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ABSTRACT 
 
 

WEI SONG.  Modeling, simulation and analysis of the reaction field for electrostatic 
interactions in aqueous solution. (Under the direction of DR.DONALD J. JACOBS) 

 
 

 How to deal with the long-range electrostatic interactions theoretically and 

computationally has been well studied due to their importance in biological processes and 

time consuming summations in computer simulations. The main focus of our research has 

been on the design and application of a new type of hybrid model that combines both the 

explicit and implicit solvent models using a reaction field (RF) approach, for accurate and 

efficient electrostatic calculations. This hybrid model, named as Image Charge Solvation 

Model (ICSM), replaces an infinite Coulomb summation by two finite sums over direct 

interactions plus image charges for RF. To characterize the ICSM, the electrostatic 

torques and forces using different model parameters are compared through various 

histogram distributions. The contributions of RF are 20% and 2% of the total electrostatic 

torques and forces, respectively, suggesting that the main effect of RF is to maintain the 

orientation of water dipoles in the solution. Considering systematic artifacts of the 

discontinuous dielectric constant at the edge of the cavity, we modified the image charge 

formula in an optimal way to better account for the continuously changing dielectric 

profile near the boundary, which provides a computational procedure to determine the 

most accurate RF possible for a specified water model. The Periodic Boundary 

Conditions (PBC) in ICSM reduces the size of the productive region and introduces 

unphysical correlations between ions in ionic solution. With combination of finite 

boundary conditions, mean field theory for short-range forces and multiple constraint 

forces applied to water molecules in a buffer layer, bulk water properties are maintained 
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without problems from imaged ions in a much bigger usable region than before. To 

summarize, the results presented in this work provide a complete characterization, 

optimization and improvement of the ICSM for electrostatic calculations.  
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Introduction to Electrostatic Interactions 

Electrostatics, which accurately deals with the interactions of electric charges that 

have slow motions, underpins many important phenomena that we experience in our 

daily lives ranging from lightening during thunderstorms to the effects of electrolytes in 

our bodies. Electrostatic forces can be described by a simple formula called Coulomb’s 

law, which was empirically discovered by Charles Augustin de Coulomb in 1785. 

Consider a system with two point charges as shown in Fig. 1.1 A. The force between 

these two charges is along the straight line that connects them, given by Coulomb’s law: 

2
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επε

=      (Eq. 1.1) 

where 0ε is the dielectric permittivity in free space,ε is the relative permittivity of the 

material containing charges, π  is the circumference ratio, Q1 and Q2 are the values of 

charge, and 12R is the distance between the two charges. Fig 1.1 B shows the Coulomb 

force follows the 21 RF ∝ rule. 
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Figure 1.1: A) Two charges of opposite sign have attractive forces on each other and two 
charges of same sign have repulsive forces. B) Schematic plot for the Coulomb force 
verses the distance between two charges. 
 

In life science, the electrostatic interactions play a critical role in biological 

processes. Here we take the hydrogen bond (H-bond) as an example. The electrostatic 

forces between polar molecules that involve the partial charges assigned to a donor atom, 

its hydrogen atom and an acceptor atom taken together model the H-bond. The H-bond is 

important in forming and stabilizing the structures of protein and DNA as shown in Fig. 

1.2. Other important roles of electrostatic interactions in biological systems include signal 

transmission, ion-transport, molecular recognition, structure, stability and function of 

biopolymers such as DNA, RNA and proteins. Underlying all these illustrative examples 

is the importance of water, which is an essential substance that mediates biological 

processes. Moreover, electrostatic interactions are critical in determining the rich 

behavior that bulk water exhibits. 
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Figure 1.2: A) The hydrogen bonds formed between amino acid residues in α-helix and 
β-sheets help to stable the secondary structures in protein conformation. B) The hydrogen 
bonds between the A-T and C-G base pairs stabilize the double helix structure of DNA. 
 

1.2 Electrostatic Interactions in Computer Simulations 

The explosive development and continuing growth of the power of super 

computers make it possible to simulate and analyze biomolecular systems. Simulation has 

become an essential method following the traditional theoretical and experimental 

approaches in scientific research. The common indispensable tools in computational 

biology are Molecular Dynamics (MD) and Monte Carlo (MC) methods that provide 

ways for detailed studies on biopolymers to characterize their properties and to help 

understand how they perform their biological functions. Better algorithms, faster 

distributed computing and more user-friendly software have been applied to multi-

component solvent (such as pure water, ionic solvent and other polar or non-polar solvent) 

simulations, which are normally encountered in experiments [1]. 
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To model the biological processes precisely in simulations, a force field for 

biomolecules and solvent has to be developed to model all possible interactions in the 

system, which consists of bonded (covalent interactions such as bond-stretching, bond 

angle bending, bond twisting or dihedral angle torsion) and non-bonded interactions 

(such as van der Waals, electrostatic). A force field is calculated by: 
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  (Eq. 1.2) 

The last two non-bonded interactions are nominally computationally expensive 

because they are O(N2) summation with N(N-1)/2 pairs, which is prohibitive for large N. 

The van der Waals force is short-ranged, falling off to a negligible level after a distance 

of about 1.5 nm. However, the long-range electrostatic interactions decrease slowly as the 

distance r between molecules increases. The electrostatic energy between two charged 

molecules is proportional to r-1, for a neutral molecule with a dipole moment and a 

charged molecule is proportional to r-2, for two neutral molecules with dipole moments is 

proportional to r-3. Two neutral molecules with quadrupole moments is proportional to r-5, 

which is still longer ranged than van der Waals interactions that come from fluctuating 

induced dipole-dipole interactions (proportional to r-6) [2]. For the electrostatic energy of 

a single charge with all other charges and multipoles surrounding it, the electrostatic 

interactions should be summed in full without applying cutoff distances. The results of 

simulations do vary according to how the electrostatic energy and interactions are 
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approximated, and simple cutoffs tend not to work well for high accuracy simulations [3, 

4]. Therefore, in this thesis, a sum over all pairs of charges in the system is used. 

1.3 Solvent Model and Boundary Conditions  

The biggest part of the electrostatic calculations comes from the solvent molecules 

around the solutes and there are several main types of solvents commonly used in 

simulations, as shown in Fig. 1.3. The first approach is all-atom explicit solvent model, 

which considers the atomic details of all the atoms for both solute and solvent. 

Considering all the detailed information makes the explicit solvent model accurate but 

costs large amount of computing time to simulate large systems on time scales that are 

biologically relevant. Another approach is called coarse-grained (CG) modeling. One 

way is to use one or more beads to represent the solute and solvent molecules, which 

reduces the total numbers of degrees of freedom by eliminating fine details about inter-

particle interactions. The simulation with CG can be substantially faster than the all-atom 

representation. Errors might be introduced due to the lack of complete molecular 

information. Modeling solvent implicitly as a dielectric continuum reduces degrees of 

freedom further. Modeling solute in atomic detail and solvent implicitly makes the 

simulation runs much faster. However, the molecular interactions near the implicit 

solvent interface are poorly modeled with strong surface effects, and these interactions 

are often critical to biological function.  
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Figure 1.3: Three types of solvent models using water molecule as an example. Picture 
from the work of Delgado-Buscalioni et al.[5]. 
 

How to treat the infinitely long-ranged interactions in a finite size system is a long-

standing problem. Based on different types of solvent models, there are many approaches 

for correct treatment of the electrostatic interactions in simulation. Historically, when 

there was much more limited computing power, the long-range electrostatic forces were 

truncated by cutoffs, which introduced severe artifacts in simulating peptides and nucleic 

acids [3, 4]. Because cutoffs do not work well, the finite size effects from the long-range 

electrostatic interactions must be treated carefully through boundary conditions. 

Two predominant kinds of boundaries are periodic boundary conditions (PBC) and 

non-periodic boundary conditions (NPBC) as shown in Fig. 1.4. The periodic boundary 

conditions replicate the unit simulation box to completely fill the space, thereby reducing 

surface effects. The PBC removes any identifiable boundary of the system and yields 

essentially exact bulk properties of solutions. However, artifacts due to correlations 

caused by imaging the unit cell occur due to the long-range nature of electrostatic forces 
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when the box size is small. The effects of periodicity-induced artifacts is not fully 

understood at present [6-8]. A simple way to avoid this problem is to generously increase 

the unit cell size, but this would not follow common practice because doing so will 

severely increase the computational cost, perhaps to a point that is intractable. Artifacts 

are likely to appear using PBC whenever any of the following three aspects occur; (i) the 

solvent has low dielectric permittivity; (ii) the solute has non-negligible size compared to 

the size of the simulation box, and, (iii) the system has a net charge [9]. 

The non-periodic boundary conditions (NPBC) use a continuum dielectric medium 

start from dielectric cavity RRF to infinity and Poisson-Boltzmann (PB) equations are 

solved to model the effects of solvent on solute [10-13]. The NPBC has no periodic 

artifacts but introduces the surface effects at the boundary between two different solvent 

models. The solution of three-dimensional differential equation for arbitrary shape is still 

a challenging computational problem. However, the spherical shape makes the 

mathematical problem completely tractable and computationally efficient, as will be 

described below in detail. 

 
Figure 1.4: Periodic and non-periodic boundary conditions. 
 

ε  



8 
 

1.4 Evaluation of Electrostatic Interactions 

Two main kinds of techniques have been developed to evaluate the long-range 

electrostatic interactions. The first type of technique is lattice summation, including the 

Ewald summation [14, 15], Particle Mesh Ewald (PME) [16, 17] and particle-particle 

particle-mesh [18, 19] techniques. All these methods rely on PBC, and include in the sum 

the electrostatic contributions from all partial charges in the system, together with all of 

their periodic images (an infinite number of them).While the Ewald summation is the 

most accurate of all these methods, it performs as O(N3/2), which gives a windfall in 

efficiency compared to the original O(N2) problem. Unfortunately, O(N3/2) is insufficient 

to conduct large-scale molecular dynamics simulations. The other methods split the 

electrostatic interactions into two parts, a short-range term that is calculated exactly in a 

direct sum, plus a smoothly varying long-range term that is handled approximately in a 

reciprocal sum by fast Fourier transform methods with a performance characteristic of 

O(NlogN).These methods are commonly used, and have been proven to be useful, despite 

the potential pitfalls of using too small unit cell that is not justifiable. The second type of 

technique is the Fast Multipole Method (FMM) [20-22], which treats the electrostatic 

interactions exactly for the particles in the same simulation box or the nearby subcells, 

and calculates the potential of distant charges using multipolar expansions. FMM is 

useful when employing NPBC. Based on certain hierarchical tree construction, the initial 

simulation box is divided into self-similar subcells. Take the cubic box for example, the 

initial level zero (l=0) is only one box, the level one (l=1) has 8 subcells and level two 

has 64 subcells. The refinement process stops at log8N number of levels. For each cell i in 

level l, a multipole expansion is performed about the cell center to represent the 



9 
 

electrostatic field produced by the particles in that cell [23]. The FMM performs as O(N) 

and can be used for both NPBC and PBC [24]. 

1.5 Hybrid Model for Electrostatic Calculations 

Considering the advantages of the implicit and explicit approaches, combining the 

elements from both methods into one might be a good choice to design a better hybrid 

solvation model [12, 25], as shown in Fig.1.5. As I will show below numerous 

disadvantages emerge in a hybrid model that has to do with surface effects at the 

boundary between explicit and implicit representations of solvent. It suffices to say at this 

point that the disadvantages were first characterized and then surgically removed by 

designing the model carefully. A hybrid model considers all molecules inside the cavity 

explicitly, containing all atomic interactions among the solute and solvent molecules. The 

cavity is then embedded in a dielectric continuum which is represented by implicit 

solvent [26]. A buffer layer of explicit water molecules is inserted between the two 

solvents but experience different forces from those in the central cavity. The electrostatic 

forces on the explicit solvent molecules inside the cavity consist of two parts. First, there 

is a direct Coulomb’s force between molecules. Second, a reaction field (RF) is created. 

The RF consists of the forces generated by the polarization of the continuum medium, 

which is induced by explicit charges within the spherical cavity. Differences among 

various hybrid models distill down to how they calculate the RF. A brute force way is to 

numerically solve the PB equation directly [27] or using an approximate theory for the 

PB equation [28, 29], although arbitrary geometries of the cavity will require high 

computational costs. Another approach [30] is to develop exact solutions for a certain 

convenient geometrical setup, such as for a plane or sphere [31]. 
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Figure 1.5: Different schemes for explicit, implicit and hybrid models. Explicit: All-atom 
model which use periodic boundary conditions, accurate but slow. Implicit: Continuum 
solvent model that treats solvent as a dielectric medium, faster but less accurate due to 
loss of atomic information. Hybrid: The protein and solvent inside the sphere are treated 
explicit. Outside is treated as a continuum dielectric medium. 
 

For hybrid models [32-34] that invoke a spherical cavity, a series expansion that 

was first developed by Kirkwood [26, 35] can be used for the RF. Although arbitrary 

accuracy can be achieved by this expansion, it is slow to converge, especially near the 

cavity boundary. An image charge approach can be used alternatively [36]. Friedman [37] 

was first to apply an image charge method for the solvation problem. In his work, only 

one image charge for each source charge in a cavity is used to construct the RF, reaching 

the accuracy of O(1/ε) when the dielectric constant ε is high. Later a more accurate 

approximation was implemented by Abagyan and Totrov [15] that involved the classical 

Kelvin image charge for a perfect conductor [38]. The weaknesses of current hybrid 

models are 1) the accuracy of the Friedman expression looses accuracy as the dielectric 

constant decreases, and, 2) surface effects were not considered, which means non-

negligible artifacts are plaguing simulations. The hybrid model I have been working on is 

called Image Charge Solvation Model (ICSM) [39] where the RF can be calculated to 

arbitrary high accuracy using the multiple image charge method [40-42]. The model is 

successful in dealing with pure water and extreme dilute ionic solutions [9, 39]. However, 
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all computational models/methods have advantages and disadvantages, and my interests 

are to maximize the former and minimize the latter.  

1.6 Dissertation Objectives and Layout 

The main objective of this dissertation is to characterize the ICSM and define its 

weaknesses, and based on that, optimize and improve the model for better performance. 

Performance means maintain accuracy, maximize the volume of the central part of the 

spherical cavity that can be used to collect data (called the productive region), and to get 

the results in the shortest possible time by using very efficient algorithms like FMM. To 

demonstrate this objective clearly, we need to answer the following questions: a) Why is 

the reaction field essential for correct dielectric properties? b) How does the imaged 

water in the buffer layer protect the productive region? c) Will the productive region be 

affected by varying the accuracy in the RF, or with different boundary conditions? d) 

How can we optimize the RF to maintain accuracy in the productive region, but not 

spend more time than needed to have greater accuracy than needed? e) Can we replace 

the discontinuous dielectric profile with a continuous one? f) Is it possible to increase 

the productive region by reducing the buffer layer using an optimized RF? g) How to 

avoid the unphysical correlation between ions and their periodic images in ICSM due to 

PBC? h) How to account for the artifacts of the discontinuous boundary conditions in 

the case of NPBC? 

Because the ICSM used a multiple image charge method for the RF and used PBC 

for short-range forces inside a spherical cavity with a buffer layer for long-range forces, 

which are creative and novel elements to modeling, the objective of my first project is to 

characterize the ICSM to further explore the key role of RF, the function of buffer layer 
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and the effects of molecular rules for water. Based on this brand new ICSM when I 

started my PhD studies, various histogram distributions of electrostatic forces and torques 

on water molecules throughout the cavity was used to assess the model by quantifying 

relative contributions from the RF to total forces and torques. The results suggest that the 

main effect of the RF is to affect the orientation of water dipoles. The role of buffer layer 

is essential to reduce surface effects and to achieve high accuracy in ICSM by absorbing 

artifacts caused by the discontinuous boundary at the cavity wall in the non-productive 

region. Boundary conditions classified as: atom-, group- and ODL-based rules have little 

influence on the performance of ICSM. This work has been published in Communication 

in Computational Physics [43]. 

Consequently, a buffer layer is needed to absorb errors due to the discontinuity of 

the dielectric constant in ICSM. The objective of the second project is to reduce the 

artifacts by generating a different type of RF using optimized image charges, so that the 

thickness of the buffer layer can be decreased. The idea is to modify the image charge 

formula to better account for the a priori unknown continuously changing dielectric 

profile near the boundary. A novel inverse method was developed, and I showed that a 

notable improvement between the RF using optimal image charges to the PME results 

was obtained. Moreover, with this new method, the dielectric permittivity is self-

consistently determined based on the set of optimized image charges. A pipeline of 

computationally determining the most accurate RF possible for a specified water model 

has been constructed. Although the electrostatic interactions have been improved, the 

short-range forces prevented the buffer layer to be reduced in size, which means there 

was no performance gain. 
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The ICSM experiences low efficiency and unphysical electrostatic interactions 

when it is used to simulate high ionic concentration solutions. The objective of my third 

project is to avoid the periodicity-induced problem. The PBC in ICSM is replaced by 

NPBC with multiple constraint forces and thermostats introduced into the buffer layer. 

We employed a novel mean field approach to determine the van der Waal interactions 

from continuum dielectric medium. Not only could the unphysical correlations due to 

imaged ions be removed, a much larger usable region than the original ICSM is achieved 

with correct bulk water properties. The manuscript of this work is under preparation and 

will be submitted to Journal of Chemical Physics B. 

