FC. Table 14 shows the pose estimation results

using a fully connected neural network with 2 hidden layers and ReLu activation for

force forecast. Each hidden layer has 16 neurons and the network outputs 3D forces.

It can be seen that both ∆α and ∆β are reduced using the introduced approach

with calibrated force fs, and such calibration regression model (FC) can be trained

effectively with 48 (20%) force signals collected in the real world. About 81.6% of the

testing poses have total errors (∆α+ ∆β) fewer than 15◦ (using the regression model

with structure 16-16-3 and 20% of data for training). This confirms the effectiveness

of our approach.

Table 15 compares the effectiveness of different regression models. It can be seen

that, more complex regressions models can better calibrate the forces in three-pin

assembly tasks, which have more complex contacts comparing to two-pin assembly

tasks. As shown in Table 15, ∆α may still be too large. It is likely that the single

124

contact force signal captured (after the contacts stabilized) is not distinctive enough

under such complex states. Force series data captured in the time window between

initial contacts and the stabilized contacts can be further investigated to improve

the performance. Fig. 54 shows an example three-pin peg-in-hole assembly through

compliant insertion with reduced goal pose uncertainty. The video accompanied to

[79] shows the robot motion.

Table 14: Uncertainty reduction in three-pin assembly. A fully connected neural
network (16 − 16 − 3) with 2 hidden layers (16 neurons each) with ReLu activation
is used as the regression model to predict 3D forces. Trained with 1, 000 epoches.

Training split (%) ∆α(◦) ∆β(◦)

10 7.62 ± 6.63 4.72 ± 6.25

20 6.94 ± 6.73 3.42 ± 4.22

40 7.21 ± 6.97 3.35 ± 4.16

50 7.02 ± 7.02 4.13 ± 4.77

Table 15: Comparison of regression models in three-pin assembly. Trained with 1, 000
epoches.

Train split (%) Structure ∆α(◦) ∆β(◦)

50 16-3 8.72 ± 7.62 3.66 ± 3.58

50 3 7.91 ± 6.62 3.41 ± 3.52

20 16-16-3 6.94 ± 6.73 3.42 ± 4.22

20 16-3 8.14 ± 7.77 4.15 ± 4.17

20 3 9.91 ± 8.81 5.31 ± 6.25

We also found that the regression model trained for the two-pin assembly case can-

not be directly applied to the three-pin assembly case to achieve similar uncertainty

reduction performance. This is because the regression model captures the information

that is not modeled in haptic simulation but embedded in force data. Such residual

information may be dependent on the object shape, maximum number of contact

125

regions, and also the mutual influence from different contact regions. One could train

a universal and more complex regression model for force calibration based on a large

number of contact states, so that the model might only need to be fine-tuned a bit

when applying it to a new assembly task. However, this would front-load expensive

training without guaranteeing universal effectiveness. Alternatively, we chose to train

a simple and effective regression model for each task, which was done efficiently (with

training time less than 1 min) using a small number of contact forces (about 40 forces)

collected in the real world. Moreover, force data was collected automatically, and the

speed was about 150 contact interactions per hour using our experimental setup.

Figure 54: Motion snapshots of three-pin peg-in-hole insertion via uncertainty re-
duction of the goal pose and compliant transition. Ground truth (α, β) = (9,−7).
Predicted (α, β) = (13,−3). γ = 0 (◦). (1) shows the start of the insertion; (2) shows
the motion blocked by the contacts; (3) shows the compliant transition; (4) shows
the inserted peg structure.

126

7.7 Summary

In this chapter, a novel force forecast approach that relates real-world force sensing

to a simulated world to enable pose uncertainty reduction of objects in contact-

rich assembly/manipulation tasks. Our approach can handle multi-region complex

contacts and makes no assumption about contact locations or any predefined contact

types. It also does not put any restriction on object shapes. We applied this force

forecast approach combined with compliant motion to achieve successful completion

of challenging multi-peg-in-hole assembly tasks.

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

To enable autonomous robotic operations in unknown and unstructured environ-

ments, it is important to have synergized robotic perception and manipulation. In this

dissertation, novel approaches have been introduced to achieve autonomous robotic

manipulation based on perception, and autonomous perception through manipula-

tion.

8.1 Contributions

Manipulation-enabled perception: this dissertation presents a complete frame-

work on how to use perception (tactile or visual) to enable continuum manipulation

of an unknown object in an unknown environment, and also how to achieve object

classification, recognition, shape estimation and appearance-based modeling based on

continuum manipulation.

1. A novel approach is introduced on shape-based object classification and recog-

nition with touch-based continuum manipulation. The introduced approach en-

ables a continuum manipulator to automatically and progressively wrap around

an unknown object based on tactile sensing of contacts in real time. The re-

sulting shapes of the continuum manipulator wrapping around different objects

are captured and used to train an classifier of object categories. In contrast

to existing methods for robot and object interaction under discrete contacts,

128

the introduced method can capture object shape information more efficiently

through whole-arm continuum manipulation.

