
NETWORK-BASED PATHWAY ENRICHMENT ANALYSIS FOR BIOLOGICAL
INFERENCE OF HIGH-THROUGHPUT GENE EXPRESSION DATA

by

Pourya Naderi Yeganeh

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2019

Approved by:

Dr. M. Taghi Mostafavi

Dr. Mirsad Hadzikadic

Dr. Ann Loraine

Dr. Christine Richardson

Dr. Erik Saule

Dr. Mohamed Shehab



ii

c©2019
Pourya Naderi Yeganeh

ALL RIGHTS RESERVED



iii

ABSTRACT

POURYA NADERI YEGANEH. Network-based Pathway Enrichment Analysis for
Biological Inference of High-throughput Gene Expression Data. (Under the

direction of DR. M. TAGHI MOSTAFAVI)

Pathway enrichment analysis models (PEM) are biological inference approaches that

leverage annotated bio-molecular functions for interpreting the underlying processes of

gene expression profiles from high-throughput genomic data. Common PEMs neglect

the interactions among the gene/proteins and regard the known annotated functions

as simple lists, even though the interactions are essential components of biological

systems. Disregarding the interactions in the standard PEMs potentially results in

inaccurate inference, especially when focusing on the biological pathways, which are

important sub-classes of the biological knowledge. Network-based PEMs are emerging

methods that account for the interactions in the biological networks to produce more

informative functional interpretations. However, the methodologies that are used in

the current network-based PEM do not necessarily capture the key features of the

topological organization of pathways, including the upstream/downstream character-

istics.

This research study devises a pathway enrichment analysis by using a novel graph

model, Source/Sink centrality (SSC), to capture the network organizations in path-

ways effectively. The key idea of SSC is to measure the importance of a gene

in both upstream and downstream of a pathway while accounting for the tempo-

ral/biochemical order of the interactions. We use SSC to derive a topological statis-

tic for the importance of a given set of genes in the network of a pathway, and use

this topological statistic to construct a network-based PEM, called Causal Distur-

bance Analysis (CADIA). The performance of CADIA is validated by showing that

it uniquely produces relevant critical interpretations in multiple sets of experimental

data, while other PEMs fail to do so. We also use synthetically generated data to
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evaluate the specificity of CADIA in detecting pathway enrichments.

This research study also shows an exploratory evaluation of the SSC by hypothe-

sizing that it can capture the topological organization of a priori known important

genes. To this end, we investigate a battery of standard graph centrality models

and their novel SSC extensions for describing the organization of cancer genes in the

human pathways. From multiple perspectives, we show that the SSC extensions can

distinguish between the topological positions of cancer and non-cancer genes. These

results show that the SSC methodology contribute to the biological inference meth-

ods, as it can effectively capture the topological organization of a particular class of

important genes in the biological pathways.
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CHAPTER 1: INTRODUCTION

High-throughput gene expression technologies capture tens-of-thousands of sub-

cellular signals and identify a detailed molecular snapshot of biological organisms

at certain moments and conditions. Technologies such as Microarray and RNA-seq

produce quantitative details of the mRNA contents associated with any gene in an ex-

perimental sample [1–3]. A typical high-throughput experiment measure the changes

in each gene’s expression profile, i.e., differential expressions, among a set of exper-

imental samples from multiple conditions [4, 5]. However, the individual differential

expressions are not independent events and, therefore, are not reflective of intercon-

nected changes in sub-cellular functions [6]. For this reason, knowing the gene-level

changes alone does not automatically yield an interpretation for the underlying bio-

logical functions and mechanisms.

Interpretation of the underlying cellular mechanisms is an integral task of a typical

high-throughput gene expression study as it facilitates the extraction of high-level

biological insight. The most common interpretation approach is to identify the asso-

ciation of the differential expressions with some known biological processes [1, 4, 7].

The known processes often come from a priori curated classes of genes and proteins

– including cell functions, localization, disease drivers, and biological pathways [8,9].

Currently, there are several major repositories that contain a detailed and compre-

hensive annotation of biological functions and classifications of genes/proteins, such

as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) [9, 10].

“Enrichment Analysis Models” is an umbrella term for the statistical biological

inference methods that determine the prevalence (enrichment) of any a priori class
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from the differential expressions [7]. There are two major methodologies of enrichment

analysis; Over-representation analysis (ORA) and gene set analysis (GSA) [1,11,12].

ORA generally uses specific cut-off thresholds on gene-level change statistics to iden-

tify a set of differentially expressed (DE) genes. Then, ORA determines the enrich-

ment of an a priori class if the frequency of DE genes of the class is higher than

the global frequency of DE genes [13]. On the other hand, GSA avoids using cut-off

thresholds and determines the enrichment of a class by evaluating the distribution

of its members across a global sorted list of genes and their differential expression

statistics [7, 11]. GSA detects the enrichment of a class if its members appear close

together and incident at the extreme ends of the list [7]. Although ORA and GSA pro-

vide a systematic perspective for interpretation of gene expression data, they neglect

the interactions among the genes/proteins [1]. This is major limitation of ORA and

GSA, which potentially results in partial and inaccurate inference, especially when

investigating the biological pathways.

The pathways are a special and important category of a priori classes; they are

detailed networks of genes, proteins, and their interactions that carry out critical cel-

lular functions [6,14]. A well-established body of literature shows that the position of

genes/proteins in the biological networks may determine their importance to biological

organisms [15–17]. A gene might be centrally involved in several biological pathways

and interact with many other genes. In such cases, the molecular-level changes of a

central gene may cause dysfunction in its associated pathways. A well-studied case

of this example is the dysfunction of TP53 gene that disrupt the DNA-repair and cell

death programs in cancers [18]. The evidences on the topological organizations of bio-

logical networks and availability of the pathway annotations provides an opportunity

to devise more informative and comprehensinve Enrichment Analysis models.

An emerging category of biological inference methods, also known as Network-based

Pathway Enrichment Models (PEM), leverages the topology of the pathways for in-
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terpreting gene expression data. Network-based PEMs take the underlying networks

of pathways into account and are shown to detect unique and critical pathway en-

richments that are observable through standard models [1,12,19–26]. Network-based

PEMs often use graph theory or related modelings to emphasize on the importance

of the differential expression patterns of the topologically central genes. While these

models have provided improved inference perspectives, their abstractions of pathway

organizations do not necessarily capture key topological features of pathways. Biologi-

cal pathways, particularly signaling pathways, often have an upstream-to-downstream

organization which indicates the interactions between the genes and proteins have a

temporal and biochemical order.

This dissertation focuses on devising a comprehensive and informative pathway

enrichment analysis pipeline by accounting for the organization of genes and their

interactions. To capture the organization, this dissertation outlines the design of a

novel graph theory concept and its usage as a statistical evidence for enrichment anal-

ysis. The presented work contains experimental, synthetic, and exploratory measures

to verify the methodology.

The work of this dissertation is organized in three segments. The first segment ad-

dresses the shortcomings of the existing network-based PEMs by introducing a graph

theory topological measure, Source/Sink Centrality (SSC), to capture the upstream-

downstream organization of pathways [26]. SSC models a pathway as a directed graph

and maps the graph nodes into real values by combining two distinct characteristics

of the underlying network. The first is the importance of each network entity (gene)

as a source of information, and the second is the importance as a receiver of infor-

mation. We subsequently derive a topological statistical evidence by using SSC as

an integral part of our network-based PEM, Causal Disturbance Analysis (CADIA).

CADIA then combines the topological evidence and the standard ORA evidence to

increase the sensitivity of its enrichment analysis pipeline.
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The second segment of this dissertation focuses on the evaluation of CADIA. We

test CADIA on multiple cancer gene expression datasets and contrast its performance

against a battery of standard and the state-of-the-art PEMs. We also show CADIA’s

specificity by evaluating its false positive rate of enrichments when the method is

tested on synthetically generated data.

The third segment focuses on exploratory approaches to show the use of Source/Sink

modeling concept for capture topologically important genes. By extending multiple

standard centrality measures using the Source/Sink concept, we show that the SSC

framework can effectively distinguish the topological organization of known cancer

genes from others in the human biological pathways [27].

Chapter 2 covers the related background/literature by overviewing differential ex-

pression analysis, the standard enrichment analysis models, and network-based PEM

and their limitations. Chapter 3 constructs the analysis pipeline of CADIA by es-

tablishing the definition of Source/Sink centrality, deriving s topological evidence

from SSC, combining SSC with ORA, and deriving a pathway enrichment statistic.

Chapter 6 contains the experimental and synthetic validation of CADIA. Chapter 5

describes the exploratory approach for evaluating Source/Sink modeling and its utility

for characterizing the topological organization of cancer genes in biological pathways.

Chapter 6 summarizes this dissertations and outlines the future works necessary to

be explored.



CHAPTER 2: Background and Literature Review

2.1 Differential Expression Analysis

A typical primary output of gene expression analyses, such as Microarray and

mRNA sequencing, is a list of genes and their differential expression statistics. This

statistic describes the changes of a gene’s expression levels between two or more

experimental conditions, e.g. cancer versus normal. A typical differential expression

analysis may have two major procedures. The first is to calculate the statistic, and

the second is to use a cut-off threshold for the statistical significance to determine a

list of differentially expressed (DEG).

To illustrate the described procedure, consider a case where there are n1 control

and n2 treatment samples. One simple differential expression analysis pipeline is to

first hypothesize that the means of expressions in the control and treatment groups

are equal for each gene. Subsequently, two-sample t-test can evaluate individual

hypotheses under certain assumptions. For any gene, construct the following test-

statistic:

T =
Xc −X t√
s2p(

1
n1

+ 1
n2

)

where T follows Student’s t-distribution with n1 + n2 − 2 degrees of freedom, Xc

and X t are the expression means of the control and the treatment groups, and s2p

is the pooled variance of the two groups. The output of this test is a p-value that

corresponds to the probability of observing a more extreme difference between the

group means. A gene is considered differentially expressed (DE) if its p-value is

below some predefined threshold for which the null hypothesis of equal means is
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rejected. More appropriate and complex differential expression analysis pipelines

for various high-throughput platforms have been described in several manuscripts

including in [4, 5, 28–31].

Differential expression analyses often test numerous hypothesis at the same time.

To illustrate, consider a case where m distinct hypotheses are tested and have pro-

duced the p-values P1, P2, . . . , Pm. Using a standard p-value threshold for testing each

hypothesis ( e.g Pi < α) would result in falsely rejecting some of them beyond the

desired threshold α (Type-I error). Multiple hypothesis testing methods find appro-

priate rejection thresholds that controls the Type-I errors. For example, Bonferroni

correction states that if we set the rejection threshold at α
m
, then the probability

of having at least one type-I error is less than α, which is a conservative method

and is not practical for differential expression analysis. In practice, there are sev-

eral more appropriate alternatives, such as the Benjamini Hochberg False Discovery

Rate (FDR) that control the expected ratio of false rejections to the true rejections.

Without loss of generality, assume the above list of p-values is sorted in an ascending

order. For a desired α, FDR finds the largest k such that Pk ≤ α.k
m
. Benjamini and

Hochberg showed that for the first k hypothesis the expected value of false discovery

rate is less than α. Different multiple hypothesis testing approaches and their use

cases can be found in various manuscripts including in [32–35].

2.2 Biological Inference using annotated knowledge

The list of DEG may contain thousands of genes; a number that matches the

systematic behavior of biological organisms. The DEG list is often a key data for

extracting and interpreting the underlying cellular mechanisms in the experimental.

A naïve approach to this end is to investigate the DEGs one by one and identify the

biological functions associated with each. However, this approach is not informative as

the changes in biological systems are often highly interconnected and coordinated [6].

Consequently, the task of finding a high-level biological interpretation for the DEGs
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Curated databases/Annotated Knowledge

Experimental methods/ Whole genome 

Analysis models Functional associations

Figure 2.1: Enrichment Analysis uses two pieces of information. One is the list of
differentially expressed genes from the experimental data and the other is the prior
knowledge from curated databases such gene-chromosome, gene-pathways, and gene-
drugs associations. Enrichment Analyses evaluate the relationship between the two
and produce interpretation for the experimental data.

is not trivial and might be challenging.

Enrichment Analysis Models are systematic approach towards interpreting the gene

expression data that highly organized a priori biological knowledge (Figure 2.1). The

individual entities of a priori knowledge, also known as Gene Sets, are collections of

genes that have been found to be associated with certain biological processes [10,36].

The most commonly used a priori biological knowledge repository is the Gene On-

tology (GO), which contains a hierarchical representation of gene sets, their overlaps,

and their associated genes [10]. While each gene set of GO is a simple list of genes,

there are other datasets that may contain more detailed annotation of complex rela-

tionships for certain groups of genes set [9, 37].

A special class of gene sets is biological pathways, which are of significant interest.

From a bioinformatics perspective, the pathways are gene sets that contain additional

information beyond class membership (Figure 2.2). While a generic gene set might
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Figure 2.2: Biological pathways are a special class of gene sets that contain details
of molecular interactions and their mechanisms. This example figure shows MAPK
signaling which regulates several biological functions including cellular growth and
proliferation. Pathways include a variety of entities, such as genes coded elements
(in green), enzymes, or metabolites. The connections in the pathway diagrams may
represent different types of interactions such as binding, phosphorylation, repression,
and activation.

only be a simple list of gene identifiers, pathways contain details of interactions among

the genes/protein such as direction or the type of interactions [9]. To date, a few

hundreds/thousands pathways have been discovered/annotated in databases such as

KEGG, BioCarta, and Reactome [9,38].

From a biological perspective, the pathways are biochemical programs that regulate

certain cellular functions [39]. Each pathway encompasses cascades of interactions

between particular genes, proteins, and other biomolecular products (Figure 2.2).

Though the changes of individual molecules may trigger variations in the cellular

programs, many biological functions emerge from the systematic behaviour of entities
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and interactions. This systematic behavior is a fundamental concept of the systems

biology [40–42], and therefore, the concept of the pathways is essential for bridging

the gap between the molecular activities and the biological functions. The use of

pathways for the study of biological systems has a significant value for treatment,

diagnosis, and prediction of diseases – notably that of cancer [18,40,43,44]. Because

of the importance of pathways in biological inference, Enrichment Analysis Models

are sometimes referred to as Pathway Enrichment Analysis Models. This dissertations

uses these terms interchangeably.

2.3 Pathway Enrichment Analysis Models

Pathway Enrichment Analysis Models (PEM) are among the most common tech-

niques for biological inference [4, 7, 19, 21, 22, 25, 45–50]. As outlined in Figure 2.1,

a typical PEM takes an input list of genes and their respective differential expres-

sions, and assesses the prevalence (enrichment) of any pathway/gene-set from a priori

datasets [4,7–9,37,51]. The output of a typical PEM is a ranked list of the pathways

and a significance score of enrichment for each pathway [7,8,19,21,22,52]. For exam-

ple, a PEM may report dysfunction of the pathways cell cycle, cell death, and DNA

repair upon observing changes in activity of the gene TP53, which is associated with

the aforementioned gene sets.

PEMs can roughly be classified into three generations. The first generation is

over-representation analysis which evaluates the frequency of DEG in an annotated

pathway [1, 11, 13]. The second generation is functional class scoring, also known as

Gene Set Analysis, which assesses the distribution of a pathway’s members across

a sorted list of gene expressions profiles [7, 11, 53]. While the first and the second

generation models provide useful inference, their methodology requires considering the

pathways as simple sets and disregarding the interactions. A potential consequence

of disregarding interactions is inaccurate inference due to not accounting for the

knowledge of connection between genes’ activities [19, 22].
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The third category of PEMs, network-based models, account for the interactions

among genes and proteins towards a comprehensive biological inference. Studies

show that using the interactions can yield critical insight regarding the functionality

of biological events [15–17,54–62]. The next few sections describe the technical details

and advantages of each generation of PEM.

2.3.1 Over Representation Analysis

Over Representation Analysis is a simple method that determines whether the

members of an a priori set of genes are over-represented among the DEG. The premise

of ORA is that if there is no association between a pathway and DEG, we expect to

observe the same frequency of DE genes in the universe (the set of all genes) and the

pathway.

The first step of ORA is to identify a list of DEG by setting some cut-offs thresholds

for differential expression statistics, e.g. p-value ≤ 0.05. ORA then builds a null

hypothesis that the probability of a randomly selected gene to be DEG is independent

of the probability of the gene belonging to a specific pathway.

Binomial testing is one simple approach to build ORA pipeline. Formally, let p de-

note the probability of a gene being DEG. Here, p is estimated from the total number

of DEG divided by all of the genes in the high-throughput machinery. Suppose that

k genes from a pathway with n members are found to be DEG. Under the assumption

of null hypothesis, the probability of each gene in the pathway being belonging to

DEG is equal to p. By this assumption, we can derive the probability of observing

exactly k DEG in the pathway as:

P [X = k] :=

(
n

k

)
pk(1− p)n−k (2.1)

ORA evaluates the probability of observing k or more DEG from the pathway

(Pora). This p-value is a summation of the probability in formula 2.1 for all values of
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size k and larger. Let X denote the number of observed DEG from the pathway:

Pora := P [X ≥ k] =
n∑
i=k

(
n

i

)
pi(1− p)n−i (2.2)

This formula determines the enrichment of a pathway if we reject the null hypothesis

that probability of being DEG is independent from belonging to the pathway. The

binomial testing approach for ORA only works when meeting certain conditions on p

and n because of the dependencies between the size of the pathway, size of the global

gene list, and the size of DEG. Contingency table approaches, such as Fisher’s Exact

test or Chi-squared test, are more appropriate alternatives for ORA that produce

more accurate results [13]. Suppose that K genes are found differentially expressed

from the set of all genes with size N . To elaborate, suppose that k genes from a

pathway with n members are found to be differentially expressed. The contingency

table is constructed as shown in Table 2.1.

Table 2.1: Contingency table of observed differential expressions from high-
throughput experiments and a given a priori pathway

DE Not DE Total
In Pathway k n-k n

Not in Pathway K-k N+k-n N-n
Total K N-K N

Fisher’s exact test evaluates the probability of observing exactly k DEG’s in a

pathway. The p-values of Fisher’s exact test come from hyper-geometric distribution

and are obtained using the following formula:

P [X = k] =

(
n
k

)(
N−n
K−k

)(
N
n

)
∼ Hyper(k;K,n,N)

(2.3)

Under the assumption of null hypothesis of this test, the probability of of observing
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k DEG in a pathway determined by the global size of DEG, K, the size of the

universe, N , and the size of the pathway, n. The formulation of hypergeometic

probability distribution comes from the assumption of random sampling of DEG

without replacement, i.e. k DEG are selected from n choices and the rest, K − k,

are selected from N − n. Whereas, the formulation of binomial testing comes from

the assumption of random sampling of DEG with replacement. The null hypothesis

of Fisher’s exact test is evaluated by finding the probability of observing k or more

DEG in the pathway:

Pora := P [X ≥ k] =
n−k∑
i=0

(
n
k+i

)(
N−n
K−k−i

)(
N
n

) (2.4)

Pora is calculated using the cumulative density function of hypergeometric distribu-

tion, which is the output of ORA and is often used for determining the enrichment.

A pathway is enriched if we reject the null hypothesis with with some pre-defined

cut-off threshold for Pora.

Different approaches of ORA have specific advantages and disadvantages. The

choice of method for ORA depends on the Gene Set size and the probability of DEG.

There is also a computational trade-off depending on the size of the DEG and the

size of the pathways which affects the choice of the model. Although contingency

table tests provide more suitable problem formulation for ORA, they are shown to be

statistically conservative [63, 64]. Given that ORA simultaneously test hundreds of

different pathway enrichments, their cut-off threshold is determined by using multiple

hypothesis testing methods such as False Discovery Rate or Bonferroni correction.

ORA is a very popular approach in gene expression studies. The background

knowledge of pathways and gene sets are available from multiple biological databases.

ORA allows for designing costume gene sets by simply compiling gene lists of interest.
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However, ORA has some drawbacks [1]. ORA considers DEG as independent events

and does not account for their dependencies. Also, ORA is based on subjective

thresholds. In particular, DEG input is subject to change based on p-value and fold-

change cut-offs. In such instances, the information with marginal thresholds values

are lost, e.g. a gene would not be involved in ORA pipeline with a p-value of 0.5001 [1].

2.3.2 Gene Set Analysis

The second generation of PEMs, Gene Set Analysis (GSA), takes a different ap-

proach from ORA for biological inference and avoids using cut-offs on differential

expression statistics. Instead, GSA uses a global sorted list of gene expressions to

calculate the enrichment.

