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ABSTRACT 

 

 

PENGYU NI.  Prediction of cis-regulatory modules in genomes.  (Under the direction of 

DR. ZHENGCHANG SU) 

 

 
 Annotating all cis-regulatory modules (CRMs) and constituent transcription factor (TF) 

binding sites (TFBSs) in genomes is essential to understand genome functions, however, the task 

remains highly challenging. In this dissertation, we first developed a new algorithm dePCRM2 for 

predicting CRMs and TFBSs by integrating numerous TF ChIP-seq datasets based on an ultra-fast 

motif-finding algorithm. dePCRM2 partitions genome regions covered by extended binding peaks 

in the datasets into a CRM candidates (CRMCs) set and a non-CRMCs set, and evaluates each 

CRMC using a novel score that captures the essential features of CRMs. Applying dePCRM2 to 

6,092 datasets covering 77.47% of the human genome, we predicted 201 unique TF binding motif 

families and 1,404,973 CRMCs. And dePCRM2 largely outperforms the existing methods. Based 

our predictions, we estimated that about 55% and 22% of the genome code for CRMs and TFBSs, 

respectively. Thus, the regulatory genome is more prevalent than originally thought. Moreover, 

based on the highly similar evolutionary behaviors of TFBSs and inter-TFBSs spacer sequences, 

we provided genome-wide evidence for the continuum model of TF binding in CRMs. Additionally, 

as epigenomic marks determine the functional states of CRMs, thereby playing crucial roles in cell 

fate determination and type maintenance during cell differentiation, epigenomic marks can help to 

predict the functional states of CRMs. Although genomic sequences play a crucial role in 

establishing the unique epigenome in each cell type during cell differentiation, little is known about 

the sequence determinants that lead to the unique epigenomes of the cells. We developed two types 

of highly accurate deep convolutional neural networks (CNNs) for cell types and for histone marks. 

The results showed that they are powerful ways to uncover the sequence determinants of the various 

histone modification patterns in different cell types. We found that sequence motifs learned by the 

CNN models are highly like known binding motifs of TFs known to play important roles in cell 
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differentiation. Using these models, we can predict the importance of the learned motifs and their 

interactions in determining specific histone mark patterns in the cell types. Thus, the CNNs provide 

a way to pinpoint the influences of the motifs in epigenome marks. Finally, although several 

databases have been developed for predicted or experimentally determined enhancers/CRMs, they 

only cover a small portion of CRMs encoded in the genomes, lack constituent TFBSs, have high 

false positives, and are often dedicated to a single organism. To aid the use of the predicted CRMs 

and TFBSs by the research community, we developed a database dePCRMS (de novo predicted 

CRMs) (https://pcrms.uncc.edu). Currently, dePCRMS contains 1,155,151, 777,409 and 19,515 

CRMs, and 89,948,206, 103,718,473, and 3,758,557 TFBSs, in Homo sapiens, Mus musculus and 

Caenorhabditis elegans, respectively. The users can use the web interface to quickly browse and 

visualize the CRMs and their constituent TFBSs at different significant levels in selected 

chromosomes in an organism. Moreover, the web interface provides three types of functional 

analysis modules for the user 1) to search the closest CRM to a gene, 2) to search CRMs in a given 

genome range around a gene, and 3) to search TFBSs in CRMs for a given TF. The dePCRMS 

database can be an informative tool for the users to characterize functions of regulatory genomes 

in important organisms.  

 

  

https://pcrms.uncc.edu/
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CHAPTER 1: INTRODUCTION 

Cis-regulatory modules (CRMs) consisting of clusters of transcription factor (TF) binding sites 

(TFBSs) play crucial roles in regulating the transcriptional patterns of their target genes, which 

eventually shape the complex phenotypes of the organisms. A comprehensive map of CRMs and 

their constituent TFBSs in important organisms could help the research community to elucidate the 

relationship between genotypes and phenotypes, thereby laying the foundation for precision 

medicine to prevent and treat the common complex diseases. However, the current understanding 

of the relationship between the causal CRM variants and the complex diseases/traits is limited due 

to the lack of an accurate, high resolution map of CRMs and constituent TFBSs in the human 

genome. With the development of next generation sequencing (NGS) technologies, enormous 

heterogeneous ChIP-seq data have been produced, which could provide an opportunity to predict a 

comprehensive map of CRMs and elucidate the underlying mechanisms of gene regulation from 

various perspectives. To address the challenges, this dissertation project has fulfilled three aims. 

Firstly, we developed a new pipeline called dePCRM2 to predict a comprehensive map of CRMs 

in human genome. Secondly, we developed an interpretation framework for exploring the effects 

of TFBSs on the epigenetic marks in cell differentiation using convolutional neural network (CNN) 

models. Finally, we built a database to hold the predicted comprehensive maps of CRMs and 

constituent TFBSs for three important organisms, and an interface to facilitate the research 

community to conduct the functional analysis, such as identifying the target genes, searching the 

comprehensive map of TFBSs for a specific TF, etc. This dissertation is organized as follows. 

In chapter 1, we introduce the aims and organization of the dissertation. 

In chapter 2, we predict a map of CRMs in human genome using the dePCRM2 pipeline. Firstly, 

we describe the current progress for predicting CRMs and the limitation of the previous works in 
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the background section. Then, we illustrate the dePCRM2 pipeline in details. Next, we demonstrate 

our hypothesis of the algorithm and the dataset features that support this hypothesis. We also show 

the comprehensive map and evolutionary behaviors of CRMs in human genome, and the 

performance comparison with the state of art algorithms. Finally, we interpret our results in the 

discussion section in this chapter.  

In chapter 3, we propose that our predicted CRMs support the continuum model of TF binding 

in human genome. Firstly, we describe the historical hypothesis about the TF binding modes in 

CRMs in the background section. Then we classify the predicted CRMs according to their lengths 

and locations and provide the evidence that supports the continuum model of TF binding in full-

length CRMs. Finally, we explain our results in more details in the discussion section.  

In chapter 4, we propose two types of CNNs to predict the influences of TFBSs on the epigenetic 

marks in cell differentiation. In this chapter, we describe the background of cell differentiation, 

CNN and the previous works which attempt to apply CNN to explain the epigenetic marks in cell 

differentiation and their limitations. Then we demonstrate the data analysis pipeline, including the 

data preprocessing, data representation, construction of CNN, model training, validation, testing, 

and model interpretation, motif conservation analysis, and interaction prediction of the cognate TF 

of the learned motifs. Next, we evaluate the performance of the cell type CNN models which were 

applied in two cell differential models. We use four types of human CD4+ T cells for the sequential 

analysis and use the H1 human embryonic stem cells and another 4 derived cells for the generality 

and robustness evaluation. And then we predict the cell types in six histone mark models, including 

H3K27me3, H3K27ac H3K36me3, H3K4me1, H3K4me3 and H3K9me3. In the model 

interpretation section, we observe that a unique set of motifs could largely determine the 

combinational patterns of different histone marks and cell types, and the motifs learned in both 

models could reflect the lineage of the cell or functional relationships of the marks. Then, we 

explore the inference power of the learned motifs in both the cell type and the histone mark models. 
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Next, we also analyze the relationship between the evolutionary behavior of the motifs and their 

inference power in both the cell type models and the histone mark models. Finally, we predict the 

interactions between the cooperative TF pairs to determine the histone marks in the same cell type 

and distinguish cells in the same histone mark.  

In chapter 5, we build a webserver called dePCRMS. It holds the comprehensive maps of CRMs 

and constituent TFBSs for three organisms, i.e., Homo sapiens, Mus musculus and Caenorhabditis 

elegans. Firstly, we introduce the existing databases that hold the annotated CRMs. Then we briefly 

describe the predicting pipeline and the technical implement details of the database in the methods 

section. Finally, we introduce the interface and the functional modules of the webserver. 

Chapter 6 gives the conclusion. 
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CHAPTER 2: A MAP OF CIS-REGULATORY MODULES IN HUMAN GENOME 

2.1. Background 

Cis-regulatory sequences, also known as cis-regulatory modules (CRMs) (i.e., promoters, 

enhancers, silencers and insulators), are made of clusters of short DNA sequences recognized and 

bound by specific transcription factors (TFs), and their functional states are responsible for specific 

transcriptomes in various cell types in multi-cellular eukaryotes. A growing body of evidence 

indicates that CRMs are as important as coding sequences (CDSs) account for inter-species 

divergence and intra-species diversity in complex traits [1-6]. Recent genome-wide association 

studies (GWAS) have found that most complex trait-associated single nucleotide polymorphisms 

(SNPs) do not reside in CDSs, but rather lie in non-coding sequences (NCSs) [7, 8], and often 

overlap with or are in linkage disequilibrium (LD) with TF binding sites (TFBSs) in CRMs [9]. It 

has also been shown that complex trait-associated variants systematically disrupt TFBSs of TFs 

related to the traits [10], and that variation in TFBSs affects DNA binding, chromatin modification, 

transcription [11-15], and susceptibility to complex diseases [16-21] including cancer [22-29]. In 

principle, variation in a CRM may result in changes in the affinity and interactions between TFs 

and their binding sites, leading to alterations in histone modifications and target gene expressions 

in relevant cells. These alterations in molecular phenotypes can lead to changes in cellular and 

organ-related phenotypes among individuals of a species [30, 31]. However, it has been difficult to 

link non-coding variants to phenotypes [32-36], largely because of our lack of a good understanding 

of all CRMs and their constituent TFBSs in genomes.  

Fortunately, the recent development of ChIP-seq techniques for locating TFBSs of a TF in the 

genomes of specific cell/tissue types [37-39] has led to the generation of enormous amounts of data 

by large consortia such as ENCODE [40-42] Roadmap Epigenomics [43, 44] and Genotype-Tissue 
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Expression (GTEx) [45, 46], as well as individual labs worldwide [47]. These increasing amounts 

of ChIP-seq data for various TFs in a wide spectrum of cell/tissue types provide an unprecedented 

opportunity to predict a map of CRMs and constituent TFBSs in the human genome. Many 

computational methods have been developed to explore these data at various levels [34, 48]. At the 

lowest level, as the large number of binding-peaks in a ChIP-seq dataset dwarf earlier motif-finding 

tools (e.g., MEME[49], WEEDER [50, 51], Seeder [52] and BioProspector [53], new motif-finders 

(e.g., Trawler [54], ChIPMunk [55], HMS [56], CMF [57], STEME [58], DREME [59], MEME-

ChIP [60], MICSA [61], DECOD [62], RSAT [63], POSMO [64], XXmotif [65], EXTREME [66], 

FastMotif [67] and Homer [68]) have been designed.  However, some of these tools (e.g. MEME-

ChIP, MICSA and CMF) were designed to find motifs in very short sequences (~200bp) around 

the binding-peak summits in a limited number of selected binding peaks due to their slow speed. 

Some faster tools (e.g., Seeder, ChIPMunk, DECOD, RSAT, POSMO, Homer, DREME, and 

XXmotif) are based on the discriminative motif-finding schema[69] by finding overrepresented k-

mers in a ChIP-seq dataset, but they often fail to identify TFBSs with subtle degeneracy. As TFBSs 

form CRMs for combinatory regulation [70-76] tools (such as SpaMo [73], CPModule [76], COPS 

[77], INSECT [78], CCAT [79] and others [80-82]) have been developed to identify multiple 

closely located motifs as CRMs in a single ChIP-seq dataset. However, these tools cannot predict 

CRMs containing novel TFBSs, because they all depend on a library of known motifs (e.g., 

TRANSFAC [83] or JASPAR [84]) to scan for cooperative TFBSs in binding peaks.  

Methods for predicting CRMs based on multiple epigenetic marks have been developed using 

hidden Markov models [85-89], dynamic Bayesian networks[90, 91], time-delay neural networks 

random forest [92, 93], and support vector machines (SVMs) [48, 94]. Sequence features have also 

been used to predict tissue-specific enhancers using SVM [48, 95]. Several enhancer databases 

have also been compiled either by combining results of multiple methods [96-98] or by identifying 

overlapping regions of chromatin accessibility (CA) and multiple histone mark tracks in a 
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cell/tissue type [99-104]. In particular, the ENCODE 3 consortium recently identified 0.9 million 

candidate cis-regulatory elements (cCREs) by identifying overlapping regions of between 2.2 

million DNase I hypersensitivity sites (DHSs) and active promoter histone marks H3K4me3, active 

enhancer mark H3K27ac and isolator mark CTCT peaks in various cell types [105]. Although 

CRMs predicted by these methods are often cell/tissue type-specific, their applications are limited 

to cell/tissue types for which the required datasets are available. Further, the results of these 

methods are quite inconsistent [98, 106-109], e.g., even the best-performing tools (DEEP and CSI-

ANN) have only 49.8% and 45.2%, respectively, of their predicted CRMs overlap with the DHSs 

in Hela cells [48], and although 1.3 million enhancers have been predicted using epigenetic marks 

[110], few disease-associated non-coding SNPs map to them [111]. Although some predictions 

provide TFBSs information by finding matches to known motifs in predicted CRMs [97, 98, 103], 

these methods were unable to identify TFBSs of novel motifs in CRMs.  

Surprisingly, while TF ChIP-seq data provide more accurate information for TF-binding 

locations and their combinatory patterns in CRMs than epigenetic marks [48, 107, 109, 112, 113], 

few efforts have been made to fully explore the increasing volume of datasets due to technical 

difficulty to integrate them [112-115]. With this recognition, we have previously proposed a 

different strategy to first predict a catalog or a static map of CRMs and constituent TFBBs in the 

genome by integrating all available TF ChIP-seq datasets for different TFs in various cell/tissue 

types [112, 113] as has been done for identifying all genes encoded in the genome [116]. Once a 

map of CRMs and constituent TFBSs is available, the specificity of CRMs in any cell/tissue type 

can be determined using two epigenetic mark datasets collected in the cell/tissue type, reflecting 

their functional states as demonstrated recently [105]. Although very promising results have been 

obtained using even insufficient datasets available then [112, 113], there are three limitations in our 

earlier algorithm dePCRM to integrate much larger datasets available now and in the future. First, 

although existing motif-finders such as DREME used in dePCRM work well for relatively small 
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ChIP-seq datasets from organisms with smaller genomes such as the fly [113], they are too slow 

for very large datasets from human cells/tissues, so we had to split large datasets into smaller ones 

for the motif finding [112], which may compromise the accuracy of motif finding and complicate 

subsequent data integration. Second, the distance and interactions of TFBSs in a CRM were not 

explicitly considered [112], potentially limiting the accuracy. Third, the original “branch-and-

bound” approach to integrate motifs is not efficient enough to handle much larger number of motifs 

found in ever increasing number of large ChIP-seq datasets from human cells/tissues. To overcome 

these drawbacks, we developed a new CRM predictor dePCRM2 that combines an ultrafast, 

accurate motif-finder ProSampler [117] with a novel effective combinatory motif pattern discovery 

method. Applying dePCRM2 to available 6,092 ChIP-seq datasets covering 77.47% of the human 

genome, we predicted 201 unique TF binding motif families and 1,404,973 CRM candidates 

(CRMCs). Both evolutionary and independent experimental data indicate that dePCRM2 achieves 

very high sensitivity and specificity in predicting CRMs and constituent TFBSs. 
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2.2. Methods and materials 

2.2.1. Datasets 

We downloaded 6,092 TF ChIP-seq datasets (SUPPLEMENTARY TABLE S1) from the 

Cistrome database [47]. The binding peaks in each dataset were called using a pipeline for uniform 

processing [47]. We filtered out binding peaks with a read depth score less than 20. For each 

binding peak in each dataset, we extracted a 1,000 bp genome sequence centering on the middle of 

the summit of the binding peak. We downloaded 976 experimentally verified enhancers from the 

VISTA Enhancer database [118], 32,689 enhancers and184,424 promoters from the FANTOM 

project website[119, 120], 424,622 ClinVar SNPs from the ClinVar database [121], 91,369 GWAS 

SNPs from GWAS Catalog [122, 123], and 122,468,173 DHSs in 1353 datasets 

(SUPPLEMENTARY TABLE S2), 29,520,736 transposase-accessible sites(TASs) in 1,059 

datasets (SUPPLEMENTARY TABLE S3), 99,974,447 H3K27ac peaks in 2,539 datasets 

(SUPPLEMENTARY TABLE S4), 77,500,232 H3K4me1 peaks in 1,210 datasets 

(SUPPLEMENTARY TABLE S5), and 70,591,888 H3K4me3 peaks in 2,317 datasets 

(SUPPLEMENTARY TABLE S6) from the Cistrome database [47]. 

 

2.2.2. Measurement of the overlap between two different datasets 

To evaluate the extent to which the binding peaks in two datasets overlap with each other, we 

calculate an overlap score 𝑆0(𝑑𝑖, 𝑑𝑗) between each pair of datasets 𝑑𝑖 and 𝑑𝑗 , which is defined as, 

 𝑆0(𝑑𝑖, 𝑑𝑗) =
1

2
× (

𝑜(𝑑𝑖+𝑑𝑗)

|𝑑𝑖|
+

𝑜(𝑑𝑖+𝑑𝑗)

|𝑑𝑗|
). 2-1 
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2.2.3. Parameters for accuracy evaluation 

We use the following definition of the parameters for evaluating the accuracy of datasets of 

predictions. 𝑆ensitivity = recall rate = 𝑇𝑃𝑅 (true positive rate) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, Specificity =

𝑇𝑁

𝐹𝑃+𝑇𝑁
,  𝐹𝑁𝑅 (false negative rate) =

𝐹𝑁

𝑇𝑃+𝐹𝑁
,   𝐹𝑃𝑅(false positive rate) =

𝐹𝑃

𝐹𝑃+𝑇𝑁
,

𝐹𝐷𝑅 (false discorery rate ) =
𝐹𝑃

𝑇𝑃+𝐹𝑃
, 𝐹𝑂𝑅 (false ommision rate) =

𝐹𝑁

𝐹𝑁+𝑇𝑁
,  where TP is true 

positives; FN is false negatives; FP is false positives; and TN is true negatives.  

 

2.2.4. The dePCRM2 algorithm 

Step 1. Find motifs in each dataset using ProSampler [117] (FIGURE 2-1A and B). 

Step 2. Compute pairwise motif co-occurring scores and find co-occurring motif pairs: As True 

motifs are more likely to co-occur in the same sequence than the spurious ones, to filter out false 

positive motifs, we find overrepresented co-occurring motif pairs (CPs) in each dataset (FIGURE 

2-1C). Specifically, for each pair of motifs Md(i) and Md (j) in each data set d, we compute their co-

occurring scores Sc defined as, 

 𝑆𝑐 (𝑀𝑖(𝑖), 𝑀𝑗(𝑗)) =
𝑜(𝑀𝑑(𝑖),𝑀𝑑(𝑗))

𝑚𝑎𝑥{|𝑀𝑑(𝑖)|,|𝑀𝑑(𝑖)| }
, 2-2 

 

where |Md(i)| and |Md (j)| are the number of binding peaks containing TFBSs of motifs Md(i) and 

Md (j), respectively; and 𝑜(𝑀𝑑(𝑖), 𝑀𝑑(𝑗)) is the number of binding peaks containing TFBSs of both 

the motifs in d. We identify CPs with an 𝑆𝑐 ≥ 0.7 (by default) (FIGURE 2-1C).  

Step 3. Construct a motif similarity graph and find unique motifs: We combine highly similar 

motifs in the CPs from different datasets to form a unique motif (UM) presumably recognized by 

a TF or highly similar TFs of the same family/superfamily [124]. Specifically, for each pair of 

motifs Ma(i) and Mb(i) from different datasets a and b, respectively, we compute their similarity 

score Ss using our SPIC [125] metric. We then build a motif similarity graph using motifs in the 
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CPs as nodes and connecting two motifs with their Ss being the weight on the edge, if and only if 

(iff) Ss> (by default,  =0.8, FIGURE 2-1D). We apply the Markov cluster (MCL) algorithm [126] 

to the graph to identify dense subgraphs as clusters. For each cluster, we merge overlapping 

sequences, extend each sequence to a length of 30bp by padding the same number of nucleotides 

from the genome to the two ends, and then realign the sequences to form a UM using ProSampler 

(FIGURE 2-1D). 

Step 4. Construct the integration networks of UMs: TFs tend to repetitively cooperate with each 

other to regulate genes in different contexts by binding to their cognate TFBSs in CRMs. The 

relative distances between TFBSs in a CRM often do not matter (billboard model) [127-129] but 

sometimes they are constrained by the interactions between cognate TFs. To model both scenarios, 

we compute an interaction score between each pair of UMs,  

𝑆INTER(𝑈𝑖 , 𝑈𝑗)
1

|𝐷(𝑈𝑖,𝑈𝑗|
∑ (

1

|𝑈𝑖(𝑑)|
∑

150

𝑟(𝑠)𝑠∈𝑆(𝑈𝑖(𝑑),𝑈𝑗(𝑑)) +𝑑∈𝐷(𝑈𝑖,𝑈𝑗)
1

|𝑈𝑗(𝑑)|
∑

150

𝑟(𝑠)𝑠∈𝑆(𝑈𝑖(𝑑),𝑈𝑗(𝑑)) ),  2-3 

where 𝐷(𝑈𝑖 , 𝑈𝑗) is the datasets in which TFBSs of motifs 𝑈𝑖  and 𝑈𝑗  are found, 𝑈𝑘(𝑑) is the 

subset of dataset 𝑑 , containing at least one TFBS of 𝑈𝑘 , S(𝑈𝑖(𝑑), 𝑈𝑗(𝑑))  is the subset of 𝑑 

containing TFBSs of both 𝑈𝑖  and 𝑈𝑗, and  𝑟(𝑠) is the shortest distance between a TFBS of 𝑈𝑖  and a 

TFBS of 𝑈𝑗  in a sequence 𝑠. We construct UM/TF interaction networks using the UMs as nodes 

and connecting two nodes with their SINTER being the weight on the edge (FIGURE 2-1E). Therefore, 

SINTER allows flexible adjacency and orientation of TFBSs in a CRM, and at the same time, it 

rewards motifs with binding sites co-occurring frequently in a shorter distance in a CRM [127-129]. 

Step 5. Evaluate CRM candidates: We project TFBSs of each UM back to the genome and link 

two adjacent TFBSs if their distance d ≤ 300bp (roughly the length of DNA in two nucleosome). 

The resulting linked DNA segments are CRM candidates (CRMCs) (FIGURE 2-1F). We evaluate 

each CRMC containing n TFBSs (b1, b2, …, bn) by computing a CRM score defined as, 
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 𝑆𝐶𝑅𝑀(𝑏1, 𝑏2 ⋯ , 𝑏𝑛) =
2

𝑛−1
× ∑ ∑ 𝑊[𝑈(𝑏𝑖), 𝑈(𝑏𝑗)]𝑗>𝑖

𝑛
𝑖=1 × [𝑆(𝑏𝑖) + 𝑆(𝑏𝑗)],          2-4 

 

where 𝑈(𝑏𝑘) is the UM of TFBS 𝑏𝑘, 𝑊[𝑈(𝑏𝑖), 𝑈(𝑏𝑗)] is the weight on the edge between the 

motifs of 𝑈(𝑏𝑖) and 𝑈(𝑏𝑗) in the interaction networks, and 𝑆(𝑏𝑘) is the binding affinity score of 𝑏𝑘 

based on the position weight matrix (PWM) of 𝑈(𝑏𝑘). Only TFBSs with a positive score are 

considered. 

Step 6. Predict CRMs: We create the Null interaction networks by randomly reconnecting the 

nodes with the edges in the interaction networks constructed in Step 4. For each CRMC, we 

generate a Null CRMC that has the same length and nucleotide compositions as the CRMC using 

a third order Markov chain model [117]. We compute a SCRM score for each Null CRMC using the 

Null interaction networks, and the binding site positions affinity with the UMs based on their 

PWMs in the corresponding CRMC. Based on the distribution of the SCRM scores of the Null 

CRMCs, we compute a p-value for each CRMC, and predict those with a p-value smaller than a 

preset cutoff as CRMs in the genome (FIGURE 2-1G). 