2. An approach is introduced on estimating the shape of an unknown object based

on touch-driven continuum manipulation. This approach efficiently utilizes the

rich contact information in the motion as the robot progressively wraps around

an unknown object. It fuses contact information and robot shape information

(proprioception) to achieve more accurate shape estimation. The introduced

approach also achieves shape estimation efficiently by actively guiding the robot

to explore and cover unknown areas of the object. The approach is shown to

be both more efficient and more accurate over existing methods for touch-based

object shape estimation.

3. Experimental results presented demonstrate that the shape-based classifier trained

solely from simulation is able to generalize to real-world objects, through using

the robot shape to bridge the virtual world and real world. Since conducting

many real-world continuum wraps can be time-consuming, it is significant that

the classifier trained purely in simulation showed considerable effectiveness in

classifying real objects. This could make classifier training more efficient and

feasible for classifying a large number of categories of many real objects from

touch-based continuum wrapping.

4. A general approach is introduced on progressive object modeling with a con-

tinuum manipulator in unknown and cluttered environments. By interleaving

robot motion planning and perception, a continuum robot with a fixed base is

129

able to gradually maneuver through the unknown space without colliding with

obstacles and sense the unmodeled target object from different viewpoints. The

model of the target object is gradually built as the robot arm moves. The ob-

tained object models can be used for further manipulation, such as grasping

and object retrieval in cluttered environments.

Perception-guided manipulation: this dissertation also contributes to achiev-

ing more flexible and autonomous robotic manipulation based on perception in un-

known or uncertain environments.

1. Real-time adaptive motion planning (RAMP) framework is extended by incor-

porating task constraints, which enables a robot manipulator to perform tasks

with constraints on its end-effector effectively in unforeseen dynamic environ-

ments. The introduced algorithm is able to resolve conflicts between satisfying

task constraints and avoidance of unexpected dynamic obstacles seamlessly by

allowing the robot to change goals on-the-fly through releasing and resuming

task constraints. Thus, more natural robot motion under task constraints is

achieved for improved adaptiveness in dynamically unknown environments.

2. A novel force forecast approach is introduced to relate real world force sensing to

a simulated world to enable pose uncertainty reduction. This approach corrects

pose uncertainty in robotic assembly or manipulation tasks through finding the

contact force in simulation that best matches the measured contact force in real

world and adjusting the corresponding relative pose of the parts to reduce un-

certainty. The introduced approach can handle multi-region complex contacts

130

and make no assumptions on contact locations or any predefined contact types.

This force forecast approach has been applied in combination with robot com-

pliant motion to achieve successful completion of challenging multi-peg-in-hole

assembly tasks.

8.2 Future Work

Manipulation-enabled perception: one interesting extension to current shape-

based object perception with touch-driven continuum manipulation is to relax the

assumption that the target object is immobile, i.e., the object can be moved by the

contacts made between the robot and the object. This introduces new challenges

of how to simultaneously track the object in an unknown environment and still ef-

fectively wrap around it. Such extension is needed for practical object retrieval and

manipulation in unknown and cluttered environments.

Moreover, it is also interesting to investigate planning compliant motion for contin-

uum robots that can actively regulate the contact forces between the robot and the

objects. This extension can further utilize the compliance embedded in continuum

robots, and hence can enable continuum robots to manoeuvre in very cluttered and

confined space, for more dexterous object manipulation in many applications such as

robotic surgeries.

Continuum robots can also be equipped with a mobile base so that object modeling

can be achieved for larger objects more efficiently. SLAM techniques [7] could be

leveraged to simultaneously map the environment and localize the robot base.

The continuum robot hardware can be improved in multiple ways for better results

131

and robustness. For example, longer soft modules with more dense touch sensing

can make the robot better explore the object shape. More sophisticated gravity

compensation should be considered in order to better lift up the robot arm and form

spatial wraps around different areas on the objects. Feedback control and robot

proprioceptive sensors can be used to provide better control of the robot and better

identify the robot’s final shape.

Perception-guided manipulation: for real-time adaptive robot motion plan-

ning, one interesting extension is to explore accommodating very large trajectory

population for enhanced real-time adaptiveness. Large-scale parallel processing tech-

niques can be investigated to achieve real-time performance. Additionally, more

efficient trajectory representation can be investigated to further improve the per-

formance. For example, large trajectory population may be possibly embedded in

neural networks, which may be an efficient data structure to capture a large number

of diverse trajectories, and still maintain constant query time in online control cycles

for real-time performance. More advanced sensing and real-time perception methods

can be incorporated for autonomous selection of temporary task-constrained goals.

Human-robot interaction can also be studied in this general and versatile framework.

The force forecast approach can be further extended to consider time series of

force signals, which should contain more information about contact interaction to

further improve the performance. Moreover, force forecast can be combined with

visual perception for multi-modal uncertainty reduction of object pose uncertainty.

The introduced force forecast approach can be applied to other contact-rich robotic

tasks. For example, robot motion planners can be informed by force forecast to avoid

132

contacts with excessive forces to protect the robot. This approach can also be applied

to tasks involving deformable objects.

133

REFERENCES

[1] Abb externally guided motion. https://github.com/ros-industrial/abb_

libegm. Accessed: 2018-08-29.

[2] Franka control interface. https://frankaemika.github.io/docs/. Accessed:
2019-07-16.

