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ABSTRACT

PIERRE ARBAJIAN. Disfluent Speech Segments Detection and Remediation.
(Under the direction of DR. ZBIGNIEW W. RAŚ)

Speech remediation by identifying those segments which compromise the quality

of speech content can be performed by correctly identifying portions of a recording

which can be deleted without diminishing from the overall quality of the speech, but

rather improving it. Speech remediation is especially important when it is heavily

disfluent as in the case of stuttering speakers’ speeches.

In our work we focused on two types of disfluency blocks and interjections. The

preparation work and the features required for each type of speech anomaly were

different as we used distinct approaches according to the speech disfluency we were

detecting and the application method.

In this dissertation, we describe work which consists of (1) developing several meth-

ods to extract stutter speech segments, (2) creating the raw digital signal analysis

features, (3) performing the feature engineering, (4) labeling the segments, (5) train-

ing the classifier, and finally (6) scoring the speech segments to identify the sounds

that must be removed from a recording.

The experimentation with statistical aggregation feature types for speech blocks

yielded strong results, but interjection disfluencies scoring required spectral data

analysis. The need for different features per disfluency type led us to three approaches,

the first two were suitable for blocks detection and the third approach was applied

to interjections.
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Two approaches one with Pre-qualification sampling and the second with Random

sampling used statistical representations of the segments analysis data as features with

minimal neural network classifiers and performed well in two types of application:

(1) Sampling of segments with a pre-qualification phase and (2) Sampling of training

samples without pre-qualification followed by a sliding window classification scoring

method. The second speech disfluency i.e. interjections required different techniques

thus Approach Spectral-analysis. In Approach Spectral-analysis we used spectral

analysis metrics from the sound segments as predictors and trained Neural Network

classifiers implemented as multiple (CNN) models to detect the interjections.

The corpus we used is a well recognized set of stuttered speech recordings UCLASS.

The speeches we used are not labeled in a matter conducive for our research, therefore

we performed extensive experimentation to build and label the training data.
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CHAPTER 1: INTRODUCTION

Quality of life is negatively impacted when individuals are chronically unable to

express themselves due to lack of speech fluency. Stuttering, also referred to as

stammering, is a condition that is exhibited in bad fluency of speech. The onset of

stuttering generally occurs during childhood years, and in one fourth of cases this

speech impediment persists throughout life [26, 39].

Automatic speech disfluency detection offers many advantages, ranging from time

saving, constant speech monitoring, reducing the subjectivity of manual disfluency

identification [28, 18] as well as a more effective automatic speech recognition. There-

fore, the identification of “episodes” of stutter will offer actionable information [5,

17, 18]. Reliable identification of speech segments, from the beginning to the end of

episode, with pauses, blocks, interjections and hesitations will enable speech cleanup

by ridding a speech of the blocks, and interjections, and by smoothing hesitation

segments and shortening the prolongations [19, 21, 31].

Our work flow consisted of multiple components: Candidate segment extraction,

extracted segment analysis, feature building, segment labeling, classifier training and

testing, scoring and remediation.

We used a number of approaches and methods to accomplish the task. Our research

relied on Praat which is a linguistic tool for sound and speech analysis, Python for



2

data preparation and R for classifier training, during Approach Spectral-analysis we

used TensorFlow/Keras for CNN model training.

With Praat used to listen, examine, annotate, and extract our training features,

we performed the exploratory work manually followed by scripts to streamline the

extraction of speech segments and features.

Our research and development has confirmed that we can deliver much improved

speeches as a result of the detection then remediation methods we used. The repaired

speeches were superior to the original speeches in terms of intelligibility and quality,

afterwards we experimented with multiple methods to detect and repair stuttered

speeches. Our work was divided into three approaches, the first two detect and remedy

block speech stutter and the third one detects and repairs speech interjections. The

techniques used for each approach are different and we will describe them separately.

1.1 Introduction - Approach Pre-qualification

In the first approach we implemented a pre-qualifier script to create the potential

speech block segments [27] to label by listening and tagging each one for Deletion or

Retention. After labeling, we extracted raw features: (Formant, Pitch, Intensity) and

created the dataset for classifier training. The best classifiers were chosen to predict

the remediation segments. This part of the research is distinguished from the other

two in the fact that the dataset samples were based on a pre-qualification stage.

