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ABSTRACT

LIDA SAFARNEJAD. Modeling Twitter Data for Effective Dissemination of
Health-Related Information. (Under the direction of DR. YAORONG GE and DR.

SHI CHEN)

Social media platforms, such as Twitter, are attracting a growing number of peo-

ple with diverse demographic characteristics to share and obtain information about

various topics. As a result, these platforms have become one of the main targets

for practitioners and decision-makers from various fields, such as politics and pub-

lic health, to study public opinion and at the same time to spread their messages.

Two challenges in utilizing social platforms as a means of communication are how to

craft and how to deliver a message such that it reaches a great number of audiences

and keeps them engaged. Addressing these problems is hardly possible without thor-

oughly analyzing how a piece of information goes viral on a social platform. This

doctoral dissertation aims to model the dissemination of health-related information

on Twitter from various perspectives. First, I investigate driving forces of the general

public’s engagement on social media during health emergencies. The two contribu-

tors that I consider are 1) real-world events, such as announcements by World Health

Organization, and 2) the role of highly active users and also those who receive great

attention from other users. Second, I systematically model and investigate informa-

tion cascades through the retweeting processes of tweets. My analysis in this part

reveals that the propagation patterns of tweets carrying misinformation are differ-

ent from those containing true information. I propose a framework to operationalize

and test the hypothesis "misinformation tweets are propagated differently from true

information tweets." Finally, based on the differences that I discover by analyzing

(mis)information propagation, I propose a feature-rich machine learning model to

identify misinformation on Twitter. The above three perspectives offer a holistic

overview of the main challenges and prospective/feasible solutions for beneficially
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applying social media in public health.
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CHAPTER 1: Introduction

A large population of people from a wide demographic is relying on social media

to obtain information regarding various topics and also share their opinions. At the

same time, practitioners and decision-makers from various fields are considering so-

cial media as one of the main conduits to release news and communicate with their

audiences.

One of the interesting aspects of using social media to disseminate information is the

high velocity at which a piece of news can get viral and reach to the large number of

users who are mainly dependent on these platforms to seek and obtain information.

Nevertheless, this property of social media has a serious downside; misinformation

can also get viral at an uncontrollable speed and impact a great number of users. In

[1], Lazer et al. define misinformation as false or misleading information which is fab-

ricated such that they are indistinguishable from legitimate information for users who

have a limited, if none, knowledge in a specific field. User-generated information in

these platforms is disseminated without going through any fact-checking process [2].

This property makes social platforms susceptible to misinformation or fake informa-

tion dissemination. In other words, malicious actors exploit this property to propagate

misinformation. Moreover, due to the lack of knowledge, some benign users might

believe misinformation and unintentionally help its propagation by re-sharing it [1].

Misinformation propagation has been a major concern among practitioners in various

fields. To illustrate, politicians are using social platforms such as Facebook and Twit-

ter to crush their competitors and manipulate public opinion. In [3], Grinerg et al.

demonstrate that during the US presidential election in 2016, 0.01% of Twitter users

shared almost 80% of fake news, and they could engage a great population of eligible
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voters. Another field that misinformation propagation could even jeopardize people’s

lives and create a disaster is public health. To illustrate, one of the greatest human

achievements in fighting with and controlling disease outbreak is vaccination [4]. In

[5], Broniatowski et al. look into the role of Russian trolls in propagating fake news

which cast doubt on and support the debate against vaccination. In another study

[6], Sharma et al. show that during ZIKV outbreak in 2016, the videos related to Zika

contained more fake information rather than true and informative. These are a few

examples showing how much fighting back with misinformation propagation is vital.

To this end, practitioners and decision-makers must carefully and actively monitor

social platforms to intervene and neutralize the impact of misleading information by

feeding users with trustworthy and useful information. In other words, scholars argue

that using social media is a double-edged sword: although malicious actors use social

media platforms to propagate misinformation, they can be used as a tool to contain

and prevent misinformation as well [7], [6]. Right and relevant information must be

crafted carefully and released at the right time to pick the public’s attention and

influence their viewpoints. Another key factor that should not be ignored is the role

of users in relaying information. In the real-world, opinion leadership is determined

by social values; however, in social platforms, equations are different. It is highly

common that individuals with no considerable fame in the real world can be quite

influential in the context of social media. On the one hand, misinformation can be

contained by identifying users who trigger and promote misinformation in social me-

dia. On the other hand, influential users can help lessen the effect of misinformation

by providing and facilitating the propagation of true information.

One domain that can highly benefit from using social platforms to study public opin-

ion and also conveying messages to their audiences is public health. Considering the

large population and the wide demographic of social media users, social media plat-

forms are invaluable resources for public health professionals to study public opinion
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regarding health issues and also to better communicate with the public, especially

during health crises such as the Zika outbreak in 2016 or the current COVID-19 pan-

demic. Scholars in this field have realized and are emphasizing the crucial role of

using social platforms by health organizations to communicate with people to boost

the public’s knowledge of health [8], [9]. Health practitioners have gone even further

and used social platforms, such as Facebook or Twitter to characterize users who

might develop a kind of disease [10], [11] and also predict disease outbreaks [12], [13].

This doctoral dissertation spans over designing and developing computational models

to effectively employ social media in the public health domain.

First, I investigate the driving factors that have a considerable impact on health-

related discussions on social media. The three main factors that I consider are 1) the

specific health issue by itself, such as the Zika outbreak or the current COVID-19

pandemic, 2) real-world events, such as a Public Health Emergency of International

Concern (PHEIC) announced by WHO, and 3) users who play key roles in heating

the discussions.

Second, I propose an algorithm to model information cascades on social media. By

analyzing the information cascades, then I demonstrate how misinformation is prop-

agated differently from true and relevant information.

Third, I propose a new set of features extracted from information cascades. Then,

to show the effectiveness of the proposed features, I build a misinformation detection

system that can predict misinformation with high accuracy.

Without loss of generality, I narrow down my concentration to Twitter, which in-

cludes a wide range of demographics of people, as pointed out by researchers such

as [14]. This micro-blogging service has 100 million active users posting 500 million

tweets every day [15]. Thus, it has become one of the main targets of practitioners

and decision-makers to study public opinion and foster public relations.

To practically demonstrate the effectiveness of my proposed frameworks in analyzing
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the Twitter platform, I analyze Zika-related discussions on Twitter in 2016 during

Zika Virus (ZIKV) outbreak.

In the rest of this chapter, I review existing state-of-the-art research works closely

related to the research questions that I plan to address in my dissertation.

1.1 Trend Detection on Twitter

Proposed methods and frameworks in the area of event detection, generally rely on

signal processing, Natural Language Processing (NLP), and text mining techniques

to analyze social media discussions [16], [17]. In this section, I briefly review some of

these research works.

Mathioudakis et al. , in [18], proposed TwitterMonitor, which is a system to detect

trends on Twitter in real-time. TwitterMonitor achieves this goal by first identifying

bursty keywords, the ones that appeared much more often in the tweet stream in

recent history. Then, it groups such keywords based on the number of their co-

occurrence in tweet stream to form trending topics.

In [19], Weng et al. model words occurrence in tweet streams using signals to capture

the temporal changes in their appearance. Afterward, they use cross-correlation to

find similarity between word-specific signals and therefore determine events. In a close

work [20], Cordeiro et al. consider bursts in hashtags occurrence, specified by wavelet

signals, to be events. Next, Latent Dirichlet Allocation (LDA) topic modeling is

performed to uncover the underlying topic of the identified events. In [21], a pipeline

is proposed to detect and visualize events. They construct a time series from texts

related to a topic within a specific time window. Then, the cumulative sum control

chart is utilized to spot temporal changes in the topic-specific signals. With a purely

NLP approach, Ren et al. in [22] propose an LDA based topic modeling and adopt

Support Vector Machine for Twitter sentiment classification. In a close work, authors

in [23] cluster tweets using the Locality Sensitive Hashing technique.
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1.2 Influential Users

In the real world, opinion leaders are determined based on their social values; how-

ever, in social platforms, criteria based on which opinion leaders are identified are

different. To emphasize the difference between them, the former opinion leadership

is called offline authority, while the former one is called online authority [24]. To

be more specific, opinion leadership in social media is determined by an individual’s

ability to influence on spreading information [24]. As an example, Cha et al. explains

that adhering to a single topic is important. Their results also show that when a

tweet receives a great number of retweets, it is mainly due to its textual content;

however, when someone receives high mention, it is more of the identity of that node.

In social platforms, leadership is more of credibility rather than authority [25]. Dis-

seminating true and on time information is two factors that give an actor credibility.

In addition, the level of persistency and activity of a user is also important. In [26] Xu

et al. explains that how much an individual is active on a social platform, how many

connections she has, and how much useful are information that she shares are the

factors that let someone acts as an opinion leader. To measure the level of credibility

of an actor, I can look into the number of retweets his messages receive.

Authors in [27] explains that opinion leaders not only are successful in getting atten-

tion but also can redirect others’ attention and influence the action that they take

by providing recommendations. Ordinary users may not have access to expensive or

specific resources (e.g., a TV channel) to share their opinion, but social platforms

have provided such users with a fast and cheap tool to share their viewpoints. There-

fore, the degree of being a leader is directly related to the usefulness and credibility of

information that one provides. Park et al. also believe that how much a user is active

influences her degree of being influential. They also propose the idea of multi-step

flow as opposed to two-step flow [28]. Multi-step flow means several users with a good

number of connections play a crucial role in relay information. Their analysis shows
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that demographic features, such as age and gender, do not have that much to do with

leadership; however, the number of followers and the level of activity of someone in

posting and sharing tweets are positively associated with being a leader on Twitter.

Vergeer explains that users with more connections tend to attract even more connec-

tions, or in other words, the rich get richer. Moreover, offline and online authority

are not separated, and they can influence each other [29].

In [30], Choi et al. explains that one can identify opinion leaders by investigating

how information flow. Opinion leaders on social media are not merely determined

by their social characteristics and values, but by some network-based attributes on

social platforms. They define an opinion leader as a node that facilitates the flow of

information. Their study shows that betweenness centrality has a positive association

with being opinion leader because the flow of information in the directed network of

mention that they constructed was not possible unless that node (opinion leader)

was present. The in-degree centrality was also important to identify opinion leaders;

people whose messages are frequently retweeted are also candidates to be opinion

leaders. However, there is not that much difference between the content that they

create with others.

Opinion leaders in social media do not necessarily have a high social status. If we

identify opinion leaders, we can also predict users’ involvement. When someone has

more followers, there is a great chance that she gets more attention because more

people will see her tweets [31].

In [32], Karlsen et al. explains that users in social platforms are exposed to the news

even if they do not want to because they see what people who they are connected to

share. Opinion leaders on social media are those who are highly active.

In [33], they create a network of emergency physicians and their followers. They

consider several factors to determine who is influential: Eigenvalue, betweenness, and

in-degree centrality. Their results show that one single metric is not a good criterion
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to measure the influence of a node, but we should consider them all. In [34], Heide-

mann et al. say users’ degree of influence is determined based on their connectivity

and level of activity. They use the idea of PageRank to identify opinion leaders.

In [35], authors proposed OLFinder. They first perform topic modelings, next find

users who post in each topic and categorize users, and then they calculate a compe-

tency score for each user. Then they calculate in-degree centrality. They calculate a

leadership score based on these two features.

It is noteworthy to mention that Opinion leaders are not necessarily experts in a

specific domain. In [36], authors define peer-experts and propose a technique to iden-

tify them in health-related forums. They define peer-experts as users who are not

officially trained but have good knowledge in a particular field. To this end, they rely

on the features related to the text, such as its semantic, and keywords. They look

at other features, such as the number of followers. They build a friendship network

and calculate PageRank for users. They also build a monthly time series from the

number of posts by a user. From the time series, they extract features such as mean

and skewness. Considering all user, text, and temporal related features, they conduct

a supervised classification to identify peer-experts from novice users.

Similar to the concept of peer-experts in the field of health, Okazaki et al. in [37] talk

about the role of prosumers as leadership to engage people in the field of marketing.

These users can get others’ attention by their recommendation. They also emphasize

that prosumers are not opinion leaders but are customers who are indirectly collab-

orating with a company by providing their positive feedback and recommendation.

1.3 Information Dissemination on Twitter

Researchers have tried to formulate and address the problem of misinformation

dissemination from various aspects. Authors in [38] propose an automatic method to

verify the credibility of tweets on Twitter. They use TwitterMonitor [18] to detect

trends and then using both user-related features, such as the number of followers, and
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text-related features, such as URLs within the message, to classify detected trends

into credible or non-credible. Odonovan et al. in [39] demonstrates that URLs, men-

tions, retweet, and tweet length are features that could be used to determine the

credibility of a tweet. Allcot et al. , in [40], conducted a study to investigate the

volume of misinformation circulated on social media, Facebook and Twitter, between

2015 to 2018. To this end, they curated a list of 570 fake news sites and considered

tweets/posts containing a link to these websites as misinformation. Their analysis

shows that the interaction these fake news websites have started to increase in early

2015, and this trend continued until one month after the election in 2016.

In [41], Gupta et al. hypothesize that rumors and misinformation increase when a

major event occurs. To validate their hypothesis, they gathered tweets posted about

particular events and propose a system, called TweetCred, to assign a credibility score

to the collected tweets. Using SVM and based on a set of features, TweetCred assigns

a credibility score to each tweet. RumorLens [42] is a pipeline that combines hu-

man efforts and automatic computational techniques to classify and visualize rumors

propagated on Twitter. Twitter-Trails [43] is a tool to detect misinformation on Twit-

ter. It does not directly classify tweets into misinformation or benign but provides a

tool to gather information upon a trend; such information then can be consumed by

an analyst to judge how much credible a tweet is. Some other similar systems that

have been proposed to detect misinformation and fake news are FactWatcher [44] and

Hoaxy [45].

In [46], Shao et al. investigate the role of bots in propagating misinformation. They

analyze tweets that point to low-credible articles. They identify such articles by

crawling low-credible websites and then use Hoaxy [45] to gather information about

the propagation of that information. They find tweets that are linked to these arti-

cles and investigate accounts that post those tweets. They assign automation score

to each account to identify bots. In [47], researchers constructed a recurrent neural
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network (RNN) to classify rumor versus real tweets.

In [48], authors explain that bots, accounts, which are managed by software, exhibit

behaviors that distinguish them from human accounts. Accounts are classified based

on a set of user-based, network-based, temporal, and textual-based features.

In [49], a technique is proposed to detect controversial trending topics or potential

rumors. By controversial, they mean people express doubt about the truth of a post.

Using regular expression, they identify clusters of tweets that are casting doubt on a

particular topic and clusters of rumors. The clusters, then, are expanded by adding

other tweets that are related to the topic. These clusters of rumors are ranked based

on a set of features. These controversial topics are then examined by analysts to

confirm whether they are truly rumors or not.

In [50], Wu et al. create networks from tweets, find embedding for nodes. These node

embeddings, along with other features, such as textual content of tweets and posting

times, are then used to classify messages to fake and non-fake news.

A close work to ours is that of Vosoughi et al. [51], which track cascades of some

known rumors. They define cascade as an unbroken chain of retweets of a tweet.

They define some measurements, such as depth and size, to quantify and compare

cascades. Their analysis shows that false information spread faster and farther [51].

Their work is different from ours in the sense that I aim to model (mis)information

propagation using networks and graphs and then investigate the propagation of a

piece of information by studying characteristics of such networks.