 



CHAPTER 2: IMAGE CHARGE SOLVATION MODEL (ICSM) 
 
 

2.1 Reaction Field and Multiple Image Charge Methods  

 In the ICSM, a spherical cavity of radius Rc contains a system of molecules that 

are simulated. The interactions among the molecules inside the cavity are treated 

explicitly at the all-atom level. Outside the cavity the solvent is treated as a homogeneous 

dielectric medium of uniform dielectric constant εs, as shown in Fig. 2.1. The explicit 

charges in the cavity induce the polarization in the medium, which in turn create a RF 

back on the solvent inside. The electrostatic field due to the surrounding dielectric is 

given by: 
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where µj are the dipoles of the neighboring molecules that are within the cutoff distance 

rc of the molecule i. The interaction between the molecule i, and the RF, equals to iiE µ


⋅ . 

One of the problems of the RF is the discontinuities in the energy or force when the 

molecules enter or leave the cutoff radius rc. This can be avoided by employing a 

switching function for molecules near the RF boundary. Another problem is the dielectric 

constant should be known a priori. However, most of the time the dynamic properties are 

insensitive to the εs. Instead of a spherical boundary, more complicated shape of 

boundary can be applied for better approximation of the true molecular surface. 
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Figure 2.1: The RF method. The narrow arrows are the dipole moment in the spherical 
cavity of cutoff radius rc. The shaded arrow represents the sum of all dipoles in rc 
 

 There are many ways to calculate the RF within the spherical boundary. Common 

methods solve the linearized Poisson-Boltzmann (LPB) equation [27], employ 

approximate theories [28, 29], apply an exact series expansion [26, 35] for spherical 

cavities, or use a single image charge method [37]. The image charge method uses a 

spherical boundary and the RF due to the explicit charge inside cavity is generated by the 

so-called image charge located in the continuous dielectric medium beyond the sphere 

[37]. If the position of the explicit charge iq  is ir


, then the location and magnitude of the 

image charge are: 
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         (Eq. 2.2) 

where R is the radius of the boundary sphere, εs and εr are the dielectric constants of the 

explicit cavity and the continuous dielectric medium, respectively. The expression is 
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accurate if the dielectric constant beyond the boundary is much larger than that inside   

(εs >> εr). A problem of this method is that as the explicit charge approaches the 

boundary, so does its image charge with opposite sign and a singularity will occur. 

 In this dissertation, a more complete multiple image charge method [40, 44] has 

been used to calculate the RF. The method is based on the work of Neumann [45], who 

gave the electrostatic potential in terms of Kelvin image charge plus a line charge that 

falls off as a power law, starting from the Kelvin charge and extending to infinity [40, 44]. 

However, this method is not useful until it is converted into a numerical algorithm for 

calculating the potential field. The expression [40] below uses Gauss-Radau quadrature to 

reproduce the RF of line image charges by constructing a set of discrete image charges 

along the line, which makes the numerical calculate more efficient. Multiple image 

charges placed in the continuum medium are used to calculate the RF inside the sphere. 

 
Figure 2.2: An illustration of how the multiple-image method is applied to compute RF in 
a spherical cavity with dielectric constant of εin embedded in the solvent bath with 
constant of εout. The polarization of the solvent inside the cavity by the source charge q at 
position rs results in the RF ΦRF(r,θ)that is approximated by the potential created by 
auxiliary charges, referred to as image charges, q’

Kel, q’
i, i ≥ 2, located at positions r’

Kel, r’
i, 

i ≥ 2, respectively. 
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Then the total electrostatic field inside the cavity will consist of two parts: one from the 

coulomb’s law among the source charges ( sourceΦ ) and one from the image charge outside 

the sphere ( RFΦ ). 

RFsourcetotal Φ+Φ=Φ      (Eq. 2.3) 

As shown in Fig. 2.2, suppose there is one source charge (qs, rs) located inside the 

spherical cavity with dielectric constant εin, which is embedded in the infinite solvent 

with dielectric constant εout, it will generate an image charge outside the sphere along the 

radial direction, called the Kelvin image charge. Increasing accuracy can be obtained by 

systematically increasing the number of image charges, which represent the line charge 

of continuous charge density for each source charge. As further discussed later, small 

finite number of image charges (1 to 3) can be placed along a ray in the radial direction 

outside the sphere of radius R [40-42] to obtain more than enough accuracy to support 

MD studies. 

The numerical approximation for the electrostatic potential of the RF is given in 

Eq. 2.4. Notice the superposition of M point image charges has a physically intuitive 

form, where the locations along the ray and corresponding charge for each image are 

given in Eq. 2.5. 
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Here, 

€ 

rK = R2
rs  is the distance from the origin to the Kelvin image of charge 

€ 

qK = γRq rs  when the source charge is 

€ 

rs  distance from the origin and has charge 

€ 

q. The 
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discontinuous mismatch in dielectric constants is reflected in the scale factor, 

€ 

γ = εi −εo( ) εi +εo( ). By employing the Gauss–Radau quadrature, where 

€ 

sm ,ωm{ } for 

€ 

1≤m ≤M are the locations and weights [40] the Kelvin image charge is modified, which 

is denoted as 

€ 

ʹ′ q K . Higher accuracy can be achieved by introducing more image charges. If 

0→outε , kelkel qq =' at the location '
kelr , is same as the classical Kelvin image for a 

conductor in the electrostatic theory. The image charge formula is applied to all source 

charges within the sphere, and the total electrostatic potential or forces are calculated 

based on the linear supposition principle. 

The advantages of the RF and image charge methods are conceptually simple, 

relatively easy to implement and computational efficient. They assume that the molecules 

beyond the cutoff sphere can be modeled as a continuum dielectric, but this is a 

reasonable assumption for homogeneous fluids. The dielectric constant of the 

surrounding continuum should also be specified, which can be taken from experimental 

data.  

2.2 Image Charge Solvation Model (ICSM) 

The ICSM is a hybrid model to deal with electrostatic calculations accurately and 

efficiently. It has been constructed by many researchers over the last 5 years at UNC 

Charlotte, and many of the technical details have been published [39-42]. Dr. Cai and Dr. 

Deng worked out the mathematical underpinnings for the image charge method and the 

adaptive FMM for all the charges in the system (images and source charges). Dr. 

Baumketner and Dr. Jacobs worked on the simulation details, and Dr. Baumketner 

developed the first prototype of the ICSM and wrote the original code. Under the 

guidance of Dr. Baumketner, Dr. Lin implemented the geometry of the simulation cell 
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using a Truncated Octahedron with periodic boundary conditions (referred to as TO-box), 

implemented a variety of subroutines to facilitate analysis of the simulation trajectories, 

and carried out simulations on bulk water and for investigating solvation free energy of 

single ions and ion pairs. I inherited the FORTRAN code from Dr. Lin, and have 

modified it as needed to carry out my work. Over the last few years, I have acquired first-

hand knowledge about the details of the ICSM and the FORTRAN code, and have further 

extended it. I now summarize the ICSM, where the essential parts of the model are 

described. 

For the electrostatics part of the problem, the ICSM is based on a spherical cavity 

filled with molecules representing solute and solvent. The model is shown in Fig. 2.3. 

Inside the sphere the dielectric permittivity is given as inε taken as 1 for vacuum, while 

outside the sphere is implicit solvent whose electrostatic effect is represented by the 

continuum media with a dielectric outε . The total electrostatic potential )(rΦ satisfies the 

LPB equations: 

)()(2 rr ini ρε −=Φ∇ , inVr∈ ,         (Eq. 2.6 a) 

[ ] 0)(22 =Φ−∇ rλ , outVr∈ ,          (Eq. 2.6 b) 

where the charge distribution )(rinρ contains all the explicit charges from solute and 

solvent molecules. λ is the inverse Debye-Huckel screening length. For boundary 

conditions near the surface,  

    outin Φ=Φ ,   and 
n
r

n
r out

o
in

i ∂
Φ∂

=
∂
Φ∂ )()(

εε     ,       (Eq. 2.7) 

where n is the outward normal of spherical surface. 
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PBC are applied to the simulation cell for the short-range molecular forces 

between atoms. The PBC make the simulation protocol run at a fixed particle density and 

reduce finite size effects. The periodic boundaries are incorporated into a sphere, which 

can be done using a cube inscribed within the sphere. However, it is obvious that a cube 

and sphere do not occupy the same space, and given that the cube does not fit snuggly 

inside the sphere, there will be a region of space that is defined outside of the cube and 

inside the sphere. This region is important, and will be described below in more detail. 

Most of this space is wasted using a cube, so the idea is to minimize the wasted space. 

Therefore, the cube is replaced with a TO-box as schematically illustrated in Fig. 2.3. 

The TO-box, Λ , is generated from a cube of length L by cutting its eight corners at a 

distance L)24/1( from the center. The TO-box has 8 hexagonal and 6 square faces. The 

distance from the origin to the square face is L)2/1( , to the hexagonal face L)4/3( , 

and to the corners LRc )4/5(= . The short-range forces and local structure of water are 

modeled well using periodic boundaries because surface effects are minimized. Most 

other hybrid models use finite boundary conditions [28, 33, 46], which makes 

reproducing bulk properties of water near the edge very difficult if not impossible. This 

problem I will address later in Chapter 5. The ICSM encompasses the TO-box in the 

spherical cavity, and the TO-box is surrounded by a buffer layer that extends to the 

spherical cavity wall, of radius given by τ+= cRR . The spherical cavity separates two 

types of dielectric medium where the dielectric constants on the inside, 

€ 

εi , and outside, 

€ 

εo, of the sphere are respectively set to values for vacuum and bulk solvent, the latter 

being water in this case. 
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Figure 2.3: Schematic representation showing how the simulation box for the ICSM is 
divided into three parts inside the spherical cavity of volume, Λ, and surface area, Γ. 
Regions I and II fill the space within the truncated octahedron box (TO-box) that is 
placed at the center of the spherical cavity. Region III fills the remaining space as a 
buffer layer within the spherical cavity and outside the TO-box characterized by length, τ. 
The water molecules in Region II are imaged into region III using periodic boundary 
conditions applied to the TO-box. Therefore, water molecules in region III are not 
associated with dynamic equations of motion. Region I defines the productive volume for 
simulations, processing translational invariant properties of bulk water consistent with 
simulations in large periodic systems. In practice, the majority of region II also represents 
bulk water well.   
 

The buffer layer (Region III) is filled with water molecules that are periodically 

imaged from Region II in the box. The purpose the buffer layer is to reduce the artifacts 

near the spherical boundary due to the discontinuity of dielectric constant. The size of τ is 

a priori unknown, and it is presumably model dependent, but it should have some 

minimal value that reflects the linear size dimension of water molecules themselves. It 

should be thick enough to protect the TO-box from being affected by the unphysical 

artifacts, but no thicker. The central part in the TO box is not imaged and is labeled as 

Region I. The TO-box combines with buffer layer, forming the RF cavity Γ . All charges 
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in Γ contribute to the RF, computed using the image charge method. Region I with 

correct bulk water properties can be used for biomolecular simulations and the size is 

τ2)2/53( −−= Ld . According to the formula, for L=4.5 nm and τ =0.5 nm, for 

example, the box allows simulations of solute molecules with diameter < 1.7 nm. 

To minimize computational cost, it is desirable to place the cavity boundary that 

separates the implicit solvent from the simulation space of explicit molecules as close as 

possible to the TO-box boundary. Because it is common to use the molecular surface of a 

solute molecule of interest as the boundary between two dielectric media, it is natural to 

view the space between the TO-box and the boundary of the spherical cavity as wasted. 

Leaving this space as vacuum makes the properties of water deviate far from known 

results. Instead, periodic boundary conditions on the TO-box are used to fill this space 

with imaged water. Based on previous systematic MD simulations, the optimal range of τ 

is between 4 to 6Å, which gives some flexibility on speed/accuracy tradeoff. This range 

is largely independent of the size of the TO-box. Moreover, the rate at which accuracy is 

lost below 4 Å is large. Conversely, little gain is seen in accuracy beyond 6 Å. As the 

buffer layer is increased, additional computational cost is incurred because the atomic 

charges from the imaged water in the buffer region produce image charges outside the 

spherical cavity. However, because the water in this buffer region is imaged, they do not 

require equations of motion. The buffer layer characterized by thickness τ allows the 

diverging values of the RF (near the interface due to the discontinuous dielectric 

constants) to be ignored entirely. Therefore, the buffer layer is critical to shield the 

artifacts induced by the explicit/implicit interface. 
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2.3 Boundary conditions for water molecules:  

The boundary condition applied to water molecules at the surface of the spherical 

cavity might be important, as they might change the nature of the artifacts from the 

explicit/implicit interface. Three common boundary conditions are considered: Atom-

based, group-based and Orientational Disorder Limit (ODL) based rules [47, 48], as 

summarized in Fig. 2.4. In our simulations we compared both situations of atom based 

and ODL limit for water molecules. We would like to check how sensitive the results are 

to the different boundary conditions. In the limit that L  infinity, any of these boundary 

condition rules should not matter. However, for finite size systems, one boundary 

condition may require the least amount of finite size corrections, which will show up as 

differences in the electrostatic or structural properties as a function of simulation cell 

size. 

The atom-based criteria take into account the direct Coulomb interactions for any 

atom within the spherical cavity independent of the locations of the other atoms within 

the same water molecules. The group-based criteria, however, depends on the distances 

of groups of charges, such as a water molecule. The distance can be calculated between 

two oxygen atoms or between centers of mass of two water molecules. Orientational 

disorder limit (ODL) method is based on the positions of oxygen atoms. Besides, the 

orientations of complete disordered situations of the water molecules are also considered 

[48].  
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Figure 2.4: Three different truncation criteria are used for water molecules. Red circle 
means part or entire of the water molecule is treated outside the boundary. Green circle 
means the molecules are inside the boundary. 
 

Fig. 2.4 shows whether a water molecule will be treated as inside a boundary 

according to their positions. For the atom-based case, because the atoms are treated 

individually, so the left hydrogen atom is inside the boundary while the oxygen and other 

hydrogen atoms are outside. Atom based rules allow the total net charge inside and 

outside to fluctuate. For the group-based case, if judging by oxygen atoms, the oxygen of 

the first water molecule is outside, which makes the entire molecule be treated as outside 

the boundary. Water molecules are treated as inside the boundary if their oxygen atoms 

are inside, even though one or two hydrogen atoms might be outside. The group-based 

truncation may cause artifacts in RF method [49]. For ODL-based case, although the 

oxygen atoms of the first two water molecules are inside boundary, the molecules are 

still treated outside. That is because they will overlap with the boundary if the molecules 
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have different orientations using oxygen atom as an origin. The water molecule can be 

considered as a sphere of radius of H-O bond length and with oxygen atom as the origin, 

as shown in right of Fig. 2.4. 

 

 



CHAPTER 3: CHARACTERIZATION OF REACTION FIELD 
 
 

3.1 Introduction  

 Although the image charge method [15, 37] has been used in hybrid 

explicit/implicit model for electrostatic calculation [50], the combination of multiple 

image charges [40-42] and PBC in the ICSM is a new construction for a better solvent 

model [9, 39]. The ICSM faithfully reproduces the properties of bulk TIP3P waters [39] 

leading us to investigate its essential characteristics. The former work of ICSM shows 

that the dielectric constant falls to very low value without a RF, while all other important 

bulk properties of water are still correct [39]. So the questions that need to be answered 

are: (i) Why is the RF important, and how does it affect the behavior of ICSM? (ii) How 

important is the buffer layer in reducing artifacts due to the discontinuous dielectric 

constant at the cavity boundary? (iii) What is the advantage of using more image charges 

to systematically increase the accuracy of the RF within the ICSM? (iv) How does the 

system respond to using different levels of accuracy for RF and different boundary 

conditions for molecule? All the questions above will be mainly answered by analyzing 

the histogram distributions of electrostatic forces and torques through the entire 

simulation cavity. 
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3.2 Methods 

 Histogram distributions for electrostatic forces and torques on water molecules 

are constructed based on MD trajectories derived from the simulation of bulk water in 

thermodynamic equilibrium at room temperature (T = 300 K) using ICSM. The Tip3p 

water model is used, in which oxygen atom has a charge of -0.834 and hydrogen 0.417. 

The length of HO bond is fixed at 0.9572 Å. All details for performing the MD 

simulations in this work are as published previously [39]. After equilibration, typical MD 

trajectories are 4 to 6 ns long, and frames were sampled at 0.2 ps apart. 

The net force on a water molecule is the sum of pairwise forces on all its atoms. 

The pairwise force is given by: r
r
QQF

i


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=

πε
 whether it is a direct interaction between 

atoms, or indirect interaction between atoms and image charges that reside outside of the 

spherical cavity. The water in the buffer layer is considered as contributing to the direct 

part of the electrostatic force. The RF derives from a linear superposition of all forces 

from the image charges that lie outside the spherical cavity. The torque on a water 

molecule is given as: 

OCOMOHCOMHHCOMH FrrFrrFrr ×−+×−+×−=Γ )()()(
2211

 (Eq. 3.1) 

where COMr  is the center of mass (COM) of the water molecule, and OF , 
1H

F , 
2H

F  are 

the electrostatic forces on the oxygen and two hydrogen atoms. 

Different types of distributions for forces and torques on water molecules are 

calculated. The first type of distribution is for the magnitude of the net forces and torques 

from electrostatic interactions only (no van der Waals forces are included). The second 

type of distribution is when these forces and torques are broken down into the direct and 
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indirect parts. The third type of distribution is for the radial component of these forces 

and torques, given by: rFFr ˆ⋅=  and rr ˆ⋅Γ=Γ . All three types of distributions are 

generated for TO-box sizes of L=30 Å and L=45 Å, atom-based, group-based and ODL-

based molecular boundary rules, and for 0, 1, 2 and 3 image charges per source charge.  