Gene Set Enrichment Analysis (GSEA) is the main GSA method [7]. The general

idea of GSEA is leveraging all of the genes from high-throughput experiments. GSEA

first sorts the list of all genes based on some criteria of significance and interest – For

example, one can sort the global gene list based on fold-change, differential expression

p-values, or correlation with certain phenotypic observations. In GSEA, the associa-

tion of a pathway is with the experimental data is measured by the tendency of its

member genes to appear on top (bottom of the list). The statistical evaluation of

GSEA allows for conserving the correlation structure of the genes in the analysis [7].

GSEA models calculate an aggregate Enrichment Score (ES) for a functional set,

Fi. Formally, suppose that G =< g1, g2, . . . , gn > is a ranked list of genes and

R =< r1, r2, . . . , rn > is the ranking values, such as correlation with some phenotype,

differential expression p-values, or fold change. The ES of a functional group is a

running sum on the rank values. In particular, let j specify a threshold index for the

ranked list. Define the two score, hits in the functional set, H(i), and miss of the

functional set, M(i), as following:
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H(i) =
∑

gj∈F,j≤i

|rj|
NR

, where NR =
∑
gj∈F

|rj| (2.5)

M(i) =
∑

gj /∈F,j≤i

1

n− |F |
(2.6)

Define ES as the maximum value of |H(i) −M(i)|. The null distribution of ES

is generated by shuffling the sample labels and re-calculating rj’s and ES for F in

each permutation. The statistical significance of ES is then calculated from this

null distribution as the probability of observing a higher ES value. GSEA addresses

some critical limitations of ORA. First, GSEA is free from cut-offs and, thus, is more

objective. Second, GSEA can address genetic dependencies because the permutation-

based null hypothesis testing preserves the correlation structure. GSEA however also

has some disadvantages. Most notably, it is insensitive to the underlying topological

structure of pathways. GSEA would produce the same results regardless of the the

left most genes in the Figure 2.3 being highly connected or not.

2.4 Network-based Pathway Analysis

The third generation of PEMs, network-based models, use the biological inter-

actions as an additional source of information [1]. As discussed, ORA and GSA

are sensitive to the positionally (topologically) important gene/proteins and this

would potentially deliver partial and inaccurate inference. In contrast, the premise of

Network-based pathway analysis is that using the interactions can produce more accu-

rate biological interpretation from the experimental data [1]. From a systems biology

perspective, the interactions are integral parts of cellular functions. A strong body of

literature suggests that the topological position of entities in biological networks can

determine their importance to key functions in biological organisms [15, 16, 56]. For

instance, Jeong et. al showed that the number of interactions associated with each
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Figure 2.3: GSEA calculates an enrichment score based on the distribution a pathway
elements in the list of all genes from High-throughput experiments. The X-axis of all
three panels is the sorted gene list. The lower panel represents the sorted statistic,
e.g. correlation with a phenotype. The leftmost is has the highest level of gene-level
statistics and the rightmost is the lowest. The vertical lines in the middle panel
represent pathway elements. The top figure is the ES. The red line is the maximum
ES.

gene/protein (degree distribution) correlates with the probability that its removal

would be lethal to the subject organisms [15]. The topological organization of bio-

logical networks provides an additional perspective for understanding and studying

biological functions.

Several network-based PEM use graph theory concepts to account for the interac-

tions between pathways [12]. Models such as “Signalling Pathway Impact Analysis”

(SPIA) [19] and “EnrichNet” [22], leverage the topological properties of the network

of genes and proteins for identifying the prevalence of a priori functional classes. The

differences between various network-based models lie within their abstraction of topo-
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logical importance. In the remaining parts of this section, we first overview the basic

concepts of graph theory and then overviews some of the prominent network-based

pathway analysis models to represent different perspectives.

2.4.1 Graph Modeling of Pathways

Define a graph, G = (V,E), as a pair of two sets, the nodes and the edges. The set

of nodes, V (G) = {v1, v2, . . . , vn}, represents n distinct elements, and the set of edges,

E(G) = {e1, e2, . . . , em}, represents m distinct interactions between the nodes. Each

edge, ek = (vi, vj), is an ordered pair that indicates a directed relationship from gene-

encoded element vi to vj. This notion is known as the directed graph. A graph can be

alternatively represented using a notation where the edges are unordered pairs, thus

without directionality, namely the undirected graph. Figure 2.4 depicts a directed

A

B C D

E F G H

I J K

Figure 2.4: Common Enrichment Analyses, such as ORA and GSA, do not differenti-
ate between the genes based on their position in the pathways. This figure illustrates
the underlying graph of an example pathway. In this case, GSA and ORA regards
the nodes A and K similarly. Network-based PEM address this issue by accounting
for the underlying interactions in pathways. This figure illustrates a scenario of why
it is essential to account for the underlying networks. Here, removal of the node A or
J causes a more extreme disconnect in the graph compared to that of node K or D.
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graph with the set of nodes V = {A,B, . . . ,K} and the directed edges between them,

e.g. (A,B) and (G, J). One can imagine an undirected graph using this example if

the edge directions were removed.

A walk, w, is a sequence of the graph nodes w = (vi, . . . , vk, vk+1, . . . , vj) in which

any two consecutive vertices are connected by a link, (vk, vk+1) ∈ E. An ij-walk of

a graph is a walk such that it starts at node i and ends at node j. The size of a

walk, |w|, is the number of edges in a walk. For example in graph of Figure 2.4, the

sequence (A,C,H, J) is an AJ−walk of size 3. A cycle is a walk were the start node

and the end node are the same. An acylic graph is a graph that has no cycles.

For any graph, the neighborhood of a node vi, N(vi), is the set of all adjacent

nodes of vi, N(vi) = {vj|(vi, vj) ∈ E(G)}. In a directed graph, the previous notion

denotes the set of out-going edges. Degree of a node is defined as the size of its

neighborhood, Deg(v) =
∣∣N(v)

∣∣. For a directed graph, the former notion of degree

is called out-degree, Degout(v). For example in Figure 2.13, N(A) = {B,C,D} and

thus. DegA = 3. Alternatively for a directed graph, neighborhood and degree can

be defined based on in-coming edges, i.e. in-degree, Degin(v) =
∣∣{u | (u, v) ∈ E}

∣∣.
Any graph with n vertices has an equivalent representation of a n×n square matrix

form, also known as the adjacency matrix, AG. Formally:

[AG]ij =


1, (vi, vj) ∈ E

0, otherwise
(2.7)

As the above definition suggests, the adjacency matrix of an undirected graph is

symmetric, AG = ATG. This property does not necessarily hold for directed graphs.

The adjacency matrix notation is useful for computational purposes, including for

graph centrality measures. A graph centrality is a function, C(v), from V (G) to real

numbers for describing a topological scoring (importance) of the nodes in a network,

C : V (G) → R [65]. Several graph centrality measures have been widely used for
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topological description of networks across different disciplines [65]. Throughout this

document, we will cover and explain some of the well-known centrality measures such

as Katz, PageRank, and Degree; particularly, in Chapters 3 and 5.

2.4.2 Model Overviews

EnrichNet: is a network-based PEM by Glaab et al. that maps the DEG and the

pathways genes to a global background network of protein-protein-interaction (PPI)

to calculate the enrichments. In particular, EnrichNet initially calculates a random-

walk distance between the DEG and the nodes of a target pathway [22]. A random

walk initially starts at some particular nodes and at each step of time transitions

randomly to a neighboring node. EnrichNet uses a specific definition of this concept,

random walk-with-restart, which has an additional option to randomly jump to a

predefined set of nodes at each transition step [66, 67]. EnrichNet than uses the

vector of eventual probability distribution of the random walk being present at each

node to calculate the distance. Formally:

P (t+1) = (1− α)P (0) + (α)P (t)W (2.8)

where P (0) is the initial state of the random walk and α is the transition probability.

P (t) is the vector of the probabilities of being at each specific node. W is transition

matrix which is the normalized adjacency matrix of overall PPI using the formula

W = D−1A, where [D]ii = max(Deg(vi), 1). In EnrichNet, P (0) is determined by the

set of DEG, G = {g1, g2, . . . , gm}. Enrichnet derives a distance based the probability

of the random walk being present at each particular pathway node. It then divides the

distance scores into n equal sized bins and defines the enrichment score as following:

Xd =
n∑
i=1

Pic − Pia
i · n

Pic =
|referencec ∩ targeti|∑n
j=1 |referencec ∩ targetj|

(2.9)
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In the above equation, Pic is the bin score and Pia is the sum of distance scores

across the whole PPI. Enrichnet calculates the statistical significance of Xd by finding

specific thresholds using a regression fit of Xd values with Pora.

SPIA: Tarca et al. also used the graph structure of the pathways to detect the

enrichment of pathways. Their model (SPIA) finds the differential expressions and

weights them according to the position in the pathway’s network. In particular, SPIA

calculates an accumulated perturbation in the pathway according to the positional

weights and devises an enrichment pipeline according to this evidence. Formally,

let ∆E =< ∆e1,∆e2, . . . ,∆en > represent the vector of differential expression fold-

changes for the genes in a pathway. SPIA defines a perturbation factor (PF) [19] for

each gene, i, in a pathway as following:

PF (i) = ∆ei +
∑

j: i∈N(j)

aij ·
PF (j)

|N(j)|
(2.10)

In the above formulation, N(j) is the neighborhood of gene j which itself is a neighbor

of gene i. aij is the ij-th element of pathway adjacency matrix. For example, the PF

of node J in Figure 2.4 would be its perturbation summed with the PF’s of nodes

E,F,G, and H weighted by their out degree. After calculating the PF’s for all nodes,

SPIA calculates an accumulated perturbation of a pathway node using the following

formula:

Acci = PF (i)−∆ei (2.11)

Authors then show that the by using some algebraic manipulation the following

formula to calculate the vector of Acci’s:

Acc = B(I −B)−1∆E (2.12)

where B is the normalized connectivity matrix, Bn×n = AD−1. A is the adjacency
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weighted matrix of the pathway graph andD is the diagonal degree matrix. SPIA then

defines a value of accumulated perturbations,
∑

iAcci, and evaluates the probability

of observing more extreme values, Ppert.

SPIA constructs a multi-evidence score by combining ORA p-values with Ppert [19].

This combined p-value, PG, is then used as the measure of enrichment of selected an-

notated pathways from the KEGG database. The multi-evidence approach increases

sensitivity and specificity of the model.

Cdist: This PEM by Naderi et al., Causal Disturbance (Cdist) models the DEG

into the chains of biomolecular interactions. Cdist initially evaluates the number of

walks in the pathway graph. Then, it measures the effect of DEG by removing the

DE genes from the graph and recounting the number of remaining walks (Figure 2.4).

To conserve the causal relationships and for computational purposes, each pathway

was modeled as a directed acyclic graph. To formulate this idea, let AP denote the

adjacency matrix of the DAG for a pathway P with n nodes, the following equations

can be used to calculate the number of all walks in the graph:

A∗P =
n∑
j=0

AjP = (I − AP )−1 (2.13)

Psum(GP ) =
∑
j,k

[A∗P ]jk (2.14)

where Psum(Gp) is the number of total walks in the graph. To evaluate the

structural effect of DEG on the pathway, Cdist calculates the fractions of walk that

were deleted upon the removal of DE genes.

Cdist(Pi, S) = 1− Psum(Gpi [Vpi/S])

Psum(Gpi)
(2.15)

P-values of Cdist, Pcdist, are calculated based on the null hypothesis of obtaining
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more extreme Cdist values by using the same number of randomly selected pathway

gene. Similar to SPIA, Cdist combines Pcdist and ORA p-values into test-statistic, as

a representative of the enrichment score.

χ2
4 ∼ −2[ln(PCdist) + ln(PORA)] (2.16)
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Figure 2.5: Cdist model successfully detects the enrichment of apoptosis pathway
in colorectal cancer. Dysregulation of apoptosis in a well-known feature of cancer
progression. In comparison, ORA is unable to identify the dysregulation of apoptosis.
The results show instances where the structure of the pathways genes (highlighted) are
informative in detecting unique pathway enrichments. Figure adopted from Naderi
and Mostafavi [21]

The above formula is the combined score which is obtained by a Chi-squared test

with 4 degress of freedom. Cdist uses KEGG database as a reference is capable of

detecting disease pathways that are not observable using other related methods, such

as ORA and SPIA (Figure 2.5) [19,21].
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NetGSA is a multivariate PEM [23] that also leverages the background knowledge

of connections between genes and proteins. The main difference between NetGSA and

the previously described models is that NetGSA directly models the gene expressions

with respect to the underlying pathway network. Formally, let Yi = Xi + εi denote

the model of gene i’s expressions, where X is signal and εi ∼ N(0, σ2
ε ) is noise. Each

individual expression is then decomposed into two components of an unknown latent

variable and a combined effect of other genes.

Xi = γi +
∑

j| i∈N(j)

Xj (2.17)

Where γi ∼ N(µi, σ
2
γ) is the latent variable of unknown effects and µi is the mean

expression of gene i without the effects of other genes. In the above formulation, the

expression Xi relates to all the other genes, Xj, that have a direct connection to it.

For example in Figure 2.4, the expression of node D has an effect from the expression

of node A. The set of equations for all Xi’s are convergent when certain criteria on

the underlying pathway graph are met. Most notably, the pathway network being

a Directed Acyclic Graph (DAG). The authors of NetGSA show that under certain

conditions on the underlying graph the vector of expressions can be summarized as

Y = Λγ + ε (2.18)

Where Λ is a matrix that its ji-th element is the number of paths between nodes i

and j. Equivalently, Λ = (1−AT )−1 where A is the adjacency matrix of the pathway.

If the pathway graph is a DAG, then Λ uniquely exists. NetGSA then translates

the expression equation into a Mixed Linear Model (MLM). The use of MLM enables

NetGSA to handle multiple experimental conditions and the change of topology across

conditions.

While network-based are powerful methods, they have a some limitations. First
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is that these models work only when sufficient network information is available. In

particular, these models are able to analyze the pathways when the map is available.

In contrast, ORA and GSA are able to work on a gene set even without substantial

information on the interaction.

Second is that their abstraction of pathway organizations do not necessarily capture

the topological and functional properties of pathways. For instance, Enrichnet does

not consider the direction of interactions. Also in SPIA, the differential expression

of terminal pathway genes would have no effect on the Acc vector, while in many

cases the downstream nodes deliver the definitive function of the pathways. For

instance in ErbB signalling, a well-studied cancer pathway, there exist several critical

oncogenes and tumor suppressors in both upstream and downstream ends [43, 68]

— including ELK, JUN, ERBB2, etc. Likewise, most of the signaling pathways

contain critical genes/proteins in their downstream that are key transcription factors

of critical cellular functions. NetGSA also fails to capture the importance of nodes

at both upstream and downstream of the pathways. Some of the methods require

simplification of the underlying graph for pathway analysis. For example, NetGSA

and Cdist require DAG modeling of the input data, which necessitates disregarding

loops in the pathways. A follow-up modeling of NetGSA by Shojaie and colleagues

address the issue of DAGs by re-defining the λmatrix, however, the issue of upstream-

downstream organization still persists [24].

Many of the discussed network-based models follow some variations of known and

well-studied centrality measures. For example, NetGSA and Cdist definitions are

closely related Katz centrality [69]. Similarly, SPIA and EnrichNet are related to the

PageRank centrality model [70]. Chapters 3 and 5 will have an extensive discussion

on the graph centrality models and will show that how the network-based PEMs

corresponds to known graph centrality model.



CHAPTER 3: Causal Disturbance Analysis (CADIA)

3.1 Introduction

The last chapter outlined the shortcomings of the graph methodologies in the exist-

ing network-based PEMs. In this chapter, we construct a novel graph-based model,

Causal Disturbance Algorithm (CADIA), to effectively capture the topological or-

ganization of the pathway networks and produce informative enrichments. To this

end, we define a new graph centrality model, Source/Sink Centrality (SSC), which is

intended to hold the following characteristics:

• It is sensitive to the direction of interactions, and it conserves the structure and

order of interactions. This is intended to address the issues of the PEM that do

not consider the causal order of interactions such as Enrichnet [22].

• Differential expression of a gene has a stronger effect on its immediate targets

compared to the distant ones. This concept allows for distinguishing between

immediate and mediated relationships among the genes.

• Differential expression of a gene/protein relates to its relative position with

respect to all of its downstream and upstream targets. This concept intends to

address the gap of knowledge in the PEM where the differential expression of

downstream nodes are regarded as topologically unimportant.

We derive a topological statistical evidence from the DE genes using SSC. The

topological evidence evaluates how much the DE genes are important in the pathway

structure. We then combine this topological evidence with a frequency-based evidence

to construct an enrichment analysis pipeline with increased sensitivity towards critical

differential expressions.
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3.2 Source/Sink Centrality

Consistent with the definitions in Chapter 2, our model uses a directed graph rep-

resentation for biological pathways. Formally, let G = (V,E) represent the graph

corresponding to a pathway. The set of vertices (nodes), V (G) = {v1, v2, . . . , vn},

represents n distinct gene-encoded elements. The set of edges (links) of a graph,

E(G) = {e1, e2, . . . , em}, represents m distinct directed interactions between the

nodes, immediate or mediated by some none-gene-encode elements. Each edge,

ek = (vi, vj), is an ordered pair that indicates a regulatory or causal relationship

from gene-encoded element vi to vj.

To calculate a descriptive importance score for a gene/protein in a biological path-

way, we introduce a novel graph centrality model that quantifies how the disturbance

(perturbation, differential expressions, etc.) of a node can affect the activities of

the downstream and upstream targets separately. In our model, the centrality of a

node comes from two components. In particular, a node is central if it is either an

important downstream receiver of signals (sink), or it is an important sender of sig-

nals (source). We define the weighted addition of these two concepts as the overall

centrality of a node. Formally:

Cssc(v) := Csource(v) + βCsink(v) (3.1)

where β is a positive real parameter to tune the relative contribution of the source

and sink components. Next, we define the individual equations for calculating the

Source and the Sink Components.

The source component, Csource, captures the importance of a node as a sender of

signals. In this model, we assume that the change in one node sends signals to other

nodes through edges of the graph. We also assume that a signal can travel through any

existing route (chains of biochemical interactions) between a sender and a receiver.
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The Source centrality captures the chains of biochemical interactions by using the

concept of graph walks. For consistency, we consider a single node as a walk of length

zero. We define the walk-space of a graph node, WG(v), to be the set of all walks

that start from the node, WG(v) := {wi | wi: a vu-walk in G}.

We assume that the signal decays proportionally to the distance that it travels.

Consequently, the size of the signal that a hypothetical node X sends to another

node Y depends on their distance. We capture the decay of the signal by using some

parameter α where 0 < α < 1. We then derive the Source centrality of a node v by a

weighted summation of the existing walks that start from v. Let k denote the length

of an arbitrary walk from v. We define the additive contribution of each walk to the

Source centrality as αk. Formally:

CSource(v) :=
∑

wj : vu−walk of G

α|wj | (3.2)

The parameter α ensures three conditions. First, differential expression of a gene/protein

has a greater effect on immediate targets compared to indirect ones. Second, the ef-

fect of a DE gene is the same on all immediate gene/proteins. Third, under certain

conditions of α, the centrality is able to handle the graph loop. We elaborate on the

conditions of α shortly after deriving a closed form solution of CSource.

To calculate the Source centrality, we use the adjacency matrix of the graph, AG.

The total number of all ij walks of length k in a graph is the ij-th element of the

kth power of the adjacency matrix, [AkG]ij. A proof of this can be constructed using

induction and the properties of matrix multiplication. The total number of all walks

of length k that start from a node vi in the graph is obtained the following formula:

∑
wj∈WG(vi),
|wj |=k

1 =
∑
j

[AkG]ij

= δT (vi)A
k
G1

(3.3)
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The Formula 3.3 denotes the sum of all elements in the i-th row of the adjacency

matrix. δ(vi) is the Kronecker delta which is a vector of size n where i-th location is

1 and zero elsewhere. 1 is an n× 1 column vector of size n with 1s for all elements.