1.4 Dissertation Overview

In this doctoral dissertation, I aim to analyze health-related information dissemina-

tion on Twitter mainly from three aspects: 1) investigating driving factors that create

discussions and drive user engagements with health-related topics, 2) modeling infor-

mation diffusion on Twitter to compare and contrast health-related misinformation

versus true information propagation, 3) design and develop a misinformation detec-
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tion system which can identify health-related misinformation with high accuracy.

In chapter 2, I propose and examine two hypotheses about driving factors that im-

pact discussions on Twitter. The two forces that I investigate are 1) real-world events,

such as critical announcements released by health organizations, 2) users whose tweet-

ing/retweeting activities could lead to further engagements of other users by health-

related discussions.

In chapter 3, I propose a solution to model information dissemination on Twitter.

To be more specific, I present a method to estimate information diffusion networks.

By systematically analyzing the structures of those networks, I reveal that diffusion

patterns of misinformation are different from true information.

In chapter 4, I propose a set of salient features extracted from information diffusion

patterns to build misinformation classification models. In specific, I propose a method

to model the retweeting process of a tweet as a Non-Homogeneous Poisson Process

(NHPP). A subset of features that I propose in this chapter is extracted from these

NHPPs. To evaluate the presented features, I build several classifiers based on the

newly proposed and existing ones.



CHAPTER 2: Identifying Influential Factors in the Discussion Dynamics of

Emerging Health Issues on Social Media: Computational Study

2.1 Overview

This chapter aims to provide a methodological framework and insights to better un-

derstand the driving forces of web-based public discourse during health emergencies.

Therefore, health agencies could deliver more effective and efficient web-based com-

munications in emerging crises. In total, two hypothetical drivers were proposed and

examined: 1) sporadic but critical real-world events, such as the 2016 Rio Olympics

and World Health Organization’s Public Health Emergency of International Concern

(PHEIC) announcement, and 2) a few influential users’ tweeting activities. I used

the Zika virus epidemic in 2016 as a case study to formulate and test the proposed

hypotheses.

2.2 Introduction

2.2.1 Background

Social media platforms, such as Twitter and Facebook, are attracting a grow-

ing number of people with diverse demographic characteristics to share and ob-

tain information on the web. As a result, these platforms have become one of the

main targets for practitioners and decision-makers across various fields to under-

stand public opinion and, at the same time, disseminate information to the public

[52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]. Many public health

agencies and organizations, such as the US Centers for Disease Control and Prevention

(CDC), are active on Twitter and other social media platforms as the main channels

of communication with the general public, especially during health emergencies such
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as the 2014 Ebola and 2016 Zika outbreaks. The CDC has 67 officially associated

Twitter accounts that cover a wide variety of health- and disease-related topics [69].

In February 2016, when Zika caused 5168 confirmed noncongenital cases in 50 states

and the District of Columbia in the United States, and a much higher case number

across US territories [70], Dr. Tom Frieden, the former CDC director, hosted live

Twitter chats with the general public regarding Zika [69].

Nevertheless, there are multiple challenges in utilizing social media platforms as an

effective channel of communication. A considerable percentage of users are unfamiliar

with the emerging health issue. At the same time, user-posted content does not go

through any rigorous fact-checking process, making room for misinformation to take

advantage of such a situation. During the 2016 Zika epidemic, despite the CDC’s

outstanding online presence, inaccurate information about Zika proliferated on social

media and outperformed CDC (and other official sources such as the World Health

Organization (WHO)) by a large margin [69]. Uncertainty about the root cause and

transmission route of this virus gave room for the proliferation of rumors and misin-

formation [71, 72].

In addition to the problem of misinformation propagation, the rhetorical aspect of a

message, or in other words, crafting it based on the needs and perception of audiences

is, a critical challenge [73, 74]. Studies have shown a significant topic discrepancy be-

tween public concern about Zika and responses by CDC on Twitter [17, 68, 69]. More

specifically, the general public was more concerned about the transmission routes of

Zika and effective prevention methods, whereas the CDC focused on symptoms to

educate the public [75, 76]. Glowacki et al. [76] argued that this could be seen as

the failure of the CDC to identify what kind of information the public was looking

for and respond accordingly or it could be an on-purpose attempt by the CDC to

redirect public attention to what the CDC believed to be more important during the

epidemic.
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In addition, one important yet overlooked issue in utilizing social media platforms

as a communication mechanism with the public is the low rate of user engagement

while social media should be interactive and engaging environments for the public

interaction rather than being one-directional news outlets [77, 74, 60, 78, 79]. To

better engage the public, it is essential to recognize critical factors that are directing

and driving the general discussion dynamics on social media. Such factors can be

discovered by observing and analyzing the public’s tweeting behaviors on social me-

dia [61, 80, 78]. Learning about these factors can help health agencies to accurately

predict shifts in the public’s concern about health issues and provide the public with

useful information accordingly. As a result, systematically collecting and analyzing

data related to the public discourse of emerging health issues on social media, also

referred to as digital public health surveillance [62], is essential for understanding

public concerns and disseminating useful information correspondingly.

2.2.2 Objectives

In this chapter, I aimed to identify important factors that could potentially drive

tweeting dynamics in the 2016 Zika epidemic. I comprehensively analyzed all Zika-

related English tweets posted during 2016. I further proposed and evaluated the

following two testable hypotheses (H):

1. H1: The tweeting dynamics of Zika was associated with and influenced by a

few real-world critical events, other than the continuous Zika epidemic.

2. H2: The tweeting dynamics of Zika were driven by a few highly influential

users (colloquially referred to as influentials hereafter), which led to the public

discourse of Zika on Twitter.

2.3 Data Acquisition

More than six million English tweets, including the keyword Zika from January 1

to December 31, 2016, were retrieved via the Gnip application programming interface
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(API) through the Data Science Initiative (DSI), University of North Carolina Char-

lotte. All associated metadata with these tweets, such as retweet counts, posted time,

and the verification status of tweeting/retweeting ID, were also included in the data

set. This data set represented the complete public discourse about Zika in English

and was therefore not as prone to potential selection bias as the common 10% sample

provided by the common Twitter API. Therefore, the data set in this study was able

to provide an unbiased and comprehensive depiction of the public’s discourse of Zika,

the most discussed health topic in 2016 on a major social media platform.

2.4 Association Between Critical Events and Tweeting Dynamics

Health emergencies, such as the Zika epidemic, would never occur in isolation and

almost always be intermingled with other health, social, societal, and political events

in the real world. I suggest that related and sometimes unrelated real-world events

could be potential driving forces of Zika discussions on social media. Unlike the time

series of daily Zika case counts, these real-world events were much more discrete and

sporadic. Here, I evaluated the first hypothesis (H1) such that Zika-related tweeting

activities were substantially influenced by sporadic real-world events. I adopted the

definition of an event provided by Hasan et al. [17] stating, "An event, in the context

of social media, is an occurrence of interest in the real world which instigates a

discussion on the event-associated topic by various social media users, either soon

after the occurrence or, sometimes, in anticipation of it."

2.4.1 EventPeriscope Pipeline

I developed an analytical pipeline, EventPeriscope, to explore and quantify the

impact of real-world events on the tweeting dynamics of a specific topic (e.g., Zika

in this study) and to evaluate H1. Fig. 2.1 shows the main components of Event-

Periscope: Signal Constructor (SC), Peak Detector (PD), Content Analyzer (CA),

and Visualizer (VIS). To capture temporal dynamics of discussions of a specific topic
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Figure 2.1: EventPeriscope Pipeline.
on Twitter, SC module constructs a signal from the tweets posted in a particular time

window specified by the user. The constructed signal is then passed as an input to

the PD module. This module uses the wavelet transform to locate peaks in the input

signal. Observing a peak in close proximity to the time point when the hypothesized

real-world event happens is necessary but insufficient to conclude that the event has

directly caused the discussions. CA module examines tweets posted within a short

time interval, specified by the user, around the time when the event of interest oc-

curred to create a set of regular expression (regex) rules to detect tweets discussing

the event. Afterward, all tweets in the tweet stream dataset are tested against the

regex rules to find all matched tweets, and subsequently, estimate the percentage of

tweets related to this event. In the following sections, each module is explained in

detail.

2.4.1.1 Signal Constructor

To construct a signal from a tweet stream, first, the time interval between the first

tweet and the last tweet in the stream is partitioned into fixed-length time slots or

bins, and a signal is created from tweet counts in each bin. We use two attributes,

magnitude and width, to characterize a peak in the tweet signal. In other words,

we are interested in rises that are above a certain threshold in the signal and also

persist for more than a pre-specified time interval. Therefore, the signal is smoothed

to filter out small oscillations that last for a short period of time. For Smoothing, I

employ Kernel Density Estimation (KDE) [81]. KDE is a smoothing technique that



16

estimates the value of each data point by the average or weighted sum of its value

and the values of its neighboring data points. For every data point, its new value

f̂(x) is calculated by

f̂(x) = 1
nh

n∑
i=1

K(x− xi

h
), (2.1)

where K(.) is a kernel function, and h is the smoothing parameter. h determines

smoothness of a curve. Based on the shape of the peaks observed in the constructed

tweet signal, I use Gaussian kernel for smoothing:

K(U) = 1√
2π

exp(u2), (2.2)

The resulting smoothed signal is then passed to PD module to locate peaks.

2.4.1.2 Peak Detector

PD module utilizes the wavelet transform to detect peaks in the signal constructed

by SC. In the wavelet transform, wavelet coefficients associated with a function f(x),

the tweet signal in my case, are calculated by

Wf (a, b) = 1√
a

∫ ∞
−∞

f(x)Ψ(x− b
a

)dx, (2.3)

where Ψ(t) denotes the complex conjugate of the mother wavelet Ψ(t), a is the scale,

and b is the time shift. Coefficients at different scales and time shifts are represented

by a matrix. When a peak appears in the signal, maximum values of different scales

occur at close time shifts, resembling a ridge in the coefficient matrix [82]. In this

paper, I adopt Mexican hat wavelet as the mother wavelet:

Ψ(t) = 2
√

3σπ 1
4

(1− ( t
σ

)2) exp(−t
2

2σ2 ), (2.4)
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where σ is the scale.

2.4.1.3 Content Analyzer

CA module interactively constructs a set of regular expression (regex) rules describ-

ing an event. Subsequently, it utilizes the constructed rules to retrieves all tweets in

the stream that are related to the event of interest.

CA module requires two user-provided inputs: 1) a set of keywords, which can be

single words, hashtags, or mentions, related to the real-world event of interest, and

2) a time interval around the event that CA module uses for its analysis. Keyword

Extender in CA module extends the input keyword set by examining tweets posted

within the specified time interval to find other keywords that have the highest correla-

tion with the user-specified keywords. To this end, Keyword Extractor uses Pointwise

Mutual Information (PMI) to quantify the association between keywords. PMI is a

statistical approach for measuring the level of dependency between two observations

[83], in my case two words. PMI between two words w1 and w2 is calculated by:

PMI (w1, w2) = log

(
p (w1, w2)

p (w1)× (w2)

)
, (2.5)

where p(.) is probability function. Two words that have a high PMI value are strongly

associated with each other. In other words, they co-occur frequently. Keywords are

sorted based on their PMI value, and a set of keywords with high PMI value are

selected. Keyphrase Extractor extracts keyphrases containing the keywords generated

by Keyword Extractor. In this step, I adopt the NLP technique [84]. First, the

textual contents of tweets are lemmatized and tagged with a Part-of-Speach (POS)

tagger. Then, Keyphrase Extractor utilizes a predefined context-free grammar [84], to

retrieve all noun phrases. Next, noun phrases containing the event-relevant keywords

are extracted and sorted based on their frequencies. The user will be provided with

this list to choose keyphrases that describe the event. Matching all tweets in the
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dataset with selected keyphrases to find relevant tweets is technically challenging as

such keyphrases can be rewritten in multiple forms, and many of the possible forms

may not be presented in the short time interval that is considered to develop event-

relevant keyphrases. For instance, spaces between words in a keyphrase might be

dropped (e.g., OlympicGames), spaces might be replaced by other characters such

as dot or dash (e.g., Olympic.Games), or other words might be inserted between the

words (e.g., Olympic Summer Games). To handle such variation and combinations,

Regex Generator constructs a set of regular expressions (regex) rules based on the

selected keyphrases. Moreover, the user can customize the generated rules.

2.4.1.4 Visualizer

VIS module utilizes the resulted regex rules to capture tweets relevant to the event

of interest. To be more specific, VIS tests all tweets in the dataset against these

regex rules, and constructs time series from the number and percentage of matched

tweets. The constructed event-specific time series demonstrate when the event ap-

peared in the discussions and what percentage of discussions were dedicated to this

event. Moreover, peaks in these time series indicate the time points when the event

had elevated discussions. Analysts can then carry out more investigation to uncover

the underlying reason for the observed rises.

2.4.2 Case Studies of Critical Events

Real-world events could be categorized into 2 dichotomized and mutually exclusive

types [16]: (1) planned (ad hoc) events that people expected in advance, such as

the 2016 Rio Olympics; (2) unplanned (posthoc) events that people would not know

beforehand, contrary to planned events. An example of unplanned events was the

WHO’s Public Health Emergency of International Concern (PHEIC) announcement

about Zika on February 1, 2016. In the next section, I have discussed methodological

differences in exploring planned (Rio Olympics 2016) and unplanned (WHO-PHEIC)
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events in detail. Planned events might increase their presence in tweeting around

the event, but it could be mentioned throughout the entire year because people were

well aware of it beforehand. Unplanned events, however, would not be mentioned in

tweets until their occurrence in the real world. In the next section, I examine the

impact of these two types of real-world events on Twitter discussion dynamics.

2.4.2.1 Unplanned Event: WHO-PHEIC Announcement

On Feb. 1, 2016, the Director-general of WHO, Margaret Chan, declared a PHEIC

of potential Zika pandemic [85]. In this statement, in addition to raising concerns

over the linkage of Zika with microcephaly and other neurological disorders, WHO

provided travel advice in Zika-impacted regions. The WHO PHEIC announcement

was an unplanned event, and the general public did not have prior knowledge of its

occurrence. Therefore, it could have mainly influenced tweets posted after the PHEIC

announcement. I used EventPeriscope to quantify the influence of the WHO-PHEIC

event on Twitter Zika discussions; the details are described as follows.

First, a signal was constructed from posted Zika-related tweets, which is referred to

as the main tweet signal hereafter. The main tweet signal peaked almost immediately

after WHO-PHEIC event on day 32 (Feb. 1, 2016), indicating a potential correlation

between the event and Zika discussions. The textual contents of tweets were then

analyzed to verify the association between Zika and WHO-PHEIC. The set of tweets

posted in a two-day interval, the day of WHO-PHEIC announcement (Feb. 1) and

one day after (Feb. 2), were used as the input of the CA module to construct a

regex rule describing the WHO-PHEIC event. In addition, this module was given a

set of two keywords, WHO and PHEIC, relevant to the WHO-PHEIC announcement

(event). To find other relevant keywords, the Keyword Extractor in the CA module

used pointwise mutual information (PMI ), and calculated PMI values between each

of these two keywords and all the keywords extracted from the input tweet set. The

keywords were then sorted from largest to smallest based on PMI values, and the
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ones with the highest PMI values were selected.

The additional set of keywords found using the above approach included emergency,

public, international, global, world, and health. A single word within a text is not

usually descriptive enough to reveal the main topic of the text. Therefore, to take

the context of a tweet into consideration, and obtain a more accurate result, the

Keyphrase Extractor uses the keywords to extract keyphrases describing the event.

We define a keyphrase to be a noun phrase which contains at least one of the keywords.

Obtained Keyphrases relevant to WHO-PHEIC are public health emergency, global

emergency, and world health. Based on these key-phrases, a regex rule was crafted.