The distributions are generated for water molecules as a function of distance away 

from the origin in the form of shells to check how homogeneous the water properties are 

throughout the TO-box. That is, the spherical cavity is divided into 100 concentric shells 

of equal volume so that each shell contains approximately the same number of water 

molecules, typically 13 to 15 for 30 Å box, and 44 to 51 for the 45 Å box. For a particular 

shell, the electrostatic force and torque values of all water molecules in this shell are 

calculated and augmented over all the frames from the MD trajectory. The advantage of 

using shell numbers is that the relative position of a shell in systems of different sizes is 

the same for the same shell number, which makes comparisons easier, as shown in Fig. 

3.1. All of the forces or torques per molecule are accumulated and used to construct the 

histogram distribution for a given shell. The same procedure is applied to all shells. If the 

oxygen atom is inside a particular shell, then the entire water molecule is treated as if it is 

in that shell. Thus each water molecule belongs to one and only one shell for a given 

frame, although it moves between shells over the trajectory. Note that although the 

histograms are normalized, they do not represent probability density functions because 

we simply binned the data. Normalization means that summing the probability over all 

the bins yields unity. 
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Figure 3.1: The location of each shell compared with the sizes of Region I and II for 
different simulation box sizes, 30 Å (dash lines) and 45 Å (solid lines). 
 

3.3 Results and Discussions 

Force Dependence on Number of Images and System Size 

As shown in Fig. 3.2, the statistical distribution of total force on a water molecule 

for a L=30Å TO-box is largely independent of both shell location and the number of 

image charges per source charge used to represent the RF. The most obvious outlier is for 

shell 90, which is close to the spherical cavity wall that also defines the outer boundary of 

shell 100. The force distribution for shells near the spherical cavity boundary within the 

buffer layer deviate far from the shells located within region I, as illustrated by the result 

of shell 90. For the 0 image case, a small deviation starts to appear at shell 70. Note that 

for the L=30Å TO-box, shell 41 is the smallest shell that contains only imaged water 

within region III. Consequently, the histograms for the magnitude of the net electrostatic 

force on a water molecule within any shell that lies fully or partly within the TO-box are 

essentially the same, independent of the number of image charges used per source charge. 



30 
 

This result suggests that the number of image charges per source charge (including 0) is 

not important. If this is the case, then only the buffer layer is playing a significant role in 

maintaining proper forces within the TO-box. 

 
Figure 3.2: Selected distributions within various shells for the magnitude of the net 
electrostatic force on a water molecule. The total force consists of direct water 
interactions and the RF component. A box size of L=30Å and 6Å buffer layer is used, 
and the results are shown for different number of images. Note that the distributions are 
normalized histograms generated using 30 bins of equal size over the range of 0 to 
1.5×10-10 N. 
 

Histogram distributions are shown in Fig. 3.3 for the net force on a water molecule 

that is separated into direct and indirect parts. It is seen that there is strong shell 

dependence for the RF part, but only a weak dependence on shell position for the direct 

part, which is associated with all explicit water molecules within the spherical cavity. 

Simultaneous strong shell dependence on the RF and weak shell dependence on the total 
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force is possible because of separation of scales. The RF forces in comparison to direct 

forces typically provide less than a 2% effect, which is shell dependent. Within the 

productive region, the relative importance is about 1% while at the end of region II the 

percentage goes as high as 2%. The initial objective for the ICSM was to reproduce 

correct physical properties of water in the productive region (region I as defined in Fig. 

2.3). Pleasingly, the simulations for bulk water properties [39] and for calculating the ion 

solvation free energy [9] produced results that preserved homogenous characteristics of 

the system under study markedly well within the TO-box, which includes region II. 

Because the relative strength of the direct to indirect RF forces is typically greater than 

50, it appears that the main reason why the ICSM does well is because of the buffer layer. 

This result suggests that the buffer layer should be employed, and perhaps the image 

charges that control the RF forces are not necessary!   

As the shells move further out into the buffer range, the relative contribution is 36% 

by shell 70 for 30 Å box, compared with 16% for 45 Å box, as shown in Table 3.1. The 

useful shells in regions I and II are extended outwards using a larger TO-box and the 

outliers again only occur well within the buffer region. This result shows that the buffer 

layer made up of imaged water of the TO-box is absorbing large RF forces, but dynamics 

is not affected by these forces. We tested to see if the buffer layer by itself is sufficient to 

generate an accurate RF, meaning all image charges in the domain outside of the 

spherical cavity are simply dropped. After dropping image charges outside the cavity, the 

buffer layer alone yields very large erroneous results in the dielectric response [39], while 

other structural properties of water did not deviate much. Moreover, we find that to insure 
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high accuracy in the RF throughout the TO-box, the imaged water in the buffer region 

must also generate image charges in the domain outside of the cavity (data not shown). 

 
Figure 3.3: The net electrostatic force is split into two parts originating from direct 
interactions and from the RF. The bin size for the direct component is the same as used in 
Fig. 3.2, and 30 bins of equal size over the range of 0 to 0.6×10-10 N was used for the RF 
component. The top two panels show the direct interactions, while the bottom panels 
show the RF component of the net force. The left column shows results for the L=30Å 
TO-box, and the right column shows results for the L=45Å TO-box. Both box sizes use a 
6Å buffer layer.  
 

The role of the buffer layer is therefore essential to preserve local structure of 

water consistent with homogeneous bulk water properties, which includes the long-range 

electrostatic force that is in part induced by the waters in the buffer layer. This leads to 

the question, why is the RF essential (using at least one image charge) despite having a 

relative force contribution that is typically less than 2%? Since the dielectric response is 

related to the polarization of water, a natural quantity to characterize is the torques on 
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water molecules, which governs the orientation of the permanent electric dipoles. 

Another question is whether it is possible that the forces and/or torques generated by the 

RF are sensitive to the particular molecular boundary condition?  

Table 3.1: For different shells, the ratio of the RF part to the total electrostatic forces (RF 
part + direct part) per water molecule. The unit of force is 10-10 N. 

 

Force and Torque Dependence on Molecular Boundary Conditions 

No systematic shell dependence on the distributions for forces and torques of any 

type (i.e. total, direct or RF) were found when different molecular boundary conditions 

were employed. As defined in Fig. 2.4, the two extreme cases are the atom-based and 

ODL-based rules. In Fig. 3.4, we show two representative examples of distributions for 

the radial components of the forces and torques using atom-based and ODL-based rules. 

Some differences are found in the shells within the buffer layer close to the spherical 

cavity walls as illustrated by shell 70. However, even qualitative features remain the 

same (comparing panels C and D for example). Therefore, as far as force and torque 

distributions are concerned, the molecular boundary rule that is applied along the 

spherical cavity wall is not important provided the buffer layer is large enough, which 
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was previously determined to be 4 to 6Å [39]. Within the buffer layer, the differences in 

forces and torques on the imaged water molecules that depend on the choice of molecular 

boundaries are not reflected in the dynamics of the molecules. Although data is not 

shown for group-based boundary rules (the original implementation [39]), in summary, 

no obvious difference between any of these three boundary conditions is found in the 

histogram distributions of forces and torques for bulk water. 

 
Figure 3.4: Comparing distributions for the radial component of the total force (shown in 
top row) and the radial component for the total torque (shown in bottom row) using the 
L=30Å TO-box and one image charge. The (left, right) columns show the histograms for 
(atom-, ODL-) based rules.  
 

Torque Dependence on Number of Images and System Size 

In Fig. 3.5, it is shown that for 1 image charge, the histogram distributions for the 

magnitude of torques that originate from only direct water-to-water interactions carry 
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slight shell dependence. This result is independent of system size. The shell dependence 

is dramatically increased once the shells enter the buffer region, as expected. Similar 

histogram distributions are shown for the magnitude of net torques that originate from 

only the RF. In this case, the shell dependence is very strong throughout the entire 

spherical cavity, both inside and outside the TO-box --- similar to what was found for 

forces. However, the relative scales are much closer. Whereas the forces from the RF 

compared to direct interactions is typically a 1% contribution within region I, the torques 

due to the RF compared to the direct interactions is about a 20% contribution, and 

increase from there as the shell radius increases. This result suggests that the importance 

of the image charges is not related directly to forces, but more specifically to torques, 

which is responsible for the orientation of the water molecules, and thus the local 

polarization properties. 

This result is physically intuitive, and it motivated a further check on the 

significance of the number of image charges on affecting the torque distributions 

(recalling forces were not sensitive at all). In Fig. 3.6, the effect of using a different 

number of image charges per source point (0 to 3) on the histogram distributions for net 

torque that include both direct and RF components are compared for the ODL-based 

molecular boundary case. It is somewhat surprising to see that the affect of the RF is 

hardly visible. Using 1 to 3 image charges per source point show virtually no differences 

within statistical noise. When using no images, a more noticeable change does occur for 

the outer shells, but no deviation is discernable for any shell up to shell 20, which ends 

region II. This result again suggests that the buffer layer of imaged water is sufficient to 

model bulk water, dropping the image charges altogether. As mentioned above, this 
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experiment was indeed performed in earlier work [39]. Most of the physical quantities 

that was checked did not depend strongly on whether the image charge was present or not, 

except for the dielectric constant, which dramatically changed between the 0 and 1 image 

case.  

 
Figure 3.5: The net torque on water molecules due to electrostatic forces is split into two 
parts that originate from direct interactions and the RF. To produce the histograms, 40 
bins are used over the range 0 to 1×10-10 Nnm for the direct component, and over the 
range 0 to 0.4×10-10 N nm for the RF component. The top two panels show the results for 
the direct interactions, while the bottom panels show the results for the RF component of 
the net torque. The left column shows results for the L=30Å TO-box, and the right 
column shows results for the L=45Å TO-box. Both box sizes use a 6Å buffer layer.  
 

     In Fig. 3.7, similar results are shown only for the radial part of the net torques. It 

was our expectation that a difference in torque distributions would be detected when 

comparing the 0 and 1 image charge case. In our previous studies, group-based molecular 

boundary rules were employed [39], while the results shown here are for ODL-based 
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rules that were incorporated in the ICSM in subsequent work [9]. As we show below, the 

molecular boundary condition is not the reason for not seeing a difference between the 0 

and 1 image charge case. 

 
Figure 3.6: Histogram distributions for the magnitude of the net torque due to the 
electrostatic forces originating from both the direct and RF parts is shown for four cases 
invoking 0 to 3 images in the MD simulation using the L=30 Å TO-box with a 6Å buffer 
layer. To produce the histograms, 40 bins are used over the range 0 to 1×10-10 Nnm.  
 

A possible reason why the torque distributions do not reflect the differences we 

found earlier between the 0 and 1 image charge cases is because the differences that are 

present are spatially averaged out by using concentric shells. Even the radial component 

of the torque distribution is subject to this possibility. However, because the radial pair 

distribution function (between oxygen atoms) is not very sensitive to using the 0- and 1-

image charge cases (data not shown), this implies that during the MD simulation the 
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collective behavior of the water molecules restore the net total forces and torques to 

statistically support the same histogram distribution. However, this still leaves a 

perplexing dilemma, because at least 1 image charge is necessary to maintain the correct 

dielectric constant. These results suggest that our analysis is missing correlations in 

orientations between pairs of water molecules. 

 
Figure 3.7: Histogram distributions for the radial component of the net torque due to the 
electrostatic forces originating from both the direct and RF parts is shown for four cases 
invoking 0 to 3 images in the MD simulation using the L=30 Å TO-box with a 6Å buffer 
layer. To produce the histograms, 40 bins are used over the range 0 to 1×10-10 Nnm.  
 

To demonstrate that there is indeed an important difference between using 0 and 1 

image charge per source charge, the net dipole moment for a spherical ball centered at the 

origin as a function of radius is shown in Fig. 3.8 for both the atom-based and ODL-

based rules applied at the spherical cavity walls. Error bars are calculated to show that Ni> 

0 cases are all equivalent to one another within statistical errors, but these results are very 
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different from the no image charge case.  The formula for the total dipole moment as a 

function of radius 

€ 

r  with respect to the origin of the TO-box and spherical cavity is given 

in Eq. 3.2, where a spherical ball contains all water molecules in frame, 

€ 

j , that have its 

oxygen atom within the radius, 

€ 

r , considered. 

Make sure you send PDF and make sure equations are correct. I hate word. This 

equation is all screwed up again. Check all equations in your PDF file before you send it 

off to the committee!!!! In fact, check all equations, and figures, and make sure there are 

no formatting problems. You can have someone else do this, as it is checking for 

formatting errors, not content.  
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(Eq. 3.2) 

The dipole moment is averaged over all j-frames from the MD trajectory, where the 

atom position vectors for the k-th molecule in the j-th frame weight the oxygen and 

hydrogen atoms. Because the first non-zero multipole is the dipole moment, the result is 

independent of choice of origin. Thus, the expression given in Eq. 3.2 is equivalent to 

defining the origin to be at the COM or at the oxygen atom for each water molecule.   

The total dipole moment is needed to calculate the dielectric constant, and it 

represents a quantity that reflects fluctuations in the orientations of water molecules that 

captures correlations that are presumably missed in the torque distributions shown above. 

This dipole moment calculation was done for both the atom-based and ODL-based 

boundary rules. These results confirm the previous study using group-based boundary 

rules. Therefore, any of the three common molecular boundary conditions considered 
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here have little to no influence on the molecular force and torque distributions regarding 

properties of bulk water. This is not to say that there are not advantages to employ one 

boundary condition over the other for certain physical quantities or deficiencies may exist 

in certain cases as pointed out previously [39, 49]. 

 
Figure 3.8:The total dipole moment for spherical balls of radius r is plotted for four cases 
invoking 0 to 3 images in the MD simulation using the L=30 Å TO-box with a 6Å buffer 
layer. Rc is the radius of entire spherical cavity. The overlapping error bars show that 
Ni=1, 2, 3 cases are producing the same results, based on the 6.0 ns trajectory for atom-
based and 4.8 ns for ODL-based cases. The error bars on the 0 image curve in the atom-
based case are smaller than the size of the symbols. A: Atom-based and B: ODL-based 
boundary rules are used. 
 

Table 3.2: For different shells, the ratio of the RF part to the total electrostatic torques 
(RF part + direct part) per water molecule. The unit of torque is 10-10 N nm. 
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In Table 3.2, both total electrostatic torque and torque from RF are growing when 

the size of shell increases. In shell 1, the ratio is 20.8% and 15.1% for 30 Å and 45 Å 

boxes, respectively. These ratios are much larger than those of electrostatic force shown 

in Table 3.1, which are no larger than 2.0% before shell 10. The comparison between 

Table 3.1 and 3.2 elucidates that, in region I, electrostatic torques from the RF play a 

more important role than electrostatic force to maintain the correct dielectric properties. 

Therefore, the importance of the image charges is not related directly to forces, but more 

specifically to torques, which is responsible for the orientation of the water molecules, 

and thus the local polarization properties. This result is physically intuitive, and it 

motivated a further check on the significance of the number of image charges on 

affecting the torque distributions (recalling forces were not sensitive at all).    

The interesting feature identified is that within region I, there is essentially no 

difference between using 0 or 1 image charge per source charge. The buffer layer on its 

own already makes region I resemble bulk properties of water. However, region II 

retains the properties of bulk water as well. As Fig. 3.8 shows, a non-negligible deviation 

starts to occur just at the end of region II (a radius of 12.9Å ends region II for a L=30Å 

TO-box.). For bulk water simulations [39] and for ion solvation [9], we previously 

reported that in practice region II also maintained the properties of bulk water well when 

1 image charge per source charge is used in the ICSM. For practical purposes, dropping 

the single image will surely increase unwanted finite size effects because physical 

correlations involving water orientations will be lost, and therefore is not recommended. 

Moreover, 1 image charge per source charge appears to be sufficient for high accuracy.  

Importance of the Reaction Field and the Buffer Region  
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Fig. 3.9 shows how the dielectric constant change depends on different numbers of 

image charges [39]. When reaction field is gone Ni=0 case, the curve that corresponds to 

this state is very different from those computed from Ni> 0 situations. It falls back to 

small value when approaching to the edge of the sphere. The plot reveals that the reaction 

field is essential for maintaining a uniform dielectric response throughout the simulation 

box. Our aim is to find out how RF affects the dielectric properties with different 

numbers of image charges. 

 
Figure 3.9: Dielectric constant ε(R) for increasing number of image charges Ni. 
Convergence occurs at Ni=1. The reaction field (Ni≥1) is necessary to produce uniform 
dielectric properties across the simulation box. 
 

The result in Fig. 3.9 shows that, when the number of image charges Ni is equal to 

or bigger than 1, the entire system will not have significant changes in dielectric 

constants. And no reaction field (zero image charge) will give the wrong dielectric 

constant. It also provides more proof to the conclusion that, for certain accuracy, only one 

image charge (Kelvin image charge) is necessary for the RF [39].  

Building on prior works [9, 39], combined with the above detailed analysis of 

force and torque distributions, we have shown that the importance of the RF manifests 
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directly through the net torques on the water molecules. The RF component represents a 

long-range effect that works in a subtle way to create correlations in the orientation of 

water molecules, and thus affects the polarizability of the solvent. The observation that 

torque plays a central role in describing proper bulk properties of water has been 

exploited in the local molecular field (LMF) [51] theory approach. In general, boundary 

conditions that arise at the interfaces between different types of medium are difficult to 

deal with due to the long-range nature of the electrostatic force. As such, simple cut-off 

procedures create large errors. These errors have been mitigated within the LMF 

approach [51] by accounting for the net long-range electrostatic forces in terms of 

reorienting torques on water molecules, which is consistent with our more accurate 

calculations. As such, this suggests that the success of the LMF approach is precisely 

because the dominant effect has been accounted for well.   