Formally:

δ(vi) = [0 0 . . . 0︸ ︷︷ ︸
i−1

1 0 0 . . . 0︸ ︷︷ ︸
n−i

]T

1 = [1 1 . . . 1︸ ︷︷ ︸
n

]T

For computing Csource, we re-arrange the Equation 3.2 as following:

CSource(vi) =
∞∑
k=0

∑
wj∈WG(vi),
|wj |=k

α|wj |

=
∞∑
k=0

αk
∑

wj∈WG(vi),
|wj |=k

1

(3.4)

The above formulations are summations over all existing walks of any length. In

particular, the inner summation are on all the walks with a fixed length. For a closed

form solution, we replace the inner sum with Formula 3.3:

CSource(vi) =
∞∑
k=0

αkδT (vi)[A
k
G]1

=δT (vi)

[
∞∑
k=0

αkAkG

]
1

(3.5)

A sufficient condition for the summation to be convergent is α ≤ 1/λ1 where λ1

is the largest positive eigenvalue of the adjacency matrix AG. In particular, the

condition α < 1/λ1 results in limn→∞[αA]k = 0 and insures that the matrix I − αAG
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is non-singular. A detailed proof on the convergence can be found in [71]. A choice

of of α < 1/λ1 gives:

∞∑
k=0

αkAk =(I − αA)−1(I − αA)[A0 + αA+ α2A2 . . . ]

=(I − αA)−1

(3.6)

It is possible for a finite graph to have an infinite number of walks. A graph has

infinite number of walks if it has loops, i.e. non-zero walks that start and end at

the same node. The above equation indicates that even if the graph has an infinite

number of walks, the Source centrality converges by choosing proper values for α.

A

B C D

E F G H

I J K

Figure 3.1: A graphical depiction of the Source centrality concept where the impor-
tance of the node is calculated A as a source of signals in the graph. The centrality
of node A depends on the number of walks that start from it. Incoming red edges
in a node denote that A is sending signals to that node. the thickness of the edges
denote the strength of those signals, illustrating the relative weight of a walk.
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Combining the Equations 3.5 and 3.6, we derive the closed form solution for the

Source centrality as:

Csource(vi) = δT (vi)(I − αAG)−11 (3.7)

The sink component captures the importance of a node as a receiver of signals.

In this model, we assume that a node can receive signals from other nodes through

connections of the graph. We also assume that a signal can travel through any existing

route (chains of biochemical interactions) between a sender and a receiver. We assume

that the signal weakens if it has to travel larger distances.

Similar to the Source centrality, we use the concept of graph walks to capture the

importance of a node as a sink. Having the assumptions stated above, we derive the

Sink centrality of a node v by aggregating the existing weighted walks that end at

v. We capture the relative contribution of each incoming walk relative to its length,

which is by using some parameter α where 0 < α < 1. Formally:

CSink(v) : =
∑

wj : uv−walk of G

α|wj | (3.8)

To calculate the Sink centrality of a node, we use the definition of transposed

graphs. The transpose of a graph, GT , is a graph with reversed edge directions.

In this case, V (GT ) = V (G) and E(GT ) = {(u, v)|(v, u) ∈ E(G)}. The adjacency

matrix of a transposed graph is the transpose of the adjacency matrix, AGT = ATG.

Any uv-walk of G is a vu-walk of GT . Consider a walk w = (v1, v2, . . . , vk) of G, then

by definition, we have (vi+1, vi) ∈ E(GT ). Therefore, w′ = (vk, vk−1, . . . , v1) is a walk

in GT . Using this property, we write Formula 3.8 as:
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CSink(v) =
∑

wj∈WGT (v)

α|wj |
(3.9)

The use of the transposed graph allows to effectively calculate the Sink centrality in

a procedure similar to the Source centrality. In particular, by rewriting the equations

3.4–3.8, we get:

CSink(vi) =δT (vi)(I − αATG)−11 (3.10)

A

B C D

E F G H

I J K

Figure 3.2: A graphical depiction of the Sink centrality concept where the importance
of the node is calculated A as a sink of signals in the graph. The centrality of node J
depends on the number of walks that end at it. Outgoing red edges in a node denote
that it is sending signals to node J. the thickness of the edges denote the strength of
those signals, illustrating the relative weight of a walk.
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The convergence condition of the Sink component is the same as the Source com-

ponent. In particular, the same α would also work for the transpose graph because

the set of eigenvalues of a matrix and its transpose are equivalent. A proof of this

can be constructed by showing that the characteristic polynomials of a matrix and

its transposed are equal, |(λI − AT )| = |(λI − A)| [71].

The Source/Sink Centrality is derived by having the individual formulas for the

Source and the Sink components. Plugging the above formulas into Formula 3.1

gives:

Cssc(vi) =δT (vi)
[
(I − αAG)−1 + β(I − αATG)−1

]
1 (3.11)

The above formulation captures the Source/Sink centrality (SSC) of a node by

considering it as both a sender and a receiver. In pathway annotations, the upstream

genes are mainly sender (source) of signals. Likewise, the downstream genes/proteins

are mainly receiver of the signals.

When β takes small values (β << 1), the Source/Sink centrality shifts towards

the capacity of the nodes as sources, where the SSC resembles the Source component

(Eq. 3.2). When β grows larger, 1 << β, the centrality shifts towards higher the sink

capacity, where the SSC resembles the Sink Component (Eq. 3.8).

We can show that β = 1 ensures that Cssc(v) is the most distinct from the two

individual Source and Sink components (Proof in Appendix A). Individual formulas

for calculating source and sink centrality are closely related to the Katz-Bonacich

centrality which is a popular centrality method in the study of social networks [69].

3.3 Constructing a PEM using Source/Sink Centrality

The next step of CADIA is to use the Source/Sink centrality for calculating an

enrichment score for a set of DE genes. CADIA derives a topological evidence by
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measuring the aggregated importance of the DE genes. CADIA also uses an addi-

tional evidence from ORA and combines it with Source/Sink Centrality to increase

sensitivity, Similar to a methodology that was used in SPIA [19].

3.3.1 An Statistical Evidence from Source/Sink Centrality

CADIA derives a topological statistics from the Source/Sink Centrality. In contrast

to the regular use of centrality models, where the individual centrality of the nodes

is important, CADIA measures the centrality of the set of the DE genes. We define

a notion of aggregated centrality for a subset of nodes to quantify this concept. Let

U = {u1, u2, . . . , um} denote the DE genes of a pathway, U ⊂ V (G). We measure the

aggregate centrality, namely causal disturbance, of U by using the following:

Agg(U) :=
∏
ui∈U

Cssc(ui) (3.12)

The product in the above formula allows creating sensitivity towards the cases

where the DE genes mainly have intermediate centrality values. The biological net-

works may contain hubs (nodes with extremely high centrality). A summation-based

evaluation would dismiss the mainly-intermediate-centrality cases as non-significant

in favor of the cases with few hubs and majority low-centrality. The product-based

procedure (Formula 3.14) potentially disregards the instances where the set of DE

genes contains only a few hubs, and the rest of the elements are unimportant nodes.

Accordingly, we derive a statistical significance of the aggregate score from a given

set of DE genes. In particular, we evaluate the probability of observing a more

extreme aggregate score by using a bootstrap sampling approach. Let Agg(U0) denote

an observed causal disturbance of a pathway from m DE genes. The statistical

significance of Agg(U0) is:
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Pssc = P
{
Agg(U) > Agg(U0)

∣∣∣ |U | = |U0|
}

(3.13)

Pssc denotes the probability of observing a higher aggregate Source/Sink score

(causal disturbance) in a randomly selected subset U of V (G) with size k. CADIA uses

the probability density function (PDF) of Agg(U) to extract the Pssc by calculating

the right-hand side area under the PDF curve. The PDF is based on sampling large

enough different Agg(U) values.

The Formula 3.12 can be re-written by taking logarithm of its right-hand side.

Since the objective is to evaluate the extremeness of an observed aggregate score, the

logarithm operation does not change Pssc on the condition that log(Cssc(vi)) ≥ 0.

Formally:

Agg∗(U) :=log
( ∏
ui∈U

Cssc(ui)
)

:=
∑
ui∈U

log(Cssc(ui))

(3.14)

Pssc =P
{
Agg(U) > Agg(U0)

∣∣∣ |U | = |U0|
}

=P
{
Agg∗(U) > Agg∗(U0)

∣∣∣ |U | = |U0|
} (3.15)

A property of Pssc is that it remains invariant under a broad range of manipulations.

For example, Pssc is invariant to any positive scaling in the Formula 3.11. This allows

for rearranging the definition of Cssc( ) in a more symmetrical representation, the

illustration and proof of this rearrangement is provided in the Appendix A.
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3.3.2 Combining Source/Sink Centrality with ORA

To increase the sensitivity, CADIA uses an additional statistical evidence obtained

from ORA, which is similar to the approach of SPIA [19]. Using the two evidences

enables to investigate differential expressions from two simultaneous perspectives. 1–

Is the frequency of the DE genes in a pathway unexpected? 2– Are the differential

expressions topologically central to the pathway organization?

We then use the hypergeometric test to calculate the p-values of over-representation

analysis (Pora). As discussed in Section 2.3, the over-representation p-value of the

pathway is defined as the probability of observing more DE genes in the pathway.

Recall the p-value of over-representation, Pora:

Pora := P
{
X > m

}
∼ Hyper(k, l,m, n) (3.16)

where X is the random variable that denotes the number of DE genes in the

pathway, m is the number of DE genes in the pathway, k is the total number of DE

genes, l is the total size of the pathway, and n is the size of the universe.

Pora and Pssc are independent because given any m, the knowledge of Pora does

not add any information regarding Pssc. A formal proof can be constructed by using

the definition of Formula 3.13; Pssc is independent from P{X = |U0|} because the

definition of Pssc contains a condition of{|U | = |U0|}. Similarly, Pssc is independent

from P{X = |U0| + i} for all values of i. Also, the probabilities P{X = |U0| + i} are

mutually exclusive for all i’s. Therefore, Pssc and
∑

i P{X = |U0|+i} are independent.

Here, the summation of probability adds up to Pora.

Given the independence of Pora and Pssc, it is possible to combine them into one

test-statistic for producing higher statistical power. Fisher’s method for meta-analysis

uses Chi-square estimates to combine independent p-values [72]. In particular, let

a random variable X indicate the product of Pora and Pssc. The chi-squared test
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indicates the probability of observing smaller values for the product. This is similar

to the methodology of SPIA for combining topological and ORA evidence [19]. Chi-

squared test with four degrees of freedom [72] estimates this p-value as following:

Pcadia = P
{
X ≤ Pora.Pssc

}
= −2[ln(Pssc) + ln(Pora)] ∼ χ2

4

(3.17)

where Pcadia denotes the combined probability of the topological evidence (Pssc)

and the ORA evidence (Pora). Pcadia is the output of the enrichment analysis pipeline

and we use it to determine the association of a known pathway with the experimental

data. Since a typical input involves numerous pathways, the significance thresholds of

Pcadia for enrichments is decided by appropriate multiple hypothesis testing criteria,

such as FDR < 0.05.

From a computational perspective, the time complexity of CADIA is similar to that

of SPIA. For a pathway of size n with m rounds of sampling, the time complexity

is of O(n3 + m · n). The n3 component is for a one-time calculation of Source/Sink

Centrality, which includes of a matrix inversion. The m.n component depends on

number of sampling rounds of n random DE gene (n is the upper-bound).



CHAPTER 4: Model Evaluation

This chapter focuses on evaluating CADIA for identification of informative pathway

enrichments. First, we apply CADIA on real-world datasets and compare its results

with the existing PEMs. Second, we evaluate CADIA by using it on synthetically

generated list of differentially expressed genes. We hypothesize that if the data is

randomly generated, then CADIA should not detect pathway enrichments beyond

some margin of error. This is to investigate the false-positive rate of outputs of

CADIA.

4.1 Methods of Experimental Data Evaluation

We use three real-world datasets for experimental evaluation of CADIA. For consis-

tency, the three datasets were from mRNA expression microarray datasets, retrieved

from the National Center for Biotechnology Information (NCBI) gene expression om-

nibus [73]. The datasets are cancer gene expression profiles, and the rationale for this

choice is because of the abundance and depth of literature on signaling pathways in

cancers. This allows to contrast results of CADIA against existing evidence and other

methods [18]. We compared CADIA to other PEM including SPIA, ORA, GSA, and

Enrichnet.

The first dataset is a microarray sample collection of ovarian tissues by Bowtell

and colleague which contained 60 High-grade serous ovarian cancer and 30 Low ma-

lignant potential tumors [74]. This data was retrieved using the NCBI accession code

GSE12172. The second dataset is a microarray sample collection from colorectal tis-

sues by Mogushi and colleagues, retrieved using the NCBI accession code GSE21510.

A subset of 25 normal colon tissues and 19 homogenized cancer tissues from this
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dataset was selected for differential expression analysis [75]. The third dataset was

from gastric cancer patients by Bing Ya and colleagues that contained 21 normal

samples and 111 cancer samples, retrieved using the accession code GSE54129.

For each dataset, the log of RMA normalized mRNA expressions was used to calcu-

late differential expressions. Limma package was used to calculate the significance and

log-fold-change of each differential expression [76]. The p-values of each differential ex-

pression were subjected to multiple hypothesis testing using the Benjamini-Hochberg

False Discovery Rate (FDR) [32]. Each dataset was subjected to a specific log-fold-

change (FC) and FDR criteria for gene selection to create differential expression sets

from multiple settings and different sizes. In particular, GSE12172 was subjected to

the filtering criteria |FC| < 1 and FDR < 0.05. GSE21510 was subjected to the fil-

tering criteria |FC| < 1 and FDR < 0.005. GSE54129 was subjected to the filtering

criteria |FC| < 3 and FDR < 0.05.

4.1.1 Background Pathways

All the PEMs investigated this chapter used a prior set of biological pathways from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [9]. SPIA and Enrichnet

used internal list of pathway. For CADIA, ORA, and GSA, we used KEGGGraph

package in R to parse pathway graphs [77]. All pathways were selected from KEGG

classifications of Environmental Information Processing, Cellular Processes, Organis-

mal System, Human Diseases, and Drug Development.

Some of the pathways potentially had incomplete information which may cause

inconsistency in a PEM [25]. Therefore, we excluded incomplete pathway from the

analysis to preserve consistency of graph analysis. The exclusion criteria were 1–

pathways contained more than 50% abandoned nodes (without any edges), 2– their

largest connected component was less than ten nodes, and 3– their edge count was less

than 20. A total of 51 pathways exhibited these characteristics. Also, five pathways

with the largest eigenvalue of more than 10 were excluded from analysis since they
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imposed too small values of α for CADIA. A final set of 143 pathways passed the

analysis criteria and were used for further analysis. A complete list of pathways in

this study is provided in the Supplementary Table B.1.

4.1.2 Comparison of PEMs

We investigate the enrichment of KEGG pathway in the three datasets by using

CADIA, ORA, GSA, Enrichnet, and SPIA. The methods calculate enrichment p-

values for each pathway. We used the Benjamini-Hochberg False Discovery Rate

(FDR) criteria to correct the p-values for multiple hypothesis testing correction when

applicable. A pathway enrichment score was considered statistically significant if its

respective FDR-corrected p-value was less than 0.05 (FDR ≤ 0.05).

P-values of Source/Sink Centrality (Pssc) in CADIA were calculated based on 10000

rounds of iteration for bootstrap sampling which can compute p-values as small as

10−4. The parameters α = 0.1 and β = 1 were used for calculating Source/Sink

Centrality in CADIA. The choice of β = 1 ensures that Source/Sink centrality is

maximally distinct from the Source component and the Sink component. As for the

parameter α, we are interested in having the largest possible values, while preserving

a reasonable coverage of pathways. Source/Sink centrality is closely related to Katz-

Bonacich model, and prior studies have shown that the choice of α in Katz model

can strongly affect the centrality rankings [69]. For these reasons, α = 0.1 is the

maximal choice to ensure the pathway coverage and the convergence of Source/Sink

calculation (only 5 pathways had to be excluded because they required smaller choice

of α)

Over-representation p-values (Pora) were calculated using hypergeometric test. SPIA

p-values were calculated using the SPIA R package [19]. GSA p-values were calculated

using two available implementations GAGE and F-GSEA [53, 78]. Enrichnet path-

way analysis was done by accessing its online portal [22]. All the data analysis in this

chapter were performed in R and related Bioconductor packages when possible [79].
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4.2 Methods of Synthetic Data Evaluation

We tested CADIA on random inputs of different sizes to verify that the results

were not outcomes of false positives. We also tested ORA on the same randomly

generated data to contrast Pora and Pssc. Ideally, a PEM should not detect significant

enrichments for a randomly selected input. In practice, a test of random data may

generate false positive. Therefore, it is desired to measure the rates using a controlled

false positive criterion. The synthetic evaluation of CADIA to measure false positive

rates is as following:

1. Set n = 100.

2. Select a random subset of n genes.

3. Calculate Pora, Pssc and Pcadia.

4. Evaluate the number of enriched pathways by each method (FDR ≤ 0.05).

5. Repeat steps 2, 3, and 4 for 10 times and record the average number of false

positives.

6. If n ≤ 5000, do n = n+ 100 and go to step 2.

CADIA and ORA parameters and the background data are described in subsection

4.1.2. The 10 repeats at each input size allows a more accurate estimate of the number

of false positives. The 100–5000 range provides a variety of reasonable input sizes for

measuring CADIA and ORA.

In addition, we applied Source/Sink centrality to the ErbB signaling pathway to

showcase its ranking procedure. ErbB signaling is a suitable choice for an in-depth

analysis because of 1– the existence of extensive literature on its mechanisms, 2–

being a suitable example of upstream/downstream mechanisms [80]. 3– its relative

small size for visualization purposes. We compared Source/Sink centrality to three
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other well-known centrality models; Degree centrality, Betweenness centrality, and

Katz centrality. A comprehensive description of these models and their applications

can be found in the reference [65]. To compare these models, we used the ranking of

the nodes produced by each centrality method. A higher rank value indicates higher

centrality. In the case of having the same values, the minimum rank was assigned to

all ties.

4.3 Results and Discussion

The experimental evaluation shows the ability of CADIA its in uniquely detecting

critical enrichments. In particular, CADIA detected critical pathway enrichments

for ovarian cancer, colorectal cancer, and gastric cancer that were not observable by

SPIA, ORA, GSA, and Enrichnet – supported by evidence from the literature. Also,

CADIA dismisses some pathway enrichments from SPIA and ORA, many of which do

not have any particular association with the experimental data. Our synthetic data

evaluation provide insight regarding the performance of CADIA and reliability of its

results. The synthetic data evaluation shows that CADIA is not prone to make false

positives above the expected level. Additional analysis provides insight regarding the

performance of Source/Sink Centrality compared to standard centrality models.

4.3.1 Experimental Evaluation: Ovarian Cancer Dataset

Based on 1333 differentially expressed genes in the ovarian cancer dataset, CADIA

uniquely identifies three pathways — PI3K-AKT signaling, Focal Adhesion, and Ras

signaling pathways (Table 4.1). These are well-studied pathways in ovarian cancer

[81, 82]. In particular, CADIA detects enrichment of PI3K-AKT signaling (FDR-

corrected p-value ≤ 7.82× 10−3) by utilizing a Pssc of ≤ 2.5× 10−3. PI3K-AKT is a

cancer associated pathway that regulates many critical cellular mechanisms, including

cellular proliferation, survival, and apoptosis [83–86]. PI3K-AKT is activated in

ovarian cancer and it has been indicated for its utility for therapeutic approaches
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[81, 83, 87],mabuchi2015pi3k,luo2003targeting. Similarly, CADIA detects enrichment

of Focal Adhesion pathway (FDR-corrected p-value≤ 2.41×10−2) by utilizing a Pssc of

≤ 9.80×10−3. Focal Adhesion is well studied in cancers – particularly ovarian cancer

–and is associated with cellular migration, proliferation, and differentiation [88]. In

addition, CADIA detects enrichment of Ras signaling pathway (FDR-corrected p-

value ≤ 2.20 × 10−2) by utilizing a Pssc of ≤ 2.00 × 10−4. Ras signaling activates

cellular proliferation and growth and is associated cancers [83,89].

CADIA discards some pathways with insignificant Source/Sink topological evi-

dence, some of which not having clear connections to ovarian cancer. For example,

SPIA detects cytokine-cytokine receptor interactions pathway which is not detected

by ORA or CADIA. Our literature search failed to identify any established results

for the association of this pathway with ovarian cancer. On the other hand, CADIA

is able to provide strong topological evidence for Pathways in cancer for which SPIA

fails to provide topological evidence (Details in Supplementary Tables in Appendix

B). Also, SPIA uniquely detects mineral absorption pathway for which the litera-

ture search failed to identify any established results for its association ovarian cancer.

Mineral absorption was among the pathways that did not pass the quality criteria

and did not qualify for CADIA because of its incomplete information.

Enrichnet fails to identify a number of pathways that were determined by ORA,SPIA,

and CADIA. The significance threshold of Enrichnet’s XD-Score for ovarian cancer

data was 1.12 (Table 4.4). Also, Enrichnet fails to infer unique relevant pathway

enrichments. For example, the literature search failed to find evidence for association

of Folate Biosynthesis with ovarian cancer. For these reasons, we conclude that in

this case of experimental evaluation Enrichnet does not perform better than any of

the other methodologies.