With Approach Pre-qualification we ran a script that identified all audio segments

that might consist of blocked utterances where the speaker was unable to produce

intelligible sounds. This pre-qualification was done by identifying segments with two
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low intensity thresholds and four sound durations thresholds [37] to identify those that

match the pre-qualification criteria. Multi threshold abnormal segment extraction

offered an interesting way to look at the same recordings from different perspectives.

We designated speeches with manually labeled segments as the Gold Standard and

set out to train various classifiers for high accuracy performance. The results we

attained with our segment labeling were encouraging.

We used the linguistic tool Praat to identify the segments of speech with the po-

tential to be blocked speech episodes. The feature engineering work and the segment

labeling components were developed with Python NumPy, and, in this approach,

the Classifier training and prediction were developed in R.

After iterative adjustment of the block segments extraction intensity and dura-

tion we identified the optimal intensity and duration ranges of the blocks candidate

segments extraction.

To avoid removing speech snippets by error, we introduced a filter based on a

trained classifier to separate the truly blocked speech segments marked for deletion

from the falsely identified candidate segments.

In addition to training our classifier, the labeling results were used to confirm

that deleting block sound segments improves the overall recording quality with no

unwanted side effects.

By eliminating the segments that were labeled as blocks i.e. Positive we reached

substantially better speeches which were nearly void of block stutters.

Recordings remedied according to manual labels (ground truth) were considered

the Gold Standard ; and subsequently repaired speeches would be compared to the
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Gold Standard.

To train the classifier for automatic block detection and then speech remediation,

we analyzed the speech segments and created multiple vectors for statistical analysis.

Our decision to select the right sound parameters i.e. formants, pitch and intensity

with statistical analysis values was based on visual examination of these parameters

for blocked and non-blocked segments. By extension, we observed that the varia-

tions between consecutive analysis vector values would be material to the classifiers’

performance and chose to introduce derivative vectors and their statistics.

1.2 Introduction - Approach Random-sampling

Approach Pre-qualification yielded encouraging results but we chose to explore

other approaches for two reasons:

(1) As we considered more complex disfluency types such as speech interjection [12]

the difficulty of building the rules-based pre-qualifier would be challenging because

it is not evident how one would design such rules for other speech disfluencies. Such

pre-detection systems can become arbitrarily complex. Without a list of potentially

disfluent segments the Approach Pre-qualification solution would not work, it would

have no manual labeling list of segments to work from.

(2) Secondly, we wished to scan a recording with a classifier and score all contained

speech segments. Approach Pre-qualification would proved ineffective for a slid-

ing window application because the process is dependent on a limited pre-qualified

samples universe for training.

The Approach Pre-qualification classifiers are trained on a reduced sample set of
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near disfluent segments, whereas Approach Random-sampling is designed to bypass

this limitation through an all inclusive random segment sampling.

Note that the terms “samples” and “sampling” in this document refer to the speech

segments selection for model training and rarely to the digital signal processing (DSP)

sampling process.

To accomplish the desired outcome for this new Approach Random-sampling, the

labeling mechanism was modified to eliminate the need for the preprocessing stage.

The new approach will be able to tackle new types of speech quality detection

easily, since research can be undertaken with a single scoring stage without the pre-

processing requirements and no multi-component dependency.

Approach Random-sampling, allows the creation of a training dataset samples

which do not require the pre-qualification function, they will be based on random

segment extraction and manual labeling with a simple training dataset creation pro-

cess.

Although Approach Random-sampling simplified the creation of the pool of seg-

ments for the label creation process, the labeling process became more complex. The

additional labeling effort stemmed from the fact that the labeler has to review a larger

selection of segments because many of the randomly selected segments might not be

easy to tag as normal or disfluent - they would be tagged as undetermined there-

fore dismissed. Unlike Approach Pre-qualification nearly half the random sample

segments were labeled undetermined.

To address this difficulty in the labeling process we developed a new technique

which isolated the block and normal utterances in separate recordings which contain
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only one class or the other.

With Approach Random-sampling we successfully deployed a sliding window clas-

sifier.

1.3 Introduction - Approach Spectral-analysis

As we expanded the scope of our disfluency types detection and remediation from

speech blocks to interjections our classification requirements became more complex.