The results presented above also suggest that if 1 image charge per source charge 

is kept the buffer layer can be reduced, since all shells maintained the same force and 

torque distributions within region I and most (if not all) of region II. Although the 

distributions were not shown, it was already clearly demonstrated [39] that the buffer 

layer thickness is critical to maintaining accurate structural and dynamic properties of 

bulk water. As soon as the buffer layer is reduced (say to 4Å) some properties of water 

deviate from the desired target properties of bulk water. This prior observation is 

understandable because the relative importance of both torques and forces from the RF 

compared to direct interactions increases when a water molecule comes closer to the 

spherical cavity wall. From a practical point of view, a buffer layer of 4Å may introduce 

errors that are tolerable for many applications, but 6Å will ensure high accuracy 
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whenever needed. This finding leads us to point out a serious concern involving artifacts 

found in any explicit/implicit model.  

The method of images [40] is a rigorous way of solving the Poisson equation for a 

system with spherical geometry that we have employed in the ICSM. It is worth noting 

that this method can be extended to accurately solve the linearized Poisson-Boltzmann 

equation [52] with arbitrary ionic strength. In the case of bulk water, we show here that 

the Poisson equation can be solved more accurately using multiple images (2 or 3 per 

source point for example) than is required because the physical quantities that can be 

calculated do not gain in any detectable accuracy. This is because the discontinuous 

model for the dielectric to change from within the cavity to the continuous dielectric 

medium outside of the spherical cavity walls is a mathematical idealization. As such, the 

forces and torques near this boundary are unphysical. To counter this problem, the buffer 

layer is introduced to absorb idealized-model induced errors.  The buffer layer is 

therefore an essential part of the ICSM.  

It is important to realize that multiple image charges (more than one) is required 

for accurate calculation of the electrostatic forces for charges in the simulation box near 

the spherical dielectric interface where the Kirkwood expansion converges extremely 

slowly. However, this region is where the buffer layer is located. The ICSM uses imaged 

water molecules in the buffer layer, which do not have associated dynamical equations of 

motions. Increasing the number of image charges will dramatically help increase the 

accuracy of the water molecules within the buffer layer, but our results show that the 

accuracy is already sufficient for the water molecules outside of the buffer layer. In other 

words, improving accuracy for the forces and torques on water molecules within the 
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buffer layer is not relevant. Due to the scaling of how big the buffer layer is relative to 

the spherical shell radius, it may be that more image charges will be needed for very 

large box sizes. However, even up to an 80Å box with εo = 80, one image charged 

proved sufficient [39]. Also, we explored whether more than one image charge is ever 

needed for bulk water simulations using different εo values that go as low as εo = 10. In 

all cases checked for bulk water, we find one image charge is good enough to recover 

accurate properties of bulk water. However, also note that this single image charge is 

slightly modified from the classical Kelvin charge, and partly accounts for the imaged 

line charge in addition to the classical Kelvin charge.  

The significance of the presence of a buffer layer of a minimum thickness to 

ensure accurate calculations of electrostatic interactions is more far-reaching than a 

simulation protocol for modeling bulk water. Rather, the analysis presented here 

demonstrates that any model that employs a discontinuous change in the dielectric 

constant within the physical domain of interest will create large spurious forces and 

torques on explicitly modeled atoms. Therefore, when developing a hybrid model that 

interfaces continuum electrostatics with explicit atomic systems, a buffer layer should be 

included to better model structural details at the interface [53], and to allow a way for 

artifacts caused by the unphysical boundary conditions to die out far enough away from 

the parts of the system that are under study.  

3.4 Conclusions 

Molecular forces due to the RF are typically less than 2% of the total force, while 

in comparison, molecular torques due to the RF are typically 20% of the total torque. 

Since molecular torques affect water orientation, and thus polarization, the role of the RF 
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is essential in describing the correct molecular response to electrostatic forces. In 

particular, the RF is responsible for generating correlations in the orientations of water 

molecules, which affects the local dipole moment. In addition, it is shown that using a 

discontinuous dielectric model produces large artifacts at the interface, which is why a 

buffer layer is needed. The role of the buffer layer used in the ICSM is critical to 

maintaining high accuracy since the spurious forces and torques that are generated near 

the interface walls do not affect the dynamics of the molecules near the walls because 

they are imaged. More generally, the analysis suggests that it is important to create a 

buffer layer in multi-scale hybrid models, and/or to completely avoid discontinuous 

change in the dielectric within the physical domain of interest. Also the results show that 

very little influence has been observed with multiple image charges and different 

boundary conditions for water molecule. Although the break-even point for the ICSM to 

outperform the PME is about 30,000 particles [54], it is slower than PME for smaller 

systems. Considering the inefficiency in computational cost due to the buffer layer, we 

would like to improve the discontinuity of dielectric at the boundary to possibly shrink 

the buffer layer. This is the subject of the next chapter. 



CHAPTER 4: OPTIMIZATION OF IMAGE CHARGES 
 
 

4.1 Introduction  

 The implementation of the buffer layer has received attention for reducing the 

artifacts of the hybrid explicit/implicit model [32, 33, 55, 56]. A carefully constructed 

buffer layer will provide a good approximation for the dynamic properties for a region 

that are far from the boundary. An early treatment of the buffer layer was suggested in 

terms of Langevin stochastics algorithm for the dynamics of the molecules, described by 

Brooks and Karplus [57]. The ICSM, however, constructs the buffer layer in a simpler 

way by using imaged water in the simulation box through PBC where the water 

molecules in the buffer have no equation of motion. Nevertheless, the buffer layer 

molecules do have electrostatic interactions on the explicit solvent and induce the image 

charges for RF. 

 The analytical solution for representing implicit solvent effects assumes that the 

dielectric constant near the boundary has unphysical discrete change from 1 to 80, and we 

call this version of ICSM Discontinuous Dielectric Model (DDM). The goals of this 

project are to optimize the DDM to improve accuracy while reducing finite size effects. If 

successful, this would also make the productive region larger and the buffer layer thinner 

to improve the simulation efficiency.  

 The approach is to use a different set of image charges to reflect a continuously 

changing dielectric profile near the boundary to minimize artifacts caused by unphysical  
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discontinuous dielectric constants that were applied for a convenient mathematical 

idealization. 

4.2 Methods: 

Solving inverse problem: 

The optimization can be solved as an inverse problem. Firstly, the electrostatic 

properties (such as potential, forces and force tensors, we use potential here for example) 

is calculated from a MD simulation of a large periodic system using GROMACS [58]. 

These calculations are taken as exact because the system size of the periodic system is 

greater than the correlation length governing water-water interactions. Secondly, by using 

least square error method, the image charges from DDM model will be modified so that 

the dielectric potential have the best match to that large periodic system, quantified by the 

smallest least squares error. The assumption is that the interface potential of the spherical 

cavity is a transition region that matches an explicit model of solvent to an implicit model 

of the same solvent (in this case, pure water), and that this property will not be modified 

by the solute particles that are contained within region I of the simulation box. 

 
Figure 4.1: A) Discontinuity of dielectric permittivity for DDM model in which a sudden 
jump of dielectric constant occurs near the boundary of the cavity. B) Continuous 
transition of dielectric permittivity through the buffer layer for optimized model. 
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The DDM has an analytical solution using Gauss-Radau quadrature points [40-42], 

as shown in Fig. 4.1 A. The formula for the Kelvin image charge is given by, 

/kelvin s sq q a rγ= , 2 /kelvin sr a r= , where i o

i o

ε ε
γ

ε ε

⎛ ⎞−
= ⎜ ⎟

+⎝ ⎠
   (Eq. 4.1) 

However, this solution is calculated by boundary conditions with discontinuous 

dielectric constants. In Fig. 4.1 A, for actual calculation, εin is 1 and εout is 80 for water 

solvation. The dielectric permittivity changes suddenly from 1 to 80 close to the edge of 

sphere, which makes the system unphysical near the boundary. To avoid the unphysical 

forces, a buffer layer is added outside the simulation box so that the center of the sphere 

will be protected from the boundary area and can be treated as bulk water, shown in Fig. 

4.1 B. In the simulation, only the center part of the sphere defined by region I in Fig. 2.3 

can be used as bulk water, because the solvation in outer shells is still affected by the 

buffer layer. For a truncated octahedron box with diameter of 3.0 nm and 0.6 nm buffer 

layer, the usable region is only 0.63 nm in diameter.  

The idea in Fig. 4.1 B is that, without knowing the dielectric profile between a 

spherical cavity and the outside continuum dielectric medium, we can match the 

electrostatic potential in the explicit region directly to the value defined by the target 

solvation model by optimizing the image charges. A Least Squares Error (LSE) method is 

employed to carry out this optimization. After finding the optimal image charges, MD 

simulation is performed using ICSM with the optimized image charges. Based on the MD 

simulations, the model-dependent dielectric profile can be calculated, but the important 

point is that it does not need to be known a priori. Thus the inverse problem avoids 

having to define the precise dielectric profile at the interface of the spherical cavity, 

which would be dependent on many model details. 
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Least squares error method: 

In this work, we fix the locations of the image charges from the analytical solution, 

changing their magnitudes to minimize the LSE with respect to the exact solution of RF 

potential exactV . 

∑ −=
N

i
iestimateiexact VVError 2
,, )(       (Eq. 4.2) 

Here the variable “i” represents field positions within the region of space of 

interest, and this will be described in more detail below. This method employed can be 

viewed as a variation problem. We assume the form of the RF is the same as Eq. 2.4, and 

that the quadrature points are exactly the same, and the only difference is in what the 

weights are in representing the line charge density. As such, this translates to simply 

finding unknown image charges as the variables we solve for when obtaining the LSE. In 

other words, this procedure is equivalent to finding the best fit for the RF to exactV as a 

reference. Moreover, because the LSE method samples a large number of field points in 

the sphere, it tends to spread the error uniformly throughout the cavity. 

Interpolation method: 

Because we want to reproduce the electrostatic potential of the target water model, 

in the context of LSE we minimize the differences of the potential between exact physical 

value RFΦ and the value of image charge solvation model with optimized image charges

mQ . However, this would require knowing what the image charge needs to be for any 

source charge location, which would require an infinite number of fitting variables since 

the source charge can be anywhere within the spherical cavity. To get around this 

problem, we parameterize the equations using a variety of interpolation methods, which 
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only requires a small number of variables. A straightforward approach of defining a set of 

bins, and doing an interpolation between the bins was implemented first. 
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    (Eq. 4.3) 

where N are N field points for electrostatic potential calculation, K is the number of bins 

for interpolation, M means how many image charges will be used for one source charge. 

M=0 means use Kelvin image charge only. The procedure to find the minimum in the 

LSE is essentially looking for a set of optimized image charges: ),,( 0 Mm QQQ L= , so 

that ))(min()( QErrQErr m = . 

 

 
The schematic above shows how we did the interpolation and optimization. We 

divided the radius of the sphere in the image charge salvation model into several bins. In 

practice, 10 bins are good enough for optimization. The number of bin edges ranges from 

0 to 10 and the 11 optimized charges are located at these edges. The spherical cavity is 

full of source charges (water molecules). Suppose one source charge ( sr , sq ) falls in bin 

3, and the optimizing charges that are located at the edges of bin 3 are 2=kq  and 3=kq . If 

sQ  is the image charge of sq , 2=kQ  and 3=kQ  are the image charges formed by 2=kq  and 

3=kq , according to the definition of linear interpolation, the source charges sQ could be 

calculated by 2=kQ  and 3=kQ :   
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In the RF method, when the source charge is close to the center of sphere ( sr  is 

very small), the distance of its image charge could be infinite. To reduce the influence of 

this effect, we optimized sms rQu ×=  instead of sQ  directly. So the new linear 

interpolation formula for su  is: 
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Besides linear interpolation, we also tried non-linear ways to express the image 

charges. Here, su is expressed as a certain order of polynomial terms, so that the 

coefficients of each term will be optimized. Let R be the radius of the system sphere, 

∑
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,   (Eq. 4.6) 

where Rrx s /= , jc is the coefficient of the polynomial term jx  
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Suppose we express su  in a 6-order polynomial terms, then 

6
6

5
5

4
4

3
3

2
210 xcxcxcxcxcxccus ++++++= , where Rrx s /=   (Eq. 4.8) 

After seeing the results from the linear, polynomial and other ways we interpolated, 

we noticed the solution looks similar to a tanh() function. Therefore, we directly 

parameterized the image charges as a tanh() function to fit the curve. In this procedure we 

define: 

)tanh(cRbaus ×+= , 
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Since the tanh() function is a nonlinear function, we assume an initial set of 

parameters {a, b, c}, and linearize the equation, which is minimized in terms of small 

changes in {a, b, c}. Then, this procedure is repeated until the differences in the variables 

stop changing. Instead of using 11 parameters (11 bins) in linear interpolation, we are 

able to reduce the problem to optimize 3 parameters in tanh() interpolation, a and b 

decide the start and end position of the curve, c decides the slope of the curve. Based on 

the optimizing curve from linear interpolation results, we think that in the application of 

running MD simulations, it will be more convenient and easier to calculate image charges 

from optimized us if a continuous formula is used rather than performing interpolations. 

Using LAPACK to solve inverse problem 

The LSE optimization problem reduces to a standard linear algebra problem that 

can be solved numerically using the Linear Algebra PACKage (LAPACK) mathematical 

library, which is a software package provided by Univ. of Tennessee; Univ. of California, 

Berkeley; Univ. of Colorado Denver; and NAG Ltd.. The equations are 
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     (Eq. 4.9) 
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where us is the parameters needed to be optimized. A/rs is a matrix, the row number is 

field points × xyz directions, for column it is the number of parameters. In optimization 

iterations, we are actually optimizing su because we use mss Qru ×= to make the 

calculations numerically stable when the source charge is very close to the center of 

sphere. Take linear interpolation for example, 
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The element Aij is defined as: 
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Aij means j-th image charge (Kelvin image charge) interacting with the i-th field point.  
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, , ,  k j p qx is the position of the j-th image charge for one source charge, p is the frame id 

and q is the atom id in that frame p. For one particular source charge, it will fall into one 
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of the 11th bins along the radial direction, for example, k-th bin with rk and rk+1 as edges. 

Then βk,k+1 will equal to 1. As a result, all the other elements in Aij matrix will be zero 

because the b will be zero, except for the bin in which the source charge falls. The A 

matrix will be calculated for each of the q atoms in p frames, totally p × q, and summed 

together. 

Optimize the boundary conditions of the DDM model: 

We have two parts of the optimization procedure in our work. One is the 

optimization for the magnitude of the image charges while keeping their locations 

unchanged. The other one is to optimize the boundary conditions according to the DDM 

model. In DDM model, all the water molecules in the simulation box and the buffer zone 

contribute to the image charges located outside buffer layer for RF. In our optimization, 

we decide to divide the entire sphere into different shells so that we treat each shell 

differently.  

As shown in Fig. 4.2, in DDM model, outside the buffer layer we have only one 

sphere R3=D/2 + τ, where D is diameter of the TO-box and τ is the thickness of buffer 

layer. To optimize the boundary, we introduce two more shells with radius R1 and R2. R1, 

R2 and R3 are flexible and can be changed to find the optimized combination. 

Based on the ODL truncation, to protect the field points inside the TO-box, we use 

the water molecules outside R0 for electrostatic forces calculation. R0 = D/2 + δ, where δ 

is the H-O bond length for water molecule and set as 0.11 nm. 
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Figure 4.2: The boundary of DDM model is split into three different boundaries to look 
for the best combination of the R1, R2and R3. R1should be larger than TO-box, so R1≥D/2. 
R2 can change between TO-box and the edge of the spherical cavity, thus D/2≤R2≤D/2+τ. 
R3 is for image charge calculation, and should be R3≥R1. 
 

Fig. 4.3 shows how water molecules are treated differently depending on their 

locations. For a field points inside truncated octahedron box, it can feel both the RF 

interactions from image charges locating outside R3 and direct interactions from other 

water molecule surrounding it inside R2. For RF part, water molecules (qs, rs), (qs1, rs1) 

and (qp, rp) are inside R1 sphere according to ODL truncation criteria and they will 

generate image charges outside R3. For direct interaction, water molecules (qs, rs), (qs1, 

rs1), (qp, rp), (qt, rt) and (qt1, rt1) will generate direct electrostatic forces on field points. 
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Figure 4.3: How water molecules in different shells contribute to the electrostatic force 
felt by field point, from direct interaction and RF, respectively, in ODL truncation. Water 
molecules s, s1 and p that are inside R1 will generate image charges outside R3 in 
continuum dielectric medium and contributing to RF. Water molecules s, s1, p, t and t1 
that are inside R2 will have direct interaction to the field point.  
 

In Fig. 4.4, R0 is fixed and it only depends on the size of TO-box. For water molecules in 

the shell between R0 and R1, they have image charges located outside R3 for RF. So R1 

should not be larger than R3. For water molecules in shell between R0 and R2, they have 

direct electrostatic interaction to the field points inside TO-box. R2 should not be larger 

than the size of the entire sphere, D/2 + τ. However, for R3, as long as it is larger than R1, 

it can be either smaller or larger than R2. Trajectories of all the combinations of the three 

boundaries R1, R2 and R3with different t values are generated. 
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Figure 4.4: How water molecules behavior near the three boundaries based on ODL 
truncation criteria. The region inside R0 is bulk water area, in which the field points are 
located for electrostatic calculation. The area between R0 and D/2+τ will be divided by 
R1 and R2. Atoms inside R1 will have image charges for RF in bulk water. Atoms inside 
R2 will have direct coulomb interactions to bulk water. 
 

p
RF

s
RF

s
RF

TARGET
RF FFFF ++= 1 , 

11 s
direct

s
direct

t
direct

t
direct

p
direct

TARGET
direct FFFFFF ++++=    (Eq. 4.12) 

Iteration process: 

In the nth iteration, the optimized image charges calculated from (n-1)-th step will 

be used to recalculate )(n
estimate
V , until the results converge. The very first step is based on the 

existing image charge solvation model. The iteration steps are useful in two respects. 