On the ovarian cancer data, both GAGE and FGSEA identify a few of the pathways

that were also discovered by SPIA, CADIA, and ORA (Tables 4.5 and 4.6). However,
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Table 4.1: Statistically significant pathway enrichments identified by CADIA from
the ovarian cancer sata (GSE12172)

Name§ ID Pora Pssc CADIA† FDRora
‡

MicroR... 05206 3.66e-08 2.65e-01 2.70e-05 5.23e-06
Oocyte ... 04114 3.13e-04 3.00e-04 1.09e-04 1.49e-02
p53 sig... 04115 2.83e-07 4.80e-01 1.09e-04 2.02e-05
*PI3K-... 04151 7.34e-03 2.50e-03 7.82e-03 8.31e-02
*Ras si... 04014 3.65e-01 2.00e-04 2.20e-02 9.97e-01
*Focal... 04510 1.01e-02 9.80e-03 2.41e-02 9.02e-02
Proges... 04914 4.82e-04 3.51e-01 3.19e-02 1.72e-02
Pathwa... 05200 2.30e-03 8.08e-02 3.19e-02 4.71e-02
§ Names truncated for space limitation
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to CADIA

GSEA requires less conservative significance thresholds. At the significance threshold

of 0.05 GAGE finds only two pathways and FGSEA finds three pathways. There is no

overlap between the result of the two methods. In contrast, the models investigated

in the main document, discover larger number of pathways with many relevant cases.

4.3.2 Experimental Evaluation: Colorectal Cancer Dataset

Based on 2625 differentially expressed genes, CADIA uniquely detects six path-

way enrichments in colorectal cancer data including Apoptosis, Hippo Signaling (Ta-

ble 4.7). CADIA detects enrichment of Apoptosis pathway (FDR-corrected p-value

≤ 3.77×10−2) by utilizing a Pssc of ≤ 8.00×10−3. Dysfunction of Apoptosis pathway

– programmed cell death– is an important feature of cancers, and in particular colorec-

tal cancer [18,90]. Similarly, CADIA detects enrichment of Hippo signaling pathway

(FDR-corrected p-value ≤ 3.77×10−2) by utilizing a Pssc of ≤ 5.64×10−2. Hippo sig-

naling is well-studied in human neoplasms and control cellular proliferation and apop-

tosis [91]. CADIA detects enrichment of GnRH signaling pathway (FDR-corrected

p-value ≤ 3.77× 10−2) by utilizing a Pssc of ≤ 1.81× 10−2. Literature evidence also

show mechanisms in which GnRH signaling affects colorectal cancer [92]. Similarly,
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Table 4.2: Statistically significant pathway enrichments identified by ORA from the
ovarian cancer data (GSE12172)

Name ID CADIA† FDRora
‡

MicroRNAs in cancer 05206 2.70e-05 5.23e-06
p53 signaling pathway 04115 1.09e-04 2.02e-05
Oocyte meiosis 04114 1.09e-04 1.49e-02
Progesterone-mediated oocyt... 04914 3.19e-02 1.72e-02
*Proteoglycans in cancer 05205 7.59e-02 3.29e-02
ECM-receptor interaction 04512 6.85e-02 4.63e-02
Pathways in cancer 05200 3.19e-02 4.71e-02
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to ORA

Table 4.3: Statistically significant pathway enrichments identified by SPIA from the
ovarian cancer data (GSE12172)

Name ID SPIA† CADIA†

*Cell cycle 04110 6.38e-09 NA
p53 signaling pathway 04115 1.11e-04 1.09e-04
*Chemokine signaling pathway 04062 4.85e-04 3.17e-01
*Mineral absorption 04978 1.48e-02 NA
Oocyte meiosis 04114 1.73e-02 1.09e-04
*Cytokine-cytokine receptor... 04060 1.73e-02 4.76e-01
Progesterone-mediated oocyt... 04914 3.77e-02 3.19e-02
† FDR corrected p-values
* Unique to SPIA
NA: Not Analyzed by CADIA

CADIA detects enrichment of Phospholipase D signaling pathway (fdr-corrected p-

value ≤ 3.77× 10−2) by utilizing a Pssc of ≤ 7.00× 10−3. Phospholipase D signaling

is related to colorectal cancer through connections with Wnt signaling [93,94].

The significance threshold of Enrichnet’s XD-Score for colorectal cancer data were

1.78 (4.10). According to the authors and the portal, this score is equivalent of

a FDR < 0.05. The over-representation p-values in the table were calculated by

Enrichnet application. Enrichnet fails to identify a number of pathways that were

determined by ORA,SPIA, and CADIA. Also, Enrichnet fails to infer unique relevant

pathway enrichments. For these reasons, we conclude that in this case of experimental
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Table 4.4: Statistically significant pathway enrichments identified by Enrichnet from
the ovarian cancer data (GSE12172)

Name ID XD.Score† FDRora
*

Folate biosynthesis 00790 1.90 2.86e-01
DNA replication 03030 1.70 1.33e-02
Cell cycle 04110 1.53 6.83e-11
p53 signaling pathway 04115 1.53 2.42e-05
Bladder cancer 05219 1.25 4.82e-02
Prion diseases 05020 1.25 7.40e-02
† Significance score of Enrichnet (Threshold =1.12 for
95%)

* FDR corrected Pora – as calculated in Enrichnet

Table 4.5: Statistically significant pathway enrichments identified by GSA–GAGE
from the ovarian cancer data (GSE12172)

Name ID p.val† FDR*

MicroRNAs in cancer 05206 8.86e-06 1.22e-03
p53 signaling pathway 04115 1.71e-05 1.22e-03
Oocyte meiosis 04114 1.19e-03 5.65e-02
* FDR corrected p-values – as calculated in GAGE

evaluation Enrichnet does not perform better than any of the other methodologies.

ORA uniquely detects enrichment of Thyroid hormone signaling pathway for which

the literature search did not find any results in supports of its association with col-

orectral cancer. Similarly, SPIA detects pathways that not necessarily related to

colorectal cancer such as Alzheimer’s, Ameobiasis, Bile secretion, and Pancreatic

cancer (Table 4.9). Some of these SPIA pathways were excluded from CADIA’s anal-

ysis because of incomplete information (NA entries in Table 4.9). The other unique

SPIA pathways were analyzed by CADIA but it did not find strong topological ev-

idence (More detail in the Supplementary Tables B.2, B.3, and B.4). For example,

SPIA detects a strong topological evidence for Alzheimer’s disease pathway (pPERT

= 5 × 10−6, Supplementary Table B.3) which is not necessarily related to colorectal

cancer. “Alzheimer’s” was among the pathways that were excluded from CADIA. The

detection of Alzheimer’s is an instance where the incomplete information causes irrel-
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Table 4.6: Statistically significant pathway enrichments identified by GSA–FGSEA
from the ovarian cancer data (GSE12172)

Name ID p.val† FDR*

Oocyte meiosis 04114 5.96e-04 4.94e-02
Toll-like receptor signaling pathway 04620 3.19e-03 9.13e-02
Chemokine signaling pathway 04062 6.92e-04 4.94e-02
Progesterone-mediated oocyte maturation 04914 2.53e-03 9.13e-02
Influenza A 05164 2.66e-03 9.13e-02
* FDR corrected p-value – as calculated in FGSEA

evant outcomes for Network-based PEM by producing strong topological evidences.

In the colorectal cancer data, GAGE identifies two pathways at the significance

threshold of 0.1 (4.11). The pathways were also discovered by SPIA, CADIA, and

ORA. On the other hand, FGSEA finds over 60 pathways with the significance thresh-

old of 0.05 (4.12). In this case, FGSEA identifies the enrichment of more than 30%

of the pathways.

4.3.3 Experimental Evaluation: Gastric Cancer Dataset

Based on 133 differentially expressed genes, CADIA uniquely detects Wnt Signaling

pathway in gastric cancer (Table 4.13). In the case of gastric cancer, CADIA detects

Wnt signaling (FDR-corrected p-value ≤ 9.38× 10−3) by utilizing a Pssc of ≤ 1.00×

10−4. Wnt signaling is among the most well-studied cancer pathways, and there is

a plethora of evidence for its activation in cancers including gastric [95]. This case

indicates that the DE genes of the Wnt pathway are substantially important in the

structure and makes the case of why a structural pathway analysis can detect unique

discoveries. Compared to CADIA, ORA detects enrichment of Renin Secretion and

Vascular muscle contractions, for which the literature suggests no particular relevance

to the disease. Similarly, SPIA detects Ameobiasis and Malaria. The literature search

failed to identify any established results for the association of these pathway with

gastric cancer. These pathways were among the list that did not pass the quality

criteria and did not qualify for CADIA because of incomplete information.
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Table 4.7: Statistically significant pathway enrichments identified by CADIA from
the colorectal cancer data (GSE21510)

Name§ ID Pora Pssc CADIA† FDRora
‡

Oocyt... 04114 6.02e-05 1.10e-03 8.30e-05 1.72e-03
p53 s... 04115 9.48e-08 4.34e-01 8.30e-05 1.36e-05
Pathw... 05200 1.17e-06 9.45e-01 7.77e-04 8.39e-05
Micro... 05206 5.09e-06 4.22e-01 1.08e-03 2.43e-04
PPAR ... 03320 1.09e-05 3.24e-01 1.37e-03 3.89e-04
HTLV-... 05166 1.31e-04 4.95e-01 1.64e-02 3.11e-03
Proge... 04914 8.65e-04 1.20e-01 1.88e-02 1.55e-02
*Olfa... 04740 9.97e-01 1.00e-04 1.88e-02 9.97e-01
*Hipp... 04390 6.58e-03 5.64e-02 3.77e-02 6.27e-02
*Phos... 04072 6.01e-02 7.00e-03 3.77e-02 1.95e-01
*Apop... 04210 4.56e-02 8.00e-03 3.77e-02 1.64e-01
Chemo... 04062 2.89e-03 1.12e-01 3.77e-02 3.47e-02
*GnRH... 04912 2.03e-02 1.81e-02 3.77e-02 1.02e-01
*Vasc... 04270 2.15e-02 2.12e-02 3.77e-02 1.02e-01
Small... 05222 7.35e-04 5.88e-01 3.77e-02 1.50e-02
*Calc... 04020 2.51e-02 2.50e-02 4.70e-02 1.16e-01
§ Names truncated for space limitations
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to CADIA

The significance threshold of Enrichnet’s XD-Score for colorectal cancer data were

0.72 (4.16). According to the authors and the portal, this score is equivalent of

a FDR < 0.05. The over-representation p-values in the table were calculated by

Enrichnet application. Enrichnet fails to identify a number of pathways that were

determined by ORA,SPIA, and CADIA. Also, Enrichnet fails to infer unique relevant

pathway enrichments. For these reasons, we conclude that in this case of experimental

evaluation Enrichnet does not perform better than any of the other methodologies.

On the gastric cancer data, GAGE identifies 78 pathways and FGSEA identifies 91

pathways to be enriched (Tables 4.17 and 4.18). These values are more than half of

the annotated pathways that were used.

The results show that GSA is either not discovering any significant pathways at

the specified thresholds or it discovers numerous pathways (as much as 91 out of
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Table 4.8: Statistically significant pathway enrichments identified by ORA from the
colorectal cancer data (GSE21510)

Name§ ID CADIA† FDRora
‡

p53 signaling pathway 04115 8.30e-05 1.36e-05
Pathways in cancer 05200 7.77e-04 8.39e-05
MicroRNAs in cancer 05206 1.08e-03 2.43e-04
PPAR signaling pathway 03320 1.37e-03 3.89e-04
Oocyte meiosis 04114 8.30e-05 1.72e-03
HTLV-I infection 05166 1.64e-02 3.11e-03
Small cell lung cancer 05222 3.77e-02 1.50e-02
Progesterone-mediated oocyte... 04914 1.88e-02 1.55e-02
Chemical carcinogenesis 05204 5.92e-02 2.95e-02
*TGF-beta signaling pathway 04350 8.87e-02 3.02e-02
Chemokine signaling pathway 04062 3.77e-02 3.47e-02
*Proteoglycans in cancer 05205 5.92e-02 3.47e-02
*Thyroid hormone signaling... 04919 1.37e-01 4.73e-02
§ Names truncated for space limitations
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to ORA

143). Also, Enrichnet fails to discover multiple critical pathways that are discovered

by CADIA, SPIA, and ORA.

4.3.4 Synthetic Data Evaluation

Figure 4.1 shows that the average false positive rates of the topological evidence

(FDR-corrected Pssc) is zero. When using ORA alone, the average false positive rate

at some cases is not zero, but is below the FDR = 0.05 threshold. Similarly, the

combined evidence (FDR-corrected Pcadia) produces small averages of false positive

rates. Figure 4.1 shows that the controlled false positive rate of CADIA is consistent

across a wide range of random DE genes input size (100–5000). These results indicate

the specificity of CADIA, and ensure that the experimental data inferences are not

results of false positive.

Additional synthetic data evaluation shows a uniform null distribution of Pssc for

the random DE genes sets. The uniform distribution of Pssc shows that this topolog-
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Table 4.9: Statistically significant pathway enrichments identified by SPIA from the
colorectal cancer data (GSE21510)

Name ID SPIA† CADIA†

*Cell cycle 04110 4.86e-16 NA
p53 signaling pathway 04115 1.71e-05 8.30e-05
*RNA transport 03013 1.27e-04 NA
PPAR signaling pathway 03320 3.54e-04 1.37e-03
*Mineral absorption 04978 3.54e-04 NA
*Alzheimer’s disease 05010 9.23e-04 NA
HTLV-I infection 05166 1.46e-03 1.64e-02
*Amoebiasis 05146 6.19e-03 NA
Oocyte meiosis 04114 7.68e-03 8.30e-05
*Bile secretion 04976 9.12e-03 NA
Pathways in cancer 05200 9.12e-03 7.77e-04
*ECM-receptor interaction 04512 1.21e-02 1.23e-01
Progesterone-mediated oocy... 04914 1.66e-02 1.88e-02
Small cell lung cancer 05222 1.91e-02 3.77e-02
Chemokine signaling pathway 04062 2.15e-02 3.77e-02
*Gap junction 04540 2.76e-02 7.66e-02
*Transcriptional misregulat... 05202 2.87e-02 NA
*Wnt signaling pathway 04310 3.02e-02 8.87e-02
*Pancreatic secretion 04972 4.99e-02 NA
† FDR corrected p-values
* Unique to SPIA
NA: Not Analyzed by CADIA

ical evidence is not biased towards making false-positives or false-negatives (Figure

4.3). In this figure, the large density at Pssc = 1 is due to the large number of

pathways that did not have enough DE genes for the topological analysis. Pssc was

calculated only if a pathway had two or more DE genes, and was reported as one

otherwise.

Figure 4.2 displays the histogram of Pora on the random DE genes. In this case,

the density of the Pora is higher for larger p-values, which is potentially because the

hypergeometric test is conservative [13, 63, 64]. In this figure, the large density at

Pora = 1 is due to the large number of pathways that did not have any DE genes for

the analysis (zero). Figure 4.4 displays the histogram of Pcadia on random DE genes.

In this case, Pcadia values are close to a uniform distribution, which indicates that
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Table 4.10: Statistically significant pathway enrichments identified by Enrichnet from
the colorectal cancer data (GSE21510)

Name ID XD.Score† FDRora
*

DNA replication 03030 3.70 2.55e-08
Fatty acid metabolism 00071 2.59 3.90e-04
One carbon pool by folate 00670 2.34 1.33e-01
Cell cycle 04110 1.91 1.70e-11
Sulfur metabolism 00920 1.91 2.57e-01
Base excision repair 03410 1.83 1.17e-02
† Significance score of Enrichnet (Threshold =1.78 for 95%)
* FDR corrected Pora – as calculated in Enrichnet

Table 4.11: Statistically significant pathway enrichments identified by GSA–GAGE
from the colorectal cancer data (FDR < 0.1)(GSE21510)

Name ID p.val† FDR*

Pathways in cancer 05200 2.49e-04 3.56e-02
p53 signaling pathway 04115 8.49e-04 6.07e-02
* FDR corrected p-values – as calculated in GAGE

CADIA is not biased towards making false rejection of the null hypothesis.

The synthetic data evaluation does not find any correlation (correlation estimate

= 0.005 and p-value = 0.2) between Pssc and Pora (Figures 4.5). This figure displays

the relationship of ORA and SSC p-values (Not FDR Corrected). Each point in the

Figure 4.5 shows the two p-values for a pathway that had DE genes. The plot shows

no linear relationship between the two p-values, as the test for correlation coefficient

fails to reject the null hypothesis of no relationship.

Figure 4.6 displays the bootstrap (5×105 rounds) sampling for the aggregate scores

(Formula 3.14) of the 31 DE genes (nodes) from focal adhesion (from Table 4.1).

The pattern of normal distribution, in this case, is explainable by the central limit

theorem. The aggregate score estimates a multiply of the mean of log-centrality values

(Formula 3.14). With sufficiently large DE genes set, the normal distribution can

replace the empirical estimation of Pssc. Also, the random aggregate scores of C(vi)s

are independent and identically distributed (iid), having the necessary conditions for
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Figure 4.1: The number of false positives of ORA, SSC, and CADIA for different sizes
of the randomly sampled DE genes (10 repeats). The Y-axis is the average number of
false positives from a FDR ≤ 0.05 threshold. The red dashed-line is the FDR control
threshold. Figure adopted from Naderi and Mostafavi [26]

the central limit theorem. This normal distribution can lead to another route for

showing that Pssc and Pora are independent. If Pssc follows a normal distribution,

based on mean C(vi)s, then it is independent of the outcomes of the hypergeometric

distribution in Formula 3.16.

Figure 4.7, illustrates an example of the ability of Source/Sink Centrality in at-

tributing importance to both upstream and downstream nodes. In the case of the

ErbB pathway, the signal receptors associated genes EGFR and ERBB2 are critical

sources that initialize activities (upstream), while the genes MYC, JUN, and ELK

are critical endpoint receivers (downstream) [80]. Figure 4.7 shows the relative im-

portance scores of Source/Sink centrality for each gene in the ErbB pathway. Genes



51

0

1000

2000

3000

4000

0.00 0.25 0.50 0.75 1.00
ORA P−values

Figure 4.2: Synthetic data evaluation of ORA p-values. The plot shows the histogram
of the p-values of pathway enrichments based on randomly selected DE genes. The
red line shows the bar for a uniform distribution. Figure adopted from Naderi and
Mostafavi, Supplementary Material [26].

at the upstream the pathway, including EGFR,ERBB1, and ERBB2, are recognized

by Source/Sink as high centrality (Table 4.19). Also, Source/Sink centrality dis-

tinguished between the downstream nodes such as MYC, JUN, and ELK1. Other

standard centrality measures assign low importance to terminal nodes of pathways.

For example, ELK1, BAD, PTK2, MYC, and JUN would have the same centrality

score regardless of their underlying biological functions and topological position in

the graph (Figure 4.7 and Table 4.19).

A general centrality measure may fail to capture the downstream importance and

assign low centrality values. This observation extends to the definition of topological

importance in other network-based PEM. In SPIA for example, the downstream nodes
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Figure 4.3: Synthetic data evaluation of SSC p-values. The plot shows the histogram
of the p-values of pathway enrichments based on randomly selected DE genes. Pssc = 1
for zero or one DE genes. The rest of the p-values follow a pattern close to uniform
distribution. The red line shows the bar for a uniform distribution.Figure adopted
from Naderi and Mostafavi, Supplementary Material [26].

will have the lowest importance because they have zero (or low) out-degree. A possible

alternative solution is to sacrifice the network directions, like in that of Enrichnet [22].

The undirected graph approach will potentially deliver incomplete results because

the topological features of the graph rely on the directions of the nodes. Evident

by our experimental validation, addressing the issues with common centrality models

in CADIA enables to detect unique pathway enrichments while delivering consistent

results with a low false positive rate.