[3] Ros-industrial robot driver specification. http://wiki.ros.org/Industrial/
Industrial_Robot_Driver_Spec. Accessed: 2018-08-29.

[4] Sphere-tree construction toolkit. http://isg.cs.tcd.ie/spheretree/. Ac-
cessed: 2019-07-20.

[5] P. K. Allen and P. Michelman. Acquisition and interpretation of 3-d sensor
data from touch. In Workshop on Interpretation of 3D Scenes, pages 33–40.
IEEE, 1989.

[6] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Bay, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba. Learning dexterous in-hand
manipulation. arXiv preprint arXiv:1808.00177, 2018.

[7] J. Aulinas, Y. R. Petillot, J. Salvi, and X. Lladó. The slam problem: a survey.
In CCIA, pages 363–371. Citeseer, 2008.

[8] A. Bajo, N. Simaan, et al. Kinematics-based detection and localization of
contacts along multisegment continuum robots. Transactions on Robotics,
28(2):291–302, 2012.

[9] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner. Manipulation
planning on constraint manifolds. In International Conference on Robotics and
Automation (ICRA), pages 625–632. IEEE, 2009.

[10] A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann. A potential field
approach to dexterous tactile exploration of unknown objects. In International
Conference on Humanoid Robots, pages 360–366. IEEE, 2008.

[11] M. Björkman, Y. Bekiroglu, V. Högman, and D. Kragic. Enhancing visual
perception of shape through tactile glances. In International Conference on
Intelligent Robots and Systems (IROS), pages 3180–3186. IEEE/RSJ, 2013.

[12] J. Bohg and D. Kragic. Grasping familiar objects using shape context. In 2009
International Conference on Advanced Robotics, pages 1–6. IEEE, 2009.

[13] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesisa
survey. IEEE Transactions on Robotics, 30(2):289–309, 2013.

134

[14] M. Bonilla, E. Farnioli, C. Piazza, M. Catalano, G. Grioli, M. Garabini,
M. Gabiccini, and A. Bicchi. Grasping with soft hands. In International Con-
ference on Humanoid Robots, pages 581–587. IEEE, 2014.

[15] O. Brock and O. Khatib. Real-time re-planning in high-dimensional configu-
ration spaces using sets of homotopic paths. In International Conference on
Robotics and Automation (ICRA), volume 1, pages 550–555. IEEE, 2000.

[16] B. Browatzki, V. Tikhanoff, G. Metta, H. H. Bülthoff, and C. Wallraven. Ac-
tive in-hand object recognition on a humanoid robot. IEEE Transactions on
Robotics, 30(5):1260–1269, 2014.

[17] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI
in Games, 2012.

[18] H. Bruyninckx, S. Dutre, and J. De Schutter. Peg-on-hole: a model based
solution to peg and hole alignment. In International Conference on Robotics
and Automation, volume 2, pages 1919–1924. IEEE, 1995.

[19] A. Byravan, B. Boots, S. S. Srinivasa, and D. Fox. Space-time functional gradi-
ent optimization for motion planning. In International Conference on Robotics
and Automation (ICRA), pages 6499–6506. IEEE, 2014.

[20] S. Caccamo, Y. Bekiroglu, C. H. Ek, and D. Kragic. Active exploration us-
ing gaussian random fields and gaussian process implicit surfaces. In Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 582–589.
IEEE/RSJ, 2016.

[21] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson, and
S. Levine. The feeling of success: Does touch sensing help predict grasp out-
comes? In Conference on Robot Learning(CoRL), 2017.

[22] B. Calli, A. Kimmel, K. Hang, K. Bekris, and A. Dollar. Path planning for
within-hand manipulation over learned representations of safe states. In Inter-
national Symposium on Experimental Robotics (ISER), 2018.

[23] M. Cefalo, G. Oriolo, and M. Vendittelli. Task-constrained motion planning
with moving obstacles. In International Conference on Intelligent Robots and
Systems (IROS), pages 5758–5763. IEEE/RSJ, 2013.

[24] C. Choi and H. I. Christensen. 3d pose estimation of daily objects using an
rgb-d camera. In International Conference on Intelligent Robots and Systems
(IROS), pages 3342–3349. IEEE, 2012.

[25] R. Detry, C. H. Ek, M. Madry, and D. Kragic. Learning a dictionary of proto-
typical grasp-predicting parts from grasping experience. In International Con-
ference on Robotics and Automation (ICRA), pages 601–608. IEEE, 2013.

135

[26] S. Dragiev, M. Toussaint, and M. Gienger. Gaussian process implicit surfaces
for shape estimation and grasping. In International Conference on Robotics and
Automation (ICRA), pages 2845–2850. IEEE, 2011.

[27] S. H. Drake. Using compliance in lieu of sensory feedback for automatic assem-
bly. PhD thesis, Massachusetts Institute of Technology, 1978.

[28] C. Eppner, R. Deimel, J. Álvarez-Ruiz, M. Maertens, and O. Brock. Exploita-
tion of environmental constraints in human and robotic grasping. The Interna-
tional Journal of Robotics Research, 34(7):1021–1038, 2015.

[29] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scara-
muzza. Autonomous, vision-based flight and live dense 3d mapping with a
quadrotor micro aerial vehicle. Journal of Field Robotics, 33(4):431–450, 2016.