First, for nonlinear interpolations, such as with polynomial terms, the optimized result 

cannot be gotten in one step. More steps are necessary to make least square error smaller. 

Second, our initial dielectric constants for first step are 1=inε  and 80=outε . During the 

iteration steps we can recalculate outε and optimize again based on the new dielectric 
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constant. When the system becomes converged, we can get accurate dielectric constant 

consistently.  

4.3 Results and Discussions: 

Using large box model to calculate exactV :  

The purpose of this study is to reproduce the dielectric potential of the reference 

solvation model by optimizing the DDM we developed before [39]. To use the LSE 

method, we should first have the actual potential from the reference model so that we can 

minimize the difference between the exact potential and our calculated ones. 

We developed a simple way to calculate the actual values, which is called the large 

box method, as shown in the Fig. 4.5. 

 
Figure 4.5: The large box model with infinite number of periodic boxes of size a 
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The truncated octahedron (TO) box shown in blue is the simulation box in DDM 

model. As mentioned previously, the central region that is far from the boundary of the 

cavity has bulk water properties. To get the accurate electrostatic potential of bulk water 

in TO-box, we use DDM model with a very large buffer layer. The entire sphere has a 

radius of Router. If Router becomes infinite, the physical potential of the central box will be 

very accurate. The space is filled with infinite number of periodic boxes. Inside Router, the 

solvent is treated explicitly, while outside is represented by continuum dielectric medium, 

filled with image charges from explicit water in the cavity. 

TARGET
RF

TARGET
direct

total
exact

R
RF

R
direct FFFFF outerouter +⇒⇒+     (Eq. 4.13) 

The center part of the equation is the actual physical value of the electrostatic 

potential inside the truncated octahedron box, which is independent on model types. 

Right part of the equation represents our optimizing model, consisting of electrostatic 

forces from both RF and water molecules. The optimization needs to use actual physical 

value as references, however, we cannot get the exactly value directly. So we build a 

model and try to make the electrostatic forces calculated by this model will be as close as 

possible to the actual physical value. 

Take the PME summation for example as a reference model. The cubic box is 

simulated with the PME method, which uses periodic boundary conditions. The real 

simulation area in our optimized DDM model will be the truncated box shown in the 

center of the sphere. To make this area usable for biomolecule simulation, we need to 

make sure the bulk water properties are correct. Firstly, according to the definition of 

periodic boundary conditions, we fill the space with cubic box and its image boxes in 

three dimensions. In this way, we assume the space is full of an infinite number of water 
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molecules. Secondly, a spherical cavity is created which contains the truncated box in the 

middle. Based on the ICSM, the effect of the explicit water molecules outside the cavity 

could be replaced by serials of image charges formed by all source charges inside the 

cavity. Let the radius of this spherical cavity be outerR . According to the result of DDM 

[39], the larger outerR we use, the more accurate dielectric potential we can get in the 

truncated box in the center of sphere. The dielectric interactions innerV inside truncated 

area contain two parts: the RF from image charges outside sphere RFV and the direct 

interaction from the explicit water between truncated area and sphere directV .  

directRFinner VVV +=    (Eq. 4.14) 

Note that when the size of the sphere outerR becomes infinite, innerV  is most accurate 

but this will also increase the calculation time dramatically. In practice, we need to find a 

suitable size of the sphere for both accuracy and efficiency. In this paper we try to 

optimize our model to reproduce the dielectric properties of PME method, so we compare 

the dielectric force in truncated area in different size of sphere with PME results. 

Fig. 4.6 shows the variations of electrostatic force with different sizes of spheres 

and different methods. The unit of force is N1010− . 2.5a means the radius of sphere outerR  

is 2.5 times bigger than the length a in the original cubic box.  For each atom inside 

truncated area, the electrostatic force on this atom will be calculated under different 

conditions: 2.5a, 1.5a, 1.0a and PME cases. Using the 2.5a case as a reference model we 

calculate the residuals between the reference and 1.5a and 1.0a cases. From the scatter 

plot we can see that the residuals of the 1.0a case are widely spread while the 1.5a case is 

more concentrate near the zero point, showing that the force of the 1.0a case results in 



62 
 

bigger differences than the 1.5a case compared with the 2.5a case. This result suggests 

that the value of electrostatic force in the truncated area depends on the size of the outer 

sphere outerR . To check if 2.5a size is big enough to match the PME model, we plot the 

residuals between 2.5a and PME cases. The right part of Fig. 4.6 shows a good match 

between the two values of the forces. 

 
Figure 4.6: Plots of residuals between different sizes of large box models and residuals 
between large box and PME model. On the left, the accuracy of large box method 
depends on the size of Router. On the right, Router=2.5a case provides a good approximation 
of electrostatic force to the PME model. 
 

To make sure large box model can reproduce the electrostatic interactions of PME 

method statistically, we also compared the histogram distributions of electrostatic forces 

of all the atoms, shown in Fig. 4.7. The agreement of two distributions suggests that the 

large box model is an effective way to calculate exactV  accurately in LSE formula. 

Furthermore, the large box model can be applied to any other solvation models besides 

PME. 
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Figure 4.7: Comparison of the histogram distributions of electrostatic forces of atoms in 
PME and Large box models along the radial direction. The shell 1 is the central sphere, 
while the shell 20 is close to the edge of sphere. Each shell has the same volume, which 
means the similar number of water molecules for statistics. 
 

So in our work, when aRouter 5.2= , we treat innerV of large box model as the accurate 

potential exactV in bulk area of the PME model: 

exactinner VV =    (Eq. 4.15) 

To make the problem simpler, we use a sphere area of radius innerR to replace the 

truncated box in the center of the system. The innerR sphere is now inside the real 

simulation box of size a. 



64 
 

 
Figure 4.8: The simplified model will be optimized to match PME results. After 
optimization, the non-physical artifacts of the boundary can be reduced. The thickness of 
the buffer layer will be minimized, which lowers the computational cost or enlarge the 
bulk water region in TO-box. 
 

In Fig. 4.8, the RF part of electrostatic potential inside the innerR will be innerV , 

which we calculate in large box model. According to ICSM, all the source charges inside 

innerR can generate image charges that are located outside innerR and create RF estimateV  in 

the small sphere. We are trying to match estimateV  to exactV . To realize this, we need to 

optimize the image charge values for the RF so that the final potential will be close to

exactV . 

Optimizing the model using different interpolation methods: 

To evaluate the electrostatic properties inside innerR sphere, we statistically calculate 

the electrostatic interactions on field points that are distributed uniformly in three 

directions within the sphere. The size of every grid is 1 angstrom. For each of the field 

points, we calculate estimateV and exactV . The square value of the summation over the 
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differences between the exact and estimated potentials for all of the field points will be 

averaged by the total number, which will be the LSE per field point. Besides the total 

LSE averaged throughout the sphere, we also check the root mean square (RMS) value of 

LSE for its radius dependence. The sphere is divided into 5 shells with approximately 

same volume, which means each of them have similar numbers of statistical field points. 

The first shell is in the center and the fifth shell is near the edge of the sphere. Because 

our optimization is based on an existing DDM, we compare our total LSE and RMS 

values between the DDM and optimized model. 

Table 4.1: Shell RMS (LSE) and total LSE of old DDM and new optimized models. 
Linear interpolation has the minimum RMS value compared to DDM and Polynomials. 

 
 
 

As shown in the Table 4.1, the RMS of the LSE values of the optimized model 

using linear and polynomial interpolation methods are compared against those obtained 

with the DDM and. For each of the five shells, optimized models have smaller RMS-LSE 

and also smaller total LSE averaged throughout all the field points than DDM, which 

suggests that the new models have smaller averaged deviation from Vexact both along the 

radial direction and totally. 
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In Fig. 4.9, the results of two different interpolation of su  are shown. There are a 

total of 960 frames used in the statistical calculation. We divide the entire frames into two 

parts, each with 480 frames. We do the optimizing process for different parts of the 

frames to check the convergence of the system. 1R is the radius of the spherical cavity 

and 1/ Rrs gives the relative position of the source charge along the radial direction. The 

curves from three interpolation ways have similar shapes, suggesting a convergence 

among the different methods. For each the plot, the three curves have some deviations 

from each other especially when 1/ Rrs is close to zero, which is near the center of sphere. 

This could be caused by lack of enough statistical data because there are not enough 

water molecules close to the central point. When we use 3840 frames, the deviation 

becomes much smaller. For linear interpolation, there is a big gap between the first (

0.0/ 1 =Rrs ) and second optimizing point ( 45.0/ 1 ≈Rrs ). Because there is very few water 

molecules locating very close to the origin of sphere, we cannot get enough statistics 

even if we sample more time in this gap area. For polynomial interpolation, because the 

optimized result is a continuing formula, we can find interpolated su values for every 

position along the radius, as shown in the plot. However, according to the results shown 

in Table 4.1, the linear interpolation has a smaller total LSE and RMS of the LSE for 

each shell than the polynomial method. 
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Figure 4.9: The optimized u values from two interpolation methods, using different 
number of frames. The straight line in black represents the DDM that has not been 
optimized. The colorful curves show the optimization with different statistics. The 
beginning parts of the optimized curves, which are near the edge of the spherical cavity, 
are in good overlap. However, near the center of the sphere, because of the lack of 
enough water molecules for statistics, the error bars are increasing as approaching to the 
center. 
 

Check improvement after optimization: 

After optimization using 3840 frames, we get a set of optimized su values, which 

can be used to recalculate image charges of every source charge based on DDM model. 

To test if the sets of su can improve the DDM, we apply them to 240 new frames to 

calculate the RF, which have no correlation with the initial 3840 frames. Again, we 

divide the sphere into 5 shells. For each shell in 240 frames, the RMS (LSE) value of 

field points in that shell will be calculated and these 240 RMS LSE values are analyzed 

by comparing histogram distributions.  

For linear, polynomial and sine/cosine interpolation methods we compare their 

histogram distributions with the one for DDM. 
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Figure 4.10: The histogram distributions of shell RMS (LSE) show the differences among 
four models. Near the center of sphere all models are similar. The differences between 
DDM and the other three optimized models become larger when the shells approach to 
the edge of the cavity. 
 

The comparison of histogram distribution per shell is shown in Fig. 4.10. For shell 

1 and 2, when the field points are close to the center of sphere, the curves of all four 

models are similar and no obvious improvements are found. For shell 3, 4 and 5, when 

the field points are close to the edge of sphere (note that because each shell has same 

volume, the radius of each shell is not located uniformly), there are differences between 

the three new models and the DDM model. The new models have smaller mean values 

and variations of the curves. This suggests that our optimizing methods mainly improve 

the RF near the edge of sphere, which is where the problems are located. 

Optimize boundary conditions for DDM model using ODL truncation 

Because there are three boundaries to optimized, R1, R2 and R3, we fix one of them 

and change the rest two to find the best combination. 
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Figure 4.11: The LSE between optimized and target model. When the size of the cavity is 
fixed (R2 is fixed), with different sizes of R1, there will be a minimum value of LSE for 
each curve if R3 has a proper size. 
 

Take τ=0.6 nm for example, make R2 fixed, and R2 = D/2 + τ –δ = 2.187 nm. As 

shown in Fig.4.11, curves with different colors represent situations with different R1. R3 

in x-axis is changing from R1+d to outside R2. The total averaged LSE is shown in y-axis. 

From the plot we can see the smallest LSE happens on the bottom curve when R1=2.187 

nm and R3 = 2.287 nm. This means when R2 is fixed, R1 and R3should get close to R2 if 

minimum LSE can be got. 
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Figure 4.12: R2 and R3 will change simultaneously and R3=R2+δ. For different R1, an 
optimized value of R2 and R3 can be found to get the minimum LSE. 
 

 
Figure 4.13: When fixing R2=R3, to get minimum LSE, R1should increase to get very 
close to R2. 
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When R1 is fixed, R2 changes from R1+d to D/2 + τ − δ, and R3 always equals to R2 

+ δ, the LSE plot is shown in 4.12. The curve with smallest LSE is the curve with R1 = 

1.967 nm. Notice that when R2 is getting bigger, the τ value is also increasing. 

In Fig. 4.13 of the third case, if R2=R3are fixed to certain value, LSE is getting 

smaller as R1 approaches to R2. From the three plots shown above, we can conclude that, 

for ODL truncation, to get the minimum LSE, R2 = R3–δOH, R1 = R2. 

 
Figure 4.14: How is LSE reduced by optimized model compared with DDM. A 33% 
decreasing of the LSE has been achieved 
 

Based on the conclusion from boundary optimization, we set R2 = R3–δOH, R1 = R2, 

and compare the LSE between DDM and Optimized model. As shown in Fig. 4.14, with 

different sizes of the buffer layer (τ value), the LSE of the Optimized model (Green) are 

almost 2/3 of the original DDM (Black), which is very close to the reference curve (Red) 
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shown 2/3 of DDM. This means the optimized model has a 33% improvement of LSE 

compared to DDM. 

Interpolation using TANH() function 

 
Figure 4.15: Continuous curve using Tanh() interpolation compared with linear 
interpolation. Although the main shapes are similar, the Tanh() and linear curves do not 
overlap each other, which leads to the slight differences of LSE. 
 

From Fig. 4.15 we can see that there are small differences between linear and tanh() 

curve, which could result in slight difference in LSE. Two curves are plot based on 

different sizes of statistics samples. The results are based on ODL truncation and tanh() 

function interpolation. The formula is ))(tanh( 3000 srRcba −××+ , where a0, b0 and c0 

are the optimized parameters, R3 is the radius for image charge location and rs is the 

positions of source charges. The large box approximation we developed to calculate the 

exact electrostatic potential is proved to be effective and accurate. To verify our results, 

we checked the residuals of electrostatic forces from RF between PME and Large box 
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approximation. The comparison shows that when the size of the outer sphere is large 

enough, the central truncated box area could be treated as bulk water and its electrostatic 

properties are close to the exact value. 

Table 4.2: Comparing the LSE of DDM and two interpolation results for different size of 
the simulation system 

TO + t (Å) a0 b0 c0 LSE(Tanh) LSE(Linear) LSE(DDM) 

30+2.5 -
2.143 

-
3.619 3.057 11.781 9.664 12.442 

30+3.0 -
2.185 

-
3.012 3.156 4.969 4.312 6.018 

30+4.0 -
2.242 

-
2.304 3.409 1.574 1.422 2.177 

30+4.5 -
2.268 

-
2.080 3.496 1.018 0.934 1.472 

30+5.0 -
2.304 

-
1.895 3.576 0.702 0.649 1.042 

30+5.5 -
2.340 

-
1.738 3.672 0.501 0.469 0.762 

30+6.0 -
2.375 

-
1.700 3.642 0.370 0.351 0.575 

 

It is shown in the Table 4.2 that after optimization, the LSE of tanh() and linear 

interpolations are much smaller than original DDM model. Linear interpolation has a 

little bit smaller LSE than tanh(). Our image charge optimization is based on an 

analytical RF model with discrete dielectric constants between explicit and continuous 

media. In this model, the positions and values of the image charges for RF are determined 

analytically [39]. The LSE method with different interpolation schemes will give the 

optimized numerical values of image charges with the positions being fixed. By 

comparing the total LSE and RMS of the LSE of each shell in TO-box of optimized 
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results with those of analytical model, we found that the new optimized models have 

smaller total LSE and variations of error. This suggests the improvement for the new 

model to reproduce the exact electrostatic properties of bulk water. 

When implemented different interpolation methods for image charges, we tried 

both linear and polynomial ways and compare the two results. The interpolating curves 

look similar and agree with each other in big shape, although detailed LSE and RMS of 

the LSE per shell calculations show that linear interpolation gives a closer approximation 

to the exact value. 

Right now we are only optimizing a special case in our model, in which the 

boundaries of explicit water (buffer layer) and RF are the same size. This is the simplest 

way for optimization. However, it may not be best. Some problems occurred in our final 

step of optimization when we implement the optimized image charges back to MD 

simulation using ICSM. The dielectric constant of the bulk water region is much larger 

than expected, although all other characteristics including radial distribution function, 

water density and diffusion coefficient are in proper values with tolerable error bars. The 

dielectric response is directly related to the average fluctuation in the dipole moment 

averaged over a small but finite volume. The average dipole moment should be zero 

within this volume based on symmetry. Surprisingly, a nonzero total dipole moment is 

found within the spherical cavity, well beyond expected fluctuations, shown in Fig. 4.16. 

By symmetry of the problem, the average must be zero. This means there is spontaneous 

symmetry breaking occurring in the model, indicating there is an interesting phase 

transition like what occurs in liquid crystals, but this is unphysical for water at room 

temperature. 
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Figure 4.16: Comparison of averaged dipole moment for PME and optimized model 
 

Besides the possibility of a potential bug in the code, which I checked many times, 

I looked at the problem more carefully to better characterize why this is occurring. What 

is the cause of the abnormal fluctuations in dipole moment? Why are problems not 

showing up in any of the other quantities we have calculated? 

The most obvious difference between the optimized image charges compared to 

those from the DDM is that the former are almost twice as big for most of the source 

charges inside the spherical cavity expect those very near the spherical boundary. As an 

interesting benchmark for a comparison, I arbitrarily increased the image charges in the 

DDM to see what would happen. Interesting, the same kind of symmetry breaking 

phenomena occurs. This suggest that a possible cause is that the total charge outside the 

cavity due to image charges is important, and there might need to place a constraint on 

their magnitude. 