The three presented experimental test cases indicate that the use of Source/Sink

centrality in CADIA enables detection of critical pathway enrichment from biolog-
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Figure 4.4: Synthetic data evaluation of CADIA p-values. The plot shows the his-
togram of the p-values of pathway enrichments based on randomly selected DE genes.
Pcadia = 1 for zero or one DE gene. The rest of the p-values follow a pattern close to
uniform distribution. The red line shows the bar for a uniform distribution.

ical data. Source/Sink centrality allows for attributing higher importance to the

nodes that are missed by other network-based methods such as SPIA. Small p-values

of Source/Sink centrality evidence indicates that CADIA is sensitive to differential

expression of topologically central genes that are also important to a pathway’s func-

tionality. Although small p-values do not guarantee the dysfunction of any pathway,

the support of literature for the experimental data shows the ability of CADIA in

making an informative enrichments. The variety of differential expression set sizes in

the experimental evaluation indicates the sensitivity of CADIA towards both small

and large sets of DE genes. CADIA only requires a list of differentially expressed



54

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ORA P−values

S
S

C
 P

−
va

lu
es

Figure 4.5: Synthetic data comparison of non-1 SSC p-values and ORA p-values. Each
point denotes the enrichment p-values for a pathway with Pora on X-axis and Pssc
on the Y-axis. The test for Pearson’s correlation fails to find any linear relationship
between the two values (correlation estimate = 0.005, p-value = 0.2). Figure adopted
from Naderi and Mostafavi, Supplementary Material [26].

genes and a set of background pathways to produce the enrichment p-values (Pcadia).

After the selection of differentially expressed genes, the method does not depend on

a ranked list of genes nor their fold changes. Also, because of less limitations in pre-

processing step, CADIA has a larger coverage in pathway analysis and is able to infer

the enrichment of several critical pathways that are not included in SPIA analysis,

such as “Ras Signaling” and “PI3K-Akt Signaling”.

The exclusion of incomplete pathways in CADIA allows avoiding detecting inaccu-

rate enrichments. With incomplete information, differential expression of any node

with a non-minimal centrality score would produce small p-values for enrichment, and
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Figure 4.6: Null distribution of aggregate centrality score for calculating Pssc. The
figure is generated based on 31 DE genes in Focal adhesion pathway from ovarian
cancer data (Table 4.1). The X-axis denotes the aggregate centrality score from
Formula 3.14. The red dashed line indicates the normal distribution fit based on the
observed mean and standard deviation of the null aggregate scores. The blue line
the is experimental observation and its right-hand side area under the curve is Pssc.
Figure adopted from Naderi and Mostafavi [26].

subsequently, produce false positive. Network-based enrichment analyses are prone to

producing incorrect inferences when the pathway information [25]. The results pro-

duced by SPIA show instances where network-based PEM are prone to make irrelevant

inferences. Although we took a filtering approach to disregard incomplete pathways

(See Supplementary Table in Appendix B), using predicted interactions could benefit

CADIA’s enrichment analysis in future developments. Readers interested in more

details on the pathway processing and files may refer to Naderi and Mostafavi [21]

and its supplementary codes, online at “https://github.com/pouryany/CADIA”.
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Figure 4.7: Application of Source/Sink centrality to ErbB signaling pathway. The
color intensity indicates the ranking assigned by Source/Sink centrality. This figure
shows the ability of Source/Sink centrality to the terminal nodes of the pathways
such as ELK1, JUN, and BAD. A standard centrality score for directed graphs might
assign zero importance to terminal nodes (See Table 4.19 for more details). Figure
adopted from Naderi and Mostafavi [26].

CADIA leverages two independent ORA statistics (Pora) and topological evidence

(Pssc). This approach is inspired by SPIA and produces increased sensitivity. We

have shown that in multiple instances, the significance of the topological evidence

Pssc allows to compensate for the lack of strength in the over-representation evidence.

Also, the lack of topological evidence allows to dismiss marginal over-representation

evidences that might be irrelevant to the experimental data. While it is also possi-

ble to Source/Sink Centrality in GSA model through a methodology shown by Gu

and colleagues [20], the choice of ORA allows to leverage two independent evidences

simultaneously. Recent studies show that multi-evidence approaches for PEM can

provide increased sensitivity and specificity [19,96].
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Table 4.12: Statistically significant pathway enrichments identified by GSA–FGSEA
from the colorectal cancer data (GSE21510)

Name ID p.val FDR*

Calcium signaling pathway 04020 2.03e-04 1.73e-03
Phospholipase D signaling pathway 04072 2.02e-04 1.73e-03
Sphingolipid signaling pathway 04071 2.03e-04 1.73e-03
cAMP signaling pathway 04024 2.04e-04 1.73e-03
cGMP-PKG signaling pathway 04022 2.04e-04 1.73e-03
Autophagy - animal 04140 2.03e-04 1.73e-03
Regulation of actin cytoskeleton 04810 2.03e-04 1.73e-03
Fc gamma R-mediated phagocytosis 04666 2.05e-04 1.73e-03
Insulin signaling pathway 04910 2.02e-04 1.73e-03
GnRH signaling pathway 04912 2.04e-04 1.73e-03
Adrenergic signaling in cardiomyocytes 04261 2.03e-04 1.73e-03
Gastric acid secretion 04971 2.01e-04 1.73e-03
Aldosterone-regulated sodium reabsorption 04960 2.00e-04 1.73e-03
Neurotrophin signaling pathway 04722 2.03e-04 1.73e-03
Choline metabolism in cancer 05231 2.04e-04 1.73e-03
Chemical carcinogenesis 05204 2.00e-04 1.73e-03
Insulin resistance 04931 2.05e-04 1.73e-03
Ras signaling pathway 04014 4.07e-04 2.94e-03
Rap1 signaling pathway 04015 4.08e-04 2.94e-03
MAPK signaling pathway 04010 4.11e-04 2.94e-03
Gap junction 04540 6.12e-04 3.98e-03
Oxytocin signaling pathway 04921 6.10e-04 3.98e-03
Alcoholism 05034 8.16e-04 4.86e-03
EGFR tyrosine kinase inhibitor resistance 01521 8.08e-04 4.86e-03
Vascular smooth muscle contraction 04270 1.22e-03 7.00e-03
Dopaminergic synapse 04728 1.63e-03 8.71e-03
Inflammatory mediator regulation of TRP channels 04750 1.64e-03 8.71e-03
Jak-STAT signaling pathway 04630 1.83e-03 9.35e-03
Hepatitis C 05160 2.03e-03 1.00e-02
Cholinergic synapse 04725 2.66e-03 1.27e-02
Apoptosis 04210 2.83e-03 1.31e-02
Toxoplasmosis 05145 3.07e-03 1.37e-02
Amphetamine addiction 05031 3.20e-03 1.39e-02
AMPK signaling pathway 04152 3.67e-03 1.54e-02
Bacterial invasion of epithelial cells 05100 3.84e-03 1.57e-02
Long-term potentiation 04720 4.42e-03 1.71e-02
Glioma 05214 4.42e-03 1.71e-02
Proteoglycans in cancer 05205 4.91e-03 1.85e-02
Circadian entrainment 04713 5.14e-03 1.88e-02
* FDR corrected P values
Table rows truncated for presentation
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Table 4.13: Statistically significant pathway enrichments identified by CADIA from
the gastric cancer data (GSE54129)

Name§ ID Pora Pssc CADIA† FDRora
‡

ECM-r... 04512 1.44e-07 6.23e-01 2.29e-04 2.13e-05
Focal... 04510 2.44e-06 4.60e-01 8.15e-04 1.21e-04
Gastr... 04971 1.07e-06 9.94e-01 8.15e-04 7.91e-05
Chemi... 05204 1.23e-03 7.10e-03 4.08e-03 2.76e-02
*Wnt ... 04310 2.76e-01 1.00e-04 9.38e-03 9.88e-01
PI3K-... 04151 2.13e-04 3.24e-01 1.81e-02 7.89e-03
§ Names truncated for space limitations
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to CADIA

Table 4.14: Statistically significant pathway enrichments identified by ORA from the
gastric cancer data (GSE54129)

Name§ ID CADIA† FDRora
‡

ECM-receptor interaction 04512 2.29e-04 2.13e-05
Gastric acid secretion 04971 8.15e-04 7.91e-05
Focal adhesion 04510 8.15e-04 1.21e-04
PI3K-Akt signaling pathway 04151 1.81e-02 7.89e-03
*Renin secretion 04924 1.35e-01 2.76e-02
Chemical carcinogenesis 05204 4.08e-03 2.76e-02
*AGE-RAGE signaling pat... 04933 1.35e-01 2.76e-02
*Vascular smooth muscle... 04270 1.26e-01 2.95e-02
§ Names truncated for space limitations
† FDR corrected Pcadia
‡ FDR corrected Pora
* Unique to ORA
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Table 4.15: Statistically significant pathway enrichments identified by SPIA from the
gastric cancer data (GSE54129)

Name ID SPIA† CADIA†

ECM-receptor interaction 04512 2.02e-09 2.22e-04
Gastric acid secretion 04971 5.39e-06 7.97e-04
Focal adhesion 04510 1.69e-05 7.97e-04
*TGF-beta signaling pathway 04350 4.54e-03 4.06e-01
*Malaria 05144 4.54e-03 NA
Cytokine-cytokine receptor.... 04060 4.39e-02 5.09e-01
*Amoebiasis 05146 4.43e-02 NA
Vascular smooth muscle con... 04270 4.43e-02 1.23e-01
† FDR corrected p-values
* Unique to SPIA

Table 4.16: Statistically significant pathway enrichments identified by EnrichNet from
the gastric cancer data (GSE54129)

Name§ ID XD.Score† FDRora
*

Collecting duct acid secretion 04966 0.97 7.68e-02
Linoleic acid metabolism 00591 0.85 9.16e-02
Malaria 05144 0.82 7.39e-03
Gastric acid secretion 04971 0.77 9.23e-04
ECM-receptor interaction 04512 0.75 4.77e-04
Proximal tubule bicarbonate... 04964 0.74 3.79e-01
§ Names truncated for space limitations
† Significance score of Enrichnet (Threshold =0.72 for 95%)
* FDR corrected Pora – as calculated in Enrichnet
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Table 4.17: Statistically significant pathway enrichments identified by GSA–GAGE
from the gastric cancer data (78, FDR < 0.05) (GSE54129)

Name ID p.val† FDR*

Focal adhesion 04510 5.35e-08 4.63e-06
Pathways in cancer 05200 6.47e-08 4.63e-06
Proteoglycans in cancer 05205 2.26e-06 1.08e-04
AGE-RAGE signaling pathway in diabetic complications 04933 3.27e-06 1.17e-04
Chemical carcinogenesis 05204 5.66e-06 1.50e-04
PI3K-Akt signaling pathway 04151 6.29e-06 1.50e-04
Bacterial invasion of epithelial cells 05100 2.64e-05 5.39e-04
Osteoclast differentiation 04380 4.75e-05 7.80e-04
Rap1 signaling pathway 04015 4.98e-05 7.80e-04
Pertussis 05133 5.45e-05 7.80e-04
Adherens junction 04520 8.53e-05 1.03e-03
Chagas disease (American trypanosomiasis) 05142 8.64e-05 1.03e-03
ECM-receptor interaction 04512 1.07e-04 1.17e-03
TNF signaling pathway 04668 2.40e-04 2.35e-03
Hippo signaling pathway 04390 2.57e-04 2.35e-03
Regulation of actin cytoskeleton 04810 2.63e-04 2.35e-03
MicroRNAs in cancer 05206 2.80e-04 2.35e-03
Chemokine signaling pathway 04062 5.33e-04 3.89e-03
cGMP-PKG signaling pathway 04022 5.42e-04 3.89e-03
Legionellosis 05134 5.44e-04 3.89e-03
Gastric acid secretion 04971 6.04e-04 4.04e-03
Pancreatic cancer 05212 6.45e-04 4.04e-03
Salmonella infection 05132 6.50e-04 4.04e-03
Leishmaniasis 05140 9.88e-04 5.69e-03
MAPK signaling pathway 04010 9.94e-04 5.69e-03
Cytokine-cytokine receptor interaction 04060 1.06e-03 5.83e-03
HTLV-I infection 05166 1.19e-03 6.12e-03
Vascular smooth muscle contraction 04270 1.21e-03 6.12e-03
Shigellosis 05131 1.24e-03 6.12e-03
Chronic myeloid leukemia 05220 1.47e-03 7.00e-03
Thyroid hormone signaling pathway 04919 1.82e-03 8.02e-03
Staphylococcus aureus infection 05150 1.83e-03 8.02e-03
FoxO signaling pathway 04068 1.90e-03 8.02e-03
NF-kappa B signaling pathway 04064 1.91e-03 8.02e-03
Tuberculosis 05152 2.01e-03 8.20e-03
Phospholipase D signaling pathway 04072 2.17e-03 8.44e-03
Fc gamma R-mediated phagocytosis 04666 2.18e-03 8.44e-03
Platinum drug resistance 01524 2.71e-03 1.01e-02
Colorectal cancer 05210 2.76e-03 1.01e-02
Platelet activation 04611 2.86e-03 1.02e-02
* FDR corrected p-values – as calculated in GAGE. List truncated for space limitations.
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Table 4.18: Statistically significant pathway enrichments identified by GSA (FGSEA)
from the gastric cancer data (91 pathways, FDR < 0.05) (GSE54129)

Name ID p.val† FDR*

Ras signaling pathway 04014 2.70e-04 9.84e-04
Rap1 signaling pathway 04015 2.66e-04 9.84e-04
MAPK signaling pathway 04010 2.74e-04 9.84e-04
NF-kappa B signaling pathway 04064 2.39e-04 9.84e-04
TNF signaling pathway 04668 2.44e-04 9.84e-04
cAMP signaling pathway 04024 2.63e-04 9.84e-04
cGMP-PKG signaling pathway 04022 2.59e-04 9.84e-04
Cytokine-cytokine receptor interaction 04060 2.75e-04 9.84e-04
ECM-receptor interaction 04512 2.36e-04 9.84e-04
Focal adhesion 04510 2.65e-04 9.84e-04
Regulation of actin cytoskeleton 04810 2.70e-04 9.84e-04
Complement and coagulation cascades 04610 2.37e-04 9.84e-04
Platelet activation 04611 2.49e-04 9.84e-04
Toll-like receptor signaling pathway 04620 2.41e-04 9.84e-04
T cell receptor signaling pathway 04660 2.44e-04 9.84e-04
Th1 and Th2 cell differentiation 04658 2.38e-04 9.84e-04
Th17 cell differentiation 04659 2.43e-04 9.84e-04
Chemokine signaling pathway 04062 2.64e-04 9.84e-04
Oxytocin signaling pathway 04921 2.54e-04 9.84e-04
Vascular smooth muscle contraction 04270 2.48e-04 9.84e-04
Axon guidance 04360 2.63e-04 9.84e-04
Osteoclast differentiation 04380 2.54e-04 9.84e-04
Central carbon metabolism in cancer 05230 2.35e-04 9.84e-04
MicroRNAs in cancer 05206 2.57e-04 9.84e-04
Proteoglycans in cancer 05205 2.65e-04 9.84e-04
Breast cancer 05224 2.57e-04 9.84e-04
Inflammatory bowel disease (IBD) 05321 2.35e-04 9.84e-04
Dilated cardiomyopathy 05414 2.37e-04 9.84e-04
AGE-RAGE signaling pathway in diabetic complications 04933 2.41e-04 9.84e-04
Shigellosis 05131 2.35e-04 9.84e-04
Pertussis 05133 2.34e-04 9.84e-04
Staphylococcus aureus infection 05150 2.29e-04 9.84e-04
Tuberculosis 05152 2.62e-04 9.84e-04
HTLV-I infection 05166 2.75e-04 9.84e-04
Measles 05162 2.51e-04 9.84e-04
Hepatitis B 05161 2.56e-04 9.84e-04
Toxoplasmosis 05145 2.46e-04 9.84e-04
Leishmaniasis 05140 2.35e-04 9.84e-04
Chagas disease (American trypanosomiasis) 05142 2.42e-04 9.84e-04
Endocrine resistance 01522 2.41e-04 9.84e-04
* FDR corrected p-values – as calculated in FGSEA. List truncated for space limitations.
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Table 4.19: Centrality scores of different algorithms for ErbB Signalling pathway

Gene SSC Bet Deg Katz Gene SSC Bet Deg Katz
EGFR 88 87 88 88 EREG 43 1 36 77
ERBB4 87 86 87 87 HBEGF 43 1 36 77
ERBB3 86 66 85 85 NRG1 41 1 36 75
ERBB2 85 1 85 85 NRG2 41 1 36 75
AKT1 82 79 77 72 MAPK10 38 51 36 31
AKT2 82 79 77 72 MAPK8 38 51 36 31
AKT3 82 79 77 72 MAPK9 38 51 36 31
GRB2 81 88 60 71 BUB1B-PAK6 31 44 36 43
GAB1 80 85 84 84 PAK1 31 44 36 43
MAP2K4 78 67 60 56 PAK2 31 44 36 43
MAP2K7 78 67 60 56 PAK3 31 44 36 43
NCK1 76 72 80 82 PAK4 31 44 36 43
NCK2 76 72 80 82 PAK5 31 44 36 43
PIK3CA 68 58 60 63 PAK6 31 44 36 43
PIK3CB 68 58 60 63 MAPK1 29 56 36 31
PIK3CD 68 58 60 63 MAPK3 29 56 36 31
PIK3CG 68 58 60 63 JUN 28 1 1 1
PIK3R1 68 58 60 63 CRK 26 41 36 31
PIK3R2 68 58 60 63 CRKL 26 41 36 31
PIK3R3 68 58 60 63 STAT5A 24 1 1 1
PIK3R5 68 58 60 63 STAT5B 24 1 1 1
MTOR 67 82 60 52 AREG 21 1 26 53
PLCG1 65 54 80 80 EGF 21 1 26 53
PLCG2 65 54 80 80 TGFA 21 1 26 53
SHC1 61 1 26 27 NRG3 19 1 26 50
SHC2 61 1 26 27 NRG4 19 1 26 50
SHC3 61 1 26 27 SRC 18 41 26 26
SHC4 61 1 26 27 MYC 17 1 1 1
ELK1 60 1 1 1 ABL1 8 1 1 1
BAD 56 1 1 1 ABL2 8 1 1 1
CDKN1A 56 1 1 1 CAMK2A 8 1 1 1
CDKN1B 56 1 1 1 CAMK2B 8 1 1 1
GSK3B 56 1 1 1 CAMK2D 8 1 1 1
MAP2K1 54 74 36 38 CAMK2G 8 1 1 1
MAP2K2 54 74 36 38 PRKCA 8 1 1 1
SOS1 52 83 60 61 PRKCB 8 1 1 1
SOS2 52 83 60 61 PRKCG 8 1 1 1
ARAF 49 69 36 40 EIF4EBP1 5 1 1 1
BRAF 49 69 36 40 RPS6KB1 5 1 1 1
RAF1 49 69 36 40 RPS6KB2 5 1 1 1
HRAS 46 76 60 58 CBL 2 1 1 1
KRAS 46 76 60 58 CBLB 2 1 1 1
NRAS 46 76 60 58 CBLC 2 1 1 1
BTC 43 1 36 77 PTK2 1 1 1 1



CHAPTER 5: Topological Organizations in Pathways

In the last two chapters we outlined a network-based analysis pipeline based on a

novel graph centrality method, SSC. We showed that the use of topological evidence

from SSC allows to make unique and informative inference. This section attempts

to provide insight on why the concept of Source/Sink modeling is informative. To

this end, we extended the notion of Source/Sink centrality modeling by mixing with

existing standard centrality models and use them for an in-depth investigation of the

topological organization of the human pathways.

In particular, we assemble a battery of standard and novel graph centrality methods

and investigate whether these topological models can differentiate between the organi-

zation of cancer-related genes and non-cancer-related genes in the pathways. The ra-

tionale for choosing the cancer-related genes is the intuition that cancers are regarded

as diseases of pathways, i.e. cancers are primarily driven by perturbation/alteration

of pathways [18,90]. Subsequently, the dysfunction one or more cancer-related genes

can result in dysfunction of their associated pathways [18]. Therefore, understanding

the topological position of cancer associated genes may reveal insight regarding the

topological organization of key pathway drivers/regulators.

We address our research questions by using four known standard centrality models

Degree, Katz, PageRank, and Laplacian, as well as, their possible extensions with the

Source/Sink technique. The rationale for choosing these specific centrality methods is

to investigate the relationship of genes with their property of being cancer-related from

certain perspectives. In particular, four models enable to investigate the importance

of a gene with respect to the number of interactions, the importance of interacting

genes, and the direction of interactions. The Source/Sink technique, as outlined in
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the chapter 3, enables assigning node importance in both upstream and downstream

ends of pathways, while accounting for directions of the interactions.

We design three statistical approaches to evaluate each of the centrality models. A

challenge in our analysis is the existence of many biological pathways. We address this

challenge by evaluating global and individual patterns of centralities across pathways.