Detecting speech interjections could not be performed with the statistical aggrega-

tion of formants, pitch and intensity vectors. The interjection detection challenge

with Approach Pre-qualification and Approach Random-sampling features neces-

sitated that we explore new data features and classifier algorithms. The new data

features we put to the test were spectral analysis results. The new features would

be two dimensional matrices with time in the x-dimension and frequency for the

y-dimension.

We used three different types of spectral analysis data: Spectrograms, cochleagrams

and Melspectrograms. The statistical aggregations were no longer necessary because

we used neural network classifiers designed for two dimensional matrix analysis. To

analyze the new data we began with Deep Neural Network classifiers and quickly

moved to (CNN ). We experimented with multiple CNN models.

We trained and tested a number of CNN models on each of the three types of

spectral analysis data; the neural networks we used were inspired by LeNet [29, 24],

AlexNet and VGG CNN models. The performance of the spectrogram types and

CNN models are presented later in this work.
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Due to the nature of interjections which we intended to remove from a record-

ing, which are surrounded with “silent” pauses, it proved practical to segment our

recordings into “silent” and “sounding” utterances. To create our data sets we used

the technique where two types of recordings are created, one with a series of inter-

jections with brief pauses in between and the other with the original recording minus

the interjections and pauses in between. This approach allowed us to expand the

positive and negative data pools we used to create our training datasets.

After trying various CNN models and feature types we were able to identify the

best spectral data type/CNN classifier model combinations which were implemented

and used for speech remediation on new speaker speeches. The results showed sub-

stantial improvements over Approach Pre-qualification and Approach Random-

sampling features repaired and original recordings. In order to further improve our

classifier performance, we manually cleaned the resulting interjection free and in-

terjection subsets to supplement and enhance the training datasets.

This iterative training/testing dataset expansion based on ground truth data feed-

back proved useful in improving the performance of the re-trained classifiers.

In the future, additional experimentation should be performed where the remedi-

ation process goes beyond simple segment deletion. One option we find particularly

interesting is the possibility of speech remediation via spectrogram matrix manipula-

tion.



CHAPTER 2: LITERATURE REVIEW

Disfluency detection is a multidisciplinary exercise which encompasses linguistics,

DSP and computer science; more specifically machine learning. In this section, we

discuss the general direction of speech disfluency detection evolution with prosodic

and textual data, and with regards to the signal analysis techniques and features

extraction.

Different classification algorithms and parametrization are used in disfluency detec-

tion along with multiple speech analysis techniques for stutter detection and various

speech corpora are used by researchers.

Our ability to digitally sample speeches with increasing feature sophistication and

the advent of algorithms capable of classifying speech snippets have fueled consider-

able research in the area of voice recognition and other related exploration.

Speech segments have been analyzed and classified with a wide range of classifier al-

gorithms such as Random Forest, Adaptive boosting, HMM (Hidden Markov Model),

ANN (Artificial Neural Network), SVM (Support Vector Machine), LDA (Linear Dis-

criminate Analysis). Since the resurgence of Deep Neural Network (DNN ), we have

seen considerable reliance on DNN in speech analysis research especially (CNN)

[11, 30, 1].

For stutter detection various types off speech analysis such as LPC, MFCC, Pitch,
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Intensity and spectrograms of different types have been used.

2.1 Disfluency Detection Approaches

2.1.1 Prosodic vs Lexical

Disfluencies in speech can be recognized based on a speech’s textual content [18,

34, 39] or prosodic features [10, 20, 26].

Lexical features are based on the textual content of the speech. Lexical or syntac-

tic research attempts to identify disfluency by analyzing the semantic content of a

sentence, word, phoneme repetition and interjections and breaking down a speech

into its textual parts.

Prosodic features which consist of intonation, acoustic, pitch and intensity aspects

of a speech tend to be of special interest because they enrich one’s ability to convey

the intended sentiment, meaning and context, they also mark sentence and paragraph

boundaries.

In prosodic detection of disfluency, the acoustic nature of the speech is considered

the primary cue to detect the presence of disfluency within an utterance.

In the literature, we find research performed on both data types, lexical and

prosodic. Many papers discuss the advantages of using both simultaneously but few

stress the value of the lexical approach without prosodic cues [34].

Prosodic analysis for disfluency classification is performed by extracting and clas-

sifying speech segments through acoustic features such as formants, pitch, intensity,

spectral components such as MFCC, Cochleagram [8, 35] and spectrograms [20] .