After intensive investigation of the abnormal fluctuations, we found out that it is 

the boundary conditions of the water molecule that affect the dielectric properties in the 

optimization model and show the results in Fig. 4.17. 
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Figure 4.17: A) improved averaged dipole moment using atom based rule and B) 
Dielectric constant matches PME for atom based situation. 
 

Fig. 4.18 shows that the optimized image charges using atom-based conditions are 

less negative than those in ODL based case. This matches the prediction we made above, 

that the non-random orientation of water molecules is caused by too strong interactions 

from image charges with too bigger opposite charges. 

 
Figure 4.18: A) Modified image charges from ODL and atom based rules. B) More than 
25% improvement in reducing the LSE with atom based rule. 
 

Because we are matching our model to PME calculation, we plot the dielectric 

constant of PME results for a comparison to our optimized results. In Fig. 4.19, the left 

figure shows how the dielectric constant increases as the volume of sample sphere for 

calculation using tip3p water [59]. When the size of TO box is small, for example, 3.0 nm, 
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the dielectric constant keeps on increasing and not converged. This is also the problem 

we had when analyzing our optimized result based on 3.0 nm PME cubic box. As the box 

size increasing from 3.0 nm to 6.0 nm, the curve tends to converge near the edge of the 

box. In comparison, the dielectric constant for tip4p water[59] is smaller and converges 

faster than tip3p. To prove that our optimizing algorithm works, one possible way is to 

use larger PME box as reference trajectory for potential calculation. Another way is using 

tip4p water model rather than tip3p. If either way shows the convergence of dielectric 

constant using optimized DDM model, that means our optimization works, and it can 

reproduce the electrostatic properties of the reference potential we chose, including the 

dielectric constant. 

 
Figure 4.19: How dielectric constants of tip3p and tip4p water model change in a sample 
sphere with radius r, using PME calculation for different sizes of TO box 
 

On the other hand, we are also improving our optimized model to get a better result. 

In the beginning, when PME trajectory is used to generate accurate electrostatic potential, 

we use cubic box, which has a larger size than the simulation box in DDM. As shown in 

Fig. 4.20, according to the original DDM model, the buffer layer should be filled with 

imaged water from the Region II, to take care of the short range interaction. However, we 
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did not do that at the beginning of our projects, instead, we use bigger cubic simulation 

boxes. Now after repeating all the optimization steps using imaged water in the buffer 

layer, by using exactly the same size of truncated octahedron boxes, we can compare the 

two different situations. 

 
Figure 4.20: DDM model with different kinds of water molecules in buffer layer. Left: 
the buffer layer is part of the cubic PME simulation box. Right: the buffer layer is part of 
the imaged TO box generated by periodic boundary conditions. 
 

The result shown in Fig. 4.21 suggests that the imaged water case has a very 

different optimization curve from the dynamic water. They have large deviation near the 

center of the sphere, although they share similar slope at the edge of sphere. It turns out 

this shared region might be very important because the image charges from these water 

molecules locate very close to the system and have stronger effects to potential inside 

simulation box. For the image charges of those water near the center of box, their image 

charges are far away outside the spherical edge, which have less effect on the bulk region. 

The dielectric constants of optimized results are close to the PME value although near the 
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edge of the simulation box they are not converged. DDM underestimates the value 

compared to PME, as shown in Fig. 4.22. 

 
Figure 4.21: The two different optimized results from dynamic (red) and imaged (blue) 
water in buffer layer, compared with original DDM (black) 
 

 
Figure 4.22: Comparison of dielectric constant among PME, DDM and optimized model 
using dynamic and imaged water. 
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4.4 Conclusions 

Due to the discontinuous dielectric profile in the DDM, surface artifacts is induced 

and a buffer layer between the explicit solvent and continuum medium is needed to 

maintain the bulk properties in central productive region. We try to optimize the image 

charge formula to achieve more accurate RF so that the artifacts are reduced with the new 

continuous dielectric profile and the buffer layer will shrink for higher efficiency. 

According to the characterization results in the first project, various physical properties, 

including electrostatic potentials, forces and torques (force tensors), are used as the 

accurate reference values for error minimization. With LSE and multiple interpolation 

methods, a new set of image charges are generated with modified magnitudes and 

unchanged positions, to reproduce the accurate electrostatic properties from PME. 

Compared to DDM, the optimize model shows more than 25% reduction of the error 

matching to PME value when using atom based rule for water. The MD simulation 

coupled with modified image charges gives the expected continuous dielectric profile, 

which is close to the profile in PME simulation. However, we realize that the artifacts 

come from long range and short range interactions together, and the surface effects can 

drop dramatically only when both of them are optimized. So the buffer layer might be 

reduced only after short range forces also being optimized. Luckily, a computational 

procedure to reproduce electrostatic properties with optimized image charge method has 

been constructed, for selected water model tip3p and OPLS-AA force field. This makes 

the future work easier on optimization of short range forces and different water models. 

This project focuses on the most accurate RF ever and tries to reduce the buffer for better 

efficiency, although further studies are needed to realize that. 



CHAPTER 5: OPTIMIZATION OF BOUNDARY CONDITIONS IN ICSM 
 
 

5.1 Introduction  

 The important role played by the RF and buffer layer was demonstrated in chapter 

3. In chapter 4, the critical dependence on the molecular boundary rules was 

demonstrated, and a general method to optimize the image charge model tuned to specific 

water models was developed. Unfortunately, in practice the optimized image charges do 

not result in increased computational efficiency. This means, the overall efficiency is still 

less than we would like. However, if accuracy for arbitrary solutions could be 

demonstrated, then the ICSM as described in chapter 2 would be a superior model 

compared to PME, at least for large systems consisting of 30,000 atoms or more [54]. 

When the ICSM is used to simulate high ionic concentration solutions, non-uniform 

density of ions occur due to correlations between the ions and their periodic images. One 

way to avoid this problem is to increase the cavity radius by a factor of 5 or more. 

However, this will make PME the most accurate and most efficient method available for 

any practical problem of interest, and the ICSM will never be the model of choice. 

Because of the PBC in the ICSM, unphysical correlations between ions that appear 

at finite ionic strength severely shrink the productive volume. The ions have to be 

constrained inside productive region I, defined in Fig 2.3, to avoid penetration into region 

II and producing extra images of ions in region III. This makes the model inefficient 

because region II is still simulated but can be used for production. 
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 The objective of this project is to replace the PBC in ICSM with NPBC for higher 

efficiency and accuracy in ionic simulation. This new focus creates a dilemma because all 

previous hybrid models used non-periodic boundary conditions (NPBC), and several 

papers starting from 1983 continuing on beyond 2008 claim that the construction of a 

good hybrid model has been solved. However, it should be noted that none of these prior 

models were demonstrated to work in a scaled up version for a general purpose MD 

simulation. Armed with a good understanding of the RF and the role of the buffer layer, it 

was in our view warranted to make an attempt to create such a hybrid model with NPBC, 

albeit this has be proven to be a challenging problem based on our literature review, and 

the lack of demonstrated-results on large size systems from all prior models published to 

date. 

Several models have been devised and implemented using non-periodic spherical 

cavities, where care is given to reproduce the bulk properties of water within the sphere, 

with minimum amount of surface effects. For example, Brooks and Karplus used the 

mean field force approximation (MFFA) to generate a soft boundary force and a 

stochastic buffer region [57]. King and Warshel developed the surface constrained all-

atom solvent (SCAAS) model to deal with the surface polarization effect [32]. Juffer and 

Berendsen treated the atoms near the surface boundary dynamically with a position 

restraint to represent the effects of atoms from the outside surface [60]. Abagyan and 

Totrov developed a modified image charge approximation (MIMEL) with a position-

independent correction [15]. Petraglioet al. developed a simpler model for short range 

forces involving a van der Waals (or purely repulsive) force from the wall, and simulated 
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bulk water and acetonitrile [50]. Brancatoet al. introduced explicit solvent shells to 

ensure the bulk behavior of solvent near the boundary [61]. 

The implementation of a new ICSM having non-periodic boundaries shares similar 

aspects with these previous models. Unlike previous work, we demonstrate that the 

results from our new ICSM with NPBC are valid for both small and large systems. 

Previous works were focused on solvation properties of small molecules and did not 

consider extending their method to large systems. We found early on that just about any 

reasonable implementation will work very well at small system sizes, but as the system 

size increases, the model most likely will fail miserably if even one critical physical 

property isn’t right. In other words, sensitivity to the exact model details matters more as 

the system size increases, which surprised us. What we found is that the properties of the 

buffer layer must resemble that of bulk water with a high accuracy otherwise these errors 

propagate into the productive volume. 

Several novel ideas were implemented as described below in detail, of which some 

were similar to past works and others very different. At the end, we developed a working 

model− demonstrated for the first time in the field −that reproduces the bulk properties of 

water in the productive volume that would be obtained using PME for various system 

sizes. Moreover, the simulation can be performed in the NVT and NPT modes, where the 

latter constant pressure simulation case (NPT) has never been done before. In particular, 

the model requires a buffer layer and constraint forces are applied to the water molecules 

in this buffer layer. For constant pressure simulations, the spherical wall is movable. The 

performance of the new ICSM in simulations of TIP3P water has been carefully studied, 
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and all structural, static, and dynamic properties with different systematic parameters 

match the PME results markedly well. 

5.2. Methods 

5.2.1 Computational Details 

The Tip3p [59] all-atom model is used to characterize the bulk water properties in 

this work. The multiple image-charge method[40-42] and the fast multipole method 

(FMM) [20-22] are used to calculate the electrostatic potential efficiently. The positions 

and velocities of the particles are generated according to the velocity Verlet algorithm 

coupled with Nosé–Hoover thermostat [62]. The dielectric constant of the external field 

is set to 80 and the cutoff distance of van der Waals interaction is 1.0nm. The simulations 

are all performed over 4 ns, at 250, 300 and 350 K, using three different sphere radii of 

3.0, 4.0 and 5.0 nm. 

The diffusion constant for bulk water, D, is calculated by expressing the Einstein 

relation [63] as a random walk, and then track autocorrelations in displacement vectors. 

We perform the averages over all water molecules that have their center of mass within a 

sphere, for example, a radius of 2.5 nm for a 5.0 nm sphere. These molecules are 

followed for all time afterward, which form the set A. 

         (Eq. 5.1) 

Let , then  where is the k-th displacement of the center of 

mass of a given water molecule in time . The k-index defines a random walk step, such 
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random walk of the water molecule. The mean squared displacement  in Eq. 5.1 is 

rewritten as: 

(Eq. 5.2) 

then the diffusion constant is given by: 

     (Eq. 5.3) 

The moments are obtained by averaging over all water molecules in set A and over 

time. Once the autocorrelation is calculated, it is clear when Eq. 5.3 converges, and at 

what time this takes place. As such, this method is accurate and gives assurance when 

there is enough sampling data. We found that 4 ps are more than sufficient time to 

obtained converged results. Moreover, the results are not dependent on the arbitrary 

choice of , for which we used 0.2, 0.4, 0.8, 1.0 and 2.0 ps for different  as a check. 

Therefore, despite our simulations have finite boundaries, the size of all simulation cells 

we used were large enough to handle the correlation time of the diffusing water. 

5.2.2 Model Details 

ICSM with Finite Boundaries 

In recent papers [9, 39], we introduced the Image Charge Solvation Model (ICSM), 

which is a hybrid solvation model combining both explicit and implicit solvent 

representations. The ICSM consists of a spherical cavity of explicit solvent embedded in 

a continuum dielectric medium and can solve the electrostatic interactions accurately and 

efficiently for large systems. The continuum dielectric medium generates a reaction field 

(RF) on the explicit solvent, which is computed using the multiple image-charge method 

)(2 tR

( ) ∑ ∑∑∑∑∑∑
= = >= ===

⋅+=⋅=⋅=
N

k

N

k

N

kj
jkk

N

k

N

j
jk

N

j
j

N

k
k dddddddNR

1 1

2

1 111

2 2


( ) ( )∑
=

− ⋅−
Δ

+
Δ

=
N

k
kN

k dd
tt

d
ND

2
1

)1(
2
1 1

3
1

6



!t !t



86 
 

[40-42], and fast multipole method [20, 21]. The ICSM model has been tested in 

simulation of pure water and ion solvation. The bulk properties for pure water are found 

to be virtually identical to those obtained using PBC with PME for large systems [39]. 

For ion solvation, the model gives superior accuracy for simulation of mixed media 

where the charging free energy of a single sodium and potential of mean force for ion 

pairs were calculated [9]. A key advantage of the ICSM is that the water molecules in this 

buffer region require no dynamical equations to solve. 

 
Figure 5.1: A) ICSM with periodic boundary condition. In the center it is the truncated 
octahedron (TO) simulation box, and the surrounding are the periodic images of the 
central box. The spherical cavity contains not only the whole TO box (Region I and II), 
but also parts of the periodic neighbors (Region III, as a buffer layer with periodic water), 
which are generated from Region II of the original TO box. If an ion moves from Region 
I to Region II, extra periodic images of the ion will appear in Region III immediately, 
causing non-physical ion correlations and inconsistent total charges in the system. B) 
Finite boundary condition model. A buffer layer with dynamic water is introduced to 
isolate the central productive region from the implicit solvent outside. The water 
molecules follow the group based boundary condition near the surface. The wall potential 
will be calculated using mean field approach. Ions can now move inside cavity without 
worrying about correlation problems caused by periodic boundary conditions. 
 

In spite of the success of the ICSM described above, it has limitations for more 

general cases. As shown in Fig. 5.1 A the buffer layer (region III) is between the 
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truncated octahedron (TO) simulation box and spherical boundary, which is generated 

from explicit solvent in region II by the PBC. For simulations involving diffusing ions, 

phantom ions appear/disappear in the buffer layer when ions enter/leave region II from 

the productive region I. Phantom ions introduce unphysical correlations that are spatially 

persistent and they create fluctuations in the total charge of the system. A possible 

resolution to the problem is to reduce the size of the productive region, but already the 

productive region compared to regions II and III is small. For a TO box of 4.5nm in 

length, the diameter of region I that allows simulations of solute molecules is less than 

1.7 nm, which means most of the computational time is used to calculate non-usable 

regions. 

The advantage of replacing the PBC with a finite boundary eliminates the problem 

of phantom ions, and the efficiency is greatly improved. Unfortunately, removal of the 

PBC requires treating water molecules in the buffer region with dynamical equations of 

motion (Fig. 5.1 B). As such, both the RF and van der Waal forces from solvent outside 

the spherical cavity need to be modeled explicitly, which presents difficulty due to the 

discontinuous jump in the dielectric constant, and the switch from an explicit all-atom 

model to a continuum model [43]. In the following subsections, several steps are 

described that were implemented to solve the problems that arise from finite boundaries. 

These steps are (i) developing appropriate molecular boundary rules; (ii) calculation of an 

effective spatially dependent density of solvent outside the spherical cavity; (iii) using 

this effective density, determine the mean van der Waal force on atoms inside the cavity; 

(iv) define a diffusive force to maintain constant atomic density within the buffer layer; 

(v) define a torque on electric dipoles to maintain proper orientation of water molecules 
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in the buffer layer; (vi) define a spatially distributed thermostat to maintain constant 

temperature in the buffer region; (vii) incorporate a self-adjusting movable spherical 

cavity wall to maintain constant pressure, and (viii) location of image charge cavity and 

buffer layer thickness to best reproduce bulk water properties. Note that in this work, it is 

the PME results pertaining to tip3p water model that is considered to define “true” bulk 

properties.   

(i) Molecular Boundary Rules 

The center of mass of a water molecule is used as a point of reference when 

applying constraint forces and torques. When the number density is calculated within a 

sample volume, such as a shell, the center of mass is required to fall inside the sample 

volume to be counted. This means that water molecules near a boundary will typically 

have one hydrogen atom inside the sample volume and the other hydrogen atom outside. 

Furthermore, when taking the radial component of the dipole moment of a water 

molecule, the ray extending from the origin of the spherical cavity to the molecule’s 

center of mass defines the radial direction. Note that because an effective vdW force is 

employed (described below) to control confinement of water molecules, the center of 

mass of a water molecule will frequently exceed the spherical cavity radius, Rc. This 

allowance is critical to maintain uniform bulk density of oxygen and hydrogen atoms 

separately with in the physical domain, defined by the spherical cavity up to Rc.  

(ii) Effective Density outside Spherical Cavity 

The effective density of water molecules in the continuum medium is calculated 

based on having uniform density of bulk water inside the spherical cavity, which 

represents the physical domain. Demanding uniform density outside the cavity is not 
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physically relevant, and would lead to a mean van der Waals force from the implicit 

solvent that creates a depletion layer within the physical domain. Since outside the cavity 

is not the physical domain, the only requirement is that its properties create atomic forces 

on the water molecules inside the cavity to ensure bulk properties are simulated. 

Therefore, the depletion region in density should be on the outside of the spherical cavity. 

This spatially dependent density will be reflected in the Radial Distribution Function 

(RDF) for bulk water, which will be consistent with having uniform density of bulk water 

inside the spherical cavity. The effective density is calculated using the RDF within a 

mean field treatment. The free energy Gxy between two atoms is given as: 

                                      (Eq. 5.4) 

where kB is Boltzmann constant, T is the temperature of the system, gxy is the RDF 

between two types of atoms x and y. Generally, adding free energy of all possible pairs of 

atoms in the system overestimates the total entropy. However, the additivity assumption 

is equivalent to neglecting higher level of correlations within a Mean Field 

Approximation (MFA). Employing the MFA, the total free energy Gx for atom x at a 

certain position is given by: 

          .        (Eq. 5.5) 

For an oxygen atom located outside Rc, the total free energy GO contributed from 

all oxygen and hydrogen atoms that are uniformly distributed within the spherical volume 

is given by:  

(Eq. 5.6) 
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where nO and nH are the number densities of oxygen and hydrogen atoms of bulk water. 