In particular, 1– We investigate the linear relationship of gene rankings, according

to each centrality model, with the probability of being cancer related. 2– Compare

the cumulative distribution of the rankings of cancer-related genes versus that of

non-cancer-related genes. 3– Compare the mean ranking of cancer-related versus

non-cancer-related genes for each pathway by two-sample testing.

The analysis results show that the ranking of pathway genes, based on the num-

ber of interactions, correlates with the probability of being cancer-related [27]. We

show that, the Source/Sink modeling increases the linear relationship of gene central-

ities with their probability of being cancer across all models. Pathway-by-pathway

comparisons shows that each model has unique pattern for distinguishing between

cancer-related and non-cancer-related genes, Source/Sink PageRank shows the high-

est statistical power as its number of hypothesis rejections are the highest.

Our analysis shows that the cancer-related genes in tend to have higher central-

ity; particularly, when accounting for directionality and importance in both upstream

and downstream of pathways using Source/Sink modeling. These results can poten-

tially be incorporated with existing graph-based pathway analysis models in order to

increase biological relatedness.

5.1 Graph Modeling of Pathways

In this chapter we investigate four standard known centrality models to reflect

the research hypothesis– Degree, PageRank, Laplacian, and Katz. Each of these

models have been applied to the problem of pathway enrichment analysis in some

format [19, 21, 23, 24]. We investigate different variations of each model, Undirected,
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Source, and Sink when applicable. In addition to these models, we derive the concepts

Source/Sink PageRank, Source/Sink Katz, and Source/Sink Laplacian to account for

importance in both upstream and downstream of the pathways. A brief description

of each model along with justification for choosing them are provided in following.

Consistent with our definitions in Chapters 2 and 3, let G = (V,E) represent a

pathway where V (G) = {v1, v2, . . . , vn} is the set of nodes. The set of edges E(G) =

{e1, e2, . . . , em} is a collection of pairs of nodes, ei ∈ V × V .

Degree Centrality: In this model, the centrality of a node is the number of

its neighbors. Degree centrality has been well-studied in the context of biological

network, most particularly for protein-protein interaction networks (PPI). Studies

show that degree centrality of node in PPI of different organisms correlates with its

essentiality, meaning the likelihood of a protein’s removal, e.g. knockdown, to be

lethal for the model organism [15,62,97]. Since the input pathways of this study are

directed networks, degree centrality was calculated by combines in-degree and out-

degree of a node. This value is the same as the degree centrality in the underlying

undirected graph. In this case:

Cdeg(v) = Degin(v) +Degout(v) (5.1)

PageRank Centrality: PageRank is a member of spectral centrality measures

where the importance of a nodes is a function of the centrality of its neighbors. PageR-

ank describes the probability distribution of a uniform random walk with restart being

present at each node of a graph after a large number of steps [65, 67, 70]. Formally,

the vector of PageRank Cpgr is defined as:
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Cpgr = lim
t→∞

P (t)

subject to:

P (t+1) = (1− α)P (0) + (α)P (t)D−1A

(5.2)

Where P (0) is the probability vector of initial states of the random walk and α is the

transition probability. P (t) is the probability vector the random walk being at each

specific node. D is the diagonal degree matrix such that [D]ii = max(Degout(vi), 1).

A is the adjacency matrix of the graph. In graph theory terms, the PageRank of a

node v is based on the PageRank of the nodes with links to v, divided by their out

degrees. Formally:

Cpgr(vi) = βi + α
∑

u|vi∈NG(u)

Cpgr(u)

|NG(u)|
(5.3)

In the above Formula, βi’s are constant values indicating the probability of restart-

ing at node vi. Formula 5.3 can be extended to the cases where βi’s are arbitrary

parameters [65]. In this case, the output of the algorithm is not necessarily a prob-

ability distribution. The formula 5.3 can be expressed in a vectorized format as

following:

Cpgr = β + ATD−1Cpgr (5.4)

where Cpgr is the vector of centralities and β is the vector of initial values. A closed

form solution of Formula 5.3 can be achieved by rearranging and solving for Cpgr [65].

Formally:

Cpgr = (I − αATD−1)−1β (5.5)
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PageRank can be used for both directed and undirected graphs. The notion of PageR-

ank in Formula 5.2 is closely related to the distance measure of Enrichnet [22]. Sim-

ilarly, Formula 5.5 is closely related to the definition of the Perturbation Factor in

SPIA [19].

PageRank Sink: we define the PageRank Sink component as the standard PageR-

ank of a directed graph. The original concept of PageRank, as described by Brin and

Page, measures the importance of a website based on the importance of the websites

that have a link to it [70]. Likewise, in the Sink component of the PageRank, the

downstream nodes have the higher importance. This is because a random walk will

not be present at any node without incoming edges, unless by a restart event (For-

mula 5.2). The PageRank Sink centrality captures the importance of a node as a

receiver of information. Formally we define the Sink PageRank centrality as:

CSink−pgr(v) := Cpgr(v) (5.6)

PageRank Source: As mentioned, the standard PageRank for directed graphs

would produce the minimal importance score for the nodes with no incoming edges,

and the upstream nodes of pathways fall into this category. We derive a PageR-

ank Source model that captures the importance of a source node by modifying the

underlying graph. Formally, the PageRank Source is:

CSrc−pgr(vi) = β′i + α′
∑

u|vi∈NGT (u)

CSink−pgr(u)

|NGT(u)|
(5.7)

The above formula essentially calculates the standard PageRank on the transposed

of a given graph. A closed form solution of Formula 5.7 can be achieved by rearranging

and solving for the vector of centralities of all nodes [65]. Define the diagonal in-degree

matrix, D′, of G such that [D′]ii = max(1, Degin(vi)). Formally:
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CSrc−pgr = (I − α′AD′−1)−1β′ (5.8)

Source/Sink PageRank: The fundamental concept of Source/Sink modeling

is measure the centrality of nodes as both sources and sinks of information. Using

directed centrality measures only gives importance to either upstream nodes or down-

stream ones. By adopting the Source/Sink concept to the PageRank, we define a new

model based on addition of two individual centrality components, the Source and

the Sink. After calculating Source and Sink Centrality values individually, the two

components are summed as following:

CSS−pgr(v) = CSrc−pgr(v) + γCSink−pgr(v) (5.9)

In the above Formula, γ represents a parameter for indicating the relative impor-

tance of Source versus Sink.

Katz-Bonacich Centrality: is another member of the spectral family of central-

ity models. In this type of model, the centrality of a node is calculated relative to

the sum of centrality of its neighbors. Formally:

Ckatz(vi) = βi + α
∑

u∈NG(vi)

Ckatz(u) (5.10)

In the above formula, β is a constant factor and α is dampening factor. It can be

shown that the convergence of the Formula 5.10 depends on the largest eigenvalue

of the adjacency matrix. It can be shown that α < 1/λ1 is a sufficient condition for

convergence, with λ1 being the largest positive eigenvalue of the adjacency matrix.

Rearranging Formula 5.10 gives a closed form solution of Katz centrality. Formally:

Ckatz = (I − αA)−1β (5.11)



69

Throughout this document, Katz centrality refers to the directed graph. Katz-

Bonacich centrality is closely related to the formulations of Cdist and NetGSA for

pathway enrichment analysis [21,23].

Source/Sink Katz: This model is also defined in a similar fashion to Source/Sink

PageRank. The Source Katz component is defined as the Katz centrality component

of the directed graph.

CSrc−ktz(v) := Ckatz(v) (5.12)

The Sink Katz component is defined as the Katz centrality of the transposed graph.

CSink−ktz(vi) := β′i + α′
∑

u∈NT
G(vi)

CSink−ktz(u)

CSink−ktz = (I − α′AT )−1β′

(5.13)

Katz Source/Sink Centrality is then defined as:

CSS−ktz(v) = CSrc−ktz(v) + γCSink−ktz(v) (5.14)

It can be shown that Source and Sink components have the same convergence

criteria. When β = β′ and α = α′, the Source/Sink Katz centrality is equal to the

Source/Sink model defined in Chapter 3.

Laplacian Centrality: Laplacian graph influence measures are a family of models

that capture the amount of effect a node has on the other nodes. These measures are

the core of the heat diffusion kernels of graphs [56, 67, 98, 99]. Graph Laplacians are

generally defined for undirected graphs [56, 67]. There are modifications for directed

graphs either on strongly connected graphs or directed acyclic graphs [99, 100]. In

this study, we use a specific version for directed graphs by Shojaie and Michailidis

for pathway enrichment analysis [24]. For an adjacency matrix of a directed graph,

A, define the weight normalized matrix L using a positive real value d as following:
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Lij(d) =
Aij

d+
∑n

j=1 |Aij|
(5.15)

L = lim
d→0

L(d) (5.16)

Define the influence matrix, L∗, as the geometric series of L. In the case of undi-

rected graphs, this notion is related to the concept of normalized Laplacian and heat

diffusion kernels [67].

L∗ =
∞∑
i=0

Li (5.17)

On the condition of convergence, the above summation can be written as:

L∗ = lim
d→0

(I − L(d))−1 (5.18)

According to Shojaie and Michailidis, choice of d as small as 0.01 would produce

consistent and stable results. However, to eliminate the need for the parameter d, we

rewrite an equivalent formulation for the matrix L as :

L := D−1A (5.19)

where D is the diagonal degree matrix with the same definition as in D of PageR-

ank. As noted in [65], for undirected graphs, the solution to the matrix L in a matrix

geometric series uniquely exist. That is, the matrix L∗ from Formula 5.17 is only

guaranteed to uniquely exist when we use the symmetric matrix of the undirected

graph.

However, the case might be different for directed graphs. Therefore, including a

shrinking factor, α < 1, that ensures the convergence in a geometric summation. We

then re-define:
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L := αD−1A (5.20)

Using the above Formula, we define the Laplacian centrality of a node as the

aggregated influence of a node i on all other nodes. This is obtained from Formula

5.17:

Clap = L∗1

= (I − αD−1A)−11

(5.21)

Like other models, we define the centrality in 4 formats. The Undirected Lapla-

cian is obtained by using the adjacency matrix of the undirected graph in Formula

5.21. It is possible to show that the undirected laplacian produces a constant value for

all centrality values in connected components of a graph. However, we have analyzed

the pathways’ data by including this model since pathways may contain isolated nodes

and multiple connected components. The Laplacian Source component is defined

as the Laplacian centrality of the directed graph:

Clap−Src := Clap (5.22)

The Laplacian Sink component is the Laplacian centrality of the transposed

graph:

Clap−Sink := (I − α′D′−1AT )−11 (5.23)

The Source/Sink Laplacian is then defined as the sum of the two components:

Clap−ssc := Clap−Src + γClap−Sink (5.24)
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5.2 Model Evaluations

This section details the process of applying each centrality model to a background

set of biological pathways and a background list of cancer-related genes. For each

model, we will contrast the Undirected, Source, Sink, and the Source/Sink variations.

And, we investigate which one of the variations are more informative regarding the

topological organization of the cancer genes.

In particular, different variations of each centrality model are examined through

three aspects. 1– The linear relationship between the centrality scores of a particular

variation and the probability of genes being cancer related. 2– The distribution of

centrality scores of cancer-related genes and non-cancer-related genes (normal). 3–

The mean difference between the centrality scores cancer-related genes versus normal

genes for each pathway. Since the subjects of study are multiple pathways, rather

than a single global graph, normalization and ranking procedures were used to create

a unified framework.

5.2.1 Background Pathways

Human pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) were

retrieved (n = 330, As of August 2018). Pathways with more than 1000 nodes and

more than 4000 interactions were excluded from any further analysis. Pathways with

equal or less than 20 nodes or 20 edges were neglected from analysis (n = 85). Also,

pathways with largest eigenvalues more than 10 (n = 15) were excluded from analysis

in order to maintain consistent centrality calculations. In addition, pathways with a

single unique value for any of the centrality measures (e.g. all degrees being 10) were

excluded from the analysis (n= 11). The pathways were retrieved and analyzed using

R-packages “KEGGGraph” and “Pathview” [77, 101]. In addition, pathways with 5

or less cancer associated genes were excluded from analysis for consistency of p-value

calculations (n = 64). The final set of pathways contained 155 entries.
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Cancer-related genes were retrieved from relevant gene familiy classifications of

Broad Institute’s MSigDB (n = 417, 06-06-18) [7]. The MSigDB’s gene family classi-

fications of the cancer related genes were Oncogenes, Tumor Suppressors, and Translo-

cated cancer genes. Cancer Gene Census from Sanger Institute was used as an addi-

tional reference list for cancer-related genes (n= 719, 06-06-18) [102]. The union of

these two sets were used as the reference cancer gene list (n = 733). Overall, a total of

19001 nodes were analyzed after pathway preprocessing, having 4474 distinct genes.

There were 3798 cancer related nodes, associated with 397 unique cancer genes in the

dataset.

This studies uses γ = 1, β = β′ = 1, and α = α′ = 0.85 for different variations of

PageRank. For Katz centrality variations, the parameter setting was α = α′ = 0.1,

β = β′ = 1 and γ = 1. We did not analyze for Undirected Katz because of limitation

of the largest eigenvalues. For Laplacian centrality variations, the parameters were

γ = 1, β = β′ = 1, and α = α′ = 0.85.

5.2.2 Regression Analysis

For each pathway, the nodes were ranked using all of the centrality measures. The

centrality ranks of each pathway were placed in 100 quantiles. The 100th quantile

indicates most central genes in a pathway and 1st quantile indicates the lowest im-

portance. Let Ca,j(vi) denote the centrality of a node vi in pathway j using model a.

The quantile ranking of a node i, Qj(vi), is then defined as:

Qj(vi) =

[
100× Ca,j(vi)

|Vj|

]
(5.25)

In the above formula, Vj is the total number of nodes in pathway j. The quantile

ranking allows to compare the centrality rankings among all pathways because differ-

ent pathways have different number of nodes. For example, a gene (namely X) with

a rank score of 20 in a pathway with 20 nodes, then it is the most central; A gene
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(namely Y) with a rank score of 20 in a pathway with 100 nodes are among the least

important nodes. When quantile transformation is applied, X would have a quantile

score of 100 and Y would have 20, allowing to compare how central they are between

different pathways.

To investigate the relationship between cancer-relatedness of a gene and its cen-

trality, the proportion of cancer-related genes were calculated on each quantile across

all pathways. Let Qij denote the set of genes belonging to i-th quantile in pathway

j — Qij = {v | v ∈ Vj, Qj(v) = i}. Let R denote the set of all cancer-related genes.

The ratio of cancer related genes for i-th quantile, Fic, is defined as:

Fi
c =

∑
j

∣∣∣{v | v ∈ R ∩Qij}
∣∣∣∑

j

∣∣∣{v | v ∈ Qij}
∣∣∣ (5.26)

Although some genes were occurring in multiple pathways, each occurrence was

treated as an unique gene because the purpose was to evaluate the centrality with

respect to pathways. Fic was then tested against the level of quantile for assessing

linear relationships. In the below formula, i indicates the index value of a quantile

group, e.g. 1 for the 1st quantile and 10 for the 10th quantile. Let a1 and a0 be the

the coefficients of the linear regression. Formally:

Fi
c = a1 · i+ a0 (5.27)

For each centrality measure the above linear regression was fitted and the adjusted

R-squared (coefficient of determination) were evaluated. In addition, Pearson corre-

lation of Q(vi) values between each centrality measure were calculated to outline the

differences between the models.
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5.2.3 Comparison of Cumulative Densities

To compare the distribution of centrality values from a global perspective, the

centrality scores were normalized within each pathway using the following formula:

Na,j(vi) =
Cj
a(vi)− µa,j
σa,j

(5.28)

where µa,j and σa,j are the mean and standard deviation of centrality scores of

pathway j using method a. Accordingly, Na,j(vi) is the normalized centrality score

of node vi in pathway j, using the centrality method a. The normalized score for all

pathways were placed in 100 quantiles. The distribution of quantile scores for the

types of genes “Cancer” and “Non-cancer” were compared by Kolmogorov-Smirnov

(KS) test on cumulative distribution function (CDF) of cancer-related and normal

genes. The p-values were calculated based on the alternative hypothesis of the CDF

of the cancer-related lying below that of the normal. In this test, the CDF of all genes

combined would follow a straight line.

5.2.4 Pathway-wise Two-Sample Testing

For each pathway, the difference of the mean raw centrality values between cancer-

related genes and none cancer genes were evaluated using Welch’s t-test. Formally:

t =
µ̂a,c − µ̂a,n√
s2a,c
Nc

+
s2a,n
Nn

H0 : µa,c = µa,n

HA : µa,c > µa,n

(5.29)

where µ̂a,c and µ̂a,n are the estimated means of centrality values for cancer and

normal genes by model a. Similarly, s2a,c and s2a,n are the variance estimates of the

centrality scores of cancer and normal genes, using model a. Nc and Nn denote the

sample size of cancer genes and normal genes. H0 is the null hypothesis of cancer
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and normal genes having the same mean. HA is the alternative hypothesis where the

cancer genes have a higher mean.

Since the underlying distribution of the centrality values is unknown, we also used

Wilcox non-parametric test to evaluate the null hypothesis of cancer and normal gens

having the same mean. Wilcox test ranks individual observations and evaluates the

difference between the sum of the ranking in two classes of the hypothesis.

For each centrality model, the p-values from Formula 5.29 and Wilcox test were

calculated across all pathways. Because of the large number of pathways, multiple

hypothesis testing criteria was used to determine significant p-values. In particular,

Benjamini-Hochberg False Discovery Rate was applied to all calculated p-values for

each centrality method to control type-I error at %5 (FDR < 0.05) [32]. The same

procedure was applied to both parametric and non-parametric approaches. The sets

of significant pathways for each centrality model were contrasted against each other.

5.3 Results

5.3.1 Regression Analysis

Degree centrality: As evident Figure 5.1, for the higher values of quantile scores

the fraction of cancer genes tend to be higher, and low degree quantile scores exhibit

lower fractions of cancer genes. The analysis supports this observation by showing a

linear relationship between the scores and the ratio of cancer genes with an adjusted R-

squared of 0.25 (Figure 5.1). The regression analysis shows an statistically significant

positive coefficient of 1.45×10−3 for the quantile scores (p-value = 1.07×10−7, Table

5.1).

Katz centrality: Figure 5.2 shows that individual Source and Sink components

of Katz centrality fail to capture a linear relationship between the quantile centrality

scores and the fraction of cancer genes. The standard Katz centrality for directed

graph (the Source component) does not find evidence (p-value = 0.244) for linear

relationship between the quantile scores and the ratio of cancer genes (Figure 5.2).
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Figure 5.1: Linear regression of quantile-scores versus the ratio of cancer-related genes
for Degree centrality model. In this case, higher centrality quantile score denotes a
higher fraction of cancer-genes. X-axis represents the quantile-scores generated by
Formula 5.25. Y-axis represents the fraction of all genes that are cancer related
(Formula 5.26). The blue line represent the regression line from Formula 5.27. The
gray band represent 95 confidence interval of the linear regression.

In this case, the regression model accounts for an insignificant fraction of the linear

model variance (adj-R2 = 0.015). Similarly, the Katz Sink Component fails to detect

a linear relationship between the quantile score and the ratio of cancer genes (adj-R2

= 0.0014, p-value = 0.719). In contrast, the combined value of the two components,

Source/Sink Katz, shows that the linear relationship explains a statistically significant

portion of the variance, more compared to Degree centrality (adj-R2 = 0.36). In this

case, the regression analysis shows an statistically significant positive coefficient of

1.42× 10−3 for the quantile scores (p-value = 2.29× 10−11, Table 5.1).

The correlation analysis of all variations of Katz centrality and Degree centrality

shows insight regarding their underlying mechanisms (Figure 5.3). When comparing

Katz-Source component to the other options, it is observable that the nodes with

no Source importance have a varying range of centrality across different models.

The dense bands at Katz-Source values of zero in Figure 5.3 exhibit the instances



78

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

Adjusted r−squared: 0.0014 

 p−value: 7.19e−01

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Adjusted r−squared: 0.015 

 p−value: 2.44e−01

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

Adjusted r−squared: 0.36 

 p−value: 2.29e−11

Katz−Sink Katz−Source Katz−Source−Sink

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.25

0.50

0.75

1.00

Quantile Score

F
ra

ct
io

n 
of

 C
an

ce
r 

G
en

es

Figure 5.2: Linear regression of quantile-scores versus the ratio of cancer-related genes
for Katz centrality model. X-axis represents the quantile-scores generated by Formula
5.25 Y-axis represents the fraction of all genes that are cancer related (Formula 5.26).
The blue line represent the regression line from Formula 5.27. The gray band represent
95 confidence interval of the linear regression.

where the Katz-Source centrality is unable to assign importance to the nodes that

are distinguished by other models.