By using a similar approach, another regex rule was generated to capture tweets

that were talking about WHO (regardless whether it was related to WHO-PHEIC

or not). Finally, the VIS module tested all tweets in the tweet stream dataset with

the resulted regex rule, and created two daily time series; one demonstrating the

dynamics of tweets about the WHO-PHEIC and the other one pertaining to WHO.

2.4.2.2 Planned Event: RIO2016

The Rio 2016 Olympic Games were held from Aug. 5- Aug. 21, 2016 in Rio

de Janeiro, Brazil, amidst global concerns about Zika outbreak. In November 2015,

Brazilian authorities declared a national public health emergency due to a high rate of

confirmed Zika cases [77]. As RIO2016 was a planned event, I expected to see tweeting

about Zika and RIO2016 before its opening. The CA module of the EventPeriscope

pipeline was initialized with tweets posted from Aug. 4 to 6 (days 217 to 219) within

plus or minus a 1-day window of the RIO2016 opening. Then, a regex rule was

generated to detect the co-occurrence of the Zika and Rio Olympics topics in Twitter

discussions. The final keywords and key phrases were Rio, Olympics, Rio2016, 2016

Olympics, and Rio Olympics.
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2.5 Association between Online Influentials and Dynamics of Zika Discussion on

Twitter

In this section, I hypothesized (H2) that a few influentials on Twitter made a sub-

stantial contribution in driving the tweeting dynamics, that is, a noticeable sudden

rise in the number of tweets. To evaluate this hypothesis, I defined 4 different types

of web-based influentials in 2 major categories: active influentials who posted a large

number of original tweets about Zika (top tweeter [TT]) and who retweeted a lot

about Zika from other accounts’ posts (top retweeter [TR]). These users actively dis-

seminated Zika-related information to the public. In addition, influentials on social

media could be passive as well: whose original posts were retweeted a lot (top re-

ceived retweets [TRRT]) and who received many mentions (@_userID) from other

Twitter users (top mentioned [TM]). These passive influentials, on the other hand,

were more reflective of public perception and engagement of Zika discussions on Twit-

ter. I ranked and selected top 100 users in each of these four influential groups. The

tweeting dynamics of each user in the TT, TRRT, and TM group and the retweeting

dynamics of each user in the TR group were then extracted and examined. These

tweeting/retweeting dynamics were then aggregated and compared with the overall

tweeting dynamics using cross-correlation function (CCF) in each quarter of 2016 as

well as the entire year.

CCF measures the temporal similarity between the two time series, as shown in equa-

tion 2.6. To calculate CCFX,Y (k) between two discrete time series X [t] and Y [t],

first the time series Y [t] is shifted k units, where −∞ < k < ∞, to the left in time,

and then the correlation between X [t] and Y [t+ k] is computed. CCFX,Y (k) at time

shift k is calculated by

CCFX,Y (k) =
+∞∑

t=−∞
X∗[t]Y [t+ k], (2.6)
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where ∗ represents the complex conjugate of a function. Positive correlation value

shows that the signal which is shifted in the calculation of CCF is ahead of the other

signal. Maximum cross correlation occurs in the time lag k where X [t] and Y [t+ k]

are similar the most.

I defined Yg,i(t) to be the time series of i-th user in group g, where g ∈ {TRRT, TM,

TT, TR} and then calculated CCF (X(t), Y(g,i)(t)), where CCF (.) denotes cross cor-

relation function. This let us to derive the time lag between each user’s tweeting

(or retweeting) dynamics and the main tweet signal to test whether these influentials’

tweeting activity preceded the overall tweeting dynamics. This step was critical to fur-

ther reveal if these influentials actually initiated an increasing number of Zika-related

tweets, or the other way around, that is, these influentials were actually following and

catching up with the general trend on Twitter.

Moreover, to test the group-level association between influential type and the overall

tweeting dynamics, or in other words, to examine how each group of users are acting

as a whole, for each group, I also calculated cross correlation between Yg,total(t) and

X(t), where Yg,total(t) is the aggregation of all Yi(t) and calculated by:

Yg,total(t) =
100∑
i=1

Yi(t)

I also examined the overlap between the four groups of influentials by calculating

the intersection of any two sets of influentials. This would reveal if certain influential

group(s) on Twitter would also be influential in other ways. In particular, I wanted to

identify influentials who were both actively disseminating information to the public

(i.e., in TT or TR groups) and passively receiving attention from the general public

on social media (ie, in TRRT or TM groups).
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2.6 Results

2.6.1 Descriptive Results of the Zika-Related Tweeting Dynamic

A total of more than 6 million English tweets with the keyword Zika posted during

2016 were retrieved, of which approximately 4 million were original posts, and the

remaining were RTs. More than 70% of the original posts received no retweet at

all, and only 2% of tweets received at least five retweets. The Gini coefficients of

the number of retweets were 0.74 and 0.98 for all original tweets and original tweets

that received retweets, respectively. This indicated a very high heterogeneity in the

potential influence of individual tweets on social media.

2.6.2 Association between Sporadic Critical Events and Zika Tweeting Dynamics

The peaks of Zika tweets were not synchronized with peaks of Zika counts, as dis-

cussed in the previous section. A large number of Zika-related tweets were associated

with a few sporadic real-world events.

The association between Zika-related tweets and the unplanned real-world event

WHO-PHEIC (Public Health Emergency of International Concern) announcement

was shown in Fig. 2.2. WHO and WHO-PHEIC tweets were subsets of all Zika-

related tweets. Upper panel of Fig. 2.2. was for the absolute number of tweet counts.

The blue signal showed that all Zika-related tweets in 2016. The green and orange

ones represented WHO and WHO-PHEIC signals, respectively. The lower panel of

Fig. 2.2. showed the percentage of WHO and WHO-PHEIC tweets relative to all

Zika tweets. If a tweet had both keywords/keyphrases of WHO and PHEIC, then the

same tweet would be included in both categories. PHEIC and WHO related tweets

had a high overlap (>50%), indicating the substantial impact of the WHO PHEIC

announcement on public discourse on social media.

The keyword "WHO" had a strong presence in Zika tweeting throughout the first two

quarters of 2016. There was a sudden rise in the number of tweets between day 31 and
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32 of 2016 (Fig. 2.2); the number of Zika-related tweets increased drastically from

1481 on day 31 (Jan. 31) to 21171 on day 32 (Feb. 1), when WHO announced Zika

epidemic as PHEIC. On Feb. 1, 2016, 35% of all Zika-related tweets were relevant to

WHO, and 27% were about the announcement of PHEIC. This announcement also

caused cascading public announcements in countries such as Brazil, Honduras, and

the U.S. The highest number of tweets (92,000) posted on a single day regarding

Zika was observed on day 34, just two days after the WHO-PHEIC announcement.

Therefore, the unplanned WHO-PHEIC announcement was the driving force of the

largest peak of Zika tweeting dynamics in 2016. It is worth noting that the discussion

about the PHEIC started on Jan. 28, when the director-general of WHO announced

that she convened the International Health Regulations (IHR) emergency committee

and would have a meeting on Feb. 1 [86]. In addition to this peak, WHO-PHEIC

signal had another prominent peak around day 323 (Nov. 18, 2016; Fig. 4). On Nov.

18, 2016, about 32% of the Zika tweets were related to WHO-PHEIC because WHO

declared that the Zika epidemic was no longer a PHEIC on that specific day. There-

fore, our EventPerisope analytical pipeline was effective in identifying and evaluate

the impact of real-world events on tweeting dynamics.

The association between planned event RIO2016 and the peaks of Zika tweeting were

shown in Fig. 2.3: The upper panel was for the absolute number of tweet counts. The

blue and green signals showed all Zika-related tweets and RIO2016 Olympics tweets

in 2016, respectively. The lower panel showed the percentage of RIO2016 tweets rel-

ative to all Zika tweets. In general, discussions about Zika and RIO2016 Olympics

started from the beginning of 2016 all the way through a few days after the Olympics

ended. In other words, although the event of the RIO2016 Olympics only lasted for

two weeks, discussion of this event with regard to Zika went on throughout the entire

year because the Olympics was a planned event. Specifically, on its opening cere-

mony day (Aug. 5), 12% of all Zika tweets were related to RIO2016 and up to 18%
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Figure 2.2: Upper Panel: The blue curve depicts Zika-related tweet counts in 2016.
The green and orange curves represent the number of tweets containing WHO and
WHO-PHEIC keyphrases, respectively. Lower Panel: Green and Orange curves
show the percentage of tweets containing WHO and WHO-PHEIC keyphrases, re-
spectively.
in the next day. In addition, RIO2016 had a prominent presence in other noticeable

peaks of the Zika tweeting signal. For example, RIO2016 constituted 71% of all Zika

related tweets on day 149 (May 28). Our further investigation revealed that on day

133 (May 12), a researcher started the debate that RIO2016 should be canceled or

Figure 2.3: The green signal in the lower panel represents the percentage of tweets
related to Rio 2016 Olympic Games.
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at least postponed amid concerns of the Zika outbreak [87]. However, on day 149

(May 28), WHO released a statement [88] explaining it was not necessary to take

such an action. Because of the WHO announcement regarding RIO2016 and Zika on

day 149, the WHO-Zika signal also had a peak on day 149; WHO-related Zika tweets

comprised 34% of all Zika tweets (Fig. 2.2). These results supported hypothesis H1

that Zika tweeting dynamics were triggered by other events in the real world.

2.6.3 Association between Online Influentials and Zika Tweeting Dynamics

In this section, I presented the role of TT (top tweeter), TR (top retweeter), TRRT

(top received retweets), and TM (top mentioned) influential user groups, as defined

previously

2.6.3.1 Comparison between Each Group of Influentials and Zika Tweeting

Dynamics

Tweeting dynamics in TRRT, TT, TM groups, and retweeting dynamics in the TR

group were extracted and constructed for the top 100 users in each group. Quar-

terly association between these groups’ tweeting dynamics and overall Zika tweeting

dynamics were shown in Fig. 2.4-2.7. Each figure had three panels. The upper

panel showed the overall tweeting dynamics, the middle demonstrated the tweeting

dynamics of the particular influential group, and the bottom one showed CCF of the

two signals. Group-level tweeting dynamics in TT, TRRT, TM were highly correlated

with and approximated the shape of the overall tweeting dynamics (Fig. 2.4, 2.6, 2.7).

However, the retweeting dynamics of the TR group was not closely associated with

overall Zika tweeting dynamics (Fig. 2.5). In the TR group, there were peaks in their

retweeting signal on day 170, 173, 265, and 303; however, no noticeable corresponding

peaks were identified around these days in the main Zika tweeting signal. I conjec-

tured that TR group, in general, would be more active following certain undetected

events, which did not necessarily coincide with the overall Zika tweeting dynamics.
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More importantly, for TT, TRRT, and TM groups, the maximum CCF occurred at

+1 day lag in the first three quarters of 2016 (Fig. 2.4, 2.6, 2.7), indicating that these

groups’ tweeting activities were one day ahead of the overall discussion on Twitter.

For example, the peaks in the overall Zika tweeting signal were lagging behind the

peaks in the TM group by approximately one to two days. Therefore, these influential

groups’ tweeting activities were not only highly associated with the overall tweeting

dynamics, but these influentials were also the potential driving forces of the over-

all Zika discussions on Twitter. As a result, by observing a few hundred influentials’

tweeting activities, I could accurately predict the upcoming rise and fall in the overall

tweeting dynamics. Nevertheless, such lag diminished to zero in the fourth quarter

for all three influential groups, as the Zika epidemic and PHEIC ended in the fourth

quarter of 2016.

In addition, I examined the contributions of individual users in each of these influ-

ential groups TT, TRRT, and TM. I further calculated the CCF between a user’s

tweeting time series and the overall tweeting dynamics in each quarter as well as the

entire 2016 (Fig. 2.8). Time lags of the majority of influential users were very close

to zero, which implied that these users could not be driving the overall discussion of

Zika on Twitter, but rather participating in the discussion. However, there were a

few users whose time lags were substantially positive, indicating their potential role

in driving the overall Zika tweeting dynamics. Furthermore, the quarterly results

revealed tweeting dynamics of influentials at finer temporal resolution than yearly re-

sults (Fig. 2.8). Note that in each panel, the first four boxplots (labels 1-4 in x-axis)

were quarterly, and the last one (5) was for the entire year of 2016. In general, most

influentials did not engage in Zika discussions on Twitter constantly and continuously

across the entire year of 2016. They might be active and highly influential during cer-

tain time periods when they were interested in Zika hence participated in discussions

on Twitter. As a result, aggregating all individual influential users’ tweeting activities
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in the entire year would undermine each user’s temporal dynamics of tweeting and

consequently, its time-specific influence on the overall discussion dynamics on social

media.

2.6.3.2 Overlap between Influential Groups

In addition to exploring each potential influential group’s role in driving the Zika

tweeting dynamics, I also investigated whether different influential groups had over-

laps. Table 2.1 showed the year-long intersections between any two groups of in-

fluentials, while Table 2.2 was on a quarterly basis for selected groups. TM group

had no member who also belonged to TM or TRRT groups, and TT group had no

intersection with TRRT group. These results suggested that being highly active did

not necessarily guarantee to receive a lot of mentions and/or retweets from other

users on social media. Therefore, active and passive influentials about the emerg-

ing health issue of Zika on social media were distinctive users. On a quarterly

Table 2.1: Number of intersections between the four groups of users

TM TRRT TT TR
TM 47 11 0

TRRT 47 0 0
TT 11 0 6
TR 0 0 6

Table 2.2: Quarter based intersections between the four groups of users

Quarter TM-TR TM-TRRT TR-TRRT

1 4 49 3
2 4 43 5
3 3 44 2
4 6 45 8

basis, there were quite a few influentials being mentioned and being retweeted a lot

at the same time (Table 2.2 column 2). On the other hand, there were only a few

users in TR group who were also highly mentioned and retweeted (Table 2.2 column
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1 and 3). These user accounts belonged to health organizations, such as @cdchep,

and @CDCChronic, and also a few well-known but independent individuals, such as

@Laurie_Garrett and @MackayIM. This reinforced our previous finding that active

and passive influentials were not the same users. For public health agencies such

as CDC, while they might actively disseminate information to the public on social

media, their efforts were not well recognized by the general public users. Therefore,

health agencies needed to craft more effective strategies to engage the public with the

discussions of an emerging health issue on social media.

Figure 2.4: Correlation between tweet stream of all users and users in TT group.

2.7 Discussions

Communicating with the general public is essential in risk communication during

public health emergencies [89]. Hosting a large and diverse population, social media

platforms such as Twitter are valuable resources for public health professionals to

understand and analyze public opinions on emerging health issues [80, 90, 91, 92, 93].