Step 7. Prediction of the functional states of CRMs in a given cell type: For each predicted CRM, 

we predict it to be active in a cell/tissue type, if its constituent binding sites of the UMs whose 

cognate TFs were tested in the cell/tissue type overlap the original binding peaks of the TFs; 

otherwise, we predict the CRM to be inactive in the cell/tissue type. If the CRM does not overlap 

any binding peaks of the TFs tested in the cell/tissue type, we assign its functional state in the 

cell/tissue type as “to be determined” (TBD). 

 

2.2.5. Generation of control sequences for validation 

To create a set of matched control sequences for validating the predictions for each predicted 

CRMC, we produced a control sequence by randomly selecting a sequence segment with the same 
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length as the CRMC from the genome regions covered by the extended binding peaks. To calculate 

the SCRM score of a control sequence, we assigned it the TFBS positions and their UMs according 

to those in the counterpart CRMC. Thus, the control set contains the same number and length of 

sequences as in the CRMCs, but with arbitrarily assigned TFBSs and UMs.  
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2.3. Results 

2.3.1. The dePCRM2 pipeline 

TFs in eukaryotes tend to cooperatively bind to their TFBSs in CRMs[130]. Different CRMs of 

the same gene are structurally similar and closely located, and functionally related genes are often 

regulated by the same sets of TFs in different cell types during development and in maintaining 

homeostasis[131]. Thus, if we extend the called binding peaks of a TF ChIP-seq dataset from the 

two ends and reach the typical size of a CRM (500~3000bp)[118], then the extended peaks may 

include TFBSs of cooperative TFs [112, 113]. For instance, if two different TFs regulate the same 

group of target genes cooperatively in several cell types, then at least some of the extended peaks 

of datasets for the two TFs from these cell types should contain the TFBSs of both TFs, or even 

have some overlaps if the CRMs are reused in different cell types. Therefore, with sufficient amount 

of various TFs from different cell types are produced, the datasets for some cooperative TFs are 

likely to be included, and their TFBSs of the cooperative TFs may co-occur in some extended peaks. 

Based on these observations, we designed the pipelines dePCRM [112, 113] and dePCRM2 to 

predict CRMs and constituent TFBSs by identifying overrepresented co-occurring patterns of 

motifs found by a motif-finder in a large number of TF ChIP-seq datasets[112, 113]. We overcome 

the aforementioned shortcomings of dePCRM [112, 113] as follows. First, using an ultrafast, 

accurate motif-finder ProSampler [117], dePCRM2 can find significant motifs in any size of 

available ChIP-seq datasets without the need to split large datasets into small ones (FIGURE 2-1A 

and B). Second, after identifying highly co-occurring motifs pairs (CPs) in the extended binding 

peaks in each dataset (FIGURE 2-1C), dePCRM2 clusters highly similar motifs in the CPs and 

finds a unique motif (UM) in each resulting cluster (FIGURE 2-1D). Third, dePCRM2 models 

interactions among cognate TFs of the binding sites in a CRM by constructing interaction networks 

of the UMs based on the distance between the binding sites and the extent to which biding sites in 

the UMs cooccur (FIGURE 2-1E). Fourth, dePCRM2 identifies as CRMCs closely located clusters 
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of binding sites of the UMs along the genome (FIGURE 2-1F), thereby partitioning genome regions 

covered by the extended binding peaks in the datasets into a CRMCs set and a non-CRMCs set. 

Fifth, dePCRM2 evaluates each CRMC using a novel score that considers the quality of binding 

sites as well as the strength of interactions among the corresponding UMs defined in the interaction 

networks (FIGURE 2-1G). Lastly, dePCRM2 computes a p-value for each 𝑆𝐶𝑅𝑀  score, so that 

CRMs and constituent TFBSs can be predicted at different significant levels using different 𝑆𝐶𝑅𝑀  

score or p-value cutoffs. Clearly, as the number of UMs is a small constant number constrained by 

the number of TF families encoded in the genome, the downstream computation based on the set 

of UMs runs in a constant time, thus dePCRM2 is highly scalable. 

 

FIGURE 2-1: Schema of the dePCRM2 algorithm.  A. Extend each binding peak in each dataset to its two ends to 

reach a preset length, e.g., 1,000bp. B. Find motifs in each dataset using ProSampler. C. Find CPs in each dataset. For 

clarity, only the indicated CPs are shown, while those formed between motifs in pairs P1 and P2 in d1, and so on, are 

omitted. D. Construct the motif similarity graph, cluster similar motifs and find UMs in the resulting motif clusters. 

Each node in the graph represents a motif, weights on the edges are omitted for clarity. Clusters are connected by edges 

of the same color and line type. E. Construct UM interaction networks. Each node in the networks represents a UM, 

weights on the edges are omitted for clarity. F. Project binding sites in the UMs back to the genome and identify 

CRMCs along the genome. G. Evaluate each CRMC by computing its 𝑆𝐶𝑅𝑀 score and the associated p-value.   
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2.3.2. Extended binding peaks in different datasets have extensive overlaps 

After filtering out low-quality peaks in the 6,092 ChIP-seq datasets, we ended up with 6,070 

non-empty datasets for 779 TFs in 2,631 cell/tissue/organ types. The datasets are strongly biased 

to few cell types (FIGURE 2-2A). For example, 532, 475 and 309 datasets were collected from 

mammary gland epithelium, colon epithelium, and bone marrow erythroblast, respectively, while 

only one dataset was generated from 129 cell/tissue types, including heart embryonic fibroblast, 

fetal skin fibroblast, and bone marrow haematopoietic progenitor, and so on. The datasets also are 

strongly biased to few TFs (FIGURE 2-2B). For example, 370 and 263 datasets were collected for 

TFs CTCF and ESR1, respectively, while just one dataset was produced for 324 TFs, such as MSX2, 

RAX2, and MYNN, and so on. The number of called binding peaks in a dataset is highly varying, 

ranging from 2 to 100,539, with an average of 19,314 (FIGURE 2-2C). For instance, datasets for 

STAT1, and NR3C1 have the smallest number of 2 binding peaks in HeLa-S3, and HEK293 cells, 

respectively, while datasets for CEBPB, BRD4 and FOXA2 have the largest number of 115,776, 

99,646, and 99,512 binding peaks in HepG2, U87, and Mesenchymal Stem Cells, respectively. The 

highly varying numbers of binding peaks in the datasets suggest that different TFs might bind a 

highly varying number of sites in the genomes of cells. However, some datasets with very few 

binding peaks might be resulted from technical artifacts, thus are of low quality (see below), even 

though they passed our first quality filter. The lengths of binding peaks in the datasets range from 

75 to 10,143bp, with a mean of 300bp (FIGURE 2-2D), and 99.12% of binding peaks are shorter 

than 1,000pb. All the binding peaks in the 6,070 datasets cover a total of 1,265,474,520bp (40.98%) 

of the genome (3,088,269,832bp). For each binding peak in each dataset, we extracted a 1,000bp 

genome sequence centering on the middle of its binding summit, thereby extending the lengths for 

most binding peaks. We have shown that extension of binding peaks to 500~1,000bp could 

substantially increase the chance of finding TFBSs of cooperative TFs of the ChIP-ed/target TFs, 

while the introduced noise had a little effect on identifying the primary motifs of target TFs [117]. 

The extended binding peaks contain a total of 115,710,048,000bp, which is 37.5 times the size of 
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the genome, but cover only 2,392,488,699bp (77.47%) of the genome, leaving the remaining 22.53% 

of the genome uncovered, indicating that they have extensive overlaps. Nonetheless, by extending 

the original binding peaks, we increased the coverage of genome by 89.04% (77.47% vs 40.98%). 

Notably, we may not know the functional states of some predicted binding sites in extended parts 

of the original binding peaks from a cell/tissue type if no binding peaks for other TFs tested in the 

cell/tissue type overlap the extended parts. We trade this drawback for a more complete prediction 

of the catalogs/map of CRMs and TFBSs in the genome [112]. We expect that when more diverse, 

less biased data for untested TFs in untested cell/tissue types are generated in the future, a larger 

proportion of the functional genome can be covered. As dePCRM2 predicts CRMs and constituent 

TFBSs based on overlapping patterns between datasets of cooperative TFs [112, 113] (Methods 

and materials), we evaluated the extent to which the extended binding peaks in different datasets 

overlap one another. To this end, we hierarchically clustered the 6,070 datasets using an overlap 

score between each pair of the datasets (Methods and materials). As shown in FIGURE 2-3A, there 

are extensive distinct overlapping patterns among the datasets. As expected, clusters are formed by 

datasets for largely the same TF in different cell/tissue types, and/or by datasets for different TFs 

that are known or potential collaborators in transcriptional regulation. For instance, a cluster is 

formed by 1, 1 and 48 datasets for RAD21, SMC3 and CTCF, respectively, in various cell/tissue 

types (FIGURE 2-3B). It is well-known that RAD21, SMC3 and CTCF are core subunits of the 

cohensin complex, and are widely colocalized in mammalian genomes [132]. In another example 

(FIGURE 2-3C), a cluster is formed by 50 datasets for 45 TFs in various cell/tissue types. Multiple 

sources of evidence indicate that these 45 TFs have extensive physical interactions for DNA 

binding and transcriptional regulation (FIGURE 2-3D) [133, 134]. For example, it has been shown 

that LEF1 interacts with the TGF beta activating regulator SMAD4 [135], E2F4 helps to recruit 

PML to the TBX2 promoter [136], and FOXK 1 and TP53 can form a distinct protein complex on 

and off chromatin [137]. These overlapping patterns between the extended binding peaks in the 

datasets warrant us to predict CRMs and constituent TFBSs in the covered 77.47% of the genome 
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[112, 113](Methods and materials). In addition, 10 sets of experimentally determined CRM 

function-related elements (Methods and materials ) highly enriched in the covered 77.47% regions 

compared to the uncovered 22.53% genome regions, including 785 (80.43%) VISTA enhancers 

[118], 402,730 (94.84%) of ClinVar single nucleotide polymorphisms (SNPs) [121, 138], 181,436 

(98.38%) FANTOM promoters (FPs) [119], 32,029 (97.98%) FANTOM enhancers (FEs) [120], 

82,378 (90.16%) of GWAS SNPs [123],  121,075,184 (98.86%) DNase I hypersensitive sites 

(DHSs) [122, 123], 29,195,778, 98,297,240, 7,5467,050, 69,282,044 transposase-accessible 

sites(TASs)[139](98.90%), H3K27ac peaks [140](98.32%), H3K4me1 peaks[141] (97.38%), and 

H3K4me3 peaks[141](98.14%). We will evaluate the sensitivity of dePCRM2 to recall these 

elements at different 𝑆𝐶𝑅𝑀 scores and associated p-value cutoffs. 

 

FIGURE 2-2: Properties of the datasets. A. Number of datasets collected in each cell/tissue types sorted in 

descending order. B.  Number of datasets collected for each TF sorted in descending order. C. Number of peaks in each 

dataset sorted in ascending order. D. Distribution of the lengths of binding peaks in the entire datasets.   
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FIGURE 2-3: Overlap of extended binding peaks. A. Heatmap of overlaps of extended binding peaks between each 

pair of the datasets. B. A blowup view of the indicated cluster in, formed by 48 datasets for CTCF in different 

cell/tissue types, as well as one dataset for each of its two collaborators, RAID21 and SMC3. C. A blowup view of the 

indicated cluster in D, formed by 50 datasets for 45 TFs.  B. Known physical interactions between the 45 TFs whose 50 

datasets form the cluster in E. 
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2.3.3. Unique motifs recover most known TF motifs families 

 

FIGURE 2-4: Identification of motifs and Sc score.  A. Relationship between the number of predicted motifs in a 

dataset and the size of the dataset (number of binding peaks in the dataset). The datasets are sorted in ascending order 

of their sizes. B. Distribution of cooccurrence scores (Sc) of motif pairs found in a dataset. The dotted vertical line 

indicates the cutoff value of Sc for predicting cooccurring pairs (CPs). 

ProSampler identified at least one motif in 5,991 (98.70%) datasets but failed to find any motifs 

in the remaining 79 (1.30%) datasets that all contain less than 310 binding peaks, indicating that 

they are likely of low quality. As shown in FIGURE 2-4A, the number of motifs found in a dataset 

generally increases with the increase in the number of binding peaks in the dataset, but enters a 

saturation phase and stabilizes around 250 motifs when the number of binding peaks is beyond 

40,000. In total, ProSampler identified 856,793 motifs in the 5,991 datasets with at least one motif 

found. dePCRM2 finds co-occurring motif pairs (CPs) in each dataset (FIGURE 2-1C) by 

computing a cooccurring score Sc for each pair of motifs in the dataset (Formula 2-2). As shown in 

FIGURE 2-4B, Sc scores show a three-mode distribution. dePCRM2 selects as CPs the motif pairs 

that account for the mode with the highest Sc scores, and discards those that account for the other 

two modes with lower Sc scores (by default, Sc<0.7), because these low-scoring motif pairs are 

likely to co-occur by chance. In total, dePCRM2 identified 4,455,838 CPs containing 226,355 

(26.4%) motifs from 5,578 (93.11%) of the 5,991 datasets. Therefore, we filtered out 413 (6.89%) 

of the 5,991 datasets because each had a low Sc score compared with other datasets. Clearly, more 

and balanced datasets are needed to rescue their use in the future for more complete predictions. 
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Clustering the 226,355 motifs in the CPs resulted in 245 clusters consisting of 2~72,849 motifs, 

most of which form a complete similarity graph or clique, indicating that member motifs in a cluster 

are highly similar to each other (FIGURE 2-5). dePCRM2 found a UM in 201 of the 245 clusters 

(FIGURE 2-6 and SUPPLEMENTARY TABLE S7-8) but failed to do so in 44 clusters due to the 

low similarity between some member motifs (FIGURE 2-5). Binding sites of the 201 UMs were 

found in 39.87~100% of the sequences in the corresponding clusters, and in only 1.49% of the 

clusters binding sites were not found in more than 50% of the sequences due to the low quality of 

member motifs (FIGURE 2-7). Thus, this step retains most of putative binding sites in most clusters. 

The UMs contain highly varying numbers of binding sites ranging from 64 to 13,672,868 with an 

average of 905,288 (FIGURE 2-8A and SUPPLEMENTARY TABLE S7-8), reminiscent of highly 

varying number of binding peaks in the datasets (FIGURE 2-8A). The lengths of the UMs range 

from 10bp to 21pb with a mean of 11pb (FIGURE 2-8B), which are in the range of the lengths of 

known TF binding motifs, although they are biased to 10bp due to the limitation of the motif-finder 

to find longer motifs. As expected, a UM is highly similar to its member motifs that are highly 

similar to each other (FIGURE 2-5). For example, UM44 contains 250 highly similar member 

motifs (FIGURE 2-9A). Of the 201 UMs, 117 (58.2%) match at least one of the 856 annotated 

motifs in the HOCOMOCO [142] and JASPAR [143] databases (SUPPLEMENTARY TABLE 

S7-8), and 92 (78.63%) match at least two, suggesting that most UMs might consist of motifs of 

different TFs of the same TF family/superfamily that recognize highly similar motifs, a well-known 

phenomenon [144, 145]. Thus, a UM might represent a motif family/superfamily for the cognate 

TF family/superfamily. For instance, UM44 matches known motifs of nine TFs of the “ETS” family 

ETV4~7, ERG, ELF3, ELF5, ETS2 and FLI1, a known motif of NFAT5 of the “NFAT-related 

factor” family, and a known motif of ZNF41 of the “more than 3 adjacent zinc finger factors” 

family (FIGURE 2-9B and SUPPLEMENTARY TABLE S7-8). The high similarity of these motifs 

suggest that they might form a superfamily. On the other hand, 64 (71.91%) of the 89 annotated 

motifs TF families match one of the 201 UMs (SUPPLEMENTARY TABLE S7-8), thus our 
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predicted UMs include most of the known TF motif families. To model interactions between 

cognate TFs of the UMs, dePCRM2 computes interaction scores between the UMs (Formula 2-3). 

As shown in (FIGURE 2-10A), there are extensive interactions between the UMs, which indeed 

reflect the interactions among their cognate TFs or TF families in transcriptional regulation. For 

example, in a cluster formed by 10 UMs (FIGURE 2-10B), seven of them (UM126, UM146, UM79, 

UM223, UM170, UM103 and UM159) match known motifs of MESP1/ZEB1, TAL1::TCF3, 

ZNF740, MEIS1/TGIF1/MEIS2/MEIS3, TCF4/ZEB1/CTCFL/ZIC1/ZIC4/SNAI1, GLI2/GLI3 

and KLF8, respectively. At least a few of them are known collaborators in transcriptional regulation. 

For example, GLI2 cooperates with ZEB1 for repressing expression of CDH1 gene in human 

melanoma cells via direct binding two close binding sites at CDH promoter [146] , ZIC and GLI 

cooperatively regulate neural and skeletal development through physical interactions between their 

zinc finger domains [147], and ZEB1 and TCF4 could regulate the transcription of WNT target 

gene reciprocally[148], to name a few. 

 



22 

 

 

FIGURE 2-5: Graphs of member motifs of UMs.  A. Similarity graphs of member motifs in the 245 motif clusters. 

In each graph, a node in blue represents a member motif of the cluster, and two member motifs are connected by an 

edge in green if their similarity is greater than 0.8 (SPIC score).  Clusters with the names in RED font are those in 

which a UM cannot be found.  
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FIGURE 2-6: Logos of the UMs.  A. Logos of the 201 UMs found in the corresponding clusters. 
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FIGURE 2-7: Recovery rate of the UMs. . Proportion of sequences of the member motifs of a UM in which binding 

sites were found. UMs are sorted in ascending order of the proportion.  

 

 

 

FIGURE 2-8: Properties of the UMs. . A. Number of putative binding sites in each of the UMs sorted in ascending 

order. B. Distribution of the lengths of the UMs and known motifs in the HOCOMOCO and JASPAR databases. 
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FIGURE 2-9: Example of a UM.  A.The logo and similarity graph of the 250 member motifs of UM44. In the 

graph, each node in blue represents a member motif, and two member motifs are connected by an edge in green if their 

similarity is greater than 0.8 (SPIC score). Four examples of member motifs are shown in the left panel. B. UM44 

matches known motifs of nine TFs of the “ETS”, “NFAT-related factor”, and “more than 3 adjacent zinc finger factors” 

families. 

 

FIGURE 2-10: Interactions between the UM pairs.  A.Heatmap of the interaction networks of the 201 UMs, names 

of most UMs are omitted for clarity 
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2.3.4. Extension of original binding peaks increase the power of datasets  

By concatenating closely located binding sites of the UMs along the genome, dePCRM2 

partitions the extended binding peak-covered genome regions (2,392,488,699bp) in two exclusive 

sets FIGURE 2-1, the CRMCs set containing 1,404,973 CRMCs with a total length of 

1,359,824,275bp (56.84%) and the non-CRMCs set containing 1,957,936 sequence segments with 

a total length of 1,032,664,424bp (43.16%), covering 44.03% and 33.44% of the genome, 

respectively. Interestingly, 57.88% (776,999,862bp) of genome nucleotide positions of the CRMCs 

overlap those of the original peaks, while the remaining 42.12% (565,448,583bp) overlap those of 

the extended parts of the original peaks. Hence, in predicting CRMCs, dePCRM2 used only 61.40% 

of positions and abandoned the remaining 38.60% positions covered by the original binding peaks 

(1,265,512,389bp), suggesting that this portion of called binding peak position might not enrich for 

binding sites, which is in agreement with earlier studies [149-151]. Meanwhile, dePCRM2 

predicted 565,448,583pb (42.12%) CRMC positions covered by the extended parts of original 

binding peaks, suggesting that that TFBSs of cooperative TFs are enriched in the extended parts as 

we showed earlier [117]. Thus, appropriate extension of original binding peaks could greatly 

increase the power of datasets. If a CRMC overlaps an original binding peak in a cell/tissue type, 

we predict the CRMC to be active in the cell/tissue type. Thus, we could predict functional states 

of about 57.88% of the CRMCs in at least one of the cell/tissue types, from which data were used 

in the prediction. However, we could not predict functional states of the remaining 42.12% of the 

CRMCs that do not overlap any original binding peaks. 

 

2.3.5. Most CRMCs have low p-values 

As shown in FIGURE 2-11A, the distribution of the 𝑆𝐶𝑅𝑀 scores of the CRMCs is strongly 

right-skewed relative to that of the Null CRMCs (Methods and materials), indicating that the 

CRMCs generally score higher than Null CRMCs, and thus are unlikely produced by chance. Based 
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on the distribution of the 𝑆𝐶𝑅𝑀 scores of Null CRMCs, dePCRM2 computes a p-value for each 

CRMC (FIGURE 2-11A). With the increase in the 𝑆𝐶𝑅𝑀 cutoff α (𝑆𝐶𝑅𝑀 ≥ α), the associated p-value 

drops rapidly, while both the number of predicted CRMs and the proportion of the genome 

predicted to be CRMs decrease slowly, indicating that dePCRM2 might achieve high prediction 

specificity (FIGURE 2-11B). Specifically, with α increasing from 56 to 922, p-value drops 

precipitously from 0.05 to 1.00x10-6, while the number of predicted CRMs decreases from 

1,155,151 to 327,396, and the proportion of the genome predicted to be CRMs decreases from 

43.47% to 27.82% (FIGURE 2-11B). Predicted CRMs contain from 20,835,542 (p-value ≤ 1x10-

6) to 31,811,310 (p-value ≤ 0.05) non-overlapping putative TFBSs that consist of from 11.47% (p-

value≤ 1x10-6) to 16.54% (p-value ≤ 0.05) of the genome (FIGURE 2-12A). In other words, 

dependent on p-value cutoffs (1x10-6 ~0.05), 38.05~41.23% of predicted nucleotide positions in 

the predicted CRMs are made of putative TFBSs (FIGURE 2-12B). As expected, most of the 

predicted CRMs (93.99~95.46%) and constituent TFBSs (93.20~94.67%) are located in non-

exonic sequences (NESs) (FIGURE 2-12A), comprising 26.66~42.47% and 10.94~16.03% of 

NESs, respectively (FIGURE 2-12B). Surprisingly, dependent on p-value cutoffs (1x10-6 ~0.05), 

the remaining 4.54~6.01% and 5.33~6.80%  of the predicted CRMs and constituent TFBSs, 

respectively, are in an exon (FIGURE 2-12A), comprising 76.82%~85.50% and 35.42~38.17% of 

exonic sequences (ESs, including CDSs, 5’- and 3’-untranslated regions), respectively (FIGURE 

2-12B).  
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FIGURE 2-11: Prediction of CRMs using different SCRM cutoffs. . A. Distribution of 𝑆𝐶𝑅𝑀 scores of the CRMCs 

and Null CRMCs. B. Number of the predicted CRMs, proportion of the genome predicted to be CRMs and the 

associated p-value as functions of the 𝑆𝐶𝑅𝑀 cutoff α. 

 

 

FIGURE 2-12: Coverage of the predicted CRMs at different p-value. . A.Percentage of the genome that are 

predicted to be CRMs and TFBSs in ESs and NESs using various 𝑆𝐶𝑅𝑀 cutoffs and associated p-values. B. Percentage 

of NESs and ESs that are predicted to be CRMs and TFBSs using various 𝑆𝐶𝑅𝑀  cutoffs and associated p-values. 

 

2.3.6. The SCRM score captures the length feature of long enhancers 

We designed the 𝑆𝐶𝑅𝑀 score to capture essential features of enhancers including their lengths. 