Similarly, the Katz-Sink component assigns zero values to many nodes which have

higher importance by the other models (the dense band at Katz-Sink = 0, Figure

5.3). The Source Component and the Sink component values of Katz do not show

any strong correlation, which indicates that they might potentially produce radically

different characterization of the graphs. The complete comparison of correlations

among all models can be found in the Supplementary Figure B.1.

Laplacian centrality: Figure 5.4 shows that individual Source and Sink compo-

nents of the Laplacian centrality fail to capture any linear relationship between the

quantile centrality scores and the fraction of cancer genes. The standard Laplacian

centrality for directed graph (the Source component) does not find evidence (p-value

= 0.142) for linear relationship of the quantile scores and the ratio of cancer genes
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Figure 5.3: Correlation of quantile scores of all genes in human pathways between
variations of Katz centrality model and Degree centrality.

(Figure 5.4). In this case, the linear model accounts for an insignificant fraction of the

variance (adj-R2 = 0.023). Similarly, the Laplacian Sink Component fails to detect a

linear relationship between the quantile score and the ratio of cancer genes (adj-R2

= 0.0006, p-value = 0.817). The Undirected Laplacian model also does not exhibit

any relationship between the quantile scores and the fraction of cancer genes (adj-R2

= 0.00018, p-value = 0.895). In contrast, the combined value of the two components,

Source/Sink Katz, shows that the linear relationship explains a statistically signifi-

cant portion of the variance, more compared to Degree centrality (adj-R2 = 0.46). In

this case, the regression analysis shows an statistically significant positive coefficient

of 1.86× 10−3 for the quantile scores (p-value = 9.9× 10−15, Table 5.1).

The correlation analysis of all variations of Laplacian centrality (Figure 5.5) shows

similar patterns to those of Katz centrality. It is observable that the nodes with no

Source importance have a varying range of centrality across different models. The

dense bands at Source values of zero in Figure 5.5 exhibit the instances which the

Source variation is unable to assign importance to the nodes that are distinguished
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Figure 5.4: Linear regression of quantile-scores versus the ratio of cancer-related
genes for Laplacian centrality model. X-axis represents the quantile-scores generated
by Formula 5.25 Y-axis represents the fraction of all genes that are cancer related
(Formula 5.26). The blue line represent the regression line from Formula 5.27. The
gray band represent 95 confidence interval of the linear regression.

by other models.

Similarly, the Sink component assigns zero values to many nodes which have higher

importance by the other models (the dense band at Lap-Sink = 0). The Source

Component and the Sink component values of Laplacian centrality do not show any

strong correlation, which indicates that they produce different characterization of

graphs. Interestingly, the correlation coefficient between Laplacian Source/Sink and

Undirected Laplacian is relatively low (Figures 5.5 and Supplementary Figure B.1).

This also indicates the radically different characterizations from each model.

PageRank centrality: Figure 5.6 shows that individual Source and Sink compo-

nents of the PageRank capture the linear relationship between the quantile centrality

scores and the fraction of cancer genes. In particular, the standard PageRank central-

ity for directed graph (the Sink component) finds an evidence (p-value = 1.57×10−4)

for linear relationship between the quantile scores and the ratio of cancer genes (Fig-
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Figure 5.5: Correlation of quantile scores of all genes in human pathways between
variations of Laplacian centrality model.

ure 5.6). In this case, the regression model finds an adjusted-R2 of 0.14 for the linear

relationship. The linear regression coefficient for the centrality scores is 1.64× 10−3.

Similarly, the Source Component detects a linear relationship between the quantile

score and the ratio of cancer genes (adj-R2 = 0.41, p-value = 2.89 × 10−12). In this

case, the linear regression coefficient for the centrality scores is 2.07×10−3. The Undi-

rected PageRank exhibit a stronger linear relationship between the quantile scores and

the fraction of cancer genes (adj-R2 = 0.66, p-value = 1.02 × 10−24) with a regree-

sion coefficient for the centrality scores is 2.34 × 10−3. The combined value of the

two components, Source/Sink PageRank, shows the strongest linear relationship and

explains a statistically significant portion of the variance, more compared to Degree

centrality (adj-R2 = 0.74). In this case, the regression analysis shows a coefficient of

2.71× 10−3 for the quantile scores (p-value = 4.2× 10−31, Table 5.1).

The correlation analysis of all variations of PageRank centrality (Figure 5.7) show

similar patterns to those of Katz and Laplacian. It is observable that the nodes

with no Source importance have a varying range of centrality across different models.
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Figure 5.6: Linear regression of quantile-scores versus the ratio of cancer-related
genes for PageRank centrality model. X-axis represents the quantile-scores generated
by Formula 5.25 Y-axis represents the fraction of all genes that are cancer related
(Formula 5.26). The blue line represent the regression line from Formula 5.27. The
gray band represent 95 confidence interval of the linear regression.

The dense bands at Source values of zero in Figure 5.7 exhibit the instances which

the Source variation is unable to assign importance to nodes. Similarly, the Sink

component assigns zero values to many nodes which have higher importance by the

other models (the dense band at Pgr-Sink = 0). The Source Component and the Sink

component values of PageRank centrality do not show any strong correlation, which

indicates that they produce different characterization of graphs. Unlike Laplacian,

the Source/Sink and the Undirected variations of PageRank exhibit some considerable

correlation. Interestingly, nodes with low Source/Sink PageRank would not have a

high Undirected PageRank, but the reverse of this relationship does not exist (Figure

5.7).
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Figure 5.7: Correlation of quantile scores of all genes in human pathways between
variations of PageRank centrality model and Degree centrality.

5.3.2 Comparison of CDF’s

The analysis of cumulative density function (CDF) of quantile scores outlines the

differences between scoring of cancer-related and normal genes (Figure 5.8). For all of

the centrality models and their variations, the (CDF) of cancer genes lies below that

of normal genes. This observation is supported by strong evidence from Kolmogorov-

Smirnov test as displayed in Figure 5.8.

The null hypothesis of normal genes and cancer genes having the same distribu-

tion is rejected in favor of the alternative hypothesis that the CDF of cancer genes

lies below that of non-cancer genes– p-values provided in Figure 5.8. The difference

between CDFs shows that cancer-genes tend to have higher centrality overall. Also,

the Kolmogorov-Smirnov test provides an evidence that Source/Sink PageRank cre-

ates a better separation between the two class compared to the other models (Figure

5.9). In particular, the test suggest that the distribution of quantile-scores produced

by Source/Sink PageRank for cancer-related lies below that of any other model (

p-values in Table 5.2).
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Table 5.1: Linear regression fit of quantile scores and the ratio of cancer genes

Centrality term estimate std.error statistic p.value
Degree (Intercept) 1.49e-01 1.46e-02 1.02e+01 4.34e-17
Degree Coefficient 1.45e-03 2.53e-04 5.73e+00 1.07e-07
Katz-Sink (Intercept) 2.54e-01 2.33e-02 1.09e+01 2.26e-18
Katz-Sink Coefficient 1.43e-04 3.95e-04 3.61e-01 7.19e-01
Katz-Source (Intercept) 2.79e-01 2.48e-02 1.12e+01 5.69e-19
Katz-Source Coefficient -4.86e-04 4.14e-04 -1.17e+00 2.44e-01
Katz-Source/Sink (Intercept) 1.46e-01 1.09e-02 1.34e+01 6.50e-24
Katz-Source/Sink Coefficient 1.42e-03 1.88e-04 7.54e+00 2.29e-11
Lap-Sink (Intercept) 2.57e-01 2.38e-02 1.08e+01 2.69e-18
Lap-Sink Coefficient 9.42e-05 4.05e-04 2.32e-01 8.17e-01
Lap-Source (Intercept) 2.84e-01 2.44e-02 1.16e+01 1.02e-19
Lap-Source Coefficient -5.99e-04 4.05e-04 -1.48e+00 1.42e-01
Lap-SSC (Intercept) 1.26e-01 1.18e-02 1.07e+01 3.18e-18
Lap-SSC Coefficient 1.86e-03 2.04e-04 9.10e+00 9.87e-15
Lap-Und (Intercept) 2.19e-01 1.08e-02 2.03e+01 5.35e-37
Lap-Und Coefficient 2.47e-05 1.86e-04 1.32e-01 8.95e-01
PageRank-Sink (Intercept) 1.54e-01 2.49e-02 6.21e+00 1.45e-08
PageRank-Sink Coefficient 1.64e-03 4.17e-04 3.94e+00 1.57e-04
PageRank-Source (Intercept) 1.10e-01 1.54e-02 7.14e+00 2.11e-10
PageRank-Source Coefficient 2.07e-03 2.57e-04 8.05e+00 2.89e-12
PageRank-SSC (Intercept) 7.69e-02 9.24e-03 8.33e+00 4.80e-13
PageRank-SSC Coefficient 2.71e-03 1.60e-04 1.70e+01 4.16e-31
PageRank-Und (Intercept) 9.35e-02 9.82e-03 9.52e+00 1.22e-15
PageRank-Und Coefficient 2.34e-03 1.70e-04 1.38e+01 1.02e-24

5.3.3 Pathway-wise Two-Sample Testing

Pathway by pathway analysis outlines the utility of each centrality method for

distinguishing between Cancer-related (cancer) genes and non-cancer-related (non-

cancer) genes. In Tables 5.3 and 5.4, the diagonal elements indicate the number of

pathways with higher mean centrality of cancer-related genes (rejected hypothesis)

for each model. The off-diagonal entries indicate the number of rejected hypothesis

by both models that correspond to the row and the column.

Under the normal distribution assumption, each method rejects some null hypothe-

ses of cancer genes having the same mean with the non-cancer genes (Alternative:

greater mean for cancer, FDR < 0.05). In particular, Source/Sink Katz and Degree
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Table 5.2: Kolmogorov Smirnov test of CDF of cancer genes for contrasting PageRank
Source/Sink with other centrality measures

Centrality models Ha : Pgr.SSC above Ha : Pgr.SSC below
ks.p-values ks.p-values

katz.source 1 9.5e-48
katz.sink 1 5e-15
katz.ssc 1 6.1e-31
degree 0.99 2.1e-31
pgr.source 1 4.8e-12
pgr.sink 0.6 9.7e-05
pgr.und 0.57 0.00063
lap.source 1 1.7e-48
lap.sink 1 4.1e-15
lap.ssc 1 3.4e-12
lap.und 0.76 8.2e-54

identify five pathways each, having four of them common between both and no over-

lap with Sink PageRank or Source/Sink PageRank. On the other hand, Source Katz

centrality only identifies two pathways, both identified by degree and Source/Sink

Katz. Sink Katz identifies six pathways. Similarly, Source/Sink PageRank and Undi-

rected PageRank identify five and eight pathways, with only one pathway in common.

Tha laplacian family shows the highest statistical power. In particular, the Sink, the

Source, the Source/Sink, and Undirected Laplacian centralities identify 14, 8, 17, and

17 pathways.

Using Wilcox rank sum test increases the number of rejected hypotheses. For all

methods, except Laplacian family, the number of rejected null hypotheses (FDR <

0.05) increases (Table 5.4). Source/Sink PageRank and Undirected PageRank show

the highest statistical power by detecting 32 and 30 pathways. The overlap between

Undirected and Source/Sink PageRank is limited to 17 pathways, showing that two

methods produce a considerable number of different pathways.



86

5.4 Discussion

This chapter investigated the explanatory power of different centrality models with

respect to cancer genes. The analysis showed the differences between topological

position of cancer and non-cancer genes. In particular, our findings assert three

topological properties of cancer-related genes in human biological pathways.

The number of connections (Degree centrality) of a gene in a biological pathway

is related to its probability being cancer-related. Regression analysis supports this

hypothesis by finding a statistically significant linear relationship between quantile-

transformed degree centrality and the ratio of cancer genes. This result indicates

that cancer-related genes tend to have higher degree in the organization of biological

pathways.

Regression analysis also shows that spectral importance determines the ratio of

cancer genes, particularly, when formulated in Source/Sink modeling. Using individ-

ual source or sink components of directed Katz and directed Laplacian produces no

evidence for linear relation of centrality with the ratio of cancer genes. When the

importance is measured only in Source or Sink directions, many of the cancer genes

are given low importance– as demonstrated in the correlation plots 5.3, 5.5, and 5.7.

However, when Katz and Laplacian centralities are measured and in Source/Sink for-

mulation, the linear relationship becomes statistically significant (Table 5.1). This

improvement is particularly because of assigning centrality values to nodes that are

terminal but topologically important as receivers of information.

Similarly, Source/Sink PageRank produces a stronger R-squared (0.74) compared

to Undirected, Source, and Sink PageRank (Figure 5.6). The higher adjusted R2

and regression coefficient of Source/Sink compared to Undirected PageRank can be

because of SS-PageRank being sensitive to the organization of the directions in the

network. It turns out that for every one of the centrality models the adjusted R2

and the slope of the linear regression coefficient increase when using the Source/Sink
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framework. This is highly consistent with our hypothesis of the organization of genes

in the pathways. This is highly consistent with our research hypothesis that the

Source/Sink concept can capture the topological organization of important genes in

pathways.

Kolmogorov-Smirnov test shows that each centrality produces some differentiation

between the centrality of cancer genes and non-cancer genes. Although each model

has its own specific underlying distribution of centrality, PageRank Source/Sink shows

the highest distinction between the group of genes (Table 5.2 and Figure 5.9). This in-

dicates that, overall, Source/Sink PageRank assigns a higher non-parametric quantile

to cancer-related genes compared to the other models. However, one has to note that

the differences between the centrality models might be subtle and each of their scor-

ing might be superior to the others in certain ranges over the distribution. Standard

applications in computational biology, particularly PEMs, either use undirected mea-

sures or directed graph measures where disregards terminal nodes – e.g. [19, 22, 56].

The presented results show that using directions while giving importance to termi-

nal nodes in pathways may give higher explanatory power. This results might be of

particular interest to the research in evolutionary organization of biological networks

and pathways.

Pathway-by-pathway analysis shows that the Source/Sink PageRank has the high-

est statistical power to distinguish cancer genes from non-cancer in pathways (Tables

5.3 and 5.4). Although all of the methods have some overlap with each other, their

differences indicate the uniqueness of each centrality model’s evidence for distinguish-

ing cancer genes from non-cancer. Higher statistical power of non-parametric test is

because the underlying distribution of the centrality scores is often non-normal. Also,

in the non-parametric approach, the Source/Sink variations show stronger statistical

power compared to the other alternatives for Katz and PageRank. This suggest that

further analysis of the underlying distributions of centrality score may reveal useful
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insight for leveraging centrality models and finding more descriptive transformations.

We have provided kernel density plots of normalized centrality scores of some of the

models in the Supplementary Figures B.2, B.3, B.4, and B.5 for interested readers.
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Figure 5.8: Comparison of cumulative density between cancer-related genes and nor-
mal genes. The data points represent the quantile-scores calculated based on normal-
ized centrality (Formula 5.28) across all pathways.
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CHAPTER 6: Summary and Future Directions

In this dissertation, we explored devising a new perspective for pathway enrichment

analysis by focusing on the shortcomings of the existing models. In particular, we

argued that existing models fail to capture the topological importance of the genes,

particularly with respect to the upstream-downstream organization of pathways. We

introduced a novel graph methodology, Source/Sink centrality, to effectively capture

the organization of a pathway and used it to derive topological statistic from differ-

ential expressions. We then used this topological statistic in combination with the

classical over-representation analysis to create a sensitive network-based PEM, CA-

DIA. CADIA takes an unordered list of DEG and produces a list of p-value that can

determine the enrichment of pathways.

Through experimental data validation on three cancer datasets, we showed that

CADIA is able to uniquely detect critical pathway enrichments while other standard

and the state-of-the-art PEM fail to do so. By synthetic data evaluation, we showed

the high specificity of CADIA, which indicates its unique pathway enrichments are

not results of false discovery. As the pathways data collections grow and become more

complete, CADIA will be able to produce more precise and effective inferences. The

presented methodology can contribute to the applications of drug target discovery and

biomarker discovery, as it concerns pathway analysis with respect to the underlying

topology.

We sought exploratory approaches to show the utility of the Source/Sink concept

in differentiating the topological organization of a particular class of important genes

in biological pathways. The existing graph-theory approaches for the analysis of bi-

ological networks only consider one of the Source and the Sink components in their
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methodologies. From multiple aspects, we showed that the Source/Sink extensions

of different standard centrality models have increased statistical power to attribute

higher importance to cancer genes in the human biological pathways. Although these

results are not definitive for the choice of appropriate network modeling for PEM, we

have evidently shown that Source/Sink concept is superior in various aspects and can

be applied to increase sensitivity to the underlying biological patterns. The choice of

underlying topological model for a pathway analysis model depends of several assump-

tions as well as the source of input data. The results presented in this dissertation are

also useful for the researches in identifying the evolutionary patterns in the topology

of the biological networks.

Although significant efforts have been made in nearly two decades of research on

biological inference models, there are still some open areas that can lead to further

improvement. In our opinion, further improvements in the following areas will lead

to more comprehensive and informative pathway enrichment analysis solutions.

• Moving towards differential network biology: There is a strong need for a stan-

dalone pathway-level statistics that describes the changes of certain biologi-

cal function across different experimental conditions [103]. These hypothetical

statistics should enable to move beyond individual gene-level changes towards

pathway-level changes as primary targets of therapeutics and diagnostics. Path-

way analysis methods such as ORA, GSA, SPIA, Cdist, EnrichNet, and CADIA

all rely on a global information for analyzing pathway-level changes. One can

imagine a point in the future where there exist specialized diagnostic panels

that only measure the differential expression of few genes and produce critical

medical insights. In such a case, it is not unreasonable to assume some pathway

driven insight may play a key role in identifying diagnostic panels. A promising

start point of having a pathway level statistics will be a framework similar to

NetGSA, upon the condition of re-evaluating the mechanisms of capturing the
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topology of the graphs. In such a scenario, we believe that the framework of

Source/Sink Centrality may prove beneficial and informative.

• The work presented here can be extended to different organisms and different

classes of genes. It will be valuable to see whether the presented results could

be replicated for different sets of biological pathways from different databases.

Needless to say that any attempt at these questions requires appropriate level

of availability and consistency in the software and annotations.
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APPENDIX A: Additional notes and proofs

A goal of Source/Sink centrality is to be as distinct as possible from the Source

component and the Sink component. Intuitively, the parameter choice of β = 1 should

create the most distinction.

It is possible to derive the optimal value for β. Recall the Source and Sink compo-

nents from as:

Csrc = (I − αA)−1.1n×1

and

Csink = (I − αAT )−1.1n×1

Without loss of generalization, define the Source/Sink centrality as

Cssc =
1

1 + β
Csrc +

β

1 + β
Csink (A.1)

The above formulation does not change any calculations in CADIA. In particular,

the division by non-zero constant 1+β does not affect the calculation of the aggregate

score for pathway enrichment.

Proof. As Agg(U) is defined in the main document, the Pssc of any subset of nodes,

U , is invariant under positive scaling of Agg(U). Define r > 0, then the following

holds true:

Pssc =P
{
Agg(U) > Agg(U0)

∣∣∣ |U | = |U0|
}

=P
{
r · Agg(U) > r · Agg(U0)

∣∣∣ |U | = |U0|
} (A.2)

The above equations hold because for any positive scalar r:

Agg(U) > Agg(U0)⇔ r · Agg(U) > r · Agg(U0) (A.3)
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Let C ′ssc denote any positive scaling of Source/Sink centrality (C ′ssc = s·Cssc, s > 0).

Define a new aggregate score as following:

Agg1(U) =
∏
ui∈U

C ′ssc(ui) (A.4)

Then, the following holds true:

∏
ui∈U

C ′ssc(ui) =
∏
ui∈U

s · Cssc(ui)

= s|U | ·
∏
ui∈U

Cssc(ui)

= s|U |Agg(U)

(A.5)

The above Formula shows that a new aggregate score is a scaling of the original

aggregate score. Thus, by the property of invariance, Pssc is equal for both Agg() and

Agg1().

Define the distance from Source and Sink as || Cssc−Csrc ||2 and || Cssc−Csink ||2.

Here, || . ||2 is the L-2 norm of the matrix. Define the distinction of Source/Sink cen-

trality as the product of the distances from Source component and Sink component.