From the perspective of applications, the lexical analysis of a speech is best suited
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for content recognition and the prosodic analysis of speech is used for the softer

qualities of speech such as:

• Structural tagging such as finding sentence boundaries.

• Paralinguistic tagging used for classifying dialog acts and emotions identification

• Speaker recognition

Although disfluencies like interjections, and hesitation are lexically identifiable

from a correct word transcription, in the absence of accurate speech recognition,

prosodic disfluency detection is necessary [32] for adequate results.

The body of literature tends to consistently lean in favor of analyzing prosodic

speech features to detect disfluencies.

The following is a sampling of claims and quotes by a number of authors in support

of the prosodic approach:

• Recognizing the lexical aspect of disfluency is critical to speech recognition [27]

• Although disfluencies like interjections, and hesitation are lexically identifiable

from a correct word transcription, in the absence of correct word transcription

or speech recognition, prosodic disfluency detection is necessary [32]

• The prosodic approach is immune to speech recognition errors when detecting

disfluencies [13]

• Prosodic disfluency detection takes durations of pauses and interjections into

consideration, such features enhance our ability to determine whether an inter-

jection or pause are present in a speech
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• Prosodic speech analysis takes into consideration a much larger range of features

than semantic analysis and provides a richer understanding of speech.

2.2 Speech Signal Processing

Speech disfluency detection, like all other voice recording analysis, is based on DSP

where the speech signal is captured at a sampling rate high enough to maintain good

sound quality. A discussion of DSP is beyond the scope of this dissertation but we

list a few commonly used DSP features:

MFCC or Mel-frequency cepstral coefficients are values that collectively make up a

vector derived from the deconstruction and reconstruction of a sound signal according

to frequency bands which approximates the human auditory system’s response.

The cepstrum of a signal is defined as the squared magnitude of the inverse Fourier

transform of the logarithm of the squared magnitude from the Fourier transform of

a signal.

In the area of disfluency detection, the MFCC information is utilized in a manner

which highlights other aspects of an utterance such as the correlation between MFCC

contents of time frames and the MFCC vectors standard deviation among other

extracted features.

In the case of prosodic detection of disfluency, the MFCC is frequently used in

conjunction with other acoustic non-spectral features. MFCC is one of the more

commonly encountered features in speech recognition and disfluency detection [2, 5].

Linear predictive coding (LPC) is a method used to compress the spectral infor-

mation for efficient storage or transmission. The basic idea is the source-filter model
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where the source signal produced by the oscillation of the vocal folds is modified by

the resonances determined from the morphology of the vocal tract and oral or nasal

vocal cavities. This morphology acts as a filter on the signal.

LPC analysis estimates the vocal tract resonances from a signal’s waveform; one

gets information about the resonance features of the filtering vocal tract and cavities.

The LPC produces the formants which make up an utterance [2, 6, 28].

Pitch perception considers the fundamental frequency that is the lowest divisor on

the frequencies contained in a sound [7, 22, 23]. In [43] the authors provide a num-

ber of pitch-related/derived feature extraction methods, where pitch is stylized and

manipulated to extract information such as pitch regression coefficient (PRC), pitch

modulation variance (PMV), relative pitch ratio (RPR), etc. These pitch extractions

are then used in the classifier to distinguish fluent from non-fluent speech segments

[43].

Intensity/Energy: Sound intensity is the amplitude measurement of sound. The

bigger the sound oscillations the higher the intensity. In fact, the intensity corresponds

to the absolute integral under the sound wave.

Spectrograms are time-frequency intensity display representations of a sound fre-

quencies spectrum taken at short sound time windows. Spectrograms are also referred

to as Sonograms, A spectrogram is computed by dividing the signal into equal over-

lapping chunks and computing the frequency content for each [36].

Cochleagrams are variations of the spectrogram. It utilizes a gammatone filter and

has been shown to better reveal spectral information. It is an auditory spectrogram

where the frequencies are represented according to the human hearing sensitivity by
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mimicking the components of the inner and middle ear where the sound signal is

broken up into different frequencies which are naturally selected by the cochlea and

hair cells [4].

Melspectrograms are similar to spectrograms except for the frequency bands which

are equally spaced on a scale based on a discreet cosine transform of a log power

spectrum on a nonlinear mel scale of frequency which approximates the human au-

ditory system’s response more closely than the linearly-spaced frequency bands used

in the normal cepstrum. This frequency warping can allow for better representation

of sound.