To see whether it achieves this goal, we compared the distribution of the lengths of predicted 

CRMCs at different 𝑆𝐶𝑅𝑀 cutoffs α and associated p-values with those of functionally verified 
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VISTA enhancers. As shown in FIGURE 2-13, most of CRMCs are quite short (average length 

981bp) compared to VISTA enhancers (average length 2,049bp). Specifically, almost half (621,842 

or 44.26%) of the 1,404,973 CRMCs are shorter than the shortest VISTA enhancer (428bp), 

suggesting that most of these short CRMCs are likely short CRMs (such as promoters) or 

parts/components of long enhancers. However, these short CRMCs (< 428bp, 44.26%) consist of 

only 7.42% of the total length of the CRMCs, while the remaining 733,132 (55.74%, >428bp) 

CRMCs comprise 92.58% of the total length of the CRMCs. With the increase in α (decrease in p-

value cutoff), the distribution of the lengths of the predicted CRMs shifts to right and gradually 

approaches to that of VISTA enhancers (FIGURE 2-13). Intriguingly, at α=676 (p-value ≤ 5x10-6), 

the distribution fits very well to that of VISTA enhancers, indicating that the corresponding 428,628 

predicted CRMs have similar length distribution (average length 2,292bp) to those of VISTA 

enhancers (average length 2,049bp) (FIGURE 2-13), and thus they are likely full-length VISTA-

like enhancers. These results demonstrate that short CRMs and CRM components tend to have 

smaller 𝑆𝐶𝑅𝑀 scores than full-length enhancers and can be effectively filtered out by a higher 𝑆𝐶𝑅𝑀 

cutoff α (a smaller p-value). Therefore, 𝑆𝐶𝑅𝑀 indeed captures the length property of full-length 

enhancers. Although these 428,628 putative full-length VISTA-like CRMs consist of only 30.51% 

of the 1,404,973 CRMCs, they comprise 72.25% (982,470,181bp) of the total length 

(1,359,824275bp) of the CRMCs, while the remaining 976,345 (69.49%) short CRMCs consist of 

only 27.75% of the total length of the CRMCs, indicating that full-length VISTA-like enhancers 

dominate the CRMCs in length. The failure to predict full-length CRMs of short CRM components 

might be due to insufficient data coverage on the relevant loci in the genome. This is reminiscent 

of our earlier predicted, even shorter CRMCs (average length 182bp) using a much smaller number 

and less diverse 670 datasets [112]. As we argued earlier [112] and confirmed here by the much 

longer CRMCs (average length 982bp) predicted using the much larger and more diverse datasets 

albeit still strongly biased to a few TFs and cell/tissue types. We anticipate that full-length CRMs 
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of these short CRM components can be predicted using even larger and more diverse TF ChIP-seq 

data when available in the future. 

 

FIGURE 2-13: Distribution of the lengths of CRMs.  predicted using different 𝑆𝐶𝑅𝑀 cutoffs and associated p-

values.   

 

2.3.7. Predicted CRMs tend to be under strong evolutionary selections 

To see how effective that dePCRM2 partitions the covered genome regions into the CRMCs set 

and the non-CRMCs set, we compared their evolutionary behaviors using the GERP [152] and 

phyloP [153] scores of their nucleotide positions in the human genome. Both the GERP and the 

phyloP scores quantify conservation levels of nucleotide positions in the genome based on 

nucleotide substitutions in alignments of multiple vertebrate genomes. The larger a positive GERP 

or phyloP score of a position, the more likely it is under negative selection; and a GERP or phyloP 

score around zero means that the position is selectively neutral or nearly so. For convenience of 

discussion, we consider a position with a GERP or phyloP score within an interval centering on 0 

[-𝛿,+ 𝛿] (𝛿 >0) to be selectively neutral or nearly so, and a position with a score greater than 𝛿 to 

be under negative selection. We define proportion of neutrality of a set of positions to be the size 
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of the area under the density curve of the distribution of the scores of the positions within the 

window [-𝛿,+ 𝛿]. Because ESs evolve quite differently from NESs, we focused on the CRMCs and 

constituent TFBSs in NESs and left those that at least partially overlap ESs in another analysis. The 

choice of 𝛿 = 0.5, 1, 2, and 3 gave similar results (data not shown), so we choose a=1 in subsequent 

analysis. Intriguingly, the distribution of the GERP scores of the non-CRMCs (1,034,985,426 bp) 

in NESs displays a sharp peak around score 0, with low right and left shoulders and a high 

proportion of neutrality 0.71 (FIGURE 2-14A), suggesting that the most of the non-CRMCs are 

selectively neutral or nearly so, and thus at least most of them are unlikely to be functional. In sharp 

contrast, the distribution of the GERP scores of the 1,292,356 CRMCs (1,298,719,954bp) in NESs 

has a blunt peak around score 0, with high right and left shoulders and a small proportion of 

neutrality 0.31 (FIGURE 2-14A). These results strongly suggest that CRMCs are subject to much 

stronger evolutionary selection than are the non-CRMCs.  To see how known CRMs evolve, we 

plotted the distribution of conservation scores of all the 976 VISTA enhancers. Clearly, the 

distribution of GERP scores of the VISTA enhancers are similar to that of CRMCs, also with a 

blunt peak around score 0, high right and left shoulders, and a mall proportion of neutrality 0.23 

(0.31 for the CRMCs) (FIGURE 2-14A). Thus, like the CRMCs, the VISTA enhancers are also 

under much stronger evolutionary selections that are the non-CRMCs as expected.  Notably, 

however, the distribution of VISTA enhancers has peal around score 3, indicating that VISTA 

enhancers tend to be more conserved than the CRMCs (FIGURE 2-14A). This is not surprising as 

the VISTAT enhancers are biased [154] to ultra-conserved, development related enhancers[155, 

156]. The similar evolutionary behavior between the CRMCs and VISTA enhancers strongly 

suggest that at least most of the CRMCs might be functional. Moreover, dramatic differences 

between the evolutionary behaviors of the non-CRMCs and those of the CRMCs as well as the 

VISTA enhancers strongly suggests that dePCRM2 largely partitions the covered genome regions 

into a functional CRMC set and a non-functional non-CRMC set. Similar results were obtained 

using the phyloP scores (FIGURE 2-15A). 
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To see why dePCRM2 abandoned 38.60% nucleotide positions covered by the original binding 

peaks in predicting the CRMCs, we plotted the distribution of conservation scores of the abandoned 

positions.  These abandoned positions have a GERP score distribution almost identical to those in 

the non-CRMCs (FIGURE 2-14A), thus they are unlikely to be functional, strengthening our earlier 

argument that this portion (38.60%) of the original binding peaks might not contain TFBSs. 

Therefore, dePCRM2 is able to accurately distinguish functional and non-functional parts in both 

the original binding peaks and their extended parts. Interestingly, the uncovered 22.53% genome 

regions have a GERP score distribution and a proportion of neutrality (0.59) in between those of 

the covered regions (0.49) and those of the non-CRMCs (0.71) (FIGURE 2-14A). These results 

indicate that the uncovered regions are more evolutionarily selected than the non-CRMCs, but less 

evolutionary selected than the covered regions. This implies that the uncovered regions contain 

functional elements such as CRMs, but their density could be lower than that of the covered regions.  

Assuming that the density of CRMs is proportional to the size of evolutionarily selected regions, 

the density of CRMs in the uncovered regions could be estimated to be (1-0.59)/(1-0.49)=79.40% 

of the covered regions. Similar results could be obtained using the phyloP scores (FIGURE 2-15A).  

 

FIGURE 2-14: Distribution of GERP score on the CRMCs and non-CRMCs in NESs. A. Distributions of the 

GERP scores of nucleotides of the predicted CRMCs, non-CRMCs, abandoned genome regions covered by the original 

binding peaks, genome regions covered by the extended binding peaks  and genome regions uncovered by the extended 

binding peaks.  The area under the density curves in the score interval [-1, 1] is defined as the proportion of neutrality 

of the sequences. B. Proportion of neutrality of CRMCs with a 𝑆𝐶𝑅𝑀  score in different intervals in comparison with 

that of the non-CRMCs (a). The inset shows the distributions of the GERP scores of the non-CRMCs and CRMCs with 

𝑆𝐶𝑅𝑀 scores in the intervals indicted by color and letters. C. Proportion of neutrality of CRMs predicted using different 

𝑆𝐶𝑅𝑀 score cutoffs and associated p-values in comparison with those of the non-CRMCs (a) and CRMCs (b).  The inset 

shows the distributions of the GERP scores of the non-CRMCs, CRMCs and the predicted CRMs using the 𝑆𝐶𝑅𝑀 score 

cutoffs and p-values indicated by color and letters. 
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FIGURE 2-15: Distribution of phyloP score on the CRMCs and non-CRMCs in NESs. . A. Distributions of the 

phyloP scores of nucleotides of the predicted CRMCs, non-CRMCs, abandoned genome regions covered by the 

original binding peaks, genome regions covered the extended binding peaks, and genome regions uncovered by the 

extended binding peaks.  The area under the density curves in the score interval [-1, 1] is defined as the proportion of 

neutrality of the sequences. B. Proportion of neutrality of CRMCs with a 𝑆𝐶𝑅𝑀 score in different intervals in 

comparison with that of the non-CRMCs (a). The inset shows the distributions of the phyloP scores of the non-CRMCs 

and CRMCs with 𝑆𝐶𝑅𝑀 scores in the intervals indicated by colors and letters. C. Proportion of neutrality of CRMs 

predicted using different 𝑆𝐶𝑅𝑀 score cutoffs and associated p-values in comparison with that of the non-CRMCs (a) and 

CRMCs (b).  The inset shows the distributions of the phyloP scores of the non-CRMCs, CRMCs and predicted CRMs 

using the 𝑆𝐶𝑅𝑀 scores and p-values indicated by colors and letters. 

 

2.3.8. The SCRM score captures the evolutionary feature of CRMs 

We then investigated the relationship between the conservation scores of the CRMCs and their 

𝑆𝐶𝑅𝑀 scores. To this end, we plotted the distributions of the conservation scores of the CRMCs 

with a 𝑆𝐶𝑅𝑀  score in different non-overlapping intervals. Remarkably, the CRMCs with 𝑆𝐶𝑅𝑀 

scores in the lowest interval [0, 1) have a smaller proportion of neutrality (0.56) than the non-

CRMCs (0.71) (FIGURE 2-14B), indicating that even these low-scoring CRMCs with short lengths 

(FIGURE 2-13) are more likely to be under strong evolutionary constraints than the non-CRMCs, 

and thus might be functional. With the increase in the lower bound of  𝑆𝐶𝑅𝑀   intervals, the 

proportion of neutrality of the CRMCs in the intervals drops rapidly, followed by a slow linear 

decrease around the interval [1000,1400) (FIGURE 2-14B). Therefore, the higher the 𝑆𝐶𝑅𝑀 score 

of a CRMC, the more likely it is under strong evolutionary constraint, suggesting that the 𝑆𝐶𝑅𝑀 

score captures the evolutionary behavior of a CRM as a functional element, in addition to its length 

feature (FIGURE 2-13). The same conclusion can be drawn from the phyloP scores (FIGURE 

2-15B). 
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We next examined the relationship between the conservation scores of the predicted CRMs and 

𝑆𝐶𝑅𝑀  score cutoffs α (or p-value cutoffs) used for their predictions. As shown in FIGURE 2-14C, 

even the CRMs predicted at the low 𝑆𝐶𝑅𝑀 cutoffs have a much smaller proportion of neutrality (e.g., 

0.31 for α=0, i.e., the CRMC set) than the non-CRMCs (0.71), suggesting that most of the predicted 

CRMs might be authentic, while the non-CRMCs might contain few false negative CRMCs. With 

the increase in the 𝑆𝐶𝑅𝑀  cutoff α (decrease in p-value), the proportion of neutrality of the predicted 

CRMs decreases further but linearly and slowly, entering a saturation phase (FIGURE 2-14C). 

Interestingly, at a high 𝑆𝐶𝑅𝑀  cutoff such as α= 13,750, the resulting predicted CRMs evolve more 

similar to the VISTA enhancers with a peak in the GERP score distribution around score 3 

(FIGURE 2-14A and C). Thus, the higher the 𝑆𝐶𝑅𝑀 cutoff α (i.e., the smaller the p-value cutoff), 

the more likely the predicted CRMs are under strong evolutionary constraints, and thus functional, 

suggesting again that the 𝑆𝐶𝑅𝑀  scores capture the essence of CRMs as functional elements. 

Moreover, the infinitesimal decrease in the proportion of neutrality of the CRMs predicted with the 

increase in 𝑆𝐶𝑅𝑀 cutoffs (decrease in p-value cutoff) (FIGURE 2-14C) strongly suggests that the 

resulting predicted CRMs are under similarly strong evolutionary constraints, and thus, the 

specificity of predicted CRMs might approach a saturated high level that the VISTA enhancers 

achieve. However, without the availability of a no gold standard negative CRM set in the 

genome[157], we could not explicitly calculate the specificity of the predicted CRMs at different 

p-value cutoffs.  Similar results are observed using the phyloP scores (FIGURE 2-15C). 

 

2.3.9. Performance of dePCRM2 for recovering functional elements 

To further evaluate the accuracy of the predicted CRMs, we calculated the sensitivity (recall 

rate or true positive rate (TPR)) of CRMs predicted at different 𝑆𝐶𝑅𝑀 cutoffs α and associated p-

values for recalling a variety of CRM function-related elements located in the covered genome 

regions in 10 experimentally determined datasets in various cell/tissue types (Methods and 
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materials), including 785 VISTA enhancers [118], 402,730 of ClinVar SNPs[121, 158], 181,436 

FANTOM promoters (FPs) [159], 32,029 FANTOM enhancers (FEs) [160], 82,378 of GWAS 

SNPs [123], 121,075,184 DHSs [122, 123], 29,195,778 transposase-accessible sites (TASs)[139], 

98,297,240 H3K27ac peaks [140], 75,467,050 H3K4me1 peaks[141], and 69,282,044 H3K4me3 

peaks[141]. Here, if a predicted CRM and an element overlap each other by at least 50% of the 

length of the shorter one, we say that the CRM recalls the element. As shown in FIGURE 2-16A, 

with the increase in the p-value cutoff, the sensitivity for recalling the elements in all the 10 datasets 

increases rapidly and becomes saturated well before p-value increases to 0.05 (α ≥ 56). FIGURE 

2-17 A~J show examples of the predicted CRMs recalling the elements in the 10 datasets by 

overlapping them. Particularly, at p-value cutoff 5x10-5 (α=412), the predicted 593,731 CRMs 

recall 100% of the VISTA enhancers[118] and 97.43% of ClinVar SNPs[121] (FIGURE 2-16A). 

The very rapid saturation of the sensitivity for recalling these two types of validated functional 

elements at very low p-value once again strongly suggest that the dePCRM2 also achieves very 

high specificity,although we could not explicitly compute it for the aforementioned reason. On the 

other hand, even at a relatively higher p-value cutoff 0.05 (α=56), the predicted 1,155,151 CRMs 

only achieve varying intermediate levels of sensitivity for recalling FPs (88.77%), FEs)[160] 

(81.90%), DHSs[161](74.68%), TASs[139](84.32%), H3K27ac[140](82.96%), H3K4me1[141] 

(76.77%), H3K4me3[141](86.96%) and GWAS SNPs[122](64.50%), although all are significantly 

higher than that of randomly selected sequences (15%) with matched lengths from genome regions 

covered by the data (FIGURE 2-16A).  

To find out the reasons for such different performance of dePCRM2 on different datasets, we 

plotted the distribution of GERP scores of the recalled and uncalled elements in the 10 datasets.  

As there is no uncalled VISTA enhancer and we have already plotted the distribution of the entire 

set of the 976 VISTA enhancers (FIGURE 2-14A), we instead plotted the distribution of CRMs 

that overlap and recall the 785 VISTA enhancers in the covered genome regions (VISTA-CRMs). 



36 

 

As expected, recalled elements in all the datasets evolve similarly to the predicted 1,155,151 CRMs 

at p-value <0.05 (FIGURE 2-16B), recalled 785 VISTA enhancers have almost identical 

distribution (data not shown) to the entire set of 976 VISTA enhancers (FIGURE 2-14A). Like the 

VISTA enhancers (FIGURE 2-14A), VISTA-CRMs as well as the recalled ClinVar SNPs and FPs, 

are all under stronger evolution constraints than the other recalled element types (FIGURE 2-16B). 

These results are not surprising, as we indicated earlier that VISTA enhancers are biased[154] to 

ultra-conserved, development related enhancers[155, 156], while ClinVar SNPs were identified for 

their large effect sizes[121, 158], and promoters are well-known be to more conserved than are 

enhancers[162]. In stark contrast, all unrecalled elements in the 10 datasets evolve similarly to the 

non-CRMCs, with the exception that the 2.57% (10,350) of unrecalled ClinVar SNPs display a 

bimodal distribution and there are no unrecalled VISTA enhancers (FIGURE 2-16B). However, it 

is notable that the proportions of neutrality of unrecalled PEs (0.59) and PFs (0.63) are smaller than 

that of the non-CRMCs (0.71) (FIGURE 2-16B), suggesting we might miss a small portion of 

authentic PEs and PFs (see below for false negative rate (FNR) estimations of our CRMs). 

Nevertheless, assuming that at least most of unrecalled elements in the datasets except the VISTA 

and ClinVar datasets are non-functional, we estimate the false discovery rate (FDR) of remaining 

eight datasets might be up to from 11.23% (1-0.8877) for FPs to 35.32% (1-0.6450) for GWAS 

SNPs, which are consistent with an earlier study showing that histone marks and CA data resulted 

in high false positives for predicting enhancers[107]. Interestingly, the bimodal distribution of 

GERP scores of the 2.57% of unrecalled ClinVar SNPs displays a peak around score 0 with a 

proportion of neutrality 0.40 (FIGURE 2-16B), indicating that at most 40% of the relevant SNPs 

are selective neutral, and thus might be non-functional. We therefore estimate the FDR of the 

ClinVar SNP dataset to be < 0.40*2.57%=1.03%. Hence, like the VISTA enhancers, ClinVar SNPs 

are a reliable set with only a small portion of false positives (<1.03%) for evaluating CRM 

predictions. The other peak of the unrecalled ClinVar SNPs are located around score 3 (FIGURE 

2-16B), indicating that the relevant SNPs are under strong purifying selection, and thus might be 
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functional that were missed by our algorithms. We therefore estimate our predictions (at p-value 

<0.05) might have a FNR < 2.57%-1.03%=1.54%. In other words, the real sensitivity (=1-FNR) 

for dePCRM2 to recall authentic ClinVar SNPs might be higher than the calculated 97.54% 

(FIGURE 2-16A). These estimates are consistent with the zero FNR and 100% sensitivity for our 

predicted CRMs to recall VISTA enhancers (FIGURE 2-16A) and a simulation to be described 

later.  

The zero, very low (<1.26%) and low (11.23%) FDRs of the VISTA enhancers, ClinVar SNPs 

and FPs, respectively, indicate that the experimental methods used to characterize them might be 

more reliable. However, their high accuracy might also be related to the their larger effect sizes and 

more conserved functions, which may facilitate their correct determinations as indicated by the 

facts that they are under stronger evolutionary selections than the elements characterized by other 

experimental methods (FIGURE 2-16B). In this regarding, we note that the intermediately high 

FDRs of FE(18.10%), DHS(25.32), TAS (15.68%), H3K4m3 (13.04%), H3K4m1 (23.23%) and 

H3K27ac (17.04%) datasets might be due to the facts that bidirectional transcription[163], CA[107, 

109, 164] and histone marks[107, 109] are not unique to active enhancers as pointed out in an 

earlier study[107]. The high FDR of GWAS SNPs (35.5%) might be due to the fact that a lead SNP 

associated with a trait may not necessarily be located in a CRM and causal; rather, some variants 

in a CRM, which are in LD with the lead SNP, are the culprits[122, 123]. Example of GWAS SNPs 

in LD with positions in a CRM are shown in FIGURE 2-17 K and L. Interestingly, many recalled 

ClinVar SNPs (42.59%) and GWAS SNPs (38.18%) are located in critical positions in predicted 

binding sites of the UMs (e.g., FIGURE 2-17D and F). 
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FIGURE 2-16: Validation of the predicted CRMs.. A. Sensitivity (TPR) of the predicted CRMs and control 

sequences as a function of p-value cutoff (FPR) for recovering the elements. The dotted vertical lines indicate the p-

value ≤0.05 cutoff. B. Distributions of the GERP scores of the recalled and unrecalled elements in comparison with 

those of the predicted CRMs at p≤0.05 and non-CRMCs. 

 

FIGURE 2-17: Examples of CRMs that recover validated functional elements. . A. A CRM (chr1:213324650-

2733277816) recovers VISTA enhancer 1324 downstream of gene RPS6K1. B. A CRM (chr2:62673789-62674061) 

recovers a FANTOM promoter (chr2: 62673872-62673884) for gene EHBP1. C. A CRM (chr11:66970823-66971467) 

recovers a FANTOM enhancer (chr11: 66970815-66971421) upstream of gene C11orf86. D. A CRM (chr3:10145256-

10145421) recovers three ClinVar point mutants (chr3:10145341C>T, chr3:10145379A>G, 10145381G>A) in an 

intron of gene VHL, related to hereditary cancer-predisposing syndrome. Each mutation disrupts a critical position of 

the binding- site of the indicated UMs. E. A CRM (chr1:119898536-119899347) recovers a DHS (chr1: 119898665-

119899357) upstream of gene ADAM30. F. A CRM (chr1:150278138-150278260) recovers a GWAS SNP rs10157197 

(chr1:150278225) in an intron of gene C1orf54. The SNP is located in a critical position of UM37. G. A CRM 

(chr1:114546169-144547435) recovers a TAS (chr1:114545940-144547432) is located upstream of gene RNVU1-2A. 

H.  A CRM (chr3:95654025-95655861) recovers a H3K27ac peal located downstream of the gene MTHFD2P1. I. A 

CRM (chr4:92242901-92244132) recovers a H3K4me1 peak (chr4:92242912-92244118) downstream of the gene 

LNCPRESS2. J. A CRM (chr5:50655787-50656324) recovers a H3K4me3 peak (chr5:50655739-50656350) upstream 

of the gene PARP8. K.  A CRM (chr1:147752136-147753785) recovers GWAS SNP rs1891498 upstream of gene 

GJA5, while two unrecovered GWAS SNPS rs12724666 and rs10465885 located upstream of and in an intron of the 

gene, respectively, are in LD with rs1891498. L. A CRM (chr1:152467982-152468580) recovers a GWAS SNP 

rs12144049 upstream of gene LCE5A, while two unrecovered GWAS SNPS rs11205006 and rs12081541 located 

upstream and downstream of rs12144049, respectively, are in LD with it. 
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2.3.10. dePCRM2 largely correctly predicts the lengths of CRMs  

After showing that dePCRM2 is able to capture the length feature of CRMs (FIGURE 2-13), 

we now evaluated the accuracy of dePCRM2 for predicting the lengths of CRMs. To this end, we 

compared the distributions of the lengths of the 785 recalled VISTA enhancers and the 26,233 

recalled FEs with those of the 836 and 22,235 recalling CRMs (p-value < 0.05), respectively. As 

shown in FIGURE 2-18A, the recalling CRMs have a largely similar length distribution to the 

recalled VISTA enhancers, although the former have longer median length (3,799bp) than the latter 

(1,613bp). However, it is unclear whether or not the VISTA enhancers are in full-length, as a 

portion of an enhancer could be still partially functional[131]. On the other hand, a few (7.92%) 

VISTA enhancers are recalled by multiple short CRMCs (FIGURE 2-18A), suggesting that some 

of our predicted CRMCs might not in full-length, but only components of long CRMCs. 

Nonetheless, these results suggest that dePCRM2 is able to largely correctly predict the length of 

VISTA enhancers, albeit not perfect.  Moreover, it is well-known that development-related 

enhancers that most VISTA enhancers belong to tend to be longer than other types of enhancers. 

In agreement with this, all the VISTA enhancers are recalled at a rather low p-value cutoff 5x10-5 

(α = 412) (FIGURE 2-16A) that filters out most short CRMCs (FIGURE 2-13). At even a lower p-

value cutoff 5x10-6 (α = 676) the resulting 428,628 predicted CRMs with almost an identical length 

distribution as the entire sets of VISTA enhancers (FIGURE 2-13) still recall 99.10% of the VISTA 

enhancers. Thus, it appears that dePCRM2 is able to predict full-length long CRMs at low p-value 

cutoffs.  

By contrast, the recalled FEs at p-value cutoff 0.05 are generally shorter (mean length 293bp) 

than the recalling CRMs (median length 2,371bp) (FIGURE 2-18B), and a considerable proportion 

(26.69%) of the recalled FEs overlap the same CRMs at different parts (FIGURE 2-19A and B). 