[30] R. Gayle, K. R. Klingler, and P. G. Xavier. Lazy reconfiguration forest (lrf)-an
approach for motion planning with multiple tasks in dynamic environments.
In International Conference on Robotics and Automation (ICRA), pages 1316–
1323. IEEE, 2007.

[31] M. P. Gerardo-Castro, T. Peynot, and F. Ramos. Laser-radar data fusion with
gaussian process implicit surfaces. In Field and Service Robotics, pages 289–302.
Springer, 2015.

[32] L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin. Convexly stratified defor-
mation spaces and efficient path planning for planar closed chains with revolute
joints. The International Journal of Robotics Research, 27(11-12):1189–1212,
2008.

[33] K. Huang and T. Hermans. Building 3d object models during manipulation by
reconstruction-aware trajectory optimization. arXiv preprint arXiv:1905.03907,
2019.

[34] R. Ibrayev and Y.-B. Jia. Recognition of curved surfaces from one-dimensional
tactile data. IEEE Transactions on Automation Science and Engineering,
9(3):613–621, 2012.

[35] J. Ilonen, J. Bohg, and V. Kyrki. Fusing visual and tactile sensing for 3-d
object reconstruction while grasping. In International Conference on Robotics
and Automation (ICRA), pages 3547–3554. IEEE, 2013.

[36] S. Ivaldi, N. Lyubova, A. Droniou, V. Padois, D. Filliat, P.-Y. Oudeyer,
O. Sigaud, et al. Object learning through active exploration. IEEE Trans-
actions on Autonomous Mental Development, 6(1):56–72, 2013.

[37] G. Izatt, G. Mirano, E. Adelson, and R. Tedrake. Tracking objects with point
clouds from vision and touch. In International Conference on Robotics and
Automation (ICRA), pages 4000–4007. IEEE, 2017.

136

[38] L. Jaillet and J. M. Porta. Path planning under kinematic constraints by rapidly
exploring manifolds. IEEE Transactions on Robotics (TRO), 29(1):105–117,
2013.

[39] N. Jamali, C. Ciliberto, L. Rosasco, and L. Natale. Active perception: Build-
ing objects’ models using tactile exploration. In International Conference on
Humanoid Robots (Humanoids), pages 179–185. IEEE, 2016.

[40] X. Ji and J. Xiao. Planning motions compliant to complex contact states. The
International Journal of Robotics Research (IJRR), 20(6):446–465, 2001.

[41] Y.-B. Jia and J. Tian. Surface patch reconstruction from one-dimensional tactile
data. IEEE Transactions on Automation Science and Engineering, 7(2):400–
407, 2009.

[42] B. A. Jones and I. D. Walker. Kinematics for multisection continuum robots.
Transactions on Robotics, 22(1):43–55, 2006.

[43] M. Kaboli, D. Feng, K. Yao, P. Lanillos, and G. Cheng. A tactile-based frame-
work for active object learning and discrimination using multimodal robotic
skin. IEEE Robotics and Automation Letters, 2(4):2143–2150, 2017.

[44] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In International Con-
ference on Robotics and Automation (ICRA), pages 4569–4574. IEEE, 2011.

[45] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes, M. Wüthrich,
V. Berenz, S. Schaal, N. Ratliff, and J. Bohg. Real-time perception meets
reactive motion generation. IEEE Robotics and Automation Letters, 3(3):1864–
1871, 2018.

[46] Y. Karayiannidis, C. Smith, F. E. Vina, and D. Kragic. Online contact point
estimation for uncalibrated tool use. In International Conference on Robotics
and Automation (ICRA), pages 2488–2494. IEEE, 2014.

[47] C. H. Kim and J. Seo. Shallow-depth insertion: Peg in shallow hole
through robotic in-hand manipulation. IEEE Robotics and Automation Let-
ters, 4(2):383–390, 2019.

[48] Z. Kingston, M. Moll, and L. E. Kavraki. Decoupling constraints from sampling-
based planners. In International Symposium on Robotics Research, 2017.

[49] M. Krainin, B. Curless, and D. Fox. Autonomous generation of complete 3d
object models using next best view manipulation planning. In International
Conference on Robotics and Automation(ICRA), pages 5031–5037. IEEE, 2011.

[50] S. J. Kwak, T. Hasegawa, and S. Y. Chung. A framework for automatic gener-
ation of a contact state graph for robotic assembly. Advanced Robotics, 25(13-
14):1603–1625, 2011.

137

[51] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and
J. Bohg. Making sense of vision and touch: Self-supervised learning of multi-
modal representations for contact-rich tasks. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8943–8950. IEEE, 2019.

[52] P. Lehner, A. Sieverling, and O. Brock. Incremental, sensor-based motion gen-
eration for mobile manipulators in unknown, dynamic environments. In In-
ternational Conference on Robotics and Automation (ICRA), pages 4761–4767.
IEEE, 2015.

[53] P. Leven and S. Hutchinson. A framework for real-time path planning in chang-
ing environments. The International Journal of Robotics Research, 21(12):999–
1030, 2002.

[54] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data
collection. The International Journal of Robotics Research (IJRR), 37(4-5):421–
436, 2018.