Parameterization: The DSP features used in disfluency detection consist of spectral

time frame analysis computed over certain frame lengths; for example, one could

compute the frequency domain representation of a 10 millisecond speech time frame

or a 20 millisecond time frame. Time-frame windows are generally overlapped when

stepping from one time frame to the next. The time frame length and overlap, or

hop size, are also parameters which are explored in the literature. Depending on the

type of classification the time frame length and overlap between time frames as well

as the window shape (Bartlett, Hamming etc) have a direct impact on classification

algorithms performance. The optimal parameters tend to vary by disfluency type e.g.

block, interjection , repetition and prolongation.

2.3 Disfluency Classification Algorithms

A number of classification algorithms have been applied to stuttering detection with

varying performance results. The following is a non-exhaustive list of the algorithms
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in the literature.

Hidden Markov Model or (HMM) is a stochastic approach used to recognize pat-

terns in an input signal [46]. HMM is an important algorithm in speech recognition

theory where the speech signal pattern is recognized in order to determine phonemes

and words. HMM is a common classifier used for the reliable detection of speech dis-

fluency [5] with prosodic as well as textual features [31]. In [45] the authors describe

the use of the HTK (Hidden Markov Model Toolkit) for phoneme repetition detec-

tion. In [32], the authors attempted to qualify sentence boundaries, filler words, and

disfluencies with HMM. [38] is a seminal paper that provides extensive explanation

of HMM as it relates to speech recognition.

Artificial Neural Networks or (ANN) are an attempt to simulate the network of

neurons that make up a human brain so that the computer will be able to learn things

and make decisions in a human like manner, it is a network inspired by the human

biological neural networks and used to approximate unknown functions which depend

on a large number of inputs.

Support Vector Machine or (SVM) is a machine learning algorithm which is widely

used in pattern recognition. In SVM classification optimization attempts to obtain a

good separating hyper-plane between two classes in high dimensional spaces [5]. The

main concept of the SVM classifier design is the notion of a margin which separates

classes in hyper planes. In [3] the authors use SVM to classify pathological voice

disorders using a number of voice extracted features.

Decision trees construct a flowchart-like structure in which each internal node rep-

resents a test on an attribute, each branch represents the outcome of a test and each
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leaf node represents a class label. In the area of disfluency detection, decision trees

are commonly used with prosodic speech features [32, 33, 22, 23, 34].

Gradient boosting Machine or (GBM) is a machine learning technique for regression

and classification problems, which produces a prediction model in the form of an

ensemble of weak prediction models which are combined into a single strong learner

in an iterative fashion [9].

Random forests are an ensemble learning method for classification that construct a

multitude of decision trees at training time and outputting the class that is the mode

of the classes (classification) or mean prediction (regression) of the individual trees.

Random forest classifiers address decision trees tendency to over-fit to the training

set. Random forests are a way of averaging multiple deep decision trees, trained

on different parts of the same training set, with the goal of reducing the variance

typically introduced by single trees.

Linear Discriminant Analysis or (LDA) is a generalization of the Fisher’s linear

discriminant and is a method used in statistics, pattern recognition and machine

learning to find a linear combination of features that better separates two or more

classes of objects. LDA estimates the relative strength of detection features and is a

frequently used algorithm for the detection of speech disfluency [2, 6, 13] .

k-Nearest Neighbors (kNN) is a non-parametric algorithm used for classification.

In kNN the minimum distance between query instance and each of K training set

samples is calculated to determine the proper class based on distance proximity. We

encounter kNN frequently in stutter detection research [2, 6].
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2.4 Speech Corpora

A number of readily available speech corpora are used in the field of disfluency

detection:

Switchboard: Switchboard is a collection of almost 2,400 two-sided telephone

conversations among 543 speakers (302 male, 241 female) from all areas of the United

States.

Verbmobil: Verbmobil was a long-term interdisciplinary Language Technology,

especially in the Machine Translation, research project to develop a system that

could recognize, translate and produce natural utterances.

UCLASS: UCLASS [21] consists of speech recordings collected at the University

College London. These recordings are from children referred to clinics in London

for stuttering assessment. The recordings and annotations are available in software

formats widely used for language and speech analysis such as CHILDES, Praat, and

SFS.