To see whether the FEs also are generally shorter than their overlapping VISTA enhancers, we 

compared the distribution of the lengths of 113 FEs with that of their 91 overlapping VISTA 
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enhancers (FIGURE 2-18C). The low overlapping rates between VISTA enhancers and FEs (11.59% 

for VISTA enhancers and 0.35% for FEs) indicate that they might belong to quite different types 

of enhancers. Nonetheless, the 113 FEs (median length 319bp) are much shorter than the 91 VISTA 

enhancers (median length 2,686bp), and in a few cases, multiple FEs overlap different parts of the 

same VISTA enhancers (FIGURE 2-19A and B). Thus, it is likely that the CRMs that match 

multiple FEs might be in full-length, and that the eRNA-seq based method tends to identify short 

CRMs or CRM components of otherwise long CRMs, instead of full-length enhancers. 

Interestingly, the CRMs that recall EHs tend to be shorter than those that recall VISTA enhancers 

(median length 2,371bp vs 3,799pb) (FIGURE 2-18A and B), strengthening our earlier argument 

that they might be different types of enhancers. This conclusion is consistent the fact that most 

VISTA enhancers are development-related while most FEs are not as they were mainly determined 

in adult primary tissues and cell line[160]. Furthermore, decrease in p-value cutoff from 0.05 to 

5x10-6 largely decrease the sensitivity for recalling FEs from 81.90% to 74.12% (FIGURE 2-16B), 

indicating that short recalling CRMs are filtered out at low p-value cutoffs.  Taken together, these 

results suggest that dePCRM2 is able to accurately predict the length of either short or long CRMs, 

although a small portion of the predicted CRMCs might be components of longer CRMs. 

 

FIGURE 2-18: dePCRM2 can predict the lengths of VISTA enhancers. A. Distributions of the lengths of the 

recovered VISTA enhancers and the recovering CRMs. B. Distributions of the lengths of the recovered FANTOM 

enhancers and the recovering CRMs. C. Distributions of the lengths of FANTOM enhancers and the overlapped VISTA 

enhancers. 
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FIGURE 2-19: Examples of overlap between CRM, FANTOM and VISTA enhancers.  A.Three different 

FANTOM enhancers (chr14:76918231-76918434, chr14:76918637-76919122, chr14:76919959-76920278) overlap 

VISTA enhancer 1466 (chr14:76918298-76921354) and a predicted CRM (chr14:76916942-76922129) downstream of 

gene LRRC74A. B. Two FANTOM enhancers (chr19:11142586-11142806, chr19:11143315-11143595) overlap 

VISTA enhancer 1754 (chr19:11141255-11144027) and a predicted CRM (chr19:11141600-11143708) downstream of 

gene SPC24. 

 

2.3.11. dePCRM2 outperforms state-of-the-art algorithms 

We compared our predicted CRMs at p-value ≤ 0.05 (SCRM < 56) with three most comprehensive 

sets of predicted enhancers/promoters, i.e., GeneHancer 4.14 [98], EnhancerAtals2.0 [103] and 

cCREs[105]. For convivence of discussion, we call these three sets enhancers or cCREs. 

GeneHancer 4.14 is the most updated version containing 394,086 non-overlapping enhancers 

covering 18.99% (586,582,674bp) of the genome (FIGURE 2-20A). These enhancers were 

predicted by integrating multiple sources of both predicted and experimentally determined CRMs, 

including ENCODE 2 enhancer-like regions [165], ENSEMBL regulatory build [96], dbSUPER 

[166], EPDnew promoters [167], UCNEbase [168], CraniofacialAtlas [169], VISTA enhancers 

[118], FPs[159] and FEs [160]. Enhancers from ENCODE 2 and ESEMBL were predicted based 

on multiple tracks of epigenetic marks using the well-regarded tools ChromHMM [87] and Segway 

[90]. Of the GeneHancer enhancers, 388,407 (98.56%) have a at least one nucleotide located in the 

covered genome regions, covering 18.89% of the genome (FIGURE 2-20A). EnhancerAtlas 2.0 

contains 7,433,367 overlapping cell/tissue-specific enhancers in 277 cell/tissue types, which were 

predicted by integrating 4,159 TF ChIP-seq, 1,580 epigenetic, 1,113 DHS-seq, and 1,153 other 

enhancer function related datasets, such as FEs [102]. After removing redundancy (identical 

enhancers in difference cell/tissues), we ended up with 3,452,739 EnhancerAtlas enhancers that 
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may still have overlaps, covering 58.99% (1,821,795,020bp) of the genome (FIGURE 2-20A), 

3,417,629 (98.98%) of which have at least one nucleotide located in the covered genome regions, 

covering 58.78% (1,815,133,195bp) of the genome (FIGURE 2-20A). cCREs represents the most 

recent CRM prediction by the ENCODE consortium[105], containing 926,535 non-overlapping 

enhancers covering 8.20% (253,321,371bp) of the genome. The cCREs were predicted based on 

overlaps among 703 DHS, 46 TAS and 2,091 histone mark datasets in various cell/tissue types 

produced by ENCODE phases 2 and 3 as well as the Roadmap Epigenomics project[105]. Of these 

cCREs, 917,618 (99.04%) have at least one nucleotide located in the covered genome regions, 

covering 8.13% (251,078,466bp) of the genome (FIGURE 2-20A). Thus, both the number 

(1,155,151) and genome coverage (43.47%) of our predicted CRMs (at. P-vaule,0.05) are larger 

than those of GeneHancer enhancers (388,407 and 18.89%) and of cCREs (917,618 and 8.12%) 

regions, but smaller than those of EnhancerAtlas enhancers (3,417,629 and 58.78%), which at least 

partially overlap the covered regions.  

To make the comparison relatively fair, we first computed recall rates of these enhancers that at 

least partially overlap the covered genome regions, for recalling VISTA enhancers, ClinVar SNPs 

and GWAS SNPs. We omitted FPs, FEs, DHSs, TASs and the three histone marks for the valuation 

as they were used in predicting CRMs by GeneHancer 4.14, EnhancerAtlas 2.0 or ENCODE phase 

3 consortium. We included VISTA enhancers for the evaluation as they were not included in 

EnhancerAtlas enhancers and cCREs, although they were parts of GeneHancer 4.14. Remarkably, 

our predicted CRMs outperform EnhancerAtlas enhancers for recalling VISTA enhancers (100.00% 

vs 94.01%) and ClinVar SNPs (97.43% vs 7.03%) (FIGURE 2-20B), even though our CRMs cover 

a smaller proportion of the genome (43.47% vs 58.78%, or 35.22% more) (FIGURE 2-20A), 

indicating that dePCRM2 has both higher sensitivity and specificity than the method behind 

EnhancerAtlas 2.0 [103]. However, our predicted CRMs underperform EnhancerAtlas enhancers 

for recalling GWAS SNPS (64.50% vs 69.36%, or 7.54% more) (FIGURE 2-20B). As we indicated 
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earlier, the lower sensitivity of dePCRM2 for recalling GWAS SNPs might be due to the fact that 

an associated SNP may not necessarily be causal (FIGURE 2-17D). The higher recall rate of 

EnhancerAtlas enhancers for GWAS SNPs might be simply thanks to their 35.22% more coverage 

of the genome (58.78%) than that of our predicted CRMs (43.47%) (FIGURE 2-20A). Our 

predicted CRMs outperform cCREs for recalling VISTA enhancers (100% vs 85.99%), ClinVar 

SNPs (97.43% vs 18.28%) and GWAS SNPs (64.50% vs 15.74%) (FIGURE 2-20B). Our predicted 

CRMs also outperform GeneHancer enhancers for recalling ClinVar SNPs (97.43% vs 33.16%) 

and GWAS SNPs (64.50% vs 34.11%) (FIGURE 2-20B). However, no conclusion can be drawn 

from these results about the specificity of our predicted CRMS compared with the other three 

predicted enhancer sets, because our predicted CRMs cover a higher proportion of the genome 

(43.47%) than GeneHancer enhancers (18.89%) and cCREs (8.20%) (FIGURE 2-20A). 

Nevertheless, both GeneHancer enhancers (33.16%) and cCREs (18.28%) outperform 

EnhancerAtlas enhancers (7.03%) for recalling ClinVar SNPs (FIGURE 2-20B), even though the 

former two (18.89% and 8.20%, respectively) have a much smaller genome coverage than the latter 

one (58.78%) (FIGURE 2-20A), indicating the former two have higher specificity than the latter. 

 As shown in FIGURE 2-21A, the intersections/overlaps between the four predictions are quite 

low. For instance, EnhancerAtlas enhancers, GeneHancer enhancers and cCREs share 

926,396,395bp (50.85%), 414,806,711bp (70.72%), and 194,709,825bp (76.86%) of their 

nucleotide positions with our predicted CRMs, corresponding to 69.01%, 30.90% and 14.51% of 

positions of our CRMs (FIGURE 2-21A), respectively; and there are only 105,606,214pb shared 

by all the four predictions, corresponding to 5.80%, 18.00%, 41.69% and 7.87% of the number of 

nucleotide positions covered by EnhancerAtlas enhancers, GeneHancer enhancers, cCREs and our 

CRMs, respectively. To estimate the FPRs of EnhancerAtlas enhancers, GeneHancer enhancers 

and cCREs, we plotted the distributions of GERP scores of the positions that each of them share 

and do not share with our CRMs. As expected, the shared positions of the three predicted enhancer 
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sets all evolve similarly to our predicted CRMs, although those of GeneHancer enhancers and 

cCREs are under slightly higher evolutionary constraints than the our entire CRM set (FIGURE 

2-21B). However, if we use a more stringent SCRM cutoff, e.g. α=3,000 (p<2.2x10-302, the 

resulting predicted CRMs are even under stronger evolutionary constraints than the shared 

GeneHancer enhancers and cCREs positions (FIGURE 2-16C and FIGURE 2-21B). Therefore, 

these shared GeneHancer enhancers and cCREs positions just evolve like subsets of our predicted 

CRMs. By stark contrast, the remaining 49.14%, 29.28% and 23.13% unshared positions of 

EnhancerAtlas enhancers, GeneHancer enhancers and cCRES, respectively, evolve similarly to the 

non-CRMCs, although they all have slightly smaller proportion of neutrality than that of the non-

CRMCs (0.66, 0.63 and 0.61 vs. 0.71, respectively) (FIGURE 2-21B), due probablely to the small 

FNR (<1.54%) of our predicted CRMs. Nonetheless, these results suggest that the vast majority of 

the unshared positions of the three sets of predicted enhancers are selectively neutral, and thus 

might be nonfunctional. Therefore, it appears that predicted enhancers in the three sets that overlap 

our CRMs are likely to be authentic, while most of those that do not overlap with our CRMs might 

be false positives. Thus, we estimate the FDR of EnhancerAtlas enhancers, GeneHancer enhancers 

and cCRES might be slightly smaller than 49.14%, 29.28% and 23.13%, respectively. These results 

also strongly suggest that GeneHancer 4.14 and cCREs might largely under-predicted enhancers 

even with a rather high FDR up to 29.28% and 23.12%, respectively (FIGURE 2-21B), while 

EnhancerAtlas 2.0 might largely over-predicted enhancers with a very high FPR up to 49.14% 

(FIGURE 2-21B). 
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FIGURE 2-20: Comparison of dePCRM2 and three state-of-the-art methods. A. Percentage of genome regions 

covered by all CRMs/enhancers predicted by different methods, and percentage of genome regions covered by 

predicted CRMs/enhancers that at least partially overlap the covered genome regions. B, Recall rates for recovering 

VISTA enhancers, ClinVar SNPs and GWAS SNPs, by the predicted CRMs/enhancers that at least partially overlap the 

covered genome regions. 

 

Finally, we also compared the lengths of the four sets of predicted enhancers/CRMs with those 

of VISTA enhancers. As shown in FIGURE 2-22, the distribution of the lengths of cCREs has a 

narrow high peak at 345bp with a mean length of 273bp and a maximal length of 350bp. It is highly 

likely that the substantial amountphy of authentic cCREs are just components of longer CRMs as 

even the shortest known enhancer in VISTA is 428bp long. The distribution of GeneHancer 

enhancers oscillates with a period of 166bp (FIGURE 2-22)., which might be an artifact of 

underlying algorithm. With a mean length of 1,488bp, GeneHancer enhancers are shorter than the 

VISTA enhancers (with mean length 2,049pb) (FIGURE 2-22). EnhancerAtlas enhancers have a 

similar length distribution to the VISTA enhancers (FIGURE 2-22). However, with a mean length 

of 680bp, they are shorter than the VISTA enhancers. Our predicted CRMs at p-value <0.05 have 

a mean length of 1,162pb, thus also are shorter than that of the VISTA enhancers (2,049bp) 

(FIGURE 2-22), suggesting that our CRMs might contain short component of longer CRMs. 

However, as we indicated earlier, with a higher p-value cutoff 5x10-6, the resulting 428,628 

predicted CRMs have almost an identical length distribution as the VISTA enhancers (FIGURE 
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2-13). Taken together, these results unequivocally indicate that our predicted CRMs are much more 

accurate than the three state-of-the-art predicted enhancer/cCRE sets in both the positions and 

lengths.  

 

 

FIGURE 2-21: Overlap between each pair of CRMs, EnhancerAtlas, and GeneHancer.  A.Ven diagram showing 

numbers of nucleotide positions shared among the predicted CRMs, GeneHancer enhancers and EnhancerAtlas 

enhancers. B. Distributions of GERP scores of nucleotide positions of CRMs predicted at p-value ≤ 0.05 and p-value 

≤ 5X10-6, and the non-CRMCs, as well as of nucleotide positions that GeneHancer enhancers and EnhancerAtlas 

enhancers share or do not share with the predicted CRMs at p-value ≤ 0.05. 

 

 

FIGURE 2-22: Distributions of lengths of the four sets of predicted enhancers/CRMs  in comparison the that of the 

VISTA enhancers. The inset is a blow-up view of the indicated region on the Density axis.   
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2.3.12. At least half of the human genome might code for CRMs 

What is the proportion of the human genome coding for CRMs and TFBSs? The high accuracy 

of our predicted CRMs and constituent TFBSs might well position us to more accurately address 

this interesting and important, yet unanswered question [170, 171]. To this end, we took a semi-

theoretic approach. Specifically, we calculated the expected number of true positives and false 

positive in the CRMCs in each non-overlapping 𝑆𝐶𝑅𝑀 score interval based on the predicted number 

of CRMCs and the density of 𝑆𝐶𝑅𝑀  scores of Null CRMCs in the interval (FIGURE 2-23A), 

yielding 1,383,152 (98.45%) expected true positives and 21,821 (1.55%) expected false positives 

in the CRMCs (FIGURE 2-23B). The vast majority of the 21,821 expected false positive CRMCs 

have a low 𝑆𝐶𝑅𝑀 score < 4 (inset in FIGURE 2-23A) with a mean length of 28 pb (FIGURE 2-12B), 

making up 0.02% (21,821x28/3,088,269,832) of the genome and 0.05% (0.02%/0.4403) of the total 

length of the CRMCs, i.e., a FDR of 0.05% in length (FIGURE 2-23C). On the other hand, as the 

CRMCs miss 1.49% of ClinVar SNPs in the covered genome regions (FIGURE 2-16A), the FNR 

of partitioning the genome in CRMCs and non-CRMCs would be < 2.49%(1-0.40)=1.49%, given 

the proportion of neutrality of 0.4 for the unrecalled ClinVar SNPs (FIGURE 2-16B). We therefore 

estimate false negative CRMCs make up 0.67% of the genome and 1.99% of the total length of the 

non-CRMCs, i.e., a false omission rate (FOR) of 1.99% (FIGURE 2-23C). Hence, the true CRM 

positions in the covered regions make up 44.68% (44.03%-0.02%+0.67%) of the genome (FIGURE 

2-23C). In addition, as we argued earlier, the uncovered 22.53% genome regions have a 79.4% 

CRMC density as in the covered regions, thus, CRMCs in the uncovered regions would be about 

10.32% (0.2253x0.4468x0.7940/0.7747) of the genome (FIGURE 2-23C). Taken together, we 

estimate that about 55.00% (44.68%+10.32%) of the genome might code for CRMs, for which we 

have predicted 80.02% [(44.03-0.02)/55.00]. Moreover, as we predict that about 40% of CRCs are 

made up of TFBSs (FIGURE 2-12A), we estimate that about 22.00% of the genome might encode 

TFBSs. Furthermore, assuming the mean length of CRMs is 2,049bp as VISTA enhancers and a 
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mean TFBS length of 10bp, we estimate that the human genome encodes about 828,965 CRMs 

(3,088,269,832x0.55/2049) and 67,941,963 TFBSs. 

 

FIGURE 2-23: Estimation of the portion of the human genome encoding CRMs. A. Expected number of true 

positive and false positive CRMCs in the predicted CRMCs in each one-unit interval of the 𝑆𝐶𝑅𝑀  score. The inset is a 

blow-up view of the axes defined region. B. Expected cumulative number of true positives and false positives with the 

increase in 𝑆𝐶𝑅𝑀  score cutoffs for predicting CRMs.  The inset is a blow-up view of the axes defined region. C. 

Proportions of the genome that are covered and uncovered by the extended binding peaks and estimated proportions of 

CRMCs in the regions. Numbers in the braces are the estimated proportions of the genome being the indicated 

sequence types, and numbers in the boxes are proportions of the indicated sequence types in the covered regions or the 

uncovered regions. 
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2.4. Discussion 

Identification of all functional elements, in particular, CRMs in genomes has been the central 

task in the postgenomic era, and enormous CRM function-related data have been produced [157, 

172]. Although great progresses have been made to predict CRMs in the genomes [96, 98, 102, 

103, 105, 173] using these data, most existing methods attempt to predict cell/tissue specific CRMs 

using multiple tracks of epigenetic marks collected in the same cell /tissue types[87, 90, 98, 103, 

105]. These methods can be only applied to few cell/tissue types for which the required epigenetic 

data are available[87, 90, 105], they are also limited by low resolution of predicted CRM 

boundaries , lack of constituent TFBS information[103, 105], and high FDRs as we show in this 

study (FIGURE 2-21B). To circumvent these limitations, we proposed a different strategy to first 

predict a static map of CRMs and constituent TFBFs in the genome [112, 113], just as the 

community has been practicing to find all genes encoded in the genome without necessarily 

knowing their functions in specific cell/tissue types [116]. It has been shown that TF binding data 

such ChIP-seq data are more accurate predictor of CRMs than CA and histone mark data [48, 107, 

109, 112, 113], probably because it is mainly TFBSs in a CRM that define its structure and function. 

Therefore, we proposed to integrate as many as possible TF ChIP-seq data available for different 

TFs in various cell/tissue types to predict a more accurate and complete map of CRMs and 

constituent TFBSs. Another advantage of our approach is that we do not need to exhaust all TFs 

and all cell/tissue types of the organism in order to predict most, if not all, of CRMs and constituent 

TFBSs in the genome, because as CRMs are often repeatedly used in different cell/tissue types, 

developmental stages. Moreover, as binding sites of cooperative TFs of the ChIP-ed TF tend to be 

clustered in the adjacent regions around the summit of binding peaks of the TF [71, 73], by 

appropriately extending the called binding peaks in each dataset[117], we can increase the coverage 

of the genomes, thereby further reduce the number of datasets needed [112, 113]. In other word, 

we might only need a large but limited number of datasets that are less biasedly cover the entire 

functional genome after length extension to achieve the goal. Our earlier application of the 
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approach resulted in very promising results in the fly [113] and human[112] genomes even using 

an even relatively small number of strongly biased datasets available then. However, we were 

limited by the lack of a sufficiently large number of ChIP-seq datasets for more diverse TFs in 

various cell/tissue types [112, 113] and the inadequacy of our earlier algorithms to tackle the 

computational challenges imposed by the approach. In this study, we developed a new pipeline 

dePCRM2 to circumvents the shortcomings of the earlier version. The results we present clearly 

demonstrate that dePCRM2 large achieves our algorithmic goals, thereby we reveal a more 

prevalent cis-regulatory genome in humans than earlier thought.  

More specifically, to the best of our knowledge, for the first time, dePCRM2 is able to very 

accurately partition the covered genome regions into two exclusive sets, i.e., the CRMCs or the 

regulatory genome, and the non-CRMCs, or the non-regulatory genome. Multiple pieces of 

evidence strongly support the highly accurate partition. First, even the CRMCs with the lowest 

𝑆𝐶𝑅𝑀 scores ((0,1]) are under stronger evolutionary constraints than non-CRMCs (FIGURE 2-14B 

and FIGURE 2-15B), indicating that even these small fraction (63,363 (4.51%), or 0.1% of the total 

length of the CRMCs) of low-scoring CRMCs are still more likely to be functional than non-

CRMCs, not to mention CRMCs with higher 𝑆𝐶𝑅𝑀 scores that are under even stronger evolutionary 

constraints.  Second, with the increase in the 𝑆𝐶𝑅𝑀 cutoff, the associated p-value decreases rapidly, 

while both the number and total length of the predicted CRMs only decrease slowly (FIGURE 

2-11B), indicating the vast majority of CRMCs have small p-values, and are unlikely predicted by 

chance. Third, with the increase in the 𝑆𝐶𝑅𝑀 cutoff (decrease in p-value), strength of evolutionary 

constraints on the predicted CRMs increase and rapidly saturate, followed by small increments, 

approaching the level that the VISTA enhancers are under selection (FIGURE 2-14C and FIGURE 

2-15C). Fourth, all experimentally validated VISTA enhancers and almost all (97.51%) of well-

documented ClinVar SNPs in the covered regions are located in the CRMCs (FIGURE 2-16), 

indicating dePCRM2 achieves a very low FDR in the CRMCs. Finally, our simulation study also 
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indicates that the partition has a very low FDR of 0.045% in the CRMCs and a low FOR of 1.99% 

in the non-CRMCs (FIGURE 2-23C).  

We show that dePCRM2 might largely correctly predict the lengths of most CRMCs. First, at 

least most of the 783,132 (55.74%) of the 1,404,973 CRMCs might be in full-length as they all are 

longer that the shortest (428bp) known enhancer (428bp) in the VISTA database. These the 

remaining 621,841(44.26%) CRMCs shorter than 428bp make up only 7.42% of the total length of 

the CRMCs, and thus might be short CRMs or only component of longer CRMs. Second, with the 

increase in 𝑆𝐶𝑅𝑀 score cutoff α (or decrease in p-value), lengths of the predicted CRMs increase 

(FIGURE 2-13). In particular, at α=676 (p-value ≤ 5x10-6), the resulting 428,628 predicted CRMs 

have an almost identical length distribution to that of the VISTA enhancers (FIGURE 2-13), while 

these CRMs recall 99.10% of the VISTA enhancers in the coverage regions. The failure to predict 

full-length CRMs of short CRM components might be due to insufficient data coverage on the 

relevant loci in the genome. This is reminiscent of our earlier predicted, even shorter CRMCs 

(average length 182bp) using a much smaller number and less diverse 670 datasets [112]. As we 

argued earlier [112] and confirmed here by the much longer CRMCs (average length 982bp) 

predicted using the much larger and more diverse datasets albeit still strongly biased to a few TFs 

and cell/tissue types (FIGURE 2-2 A and B). We anticipate that full-length CRMs of these short 

CRM components can be predicted using even larger and more diverse TF ChIP-seq data. Thus, 

efforts should be made in the future to increase the genome coverage and reduce data biases by 

including more untested TFs and untested cell types in the TF ChIP-seq data generation.  