Since correlations between O-O and O-H atoms disappear after a distance of 1.5 nm, the 

integrals were performed numerically as shown in Fig.5.2 A. Once the excess free energy 

relative to a bulk value on the outside of the cavity is calculated, the effective number 

density of oxygen at distance r from the center of the sphere is given as: 

                   (Eq. 5.7) 

where nw is bulk water density. 

 
Figure 5.2: A) The way to calculate the effective density of water outside Rc. Only the 
atoms inside the crossing region between physical domain Vin and cutoff sphere Vcut (eg. 
one hydrogen atom in water 1 and all atoms in water 2) have effective contributions to 
water density in Vout. Neglecting the interaction from water 3 which is beyond the cutoff 
distance can improve the efficiency of calculation and will not change the final result of 
effective density. B) The effective density curve outside Rc at different temperatures. v is 
the distance from Rc to any point outside cavity along the radial direction. 
 

In Fig. 5.2 B, starting from Rc, the relative density of water is zero until about 0.15 

nm before increasing to around 1.0, because water molecules on both sides of the 

boundary Rc cannot get too close to each other. At different temperatures, the shapes of 

the effective density curves are similar, with only minor variations about 1. According to 
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Fig. 5.2 B, a step function might be a sufficiently accurate approximation for the effective 

density profile outside the spherical cavity. This simplification was evaluated (described 

below), and we conclude that an appropriate model only requires a uniform bulk density 

of oxygen everywhere inside and outside of the spherical cavity, except for a narrow shell 

just outside the spherical cavity that contains no oxygen. 

(iii) Effective van der Waals Force inside Spherical Cavity 

The net vdW force acting on an oxygen atom (using tip3p water model) at position 

inside the spherical cavity is given by:  

    

( )

( ) ( ) ')( |'| ' |'|

' |'|)(

33

3

rdnnrrFrdnrrF

rdnrrFrF

ww
V

LJw
V

LJ

w
V

LJvdW

inout

out

−−+−=

−=

∫∫∫∫∫∫

∫∫∫




(Eq. 5.8) 

where  is the 12-6 Lennard-Jones (LJ) potential for tip3p water model. The volume 

integral over entire space is zero, and Eq. 5.8 can be simplified and calculated 

numerically: 
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        (Eq. 5.9) 
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Solve explicitly for both terms: 

)()( rrArC nn ≡     (Eq. 5.12) 

The solution will be: 
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Fig. 5.3A shows the effective vdW forces calculated from implicit solvent outside 

the spherical cavity. When oxygen atoms are close to the center of the sphere, the vdW 

force due to the solvent outside the spherical cavity is negligible. The effect of the net 

mean vdW force from the solvent is critical for water molecules near the spherical cavity 

boundary. As a water molecule approaches the boundary, there is first an attractive force 

reaching a maximum value of about 8.0 kJmol-1nm-1 at a distance of 0.11 nm from the 

boundary, and the net vdW force rapidly switches from attractive to repulsive. The 

repulsive force near the boundary forms a “wall”, which confines the explicit water 

molecules to the physical domain. Notice that there is very little difference in the 

effective vdW force when calculated by the actual effective density compared to the step 

function density in Fig. 5.3 B. Moreover, this difference is small for any temperature 

between 250K and 400K, suggesting that the essential characteristic required to 
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incorporate into the model is a gap from the spherical cavity, which has been employed in 

most previously models [33, 56, 61, 64].  

 
Figure 5.3: The effective vdW forces calculated from A) effective water density at three 
different temperatures and B) effective density and step function curve at 300 K 
 

(iv) Diffusion Force for Density Control 

While we found that the mean vdW force calculated above is essential to maintain 

uniform bulk density of water, it was not sufficient. A depletion layer of water molecules 

forms within the physical domain near the spherical cavity boundary, and excess water 

increases the bulk density by∼10% from the correct density in the productive volume. 

Relaxing the location of the spherical shell does not in any way improve the density 

profiles. To reduce the surface effects from the boundary, we introduced a self-adapting 

diffusive force in the buffer layer. Other models have implemented manipulating forces 

of various kinds to maintain uniform density within the spherical cavity [50, 56, 64-66]. 

However, in this work, the manipulating forces are restricted to the water molecules in 

the buffer region, preserving the productive region. The buffer region is divided into 

multiple shells, with varying thickness so that each shell has the exact same volume, 

holding approximately 100 water molecules. For each time step, the density of water in 

each shell is calculated and compared with the bulk water density within the productive 



94 
 

volume. If a density gradient is found between consecutive shells, a diffusion force will 

be applied to drive the center of mass of the water from high density to low density 

shells. A collection of Lagrange multipliers are introduced for all shells within the buffer 

layer for the diffusion force as: 

            (Eq. 5.14) 

where  is the Lagrange multiplier for the i-th shell,  is a empirically adjusted 

relaxation constant,  is the bulk water density of the productive volume, andn i±1( ) is 

the number densities for the (i±1)-th shells. is a convenient reference force to set a 

reasonable scale, which is set to be 8.0 kJ mol-1 nm-1 . The Lagrange multipliers are 

accumulative and self-corrected with a short enough relaxation time for the system to 

adapt to density fluctuations. The diffusion force , which equals to the unit force 

times the Lagrange multiplier, is the same for each water molecule in the same shell. The 

diffusive constraint force attempts to maintain uniform bulk density within the buffer 

layer, which is within the physical domain.  

(v) Torques for Molecular Orientation 

For finite boundary conditions, a common behavior of the water molecules near the 

boundary is that the water dipole prefers to point outwards [55], rather than randomly 

orientated as bulk water. This is because part of the electrostatic interactions is missing 

due to the absence of water outside cavity. The discrete change in dielectric constant that 

forms the basis of the image charges and the calculation of the RF is a mathematical 

idealization that also creates unphysical effects [43]. As such, finding a way to restore the 
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orientation of the water molecules to be that of bulk water within the buffer layer is 

required, and has been noted to be problematic [32, 33, 67]. The orientation of a water 

molecule is characterized only by its electric dipole moment. To maintain the random 

orientation of water molecules, constraint torques are introduced in the buffer region to 

maintain the radial dipole moment to be that of bulk water.  By symmetry, there is no 

reason why the dipole moments directed perpendicular to the radial direction would be 

anything but random, and this was confirmed in simulations. As such, the constraint 

torques only couple to the radial direction of the dipole moments of the water molecules.  

 
Figure 5.4: 2D schematic plot that shows how external torque force rotates a single water 
molecule. A) before and B) after rotation.  
 

The setup of how torques are applied is given in Fig. 5.4. 
ri

p ˆ

 and
r

p ˆ0
 are the 

radial components of the actual and expected dipole moment in i-th shell based on COM, 

Wp̂ is the dipole moment of a water molecule in i-th shell. rott̂  is the direction of torque 

that is applied to the COM, OF


and HF


are the torque forces on Oxygen and Hydrogen 

atoms. O is the central point of the sphere. As shown in Fig. 5.4 A, when 
ri

p ˆ

 is larger 



96 
 

than 
r

p ˆ0
 , the water molecules inside the i-th shell need to be rotated to reduce the 

averaged radial dipole moment. The axis of rotation rott̂  is defined as: 
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      (Eq. 5.15 a) 

For normal cases, the axis equals to the cross product of dipole moment of a water 

molecule and the radial direction that is defined using the center of mass of the molecule. 

For special cases that the radial direction r̂  and water dipole Wp̂ are almost parallel or 

anti-parallel to each other ( )sin( rpθ < 0.01), a rotation matrix is used to avoid 

singularities, where î , ĵ and k̂ are defined as orthogonal internal coordinates of the water 

molecule shown in Fig. 5.4. Rotating with a torque about this axis is the most efficient 

way to move the dipole vector to change its radial component. The direction of the torque 

forces must be calculated. This direction must be perpendicular to the rotation axis and 

the dipole moment direction. Thus, this direction is given by: WrotF ptd ˆˆˆ ×= . The 

magnitude of the force is controlled by the parameterλ : 

( )( )
driW FFpp ˆ00

2
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   (Eq. 5.15 b) 

where ( )
rir

pp ˆˆ0sign −=χ . ! = !1  when the argument of sign is negative, and ! =1

otherwise, including zero. Fig. 5.4 B shows that after the rotation, the averaged radial 

dipole moment should be smaller than before and the orientation of the water molecule is 

changed. 

The torque is broken down into a force component that is perpendicular to a 

moment arm that is always of constant length. As such, a torque is expressed as torque-
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force, which allows us to directly compare different constraint forces applied on the water 

molecules within the buffer.   

 
Figure 5.5: Target values for the radial dipole based calculated from PME trajectories of 
different sizes of boxes. They all overlap each other near the boundary without size 
dependence. 
 

Being that the torque is applied on the center of mass of a water molecule, only its 

orientation is affected without translating its center of mass. The Lagrange multiplier for 

dipole control is: 
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where  is the Lagrange multiplier for the i-th shell,  is a relaxation rate, )(iFO is 

the force on oxygen atom,  is the radial component of the average dipole moment of 

all the water molecules in the i-th shell, and  is the expected averaged radial dipole 

moment of bulk water. In Fig. 5.5, we show the target values for the radial dipole based 
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on PME results. Notice that the average dipole moment is zero everywhere inside Rc, but 

water molecules can move past Rc. The radial dipole moment is not zero there, because 

the radial dipole moment is only calculated based on the water molecules that have at 

least one atom within the spherical cavity. As such, this gives a net radial dipole moment 

that is negative. Bulk properties of explicit water should reproduce the PME results, and 

this target is only calculated once. Actually, it is very difficult for the constraint torque-

forces to succeed in matching the target dipole moment for r >Rc. Nevertheless, the 

attempt of driving the orientation of the water molecules to align with what bulk 

properties would have (for the same tagged particles) helps bring non-bulk properties to 

bulk properties most rapidly, meaning the smallest possible buffer layer. The torque-force 

 is the same for each water molecule in the same shell.  

(vi) Thermostats for Temperature Control 

Because the diffusion and torque forces applied on water molecules introduce 

external work to the water molecules within the buffer layer, the kinetic energy of the 

particles in the buffer will increase dramatically. Having a single thermostat control 

keeps the average temperature correct. However, a temperature gradient forms, and the 

temperature of the water within the productive region is much lower to compensate for 

high temperature in the buffer region. In order to solve this problem an independent 

thermostat assigned to each shell in buffer layer maintains constant temperature. A single 

thermostat is assigned to the productive region.  

(vii) Moveable Boundary for Pressure Control 

To perform constant pressure simulations within the productive region, the 

boundary Rc is allowed to vary. The calculation of pressure proved to be simple and 

)(iFM
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sufficiently accurate by simply applying the macroscopic definition of pressure on the 

bulk water contained in the productive region, which is a spherical volume of radius, Rp. 

Note that τ+= pc RR where ! is the thickness of the buffer region, which remains 

constant. The productive volume will fluctuate as the spherical cavity defined by Rc 

varies. While imperfections can be tolerated in the buffer layer, the productive region 

must simulate true bulk properties. Therefore, pressure is calculated based on the 

productive volume, and not the total volume of the simulation. Making use of the 

spherical geometry, hydrostatic pressure is given by Fr / A  where the radial component 

of the total force, Fr, on the system (everything inside the sphere) from the universe 

(everything outside the sphere), where A is the surface area of the sphere. Since all forces 

between atoms within a molecule cancel out, only the net forces on the center of mass of 

the water molecules need to be calculated. The total force by the system on the sphere 

(the reaction force) is given by:  
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where  is the radius of the spherical productive region. Technically, all internal forces 

between molecules inside the productive region cancel out as well, but 
!
Fcm,i  is a force 

already known at no additional computational cost. The change of  is calculated as: 

                       (Eq. 5.17) 

where  is a relaxation rate and  is the target reference pressure, which is 1.0 bar 

here. 
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(viii) Location of Image Cavity and Buffer Layer Thickness 

In the analytical solution of the method of multiple image charges, the locations of 

the image charges start from the edge of the spherical boundary to infinity [41, 42]. The 

position of the Kelvin image charge (same as for a conductor) rk is defined as

, where rs is the position of source charge in the cavity and RRF is the 

radius of dielectric sphere for image charge calculation. However, due to the group-based 

rule, the water molecules inside the cavity can move across the boundary Rc into the 

region where image charges are generated. To avoid singularities between explicit and 

image charges, for those source charges that are very close to the boundary, the RRF have 

to be shifted outwards for a distance b. Similar procedures have been seen to prevent the 

too strong electrostatic force to break the simulation when the particles approach the 

boundary, such as surrounding the droplet model with vacuum buffer [56, 64], applying 

cutoff for forces [34] and using a buffer with explicit solvent [39]. The position of the 

image charge is defined as: 

     (Eq. 5.18) 

For atoms that are inside and beyond the productive region, the RRF for their image 

charge calculation is Rc, and Rc + b, respectively. For the results reported in this paper, 

the shifting distance b for the image charges is 0.15 nm. 

According to our study in this work, we tried other formulas similar to Eq. 5.18 

except they allowed b to change continuously (a linear interpolation starting from Rc) or 

the value of b and its derivative changed continuously (a quadratic interpolation starting 

from Rc). We also tried a tanh() function to transition from 0 to b. It did not appear that 

scsRFk rRrRr 22 ==

⎪⎩

⎪
⎨
⎧

>+=

≤=

pssck

pssck

RrrbRr
RrrRr

 if , )(
 if ,          

2

2



101 
 

any of these models produced better or worse results after an optimized b was found for 

the model in question, but the discontinuous case presents the easiest model to reflect 

why the buffer region thickness must be a function of Rc. The image charge solution is 

scale invariant. This means the electrostatic force accuracies can be expressed as 

percentages of where the source charge is in relation to Rc. As Rc increases, the atoms 

near the boundary of the productive region and the buffer layer will be influenced 

differently by the electrostatic forces, unless the ratio Rp/Rc is fixed. As such, we let the 

accuracies decrease within the buffer region, but remain a constant within the productive 

region. After running multiple simulations and comparing their results, an optimal 

proportion of 1:5 for the thickness of buffer layer over the radius of sphere has been used. 

For 3.0, 4.0 and 5.0 nm spheres, the thicknesses of buffer layer are 0.6, 0.8 and 1.0 nm, 

respectively. In Table 5.1, the numbers of solvent atoms that can be simulated inside 

productive region of the ICSM and finite boundary model are compared, based on the 

bulk water density at 300 K, which shows a much bigger usable region can be achieved 

in the new model. 

Table 5.1: Compare the number of atoms simulated in the productive regions of ICSM 
and finite boundary model, within different sizes of spheres. The thickness of the buffer 
layer is 0.6 nm for ICSM/PBC and R×20% for ICSM/NPBC 
 

Sphere Size R 
(nm) 

ICSM/PBC 
(# of atoms) 

ICSM/NPBC 
(# of atoms) Speeding Ratio 

3.0  154 5930 29 

4.0  848 13440 12 

5.0  2460 26251 8 
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5.3. Results and Discussions 

To validate the performance of the ICSM with finite boundaries, key properties of 

the solvent are characterized such as; relative number density; mean radial dipole 

moment; the RDF; fluctuation of dipole moment and diffusion constant. These bulk 

properties are investigated with different systematic parameters, radii of the spherical 

cavity and temperatures. In addition, the Lagrange multipliers used for the constraint 

forces are monitored and the temperature profile of the entire simulation box is 

monitored. Beyond time averaged quantities, instantaneous quantities such as all three 

dipole moment components, volume fluctuations and pressure variations are monitored 

and compared to corresponding quantities using PME method. The PME method [16] 

combined with PBC is used as a reference to define the “exact” bulk properties to 

evaluate the capability of the new model to obtain bulk properties of water within the 

productive region. Each PME trajectory comes from 10 ns simulation in NPT ensemble 

after equilibration, performed by the GROMACS program package [58, 68].  

The requirement of the proposed model is to provide bulk properties as accurate as 

PME within the productive region, where solute will be solvated and simulated. Taking 

advantage of spherical symmetry, properties of water molecules are calculated as a 

function of distance away from the origin in the form of shells, to check how 

homogeneous these properties are throughout the sphere. That is, the spherical cavity is 

divided into concentric shells, each of them with the same volume so that each shell 

contains approximately the same number of water molecules, typically between 100 and 

150.  
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Figure 5.6: A) The Lagrange multipliers for diffusion and torque force in the buffer 
region of a 3.0 nm sphere. The diffusion force changes in opposite directions between 
two neighboring shells and the magnitude increases gradually when approaching to the 
boundary. The torque force is much smaller compared to diffusion force and remains 
small value for most part of the buffer region. Its sudden increase suggests that there is a 
noticeable change in the orientation of water dipoles near the surface. B) The 
temperatures of different shells in the buffer layer after multiple thermostats at 300 K. 
 