CHAPTER 3: APPROACH PRE-QUALIFICATION

3.1 Approach Pre-qualification

To develop a system capable of analyzing stuttered speeches for identifying seg-

ments of speech which can be removed and enhance recording quality we used the

UCLASS recordings which consist of over 100 stuttered speech sound files by young

stuttering speakers.

There exist multiple types of stutter disfluency types: speech block, interjection ,

prolongation and hesitation, we chose to detect and remedy two types of stutter

disfluencies: Speech blocks and speech interjections.

During this approach, a Praat script extracted our segments, Python with Jupyter

Notebook was our data manipulation environment with heavy reliance on Numpy and

Pandas libraries and R provided all machine learning packages and integration.

Figure 1 shows the entire Approach Pre-qualification Process Flow.
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Figure 1: Approach Pre-qualification - Process

3.1.1 Approach Pre-qualification - Segment Extraction

During Approach Pre-qualification we implemented a Praat pre-qualifier script

which created the candidate speech block segments [27] which were selected for their

blocks similarity.

The blocked speech segment candidates were created by a script designed to detect

silent segments that identify weak segments within a certain intensity range.

To identify episodes with medium to high likelihood of blocked utterances we re-

viewed the pre-qualification results of various speech volumes and determined the
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sound intensity thresholds above which a speech would not qualify as a blocked speech

and adjusted the script to extract segments within those threshold boundaries [42].

We used 90% and 95% decibels of the entire speech overall volume as thresholds.

The second parameter of the extraction script was the minimum segment duration

threshold because deleting excessively short durations of a natural speech deterio-

rated overall speech quality. This was confirmed as we listened to remedied speeches

following the removal of varying lengths segments and observed the overall effect

of segments’ removal by duration. Deleting segments of shorter duration than 0.6

seconds disrupted speech cadence and proved counter productive thus the minimum

threshold of 0.6 seconds [41]. Similarly, through trial and error, we determined an

upper limit threshold duration of 1.2 seconds.

We visually reviewed the graphical characteristics of numerous signal analysis

charts to decide which types of analysis detect speech blocks best. This approach

proved adequate to decide which signal analysis we should consider for classification,

and segment removal.

The pre-qualification stage provided us the full set of segments from which we

created our training and later the testing dataset. Each pre-qualification scan was

focused on amaximum intensity andminimum duration threshold combination. With

two intensities and four minimum duration thresholds we scanned the recording eight

times and generated 8 candidate segment sets which would be combined for manual

labeling and model training.

In Table 1 we show how the lower threshold (90% of average) resulted in approxi-

mately 10% less disfluent candidate segments.
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As stated earlier, we used two different thresholds for the sound intensity. The

lower threshold (90% of average) resulted in less undesired candidates (Table 1) but

most of the undesired candidates extracted using the lower threshold were actually

true undesired, there were many instances where stutter segments were not detected

due to the low threshold level. On the other hand, the higher threshold (95%) re-

sulted in a higher number of potentially undesired segments, some of which were false

undesired; however, most of the stuttered segments were detected in the first phase.

Therefore, the value of the second phase (classifier scoring), which identifies true un-

desired and false undesired from potentially un-desired segments, is most useful when

the threshold is high, and most of the actual stutter segments are detected, even if

that meant falsely pre-qualifying segments as potentially undesired.

As stated above the classification is most meaningful and effective when the in-

tensity threshold is high because the elevated threshold included more borderline

segments and we relegated the task of distinguishing between the disfluent and non-

disfluent episodes to the classifier.

The second threshold type we used during pre-qualification was the minimum time

duration. The minimum segment length started with 0.6 seconds to 1.2 seconds with

a 0.2 second jumps.

We have subsequently added a voting component to this system of remediation

which helped enhance the usability of the system.

The varying thresholds approach can be likened to examining speech segment from

multiple perspectives in order to acquire a fuller view of the object.

Once the segments are identified, we need classifiers to tag them for deletion or re-
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Table 1: Segment count by duration/intensity thresholds

90% of speech avg
sound volume thresh-
old

95% of speech avg
sound volume thresh-
old

0.6 seconds 195 211
0.8 seconds 149 159
1.0 seconds 114 130
1.2 seconds 83 93

tention. From a classification training and prediction perspective, every segment will

be represented by a tuple to be classified for removal or retention. Every tuple must

contain a set of features and our dataset will consist of a sample segment identifier

followed by predictors deemed important for the removal or retention decision of a

segment. With reliance on prior work in this domain, and, after experimentation we

decided to analyze, and base Approach Pre-qualification, on: Formants, Pitch and

Intensity.