Interestingly, our predicted CRMs (at p-value < 0.05) achieve perfect (100.00%) and very high 

(97.43) sensitivity for recalling VISTA enhancers [118] and ClinVAR SNPs [158], respectively, 

but varying intermediate sensitivity from 64.50% (for GWAS SNPs) to 88.77% (for FPs) for 

recalling other eight CRM function-related elements datasets (FIGURE 2-16A). It appears that such 

varying sensitivity is due to varying FDRs from 0% (for VISTA enhancers) to 35.5% (for GWAS 
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SNPs) of the methods used to characterize the elements as CRMs or parts of CRMs (FIGURE 

2-16B). Our finding that DHSs, TASs, and histone mark (H3K4m1, H3K4m3 and H3K27ac) peaks 

have high FDRs for predicting CRMs are consistent with an earlier study showing that histone 

marks or CA were less accurate predictor of enhancer activity than TF binding data[107]. In this 

sense, it is not surprising that our predicted CRMs substantially outperforms the three state-of-the-

art sets of predicted enhancers/cCREs, i.e., GeneHancer 4.14 [98], EnhancerAtals2.0 [103] and 

cCREs[105],  for both recalling VISTA enhancers and ClinVar SNPs (FIGURE 2-20B) and 

predicting full-length CRMs (FIGURE 2-22), probably because these three sets were mainly 

predicted based on overlaps between multiple tracks of CA and histone marks in various cell/tissue 

type. Although the constraint of overlaps between multiple tracks of epigenetic data might have 

reduced FDRs in these three sets of enhancers/cCREs[98, 103, 105], they might still suffer quite 

high FDRs (49.14%, 29.28% and 23.12% for EnhancerAtlas 2.0 enhancers, GeneHancer 4.14 

enhancers and cCREs, respectively). It is worth pointing out that we used the smallest number of 

datasets to achieve the best results. More specifically, our CRMs and non-CRMCs were predicted 

based on 5,578 of the 6,090 TF ChIP-seq datasets, as 512 of which were filtered out due to their 

low quality or lack of overlaps with other datasets. In contrast, EnhancerAtlas enhancers were 

predicted using 8,005 datasets, including 4,159 TF ChIP-seq and 1,580 epigenetic datasets, as well 

as experimentally determined potential enhancers [103]. GeneHancer 4.14 is a meta-prediction 

based on the results of multiple algorithms[87, 90, 98] that use histone mark data. cCREs are the 

most updated prediction by the ENCODE phase 3 consortium[105], based on 703 DHS, 46 TAS 

and 2,091 histone mark datasets [105]. Although dePCRM2 can predict the functional states of 

CRMs in a cell/tissue type that have original binding peaks overlapping the CRMs, it cannot predict 

the functional states of CRMs in the extended parts of the original binding peaks in a cell/tissue if 

the CRMs do not overlap any available binding peaks of all TFs tested in the cell/tissue type. 

However, once a map of CRMs in the gnome as we predicted in this study is available, the 

functional state of each CRM in the map in any cell/tissue type could be studied in more focused 
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ways, or can be predicted based on overlap between the CRM and a single or few epigenetic mark 

datasets collected from the very cell/tissue type, such as CA, H3K27ac and/or H3K4m3 data. 

Anchored by corrected predicted CRMs, the prediction accuracy of these epigenetic marks could 

be high [107]. Thus, our approach might be more cost-effective for predicting both a static map of 

CRMs and constituent TFBSs in the genome and their functional states in various cell/tissue types. 

We also show that by appropriately extending the called binding peaks in the datasets, we can 

substantially increase the power of available data, and therefore, substantially reduce the amount 

of data needed to predict to predict most, if not all, of the CRMs and constituent TFBSs encoded 

in the genome. For example, although originally called binding peaks in the strongly biased 6,090 

TF ChIP-seq datasets used in this study cover only 40.96% of the genome, moderately extended 

peaks cover 77.47% of the genome, an 89.14 % increase. Remarkably, extended parts of the peaks 

contribute 42.12% nucleotide positions of the predicted CRMCs. On the other hand, dePCRM2 

abandoned 38.60% of positions covered by the original binding peaks, which might be 

nonfunctional as they evolve like non-CRMCs (FIGURE 2-14A and FIGURE 2-15A). Thus, called 

binding peaks cannot be equivalent to CRMs or parts of CRMs as has been demonstrated 

earlier[149-151].  

It has been estimated that the human genome encodes from 2,000 to 3,000 TFs belonging to at 

least 100 protein families [144, 174]. However, the exact number of TFs and TF families encoded 

in the genome remains unknown [144, 175]. Our prediction of the 201 UM families in the covered 

genome regions provides us an opportunity to estimate the number of TFs families encoded in the 

genome. As different TFs of the same protein family/superfamily bind indistinguishably similar 

motifs [145, 176], it is highly likely that a predicted UM is recognized by multiple TFs of the same 

family/superfamily. Indeed, 92 (78.63%) of the 117 (58.21%) UMs matching at least a known motif, 

match at least two. The remaining 84 (41.79%) UMs might be motifs of novel TF families that 

remain to be elucidated.  On the other hand, the UMs recall 64 (71.91%) of the 89 known motif 
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families. Therefore, we estimate the lower bound of the number of TF/motif families encoded in 

the human genome to be around 142 (117+25) , considering that the uncovered regions of the 

genome might harbor novel UMs that do not appear in the covered regions.   

The proportion of the human genome that is functional is a topic under hot debate [165, 177] 

and a wide range from 5% to 80% of the genome has been suggested to be functional based on 

difference sources of evidence [157, 161, 170, 177, 178]. The major disagreement is for the 

proportion of functional NCSs in the genome, mainly CRMs, which has been coarsely estimated to 

be from 8% to 40% of the genome [165, 177]. Moreover, a wide range of CRM numbers from 

400,000 [165] to more than a few million [103, 157] encoded in the human genome have been 

suggested. However, to our knowledge, no estimate has been made on substantial evidence. Our 

predicted CRMCs cover a lower proportion (44.03%) of the genome than EnhancerAtlas 2.0 

enhancers (58.99%)[103] that might have a FDR of 49.14%, but a higher proportion than cCREs 

(7.9%)[105] and GeneHancer v.4.14 enhancers (18.99%) [98], even though both sets have high 

FDRs (FIGURE 2-19B). The much higher accuracy of our predicted CRMs suggests that cCREs 

(7.9%) [105] and GeneHancer enhancer might underpredict, whereas EnhancerAtlas 2.0 might 

overpredict CRMs. Based on the estimated FDR and FNR of dePCRM2 in partitioning the covered 

genome regions into the CRMC and non-CRMC sets as well as the estimated density of CRMs in 

the uncovered regions relative to the covered regions (FIGURE 2-23C), we estimate that about 

55.00% and 22.00% of the genome might code for CRMs and TFBSs, respectively, which encode 

about 828,965 CRMs and 67,941,963 TFBSs. Therefore, the number of our predicted CRMs is 

more than twice an earlier estimate of 400,000 [165], and they are encoded by a higher (55.00%) 

proportion  of the genome than earlier thought 40% [165, 177]. We estimate our true positive CRMs 

cover 44.01% (44.03-0.02) of the genome, therefore, we might have predicted 80.02 % 

(44.01/55.00) CRM positions encoded in the genome. In summary, it appears that the cis-regulatory 

genome is more prevalent than originally thought.  
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2.5. Conclusion 

We have developed a new highly accurate and scalable algorithm dePCRM2 for predicting 

CRMs and constituent TFBSs in large genomes by integrating a large number of TF ChIP-seq 

datasets for various TFs in a variety of cell/tissue types of the organisms. Applying dePCRM2 to 

all available more than 6,000 TF ChIP-seq datasets, we predicted an unprecedentedly complete, 

high resolution map of CRMs and constituent TFBSs in 77.47% of the human genome covered by 

the extended binding peaks of the datasets.  Evolutionary and experimental data suggest that 

dePCRM2 achieves very high prediction sensitivity and specificity. With more diverse and 

balanced data covering the whole genomes becoming available in the future, it is possible to predict 

more complete maps of CRMs and constituent TFBSs in the human and other important genomes. 
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CHAPTER 3: CONTINUOUS MODEL OF TRANSCRIPTIONAL FACTOR BINDING  

3.1. Background 

Cis-regulatory modules (CRMs) are harbors of transcription factor binding sites (TFBSs), and 

the transcription factors regulate expressions of their target genes by interacting with the TFBSs in 

the CRMs in an additive manner or in a cooperative manner. To elucidate the functional 

mechanisms of the TF binding patterns in the CRMs, research community proposed two distinct 

models, the billboard model [179] and the enhanceosome model [179]. The billboard model [179, 

180] hypothesizes that the TFs bind on the TFBSs in a combinatorial/additive manner, and the TFs 

do not form a cooperative complex via protein-protein interaction (PPI) before or concurrently 

binding the TFBSs, thus, this model is not strict on the spacing and orientation information of the 

TFBSs in the CRMs. The enhanceosome model [179, 181] hypothesizes that the cooperative TFs 

form a cooperative complex via PPI before or concurrently binding the underlying DNA sites to 

regulate the gene expression, thus, only strict spacing and orientation features of the cooperative 

TFBSs could facilitate this binding type. Based on the ideas of these two models, the TF collective 

model hypothesizes that the TFs bind on the TFBSs in a cooperative manner but the TFBSs 

“grammar” in the enhancers is flexible [182]. Thus, the architecture of the enhancer which can 

satisfy the above two assumptions might locate in a spectrum between the billboard model and the 

enhanceosome model. In addition, multiple evidence suggest that TF binding is highly overlapping 

throughout the genome [183, 184]. And the enhanceosome model is associated with more 

conservative regulatory regions, while the billboard model is associated with less conservative 

regulatory regions [185]. However, the relationship between phenomenon of the highly 

overlapping TFBSs and complex TFs binding mechanisms is not clear. To address this problem, 
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we need to know the comprehensive landscape of the TFBSs and their evolutionary behavior across 

the whole genome. 

In this chapter, we will classify the predicted CRMCs into multiple groups based on their lengths 

and distances to multiple cis-regulatory elements, such as FAMTON enhancers, FAMTON 

promoters, and VISTA enhancers. Then we will systematically analyze the overlapping status of 

the TFBSs in all predicted CRMCs in human genome. Finally, we will analyze the evolutionary 

behavior of the TFBSs and the TFBS-deplete regions in the CRMs.  

  



58 

 

3.2. Methods and materials 

3.2.1. Prediction of cis-regulatory modules (CRMs) in human genome 

The CRMs was predicted using the dePCRM2 pipeline, shown in Methods and materials section 

in chapter 2. 

 

3.2.2. Identification of the distance between the CRMs with nearest TSS 

We download the TSSs of protein coding genes from Ensembl genome database[186], then we 

identify the distance between CRMs with the first occurring nearest TSSs using BEDTools[187] as 

follows, 

bedtools closest -a CRMs_file -b TSS_file  -d -t first > CRMs_with_first_occurring_nearest_TSS. 

If a CRM overlaps with its nearest TSS, then we will set the distance as 0. 

 

3.2.3. Identification of TFBSs and spacers in the CRMs 

We merge all the overlapping TFBSs into TFBS islands and define the TFBS-deplete regions 

as spacers. 

 

  



59 

 

3.3. Results 

3.3.1. Classification of predicted CRMs 

To see if it is possible to classify predicted CRMs according to their distances from the nearest 

annotated transcription starting sites (TSSs), we compared the distribution of such distances of the 

1,155,151 predicted CRMs at 𝑆𝐶𝑅𝑀 cutoff α=56 (p-value ≤ 0.05) with those of entire sets of 976 

VISTA enhancers [118], 184,328 FANTOM promoters [119] and 32,684 FANTOM enhancers 

[120]. Here, if a predicted CRM overlaps the nearest TSS, we set the distance to be 0. The 

distribution of the distances of VISTA enhancers has a sharp peak around 0 with a largely uniform 

tail to 2,053,347bp and a median of 67,885bp. Forty VISTA enhancers (4.10%) overlap the nearest 

TSSs, hence, they may contain a promoter in addition to an enhancer. The remaining 936 (95.90%) 

VISTA enhancers are largely distal (FIGURE 3-1A). The distances of FANTOM promoters display 

a strongly right-skewed distribution with a sharp peak around 0 and a median of 1,917bp (FIGURE 

3-1A). As expected, a considerable proportion of FANTOM promoters either overlap TSSs 

(13.10%) which are likely core promotors or are close to the nearest TSSs (distance shorter than 

500bp, 28.12%) which are likely proximal promoters. The remaining 58.78% of FANTOM 

promoters are more than 500bp away from the nearest TSSs (FIGURE 3-1A). The distribution of 

the distances of FANTOM enhancers show a broad peak around 800bp with a long tail and a median 

of 22,915bp (FIGURE 3-1A). Notably, FANTOM enhancers with a distance shorter than 500bp 

are somehow depleted (FIGURE 3-1A). More specifically, only 125 (0.38%) FANTOM enhancers 

overlap with TSSs, 189 (0.58%) are within 500bp from the nearest TSSs, and 32,370 (99.04%) are 

at least 500bp away from the nearest TSSs.  These results suggest that VISTA enhancers and 

FANTOM enhancers are quite different in their distances to the nearest TSSs. Interestingly, the 

distances of predicted CRMs show a two-modal distribution ranging from 0 to 31.26Mbp (FIGURE 

3-1). Mode 1 is a sharp peak at 0, containing 39,241 (3.40%) CRMs (FIGURE 3-1A) that overlap 

the nearest TSSs. Mode 2 consists of the remaining part of the distribution with a broad peak around 
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800bp and a median distance of 56.87Kbp, containing 1,115,910 (96.60%) CRMs. Similar to 

FANTOM enhancers, most (96.00%) of CRMs in this mode are at least 500bp away from the 

nearest TSSs, and CRMs with a distance shorter than 500bp (4.00%) is relatively depleted 

(FIGURE 3-1A). 

 

FIGURE 3-1: Classification of predicted CRMs according to their distances to the nearest TSSs. A. Bimodal 

distribution of the distances of predicted CRMs to the nearest TSSs in comparison with those of VISTA enhancers, 

FANTOM enhancers and FANTOM promoters.  B. Distributions of the lengths of predicted CRMs in mode 1 

(overlapping with the nearest TSS) and in mode 2 (not overlapping with the nearest TSS) in comparison with those of 

VISTA enhancers, FANTOM enhancers and FANTOM promoters. C. CRM (chr10:69048146-69048366) containing a 

core promoter plus a proximal promoter overlaps a FANTOM promoter and proximal promoter of gene ADGRE2.  D. 

CRM (chr1:11846926-11848930) containing a core promoter and an enhancer overlaps a FANTOM promoter 

(chr:11847772-11847790) and VISTA enhancer 2123 of gene NPPA. E. CRM (chr10:69048146-69048366) overlaps a 

distal FANTOM enhancer (chr10:69048135:69048356) upstream of the target gene SRGN. F. CRM (chr11:33942659-

33946495) overlaps VISTA enhancer 1858 upstream of gene LMO2.  

Next, we compared the distributions of the lengths of the CRMs in the two modes with 

those of entire sets of VISTA enhancers, FANTOM promoters and FANTOM enhancers. As 

expected, FANTOM promoters are quite short with a median length of 15bp, and uniform in length 

with 99.41% being shorter than 100bp (FIGURE 3-1B). FANTOM enhancers display a slightly 

right-skewed distribution with a peak around 800bp, a median of 288bp and 99.99% being shorter 

than 1,000bp. Thus, like the 113 FANTOM enhancers that overlap 91 VISTA enhancers, the entire 

set of FANTOM enhancers are also generally shorter than the entire set of VISTA enhancers that 

range from 428 to 8,061 bp with a median of 1,677bp FIGURE 2-13, suggesting again that 

FANTOM enhancers might be short CRMs or CRM components of long enhancers due probably 

to the limitations of the eRNA-seq techniques for their determination. The distribution of the 
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lengths of CRMs in mode 1 ranges from 48 to 60,924bp with a broad peak around 1,500bp and a 

median of 2,638bp, covering the entire region of the lengths of VISTA enhancers (FIGURE 3-1B). 

Only 21 (0.54%) of the CRMs in mode 1 are shorter than 100bp, so they are likely core promoter-

containing promoters. The remaining 39,220 (99.46%) CRMs in the mode are longer than 100bp, 

and hence might contain a core promoter plus other regulatory elements such as proximal promoters 

and enhancers. Of the 836 and 22,235 CRMs that recover VISTA enhancers and FANTOM 

enhancers, 101 (12.08%) and 3,030 (13.63%) are located in mode 1, indicating the respective 

recovering CRMs are similarly enriched in the mode that consists of only 3.4% of predicted CRMs. 

Relatively long lengths of CRMs in the mode indicate that our algorithm concatenates the core 

promoter with other adjacent regulatory elements due probably to the close clustering nature of 

these elements in the neighborhoods of TSSs. In agreement with this, 61.82% of CRMs in this 

mode overlap FANTOM promoters. On the other hand, the lengths of CRMs in mode 2 show a 

strongly right-skewed distribution with a median length of 710bp, a left narrow peak overlapping 

the peak of the distribution of FANTOM enhancers and a right long tail overlapping the entire 

range of the distribution of VISTA enhancers. As expected, 19,205 (86.37%) and 735 (87.92%) of 

the 22,235 and 836 predicted CRMs covering FANTOM enhancers and VISTA enhancers, 

respectively, are located in this mode. Therefore, CRMs in the two modes differ not only in their 

distances to the nearest TSSs, but also in their lengths. Based on these observations, we classify 

CRMs in mode 1 as core promoter-containing CRMs (3.40%) and those in mode 2 as non-core 

promoter-containing CRMs (96.17%). A core promoter-containing CRM contains a core promoter 

and a proximal promoter (FIGURE 3-2A), or a core promoter and an enhancer (FIGURE 3-2B). A 

non-core promoter-containing CRM is typically located at least 500bp upstream (FIGURE 3-2C) 

or downstream (FIGURE 3-2D) of the nearest TSSs. It appears that CRMs recovering VISTA 

enhancers and CRM recovering FANTOM enhancers are enriched for core promoter-containing 

CRMs (4.1%) and non-core promoter-containing CRMs (99.62%) compared to the expected 3.40% 

and 96.17% by chance, respectively. 
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FIGURE 3-2: Examples of overlap between CRMs and FANTOM elements. A. CRM (chr10:69048146-69048366) 

containing a core promoter plus a proximal promoter overlaps a FANTOM promoter and proximal promoter of gene 

ADGRE2.  B. CRM (chr1:11846926-11848930) containing a core promoter and an enhancer overlaps a FANTOM 

promoter (chr:11847772-11847790) and VISTA enhancer 2123 of gene NPPA. C. CRM (chr10:69048146-69048366) 

overlaps a distal FANTOM enhancer (chr10:69048135:69048356) upstream of the target gene SRGN. D. CRM 

(chr11:33942659-33946495) overlaps VISTA enhancer 1858 upstream of gene LMO2. 

 

3.3.2. Distribution of TFBSs supports the continuum model of TF binding 

Using the 428,628 putative full-length CRMs predicted with p-value ≤ 5x10-6, we further 

analyzed some properties of TFBSs in CRMs. TFBSs in these putative full-length CRMs have a 

mean length of 10.00bp (FIGURE 3-3A), in agreement of the length of UMs (10.59bp) (FIGURE 

2-8B). To see how TFBSs are arranged and distributed in a CRM, we computed the distance 

between two immediate adjacent TFBSs in the putative CRMs. As shown in FIGURE 3-3B, 

adjacent TFBSs may overlap each other by 1~20bp with 10, 9 and 8bp occurring most frequently, 

and it is rare that two adjacent TFBSs are away from each other by more than 100bp. We merged 

overlapping TFBSs in a CRM to form nonoverlapping TFBS islands, which have a slightly larger 

mean length (12.87bp) than TFBSs (FIGURE 3-3A). The distance between adjacent TFBS islands 

ranges from 1 to 1,990bp with a mean of 23.24bp. A CRM contains 2.11 ~ 80.18 TFBSs/100bp 

with a mean of 9.66 TFBSs/100bp (FIGURE 3-4A). As 40.48% of the length of the predicted CRMs 
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are non-overlapping TFBSs (FIGURE 2-12A), and the remaining 59.52% are inter-TFBS spacers, 

each nucleotide in a TFBS island is covered by an average of 9.66x10/40.48 = 2.39 TFBSs. Thus, 

a nucleotide position in an island can be potentially bound by multiple TFs. In agreement with this, 

it has been shown that different TFs can compete for partially overlapping binding sites [188] or 

bind synergistically to the opposite faces of the DNA duplex [189]. TFBSs in a CRM belong to 

from 1 to 102 UMs with a mean of 38.55 UMs (FIGURE 3-4B), presumably reflecting interactions 

of cognate TF for cooperative transcriptional regulation. For example, a predicted CRM 

(ch2:41963100-41368696) that overlaps VISTA enhancer 2553 located upstream of gene C2orf91 

is predicted to harbor 1,022 largely overlapping binding sites of 65 UMs (FIGURE 3-5A), of which 

40 match known TF motif families, and 28 of them are previously known in the VISTA enhancer 

[190], while the remaining 12 are newly predicted in this study.   

 

FIGURE 3-3: Features of putative TFBSs in the predicted full-length CRMs. A. Distribution of the lengths of 

putative TFBSs and TFBS islands in predicted full-length CRMs. B.   Distribution of the distance between adjacent of 

putative TFBSs and TFBS islands in the predicted full-length CRMs. 
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FIGURE 3-4: Binding properties of the TFBSs.  A. Distribution of the predicted full-length CRMs with different 

number of TFBSs per 100bp. B. Distribution of the predicted full-length CRMs with biding sites for different numbers 

of UMs. 

 

FIGURE 3-5: Example CRM of C2orf91 gene.  A predicted CRM (ch2:41963100-41368696) that overlaps VISTA 

enhancer 2553 located upstream of gene C2FOR91 harbors numerous overlapping binding sites for different TFs. The 

blew-up view shows the locations of 12 putative TFBSs and the logos of the UMs that each belongs to. Note that the 

sites for UM11 and UM16 are on the reverse strand.   

As shown in FIGURE 3-6A, TFBS islands and inter-TFBS spacers occupy an average of 41.17% 

and 58.83% of the length of the putative full-length CRMs, respectively. To see how TFBS islands 
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and inter-island spacers evolve, we compared the distributions of the GERP and phyloP scores of 

their nucleotide positions. Interestingly, the distribution of the GERP scores of spacers differs only 

slightly from that of TFBS islands, with spacers (0.3003) having a slightly higher (6.30%) 

proportion of neutrality than TFBS islands (0.2825), indicating that spacers are only slightly less 

conserved than TFBS islands. Nevertheless, spacers are under much stronger evolutionary 

constraints than the non-CRMCs (FIGURE 3-6B), suggesting that spacers also might play a role in 

CRM functions. Similar results are observed using the phyloP scores (FIGURE 3-6C). These results 

support the continuum model of TF binding in CRMs for transcriptional regulation, in which many 

TFs compete for overlapping sites with a continuum spectrum of binding affinity [144, 191].  

 

FIGURE 3-6: Evolutionary constraints on TFBS islands and spacers in CRMs.  A. Proportion of the lengths of 

putative TFBS islands and spacers in the predicted full-length CRMs. B,C. Distribution of the GERP and phyloP scores 

of TFBS islands and spacers in the predicted full-length CRMs in comparison with that of the non-CRMCs.  
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3.4. Discussion 

The landscape of the CRMs across the whole genome and TF binding modes are interesting 

topics. By analyzing the distances between the predicted CRMs to the CRMs in known databases, 

we observed that the distribution of the distances of the predicted CRMs to the nearest TSSs is 

bimodal (FIGURE 3-1A). Based on the length distribution modes of the predicted CRMs (FIGURE 

3-1B), we classified the predicted CRMs (at p-value ≤ 0.05) into the core promoter-containing 

CRMs (3.40%) that overlap TSSs, and the non-core promoter-containing CRMs (96.6%) that are 

generally located at least 500bp away from the nearest TSSs. The core promoter-containing CRMs 

(median length 2,638bp) tend to be longer than the non-core promoter-containing CRMs (median 

length 210bp) (FIGURE 3-1B). Since an unexpectedly higher proportion (4.10% vs 3.40%) of the 

relatively long VISTA enhancers map to the core promoter containing CRMs, while the opposite 

is true for shorter FANTOM enhancers (0.38% vs 3.40%), we might have predicted most CRMs in 

this category in full-length. On the other hand, since the vast majority of both the VISTA enhancers 

(95.90%) and the FANTOM enhancers (99.62%) map to the non-core promoter-containing CRMs, 

we might have predicted a considerable proportion of CRMs in this category in full-length and in 

part-length. It appears that the currently available TF ChIP-seq datasets favor the prediction of the 

core promoter-containing CRMs in full-length, and the VISTA enhancers are biased to this 

category, while the FANTOM enhancers are biased to the non-core promoter-containing CRMs. It 

is unclear why the FANTOM enhancers tend to be shorter than the VISTA enhancers and our 

predicted CRMs (FIGURE 3-7). However, it may be related to the limitations of the eRNA-seq 

techniques for determining the FANTOM enhancers. As different FANTOM enhancers overlap the 

same VISTA enhancers and/or our predicted CRMs, it is possible that most FANTOM enhancers 

might be the components of the full-length CRMs. 