For a particular shell, the properties, eg, density of water in this shell, are 

calculated and averaged over all the frames from the MD trajectory, and the same 

procedure is applied to all shells. Based on the center of mass location, each water 

molecule belongs to one and only one shell for a given frame, although it transverses 

shells along a trajectory. To evaluate the multiple constraints inside buffer region, the 

calculations of the behaviors of Lagrange multiple for constraint forces, fluctuation of the 

multiple temperatures in the buffer and the time dependent pressure in productive region 

have been performed. Fig. 5.6 A shows how Lagrange multipliers change from the edge 

of productive region Rp to the boundary of the system Rc for both density and dipole 

constraint forces in a sphere of 3.0 nm radius. When the water molecules are close to the 

productive region (r = 2.4 nm), the multipliers are relatively small and close to zero. As 

the molecules are getting closer to the boundary, the magnitudes of the multipliers are 

increasing gradually, suggesting that bigger constraint forces are necessary to maintain 



104 
 

the correct density and orientation of the water near the surface. In general, from Rp to Rc 

in the buffer layer, stronger surface effects require stronger control forces to manipulate 

water molecules. As shown in Fig. 5.6 B, in the 3.0 nm sphere, the very first data point(r 

= 2.4 nm) represents the average temperature in the productive region, and the rest ones 

represent temperatures in different shells in the buffer layer. The total average 

temperature of the system is around 300 K after multiple thermostats. An example of the 

pressure calculation using the formula above is shown in Fig. 5.7, which gives an average 

value of 11 bar in 4.0 nm sphere, compared to 21 bar got from PME. 

 
Figure 5.7: Pressure calculation in the productive region of 4.0 nm sphere at 300 K, with 
first 200 ps trajectory thrown away. 
 

As shown in Fig. 5.8, in different sizes of systems, Lagrange multipliers for density 

and dipole constraint forces have similar behaviors. From the boundary of cavity (u=0) to 

the edge of productive region towards the center of sphere, the magnitude and shape of 

the curves are similar for 3 sizes of systems. For density controlling in Fig. 5.8 A, there 
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might be a minimum depth in the buffer layer required by the diffusion forces to 

effectively adjust the density of water. When approaching to the productive region of 

sphere, eg, u=1.0 nm, the magnitudes of multipliers drop to zero. However, no strong 

position dependence is observed for the multipliers or torque forces. Only near the 

surface of the boundary Rc, larger dipole control forces are needed to maintain the 

orientation of the water dipoles, as shown in Fig. 5.8 B.  

 
Figure 5.8: Size independence of the Lagrange multiplier for A) diffusion forces and B) 
torque forces. u is defined as the distance from Rc to the center of sphere and make it 
clearer to compare the properties near the boundary in different cases. For example, for a 
sphere with 3.0 nm radius, u = 0 nm is the position right at Rc, u = 0.6 nm is the boundary 
between buffer and productive region and u = 3.0 nm is the origin of the sphere.  
 

a. Demonstrated Uniform Density in Productive Region 

Fig. 5.9 A compares the results before and after applying density control constraint 

forces in the buffer region. In the sphere with a radius of 5.0 nm, without constraint the 

relative water density near the center of sphere is 8 % higher than bulk density and the 

fluctuations are much bigger near the boundary. With density control forces, the density 

in each shell within the productive region matches the PME density well, and the buffer 

layer has much smaller fluctuations. In Fig. 5.9 B, to check the size independence of the 

model, densities in three different sphere sizes are calculated and agree well with the 
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PME result. The non-accurate parts in the density curves start to become appreciable in 

the buffer layer, but the errors increase near the cavity radius, Rc. 

 
Figure 5.9: A) Relative density of water in simulations with and without diffusion forces 
in 5.0 nm sphere. B) With diffusion forces, the density matches the PME curve and does 
not depend on the sizes of the spheres. 
 

b. Demonstrated Randomly Orientated Dipoles 

As explicit water molecules from physical domain approach to the finite boundary 

of the cavity, their dipole moments tend to point outwards. Fig. 5.10 A shows that 

without dipole control forces, the water molecules in buffer region which are close to the 

surface have strong orientation preference and point to opposite directions in two 

consecutive shells. Due to the characteristics of long-range interactions, inhomogeneous 

arrangement of the water dipoles in buffer layer definitely affect the water dipoles in 

productive region, which results in the non-random orientation of water in the center of 

sphere. However, after applying dipole control forces, not only the radial dipole moment 

near the center of sphere is close to zero, but also the fluctuations of radial dipole in the 

buffer region are much smaller. In Fig. 5.10 B the radial dipole moments in three 

different sphere sizes are calculated and they all agree with the PME value in their 

productive regions. Again, noticeable deviation from expected value only happens in the 
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buffer layer. For the smallest simulation box, the water dipole moment in the productive 

region is most affected by the strong surface effects.  

 
Figure 5.10: A) Radial dipole moment of water in simulations with and without torque 
forces in 5.0 nm sphere. B) With torque forces, the radial dipole moment matches the 
PME curve and does not depend on the sizes of the spheres. 
 

c. Demonstrated Bulk Water Structure 

The bulk water structure is examined by calculating the RDF for three different 

size systems. Generally, all RDF curves follow the shape of PME results well, with small 

deviations, suggesting that the structure of the water solution is not very sensitive to the 

system size. However, although the curves are all similar to the PME results, when 

zoomed in the slight differences become apparent. In Fig. 5.11, the RDF curve for the 3.0 

nm spherical cavity was observed to have the biggest deviation from the PME curve. The 

larger size spherical cavities of 4.0 and 5.0 nm have RDFs that match better to the 

expected values. As the size of the system becomes larger, on one hand, the thickness of 

the buffer layer is also bigger in proportion, which allows the constraint forces to be 

activated in a larger volume and makes it easier to match the bulk water properties. On 

the other hand, bigger system size allows the central productive region be farther away 

from the surface artifacts. 
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Figure 5.11 Oxygen-oxygen RDF in different sizes of spheres at 300K. As the size of 
system increases, the curve matches PME results better. 
 

d. Diffusion Coefficient Retains Weak System Size Dependence 

In addition to the structural properties, we access how well the ICSM with a finite 

boundary describes the dynamical properties of the simulated water. The self-diffusion 

coefficient D is calculated, which is an important dynamical characteristic of a liquid 

[63]. As shown in Table 5.2, the diffusion coefficient of the finite boundary model 

approaches to the desired value of PME as the size of sphere becomes larger, revealing 

size dependence in the diffusion property. When the system is small, according to our 

settings, only a small part of the water molecules located near the center of the sphere 

will be selected for the calculation of D. The time range t for motion in the calculation is 

short (t = 4.0 ps for 3.0 nm sphere) to make sure most of the selected water molecules 

will not travel into the buffer layer during this time, otherwise the error of the calculation 

may be increased. We calculate the numbers of water molecules in the productive region 
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of our model in different sizes of sphere, and simulate the same numbers of molecules 

using PBC and PME. The results show that D will increase a little bit as the size of box 

increases. However, in our model, with larger systems and larger number of sampled 

molecules near the center, the self-diffusion coefficient adequately approaches the PME 

value. 

Table 5.2: Diffusion coefficient with error estimate (unit of D is 10-9m2s-1).  

Size of Sphere PME[69] 3.0 nm 4.0 nm 5.0 nm 

Diffusion 
Constant 5.88(+/-0.05) 5.39(+/-0.02) 5.54(+/-0.01) 5.83(+/-0.01) 

 

e. Demonstrated Bulk Properties of Dipole Moment Fluctuations 

Dielectric properties are evaluated by computing the fluctuation of the net dipole 

moment <M(R)2> for a spherical ball centered at the origin as a function of radius R. The 

total dipole moment represents a quantity that reflects fluctuations in the orientations of 

water molecules. The formula for the total dipole moment with respect to the origin of 

spherical cavity is given in Eq. 5.19, where a spherical ball contains all water molecules 

in frame, j, that have its center of mass within the radius R. 

Eq. (5.19) 

The dipole moment is averaged over all j-frames from the MD trajectory, where the 

atom position vectors for the k-th molecule in the j-th frame weight the oxygen and 

hydrogen atoms.  

M 2

total
=

!
M j !

!
M j

j=1

J

"

where   
!
M j = qO,k

"rO,k, j + qH1,k
"rH1,k, j + qH2 ,k

"rH2 ,k, j( )
k=1

K
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Figure 5.12: The fluctuation of total dipole moment for spherical balls of radius r in 
different sizes of spheres compared to PME results. 
 

As shown in Fig. 5.12, for the productive region of different sizes of system, their 

total fluctuations of dipole moments match the PME result very well. For all three cases, 

when approaching the edge of the buffer layer, deviation from expected value is observed 

but still acceptable. The matching of <M2> represents the correct orientation of water 

dipole in all of the productive volume and most part of the buffer region in the finite 

boundary model. 

f. Temperature Independence for Matching Bulk Properties of PME 

As shown, bulk properties of Tip3p water are reproduced well in different size 

systems at 300 K. However, the efficiency of the effective vdW and constraint forces at 

multiple temperatures also has to be evaluated for the robustness of the model. To 

characterize the temperature independence, bulk properties are calculated at 250 K and 

350 K, and compared with PME results. As shown in Fig. 5.13 A and B, the relative 
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water density and radial dipole moment almost overlap each other at 250 K, 300 K and 

350 K, suggesting the correct concentration and orientation of water molecules have been 

achieved at different temperatures. For RDF and fluctuation of total dipole moment, 

although the curves from PME data vary among themselves according to the temperature, 

the finite boundary model matches to the PME results accurately (Fig. 5.13 C-F). 

Although the curves of the dipole moments deviate from the PME values within the 

buffer region, we can still guarantee a virtually perfect matching in the productive region. 

5.4 Conclusions 

An ICSM that employs NPBC has been introduced to simulate aqueous solutions. 

This is a hybrid model that combines the explicit solvent and solute molecules in a 

spherical cavity with a continuum dielectric medium for solvent around the cavity. 

Systematic studies of different parameters, including the size of simulation sphere and the 

temperature of simulation, have been performed. With adjustable thickness for the buffer 

layer, there is no strong size dependence for the essential properties of water. Spherical 

cavities with nominal radii of 3.0, 4.0 and 5.0 nm have been studied, and no intrinsic 

systematic errors are found related to the size of simulation box. With the self-consistent 

constraint forces that are only applied in the buffer layer, properties including water 

density, RDF and dipole moment in the central productive region are in excellent 

agreement with PME results. After introducing the constraint forces, multiple thermostats 

are necessary to maintain the correct temperature in the productive region and buffer 

layer. The diffusion constant is smaller than bulk value for the small system due to the 

nature of its definition, but it approaches to the PME result quickly as the system size 

increases. The new model is equipped with a movable cavity wall to perform both NVT 
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and NPT simulations. Water properties are calculated at 250, 300 and 350 K to verify that 

the model will give similar results as PME at different temperatures and too ensure the 

boundary conditions are robust. The temperature dependent properties of water are 

accurately reproduced in the productive region, revealing that the model is indeed stable 

and reliable in multiple conditions. 

 
Figure 5.13: Check the temperature independence of the model in 3.0 nm sphere. A) and 
B) relative water density and radial dipole moment at three temperatures, C) and D) 
radial distribution functions compared to PME results at 250K and 350K, E) and F) 
fluctuation of total dipole moments compared to PME results at 250K and 350K. 
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When boundary conditions are to be distinguished, we refer to the (new, original) 

model as (ICSM/NPBC, ICSM/PBC). The advantages of ICSM/NPBC are that it does not 

allow unphysical correlations between phantom ions or solute molecules caused by 

periodic images, and a much larger productive volume is achieved for the same size 

cavity. We validated ICSM/NPBC by checking its performance on liquid water. Only 

pure water is considered in this work because many critical aspects were explored and 

resolved that were not explored/resolved in prior works on bulk water. In fact, the 

problem of obtaining bulk properties of water when the substance is confined to a finite 

space because of mathematical abstraction only has been very challenging, as testimony 

by the large number of previous works on this very same topic, including ours. After an 

extensive investigation, excellent agreement has been found between the ICSM/NPBC 

and PME simulation results. The larger the simulation box, the better agreement is 

achieved. Characterizing ionic solutions using the ICSM/NPBC will be subsequently 

published. The biggest achievements of this project are the improvement of both 

accuracy (correction of ion problem) and efficiency (much larger usable region) in 

modeling aqueous solution compared to ICSM/PBC. 

 

 



CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

 Electrostatic interaction is important in biomolecular processes, and it is the 

bottleneck in molecular dynamics simulation due to its long-range nature, which means 

expensive calculations. How to improve the accuracy and efficiency for its calculation 

has been a long-standing goal in the field of computational biology, and finding better 

models is still a very active area of research within the field. Intensive studies have been 

performed with multiple choices of solvent models, the boundary conditions and the 

techniques to deal with the electrostatic interactions. Among all these works, the 

ICSM/PBC, which is a hybrid model developed in our group, has been proved to be 

successful to handle the pure water and dilute ionic solutions. This dissertation gives a 

broad overview, detailed characterization and comprehensive optimization of the existing 

ICSM/PBC, and also introduces a new improved ICSM/NPBC for accurate and efficient 

way to simulate solvations. Novel research was performed to 1) intensively investigate 

the physical nature of the RF and effects of buffer layer, which reveals the essential 

contribution of RF on the orientation of water molecules and the indispensable role of 

buffer layer; 2) optimize the image charge method in a self-consistent procedure that side 

steps knowing a priori dielectric profile, by which the RF can reproduce the accurate 

electrostatic field and reduce the artifacts; and 3) improve the unphysical ion correlations 

and small productive region in the ICSM/PBC due to its periodic boundary conditions, by 

non-trivial conversion to the non-periodic boundaries (ICSM/NPBC) employing multiple 



115 
 

constraint forces, for higher efficiency and more flexibility in multi-component solvents. 

In Chapter 3, we focus on why the RF is critical to maintain the correct dielectric 

constant and how exactly the RF influences the dielectric properties. To answer these 

questions, we paid attention to the two physical variables, force and torque, which 

controls the translation and rotation of a water molecule, respectively. Histogram 

distributions of both variables over the concentric shells from the origin to the edge have 

been plotted associated with different box sizes, number of image charges and boundary 

conditions for water molecule. It turns out that the electrostatic forces due to the RF are 

only 2% of the total net electrostatic forces, compared to the fact that the electrostatic 

torques due to the RF is more than 20% of the total net torques. This result, which is first 

demonstrated in our work, reveals the importance of the RF for its strong effects on 

orientation of water dipoles. In addition to the evaluation of the RF, the force and torque 

distributions in buffer layer are also studied. Strong surface artifacts have been exerted on 

the water molecules in buffer by the boundary. However, the dynamic properties of the 

water close to wall have not been disturbed because they are imaged water. Numbers of 

image charges for accuracy of RF and three boundary conditions for water molecules 

have been tested by ICSM/PBC, without showing significant influence on the 

performance of the model. 

In Chapter 4, the artifacts due to the discontinuous dielectric profile near the 

boundary in DDM, which also have been the most common problems for all the implicit 

and hybrid models, is optimized by matching the RF to accurate properties from PME 

directly. The multiple image charge method used in DDM has analytical solution with the 

assumption that the dielectric constant is discontinuous at the surface, which equals to 1 
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for inside explicit solvent but 80 for outside implicit solvent. However, this assumption is 

mathematical and the actual dielectric profile is unknown. The magnitudes of the image 

charges have been modified by least square error method to minimize the difference 

between the RF and the target values. 25% of LSE decreasing has been achieved for the 

optimized RF properties suggesting the reduction of artifacts from surface. These 

optimized image charges are then implemented back to MD simulation for the continuous 

dielectric profile calculation, which looks close to the PME results. In this inverse 

problem the numerically optimization of RF to represent a continuous dielectric profile at 

the boundary, which tries to solve the artifacts problem from the beginning, has not been 

done before.  

In Chapter 5, a new ICSM/NPBC has been developed to overcome the problems of 

the extra ion correlations and too small productive region due to the PBC. ICSM/PBC 

shows its success in dealing with pure water and dilute ionic solutions. However, with 

high ionic strength, PBC will introduce non-physical ion correlations between the ions 

and their periodic images in buffer layer and the usable volume is limited in the center of 

sphere. Rather than stick to the PBC, we implemented NPBC instead. A buffer layer of 

explicit dynamic water molecules has been introduced to reduce the surface effects 

between two solvents near the boundary. According to our study, the incorrect behaviors 

of the water molecules near the wall will lead to wrong properties of water farther away 

from the wall because of the long range nature of the interactions. Consequently, we had 

to make the water in the buffer layer, which is subjected to intense erroneous forces due 

to boundary conditions, have bulk properties of water. We achieved this goal using 

multiple constraint forces, including effective vdW forces, diffusion forces for density, 
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torque forces for dipole, and multiple thermostats for temperatures, have to be applied to 

the water molecules inside buffer region to maintain their properties in a reasonable range. 

The simulation box is either fixed or flexible, allowing a NVT or NPT simulation based 

on pressure calculation. The new model is tested within 3.0, 4.0 and 5.0 nm radius of 

sphere at 250, 300 and 350 K. All important characteristics of water, including water 

density, RDF, diffusion constant, radial component and the fluctuation of the dipole 

moment are calculated and compared with bulk properties calculated from PME 

trajectories. In the case of ions, we only know at this point that we completely removed 

unphysical correlations of ions due to their images. Although the thickness of the buffer 

layer increases with box size, higher accuracy of properties and much bigger productive 

volume can be obtained compare to typical ICSM. 

The future work can be continued in two aspects. 1) For the optimization project of 

DDM, not only the electrostatic forces, but also the short-range forces can be optimized, 

using the similar procedure developed in Chapter 4. As long as all the interactions from 

the wall are optimized, the artifacts will be minimized and the thickness of buffer layer 

may be decreased as originally intended, with more accurate RF and increased usable 

region. 2) For the ICSM/NPBC project, the solutions of single ion and high ionic strength 

should be tested in the new model. Extra constraints might be introduced to keep the ions 

staying in productive region mostly. The pair distribution function, solvation free energy 

and other thermodynamic properties of the ions and solutions need to be compared to 

PME results. 
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