Fifteen speeches (one hour of stuttered speech) which were chosen for their high

block content, were selected from the UCLASS repository and scanned with 8 thresh-

old combinations each. The minimum duration thresholds were 0.6, 0.8, 1.0 and 1.2

seconds, and the speech average intensity thresholds 95% and 90% of the recording

intensity in decibels; i.e. for an average speech intensity of 50.0 decibels, the intensity

thresholds would be 47.5 dB SPL and 45 dB SPL respectively (see Algorithm 1)

Algorithm 1 Extract candidate segments
procedure Praat Segment Extraction and analysis(segments, vectors) . Acquire and analyze candidate
segments

fileName← designatedfilename
for <all duration thresholds> do . Acquire candidate segments

for <all intensity thresholds> do
scan entire speech
extract criteria fitting segments

end for
end for

end procedure . Complete segment extraction
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The entire speech was pre-processed and the potentially undesired candidates were

detected according to the threshold combination pairs.

3.1.2 Approach Pre-qualification - Segment Analysis

The classifier training features consisted of Formant, Pitch, Intensity vectors sta-

tistical summaries. Figure 2 shows a sound signal with the formants, pitch and

derivative values.

Sound signal

Pitch (note that 
pitch units scale 
interferes with 
signal in time 
domain)

Intensity
Formant 2

Formant 1

Formant 3

Figure 2: justification=centering

Up to this point our analysis has created .wav files and the raw feature vector

files and derivative vector files. The .wav files represent the samples considered for

removal and the statistical data are the model training predictors.

With Praat, one could compute up to 6 formants through Formant analysis but,
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because of the low consistency and availability of formants 4, 5, 6 we limited our

research to formants 1, 2, 3.

The formants were computed with a 50 ms Gaussian analysis window and a 12.5

ms offset [14, 17]. We additionally generated Pitch and Intensity analysis. The

Pitch values were taken at 10ms interval and computed with the Praat script which

performs an acoustic periodicity detection on the basis of an accurate auto-correlation

method [5].

The intensity values were computed by squaring then multiplying the sound values

within a Gaussian analysis window of 50 ms length.

Algorithm 2 shows a pseudo code of the Format, Pitch, Intensity extraction

Algorithm 2 Extract Segment Parameters
procedure Praat Segment analysis(segments, vectors) . Analyze candidate segments

fileName← designatedfilename
Select Formants analysis frame length and hop size
for <all extracted segments> do . Analyze segments

Perform Formants 1,2,3 analysis
Save Formants (1,2,3) vectors

end for
Select Pitch analysis frame length and hop size
for <all extracted segments> do . Analyze segments

Perform Pitch analysis
Save Pitch vector

end for
Select Intensity analysis frame length and hop size
for <all extracted segments> do . Analyze segments

Perform Intensity analysis
Save Intensity vector

end for
return All analysis vectors

end procedure . Complete segments analysis

Figure 3 shows the process we used to reach the best segment signal analysis types

(Formants, Pitch, Intensity) for each segment.
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Figure 3: Segment Features Determination Process Flow

3.1.3 Approach Pre-qualification - Segment Statistics

The pitch analysis generated one file per segment; this also was statistically ana-

lyzed to create additional features.

Each extracted candidate segment was analyzed by a raw feature analysis Praat

script designed to extract the Formants, Pitch and Intensity each of which is recog-

nized as a strong factor while determining the presence of speech disfluency.

All three analysis formant (F), pitch (P) and intensity (I) generated separate files

to be later fetched and statistically analyzed as our predictor features. We split the

formants file into three separate vector files F1, F2, F3.

Up to this point we had five vectors to extract statistical summaries from. The five

vectors formant 1 (F1 ), formant 2 (F2 ), formant 3 (F3 ), pitch (P), and intensity (I )

consisted of a sequential list of measurements for each of the five analysis vectors.