During the 2016 Zika epidemic, Twitter was demonstrated to be an ideal place to ex-

plore public concerns and interests about the disease through time and across different
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Figure 2.5: Correlation between tweet stream of all users and share activity of users
in TR group

Figure 2.6: Correlation between tweet stream of all users and users in TRRT group.

locations [91, 76, 94, 69, 95, 78]. In addition to a means of understanding public opin-

ions, social media platforms are utilized by health professionals to communicate with

the public and to disseminate accurate and timely information regarding an ongoing
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Figure 2.7: Correlation between tweet stream of all users and post activity of users
in TM group.

health emergency [96]. For example, in [97] Chen et al. has evaluated the role of CDC

in disseminating Zika-related information on Twitter during the Zika outbreak. That

study revealed that CDC played a critical role in tweeting Zika-related information

during the first quarter of 2016 when the actual disease counts were still relatively

low. However, CDC’s Zika-related tweets quickly and drastically decreased after the

first quarter of 2016, when the Zika case counts went up [69]. One important yet

under-explored aspect of online discussions of health emergencies is to identify po-

tential driving forces that can lead and change the dynamics of discussions on social

media. Identifying such influential factors/contributors is critical for devising effective

strategies in health crisis management and risk communication. Currently, studies

have shown that discussion on social media can help estimate disease burden more

accurately, known as the Infodemiology [79, 98, 99]. However, it is not clear whether

and how the actual situation of a health issue influences the public’s perception and

discourse on social media. Moreover, the correlation between real-world events and

their potential impact on online discussions of health emergencies is not well investi-
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(a) Posts by users in TRRT (b) Posts by users in TM

(c) Posts by users in TT (d) Posts by users in TR

Figure 2.8: Boxplot formed from comparing the tweet activities of individuals in four
groups with the main stream
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gated and understood. In addition to investigating the impact of "what happened,"

it is critical to evaluate the role of online influential actors, i.e., who would be the

online opinion leaders that drive online discussions. These two research questions

correspond to the two hypotheses that I have investigated in this study. My system-

atic and comprehensive analyses have provided a novel and holistic view of different

factors impacting discussions about a health emergency on social media. This new

perspective will help us better understand the complexity of such discussions.

In the future, there are a number of directions that I could pursue to further improve

and expand this work. As one example, the last hypothesis that investigates the role

of online influentials is not mutually exclusive from the first hypotheses. For instance,

my preliminary study has shown that during and immediately after the WHO-PHEIC

announcement on Feb. 1, 2016, many news agencies’ Twitter accounts were helping

to disseminate this announcement on Twitter. Therefore, both the critical real-world

event (WHO-PHEIC announcement) and online influentials (news agencies’ accounts)

were simultaneously driving Zika tweeting dynamics. In the future, I plan to further

explore changes in the dynamics of discussions by constituent contributors. In this

chapter, I have demonstrated high association and temporal precedence between the

tweeting activity of influentials and the overall tweeting dynamics. Online influen-

tials’ tweeting signals preceded the overall tweeting signal regarding Zika, which were

strong indicators of potential causality. My results suggest that tweeting activities of

TRRT (top received retweets), TT (top twitterer), and TM (top mentioned) groups,

are good representatives of the overall tweeting dynamics. Therefore, their tweet-

ing dynamics can be used to accurately approximate overall discussion dynamics on

social media and to further predict the upcoming changes in discussion dynamics

effectively.

In order to investigate discussion dynamics on Twitter, a highly sophisticated and

complicated social media platform with millions of tweets, I have utilized an array
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of different computational methods, including time series analysis, signal processing,

content analysis, and information theory computations. In particular, I have devel-

oped an analytical pipeline, EventPeriscope, to integrate and consolidate these differ-

ent computations. EventPeriscope pipeline is the practical outcome and contribution

of this study. Comparing to other similar analytical frameworks, EventPeriscope has

the advantage of detecting both planned and unplanned events related to a specific

discussion topic. This analytical pipeline can be readily transferred and applied to

investigate other emerging or non-emerging issues on social media such as general

discussion of health issues, identify potential driving forces of the discussion, and

evaluate their influence.

I need to point out that the two major drivers on tweeting dynamics in this study are

not an exhaustive list of possible drivers. Further potential drivers, such as individual

user or organization user, verified or unverified user status, will also be investigated in

the future. In addition, EventPeriscope can be used to detect other concurrent issues

that might also influence Zika tweeting dynamics, such as the 2016 U.S. Presidential

Election.

2.8 Conclusion

This chapter analyzed Zika-related tweeting dynamics in 2016 when Zika became

a global concern. I revealed potential drivers of Zika discussions on social media

by testing three hypotheses. First, I showed that peaks of Zika tweeting dynamics

were significantly influenced by and associated with critical real-world events, both

planned, such as the Rio Olympics and unplanned such as the WHO-PHEIC an-

nouncement. I further evaluated the role of potential online influentials and demon-

strated that top twitterer (TT), top mentioned (TM), and top users whose tweets

were retweeted many times (TRRT) were potential drivers of the overall discussion

of Zika on Twitter. Through these careful analyses of tweeting dynamics, my study
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revealed potential contributors and drivers of discussion on an emerging health topic.

Insights gained from this study could be applied to other emerging health topics in

the future. More importantly, I demonstrated the feasibility of my comprehensive

analytical approach and the EventPeriscope framework to investigate online discus-

sions dynamics of health emergencies and to identify potential driving forces of these

discussions.



CHAPTER 3: Comparing Health-Related Misinformation and Relevant Information

Dissemination on Social Media

3.1 Overview

Health-related misinformation infiltrates and proliferates on social media. They

cause unnecessary confusion, anxiety, mistrust, and anger in society, especially dur-

ing health emergencies. Current studies generally focus on information content as-

pect to detect potential misinformation, while ignoring other important aspects of

information. In this chapter, I aim to provide a novel methodological framework to

distinguish health misinformation from relevant information on social media based on

information dissemination dynamics. Information dissemination of a specific tweet is

defined as its retweet (RT) process, i.e., who-retweeted-whom. I aim to extract new

features from information dissemination dynamics that will shed light on understand-

ing why and how health misinformation proliferates, facilitating the development of

a more accurate health misinformation detector, and guiding more effective health

communication strategies in social media era.

3.2 Introduction

A growing number of users from a wide demographic rely on social media platforms

as a real-time source of information to share and obtain news about various topics

[100, 101]. These platforms are fast, omnipresent, and easily accessible. As a result, a

piece of information can go viral in a short time. Contents that are posted on a social

platform, such as Twitter, are mainly user-generated and the lack of effective system-

atic fact-checking mechanisms makes these high-velocity environments susceptible to

be abused for the propagation of misinformation. In particular, the proliferation of
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health-related misinformation on social media, especially during health emergencies,

is a serious threat to modern societies [102]. Anti-vaccine debates on Twitter and

Facebook [5, 103, 104], misleading videos about Zika on Facebook during the 2016

Zika pandemic [6], or misleading videos about tobacco, vaporing, and marijuana

products on YouTube [105] are a few examples showing the necessity of developing

a comprehensive surveillance system to identify and neutralize the effect of different

forms of health-related misinformation. Social media platforms have been proven to

be an effective tool to enhance the public’s knowledge of health [106, 107] and also

a rich resource to study the public’s perspectives, reactions, and concerns toward

various topics [108, 109, 68, 110]. Equipped with an effective surveillance system,

practitioners can closely monitor discussions to understand the uncertainty and lack

of knowledge in a particular area and therefore act proactively by providing more

resources[111, 112, 113, 114]. On the other hand, they can detect misinformation

and neutralize it by providing true information [7]. Developing such a system is not

a straightforward task and demands the collaboration of researchers from different

disciplines [115].

Most research works on misinformation generally focus on the content aspects, lin-

guistic features, and motivation of its propagators [38, 116, 117, 118, 119, 120, 121] to

detect and characterize potential misinformation while paying less attention to other

important aspects. Since a misinformation epidemic very much resembles real infec-

tious disease epidemic, focusing the misinformation content is similar to working on

the pathogen side alone. Misinformation content can be altered to resemble real infor-

mation to avoid being detected by automated algorithms [50], similar to a pathogen

that can mutate to avoid being detected by the immune system. Therefore, I suggest

that only relying on textual content is not adequate to comprehensively tackle the

health misinformation challenge, and we need to understand health misinformation

from more aspects.
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The pathogen, the environment, and the hosts are collectively known as the insep-

arable Epidemiological Triad or Epidemiological Triangle, a fundamental concept in

infectious disease epidemiology. Similarly, I propose that the misinformation, the on-

line, especially social media environment, and the users also form an Infodemiological

Triad. One of the key approaches to investigate an infectious disease outbreak is to

track the trajectory of epidemic, i.e., who are infected from whom at what time. In

this study, I define the dissemination of a particular piece of (mis)information as a dy-

namic process where the original post (e.g., a tweet) is propagated on an information

dissemination network [122, 123, 124]. There are three common ways that a piece of

information (post) can be disseminated on social media: through retweet (reposting

or sharing in other social media platforms), liking, and commenting. It is technically

difficult to track likings from users as most social media platform’s metadata do not

contain explicit information of who liked whom at what time. Commenting, on the

other side, adds commenters’ own opinions on top of the original post, which may or

may not necessarily align with the original one. Retweeting shows that the retweeter,

if not a bot or cyborg, cognitively and actively recognizes the importance of the orig-

inal post and is willing to let other users see their retweeting activity because the

record of retweet will show up on the retweeter account, but liking a post will not.

Therefore, in this study, I focus on retweet as the major information dissemination

method, where the temporal dynamics of retweets occur on the network of retweeters

[124, 50]. I aim to develop an algorithm to infer and reconstruct the information

dissemination network through retweeting activities, extract quantitative features of

the networks of both misinformation and real information groups, and investigate

how they differ quantitatively using network analysis techniques.

To perform my analysis, I especially focus on the Zika epidemic crisis in 2016. During

the Zika outbreak in 2016, Centers for Disease Control and Prevention (CDC) had

a strong presence Twitter by releasing the latest findings and instructions [94, 69].
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However, uncertainty about the root cause and transmission rout of this virus opened

the room for the proliferation of rumors and misinformation [71, 72].

The outcome of this study is a novel set of features extracted by comparing and con-

trasting misinformation and real information cascades. This study will leverage our

understanding of how specific health misinformation proliferates on social media and

how they might have outcompeted real information. Eventually, the insights from

this project will help develop more effective health communication strategies in social

media against various health-related misinformation.

3.3 Method

3.3.1 Data Retrieval and Processing

The entire year of 2016 (January 1 - December 31, 2016) was chosen as the sampling

period for this study. This decision was made for the following reasons. First, the

Zika epidemic did not become a nationally notifiable condition in the United States

until 2016, although some suspected Zika cases were reported in the United States

at the end of 2015. Second, this time period covers the major milestones in the Zika

epidemic timeline, such as the WHO’s initial warning predicting the spread of the

Zika virus across the Americas, the official declaration of the PHEIC for the Zika virus

on February 1, 2016, and the end of the PHEIC on November 18, 2016. Using Zika

as the keyword, a total of 3.7 million English tweets and retweets published in 2016

were collected via the Gnip application programming interface (API) through the

university’s data science program. This dataset was the complete dataset, including

all English Zika discussions occurring on Twitter in 2016. It was not the common

1% sampled data from Twitter’s own API. Therefore, this dataset provided a more

comprehensive, complete, and less biased view of the public discourse of Zika on

Twitter in 2016.
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3.3.2 Misinformation Identification and Relevant Information Matching

All the original Zika tweets were ranked based on the number of received retweets,

from highest to lowest. Following this descending rank, the top 5,000 most retweeted

Zika tweets were selected as the sample pool. Then an operational definition of mis-

information was established such that the information in the tweet was not evidence

based. Peer reviewed journal articles and conference proceedings, government and

health agencies (e.g., CDC and WHO) announcements and statistics, fact-checking

websites, were all used to evaluate the validity of the tweet. Based on this definition,

misinformation included but was not limited to the following categories: misconcep-

tion or misunderstanding of scientific concepts were those that could be verified by

current literature, for example, stating vaccination as a cure instead of prevention of

Zika. Fabricated stories had no scientific or actual real-world evidence, which could

also be verified by peer-reviewed literature and health agencies’ statistics. Conspiracy

theories related Zika with unverifiable yet controversial topics such as genetically-

modified (GM) mosquitoes, "big-pharma", and vaccinations. Similarly, rumors were

information which could not be verified or lack of evidence support. Discrimination

and bias were using Zika to discriminate against a group of people of certain gen-

der, race, ethnicity, nationality, religious belief, political view, and sexual orientation.

Hate language, name-calling, and profanity, on the other hand, was usually towards

a specific person but not the larger group. Disinformation did not explicitly discuss

Zika but rather used Zika as a hot and controversial topic to divert the public dis-

course to other topics that the propagators were interested in, for instance, GMOs.

Sarcasm, while generally not considered as a type of misinformation, had the abil-

ity to hide the real intention and confuse the readers, especially in this fast-paced

social media age. Therefore, specific sarcasm tweets could also spread the potential

misinformation within it. Note that not all sarcastic tweets were misinformation,

and sarcasm tweets were treated case-by-case. An example of these different types of
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misinformation is shown in Table 3.1.

Table 3.1: Examples of Different Types of Zika Misinformation Tweets

Types of Misin-
formation Content

Misunderstanding/
Misconception

University of Pittsburgh finds vaccine that cures Zika in
mice. What’s up every other University? Does Pitt have
to cure every disease?

Fabricated Story
Zika virus: Health department urges calm, says no cases...
https://t.co/e6SaiYp9UP #Zikavirus

Conspiracy

"Zika Hoax Created By The World Health
Organisation To Destroy Brazil’s Economy!"
https://t.co/WZqj1nQagV https://t.co/NEDTLv7oqE

Rumor
Is the dreaded Zika virus another giant scam? ...Explain
the small-head babies then! https://t.co/bKND4aZWRz
https://t.co/jAaYmavx55

Discrimination
and bias

@col_nj #Illegal; #Refugee INVADERS carry-
ing BIOLOGICAL WEAPONS IN bodies too.
#tcot#TB#Zika#Ebola#MERSA#Chagas#Dengue
#Leshmaniasis

Profanity
Draymond Green punched Harambes **** and gave him
Zika. Please RT

Disinformation
Zika Outbreak Epicenter in Same Area Where
GM Mosquitoes Were Released in 2015:
https://t.co/IHJ3M1wof8

Sarcasm*
Scientists Confirm First Case Of Zika Transmis-
sion From Article To Reader https://t.co/7peBpSSVlw
https://t.co/M6paYI08jd

Note that these categories were not mutually exclusive. For example, a Zika tweet

could be both disinformation and conspiracy theory at the same time. In addition,

it was not uncommon for a single tweet to have multiple components of facts, state-

ments, and opinions. In this circumstance, if any component was identified as not
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evidence-based, then the entire tweet would be classified as misinformation, even if

other components may contain real information. Mathematically, if a tweet X could

be divided into n components, then the validity of entire X is determined by the logic

AND operator on all its components such that X1 ∧X2 ∧ ... ∧Xn.

I acknowledged the fact that there was currently no consistent and universally ac-

cepted definition of misinformation across disciplines, and sometimes people used sim-

ilar terms such as misinformation, disinformation, rumor, "fake news" interchangeably

without a clear distinction. As such, in this study, a clear and operational definition

of misinformation based on the evidence in the content was provided. This definition

of (health/medical) misinformation was in accordance with the definition of Evidence-

based Medicine (EBM) that health professionals were familiar with.

After the definition of misinformation about Zika was established, two researchers on

the team who had experience with this topic independently checked the validity of

the same set of 100 randomly selected tweets from the 5,000 sample pool. The initial

intercoder reliability κ was 0.86. Several rounds of discussion and revision were made

before κ reached 1.00 (no disagreement) as the desired threshold value. In addition,

multiple experienced researchers in the fields of arboviruses, vector-borne diseases,

and infectious disease epidemiology were consulted about their opinions on the con-

tents to ensure the validity and operationalization of the definition of misinformation.

Afterward, the validity of all remaining most retweeted Zika-related tweets was eval-

uated and the top retweeted tweets with misinformation in them were identified. The

set of all misinformation tweets in this study formed the most retweeted misinforma-

tion group.