Then the problem of finding the optimal β parameter for maximizing the distinction

is:

max || Cssc − Csrc || . || Cssc − Csink ||

s.t. β > 0

By plugging the values from Eq.1, the distance of the Source/Sink centrality vector

from the Source centrality vector and Sink centrality vector can be written as:
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|| Cssc − Csrc || = || β

1 + β
(−Csrc + Csink) ||

|| Cssc − Csink || = || 1

1 + β
(Csrc − Csink) ||

(A.6)

The numerical coefficients from the L-2 norm can be extracted. We can multiply

the internal by the scalar -1. Then, we have:

|| Cssc − Csrc || =
β

1 + β
|| (Csrc − Csink) ||

|| Cssc − Csink || =
1

1 + β
|| (Csrc − Csink) ||

(A.7)

By substituting the above equations into the optimization problem we have

max
β

1 + β

1

1 + β
|| (Csrc − Csink) ||2

s.t. :β > 0

(A.8)

|| (Csrc −Csink) || is constant and only depends on the underlying graph. We then

optimize by solving for derivative of β.

∂

∂β

β

(1 + β)2
|| (Csrc − Csink) ||= 0

−2β

(1 + β)3
+

1

(1 + β)2
= 0

β = 1

(A.9)

One can show that the presented results hold for any matrix norm and are not

limited only to L-2 norms. The original notation of Source/Sink centrality, as de-

scribed in the main document, accepts any β that is a non-negative real number. A



108

corollary of the representation in Formula A.1 in this supplementary material is that

Source/Sink Centrality can be reformatted into a more relatively symmetric repre-

sentation for computing the aggregate score (Agg()). Formally, by defining a variable

z = 1
1+β

, one can show:

Cssc = z · Csrc + (1− z) · Csink (A.10)

The above notation allows for redefining the tuning parameter into a variable that

is in the domain [0, 1]. In this case, the optimal distinction between the Source and

the Sink components happens at z = 0.5.
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APPENDIX B: Pathways list and information

Name nodes dges eigen

1 Glycolysis / Gluconeogenesis 68 277 3.90

2 Citrate cycle (TCA cycle) 30 98 2.45

3 Pentose phosphate pathway 30 154 5.67

4 Pentose and glucuronate interconversions 34 70 1.26

5 Fructose and mannose metabolism 33 137 1.73

6 Galactose metabolism 31 69 0.00

7 Ascorbate and aldarate metabolism 27 38 0.00

8 Fatty acid biosynthesis 13 18 1.62

9 Fatty acid elongation 30 51 3.68

10 Fatty acid degradation 44 172 5.15

11 Synthesis and degradation of ketone bodies 10 32 0.00

12 Steroid biosynthesis 19 31 2.25

13 Primary bile acid biosynthesis 17 29 1.76

14 Ubiquinone and other terpenoid-quinone biosyn-

thesis

11 11 1.41

15 Steroid hormone biosynthesis 59 878 16.60

16 Oxidative phosphorylation 133 132 0.00

17 Arginine biosynthesis 21 45 0.00

18 Purine metabolism 174 5424 42.75

19 Caffeine metabolism 5 10 1.41

20 Pyrimidine metabolism 101 1608 19.91

21 Alanine, aspartate and glutamate metabolism 35 111 1.00

22 Glycine, serine and threonine metabolism 40 135 3.51

23 Cysteine and methionine metabolism 45 127 2.47

Continued on next page
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Name nodes dges eigen

24 Valine, leucine and isoleucine degradation 48 199 3.28

25 Valine, leucine and isoleucine biosynthesis 4 0 0.00

26 Lysine degradation 59 193 5.57

27 Arginine and proline metabolism 50 142 3.78

28 Histidine metabolism 23 33 0.00

29 Tyrosine metabolism 36 185 8.18

30 Phenylalanine metabolism 17 38 0.00

31 Tryptophan metabolism 40 136 4.95

32 Phenylalanine, tyrosine and tryptophan biosynthe-

sis

5 6 1.41

33 beta-Alanine metabolism 31 148 5.65

34 Taurine and hypotaurine metabolism 11 27 0.00

35 Phosphonate and phosphinate metabolism 6 6 0.00

36 Selenocompound metabolism 17 35 2.69

37 D-Glutamine and D-glutamate metabolism 5 6 0.00

38 D-Arginine and D-ornithine metabolism 1 0 0.00

39 Glutathione metabolism 56 606 13.10

40 Starch and sucrose metabolism 36 190 4.79

41 N-Glycan biosynthesis 49 108 0.00

42 Other glycan degradation 18 0 0.00

43 Mucin type O-glycan biosynthesis 31 134 4.49

44 Other types of O-glycan biosynthesis 22 0 0.00

45 Mannose type O-glycan biosynthesis 23 39 1.00

46 Amino sugar and nucleotide sugar metabolism 48 146 5.57

47 Neomycin, kanamycin and gentamicin biosynthesis 5 0 0.00
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Name nodes dges eigen

48 Glycosaminoglycan degradation 19 29 0.00

49 Glycosaminoglycan biosynthesis - chondroitin sul-

fate / dermatan sulfate

20 31 4.08

50 Glycosaminoglycan biosynthesis - keratan sulfate 14 0 0.00

51 Glycosaminoglycan biosynthesis - heparan sulfate /

heparin

24 0 0.00

52 Glycerolipid metabolism 61 826 17.11

53 Inositol phosphate metabolism 73 756 5.08

54 Glycosylphosphatidylinositol (GPI)-anchor biosyn-

thesis

25 38 1.00

55 Glycerophospholipid metabolism 97 1157 15.74

56 Ether lipid metabolism 47 522 7.16

57 Arachidonic acid metabolism 63 720 12.84

58 Linoleic acid metabolism 29 233 8.39

59 alpha-Linolenic acid metabolism 25 24 1.00

60 Sphingolipid metabolism 47 485 9.08

61 Glycosphingolipid biosynthesis - lacto and neolacto

series

27 193 7.14

62 Glycosphingolipid biosynthesis - globo and isoglobo

series

15 29 1.41

63 Glycosphingolipid biosynthesis - ganglio series 15 44 3.22

64 Pyruvate metabolism 39 181 2.00

65 Glyoxylate and dicarboxylate metabolism 30 50 2.33

66 Propanoate metabolism 32 72 0.00

67 Butanoate metabolism 28 72 0.00
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68 One carbon pool by folate 20 150 6.14

69 Thiamine metabolism 16 27 0.00

70 Riboflavin metabolism 8 16 0.00

71 Vitamin B6 metabolism 6 10 2.10

72 Nicotinate and nicotinamide metabolism 30 206 3.54

73 Pantothenate and CoA biosynthesis 19 50 3.62

74 Biotin metabolism 3 1 0.00

75 Lipoic acid metabolism 3 4 1.00

76 Folate biosynthesis 26 83 2.85

77 Retinol metabolism 67 882 12.26

78 Porphyrin and chlorophyll metabolism 42 90 1.73

79 Terpenoid backbone biosynthesis 22 57 3.56

80 Nitrogen metabolism 17 5 0.00

81 Sulfur metabolism 9 14 1.00

82 Aminoacyl-tRNA biosynthesis 66 14 0.00

83 Metabolism of xenobiotics by cytochrome P450 76 1245 26.46

84 Drug metabolism - cytochrome P450 72 550 10.43

85 Drug metabolism - other enzymes 79 209 4.58

86 Biosynthesis of unsaturated fatty acids 23 0 0.00

87 Metabolic pathways 1293 0 0.00

88 Carbon metabolism 116 0 0.00

89 2-Oxocarboxylic acid metabolism 18 0 0.00

90 Fatty acid metabolism 48 0 0.00

91 Biosynthesis of amino acids 74 0 0.00

92 EGFR tyrosine kinase inhibitor resistance 79 229 0.00

Continued on next page



113

Name nodes dges eigen

93 Endocrine resistance 98 290 2.47

94 Antifolate resistance 31 12 0.00

95 Platinum drug resistance 73 79 1.17

96 ABC transporters 44 0 0.00

97 Ribosome biogenesis in eukaryotes 105 2 0.00

98 Ribosome 153 0 0.00

99 RNA transport 171 295 0.00

100 mRNA surveillance pathway 91 156 0.00

101 RNA degradation 79 73 0.00

102 RNA polymerase 31 0 0.00

103 Basal transcription factors 45 0 0.00

104 DNA replication 36 0 0.00

105 Spliceosome 134 0 0.00

106 Proteasome 45 0 0.00

107 Protein export 23 0 0.00

108 PPAR signaling pathway 74 271 0.00

109 Base excision repair 33 0 0.00

110 Nucleotide excision repair 47 0 0.00

111 Mismatch repair 23 0 0.00

112 Homologous recombination 41 20 0.00

113 Non-homologous end-joining 13 0 0.00

114 Fanconi anemia pathway 54 83 1.00

115 MAPK signaling pathway 295 1961 1.59

116 ErbB signaling pathway 85 203 0.00

117 Ras signaling pathway 232 1570 0.00
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118 Rap1 signaling pathway 206 1206 2.14

119 Calcium signaling pathway 183 528 0.00

120 cGMP-PKG signaling pathway 163 374 0.00

121 cAMP signaling pathway 198 664 0.00

122 Cytokine-cytokine receptor interaction 294 373 0.00

123 Chemokine signaling pathway 185 1640 0.00

124 NF-kappa B signaling pathway 95 172 2.03

125 HIF-1 signaling pathway 100 280 0.00

126 FoxO signaling pathway 132 433 0.00

127 Phosphatidylinositol signaling system 99 1890 28.58

128 Sphingolipid signaling pathway 118 253 0.00

129 Phospholipase D signaling pathway 146 409 0.00

130 Neuroactive ligand-receptor interaction 277 47 0.00

131 Cell cycle 124 618 11.00

132 Oocyte meiosis 124 424 1.53

133 p53 signaling pathway 72 86 0.00

134 Ubiquitin mediated proteolysis 137 0 0.00

135 Sulfur relay system 8 8 0.00

136 SNARE interactions in vesicular transport 34 42 0.00

137 Autophagy - other 32 59 0.00

138 Mitophagy - animal 65 100 1.00

139 Autophagy - animal 128 335 1.26

140 Protein processing in endoplasmic reticulum 165 78 1.00

141 Lysosome 123 0 0.00

142 Endocytosis 244 233 0.00
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143 Phagosome 152 247 0.00

144 Peroxisome 83 7 0.00

145 mTOR signaling pathway 151 565 0.00

146 PI3K-Akt signaling pathway 354 3089 0.00

147 AMPK signaling pathway 120 318 1.00

148 Apoptosis 136 346 1.67

149 Longevity regulating pathway 89 245 0.00

150 Longevity regulating pathway - multiple species 62 184 0.00

151 Apoptosis - multiple species 33 0 0.00

152 Ferroptosis 40 10 1.00

153 Necroptosis 162 331 0.00

154 Cellular senescence 160 427 0.00

155 Cardiac muscle contraction 78 18 1.32

156 Adrenergic signaling in cardiomyocytes 144 847 0.00

157 Vascular smooth muscle contraction 121 273 0.00

158 Wnt signaling pathway 146 846 0.00

159 Notch signaling pathway 48 142 0.00

160 Hedgehog signaling pathway 47 174 3.61

161 TGF-beta signaling pathway 84 173 0.00

162 Axon guidance 175 523 5.67

163 VEGF signaling pathway 59 158 0.00

164 Apelin signaling pathway 137 847 0.00

165 Osteoclast differentiation 128 288 2.00

166 Hippo signaling pathway 154 589 2.51

167 Hippo signaling pathway - multiple species 29 55 0.00
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168 Focal adhesion 199 1816 3.74

169 ECM-receptor interaction 82 521 0.00

170 Cell adhesion molecules (CAMs) 144 584 21.00

171 Adherens junction 72 170 4.03

172 Tight junction 170 3 0.00

173 Gap junction 88 227 1.00

174 Signaling pathways regulating pluripotency of stem

cells

139 434 1.26

175 Complement and coagulation cascades 79 83 1.00

176 Platelet activation 123 280 0.00

177 Antigen processing and presentation 77 373 13.00

178 Renin-angiotensin system 23 1 0.00

179 Toll-like receptor signaling pathway 104 217 0.00

180 NOD-like receptor signaling pathway 168 286 1.00

181 RIG-I-like receptor signaling pathway 70 147 0.00

182 Cytosolic DNA-sensing pathway 63 74 0.00

183 C-type lectin receptor signaling pathway 104 278 1.00

184 JAK-STAT signaling pathway 162 3208 9.12

185 Hematopoietic cell lineage 97 0 0.00

186 Natural killer cell mediated cytotoxicity 131 350 1.00

187 IL-17 signaling pathway 93 14 0.00

188 Th1 and Th2 cell differentiation 92 256 2.89

189 Th17 cell differentiation 107 200 2.04

190 T cell receptor signaling pathway 101 254 1.22

191 B cell receptor signaling pathway 71 137 1.00
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192 Fc epsilon RI signaling pathway 68 151 0.00

193 Fc gamma R-mediated phagocytosis 91 198 0.00

194 TNF signaling pathway 110 139 0.00

195 Leukocyte transendothelial migration 112 792 23.00

196 Intestinal immune network for IgA production 49 18 0.00

197 Circadian rhythm 31 95 3.16

198 Circadian entrainment 96 780 0.00

199 Thermogenesis 229 228 1.53

200 Long-term potentiation 67 339 4.64

201 Synaptic vesicle cycle 63 37 2.00

202 Neurotrophin signaling pathway 119 357 2.81

203 Retrograde endocannabinoid signaling 148 672 0.00

204 Glutamatergic synapse 114 468 3.76

205 Cholinergic synapse 112 506 0.00

206 Serotonergic synapse 115 414 0.00

207 GABAergic synapse 88 506 0.00

208 Dopaminergic synapse 131 599 0.00

209 Long-term depression 60 226 0.00

210 Olfactory transduction 419 4238 0.00

211 Taste transduction 83 32 0.00

212 Phototransduction 28 45 0.00

213 Inflammatory mediator regulation of TRP channels 99 132 0.00

214 Regulation of actin cytoskeleton 213 987 3.64

215 Insulin signaling pathway 137 412 0.00

216 Insulin secretion 85 99 0.00

Continued on next page



118

Name nodes dges eigen

217 GnRH signaling pathway 93 237 0.00

218 Ovarian steroidogenesis 49 50 0.00

219 Progesterone-mediated oocyte maturation 99 177 0.00

220 Estrogen signaling pathway 137 383 1.81

221 Melanogenesis 101 389 0.00

222 Prolactin signaling pathway 70 191 1.84

223 Thyroid hormone synthesis 74 112 0.00

224 Thyroid hormone signaling pathway 116 339 0.00

225 Adipocytokine signaling pathway 69 200 1.22

226 Oxytocin signaling pathway 152 419 0.00

227 Glucagon signaling pathway 103 422 8.00

228 Regulation of lipolysis in adipocytes 54 108 0.00

229 Renin secretion 65 69 0.00

230 Aldosterone synthesis and secretion 96 275 0.00

231 Relaxin signaling pathway 130 556 2.67

232 Cortisol synthesis and secretion 64 129 0.00

233 Parathyroid hormone synthesis, secretion and ac-

tion

106 242 1.65

234 Type II diabetes mellitus 46 124 3.30

235 Insulin resistance 107 224 2.13

236 Non-alcoholic fatty liver disease (NAFLD) 149 136 2.28

237 AGE-RAGE signaling pathway in diabetic compli-

cations

99 299 2.96

238 Cushing syndrome 154 509 0.00

239 Type I diabetes mellitus 43 3 0.00
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240 Maturity onset diabetes of the young 26 32 0.00

241 Aldosterone-regulated sodium reabsorption 37 37 0.00

242 Endocrine and other factor-regulated calcium reab-

sorption

47 44 1.00

243 Vasopressin-regulated water reabsorption 44 46 0.00

244 Proximal tubule bicarbonate reclamation 23 6 0.00

245 Collecting duct acid secretion 27 0 0.00

246 Salivary secretion 90 34 0.00

247 Gastric acid secretion 75 111 0.00

248 Pancreatic secretion 96 18 0.00

249 Carbohydrate digestion and absorption 44 7 0.00

250 Protein digestion and absorption 90 0 0.00

251 Fat digestion and absorption 41 16 0.00

252 Bile secretion 71 26 0.00

253 Vitamin digestion and absorption 24 0 0.00

254 Mineral absorption 51 6 0.00

255 Cholesterol metabolism 50 36 1.73

256 Alzheimer disease 171 67 0.00

257 Parkinson disease 142 25 0.00

258 Amyotrophic lateral sclerosis (ALS) 51 49 0.00

259 Huntington disease 193 26 1.00

260 Prion diseases 35 19 0.00

261 Cocaine addiction 49 91 0.00

262 Amphetamine addiction 68 248 0.00

263 Morphine addiction 91 549 0.00
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264 Nicotine addiction 40 0 0.00

265 Alcoholism 180 757 0.00

266 Bacterial invasion of epithelial cells 74 101 0.00

267 Vibrio cholerae infection 50 27 0.00

268 Epithelial cell signaling in Helicobacter pylori in-

fection

68 47 0.00

269 Pathogenic Escherichia coli infection 55 56 0.00

270 Shigellosis 65 104 1.95

271 Salmonella infection 86 173 0.00

272 Pertussis 76 111 0.00

273 Legionellosis 55 37 0.00

274 Leishmaniasis 74 136 0.00

275 Chagas disease (American trypanosomiasis) 102 225 2.95

276 African trypanosomiasis 35 28 0.00

277 Malaria 49 7 0.00

278 Toxoplasmosis 113 179 0.00

279 Amoebiasis 96 66 0.00

280 Staphylococcus aureus infection 56 46 0.00

281 Tuberculosis 179 463 0.00

282 Hepatitis C 131 183 0.00

283 Hepatitis B 144 259 1.00

284 Measles 132 248 1.00

285 Human cytomegalovirus infection 225 744 0.00

286 Influenza A 171 270 0.00

287 Human papillomavirus infection 339 1628 1.82
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288 Human T-cell leukemia virus 1 infection 255 622 1.41

289 Kaposi sarcoma-associated herpesvirus infection 186 401 2.20

290 Herpes simplex infection 185 255 0.00

291 Epstein-Barr virus infection 201 266 5.00

292 Human immunodeficiency virus 1 infection 212 611 5.00

293 Pathways in cancer 526 1948 2.04

294 Transcriptional misregulation in cancer 186 12 0.00

295 Viral carcinogenesis 201 4 0.00

296 Chemical carcinogenesis 82 491 4.05

297 Proteoglycans in cancer 201 596 1.26

298 MicroRNAs in cancer 299 518 0.00

299 Colorectal cancer 86 149 1.26

300 Renal cell carcinoma 69 98 0.00

301 Pancreatic cancer 75 128 0.00

302 Endometrial cancer 58 89 0.00

303 Glioma 71 178 0.00

304 Prostate cancer 97 270 0.00

305 Thyroid cancer 37 57 0.00

306 Basal cell carcinoma 63 316 0.00

307 Melanoma 72 252 0.00

308 Bladder cancer 41 46 0.00

309 Chronic myeloid leukemia 76 158 0.00

310 Acute myeloid leukemia 66 156 0.00

311 Small cell lung cancer 93 231 0.00

312 Non-small cell lung cancer 66 137 1.41
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313 Breast cancer 147 488 0.00

314 Hepatocellular carcinoma 168 559 7.42

315 Gastric cancer 149 431 0.00

316 Central carbon metabolism in cancer 65 130 0.00

317 Choline metabolism in cancer 99 194 0.00

318 Asthma 31 4 0.00

319 Autoimmune thyroid disease 53 5 0.00

320 Inflammatory bowel disease (IBD) 65 81 2.04

321 Systemic lupus erythematosus 133 30 0.00

322 Rheumatoid arthritis 90 13 0.00

323 Allograft rejection 38 24 0.00

324 Graft-versus-host disease 41 51 0.00

325 Primary immunodeficiency 37 0 0.00

326 Hypertrophic cardiomyopathy (HCM) 83 38 0.00

327 Arrhythmogenic right ventricular cardiomyopathy

(ARVC)

72 11 1.00

328 Dilated cardiomyopathy (DCM) 90 142 0.00

329 Viral myocarditis 59 23 0.00

330 Fluid shear stress and atherosclerosis 139 390 0.00
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Figure B.1: Correlation of quantile scores between centrality models.
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Figure B.2: The density plot of Katz Source/Sink centrality normalized values. Each
color represents a different pathway.
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Figure B.3: The density plot of PageRank Source/Sink centrality normalized values.
Each color represents a different pathway.
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Figure B.4: The density plot of PageRank Source/Sink centrality normalized values.
Each color represents a different pathway.
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Figure B.5: The density plot of Degree centrality normalized values. Each color
represents a different pathway.
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