Our results show that although only about 41% of the nucleotides in the CRMs are TFBSs, a 

CRM contains an average of 9.66 TFBSs/100bp, implying that each nucleotide in a TFBS island is 
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covered by an average of 2.39 TFBSs. Thus, TFBSs in a CRM tend to overlap with each other 

extensively. This result is in consistent with the earlier reports in the fly [192, 193] and mammals 

including human based on the extensive overlapping of the binding peaks in various TF ChIP data 

[118]. To our surprise, we find that the inter-spacers in a CRMs are under almost the same strength 

of evolutionary constraints as TFBSs (FIGURE 3-8B), suggesting that the vast majority of spacers 

might also be functional. These results strongly support the continuum model of TF binding in 

CRMs for gene transcriptional regulation [191], in which different TFs compete for overlapping 

sites with a continuum spectrum of binding affinity [191, 194]. The landscape of binding and the 

effects on gene transcription are determined by the concentration of the TFs [195] and the number 

of their binding sites with various affinity in the CRMs [196]. 

  



68 

 

3.5. Conclusion 

We classified the CRMs into two modes, the core promoter-containing CRMs (3.40%) and the 

non-core promoter-containing CRMs (96.17%). A core promoter-containing CRM contains a core 

promoter and a proximal promoter or a core promoter and an enhancer near the TSS, while a non-

core promoter-containing CRM contains the distal enhancers which are located at least 500bp 

upstream or downstream of the nearest TSS. And then we compared the length distribution of the 

CRMs in the two modes with the VISTA enhancers, the FANTOM enhancers and the FANTOM 

promoters. We also analyzed the distribution and conservation properties of the TFBS in the full-

length CRMs, and we noted that each nucleotide in a TFBS island is covered by an average of 2.39 

TFBSs, thus, a nucleotide position could be bounded by different TFs with different affinities or be 

bounded by TFs at the opposite faces of the DNA duplex. To see the conservation properties of the 

TFBSs in the full-length CRMs, we compared the GERP and phyloP score distribution of the 

TFBSs and the inter-spacers in the full-length CRMs, then we observed that the spacers are under 

a slightly less evolutionary constrain than that of the TFBSs, but are under much stronger 

evolutionary constrains than that of the non-CRMCs. Thus, both the distribution and the 

evolutionary constraints of the TFBSs support the continuum model of the TF binding in CRMs 

for the transcriptional regulation, in which many TFs compete for overlapping sites with a 

continuum spectrum of binding affinity. 
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CHAPTER 4: DECIPHERING EPIGENOMIC CODE USING DEEP LEARNING 

4.1. Background 

Cell differentiation is achieved by the remodeling of the same genome that each cell inherits 

from the zygote. Genome remodeling involves alterations of methylation of certain cytosine 

residues in the genomic DNA and changes in various covalent modifications of histones in the 

nucleosomes, conferring a unique epigenome to each resulting cell type that expresses a unique set 

of gene products [197]. Increasing lines of evidence have suggested that the epigenome in a cell 

type is established step-wisely along the developmental lineage through the interplay of genomic 

sequence, chromatin remodeling systems and extracellular environmental cues [198-201]. As the 

latter two factors are the results of interactions of the products of genomic sequences, the 

epigenome of a cell type is ultimately determined by the genomic sequence that recruits the 

chromatin remodeling systems [36, 202-204]. For example, in a recent study, Whitaker and 

colleagues [36] have shown that short DNA motifs enriched in the epigenetically modified genomic 

regions could predict the specific histone modifications in specific cell types using a random forest-

based method. However, this method could not discover sequence determinants ab initio because 

pre-selected motifs were needed to train the models. Therefore, new methods are needed to gain a 

better understanding of the sequence determinants that specify the unique epigenome of each cell 

type produced during cell differentiation. 

Recent progress in machine-learning has demonstrated that deep convolutional neural networks 

(CNNs) can achieve very high accuracy in predicting transcription factor (TF) binding affinity [205] 

and epigenetic marks in various cell types [206-208]. Unlike traditional neural networks, the 

kernels in the convolutional layers in a CNN can automatically learn the features of the objects (i.e., 

the sequence motifs in epigenetically modified regions), and thus the learned features can provide 
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insights into the underlying mechanisms of the modeling systems. Although efforts have been made 

to explain the learned motifs in epigenetically modified regions in biological contexts types [206-

208], the mixed CNN models employed in these earlier studies lack the power of comparison, 

limiting their ability to explain the learned motifs for their roles in determining the unique 

epigenetic modification patterns in different cell types. To overcome these shortcomings, we 

developed two types highly accurate CNN models to facilitate the explanation of the learned motifs: 

the cell type model to predict different histone marks in a given cell by learning motifs that specify 

the histone marks in the cell type, and the histone mark model to predict different cell types by 

learning motifs that determine different patterns of a given histone mark in different cell types. To 

evaluate the capability of the models to learn the histone mark-determining motifs,  we applied  

them to a dataset of six histone marks obtained in four human CD4
+ T cell types produced at 

different stages of cell differentiation [209], i.e., the native T (Tn) cells, central memory T (Tcm) 

cells, T effector memory (Tem) cells and CD4
+ terminally differentiated CD45RA+ memory (Temra). 

The relatively rich knowledge about the regulators and the differentiation process of these T cell 

subpopulations could facilitate the validation of predictions. Indeed, we found that many sequence 

motifs learned in the CNN models of both the cell types and histone modifications are highly similar 

to known binding motifs of TFs known to play important roles in CD4
+ T cell differentiation. 

Intriguingly, the shared motifs learned in different cell models support the linear model of CD4
+ T 

cell development, consistent with the earlier results based on the patterns of changes in DNA 

methylation and DNase accessibility of the genome as well as transcriptomes in the cells [209], 

while the shared motifs learned in different histone mark models reflect the functional relationships 

of the marks. Furthermore, by computing the s of the learned motifs on the prediction of the CNNs, 

we were able to pinpoint specific roles and interactions of their cognate TFs in determining unique 

histone modification patterns in different cell types, thereby providing new insights into the 

underlying mechanisms of histone modifications during cell differentiation.  
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4.2. Methods and materials 

4.2.1. Datasets 

Human CD4+ T cells dataset. We downloaded from European Genome-Phenome Archive the 

ChIP-seq datasets for six histone marks H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K9me3 

and H3K36me3 in four different human CD4
+ T cell types native T (Tn), central memory T (Tcm), 

T effector memory (Tem), and CD4
+ terminally differentiated CD45RA+ memory T (Temra) cells 

[209]. 

Human embryonic stem cells dataset. We downloaded from the Roadmap Epigenomics Project 

[210] the ChIP-seq datasets for six histone marks H3K4me1, H3K4me3, H3K27me3, H3K27ac, 

H3K9me3 and H3K36me3 in H1 human embryonic stem cells (H1) and in four cell types derived 

from H1, including trophoblast-like (TBL), mesendoderm (ME), mesenchymal (MSC) and neural 

progenitor (NPC) cells. 

 

4.2.2. Peak calling, filtering and merging 

To identify genome regions that are modified by different histone marks, we called tight and 

broad histone modification peaks [36] using MACS2 [211]. The tight peaks including H3K27ac, 

H3K4me1 and H3K4me3 are typically < 1 kbp. The broad peaks including H3K27me3, H3K36me3 

and H3K9me3 are typically > 1 kbp. The tight peaks were called as follows: 

macs2 callpeak -t bam/tagAlign file -n name -c control file –outdir output dir -g hs -q 0.05 –

nomodel –extsize fragment length 

The broad peaks were called as follows: 

macs2 callpeak -t bam/tagAlign file -n name -c control file –outdir output dir -g hs –broad –

broad-cutoff 0.1 –nomodel –extsize fragment size 
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The fragment sizes were estimated using phantompeakqualtools [212, 213]. 

We discarded peaks whose −𝑙𝑜𝑔10(𝑞𝑣𝑎𝑙𝑢𝑒) was less than 2 or whose length was greater than 

10,000 bp for their low quality or too long length. We also removed the peaks that overlapped the 

blacklisted regions of the human genome [214], which are regions showing artificially high signal 

in all NGS experiments. To ensure only regions of high confidence were considered, we only used 

the intersection of at least two replicates when possible. We extracted and merged the peaks using 

BedTools [187], and used the CRCh37/hg19 genome assembly for all the analyses. 

 

4.2.3. Data representation 

To prepare the input for the deep CNN models, we segmented the human whole genome 

(CRCh37/hg19) into 200-bp bins[206]. For a cell model, we labeled each bin with a binary vector 

with each bit indicating whether it was modified by the corresponding histone mark (1) or not (0) 

in the cell type.  For a histone mark model,  we labeled each bin with a binary vector with each bit 

indicating whether it was modified by the mark in the corresponding cell type (1) or not (0).  We 

say that a bin overlaps with a peak if the overlapping portion of the bin with the peak is above a 

threshold. To achieve the best prediction results, we tested different thresholds of 0.5, 0.6, 0.7, 0.8 

and 0.9, and chose the threshold with the highest accuracy for the final analysis. We discarded the 

bins that had no overlap with any histone modifications. We then extended the 200-bp bin into 

1,000-bp sequence centered on the middle of the 200-bp bin for context learning [206]. Each 

extended 1,000-bp sequence was represented by a 1,000 × 4 binary matrix as the input to the CNN 

models, and each row was one hot vector to represent the presence or absence of A, C, G, T at the 

nucleotide position. If a nucleotide position is N in the genome, we represented it as [0.25, 0.25, 

0.25, 0.25][208]. 
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4.2.4. Convolutional neural networks 

CNNs are a type of feed-forward artificial neural networks, usually consisting of an input layer, 

multiple convolutional layers, one or more fully connected layers and an output layer. Our CNN 

models (FIGURE 4-1) are made of a stack of three units each consisting of a convolutional layer, 

a pooling layer and a batch normalization layer, followed by a fully connected layer and an output 

layer. We apply a rectified linear unit (ReLU) transform as the activation function after a 

convolution layer (FIGURE 4-1), which helps to prevent vanishing gradient problem [215, 216]: 

 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑋)𝑙𝑘 = 𝑅𝑒𝐿𝑈 (∑ ∑ 𝑊𝑙𝑑
𝑘 𝑋𝑖+𝑙,𝑑

𝐷−1

𝑑=0

𝐿−1

𝑙=0

), 4-1  

where X is the input, L is the input length, D is the input dimension, i is the output position, and 

k is filters’ index. ReLU is defined as, 

 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 4-2 

To decease internal covariate shift and accelerate training, we apply a batch normalization layer 

after the convolutional layer[217]. Furthermore, we apply a max pooling layer after the batch 

normalization layer, which extracts the maximum activation value from each receptive field in the 

prior layer. Three convolutional layers contain 320, 300 and 300 kernels, respectively, and the fully 

connected layer has 1,000 units with a sigmoid activation function feeding into the output layer 

(FIGURE 4-1). We use a sigmoid function as the activation function of the output layer to conduct 

multi-task prediction, 

 
𝑦(𝑋) =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑋) =

1

1 + 𝑒−𝑊𝑋
 4-3 

where y(X) is the prediction of the output layer, X is the output of the previous layer, and W is 

the weight matrix of the output layer. We implemented the CNN models using Theano [218] and 

Lasagne [219]. 
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FIGURE 4-1: Architecture of the convolutional neural networks. 

 

4.2.5. Model training, validation and evaluation 

We split a dataset into a training dataset, a validation dataset and a test dataset with a ratio about 

2:1:1, and the objective function is binary cross entropy. We apply a stochastic gradient descent to 

minimize the objective function by updating all model parameters using RMSprop with a learning 

rate 0.001 on minibatch [220]. To avoid overfitting, we apply L1 and L2 regularization terms and 

the early stopping strategy. To keep the filters free to grow based on input sequences, we only apply 

L1 and L2 regularization terms to the fully connected layer. To quickly choose the best set of 

hyperparameters of the models, we use parallel random search and apply L1 and L2 as well as 

maximum epochs as shown in TABLE 4-1.  
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TABLE 4-1: Hyper-parameter configurations for training the models. 

Trail L1 L2 Patience Max epochs Batch size 

1 1e-07 2e-08 5000 20 128 

2 2e-07 4e-08 5000 20 128 

3 3e-07 8e-08 5000 20 128 

4 4e-07 2e-07 5000 20 128 

5 5e-07 4e-07 5000 20 128 

6 6e-07 8e-07 5000 20 128 

Overlap is 0.5, 0.6, 0.7, 0.8, 0.9  

We performed the receiver operating characteristic (ROC) curve analysis and used the area 

under the curve (AUC) to evaluate the performance of the models. We also define the accuracy of 

a model as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 4-4 

where TP is true positive, TN is true negative, FN is false negative and FP is false positive. 

 

4.2.6. Interpretation of the kernels/filters in the first convolutional layer 

The first convolutional layer of the models scans the DNA sequences with its kernel or filters 

to capture the k-mer motifs that differentiate modified and unmodified DNA sequences. Thus these 

filters potentially correspond to the binding motifs of TFs or chromatin remodeling proteins whose 

interactions with the motifs may lead to the specific modifications at the loci. To reveal such these 

motifs, we construct a position weight matrix (PWM) for each filter by extracting k-mers in the test 

dataset, which has a score against the filter greater than a threshold defined as, 

                                             𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛) × 𝛽, 4-5 

where 𝛼𝑚𝑎𝑥  and 𝛼𝑚𝑖𝑛  are the maximum and minimum activations for a k-mer across all 

sequences in the test dataset, respectively, and β is a ratio constant. For each filter, we evaluated β 
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ranging from 0.3 to 0.8, and chose the resulting PWM with the highest information content. We 

discard the resulting PWMs with 0 information content. To evaluate the inference of a filter on the 

model’s prediction, we nullify forward information of the filter by setting its output as its mean 

output over all nucleotides of all sequences in the test dataset [208], and quantify each filter’s 

inference as the sum of square of the difference of the prediction probability in the test dataset 

before and after the nullification as follows, 

 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑘) = ∑ (𝑃𝑝𝑟𝑒(𝑥) − 𝑃𝑎𝑓𝑡(𝑥))
2

,

𝑥∈𝐷

 4-6 

where D is the test dataset and 𝑃𝑝𝑟𝑒(𝑥) and 𝑃𝑎𝑓𝑡(𝑥) are the prediction probabilities before and 

after nullifying the filter k, respectively. 

 

4.2.7. Motif conservation analysis 

We used Fimo [221] to scan sequences for binding sites of each motif as follows: 

fimo –parse-genomic-coord –thresh 1e-5 –bgfile fasta file background model –oc output_folder 

motifs_meme target_sequences 

We used a 5th-order Markov model [222] to generate the background sequences as follows: 

fasta-get-markov -m 5 -dna sequences background_model 

We extracted the phastCons [223] score for each position in each binding site, and calculated a 

conservation score for each motif as the mean the PhastCons scores of all the binding sites of each 

motif learned in the models. To study the relationship between the inferences of the learned motifs 

and their conservation levels, we computed the Pearson correlation coefficient between them, and 

tested the null hypothesis of the non-correlation using two-tailed p-values, 
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                                                              𝑟 =
𝑐𝑜𝑣(𝐼,𝐶)

√𝑣𝑎𝑟(𝐼)√𝑣𝑎𝑟(𝐶)
, 4-7 

where I, C are the inference and phastCons scores of motifs, respectively, and r is the Pearson 

correlation coefficient. 

 

4.2.8. Merging highly similar motifs 

To merge similar motifs learned in all the cell and histone mark models, we compared each 

motif with all other motifs using TOMTOM [224], and constructed a graph by connecting two 

motifs if they were a pair of bidirectional best hits with a minimum overlap of 7 bps and E value < 

0.1. We then cut the network into connected components using Networkx [225]. Some components 

are singletons containing a single original motif, while others are formed by multiple highly similar 

original motifs. We consider each of these components as a unique motif.  To find the PWM for 

the merged motifs, we performed motifs finding on the merged binding sites using ProSampler 

[226]. 

 

4.2.9. Prediction of interactions between cognate TFs of learned motifs 

To predict possible interactions between the cognate TFs of the learned motifs, we applied a 

linear model to the changes in the prediction probability for random selected 2,000 sequences after 

the two motifs were simultaneously nullified, defined as: 

 Δ𝑃𝑖𝑗 = 𝛼 × Δ𝑃𝑖 + 𝛽 × Δ𝑃𝑗 + 𝛾 × Δ𝑃𝑖𝑃𝑗, 4-8 

where Δ𝑃𝑖𝑗  is the sum square of changes in the prediction probability after simultaneously 

nullifying motifs i and j, ∆𝑃𝑖 and ∆𝑃𝑗 are the sum square of changes in the prediction probabilities 

after nullifying motifs i and j, respectively, and 𝛼, 𝛽 and 𝛾 are constants. Clearly the absolute value 

of  𝛾 reflects the intensity of the interaction, while its sign (+/−) indicates a positive or negative 
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interaction. Therefore, we call 𝛾 the interaction coefficient and used it to quantify the interaction 

between two motifs. 
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4.3. Results 

4.3.1. The cell type CNN models achieve highly accurate and robust performance 

In the genome of a cell type, different loci are modified by the same and/or different chromatin 

marks in unique ways. It is the different combinations of these chromatin marks that determine the 

distinct chromatin states of the genomes in different cell types [227]. To learn the sequence 

determinants that govern the unique combinations of histone modifications in a cell type, we 

constructed a CNN model for the cell type for predicting the histone marks in its genome. We first 

evaluated the model using the data set of six histone marks collected from the four human CD4
+ T 

cell types derived during T-cell differentiation [209]. Specifically, we used 459,814, 653,272, 

978,543 and 2,131,540 histone modification peaks in building the models for the Tn, Tcm, Tem 

and Temra cells, respectively (Methods and materials). As shown in FIGURE 4-2A-D, all the 

models  perform very well for predicting the patterns of the six histone marks in each of the four 

cell types, with an average accuracy and AUC (area under the receiver operating characteristic 

(ROC) curve) of 91.53% and 0.916, respectively, which are better than the results achieved by the 

earlier state-of-the-art CNN models for the  same marks although their results were based on a 

different dataset  [206].  

 

FIGURE 4-2: The ROCs of the Tn, Tcm, Tem and Temra cell models  for predicting the six histone marks. 

To evaluate the generality and robustness of our model,  we applied it to a dataset for the six 

histone marks collected from the H1 human embryonic stem (H1) cells, trophoblast-like (TBL) 

cells, mesendoderm (ME) cells, mesenchymal (MSC) cells and neural progenitor (NPC) cells [210], 

which has been studied intensively [36]. In this case, we used 1,038,201, 363,349, 880,462, 
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1,011,252, and 315,266 histone modification peaks in building the models for the H1, TBL, ME, 

MSC and NPC cells. As show in FIGURE 4-3A-E, the models also perform very well for predicting 

the patterns of the six histone marks in the five cell types, with an average accuracy 90.6% and 

AUC 0.917,  which are comparable to those obtained in the CD4
+  cell  dataset (91.53% and 0.916), 

but also are better than the results achieved by the earlier state-of-the-art CNN models for the  same 

markers albeit on a different dataset (AUC 0.856) [206]. Our models (average accuracy 90.6% and 

AUC 0.917) also outperform the earlier random forest-based algorithm on the same dataset 

(average accuracy 79.0%, average AUC 0.837, FIGURE 4-4). The relative performance of our 

models on predicting the six marks also is consistent with the random forest-based method 

(FIGURE 4-4) except for H3K9me3, which holds the second place in our model while it was ranked 

fifth in the earlier study. Such consistent performance of the different methods in different datasets 

strongly suggests that the active enhancer marks H3K27ac (AUC 0.880) and H3K4me1 are more 

complicatedly used in the cell types than the other marks.  Therefore, our cell type CNN models 

are very robust and highly accurate for predicting unique patterns of various histone marks in given 

different cell types. 
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FIGURE 4-3: Performance of the CNN models of the five cell types for predicting the six histone marks. A-E. The 

ROCs of the H1, ME, TBL, MSE and NPC models for predicting the six histone marks. 

 

FIGURE 4-4: Comparision between CNN and Random forest.  Average AUCs achieved by our CNN models and 

those obtained by the random forest-based models for the marks across the five cell type models. The error bars for the 

random forest-based models are not shown due to their unavailability. 

 

4.3.2. The histone mark CNN models are highly accurate and robust 

To reveal the determinants that specify different patterns of the same histone mark in different 

cell types, we constructed a CNN model for each histone mark for predicting different cell types 
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based on the different patterns of the same mark. We also first evaluated the accuracy of the models 

using the dataset collected from the four CD4
+ T cell types [209], and employed 227,420, 691,032, 

839,057, 867,398, 296,079 and 435,351 histone peaks in building the models for H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me3 and H3K9me3, respectively (Methods and 

materials). As shown in FIGURE 4-5A-F and FIGURE 4-6, the models generally perform very 

well for predicting each cell type, although the models for the gene repression-related mark 

H3K27me3 (AUC 0.95) and the heterochromatin-related mark H3K9me3 (AUC 0.93) perform 

better than the models for the activation-related marks H3K36me3 (AUC 0.87), H3K27ac (AUC 

0.85), H3K4me3 (AUC 0.83) and H3K4me1 (AUC 0.71).  

 

FIGURE 4-5: Performance of the CNN models of the six histone marks for predicting the four cell types. A-F, 

ROCs of the H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3 models for predicting the four 

cell types. 
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FIGURE 4-6: Mean AUC for each cell type model across the six histone mark models. 

To evaluate the generality and robustness of the mark model, we also applied it to the dataset 

collected from the human embryonic cells H1 and four of its derived types [210], and used 332,704, 

458,844, 952,615, 185,182, 253,289, 360,040 histone modification peaks in building the models 

for H3K4me1, H3K9me3, H3K36me3, H3K4me3, H3K27me3 and H3K27ac, respectively 

(Methods and materials). As shown in FIGURE 4-7 and FIGURE 4-8, similar to the results from 

the CD4
+ T cell dataset (FIGURE 4-7A-F and FIGURE 4-8), the models also generally perform 

very well, although the models for the gene repression-related mark H3K27me3(AUC 0.909) and 

the heterochromatin-related mark H3K9me3(AUC 0.862) perform better  than the models for the 

activation-related  H3K4me3 (AUC 0.815), H3K4me1 (AUC 0.720), H3K27ac (AUC 0.770) and 

H3K36me3 (AUC 0.679). These consistent results from different datasets from different sources 

strongly suggest that the two repressive histone marks are more distinctly used in different cell 

types than the four activation-related marks. Therefore, our histone mark CNN models are highly 

accurate and very robust for predicting different cell types based on the pattern of single histone 

marks. 
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FIGURE 4-7: Performance of the CNN models of the six histone marks for predicting the five cell types. A-F, 

ROCs of the H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3 models for predicting the five 

cell types. 