Because the definition of misinformation was exclusive, i.e., any tweet that was consid-

ered non-misinformation was containing real information. In order to more accurately

evaluate the differences between real and misinformation about Zika on social media,

a comparable group of tweets with real information were identified. For example,
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the severity of the Zika epidemic in 2016, which could be summarized as the number

of new cases in a given day, could heavily influence the public engagement of Zika

discussions on social media. The matching method with the following two criteria

was used: 1) the tweets with real information published within the plus/minus 3-day

window of the identified tweets with misinformation, 2) the tweets containing real

information with similar numbers of retweets (plus/minus 10 retweets) compared to

those of the tweets with misinformation. This matching method was intended to min-

imize influences from potential confounders. By controlling these confounding factors,

one should be able to get a more accurate answer on whether information validity

actually influenced retweeting activity on Twitter. The identified tweets formed the

real information group.

For each identified misinformation and real information tweet, its metadata, as well

as metadata of all its retweets, including posting date/time, tweeter/retweeter IDs,

friends/followers information, etc. were also collected. This information was critical

to track information dissemination through retweeting, construct information dissem-

ination networks, and conduct statistical analyses to quantify differences between the

misinformation and real information groups.

3.4 Constructing Dynamic Information Dissemination Networks of Retweeting

Information dissemination is defined as a process in which a piece of information

(e.g., a tweet) is propagated among a network of users (retweeters) within a specific

time period [122]. Therefore, two main attributes associated with information dis-

semination are time and users who propagated them. In the context of Twitter, a

piece of information is incorporated in a tweet and retweeters of that tweet are the

spreaders. Therefore, to characterize information dissemination corresponding to a

tweet, I consider two main attributes: 1) the time points when retweeters relay the

tweet by retweeting it, 2) follower-followee relationship among the retweeters of the

tweet. To investigate the flow of information among the users, I estimate a diffusion
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network based on the follower-followee relationship between the retweeters and the

timestamp of their retweets.

Mathematically speaking, a network (or graph, G) has two sets of elements: a set of

nodes (or vertices, denoted as V ) and a set of edges, denoted by E, where an edge

connects a pair of vertices vi and vj. If the pairs of vertices connected by edges are

ordered, then the graph G is called a directed graph. As an example, in a retweet-

ing network, the node vi follows the node vj but vj does not follow vi, then there

is a directed edge from vj to vi indicating the information dissemination direction

through retweeting. A graph can be edge-weighted; that is, every edge e in E is as-

signed by the weight W (e) ∈ R. A weighted graph is represented by G = (V,E,W ),

where W : E → R. Therefore, I use a directed and weighted graph to model the

follower-followee relation between retweeters who take part in the propagation of a

tweet. Directions in such a network show the friends-followers relation between the

propagators of the tweet.

On top of this user network, I then construct an information dissemination network

to infer how the information flow among these users (retweeters) over time. First,

to show the flow of information among nodes, I reverse the direction of edges in the

followers-followee network. As a result, the in-coming edges to a node show potential

sources that it could receive the information (tweet) from. Next, for every edge ei, I

set the weight to be the time difference between the retweet time of vertices which

are connected by ei. I will then continue by making two assumptions. First, an actor

who retweets a post has seen it because at least one of her neighbors that she follows

has retweeted the post before her. Thus, I discard edges between her and her other

neighbors (followees). Isolated vertices within the network are also dropped because,

obviously, they do not have any contribution to information dissemination. Second, in

the flow of information, I assume that a node is influenced by one and only one of her

followees. Therefore, the resulted information cascading network is a tree. Directions
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in such a tree is from followees to their followers to show that for a retweeter, who

could be her potential source of information. When a Twitter user opens her page,

she sees posts by her followees ordered chronologically. If two of her followees have

retweeted the same tweet, she sees the most recent one first. Therefore, to determine

the path that a tweet takes to reach a retweeter, I assume that her followee who has

retweeted the tweet most recently is the one that has influenced and triggered her

to retweet it. To construct the information dissemination tree based on this logic, I

use the minimum spanning (MST) algorithm. In practice, time is not the only factor

that influence a user and make her to retweet a post. However, for the purpose of this

study, which is showing the propagation pattern of misinformation contained tweets

is different from those carrying real information, this assumption suffices. Moreover,

MST let us capture the minimum time that a tweet took to get viral.

3.4.1 Computing and Interpreting Important Network Metrics Relevant to

Information Dissemination

Once the networks are constructed for each tweet, important network metrics that

are highly relevant to information dissemination are computed and compared both

within and between the misinformation and relevant information groups.

In this study, I extract a total of nine network metrics, including network reach,

network influence, network diameter, network density, network modularity, Wiener

index, structural virality, top out-degree centrality score, and top betweenness cen-

trality score. These metrics quantified and characterized network structures from

different aspects and across scales in the network. Below, I provide a succinct de-

scription of these metrics

Network Reach (REA) of a dissemination network measures the number of unique

vertices, i.e., unique tweeter/retweeter IDs in this network, whereas network influ-

ence (NIF) represented the number of retweets. Both REA and NIF are considered

as global (overall) properties of a network and quantify user engagement of the tweet
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through retweeting activity. Larger network reach and influence indicates more user

engagement of the tweet. Note that the reach and influence of a given network are not

necessarily the same, as a user could retweet the same tweet multiple times. Mathe-

matically speaking, NIF is the upper bound or limit for REA. If each retweeter (user)

retweeted exactly once, then REA is equal to NIF. If there is a large discrepancy

between NIF and REA for the same network, it indicates that a few retweeters are

trying to retweet and propagate the same piece of information multiple times. This

behavior could be identified as a potential indicator of intentional amplification of

the piece of information carried by a tweet.

Network diameter (DIA) is calculated as the shortest distance between the two most

distant vertices (users) in the network. DIA represents the linear size of a network

and therefore is also considered as a global (overall) property of a network. In general,

the smaller the network diameter, the fewer steps information was required to pass

through to reach distant users. Oftentimes, fewer steps indicate faster information

dissemination from the original tweeting node, assuming information dissemination

speed was relatively constant. Therefore, for effective and efficient information dis-

semination, a retweeting network with a smaller diameter would be more desirable.

In addition, based on the minimum spanning tree method that I use to construct the

dissemination networks, a small DIA shows that retweeters are more closely related

to the source of information, i.e., the original posting user, and consequently are more

influenced by the original poster of the tweet rather than other retweeters.

Structural virality (VIR), similar to DIA that quantified distance among vertices,

measures the average distance between all pairs of vertices in the dissemination net-

work [125]. The larger value of VIR indicates that the retweeters are, on average,

further apart in the information dissemination network. An effective information dis-

semination network generally has a small VIR value.

Both DIA and VIR quantify distance among vertices in the network, the difference is
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that DIA focused on the shortest path while VIR is for the average distance. A large

VIR can also indicate that within an information diffusion network, actors do not

highly share their source of information (do not have the same source of information)

Network density (DEN) measures the proportion of potential relationships that actu-

ally exist in the network. DEN is calculated by the total number of existing edges over

all potential edges in a network, where an (a, b) edge with an arrow from a to b shows

that the node b follows the node a and also a has retweeted the same tweet before

b; thus, a could be a potential source of information who influenced b to retweet the

tweet. Density is considered as another global-level network property. This quantity

always takes values between zero and one. Density is equal to zero for a trivial graph

in which there is no edge between vertices. In a clique or completely connected net-

work where each node is connected to all other nodes within the network has network

density equals one. Network density focuses on the relation of nodes within the net-

work and aims to capture how they are intermingled. Thus, to calculate the network

density, rather than the information dissemination network, I consider the network of

retweeters which is constructed based on their followee-follower relationships and also

the time difference between their retweet. The information diffusion network which

is constructed on top of that followee-follower network is a tree and the number of

edges within a tree always equals to n−1, where n is the number of nodes within the

network. As a result, calculating network density for the information dissemination

network cannot give us a deep sense of how nodes are interconnected.

Considering the assumption based on which I construct the follower-followee network,

each node could only be connected to nodes who have retweeted a tweet before them.

The potential number of edges that could be present in such a network with size n is

equal to n(n−1)
2 . Therefore, I calculate the density by

N(E)/(n(n− 1)/2),
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where N(E) is the number of edges within the network.

A large value of DEN generally implies that vertices are connected more frequently;

therefore, the information should be disseminated more effectively.

Network modularity (MOD) measures the likelihood of dividing a complete network

into potential clusters, i.e., subgroups within which nodes are highly connected, but

loosely connected among subgroups. Modularity is a local property of a network.

The larger the modularity value, the more likely the network could be divided into

subgroups. For information dissemination through retweeting, such a subgroup could

be explained as an influential drawing a lot of attention by attracting many followers

to retweet. However, more subgroups might reduce the efficiency of information dis-

semination, as subgroups generally do not have a lot of interactions among themselves

(e.g., many edges between subgroups), otherwise these subgroups would eventually

consolidate into a larger (sub)group. Note that MOD is the only network metric in

this study that could possibly have a negative value, and negative MOD indicated

less local subgroup structure [126].

Wiener index (WIE) is defined as the sum of the shortest paths between all pairs of

vertices. From an information dissemination perspective, a star-like network where all

retweeter vertices retweet directly from the original posting vertex would have smaller

WIE comparing to a more chain-like network, even if both networks had exactly the

same number of vertices (NIF). Therefore, the smaller Wiener index value indicates

that the network could have a more star-like structure.

Out-degree centrality (OUT) for a node v is defined as the number of nodes that have

an incoming edge from v. OUT measures how much influence each retweet vertex has

in terms of spreading the information further out. Intuitively, OUT is proportional

to the number of outgoing retweeting edges of a given vertex, and larger out-degree

centrality value indicates that the vertex has a lot of offspring vertices to further

disseminate the information. I calculate the entire OUT distribution and present the
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largest OUT value of all retweeters in a network.

Betweenness centrality (BET) of a node is defined as the number of shortest paths

that pass through the node. BET does not directly measure the influence of directly

disseminating the information out but quantifies the importance of the vertex in terms

of the connectivity of the network. A large betweenness centrality shows the vertex

is critical for the flow of information in the network, and removing such a vertex

could reduce or even completely block information dissemination. OUT and BET

metrics focus at the vertex level, and quantifies the role of an individual vertex for

information dissemination. Similar to OUT, I compute BET for all retweet vertices

in a specific tweet diffusion network, and consider the largest one.

Note that these two types of centrality are generally independent of each other, large

out-degree centrality does not necessarily imply large betweenness centrality score,

and vice versa. In this study, for every tweet dissemination network, I demonstrate

the largest BET value in all retweet vertices, and compare the resulted values between

the misinformation and real information groups.

In summary, these network metrics comprehensively represent different aspects of net-

works at different scales, from the overall global network level to local cluster level and

all the way down to individual vertex level. Although there are other network met-

rics, these nine measures can adequately operationalize the structures of the diffusion

networks constructed in this study. Therefore, they can give a good understanding

of the differences between the patterns of misinformation and real information prop-

agation.

A descriptive summary of parameters corresponding to the diffusion network metrics

in Table 3.2

3.4.2 Comparative Analysis of Misinformation and True Information Propagation

To identify different information dissemination patterns between misinformation

and true information, I perform the Kolmogorov-Smirnov (K-S) test for each metric
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Table 3.2: Network Metrics

Network metrics Description
Network reach The number of unique vertices i.e., unique IDs
Network influence The number of retweets
Network diameter The shortest distance between the two most distant

vertices
Structural virality The average distance between all pairs of vertices
Network density The existing proportion of potential relationships
Wiener index The sum of the shortest paths between all pairs of

vertices.
Network modular-
ity

The likelihood of dividing a network into potential
clusters

Largest Out-degree The largest Out-degree of all retweeters in a net-
work.

Largest Between-
ness

The largest number of shortest paths pass through
all vertices

between the two groups. K-S is statistical testing that compares the distributions of

two data samples to test whether they are from the same distribution. To be more

specific, for each network metric, if misinformation sample tweets have cumulative

distribution function (c.d.f) Fmis, and the true information samples have the c.d.f

Ftrue, then using K-S we can test

H0 : Fmis = Ftrue

versus

H1 : Fmis 6= Ftrue

These statistical analyses reveal the difference of information dissemination between

the two groups in terms of network aspects.

3.4.3 Results

To perform my analysis, I focused on the most popular tweets. One criterion to

measure the popularity of a tweet is the number of times it is retweeted by retweeters

other than its original poster. I assume a tweet to be popular if it is retweeted at least
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50 times. About 5000 number of tweets in my dataset has retweets above this cut

off. Among the top 5,000 most retweeted Zika tweets in 2016, a total of 400 tweets

were identified and verified that contained misinformation. Among them, 266 tweets

included adequate metadata to reconstruct the information dissemination networks.

Not all metadata were available due to data loss, including ID banned by Twitter,

content removed by Twitter, or user actively retracted the original post for various

reasons. The comparison group of real information contained a total of 458 tweets

that occurred within similar dates of posting of misinformation tweets and had a

similar number of retweets of misinformation. To avoid potential selection bias, I did

not make a one-to-one match of real Zika tweets.

3.4.3.1 Temporal Variability in Information Dissemination Dynamics

To even more examine the virality of tweets, I considered four more quantities. For

every tweet, T50, T75, T90, and T100 were defined as the time periods that the number

of retweets reached to 50%, 75%, 90%, and 100% the total number of retweets of the

tweet.

There was substantial temporal variability in the retweeting dynamics between

misinformation and real information groups (Fig. 3.1). As it can be seen in Fig.

3.1, it took significantly less amount of time for misinformation to receive 50% of all

retweets (T50 = 334 minutes for misinformation, T50 = 448 minutes for real infor-

mation, P < 0.001 according to the two-sided t-test). The difference was minimal

to receive 75% of all retweets (T75 = 916 minutes for misinformation, T75 = 898

minutes for real information, P = 0.93). Interestingly, it then always took signifi-

cantly longer time for misinformation to receive 90% retweets (T90 = 2580 minutes

vs T90 = 1795 minutes, P = 0.03), 95% retweets (T95 = 4739 minutes vs T95 = 2824

minutes, P = 0.001), and all retweets (T100 = 34869 minutes vs T100 = 22340 minutes,

P < 0.001). These findings suggested that misinformation attracted or generated at

least half of all retweets within a relatively short period of time in order to make
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Figure 3.1: Temporal Heterogeneity in Retweeting Activity in Zika Real
and Misinformation Groups. Y-axis (time) is in natural logarithm scale. X-axis
(percent of retweets received) is not positioned by their absolute numbers. On average,
misinformation (red) needed much shorter time to receive 50% of all its retweets
comparing to real information (black), but significantly longer time to achieve 90%
and above.

the misinformation more viral. Afterwards, misinformation might be deliberately

retweeted to keep their visibility over a longer time span. Based on these observed

temporal dynamics between the two groups, I chose the time till the last retweet to

reconstruct the network, because it provided the most complete view of retweeting

activity.

3.5 Differences of Network Metrics between Real and Misinformation Groups

I inferred and reconstructed the retweeting networks for each tweet in real and

misinformation groups. Examples of dynamic network structures were provided in

Fig. 3.3 for both misinformation and real information at different time points.

The distributions of important network metrics of both groups were computed and

contrasted in Fig. 3.2. For demonstration purpose, all network metrics were scaled

between 0 and 1 with feature scaling. Actual numeric summary statistics were shown
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in Table 3.3.

Figure 3.2: Distribution of Network Metrics

None of these distributions approximated normal distribution, showing high skew-

ness and kurtosis as well as possible multimodality. This indicated large within-group

variability of network structures. For any of these critical network metrics of informa-

tion dissemination, the distributions always differed significantly (p < 0.05) between

real and misinformation groups, according to Kolmogorov-Smirnov tests. Therefore,

real and misinformation networks had a lot of heterogeneities, both within and be-

tween these groups.