[55] J. Li, S. Dong, and E. Adelson. Slip detection with combined tactile and visual
information. In International Conference on Robotics and Automation (ICRA),
pages 7772–7777. IEEE, 2018.

[56] J. Li, Z. Teng, and J. Xiao. Can a continuum manipulator fetch an object in an
unknown cluttered space? IEEE Robotics and Automation Letters, 2(1):2–9,
2017.

[57] J. Li, Z. Teng, J. Xiao, A. Kapadia, A. Bartow, and I. Walker. Autonomous
continuum grasping. In International Conference on Intelligent Robots and
Systems (IROS), pages 4569–4576. IEEE/RSJ, 2013.

[58] J. Li and J. Xiao. Determining grasping configurations for a spatial continuum
manipulator. In International Conference on Intelligent Robots and Systems
(IROS), pages 4207–4214. IEEE/RSJ, 2011.

[59] J. Li and J. Xiao. Progressive, continuum grasping in cluttered space. In In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 4563–
4568. IEEE/RSJ, 2013.

[60] J. Li and J. Xiao. A general formulation and approach to constrained, contin-
uum manipulation. Advanced Robotics, 29(13):889–899, 2015.

[61] J. Li and J. Xiao. A general formulation and approach to constrained, contin-
uum manipulation. Advanced Robotics, 29(13):889–899, 2015.

[62] J. Li and J. Xiao. An efficient algorithm for real time collision detection involv-
ing a continuum manipulator with multiple uniform-curvature sections. Robot-
ica, 34(7):1566–1586, 2016.

138

[63] J. Li and J. Xiao. Progressive planning of continuum grasping in cluttered
space. IEEE Transactions on Robotics(TRO), 32(3):707–716, 2016.

[64] J. Li and J. Xiao. Progressive planning of continuum grasping in cluttered
space. IEEE Transactions on Robotics, 32(3):707–716, 2016.

[65] Q. Li, C. Schürmann, R. Haschke, and H. J. Ritter. A control framework for
tactile servoing. In Robotics: Science and systems, 2013.

[66] Q. Li, A. Ückermann, R. Haschke, and H. J. Ritter. Estimating an articu-
lated tools kinematics via visuo-tactile based robotic interactive manipulation.
In International Conference on Intelligent Robots and Systems (IROS), pages
6938–6944. IEEE/RSJ, 2018.

[67] R. Li and E. H. Adelson. Sensing and recognizing surface textures using a
gelsight sensor. In Conference on Computer Vision and Pattern Recognition,
pages 1241–1247. IEEE, 2013.

[68] S. Li, S. Lyu, and J. Trinkle. State estimation for dynamic systems with in-
termittent contact. In International Conference on Robotics and Automation
(ICRA), pages 3709–3715. IEEE, 2015.

[69] M. V. Liarokapis, B. Calli, A. J. Spiers, and A. M. Dollar. Unplanned, model-
free, single grasp object classification with underactuated hands and force sen-
sors. In International Conference on Intelligent Robots and Systems (IROS),
pages 5073–5080. IEEE/RSJ, 2015.

[70] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In ACM siggraph computer graphics, volume 21, pages
163–169. ACM, 1987.

[71] Q. Luo and J. Xiao. Contact and deformation modeling for interactive environ-
ments. IEEE Transactions on Robotics, 23(3):416–430, 2007.

[72] D. Ma, E. Donlon, S. Dong, and A. Rodriguez. Dense tactile force distribu-
tion estimation using gelslim and inverse fem. In International Conference on
Robotics and Automation (ICRA). IEEE, 2019.

[73] L. Ma, M. Ghafarianzadeh, D. Coleman, N. Correll, and G. Sibley. Simultaneous
localization, mapping, and manipulation for unsupervised object discovery. In
International Conference on Robotics and Automation (ICRA), pages 1344–
1351. IEEE, 2015.

[74] R. Ma and A. Dollar. Yale openhand project: Optimizing open-source hand
designs for ease of fabrication and adoption. IEEE Robotics & Automation
Magazine, 24(1):32–40, 2017.

139

[75] H. Mao, J. Santoso, C. Onal, and J. Xiao. Sim-to-real transferable object
classification through touch-based continuum manipulation. In International
Symposium on Experimental Robotics (ISER). Springer, 2018.

[76] H. Mao, Z. Teng, and J. Xiao. Progressive object modeling with a continuum
manipulator in unknown environments. In International Conference on Robotics
and Automation (ICRA), pages 5674–5681. IEEE, 2017.

[77] H. Mao and J. Xiao. Object shape estimation through touch-based continuum
manipulation. In International Symposium of Robotics Research (ISRR), 2017.

[78] H. Mao and J. Xiao. Real-time conflict resolution of task-constrained manip-
ulator motion in unforeseen dynamic environments. In IEEE Transactions on
Robotics (TRO), 2019.

[79] H. Mao and J. Xiao. Reducing pose uncertainty under complex contacts via
force forecast. In in submission to Robotics and Automation Letters. IEEE,
2019.

[80] H. Mao, J. Xiao, M. M. Zhang, and K. Daniilidis. Shape-based object classifi-
cation and recognition through continuum manipulation. In International Con-
ference on Intelligent Robots and Systems (IROS), pages 456–463. IEEE/RSJ,
2017.