 

FIGURE 4-8: Mean AUC for each cell type across the six histone mark models. 
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4.3.3. Histone marks and cell types are largely determined by a unique set of motifs 

The superior performance of our cell models indicates that the filters in the convolutional layers 

have largely learned the sequence determinants for specifying the patterns of various histone marks 

in the cell type; while the superior performance of our histone mark models suggest that the filters 

in the convolutional layers have largely learned the sequence determinants for governing different 

patterns of the same histone mark in different cell types. These results promoted us to reveal these 

sequence determinants by looking into the filters in the convolutional layers of the models. In 

particular, we expect that the filters in the first convolutional layer may have learned the binding 

motifs of TFs involved in the specification of different histone modification patterns in different 

cell types. In other words, these filters may correspond to position weight matrices (PWMs) of the 

TF binding motifs. To this end, we constructed motif models for all the filters learned in the first 

constitutional layers, resulting in 295, 295, 278 and 285 motifs in the Tn, Tcm, Tem and Temra 

cell models, respectively; and 280, 291, 271, 270, 293, 267 motifs for the H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me3, H3K9me3 mark models, respectively. Some of the motifs 

learned in different models are highly similar to each other, thus we clustered them according to 

their similarity (Methods and materials), resulting in 2,474 clusters. Of these clusters, 203 are 

formed by more than two learned motifs, and we call each of them a Merged Motif (M-Motif), 

while the remaining 2,271 are singleton motifs, and we consider each of them as a cell- or mark-

specific motif dependent on the type of the model by which it is learned. Interestingly, 113 (4.57%) 

of these 2,474 unique motifs are shared by at least a cell type model and a histone mark model, 

indicating that common sequence determinants were captured by the two types of models. On the 

other hand, the remaining 958 and 1,403 motifs are unique to the cell type models and histone mark 

models, respectively (FIGURE 4-9). Thus, besides the common motifs, both the cell type models 

and mark models captured quite different sets of motifs for predicting the patterns of different 

histone modifications in the cells and the cell types based on single histone marks, respectively. 

Furthermore, 42 (3.92%) of the 1,071 motifs learned in the cell type models and 68 (4.49%) of the 
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1,516 motifs learned in the histone mark models are shared by more than two cell models 

(42/1,071=3.92%) and two mark models (68/1,516=4.49%) (FIGURE 4-10A and FIGURE 4-11A), 

respectively. However, only two (0.21%) and one (0.10%) motifs are shared by all the four cell 

type models and all the six histone mark models, respectively. The remaining 1,029 (96.08%) and 

1,448 (95.51%) motifs are unique to a single cell type model and a single mark model, respectively. 

These results suggest that the unique patterns of various histone marks in each cell type as well as 

the different patterns of the same histone mark in different cell types are largely determined by a 

unique set of motifs, although they may share some common ones. This conclusion agrees with the 

general understanding about how the unique epigenomes are established in different cells type by 

the interplay of TF, chromatin remodeling systems and environment cues [198-201]. 

 

FIGURE 4-9: Overlap of motifs learned in the cell models and histone mark models. 
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FIGURE 4-10: Shared learned mottifs in different cell types.  A. Number of learned motifs shared by different 

number of cell models. B. Venn diagram showing the number of learned motifs shared by the cell models. 

 

FIGURE 4-11: Shared learned mottifs in different histone marks.  A. Number of learned motifs shared by different 

number of histone mark models. B. Venn diagram showing the number of learned motifs shared by the histone mark 

models. 

At an E-value threshold of 0.5, 974 (39.37%) of the 2,474 motifs match known human TF 

binding motifs in the HOCOMOCO database [142], and many of them are known to be involved 

in T cell differentiation (FIGURE 4-12). We described a few examples of them. M-Motif 12 shared 

by all the cell type models matches that of ETS1 that controls T cell differentiation by regulating 

the expression of signaling molecules [228, 229] in response to external environment stimuli. M-

Motif 67 shared by the H3K9me3 and Tem models matches that of ATF2 that is an histone 

acetyltransferase for histones H2B and H4, playing an essential role in the T cells activation in late-

stage  [230, 231]. Temra-Motif 117 learned in the Temra model matches that of RUNX3, which 
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plays a crucial role in T cell’s differentiation by interacting with master regulators 

cooperatively[232]. M-Motif 178 shared by the Tn and H3K4me1 models resembles that of 

SMAD4 that cooperatively regulates interleukin 2 receptor in T cells and balances the 

differentiation of CD4
+ T cells [233, 234]. H3K27ac-Motif 229 learned in the H3K27ac model 

matches that of ZN274 that is involved in transcription repression [235]. H3K27me3-Motif 127 

learned in the H3K27me3 model resembles that of FOXP1, which is the “naive keeper” for T 

memory cell differentiation [209, 236]. These results suggest that at least 39.37% of the learned 

motifs that match known ones are likely to be authentic motifs of the cognate TFs. 

 

FIGURE 4-12: Examples of learned motifs matching known motifs involved in T cell functions. 

 

4.3.4. Motifs learned in the cell type models reflect the lineage of the cells 

It is now well established that along the lineage of cell differentiation, the epigenomes of cells 

undergo step-wise changes with each cell division through the regulation of a specific set of both 

common and unique TFs in the derived intermediate and terminal cell types [198-201, 237, 238]. 

Cells in adjacent differentiation stages possess more similar epigenomes [205], presumably because 

they share more TFs than those that are distal from each other along the lineage of differentiation. 

To see whether this is reflected in the motifs learned by the cell type models, we hierarchically 
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clustered the cell types based on the similarity of the learned motif profiles in the cell type models. 

As shown in FIGURE 4-13, Tn branches earliest in the tree while the three memory/effector T cell 

types form a clade, indicating that Tn is most distinct from the more developed cell types as 

generally believed. Tem and Temra form a clade, indicating that they are more similar to each other 

than to Tcm, which is in agreement with early observations[239]. These results suggest a linear 

lineage model of the development of these cells: Tn → Tcm → Tem → Temra, which is in line 

with the results derived based on changes in the DNA methylation, gene expression and DNAase 

accessibility in these cells [209]. Therefore, the sequence motifs learned in the cell type models 

indeed reflect the lineage relationships of the cells. It is highly likely that the unique motifs to a cell 

model account for the distinction of the cell type from the other cell types, while the shared motifs 

are responsible for the shared features of linearly closely-related cell types. 

 

FIGURE 4-13: Two way clustering of the cells and learned motfis. Hierarchical two-way clustering of the cells, 

based on the similarity of the learned motifs profiles in the models using hamming distance and average linkage. 

 

4.3.5. Motifs learned in histone mark models reflect functional relationships 

It is well-known that certain types of sequences can be co-modified by different histone marks, 

while other types of sequences tend to be exclusively modified by a specific mark [240]. To see 

whether such co-modifications and exclusiveness of the marks are reflected by the learned motifs 

in the histone mark models, we hierarchically clustered the histone marks based on the similarity 

of the learned motif profiles. As shown in FIGURE 4-14, H3K4me1 and H3K27ac form a group, 

which is consistent with the fact that they co-mark active enhancers, thus the respective 

modification systems might be recruited by some common motifs or similar mechanisms. On the 
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other hand, H3K9me3, H3K27me3, K3K36m3 and H3K4me3 form a singleton group by 

themselves, which is consistent with the facts that they exclusively mark DNA domains with 

different epigenomic states [241]. For instance, H3K9me3 marks heterochromatins, H3K27me3 

labels polycomb-associated domains, K3K36m3 marks transcribed gene body and H3K4me3 labels 

active promoters. Therefore, the learned motifs in the histone mark models indeed reflect the known 

functional relationships of the marks. 

 

FIGURE 4-14: Two way clustering of the histone marks and learned motfis. Hierarchical two-way clustering of the 

histone marks, based on the similarity of the learned motifs profiles in the models using hamming distance and average 

linkage. 

 

4.3.6. The learned motifs have varying inferences on the prediction 

To evaluate the contribution and importance of a learned motif to the prediction of a model, we 

nullified the motif and then calculated its inference score on the predictions (Methods and 

materials). The inference scores of the motifs learned in both the cell type models (FIGURE 4-15A-

D) and the histone mark models (FIGURE 4-16A-F) have bell-shape distributions with different 

extent of right skewness. These results suggest that most learned motifs have intermediate 

inferences, while a small portion have large inferences on predicting the patterns of different 

histone marks in a cell type or different cell types based on single histone marks.  The motifs with 

high influences might play crucial roles in the cell differentiation process. For example, in the Tn 

model, the motif with the highest influence score 4.26 (FIGURE 4-15A-D) resembles that of 

FOXD1 that is  involved in T cell proliferation [242]; in the H3K4me1 model, the motif with the 

highest inference score 2.74(FIGURE 4-16A-F)  resembles that of SP1 that plays a role in T cell 

differentiation [243]. The inferences of the motifs learned in either the cell type models (FIGURE 
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4-15A-D) or the histone mark models (FIGURE 4-16A-F) do not significantly correlate with their 

information contents, suggesting that only few positions of the motifs have a strong predictive 

power, which is consistent with the general understanding about the mechanisms of TF-DNA 

interactions. The learned motifs that do not match known motifs have similar inference scores to 

those matching known motifs (FIGURE 4-15A-D and FIGURE 4-16A-F), indicating that they are 

equally likely to be true motifs, and the unmatched ones are likely to be novel motifs of unknown 

TFs. 

 

FIGURE 4-15: Relationship between IC and influence.in cells.  A-D. Relationship between the inference scores 

and information contents of motifs learned in the four cell models. 
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FIGURE 4-16: Relationship between IC and influence.in hisone marks.  A-F. Relationship between the inference 

scores and information contents of motifs learned in the six histone mark models, respectively. 

Interestingly, the inferences of motifs learned in Tn, Tcm, Tem cell models increased along the 

proposed linear cell lineage, and then decreased in the Temra cell model (FIGURE 4-17A). These 

results suggest that the functions of learned motifs become more and more specific in determining 

the patterns of various histone modifications in the cells along the differentiation lineage Tn → 

Tcm → Tem, and then somehow become less specific in Temra. Furthermore, the inference scores 

of motifs learned in the six histone mark models are also significantly different from one another 

(FIGURE 4-17B). Specifically, motifs learned in the models of H3K4me1, H3K27ac and 

H3K4me3 that mark active enhancers and promoters have the lowest inference scores, while those 

learned in the models of H3K9me3 and H3K27me3 that are associated with repression regions have 

the moderate inference scores, and those learned in the model of H3K36me3 that marks actively 
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transcribed regions have the highest inference scores (FIGURE 4-16A-F). These results suggest 

that the motifs specifying histone modifications in actively transcribed regions have the highest 

specificity, followed by those for determining histone modifications in repression regions, active 

promoters and enhancers regions. 

 

FIGURE 4-17: Influence of the motifs in cell models and histone mark models. Boxplots of the inference scores of 

the motifs learned in the cell models and histone mark models, respectively (***, p<0.001; ****p<0.0001; Wilcoxon 

test). 

 

4.3.7. The motifs have highly variable inferences on different histone marks 

An important question in epigenomics study is to understand how different histone marks are 

placed at specific domains of the genome in a cell type. Our cell models might provide an easy way 

to address this question by simply finding out the learned motifs that impose a high inference on 

the prediction of each histone mark in the models. More specifically, we computed an inference 

score of each learned motif on each histone mark in a cell type model. Shown in FIGURE 4-18 are 

the results for the learned motifs that are ranked top 100 for their inferences on predicting at least 

one histone mark in the cell type models. Clearly, the motifs learned in each cell type model have 

highly variable inferences on different histone marks. For example, in all the four cell type models, 

H3K36me3 and H3K27me3 are highly impacted by a large number of the learned motifs, while 

H3K4me3 is only highly impacted by a few learned motifs, such as Tn-26:FOXD1, Tn-106:HXB4, 
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TN-21 and Tn- 294 in Tn (FIGURE 4-18). H3K27ac is highly impacted by a large number of 

learned motifs in Tcm, but is highly impacted by only a few learned motifs in Tn, Tem and Temra. 

H3K4me1 is highly impacted by a larger number of learned motifs in Tcm, Tem and Temra, but is 

highly impacted by a few learned motifs in Tn. H3K9me3 is highly impacted by an intermediate 

number of learned motifs in all the four cell types. Moreover, in all the four cell models, only a few 

learned motifs have high inferences on all the histone marks, while most motifs have a high 

inference only on 1-3 histone marks (FIGURE 4-18). For instance, in Tn model, only motifs Tn-

26:FOXD1, Tn-106:HXB4, Tn-21 and Tn-294 have high inferences on all the six histone marks, 

while most of other motifs have high inferences only on one or two histone marks. Thus, each 

histone mark is impacted by a unique combination of motifs that may have inferences on more than 

two histone marks. These results suggest that the cognate TFs of most learned motifs exerting more 

specific inferences on one or two histone marks might play crucial roles in specifying the unique 

patterns of different histone marks in the cell type, while the cognate TFs of a few learned motifs 

having high inferences on multiple histone marks might be involved in the establishment of 

multiple histone marks, probably by playing roles in the common mechanisms of different histone 

modifications such as opening up of DNA domains. 
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FIGURE 4-18: Influence of the top 100 learned motifs in cell type models. The heatmaps show the influence scores 

of the top 100 learned motifs on predicting the six histone marks in the indicated cell type models. The scale bar shows 

range of the inference score of a motif on a histone mark.   

 

4.3.8. The motifs have highly variable inferences on different cell types 

Another important question in epigenomics study is to understand how the same histone mark 

is differentially placed in the genomes of different cell types. Our histone mark models might 

provide a convenient way to tackle this question by simply identifying the learned motifs that 
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impose a high inference on the prediction of each cell type by the models. More specifically, we 

calculated an inference score of each learned motif on the prediction of each cell type by a histone 

mark model. Shown in FIGURE 4-19 is the result of the motifs that are ranked top 100 for their 

inferences on predicting at least one cell type by the six histone mark models. Interestingly, motifs 

learned in each histone mark model have highly variable inferences on different cell types. For 

instance, in the H3K4me1 model, most of the learned motifs have similarly small inferences on all 

the four cell types, only few have high inferences on at least one cell type. However, the latter set 

of motifs exert high inferences only on one or two cell types with the exception that motif 

H3K4me1-236:HXC10 has high inferences on all the four cell types. Thus, it seems that H3K4me1 

in each cell type is specified by a small set of motifs with unique combinations. In both the 

H3K4me3 and H3K27ac models, most of the learned motif have similarly small inferences on the 

Tem, Tcm and Tn cell types, only few have high inferences on at least one of these three cells types, 

suggesting that these two histone marks are specified by a small set of motifs with unique 

combination in these three cell types. However, most of the motifs learned in the H3K4me1 and 

H3K27ac models impose high inferences on the Temra cells, suggesting that these cells might have 

more complex H3K4me3 and H3K27ac modifications than the other three cell types, which is in 

line with the fact that Temra is the terminally differentiated cells with more activated enhancers 

and promoters. In the H3K9me3 and H3K27me3 models, each cell type is impacted by a large 

number of learned motifs with few having high inferences on more than three cell types, suggesting 

these two histone modifications in each cell type are specified by a large set of motifs with unique 

combinations. This result might be related to the functions of H3K9me3 that marks 

heterochromatins and of H3K27me3 that labels polycomb-associated domains. In the H3K36me3 

model, the numbers of learned motifs having high inferences in the cells increase along their linear 

lineage: Tn → Tcm → Tem → Temra. Each cell type is highly impacted by a large number of the 

learned motifs that impact adjacent cells along the lineage. These results reflect the similarity of 

the transcriptomes of these adjacent cell types [36], and thus are in excellent agreement with the 
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functions of H3K36me3 that marks actively transcribed genes. Taken together, the cognate TFs of 

few learned motifs that exert high inferences on multiple cell types might account for the similar 

patterns of a histone mark and the common mechanisms of the histone modification in different 

cell types, while the cognate TFs of the motifs that have more specific inferences might play crucial 

roles in specifying the different patterns of the histone modification in different cell types. 

 

FIGURE 4-19: Influencec of the learned motifs on the prediction of each cell type by the histone mark models. In 

each histone model, we show the influences for four cell types of top 100 learned motifs with highest impacts. Dark red 

corresponds strong influences and light red corresponds weak influences. 
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4.3.9. Conserved learned motifs tend to have higher inferences on the predictions 

We also examined the relationships between the inference scores and the conservation levels of 

the motifs learned in the cell and histone mark models. As shown in FIGURE 4-20A-D, there is 

positive correlation between the inference scores and the conservation levels of motifs learned in 

all the cell models (Tn: 𝛾=0.15, p=0.011; Tcm: 𝛾=0.11, p=0.052; Tem: 𝛾=0.079, p=0.19; and 

Temra: 𝛾=0.17, p=0.003), though with varying levels of significance. Moreover, as shown in 

FIGURE 4-21A-F there is a positive correlation between the inference scores and the conservation 

levels of motifs learned in the models of the four activation-related histone marks H3K4me1 

(r=0.43, p=2.3e-13), H3K4me3 (r=0.17, p=0.0043), H3K27ac (r=0.35, p=2.6e-9) and H3K36me3 

(r=0.23, p=0.00016). However, there is negative or no significant correlation between the inference 

scores and the conservation levels of motifs learned in the models of the two repression-related 

marks H3K9me3 (r=-0.13, p=0.036) and H3K27me3 (r=0.063, p=0.29). These results indicate that 

more conserved motifs learned in either the cell or histone mark models generally have higher 

inferences on the respective predictions than less conserved ones, with the exception that rapidly 

evolving motifs in the H3K9me3 mark peaks (heterochromatins) tend to have higher inferences on 

the prediction of cell types than more conserved ones. These observations are in line with the 

general understanding of the evolution of DNA sequences that functionally important sequences 

tend to be either more conserved due to purifying selection or evolved more rapidly due to positive 

selection. Thus, these results further corroborate our predicted motifs. 
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FIGURE 4-20: Relationship between the inference and PhastCons in cell models.  A-D Relationship between the 

inference scores and PhastCons scores of the learned motifs in the cell models. The red line is the linear regression 

between the inference scores and PhastCons scores. 

 

 

FIGURE 4-21: Relationship between the inference and PhastCons in histone models.  A-F Relationship between 

the inference scores and PhastCons scores of the learned motifs in the histone mark models, respectively. The red line 

is the linear regression between the inference scores and PhastCons scores. 
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Interestingly, motifs learned in the Tn and Tcm models tend to be more conserved than those 

learned in the Tem and Temra models, and the motifs learned in the Temra model are least 

conserved (FIGURE 4-22A). Thus, there is a trend that the more differentiated the cells, the less 

conserved the motifs learned from the corresponding models, suggesting that more conserved 

mechanisms might be used in the cells at the earlier stages of differentiation to specify their histone 

modification patterns than in the cells in the later stages of differentiation. This conclusion is 

consistent with the general understanding about the development of animals during embryogenesis 

[244]. Moreover, motifs learned in the models of gene activation-related marks H3K4me3, 

H3K27ac, H3K4me1 and H3K36me3 are more conserved than those learned in the models of 

repression-related marks H3K9me3 and H3K27me3 (FIGURE 4-22B). This result suggests that 

more conserved mechanisms might be used to specify the patterns of the four activation-related 

marks than those used to govern the patterns of the two repression-related marks. 

 

FIGURE 4-22: Distributions of the PhastCons scores in cell and histone models. A,B Boxplots of the 

PhastCons scores of the motifs learned in cells models and histone models, respectively (**,  p<0.01; ****, 

p<0.0001; Wilcoxon test). 
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4.3.10. The CNN models can predict cooperative TFs 

To see if the models can be used to identify cooperative TFs that define the histone modification 

patterns in the T cells, we quantified the interactions between each pair of learned motifs using a 

linear regression model where a positive or negative interaction coefficient indicates positive or 

negative interaction (Methods and materials). To reduce the computational time, we only focused 

on the top 50 of learned unique motifs with the highest inference scores for both the cell models 

and histone mark models. Shown in FIGURE 4-23A-F are the results for the Temra cell model. 

Clearly, there are different patterns of positive and negative interactions between the learned motifs 

for predicting different histone marks in the cell type. Interestingly, the motifs can be clustered into 

groups based on the patterns of their interactions in predicting the histone modifications. For 

example, in the case of predicting H3K4me1 modifications, learned motifs matching those of 

RUNX3, ETS1 and PATZ1 form a group with positive interactions among them; learned motifs 

matching those of EOMES, NFIA, ELK1, HINFP and ITF2 form a group with many putative novel 

motifs with largely positive interactions among them; learned motifs matching those of TEAD3, 

ZN121, HMGA1, ZN436, GLI1, ZN274, COT2, RX, TEF, ZN394 and TYY1 form a group with 

many putative novel motifs with largely negative interactions among them. Some of the predicted 

interactions are supported by experimental evidence. For example, we predicted ITF2 (also named 

T cell specific transcription factor 4 (TCF4)) had significant interactions with ETS1 for predicting 

histone marks H3K27ac (γ=1.27, p=3.69e-65), H3K27me3 (γ=0.18, p=0.01), H3K36me3 (γ=0.21, 

p=0.00077), H3K4me3 (γ=1.15, p=8.54e-57) and H3K9me3 (γ=-0.39, p=6.70e-06). In agreement 

with these predictions, it has been shown that ITF2 might be involved in histone acetyltransferase 

CBP recruitment by interacting with ETS1 [245]. Furthermore, we predicted that ITF2 had a 

positive interaction with RUNX3 for determining histone marks H3K27ac (γ=1.40, p=4.29e-49), 

H3K27me3 (γ=-0.20, p=0.013), H3K36me3 (γ=-0.59, p=6.40e-25), H3K4me1 (γ=0.32, p=8.91e-

05), H3K4me3 (γ=-1.13, p=4.00e-40), and H3K9me3 (γ=-0.18, p=0.03), which is in line with the 

earlier finding that RUNX3 involves in regulating Wnt signaling activity by interacting with ITF2 
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(TCF4) in a ternary complex manner [246]. The predicted interactions between known and 

unknown motifs as well as between unknown motifs are likely to be novel interactions, in particular 

those with strong and highly significant interactions, such as the interactions for predicting the 

H3K27ac mark, between GLI2 and Temra 146 (γ=2.137, p=4.95e-43), between TEAD3 and Temra 

54 (γ=1.97, p=4.43e-50), and between Temra 141 and Temra 146 (γ=1.99, p=4.41e-43), etc. Similar 

patterns of interactions were observed in the models of the other three T cell types (FIGURE 4-24 

to FIGURE 4-26). 

 

FIGURE 4-23: Interaction coefficient γ between the  top 50 learned motifs in Temra cell.  A-F The heatmaps show 

the values of interaction coefficient γ between the  top 50 learned motifs on predicting the indicated histone marks in 

the Temra cell model. The scale bar shows the range of interaction coefficient γ.  A negative value indicates a negative 

interaction while a positive value indicates a positive interaction  between the pair of motifs. 
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FIGURE 4-24: Interaction coefficient γ between the  top 50 learned motifs in Tn cell. A-F Interactions between 

each pair of the top 50 learned motifs on the prediction of the six marks by the Tn cell model. 

 

FIGURE 4-25: Interaction coefficient γ between the top 50 learned motifs in Tcm cell.  A-F Interactions between 

each pair of the top 50 learned motifs on the prediction of the six marks by the Tcm cell model. 
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FIGURE 4-26: Interaction coefficient γ between the top 50 learned motifs in Tem cell. A-F Interactions between 

each pair of the top 50 learned motifs on the prediction of the six marks by the Tem cell model. 