Network density (DEN) was significantly higher in the misinformation group suggest-

ing retweeters in the misinformation group were more likely to engage in retweeting

misinformation if their friends (who they followed) tweeted or retweeted so. Note

DEN was calculated on the initial diffusion network, which I constructed based on

the follower-followee relationships of retweeters and the timestamp of their retweets,

rather than the information dissemination network. The difference and relationship
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Table 3.3: Statistics of Network Metrics in Zika Mis- and Real information Groups

Misinformation Real Information
Network Metrics Mean S.E. Median Mean S.E. Median K-S

Test
Diameter 19.93 4.72 15 7.62 0.41 5 P<0.001
Wiener Index 884187 225669 113813 58013 4834 27067 P<0.001
Density 0.009 0.002 0.005 0.01 0.001 0.007 P<0.001
Size 264 14 190 145 3 142 P<0.001
Reach 263 14 188 144 2.99 141 P<0.001
Virality 8.01 0.4 6.49 3.82 0.15 2.62 P<0.001
Modularity 0.61 0.01 0.68 0.39 0.01 0.37 P<0.001
Betweenness 1003 170 278 127 15 15 P<0.001
Outdegree 115 6.88 89 97 2.43 100 P<0.001

between these two networks, and also the reason why I used the initial diffusion net-

work to calculate density is explained in the previous section.

Network diameter (DIA) was also significantly higher in misinformation group. In

general, the smaller diameter, the fewer layers the information (tweet) passed through

the dissemination network to reach the outermost retweeters. My speculation was

that Zika misinformation tweets attracted more grass-root users to retweet one after

another, and form small clusters as opposed to a more star-like information dissemina-

tion network, in which most retweeters are directly connected to the original tweeter,

in real information group.

Structural virality (VIR), which focused on average path length, was also significantly

higher in the misinformation group, indicating vertices were generally further apart

in the network. This finding confirmed our previous speculation that misinformation

involved more direct user-to-user, or small cluster-to-cluster information dissemina-

tion than dissemination through fewer layers in real information group.

Network influence (NIF) and reach (REA) were similar metrics where REA specifi-

cally focused on unique retweeter. Zika misinformation group had both significantly

smaller REA and NIF. In addition, I found that for Zika misinformation, about 30%

of the network had the same vertex retweeted at least twice, which was substan-
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tially higher than in real information group at <10%. This could be an intentional

propagation strategy to disseminate (mis)information on social media. However, the

risk of such a strategy was that once other users noticed and reported this abnormal

behavior, Twitter might take action to remove the suspicious tweet content and even

ban the involved IDs. Therefore, having multiple IDs to retweet the same content

together would be a more effective way to disseminate the information than to have

the same ID to retweet the same content multiple times.

For the Wiener index (WIE), the misinformation group had significantly larger values

on average. This indicated that misinformation retweeting networks had more chain-

like form in comparison with true information networks that were more star-like and

therefore had smaller WIEs. This finding also confirmed the previous finding that on

average, network diameter (DIA) was larger in misinformation group, where networks

were more chain-like with small local clusters as opposed to real information where

retweeters were mainly connected to the original poster of the tweet and therefore

forming a star.

For the misinformation group, WIE distribution had more than one prominent peak,

i.e., multimodal. While some Zika misinformation networks had smaller WIE values,

quite a few others had much larger WIE values (Fig. 3.2). From actual (mis)information

propagation perspective, this implied that propagators exploited two seemingly con-

trasting strategies: the first one was to use a star-like network with very small WIE

value (much less frequently observed in real information group), and the other one

being chain-like dissemination network which had significantly large WIE value. In

addition, there were hybrids of these strategies to disseminate misinformation further

out. For example, propagators of misinformation might use bots or cyborgs to cre-

ate an initial burst of retweeting activity, shown as local stars in the network, which

attracted more actual grass-root human users to help pick up the trend and retweet

one after another. However, I did not observe such a sophisticated arrangement in
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(a) True information diffusion (b) Misinformation diffusion

Figure 3.3: Diffusion networks of tweets

networks of real Zika information. Fig 3.3 shows examples of information dissemina-

tion networks from each misinformation and relevant group.

At the local network level, higher modularity was seen more frequently in the mis-

information group, indicating that the user who retweeted misinformation tended to

form smaller, local clusters to help disseminate the information. Therefore, Zika mis-

information was more difficult to tackle using traditional misinformation mitigation

strategies. Multiple smaller clusters reduced the risk of removal of some clusters, as

other clusters served as alternative routes for information dissemination in the entire

network. By comparison, the true information group had relatively smaller modular-

ity. As can be seen in Fig. 3.2, MOD of misinformation group is more heavily skewed

to the left compared to the real information group. In other words, in the misin-

formation group, MOD was dominated by upper bounds. This means that nodes in

misinformation have more tendency to form clusters.

At individual vertex level, distribution of outdegree centrality OUT in misinformation

group also had a strong multimodal pattern: this indicated that many misinformation

tweets involved a user with an extremely large outbound degree (centrality score>200,
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Fig. 3.2) who might serve as potential online influential or propagator. On the other

hand, the distribution of OUT in real information group was much similar to a nor-

mal distribution. OUT of misinformation group was more heavily right-skewed in

comparison with the real information group. This shows the dominance of lower

bounds in OUT, which in turn can be an indicator that a large number of users in

the misinformation group could not be influential in relaying information.

For betweenness centrality (BET), top BET users in real information group had a

significantly smaller BET score than that in the misinformation group (127 vs 1003).

Therefore, these top BET users in misinformation group were more important than

their counterparts in the real information group in terms of maintaining network sta-

bility, as a higher BET score indicated the more critical role of a vertex in relaying

information. While top OUT users could be identified relatively easily by their super-

ficial activity of attracting a large number of retweets, top BET users, on the other

hand, were much more difficult to spot unless we were able to construct the network

and perform centrality calculation for each vertex. Nevertheless, from a misinforma-

tion mitigation perspective, targeting top BET users could be an effective way to stall

or even completely shut off misinformation propagation than focusing on top OUT

users.

To summarize, the misinformation group had distinct distributions of all these net-

work metrics from the real information group, indicating significantly different dis-

semination network structures. These findings from data mining of information dis-

semination networks could help health professionals and the general public better

understand the dissemination pattern of health misinformation. In addition, these

quantitative metrics could be utilized by health informaticians to develop more accu-

rate health infosurveillance and misinformation detection systems.
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3.6 Discussion

In this chapter, I developed an analytical framework to tackle the health misinfor-

mation dissemination problem on social media. I provided an operational definition

of health misinformation and constructed an algorithm to explicitly track how health

(mis)information disseminated on social media through retweeting networks. These

novel discoveries provided solid shreds of evidence on the characteristics of misin-

formation dissemination patterns on Twitter, one of the most utilized social media

platforms.

One of the key achievements of this study is to extract important features of health

misinformation, which are not directly identifiable from the content of misinforma-

tion alone. I have shown the importance of treating misinformation (pathogen), users

(hosts), and social media (environment) as an interconnected entity, the Infodemiol-

ogy Triad. Misinformation, like real pathogens, are not leaving any trace behind. In

my network analyses, I computed important network metrics for each tweets’ dissem-

ination network through retweeting. They substantially increased our understanding

of misinformation dynamics on social media. Furthermore, the rich dataset can be

used in conjunction with other features of misinformation (e.g., content, linguistic,

and ID-based) to build a comprehensive health misinformation detector on social me-

dia. In the next chapter, I will use state-of-the-art machine learning methods to build

comprehensive health misinformation classifiers.

I need to point out that our current knowledge about health topics evolve through

time as more and more clinical, epidemiological, and other pieces of evidence become

available, hence the idea "evidence-based". The term "real information" and "misin-

formation" should be used with caution because our current understanding might be

falsified in the future. Timing of discussion should be considered, especially during

an emerging health crises such as the Zika epidemic, such that our understanding

of the epidemic refreshed rapidly. For example, I found that the Economist, a once
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considered reliable and reputable source of information, tweeted in Dec. 2016 that

Zika is harmless to adults... (the post was now deleted) when at that time there had

already been clear evidences [127] to show the causal effect of Zika virus infection

and Guillain Barre syndrome (GBS) in adults. Had the tweet appeared in early 2016

when the causal relationship between Zika and GBS had not been established, it

would not be deemed as misinformation. Consequently, an important follow-up of

this study is to increase the health literacy in the society such that people learn how

to check the validity of health information on social media, why it is misinformation,

and frequently update their knowledge about the health issues, instead of merely be-

ing told whether a piece of information is real or not.

It is worth noting that in practice, to construct an information dissemination network

from who-retweeted-whom social network using simply timestamp is not enough and

other factors must be considered. To elaborate more, Twitter uses three modes to

compose tweets within users’ timelines; 1) tweets are ordered reversed-chronologically,

2) they are ranked based on several factors, such as recency, the tweets’ author, and

number of retweets or likes or 3) users can choose to see older tweets posted by ac-

counts that they are generally engaged with (’In case you missed it’). Moreover, a user

may find a tweet through search without being influenced by their friends. Therefore,

a comprehensive framework to investigate the flow of information among retweeters

should take all of these factors into consideration, establish a probability distribution

upon them, and construct the information flow network based on that distribution.

Devising such a framework is an interesting research direction but beyond the scope

this paper. The ultimate goal of this study is to show that the flow of misinformation

tweets is the different from relevant ones; thus, it is a key factor to be considered

besides other characteristics of tweets (e.g., textual contents) to distinguish between

them. Constructing a dissemination network based on only timestamp is not com-

prehensive but is totally valid since regardless how a retweeter has been exposed to
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a tweet before retweeting it, they could not be influenced by retweets after their own

retweets. Using this logic, our proposed method helps to reduce the complexity of the

initial follower-followee network to a more tractable one before any further analysis.

One follow-up research direction to our work is studying characteristics of users, es-

pecially identifying bots and examining their role in diffusion of each group of infor-

mation. Identifying such user accounts was beyond the scope of this study; however,

we examined a few user IDs manually and then we tested the suspicious ones with

botometer, a bot detector tool proposed in [48], and available online [128]. The user

IDs in the misinformation group received the higher score to be bot, although I should

mention that bots are not necessarily malicious. As an example, a company might

use bots to promote its new product on a social platform.

Out of 5,000 tweets that I examined, 5% were posted by verified users, mainly in-

cluding news agencies, health organizations and also public figures. This observation

agrees with other studies showing the strong presence of well-known news agencies

and health organizations on Twitter during the Zika outbreak in 2016 [129]. In the

misinformation group, the ’verified’ user IDs mainly belonged to lobbying political

media and organizations, and also individuals, including political figures and celebri-

ties. This indicates that even non-malicious users could unintentionally get involved

in relaying misinformation if they don’t have enough domain knowledge to validate

a piece of information. The non-verfied user_IDs in the misinformation group were

individuals with mainly dubious names such as ’bugs bunny with rings and cigar’

with handle ’trillballins’, 1994 Subaru Outback with handle Sadieisonfire, and John

with handle linnyitssn. On average, 0.012 of retweeters who participated in misinfor-

mation dissemination were verified. In the relevant group, the verified user_IDs were

dominated by health organizations such as CDC and WHO and well-known news

agencies, such as CNN, ABC News, and Fox News. The strong participation of these

news agencies in the real group and their absence in the misinformation group shows
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that still these traditional media are highly reliable as a piece of news goes through

different levels of fact-checking process before getting published by them. The non-

verified user_IDs in the relevant group were mainly unknown users. On average, 0.02

of retweeters who participated in relaying real information were verified.

In the misinformation group, for the verified user_IDs the ratio of friends to followers

was around 0.02 and for non-verified user_IDs it was around 0.4 on average. This

quantity in the real group was about 0.0093 for the verified user IDs, and 0.5589 for

non-verified user IDs. Overall, the ratio of friends to followers for well-known and

verified users was small as they were followed by a large number of users but they

followed fewer users in comparison.

Further work is currently underway to investigate users’ (re)tweeting activity through

time and how this temporal dynamics can also be utilized to explore misinformation

infiltration. In this study, I constructed a static network G of a given tweet at the end

of all retweeting activities. As I have shown the large temporal heterogeneity both

within and between groups (Fig. 3.1), my developed algorithm is able to construct

a dynamic network Gt. If a sudden rise in retweeting dynamics is detected at time

t, a specific network ending at time t can be constructed to explicitly identify which

retweeter is causing the burst of retweets, quantify the user’s importance by calcu-

lating its centrality scores, and work at individual vertex level to further address the

health misinformation epidemic on social media.

3.7 Conclusion

In this chapter, I investigated the problem of health-related misinformation prop-

agation from a new perspective. I demonstrated that analyzing the dynamics of

(mis)information dissemination among the users of a social platforms can provide

salient features to distinguish misinformation from relevant information.

By investigating the structures of the networks of retweeters, and also the information

flow tree, we concluded that Reach (REA), Influence (NIF), Diameter (DIA), Viral-
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ity (VIR), Density (DEN), Wiener Index (WIE), Modularity (MOD), Out-Degree

Centrality (OUT), and Betweenness Centrality (BET) are important attributes of in-

formation dissemination network to be considered to distinguish misinformation from

relevant information.

In the next chapter, I investigate the strength of the proposed features to distinguish

misinformation from relevant ones by building classification models on top of my dis-

covered features and also previously discovered by other researchers. I believe that

the valuable insights provided by this research work can significantly contribute to

constructing more accurate and robust misinformation detection systems.



CHAPTER 4: Characterizing and Detecting Health-Related Misinformation on

Social Media

4.1 Overview

In this chapter, I characterize health misinformation infiltration as a dynamic dis-

semination process on social media in addition to content-based features. Using the

Zika discussion on Twitter in 2016 as the study system, I identified 264 most influ-

ential tweets with misinformation and matched 455 tweets with real information. I

present the algorithm that I developed to infer the information dissemination net-

work through the retweeting process of each tweet, and the extracted eight network

metrics. I then demonstrate how information dissemination on Twitter can be ap-

proximated as a non-homogeneous Poisson process (NHPP) signal. Next, I propose

the 40 signal features that I devised to characterize each NHPP. For content-based

features, I discuss how I applied both LIWC and Doc2Vec to further extract 63 and

50 features for each tweet, respectively. I also considered 4 user features. Finally, I

present the classification models which I trained based on all provided feature cate-

gories, and also two Machine Learning algorithms; Support Vector Machine (SVM)

and Random Forest (RF) classifiers. Using all feature categories combined as input,

an RF classifier achieved > 83% accuracy and > 90% AUC to detect misinformation.

4.2 Introduction

Social media platforms have provided public health professionals with valuable re-

sources to study public opinions towards various health-related issues, and to use

social media as one of the main outlets to efficiently and effectively spread accurate

and timely information especially during health crisis such as Zika epidemic in 2016
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and the current COVID-19 pandemic [97, 110].

Nevertheless, social media have also opened the room for misinformation and fa-

cilitated its infiltration and proliferation on the Internet during health emergencies

[130]. Health misinformation is generally considered to be misleading, incorrect, not

evidence-based, and malicious. These different types of health misinformation cause

unnecessary confusion, anxiety, and anger of individuals rupture the society and seri-

ously undermine health professionals’ efforts in providing evidence-based knowledge

and combating the real epidemic. WHO stated that it needed to fight two epidemics

at the same time during the 2014 Ebola epidemic, one in the real world and the other

on the Internet, especially on social media [131]. The 2016 Zika epidemic was an-

other example where misinformation proliferated on social media, including Facebook

and Twitter [97]. Unfortunately, increasing exposure to misinformation online and

on social media can reinforce incorrect beliefs of users [132], making misinformation

difficult to eradicate. Therefore, it is equally important, if not more, to reduce the

influence of health misinformation on social media during health emergencies along-

side curbing the epidemic itself. The first and foremost critical task is to accurately

identify health misinformation on social media in order to neutralize them before they

inflict harm to users.