[81] S. McLeod and J. Xiao. Real-time adaptive non-holonomic motion planning in
unforeseen dynamic environments. In International Conference on Intelligent
Robots and Systems (IROS), pages 4692–4699. IEEE/RSJ, 2016.

[82] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A.
Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn. Field trials and
testing of the octarm continuum manipulator. In International Conference on
Robotics and Automation (ICRA), pages 2336–2341. IEEE, 2006.

[83] W. McMahan and I. D. Walker. Octopus-inspired grasp-synergies for continuum
manipulators. In International Conference on Robotics and Biomimetics, pages
945–950. IEEE, 2009.

[84] T. McMahon, S. Thomas, and N. M. Amato. Sampling-based motion planning
with reachable volumes: Theoretical foundations. In International Conference
on Robotics and Automation (ICRA), pages 6514–6521. IEEE, 2014.

[85] M. Meier, M. Schopfer, R. Haschke, and H. Ritter. A probabilistic approach to
tactile shape reconstruction. Transactions on Robotics(TRO), 27(3):630–635,
2011.

[86] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and S. Ivaldi.
Learning soft task priorities for control of redundant robots. In International
Conference on Robotics and Automation (ICRA), pages 221–226. IEEE, 2016.

140

[87] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34.
Springer Science & Business Media, 1994.

[88] A. Murali, Y. Li, D. Gandhi, and A. Gupta. Learning to grasp without seeing.
arXiv preprint arXiv:1805.04201, 2018.

[89] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time
dense surface mapping and tracking. In IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), volume 11, pages 127–136, 2011.

[90] H. Nguyen and Q.-C. Pham. A probabilistic framework for tracking uncertain-
ties in robotic manipulation. arXiv preprint arXiv:1901.00969, 2019.

[91] A. M. Okamura and M. Curkosky. Feature-guided exploration with a robotic
finger. In International Conference on Robotics and Automation (ICRA), vol-
ume 1, pages 589–596. IEEE, 2001.

[92] M. Otte and E. Frazzoli. RRTX : Real-time motion planning/replanning for
environments with unpredictable obstacles. In Algorithmic Foundations of
Robotics XI, pages 461–478. Springer, 2015.

[93] C. Park, F. Rabe, S. Sharma, C. Scheurer, U. E. Zimmermann, and D. Manocha.
Parallel cartesian planning in dynamic environments using constrained trajec-
tory planning. In IEEE-RAS International Conference on Humanoid Robots,
pages 983–990. IEEE, 2015.

[94] D. Pavlichenko and S. Behnke. Efficient stochastic multicriteria arm trajectory
optimization. In International Conference on Intelligent Robots and Systems
(IROS). IEEE/RSJ, 2017.

[95] A. Petrovskaya and O. Khatib. Global localization of objects via touch. IEEE
Transactions on Robotics (TRO), 27(3):569–585, 2011.

[96] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained
optimization for deep reinforcement learning in the real world. In International
Conference on Robotics and Automation (ICRA), pages 6236–6243. IEEE, 2018.

[97] M. Popović, D. Kraft, L. Bodenhagen, E. Başeski, N. Pugeault, D. Kragic,
T. Asfour, and N. Krüger. A strategy for grasping unknown objects based
on co-planarity and colour information. Robotics and Autonomous Systems,
58(5):551–565, 2010.

[98] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

[99] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient opti-
mization techniques for efficient motion planning. In IEEE International Con-
ference on Robotics and Automation(ICRA), pages 489–494. IEEE, 2009.

141

[100] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and D. Sarazzi. Uav pho-
togrammetry for mapping and 3d modeling–current status and future perspec-
tives. International archives of the photogrammetry, remote sensing and spatial
information sciences, 38(1):C22, 2011.

[101] G. Robinson and J. B. C. Davies. Continuum robots-a state of the art. In
International Conference on Robotics and Automation (ICRA), volume 4, pages
2849–2854. IEEE, 1999.

[102] J. Santoso, E. H. Skorina, M. Luo, R. Yan, and C. D. Onal. Design and anal-
ysis of an origami continuum manipulation module with torsional strength.
In International Conference on Intelligent Robots and Systems (IROS), pages
2098–2104. IEEE/RSJ, 2017.

[103] A. Saric, J. Xiao, and J. Shi. Robotic surface assembly via contact state tran-
sitions. In International Conference on Automation Science and Engineering
(CASE), pages 954–959. IEEE, 2013.

[104] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects using
vision. The International Journal of Robotics Research (IJRR), 27(2):157–173,
2008.

[105] B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

[106] L. Sentis and O. Khatib. Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives. International Journal of Humanoid Robotics,
2(04):505–518, 2005.

[107] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-
scale 3d database of object instances. In International Conference on Robotics
and Automation (ICRA), pages 509–516. IEEE, 2014.

[108] N. Sommer, M. Li, and A. Billard. Bimanual compliant tactile exploration
for grasping unknown objects. In International Conference on Robotics and
Automation (ICRA), pages 6400–6407. IEEE, 2014.

[109] M. Stilman. Task constrained motion planning in robot joint space. In Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3074–3081.
IEEE/RSJ, 2007.