Shown in FIGURE 4-27A-D. are the results for the H3K4me1 model. Again, there are distinct 

patterns of positive and negative interactions between the motifs for predicting different cell types 

by the model. As in the cases of cell models, the motifs can be clustered into groups based on the 

patterns of their interactions for predicting the cell types. For instance, in the case of predicting the 

Tn cells, the putative novel motifs M-Motif-71 and H3K4me1-30 form a group with a negative 

interaction; learned motifs matching those of HIC2, HXD2, TFE2, ZN547, HAND1, COT1, 

SMAD4, TBX1, ANDR, ZN263, THA, ZN784, ZSCA4, ZN436, PTF1A and ZN770 form a group 

with many putative novel motifs with largely positive interactions among them; learned motifs 

matching those of HXC10, PO3F3, POXJ3, HMGA2, HXC10, DLX1 and ZN250 form a group 

with many putative  novel motifs with largely negative interactions among them. Some of the 

predicted interactions are supported by experimental evidences. For example, we predicted that 

TFE2 interacted with HAND1 for predicting Tn (γ=5.38, p=1.84e-137), Tcm (γ=4.00, p=6.94e-
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115), Tem (γ=2.82, p=1e-70) in Temra (γ=-7.61, p=1.97e-45), while it is has been reported that 

TFE2 (also named E47) directly interacts with HAND1 [247]. We predicted that SMAD4 interacted 

with ANDR for predicting Tn (γ=2.91, p=2.68e-47), Tcm (γ=3.49, p=1.86e-77), Tem (γ=2.99, 

p=3.47e-79) and Temra  (γ=-0.93, p=0.0002), while SMAD4 is known to interact with ANDR, 

which might be involved in differential regulation of the androgen receptor gene transactivation 

[248]. We predicted that TFE2 interacted with PTF1A for predicting Tn (γ=5.22, p=3.69e-20), Tcm 

(γ=3.247, p=2.84e-29), Tem(γ=2.40, p=1.86e-13), and Temra (γ=-5.54, p=1.89e-68), while it has 

been reported that SMAD4 physically interacted with PTF1A and plays a crucial role in regulating 

signal pathways[249]. We predicted that HMGA2 interacted with SMAD4 for predicting Tn (γ=-

0.41, p=0.026), Tcm (γ=-2.24, p=2.84e-13) and Temra (γ=0.90, p=8.77e-05), while it is known that 

HMGA2 interacts with SMAD3/SMAD4 to regulate SNAIL1 gene expression [250]. The predicted 

interactions between known and unknown motifs as well as those between unknown motifs are 

likely to be novel interactions, in particular those with strong and highly significant interactions, 

such as the negative interaction between M-Motif-71 and H3K4me1-30 for predicting Tn (γ=-4.17, 

p=2.75e-274), Tcm(γ=-2.88, p=3.40e-115) and Tem (γ=-2.28, p=2.36e-100), and a positive 

interaction for predicting Temra(γ=3.78, p=2.09e-63). Similar patterns of interactions are seen in 

the models of the other five histone marks (FIGURE 4-28A-D to FIGURE 4-32A-D). 
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FIGURE 4-27: Interaction between the learned motifs in H3K4me3 model. A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K4me1 model. 
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FIGURE 4-28: Interaction between the learned motifs in H3K4me3 model. A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K4me3 model. 
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FIGURE 4-29: Interaction between the learned motifs in H3K9me3 model. A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K9me3 model. 
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FIGURE 4-30: Interaction between the learned motifs in H3K27ac model. A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K27ac model. 
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FIGURE 4-31: Interaction between the learned motifs in H3K27me3 model. A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K27me3 model. 
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FIGURE 4-32: Interaction between the learned motifs in H3K36me3 model.  A-D Interactions between each pair of 

the top 50 learned motifs on the prediction of the four cell types by the H3K36me3 model. 
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4.4. Discussion 

DNA sequence plays a crucial role in determining its epigenomic state through interacting with 

the TFs and epigenome remodeling systems. However, our current understanding of these sequence 

determinants is still limited, and thus new methods are needed to reveal them.  Recently, Whitaker 

and colleagues [36] trained a random forest classifier based on a set of pre-specified DNA motifs 

to predict six histone marks in H1 and its derived cell types with high accuracy. The results strongly 

support the pivotal roles of these motifs in specifying the unique epigenomes in the cells. However, 

this method could not discover sequence determinants ab initio, therefore, new methods are needed 

to gain a better understanding of the sequence determinants of epigenomes of cell types. CNNs 

have been proved to be a powerful approach to predict epigenomic features including TF binding 

[205], DNase I accessibility [208], DNA methylation [206, 251] and histone modifications [206]. 

And one of the advantages of CNNs, which other machine-learning methods often lack, is their 

ability to automatically learn the features of the objects through the filters in the convolutional 

layers [252]. In the case of epigenomic analysis, these features include sequence determinants that 

define the unique patterns of epigenetic modifications in different cell types produced during 

embryogenesis and development. Thus, CNNs can be a powerful approach to real the epigenomic 

sequence determinants.  

Indeed, efforts have been made to interpret the sequence features learned by CNN models for 

predicting epigenomic marks [205-208]. However, these studies used a single mixed model to 

predict a combination of multiple epigenetic marks with multiple cell types, thus lack the power of 

comparative analyses for the learned sequence features. To overcome this limitation and facilitate 

interpreting CNN models which can be otherwise highly challenging [253], we developed two 

types of CNN models to capture the sequence features for various histone modifications in different 

cell types: 1) the cell type model for predicting patterns of various histone modifications in a cell 

type, and 2) the histone mark model for predicting various cell types based on a histone mark. In 
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this way, by comparing the motifs earned in different cell type models, we could identify the 

common and unique motifs that specify unique patterns of various histone modifications in a cell 

type; and by comparing the motifs learned in different histone mark models, we could detect the 

common and unique motifs that determine different patterns of the same histone mark in different 

cell types. Furthermore, the models enable us to evaluate the inferences of learned motifs and their 

interactions on the prediction accuracy, thereby predicting roles of each motif in specifying the 

epigenome and the type of cells. 

To validate this strategy, we applied it to a dataset of six histone marks derived from four well-

studied CD4
+ T cell types in humans, i.e., Tn, Tcm, Tem and Temra. Both our histone mark models 

and cell type models achieved very high accuracy and were highly robust when tested on the dataset 

for H1 and its derived cell types, suggesting that our models have largely learned the relevant 

sequence features in determining the unique histone mark patterns in these cells. Not surprisingly, 

a large portion of the learned motifs in the first convolutional layers in the models resemble those 

of TFs that are known to play crucial roles in T cell development, while the remaining ones could 

be novel motifs of unknown TFs participating in T cell differentiation. By comparing the motifs 

learned in different cell models, we predicted that the unique patterns of various histone 

modifications in each cell type were largely determined by a unique set of motifs (FIGURE 4-10A 

and FIGURE 4-10B) and at the same time, the number of common motifs shared by two cell models 

reflected the linear lineage relationships of the four CD4+ T cell types (FIGURE 4-13), which is 

consistent with the results based on DNA methylation, DNase hypersensitivity and transcription 

patterns in the earlier study that produced the datasets used in our analysis. Furthermore, by 

comparing the motifs learned in different histone mark models, we predicted that different patterns 

of the same histone marks in different cell types were largely determined by a unique set of motifs 

(FIGURE 4-10A and B), while the number of common motifs shared by two histone mark models 

reflected their co-modification and exclusiveness natures (FIGURE 4-14). All these results suggest 
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that at least most of the learned motifs are likely to be authentic and play roles in T cell 

differentiation. Moreover, by computing the inference scores of the learned motifs, we further 

predicted the specific roles of each learned motif in determining the patterns of various histone 

modifications in a cell (FIGURE 4-15A-D and FIGURE 4-17A), or different patterns of the same 

histone modification in different cells (FIGURE 4-16A-F and FIGURE 4-17B). Finally, by 

computing an interaction score, we predicted the interactions of the cognate TFs of the learned 

motifs in either the cell models or histone mark models. Some of these predictions have 

experimental supports. Thus, our results support the hypothesis that sequences ultimately determine 

the unique epigenomes of different cell types through their interactions with TFs, epigenome 

remodeling system and extracellular cues during cell differentiation in a stepwise manner. 

Therefore, the motifs learned in our CNN models are highly interpretable and may provide insights 

into the underlying molecular mechanisms of establishing the unique histone modifications in 

different cell types. 
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4.5. Conclusion 

We have developed two types of highly accurate CNNs constructed for cell types and for histone 

marks to predict the different histone marks in a cell type and different patterns of same mark in 

different cells, respectively. We showed that both the unique histone modification patterns in a cell 

type and the different patterns of the same histone mark in different cell types are determined by a 

set of motifs with unique combinations. The level of sharing motifs learned in the different cell 

models reflects the lineage relationships of the cells, while the level of sharing motifs learned in 

different histone mark models reflects their functional relationships. The models enable the 

prediction of the importance of the learned motifs and their interactions in determining specific 

histone mark patterns in the cell types. Therefore, the motifs learned in the models are highly 

interpretable and may provide insights into the underlying molecular mechanisms of establishing 

the unique histone modifications in different cell types. Our results suggest the hypothesis that 

DNA sequences ultimately determine the unique epigenomes of different cell types through their 

interactions with TFs, epigenome remodeling system and extracellular cues during cell 

differentiation in a stepwise manner. 
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CHAPTER 5: DEPCRMS DATABASE 

5.1. Background 

Cis-regulatory modules (CRMs), such as enhancers, promoters, silencers and insulators, are 

composed of clusters of short DNA sequences where transcriptional factors (TFs) can bind to 

regulate the expressions of the target genes in many biology processes. Recent studies have showed 

that most complex trait-associated single nucleotide polymorphisms (SNPs) often disrupt 

transcriptional factors binding sites (TFBSs) in CRMs. This might affect TF binding and gene 

transcription, which leads to complex diseases [7, 8]. In general, SNPs that disrupt TFBSs could 

affect the affinity of TF binding, resulting in the changes of chromatin characteristics and gene 

expression in specific cell types[10-13, 15]. Finally, the alternations of phenotypes in the molecular 

level could contribute to the changes of the phenotypes in the cellular or organ level in species[30, 

254].  Therefore, categorization of the CRMs and their constituent TFBSs in sequenced genomes 

can facilitate characterizing the functions of the regulatory sequences and their roles in diseases.  

Recently, multiple next-generation sequencing (NGS)-based technologies have been developed 

to characterize different features of the CRMs, such as chromatin immunoprecipitation followed 

by sequencing (ChIP-seq) [255] to profile the regions of various TF bindings or histone 

modifications,  DNase I hypersensitive sites sequencing (DNase-seq) [256], assay for transposase-

accessible chromatin using sequencing (ATAC-seq)[257], formaldehyde-assisted isolation of 

regulatory elements sequencing (FAIRE-seq) [258], and micrococcal nuclease digestion with deep 

sequencing (MNase-seq) [259] to identify the chromatin accessibility. An exponentially increasing 

number of datasets have been generated by consortia such as ENCODE[41, 260], Epigenomics 

Roadmap [43, 44] and Genotype-Tissue Expression (GTEx)[45]. Based on different data types that 

capture different aspects of the CRMs, many computational strategies have been developed to 
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predict the CRMs. For instance, based on the TF ChIP-seq data, methods such as SpaMo[73], 

CPModule[76], COPS[77], and INSECT[78] have been developed to identify regions of binding 

peaks, which contain closely located TFBSs, as putative CRMs. Based on multiple histone marks 

and chromatin accessibility datasets, hidden Markov models[87, 89] and dynamics Bayesian 

models[90] have been developed to predict CRMs in different cell types.  Based on the bidirectional 

pairs of capped RNAs, the FANTOM project identified enhancers across genomes [120]. By 

integrating multiple tracks of epigenetics marks, TF binding, predicted and experimentally 

validated enhancers, several groups have developed CRM/enhancer databases, such as 

dbSUPER[166], SEdb[261], DENdb[97], EPDnew promoters[167], UCNEbase[262], 

CraniofacialAtlas[263], GeneHancer[98], HACER[264], RAEdb[265], HEDD[266], 

DiseaseEnhancer [267], SEA[268] and EnhancerAtlas (ref). However, none of them provides the 

de novo predicted constituent TFBSs information in the CRMs, which is critical to understand the 

mechanisms of the transcriptional regulation as well as to pinpoint causal variants of phenotype 

diversity and diseases.  

Using a highly accurate CRM and TFBS prediction tool dePCRM2 that we developed recently, 

we predicted the CRMs and their constituent TFBSs in Homo sapiens, Mus musculus and 

Caenorhabditis elegans. We now constructed a database dePCRMS to facilitate the community to 

use these predictions for various purposes. The database currently contains 1,155,151, 777,409 and 

19,515 predicted CRMs as well as 89948206, 103718473, and 3758557 TSBSs for 201, 210, 61 

unique motif (UM) families in H. sapiens, M. musculus and C. elegans, respectively. The web 

interface of the dePCRMS database can quickly browse and visualize the contents of the database 

and provide three functional analysis modules. Using these modules, the user can find the closest 

CRMs to a gene, search the CRMs that are located in a specified range around a gene, and retrieve 

all CRMs that contain TFBSs of a specific TF. The interface also provides copy, export and 
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download functions of the selected CRMs or all predicted CRMs in a BED format. We will update 

the database when new datasets are available and include prediction in other organisms in the future. 
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5.2. Methods and materials 

5.2.1. Datasets 

We downloaded 6092 TF ChIP-seq datasets for 779 TFs in 2631 cells/tissues/organs of human, 

and 4,786 TF ChIP-seq datasets for 501 TFs in 1,560 cells/tissues/organs of  mouse from the 

Cistrome database[47], and 212 TF ChIP-seq datasets for 91 TFs of C. elegans from the modEncode 

database[269]. After filtering out peaks with low quality, for each left peak, we extracted 1,000bp 

genome sequence centering on the middle point of the binding peaks, thereby extending majority 

of the binding peaks. 

 

5.2.2. Prediction of CRMs and constituent TFBSs 

To predict CRMs and TFBSs, we apply dePCRM2 to the datasets with extended binding peaks 

from each species using the default paraments. Briefly, dePCRM2 first finds overrepresented 

motifs and co-occurring motifs pairs (CPs) in each dataset. It then constructs a similarity network 

of highly similar motifs in CPs across all the datasets and identifies unique motifs (UMs). 

dePCRM2 constructs an interaction network of the UMs, where UMs are the nodes, and two nodes 

are connected by a weighted edge with their interaction score being the weight, which is defined as 

follows, 

 
𝑆INTER(𝑈𝑖, 𝑈𝑗)

1

|𝐷(𝑈𝑖 , 𝑈𝑗)|
∑ (

1

|𝑈𝑖(𝑑)|
+

𝑑∈𝐷(𝑈𝑖,𝑈𝑗)

1

|𝑈𝑗(𝑑)|
∑

150

𝑟(𝑠)
𝑠∈𝑆(𝑈𝑖(𝑑),𝑈𝑗(𝑑))

), 5-1 

where 𝐷(𝑈𝑖 , 𝑈𝑗) is the datasets which contain the TFBSs of UMs 𝑈𝑖  and 𝑈𝑗, 𝑈𝑘(𝑑) is the peaks 

containing at least one TFBS of 𝑈𝑘 in dataset 𝑑, S(𝑈𝑖(𝑑), 𝑈𝑗(𝑑)) is the peaks which contain at least 

one TFBS of both 𝑈𝑖  and 𝑈𝑗, and 𝑟(𝑠) is the shortest distance between a TFBS of 𝑈𝑖  and a TFBS 

of 𝑈𝑗  in a sequence 𝑠. dePCRM2 connects any two adjacent TFBSs of the UMs if their distance d 

≤ 300bp and considers each resulting connected DNA segment as a CRM candidate (CRMC), 
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thereby partitions the genome regions covered the extended peaks in a CRMC set and a non-CRMC 

set. dePCRM2 evaluates each CRMC containing 𝑏1, 𝑏2 ⋯ , 𝑏𝑛 TFBSs by computing a score defined 

as follows, 

 𝑆𝐶𝑅𝑀(𝑏1, 𝑏2 ⋯ , 𝑏𝑛) =
2

𝑛−1
× ∑ ∑ 𝑊[𝑈(𝑏𝑖), 𝑈(𝑏𝑗)]𝑗>𝑖

𝑛
𝑖=1 × [𝑆(𝑏𝑖) + 𝑆(𝑏𝑗)],          5-2 

where 𝑈(𝑏𝑘)  is the UM of TFBS 𝑏𝑘 , 𝑊[𝑈(𝑏𝑖),  𝑈(𝑏𝑗)]  is the interaction score between 

𝑈(𝑏𝑖) and 𝑈(𝑏𝑗), 𝑆(𝑏𝑘) is the binding score of 𝑏𝑘 based on the position weight matrix (PWM) of 

𝑈(𝑏𝑘). Only TFBSs with a positive score are considered. dePCRM2 also computes a p-value for 

each CRMC as follows. For each predicted CRMC, dePCRM2 generates a Null CRMC that has 

the same length and 4-mer nucleotide frequencies as the CRMC using a third order Markov chain 

model [117], and computes a SCRM score for each Null CRMC based on a random interaction 

network which is generated by randomly rewiring the nodes of the UM interaction network. Then, 

an empirical p-value for a CRMC with a 𝑆𝐶𝑅𝑀=s is computed based on the distribution of SCRM 

score for Null CRMCs,  

 𝑝 =
𝑛(𝑠)

𝑁
, 5-3  

where 𝑛(𝑠) is the number of Null CRMCs with a  𝑆𝐶𝑅𝑀  score greater than s, and N is the total 

number of CRMCs. 

 

5.2.3. Technical implementation 

The current version of PCRMv2 was developed using MySQL 5.7.17 (http://www.mysql.com) 

and runs on a Linux-based Apache2 server (http://www.apache.org). The PHP 7.2 

(http://www.php.net) was used for back-end scripting. The interactive interface and responsive 

feature were implemented using Bootstrap 4 (https://getbootstrap.com/), JQuery (http://jquery.com) 

http://www.mysql.com/
http://www.apache.org/
http://www.php.net/
https://getbootstrap.com/),
http://jquery.com/
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and dataTables (https://datatables.net), and NCBI sequence viewer 3.38.0 

(https://www.ncbi.nlm.nih.gov/projects/sviewer) was used for visualization.  

https://datatables.net/
https://www.ncbi.nlm.nih.gov/projects/sviewer
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5.3. Results 

5.3.1. Web interface to the database 

We provide a user-friendly web interface to the PCRMv2 database for inquiring and browsing 

predicted CRMs at different significant levels for each organism.  The user can conduct gene centric, 

CRM centric and TFBS centric queries through three functional analysis modules, (i) to search 

CRMs at a p-value in a given upstream and/or downstream regions of a gene of interest, (ii) to 

search the closest or bracket genes to a given CRM, and (iii) to search the TFBSs of a TF on one 

or more chromosomes. The user can filter, export, and download the returned query results 

(FIGURE 5-1). 

 

FIGURE 5-1: Overview of dePCRM webserver. it includes the database, data integration pipeline, analysis 

modules and features. 
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5.3.2. Quick browse of database contents 

We provide a quick search function by which the user can browse the CRMs predicted at a 

selected p-value on selected one or multiple chromosomes in a selected organism (FIGURE 5-2A, 

panel 1). The results are displayed in an interactive manner (FIGURE 5-2A, panel 2), so that the 

user can change the number of entries shown in a page, sort results based on different 

criteria/columns, filter the results using the search box, and set visible columns. The user can copy 

or export the selected results in a file in the CSV or Excel formats, or export all records if no CRM 

is selected by default (FIGURE 5-2A, panel 3). The coordinates of a selected CRM can be 

visualized in the NCBI genome viewer with a red rectangle (FIGURE 5-2A, panel 4), and the 

TFBSs in the CRM can be displayed in a responsive table by clicking the CRM ID alongside the 

NCBI viewer panel (data not shown). The user can download all the CRMs in each specie in the 

BED format in the download menu.  

 

FIGURE 5-2: The quick browsering interface of CRMs in dePCRMS. (A) Quick search panel. (1) CRMs search 

form, (2) search results table, (3) CRM visualization in the NCBI genome viewer, (4) detailed TFBSs information. 
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5.3.3. Functional analysis modules 

To facilitate analyzing potential gene-CRM relationship and TFBS landscape of specific TFs, 

we provide three functional analysis modules. First, the user can search the closest CRMs to a gene 

in an organism at different p-values (e.g., 0.05, 0.01, 5 × 10−6, 1 × 10−6) in the dropdown list 

(FIGURE 5-3A). Second, the user can search CRMs located in specified upstream and/or 

downstream ranges of a gene from its either end (FIGURE 5-4A). In both modules, the returned 

CRMs are displayed in an interactive table. The user can sort, filter and export the results. Each 

CRM can be visualized in a new page in the NCBI genome viewer by clicking on the CRM ID.  

The user can view TFBSs in the CRM by clicking on the CRM ID in the left panel in the CRM 

table (FIGURE not shown). Each TFBS record displayed includes its coordinates, UM ID, Binding 

score, UM logo and Matched TFs. The user can sort the results based on CRM IDs, coordinates of 

TFBSs and their cognate TFs. CRMs can also be filtered by filling their p-value in the search box. 

Last, the user can retrieve all TFBSs of a selected set of TFs in one or more selected chromosomes 

in an organism in an interactive table. Each record of a TFBS includes its host CRM’s ID, 

coordinates, cognate TF, TF binding score, and UM ID and Logo (FIGURE 5-5A). Furthermore, 

the user can visualize the CRMs containing the TFBSs in the same manner as above described. 

 

FIGURE 5-3: Searching closest CRM(s) to a gene module. 
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FIGURE 5-4: Searching CRM(s) in a range around a gene module. 

 

FIGURE 5-5: Searching all TFBSs of a TF module. 
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5.4. Conclusion 

The dePCRMS database contains 1,155,151, 777,409 and 19,515 CRMs as well as 201, 210 and 

61 unique motif families for Homo sapiens, Mus musculus and Caenorhabditis elegans, 

respectively. The web interface to dePCRMS database provides quick browsing, searching and 

visualizing the CRMs and TFBSs. It also provides three functional analysis modules to search 

closest CRM(s) to a gene, CRM(s) in a range around a gene, and landscape of TFBSs of a specific 

TF. It helps the users to select the CRMs and export into files in CSV or EXCEL formats, or to 

batch download the whole CRMs datasets in the BED format. In the future development, we will 

add predictions in other important organism, and update the prediction when more data are 

available in Cistrome or other databases. We will also add more functional analysis modules to 

support analyses such as target genes of CRMs and causal SNPs of traits and diseases by integrating 

more data sources. To our knowledge, dePCRMS is the first comprehensive CRMs database with 

de novo predicted TFBSs at a single nucleotide resolution in multiple important genomes, and we 

hope it will facilitate the research community to characterize the regulatory genomes in important 

organisms. 
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CHAPTER 6: CONCLUSION 

In this dissertation, we have developed a pipeline called dePCRM2 to predict CRMs and their 

constituent TFBSs in genomes by integrating multiple ChIP-seq datasets for various TFs from 

different cells or tissues. We predicted an unprecedentedly complete map of the CRMs and their 

constituent TFBSs in 77.47% of the human genome using more than 6,000 datasets. Both the 

evolutionary constraints and the experiment validated enhancers indicate that dePCRM2 might 

achieve high sensitivity and specificity. It is possible to predict a more complete map of the CRMs 

and their constituent TFBSs with more diverse and balanced data in the future. With a static map 

of CRMs and their constituent TFBSs, the next question we could ask is what the influence of a 

mutation in a specific TFBS is on the underlying molecular mechanisms in different cell types. To 

address this question, at least partially, we developed two types of CNNs to predict the cell types 

in the same histone mark and to predict the histone marks based on the same cell type, respectively. 

We indicated that a unique combination of motifs could determine the unique histone mark patterns 

in one cell type or the occurrence of a histone mark in different cell types. The degrees of the 

sharing motifs learned in various cell models reflect the lineage relationships of the cells, while the 

degrees of the sharing motifs learned in various histone mark models reflect their functional 

relationships. By manipulating the forward propagation information of the learned motifs and then 

measuring the changes between the predictions, we found that the learned motifs might interpret 

the underlying molecular mechanisms of the unique histone mark combination in different cell 

types. The results suggest that DNA sequences, more specifically, TFBSs ultimately determine the 

unique epigenomes in different cell types via their interactions with TFs, as well as the epigenome 

remodeling during cell differentiation.  To facilitate the research community to characterize the 

regulatory modules in human and import the model organisms, we developed the dePCRMS 

database. The dePCRMS database includes 1,155,151, 777,409 and 19,515 CRMs as well as 201, 
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210 and 61 unique motif families for Homo sapiens, Mus musculus and Caenorhabditis elegans, 

respectively. The web interface helps the users quickly browse, search and visualize the CRMs and 

TFBSs. And three types of functional analyses can be conducted: searching the closest CRM(s) to 

a gene, searching CRM(s) in a range around a gene, and searching TFBSs landscape of a specific 

TF.  

To summarize, in this dissertation, we tried to address three questions: firstly, we predicted a 

map of the CRMs and their constituent TFBSs. Secondly, we pinpointed the influence of the motifs 

on the underlying molecular mechanisms of the histone mark formation and the cell differentiation. 

Finally, we built a database for holding the maps of the CRMs and their constituent TFBSs in three 

genomes, Homo sapiens, Mus musculus and Caenorhabditis elegans.  
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APPENDIX A: LINK OF SUPPLEMENTARY FILES 

A.1. Supplementary files 

This supplemental tables includes the information of all raw datasets and the unique motifs and 

their TF families  
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