Nevertheless, detecting health misinformation among the large volume of user-generated

information on social media is a challenging task. State-of-the-art misinformation de-

tection systems are generally based on fact-checking content of social media posts.

There are several challenges associated with this approach. First, our knowledge of

health issues increases rapidly, especially during an emerging health crisis. Such a

fast pace of knowledge refreshing can make certain "knowledge" incorrect when new

evidence emerges. For example, Zika was once assumed to transmit only through

mosquito biting and from pregnant mother to fetus, but later evidence confirmed

the possibility of sexual transmission as well. Second, fact-checking is only useful for
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objective contents but not effective against more subjective hate language, extreme

bias, and discrimination against certain groups of people. Nevertheless, health, espe-

cially during large pandemics, is always confounded by complicated social, political,

and economic issues. These convoluted issues make content-based fact-checking less

useful against various types of misinformation. Third, content-based misinformation

detection systems ignore other important features of health misinformation. Similar

to a real epidemic, the digital epidemic of misinformation is a multi-aspect problem.

The real pathogen, host, and environment together form the epidemiological triad,

the foundation of an epidemic. We can tackle real epidemics more effectively when

combining the power of etiology, epidemiology, immunology, and pathophysiology

from this triad. Similarly, health misinformation, general users, and the social media

environment also collectively form the infodemiological triad [133]. I suggest that a

more holistic and accurate characterization of health misinformation is essential to

develop a health misinformation detection system.

Recent studies have been exploring new features of health misinformation. Monitor-

ing user activity on social media can detect suspicious online behavior and identify

potential bots. While these content-based and user-based features are the key aspects

to develop misinformation detection systems [134], other types of features of health

misinformation have also been explored [135]. For instance, Qazvinian et al. con-

structed a probability distribution over retweeters of rumors and used it in addition

to content-based features to predict rumors [136]. Another work investigated rumors

on Sina Weibo, the largest social media platform in China, and proposed a combi-

nation of propagation-based, location-based, and client-based features [137]. Other

studies investigate topic network features in addition to content-based features [38].

More recent studies also apply an array of machine learning (ML) and AI methods,

time series analysis, and network analysis to build health misinformation detectors

[138, 134], track misinformation dissemination dynamics [139, 140, 141], and evalu-
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ate the role of users (e.g., bots, trollers, opinion leaders) who relay misinformation

[5, 142]. These studies provide alternative perspectives and technical approaches to

identify health misinformation on social media.

In this study, I present a novel perspective in characterizing health misinformation on

social media from multiple aspects. I further develop a data mining approach to ex-

tract new features that distinguish health misinformation from real ones, and develop

more effective misinformation classifiers. First, I extract information dissemination

features by constructing each tweet’s retweeting networks to compute network met-

rics. In addition, I model the retweeting process of each tweet as a non-homogeneous

Poisson process (NHPP) signal and extract signal-based features. Then I consider

the content and linguistic features and apply LIWC and Doc2Vec. Finally, I extract

user features (e.g., number of followers, friends, verification status) as well.

After extracting these different categories of features representing various aspects of

health (mis)information, I develop classifiers using the most retweeted tweets con-

taining real and misinformation about Zika in 2016. Different categories of features

and their combinations are investigated as inputs to develop support vector machine

(SVM) and random forest (RF) classifiers. I compare the performance of these models

and evaluate the influence of input feature categories on classifiers’ performance.

4.2.1 Data Retrieval

The Gnip API through UNC Charlotte School of Data Science was used to retrieve

all English tweets with keyword Zika and other related keywords such as microcephaly

and PHEIC. The entire year of 2016 (January 1 to December 31, 2016) was chosen as

the sampling period for this study to bracket the entire WHO Public Health Emer-

gency of International Concern (PHEIC) period from February 2 to November 18,

2016. This time period also covered major milestones in the Zika epidemic timeline,

including WHO’s initial warning of Zika epidemic across the Americas, the official

PHEIC declaration of Zika pandemic on February 1, opening of Rio summer Olympics
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from August 5 to August 21, and the end of the PHEIC on November 18, 2016. A

total of 3.7 million English tweets, retweets, and their associated metadata were col-

lected in 2016. This dataset was the complete dataset covering all English discussions

regarding Zika on Twitter in 2016, unlike the common 1% sampled data from Twit-

ter’s own API. Therefore, my dataset provided a more comprehensive, complete, and

less biased view of Zika related tweets.

4.2.2 Tweet Annotation

All original Zika tweets were ranked based on the number of received retweets,

from highest to lowest. I defined a tweet to be highly influential if received retweets

from ≥ 50 distinct retweeters. Based on this criterion, the top 5,000 most retweeted

Zika tweets were selected as the sample pool. An operational definition of misinfor-

mation regarding Zika was established, such that the content was not evidence-based,

in accordance with the commonly used term evidence-based medicine in the health

domain. Peer-reviewed journal articles and conference proceedings, government and

health agencies (e.g., CDC and WHO) reports and statistics, fact-checking websites,

are all used to evaluate and cross-check the tweets. Two independent researchers

established strict intercoder reliability (> 95%) on a randomly selected test set of

100 tweets before proceeding to annotate the remaining tweets. A total of 264 tweets

were finally included as the misinformation group with complete metadata. Another

455 tweets were identified as real information group, controlling the effect of posting

time and number of retweets to make them comparable to misinformation group. A

detailed description of this annotation and misinformation identification process is

provided in the previous chapter and in the study [143].
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4.3 Features Extraction

4.3.1 Information Dissemination-Based Features

I extracted a novel set of features from these tweets and paved the way for further

classification. In the first part of feature extraction, I considered (mis)information

as a dynamic information dissemination process through retweeting. I explored two

different but interrelated angles: 1) structural features of information dissemination

network of retweeting, and 2) time series features of information dissemination signal.

For the first feature category, I developed an algorithm to reconstruct and infer the

retweeting network. For the second category, I constructed a signal of retweeting

process and approximated it as a non-homogeneous Poisson process (NHPP) for each

tweet. These two categories of features characterized (mis)information dissemination

among users on social media.

4.3.1.1 Dynamic Retweeting Network Construction and Feature Extraction

I considered retweeting to occur in a network of retweeters for a given tweet. Such

a retweeting network can be mathematically modeled as a graph, G, with two sets of

elements: a set of nodes (or vertices, representing users), denoted by V , and a set of

edges, denoted by E (representing retweeting sequence). G = {V,E}. Every edge e

in E connects a pair of vertices vi and vj. In this study, pairs of vertices connected by

edges were ordered (i.e., the direction of the edge is relevant), and the graph G was a

directed graph. To construct an information dissemination network, I considered the

followers’ relationship among each retweeter and time difference of two consecutive

retweets. For every pair of retweeters, (vi, vj), there was a directed edge e from vj

to vi if and only if 1) vj followed vi, and 2) vj had retweeted the tweet after vi. A

detailed description of this algorithm is provided in the previous chapter and also my

prior work [143].

Once the retweeting network was constructed for each tweet, I further extracted crit-
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ical network metrics for information dissemination in both real and misinformation

groups. Network metrics between the two groups were compared by the Kolmogrov-

Smirnov test to detect distribution differences between groups. I identified a total

of nine network features with significant differences between real and misinforma-

tion groups. These nine features comprehensively characterize a dissemination net-

work structure from global network level (density, reach, diameter, virality, influence,

Wiener index) to local cluster level (modularity) and down to individual vertex level

(top degree and top betweenness centrality score). The details of these network fea-

tures and their relevance to information dissemination are in the previous chapter

and also my prior work [143]. Evaluating the differences of these network features

among real and misinformation groups provided insights on network dissemination

differences, which is the cornerstone to build the classifier.

4.3.1.2 Retweeting Signal Construction and Feature Extraction

Network features characterized (mis)information dissemination among users. While

I used the time difference of retweeting to infer dissemination network, the temporal

aspect was not explicitly considered in the network features. Nevertheless, informa-

tion dissemination, like a real epidemic, is a dynamic process where the temporal

aspect is a critical factor. To more accurately capture the temporal dynamics of the

retweeting process, I further constructed retweeting signals for each tweet, approx-

imated them as non-homogeneous Poisson processes (NHPP), and extracted signal

features thereof.

I constructed a time series of each tweet’s retweeting stream, referred to as the retweet-

ing signal hereafter. The signal can be mathematically described as Y = Yt, t ∈ T

where Yt is the number of retweets received during time t. To create a retweet signal

for a tweet, first, the time window between its posting time and its last retweet was

partitioned into fixed-size bins. Next, the number of retweets at each bin is counted,

and a signal, Yt is created out of the retweet counts. The option of bin size or tem-
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poral resolution is critical and would heavily influence any subsequent analysis. If

the resolution is too high (e.g., at the second-based resolution by counting how many

retweets occurred in each second), then one might be just modeling the noise. On the

other hand, if the resolution is too low (e.g., at hourly resolution), then we might miss

a lot of important signals, especially at the beginning of the retweet stream, when a

lot of retweets usually are clustered. By carefully examining the retweet streams in

my dataset, I concluded that for this study, the optimal temporal resolution could be

obtained by 10-minute bins.

My initial exploration revealed a substantial temporal variability between real and

misinformation groups[143]. It took significantly less amount of time for misinforma-

tion to receive 50% of all retweets but much longer time to receive 90%, 95%, and

100% retweets than real information group. I hypothesized that time to receive 50%,

75%, 90%, 95% retweets were useful to detect misinformation retweeting signal.

In addition, I detected peaks in retweeting signals to identify the time periods when a

tweet was highly attractive and received a large number of retweets in a short period

of time. Retweeting signals usually had more than one peaks, i.e., information relay.

This complied with my previous findings that Twitter discussions could be impacted

by real-world events and also promoted by influential users from time to time [110].

I found that time difference between two consecutive peaks pi and pi+1 approximated

exponential distribution. In other words, between every two successive peaks within a

retweet signal, the number of retweets could be considered as a counting process that

follows a Poisson distribution. Therefore, I modeled retweeting signal between two

consecutive peaks as a specific homogeneous Poisson process (HPP ), and the entire

retweeting signal as a non-homogeneous Poisson process (NHPP) approximated by

the union of n underlying HPPs:

NHPP =
n⋃

i=1
HPPi
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Modeling a retweet process as a NHPP, in which the rate of events occurrence is not

a fixed constant rate but a function of time t, correctly reflects my observation that

it is common for multiple peaks to exist in retweeting signals.

NHPP is mathematically formulated as follows:

N(0) = 0, (4.1)

P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h), (4.2)

P{N(t+ h)−N(t) ≥ 2} = o(h), (4.3)

where N(t+ h)−N(t) is a Poisson random variable with the Poisson parameter λ as

E[N(t + h) − N(t)] =
∫ t+h

t λ(s)ds. At the beginning of the process, when the tweet

is posted, the number of retweets is zero; N(0) = 0. The probability of receiving a

retweet between time t and t + h depends on the length h and the process rate at

time t. In addition, the probability of occurring more than one retweet in the small

time interval h is negligible.

Each HPPi started at i-th peak, pi, and continued until immediately before the next

peak, when the next homogeneous Poisson process, HPPi+1 started. I characterized

several important aspects of HPPi: the peak,pi, the valley, vi, indicating the end

of the process, and the HPPi rate λi. I defined the valley vi to be the time of the

minimum number of retweets farthest from the peak pi and closest to the pi+1 where

the next HPPi+1 started. According to my exploration, a retweeting signal always

had at most five peaks. Therefore, to make it consistent across all retweeting signals,

I set, n, the maximum of the number of HPPs for a signal, as 5. For each retweeting

signal, I extracted the following features of its underlying HPPi process:

• peak time pi: the time when HPPi started,

• peak height phi: number of retweet counts at peak i,
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• Full width half max (fwhmi): the first time point after each peak when the

number of retweets was less than or equal to the half of the peak height,

• height of full width half max fwhmhi: the number of retweet counts at the

i− th FWHM,

• valley height vhi: the number of retweet counts at the i− th valley,

• process width pwi: the time difference between the peak pi and valley vi,

• valley time vi: the time when HPPi ended,

• λi: the HPPi rate calculated as the average of retweet counts between pi and

vi.

By extracting and comparing signal features, I obtained a more quantitative charac-

terization of the temporal aspect of (mis)information dissemination on social media.

4.3.2 Content-Based Features

In addition to information dissemination feature categories, I explored and ex-

tracted various content-based features. Contents in misinformation, similar to the

actual pathogens in a real transmission chain, interacted with human users (hosts)

and exerted the influence psychologically. In this study, I focused on textual con-

tent and excluded other contents such as pictures, memes, and GIFs. Two major

categories of content features, LIWC and Doc2Vec, were extracted to more compre-

hensively characterize content’s topic, semantic and linguistic aspects.

4.3.2.1 LIWC: Linguistic Inquiry and Word Count Feature Extraction

To extract socially and psychologically relevant features from tweet content, I ap-

plied the widely used Linguistic Inquiry and Word Count (LIWC) tool [144]. LIWC

summarized the tweet in various categories of emotional and cognitive patterns. Cat-

egories were represented and quantified by linguistic features of word counts and
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statistics. Examples of such features included positive or negative emotions, social

relationships, social coordination, and individual differences. These features were

more subjective for characterizing tweet content. According to my exploration of

most retweeted Zika tweets, emotions (e.g., anger, confusion, fear, and mistrust) and

social issues (e.g., bias and discrimination towards certain demographic groups) were

profound along with this emerging disease and its discussion on social media.

After applying LIWC, each tweet received a numeric vector of 63 features using

LIWC software. These features were further compared between real and misinforma-

tion groups. Such insights would be useful for a classifier to differentiate real and

misinformation groups.

4.3.2.2 Doc2Vec: Document to Vector Feature Extraction

LIWC provided a quantitative way to characterize, extract, and quantify linguistic

features. While LIWC vastly expanded my understanding of computational linguis-

tics and paved the way for feature extraction, it is more subjective (e.g., related to

social and psychological aspects), relied on a human-developed dictionary, and al-

lowed for little flexibility of incorporating new insights especially on emerging health

issues.

Word embedding techniques, on the other hand, provided a more direct and sophisti-

cated representation, including semantics and relationships among words within the

content. Word embedding used neural networks (NN) to learn and represent features

of content. Each word is mapped into a pre-defined vector space where the values in

the vector were learned from NN. This ML technique allowed for more natural cap-

turing and representation of the content, comparing to LIWC. While word embedding

also used a corpus (dictionary) to generate vector space, the corpus size was much

larger than the one in LIWC and did not have human-assigned labels, thus allowing

much more detailed and objective characterization of the content.

However, word embedding techniques had some shortcomings as well. They were not
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effective when analyzing short texts with different lengths, as in the case of tweets

[145]. In this study, I applied an extension of the original word embedding technique,

document-to-vector (doc2vec) proposed by Le et al. in [145]. In this new method,

documents, regardless of their length were embedded into a pre-defined vector space.

I treated each tweet as a document and applied doc2vec. After the initial evaluation

and preprocessing (e.g., dropping non-text components such as figures, memes, and

videos), I converted each input tweet to a document vector with a size of 50, i.e.,

50 features in Doc2Vec vector space. These features could be explicitly compared

between real and misinformation groups for further classification tasks.

4.3.3 User Feature Extraction

We extracted user features from their profiles, including number of followers, num-

ber of friends, verification status, and percentage of retweeters with verified status.