[110] C. Suh, T. T. Um, B. Kim, H. Noh, M. Kim, and F. C. Park. Tangent space
rrt: A randomized planning algorithm on constraint manifolds. In International
Conference on Robotics and Automation (ICRA), pages 4968–4973. IEEE, 2011.

[111] Z. Sui, Z. Zhou, Z. Zeng, and O. C. Jenkins. Sum: Sequential scene under-
standing and manipulation. In International Conference on Intelligent Robots
and Systems (IROS), pages 3281–3288. IEEE/RSJ, 2017.

142

[112] W. Sun, S. Patil, and R. Alterovitz. High-frequency replanning under uncer-
tainty using parallel sampling-based motion planning. IEEE Transactions on
Robotics, 31(1):104–116, 2015.

[113] B. Sundaralingam, A. Handa, B. Boots, T. Hermans, S. Birchfield, N. Ratliff,
D. Fox, et al. Robust learning of tactile force estimation through robot interac-
tion. In International Conference on Robotics and Automation (ICRA), pages
9035–9042. IEEE, 2019.

[114] M. Suomalainen, S. Calinon, E. Pignat, and V. Kyrki. Improving dual-arm
assembly by master-slave compliance. In International Conference on Robotics
and Automation (ICRA), pages 8676–8682. IEEE, 2019.

[115] P. Tang and J. Xiao. Automatic generation of a high-level contact state graph
for assembly between curved objects. In 2007 IEEE International Symposium
on Assembly and Manufacturing, pages 197–202. IEEE, 2007.

[116] P. Tang and J. Xiao. Automatic generation of high-level contact state space
between 3d curved objects. The International Journal of Robotics Research
(IJRR), 27(7):832–854, 2008.

[117] Z. Teng, H. Mao, and J. Xiao. Automatic object modeling through integrating
perception and robotic manipulation. In International Symposium on Experi-
mental Robotics (ISER), pages 223–233. Springer, 2016.

[118] Z. Teng and J. Xiao. Surface-based detection and 6-dof pose estimation of 3-d
objects in cluttered scenes. IEEE Transactions on Robotics(TRO), 32(6):1347–
1361, 2016.

[119] G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel. Learning robotic
assembly from cad. In International Conference on Robotics and Automation
(ICRA), pages 1–9. IEEE, 2018.

[120] L. G. Torres, C. Baykal, and R. Alterovitz. Interactive-rate motion planning
for concentric tube robots. In International Conference on Robotics and Au-
tomation (ICRA), pages 1915–1921. IEEE, 2014.

[121] A. Toshev, B. Taskar, and K. Daniilidis. Shape-based object detection via
boundary structure segmentation. International Journal of Computer Vision,
2012.

[122] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker. Soft robotics: Bio-
logical inspiration, state of the art, and future research. Applied Bionics and
Biomechanics, 5(3):99–117, 2008.

[123] J. C. Triyonoputro, W. Wan, and K. Harada. Quickly inserting pegs into un-
certain holes using multi-view images and deep network trained on synthetic
data. In International Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ, 2019.

143

[124] K. Trovato and A. Popovic. Collision-free 6d non-holonomic planning for nested
cannulas. In SPIE Medical Imaging, pages 72612H–72612H. International So-
ciety for Optics and Photonics, 2009.

[125] J. Vannoy and J. Xiao. Real-time adaptive motion planning (ramp) of mobile
manipulators in dynamic environments with unforeseen changes. IEEE Trans-
actions on Robotics, 24(5):1199–1212, 2008.

[126] J. Vasquez-Gomez, L. Sucar, R. Murrieta-Cid, and E. Lopez-Damian. Volu-
metric next-best-view planning for 3D object reconstruction with positioning
error. International Journal of Advanced Robotic Systems, 11:1–13, 2014.

[127] G. R. W. R. Scott and J. F. Rivest. View planning for automated 3D object
reconstruction inspection. ACM Computing Surveys (CSUR), 35:64–96, 2003.

[128] I. D. Walker. Continuous backbone continuum robot manipulators. ISRN
Robotics, 2013, 2013.

[129] D. Wang, X. Zhang, Y. Zhang, and J. Xiao. Configuration-based optimiza-
tion for six degree-of-freedom haptic rendering for fine manipulation. IEEE
transactions on haptics, 6(2):167–180, 2012.

[130] R. J. Webster III, J. M. Romano, and N. J. Cowan. Mechanics of precurved-tube
continuum robots. Transactions on Robotics, 25(1):67–78, 2008.

[131] O. Williams and A. Fitzgibbon. Gaussian process implicit surfaces. Gaussian
Proc. in Practice, 2007.

[132] F. Wirnshofer, P. S. Schmitt, W. Feiten, G. v. Wichert, and W. Burgard. Ro-
bust, compliant assembly via optimal belief space planning. In International
Conference on Robotics and Automation (ICRA), pages 5436–5443. IEEE, 2018.

[133] J. Xiang, C. Zhong, and W. Wei. A varied weights method for the kinematic
control of redundant manipulators with multiple constraints. IEEE Transac-
tions on Robotics, 28(2):330–340, 2012.

[134] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199, 2017.

[135] J. Xiao and X. Ji. Automatic generation of high-level contact state space. The
International Journal of Robotics Research (IJRR), 20(7):584–606, 2001.

[136] Y. Yang and O. Brock. Elastic roadmaps motion generation for autonomous
mobile manipulation. Autonomous Robots, 28(1):113–130, 2010.

[137] Z. Yi, R. Calandra, F. Veiga, H. van Hoof, T. Hermans, Y. Zhang, and J. Peters.
Active tactile object exploration with gaussian processes. In International Con-
ference on Intelligent Robots and Systems (IROS), pages 4925–4930. IEEE/RSJ,
2016.

144

[138] T. Yoshikawa. Manipulability of robotic mechanisms. The international journal
of Robotics Research, 4(2):3–9, 1985.

[139] K.-T. Yu and A. Rodriguez. Realtime state estimation with tactile and visual
sensing. application to planar manipulation. pages 7778–7785, 2018.

[140] K.-T. Yu and A. Rodriguez. Realtime state estimation with tactile and vi-
sual sensing for inserting a suction-held object. In International Conference on
Intelligent Robots and Systems (IROS), pages 1628–1635. IEEE/RSJ, 2018.

[141] W. Yuan, S. Dong, and E. H. Adelson. Gelsight: High-resolution robot tactile
sensors for estimating geometry and force. Sensors, 17(12):2762, 2017.

[142] W. Yuan, Y. Mo, S. Wang, and E. H. Adelson. Active clothing material per-
ception using tactile sensing and deep learning. In International Conference on
Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[143] W. Yuan, M. A. Srinivasan, and E. H. Adelson. Estimating object hardness
with a gelsight touch sensor. In International Conference on Intelligent Robots
and Systems (IROS), pages 208–215. IEEE/RSJ, 2016.

[144] W. Yuan, S. Wang, S. Dong, and E. Adelson. Connecting look and feel: As-
sociating the visual and tactile properties of physical materials. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5580–5588, 2017.

[145] W. Yuan, C. Zhu, A. Owens, M. A. Srinivasan, and E. H. Adelson. Shape-
independent hardness estimation using deep learning and a gelsight tactile sen-
sor. In International Conference on Robotics and Automation (ICRA), pages
951–958. IEEE, 2017.

[146] M. M. Zhang, N. Atanasov, and K. Daniilidis. Active end-effector pose selec-
tion for tactile object recognition through monte carlo tree search. In Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3258–3265.
IEEE/RSJ, 2017.

[147] M. M. Zhang, M. Kennedy, M. Hsieh, and K. Daniilidis. A triangle histogram
for object classification by tactile sensing. In International Conference on In-
telligent Robots and Systems (IROS), pages 4931–4938. IEEE/RSJ, 2016.

[148] L. Zhu, H. Mao, X. Luo, and J. Xiao. Determining null-space motion to satisfy
both task constraints and obstacle avoidance. In IEEE International Symposium
on Assembly and Manufacturing (ISAM), pages 112–119. IEEE, 2016.

[149] M. Zhu, K. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce,
and K. Daniilidis. Single image 3d object detection and pose estimation for
grasping. In International Conference on Robotics and Automation (ICRA).
IEEE, 2014.

145

PUBLICATIONS

[1] Huitan Mao and Jing Xiao, ”Reducing Pose Uncertainty under Complex Con-
tacts via Force Forecast”, in submission to IEEE Robotics and Automation Let-
ters (RAL), 2019.

[2] Huitan Mao and Jing Xiao, ”Task-constrained Real-time Adaptive Motion Plan-
ning of Robot Manipulators in Unforeseen Dynamic Environments”, IEEE Trans-
actions on Robotics (TRO), 2019.

[3] Sean McGovern, Huitan Mao and Jing Xiao, ”Learning to Estimate Centers of
Mass of Arbitrary Objects”, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019.

[4] Huitan Mao, Junius Santoso, Cagdas Onal, and Jing Xiao, ”Sim-to-real Trans-
ferable Object Classification through Touch-based Continuum Manipulation”,
International Symposium on Experimental Robotics (ISER), 2018.

[5] Huitan Mao and Jing Xiao, ”Object Shape Estimation through Touch-based
Continuum Manipulation”, International Symposium on Robotics Research
(ISRR), 2017.

[6] Huitan Mao, Mabel M. Zhang, Jing Xiao, and Kostas Daniilidis, ”Shape-
based Object Classification and Recognition through Continuum Manipulation”,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017.

[7] Huitan Mao, Zhou Teng, and Jing Xiao, ”Progressive Object Modeling with a
Continuum Manipulator in Unknown Environments”, IEEE International Con-
ference on Robotics and Automation (ICRA), 2017.

[8] Zhou Teng, Huitan Mao, and Jing Xiao, ”Automatic Object Modeling through
Integrating Perception and Robotic Manipulation”, International Symposium on
Experimental Robotics (ISER), 2016.

[9] Liqin Zhu, Huitan Mao, Xiang Luo, Jing Xiao,”Determining Null-space Motion
to satisfy Both Task Constraints and Obstacle Avoidance”, IEEE International
Symposium on Assembly and Manufacturing (ISAM), 2016.