These features were not associated with a specific tweet but to the user ID. Stud-

ies have used user features to detect potential malicious IDs which frequently sent

out misinformation. However, I suggested that this approach could have both false

negative and false positive issues. My more intensive exploration had identified some

IDs which frequently sent out misinformation (e.g., @naturalnews, a far-right con-

spiracy theorist account); however, not all tweets it generated were misinformation.

On the other side, some seemingly credible sources (e.g., @theEconomist) also sent

out inaccurate information due to a lack of understanding of the evolving health issue

[110]. I used user features in conjunction with tweet-specific features to provide a

more comprehensive characterization of health misinformation.

4.3.4 Summary of Feature categories

In summary, I have identified and extracted five (5) categories of features: 9 dy-

namic network features and 40 signal features related to the information dissemination

process through retweeting; 63 LIWC and 50 Doc2Vec features based on the actual
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content of each tweet. In addition, the fifth group of 4 user-based features is also

extracted. Eventually, I extract 162 features for each tweet, both real and misinfor-

mation in this study, and perform further ML classification based on these categories

of features.

4.4 Classification based on Multiple Feature Categories

I further built two types of supervised ML classifiers, random forest (RF) and

support vector machine (SVM). I defined confirmed misinformation as positive while

real information as negative in this study. Though there are many other classifiers

available, I suggested the merit of this study was to provide a more comprehensive

characterization of the health misinformation challenge on social media, and a data

mining approach to extract new features. Therefore, the main goal of this study

was not to develop new classifiers nor to systematically explore different classifiers’

performance, but to develop effective classifier based on commonly used and proven

robust algorithms such as RF and SVM.

For each type of classifiers (RF and SVM), I first included features from a single

feature category. Then I built another set of classifiers by merging different feature

categories. I ran k-fold cross-validation for each classifier I built. The data were split

into 10 folds (k = 10) and randomly picked 9 slices to train the model while using

the remaining unseen data to cross-validate the model. This process was repeated 10

times such that each slice was used exactly once for cross-validation.

4.4.1 Evaluation

To evaluate the constructed classification, I use the following metrics: accuracy, F1

score, AUC, defined as the area under the Receiver Operating Characteristic (ROC)

Curve, the true positive rate (TPR), and the false positive rate (FPR), which are cal-

culated and averaged from the 10-fold cross-validation process that explained before
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to evaluate RF and SVM classifiers’ performance.

Accuracy is defined as the percentage of truly classified instances. The other men-

tioned metrics are derived from the confusion matrix which contains four elements:

true positive (TP, classifier correctly identifies misinformation), false positive (FP,

classifier incorrectly identifies real information as misinformation), true negative (TN,

classifier correctly identifies real information), and false negative (FN, classifier incor-

rectly identifies misinformation as real information). In this study, the dataset was

not balanced, and there were more tweets with real information than misinforma-

tion. Therefore, F1-score is a more representative performance metric than accuracy.

F1-score is defined as the harmonic mean of precision and recall and calculated by

F1 = 2 ∗ precision ∗ recall
precision+ recall

;

where precision is calculated by

precision = TP

TP + FP
,

and recall (also called true positive rate,TPR) is calculated as

recall = TP

TP + FN
.

ROC curve and AUC help visually compare two models performance. For a non-skill

classifier, which is hardly able to distinguish between positives and negatives, AUC is

close to 0.5 as the baseline. The better the classifier is, the closer its AUC gets to 1

as the asymptotic limit, which is the maximum performance a classifier can achieve.

Data processing, mining, and exploratory analyses were carried in R 3.5.0 with various

supporting packages. ML classifiers were developed in Python 3.7 with SciKitLearn.

All annotated data and accompanying codes will be freely available on open data and
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code sharing repository (GitHub).

4.5 Results

4.5.1 Feature Comparison between Zika Real and Misinformation Tweets

First, I show how network features differ between Zika real and misinformation

tweet groups in Fig. 4.1. Note that these features are scaled between 0 and 1, so

they do not represent actual values in Fig. 4.1 through Fig. 4.4. All 9 network

features, characterizing information dissemination network from the global level to

individual vertex level, differ significantly (p < 0.05) between the two groups accord-

ing to the Kolmogrov-Smirnov test. Based on RF classification results in the later

section, the most influential network feature, as measured by Gini impurity, is the

total path (TPA), followed by Wiener index (WIE) and virality (VIR). These results

reveal information dissemination network structures differ substantially between real

and misinformation groups.

For signal features, I identify the top 9 most influential features using Gini impurity

out of a total of 40 features, making it consistent with network features. A com-

parison of these 9 important signal features is shown in Fig. 4.2. Interestingly, the

height of the 3rd peak, not the first two peaks, is the strongest signal to differentiate

misinformation from real information. My explanation is that most real information

signals may not have more than 2 peaks, thus having a 3rd peak could be a sign of

misinformation. The next important signal feature is time to receive 50% retweets,

also known as the "half-life" of a tweet. The third important feature is the valley

width of 1st peak, i.e., time duration between 1st and 2nd peaks. This feature quan-

tifies the rate of information relay and can be used to distinguish misinformation.

Kolmogrov-Smirnov tests further show that these 9 most influential signal features’

distributions also differed significantly (p < 0.05) between real and misinformation

groups.

In addition to information dissemination feature categories, I characterized Zika real
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and misinformation content features on Twitter. First, I identified a list of top differ-

entiating LIWC features (Fig. 4.3), which were significantly different between the two

groups (p < 0.05). "Money" was the most important feature, and misinformation was

related to the monetary aspect of Zika much more frequently than real information.

The next was "Analytic," where real information had a much higher likelihood to in-

volve analytical aspects than misinformation. All these results showed content topic

differences between Zika real and misinformation groups. It reinforced my suggestion

that health is not an isolated issue but is confounded with various social, political,

and economic issues, which may lead to potential misinformation.

Next, I showed Doc2Vec feature differences between Zika real and misinformation

groups (Fig. 4.4). According to the later RF model, feature 24 was the single most

influential feature, accounting for more than 75% of decision tree split based on Gini

impurity and dwarfing all other Doc2Vec features. However, unlike LIWC features,

Doc2Vec features were learned by NN directly and did not have a clear interpretation.

Figure 4.1: Network Features Comparison between Real and Misinformation Groups
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Figure 4.2: Top Signal Features Comparison between Real and Misinformation
Groups

Figure 4.3: Top LIWC Features Comparison between Real and Misinformation
Groups

4.5.2 Machine Learning Classification and Detection of Zika Misinformation

Table 4.1 and 4.2 show classifier performance of RF and SVM, respectively. In

general, a single feature group as input is less effective in detecting Zika misinfor-

mation on Twitter. Among the five feature categories I have explored, content-based

DOC2VEC (D2V) features show the best performance with RF model, followed by



80

Figure 4.4: Top Doc2Vec Features Comparison between Real and Misinformation
Groups

user-related (USER), LIWC, and network (NET) features. Signal (SIG) features alone

have the least power to differentiate misinformation from real ones. Using SVM, the

same results still hold where DOC2VEC is the most differentiating group of features.

Combining different groups of features increase the classifier’s performance. For RF,

combining NET and SIG as dissemination features slightly increase model accuracy,

F1 score, and AUC (73%, 79%, 78%) from NET (71%, 77%, 77%) and SIG (70%,

77%, 75%) group alone. Interestingly, combining LIWC and D2V as content features

does not increase model performance. The highest model performance is achieved

when combining all five categories of features, with accuracy, F1 score, and AUC

at 82%, 86%, and 90%, respectively (4.1, last row). These results demonstrate that

health misinformation on social media is a multi-aspect problem, and we need to

characterize different aspects of health misinformation more comprehensively. The

comparison of ROC curves and AUC values across combinations of features in RF is

shown in Fig. 4.5.

Comparing between the two classifiers, RF always outperforms SVM in this study.

Combining all feature categories still yields the best performance in SVM (4.2, last
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row). Nevertheless, the best-performed SVM classifier trails behind RF with accu-

racy, F1 score, and AUC at 77%, 82%, and 95%, respectively, with a -5%, -4%, and

-5% difference from the best RF model. The comparison of ROC Curve and AUC

values across combinations of features in SVM is shown in Fig. 4.6.

Figure 4.5: ROC and AUC of RF Classifier with Different Feature Categories

4.6 Discussion

This study delivers an accurate health misinformation classifier that takes multiple

aspects of misinformation into consideration. More importantly, this study provides a

more holistic view of the health misinformation challenge on social media by exploring
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Table 4.1: Performance with Different Feature Categories: RF

Feature Categories Accuracy F1-score AUC TPR FPR
USER 0.770 0.823 0.839 0.87 0.061
LIWC 0.731 0.791 0.776 0.83 0.056
DOC2VEC (D2V) 0.771 0.830 0.821 0.91 0.54
NETWORK (NET) 0.711 0.772 0.765 0.8 0.57
SIGNAL (SIG) 0.697 0.769 0.75 0.82 0.50
LIWC+D2V (Con-
tent) 0.750 0.807 0.825 0.85 0.058

NET+SIG 0.733 0.787 0.782 0.81 0.60
USER+LIWC+D2V 0.796 0.841 0.877 0.88 0.65
All Feature Categories 0.822 0.859 0.901 0.89 0.72

Figure 4.6: ROC and AUC of SVM Classifier with Different Feature Categories

different aspects of misinformation, not just the content itself. Health misinforma-

tion is like a pathogen in the real world, and no single discipline can tackle pandemic

alone. Therefore, combining power from different aspects of health misinformation

will enable better understanding and response to health misinformation challenge on
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Table 4.2: Performance with Different Feature Categories: SVM

Feature Categories Accuracy F1-score AUC TPR FPR
USER 0.679 0.765 0.792 0.85 0.41
LIWC 0.678 0.756 0.698 0.81 0.46
DOC2VEC (D2V) 0.753 0.810 0.807 0.87 0.56
NETWORK (NET) 0.737 0.808 0.774 0.90 0.48
SIGNAL (SIG) 0.669 0.761 0.645 0.86 0.35
LIWC+D2V (Con-
tent) 0.729 0.787 0.782 0.81 0.60

NET+SIG 0.707 0.787 0.782 0.81 0.60
USER+LIWC+D2V 0.768 0.814 0.843 0.83 0.68
All Feature Categories 0.771 0.817 0.847 0.83 0.68

social media.

Practically, this study utilizes data mining techniques to extract more features, espe-

cially information dissemination features. The retweeting network G = {V,E} in this

study is constructed at the end of information dissemination when the last retweet

is received. Future work can be done to further construct and characterize temporal

network Gt = {V,E, t} at given time t, and merge insights with signal-based features

that explicitly tackle the temporal aspect of (mis)information dissemination.

Findings from this study not only deliver an accurate Zika misinformation classifier

on social media, but also shed new insights on characterizing and understanding gen-

eral misinformation, including health misinformation more comprehensively on social

media. The new perspective and approach can be readily transferred to tackle other

emerging issues such as the current COVID-19 pandemic, and to develop more generic

classifiers.

However, I need to point out some limitations of this work. First, the feature cat-

egories are not an exhaustive list, and new features are yet to be discovered. Like

pathogens in the real world, misinformation can also adapt to the changing envi-

ronment, mimic behavior of real information, and become more difficult to detect.

Second, this study emphasizes more on feature extraction, and future work will con-
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tinue identifying the most effective set of input features across feature categories. I

have applied RF to rank feature importance based on Gini impurity, and this will

guide further fine-tuning of ML classifiers with fewer inputs. In addition, I will evalu-

ate the potential over-fitting issue in delivering ML classifiers. Third, this classifier is

developed in the context of the 2016 Zika discussion, and its effectiveness needs to be

re-evaluated in more recent health issues such as current COVID-19 where the social

media landscape has changed since 2016. I will apply transfer learning techniques to

adopt this work in new health emergencies.

4.7 Conclusion

In this study, I transfer existing knowledge of real epidemics to comprehensively

characterize Zika misinformation infiltration on social media in 2016. I develop a

novel data mining technique to construct (mis)information dissemination networks

and signals, extract dissemination features, and further combine content-based fea-

tures based on LIWC and Doc2Vec and user features. Based on the combinations

of different feature categories, I develop an accurate Zika misinformation classifier

that can detect misinformation with > 85% accuracy and > 90% AUC. The novel

perspective and analytical framework in this study can be transferred to respond to

misinformation during current COVID-19 and future pandemics.



CHAPTER 5: Future Works and Conclusion

5.1 Future Works

My doctoral research can be further extended in a number of ways. One direction is

to devise frameworks that can help researchers better understand detected trends by

summarizing the underlying discussions forming the trends, identifying the conflict-

ing ones, clustering, and characterizing the sub-populations that are initiating such

discussions. Another interesting direction is to construct multilingual frameworks

that can aggregate user-generated content in different languages, which can be highly

beneficial to improve risk communication during a worldwide crisis such as COVID-

19. Another possibility is studying the role of users in distributing information on

a social media platform. On the one hand, to contain and prevent misinformation

propagation is by identifying malicious users who trigger and promote misleading

information. On the other hand, to promote and facilitate the propagation of true

information, we can rely on benign influential users within a network.

The proposed misinformation detection system in chapter 4 can be further improved

and extended as a more versatile tool by rigorously testing more datasets from various

domains, such as politics, and also in the context of other social media platforms, such

as Facebook. One way to achieve this is by participating in or even organizing com-

petitions in platforms such as Kaggle [146]. At the time of writing this manuscript,

I found 12 competitions related to fake news detection [147], out of which only one

had network-related data [148]. One research work based on the dataset [149] of this

competition is [150]. Although Zhou et al. in [150] also proposed a set of network-

based features, these features are extracted from a different type of network. They

concentrate on a topic (i.e., a news article extracted from Buzzfeed or Politifacts)
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and construct a network of friendship from the users who engaged with that topic.

They assume engagement to be posting a tweet, retweeting, liking, or replying. Next,

based on some psychological theories (e.g., "More users spread fake news than true

news"), they compute susceptibility scores for every node (user) in a network. These

susceptibility scores, which are the main foundation of network-based features pro-

posed in [150], are calculated based on the history of users in engaging with previous

fake news. This can cause some limitations as historical data might not be readily

available.

5.2 Conclusion

Social media platforms can play a critical role in the public health domain by

providing a valuable resource to study the public’s opinion regarding health-related

issues. Moreover, they can be used as a powerful tool to relay beneficial messages to

boost public knowledge of health-related topics.

In this doctoral dissertation, I designed and developed different computational models

to analyze health-related information dissemination on Twitter from various aspects.

In chapter 2, I investigated the driving factors that impact health-related discussions.

I proposed and examined two hypotheses about the potential driving factors; 1) real-

world events, and 2) highly active and also influential users. In particular, I designed

and developed a computational pipeline, EventPeriscope, to measure the reflection of

real-world events on Twitter discussions. This pipeline uses signal processing tech-

niques to model tweet streams and to detect peaks showing the time points when

users were highly active. Next, using text mining and NLP techniques, it digs into

the textual contents of tweets at the peak time to measure the relevance of tweets to

the topic of interest. Eventperiscope can help analysts to better understand the users’

engagement with a specific health-related topic. In chapter 3, I proposed a framework

to model information diffusion on Twitter. By analyzing the constructed information

diffusion networks, I demonstrate the misinformation is propagated differently from
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true information. In chapter 4, I proposed a solution to model the retweeting process

of tweets as NHPPs. By analyzing these processes and also the findings from chapter

3, I devised a new system that uses various aspects of information propagation (e.g.,

content, propagators, and temporal patterns) to detect misinformation with a high

level of accuracy.
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