As we visually reviewed the raw features the blocked speech segments exhibited

erratic jumpiness. To capture this signal jitter which is characteristic of blocks we

introduced the derivative vector for each of the five foundational raw analysis features,

and ended with a total of ten vectors for statistical analysis: F1, F2, F3, P, I and

derivative vectors F1d, F2d, F3d, Pd and Id.
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We conducted manual graphical reviews of the candidate speech segments to de-

velop a qualitative understanding of important characteristics in five vectors.

Time base plots of formants, pitch and intensity helped determine the best ways to

recognize the distinguishing behaviors from the signal analysis vector; we settled on

the following: Average, median, Standard Deviation, 25 Percentile, 50 Percentile

and 75 Percentile, Vector minimum, Vector maximum, Peak-to-peak Amplitude,

and Variance.

The signal analysis vectors associated with each candidate segment vector were

between 50-200 scalars for the formants, 60-240 for the pitch and 70-300 for the

intensity. The statistical analysis were performed with the Numpy library and shown

in Algorithm 3.

Algorithm 3 Compute statistical summaries of all segment vectors
procedure Python Feature development(Dataset) . Create features dataset

fileName← designatedfilename
for <all formants (1,2,3) vector files> do

Fetch formant vector files into lists
Build formant derivative lists(3)

end for
for <all pitch vector files> do . look at all pitch vector files

Fetch pitch vector file into list
From pitch list build pitch derivative list

end for
for <all intensity vector files> do . look at all pitch vector files

Fetch intensity vector file into list
From intensity list build pitch derivative list

end for
for <All segments DSP and derivative vectors> do

build list of averages
build list of medians
build list of standard deviations
build list of percentiles 25, 50, 75
build list of maximums
build list of minimums
build list of peak to peaks
build list of variances

end for
Merge all lists into one list (Features)
Fetch all UCLASS metadata into one list (Metadata)
Fetch all Segments sample ids as one list (Support)
Concatenate Metadata, Features and labels into one training dataset)
return All analysis vectors

end procedure . Complete the feature dataset build
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Figure 4: Dataset Features Determination

Figure 4 highlights the process steps we followed to develop the statistical aggre-

gation types.

The UCLASS corpus provides speech and speaker information. For Approach Pre-

qualification we supplemented our dataset columns with these UCLASS metadata

information as they became additional predictors. The UCLASS speaker and speech

information consisted of the following features:

Speaker Information: (1) Gender (M/F), (2) Handedness (L, R, not known), (3)

Past history of stuttering in the family, (4) Age of stuttering onset and (5) Age at

the time of recording

Speech Information: (1) Location where recording was made (clinic, UCL, or

home), (2) Recording conditions (quiet room or sound-treated room), (3) Type of

therapy received (family based treatment or holistic treatment), (4) Time between

therapy and recording time, (5) Speaker had any history of hearing problems (Y/N),

(6) Speaker had a history of language problems (Y/N), and (7) Special educational

needs (Y/N).

For the remainder of this document we will refer to speech and speaker data as

metadata. Periodically we will discuss their potential role in the current research.
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3.1.4 Approach Pre-qualification - Labeling

Up to this point, our research is predicated on the assumption that the candidate

segments the Praat script extracted would be manually reviewed and labeled to con-

firm the speech improvement from removing those stuttered blocks. If our hypothesis

is proven correct and removing block segments yields better recording quality, then we

have justification to proceed and automate the scoring process followed by selective

segment removal accordingly.

Algorithm 4 shows the iterations of removing segments from a speech

Algorithm 4 Remove all bad segments
procedure Speech minus one segment(Speech Id,Start time, End time)

remove per start, end times
end procedure . Complete speech minus one segment
dataset← desireddataset
sort bad segments file in decreasing end of segment order
for <all items in dataset, starting at end of speech file> do . scan from end to start

if <not contained in previously removed segment> then
remove segment
save sound

end if
end for

Throughout our extraction efforts the segments were not labeled. To label the

speech segments, we created a program to sequentially playback the audio files.

As the segment files were played back each sound was labeled by the user according

to the following criteria:

1) Delete and train (G): This label indicates that the .wav file is void of semantic

meaning and the remediation program must delete it; accordingly we wish to train

our classifier to recognize such segments as positive and mark them for removal (see

Algorithm 5).

2) Retain the segment in the speech and use it for training (B): This
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label is used for audio sounds which where block candidates for their low intensity

and long enough duration, yet they contain semantic meaning and therefore must

not be removed from the original speech, and our classifier should learn to label such

segments as negative e.g. retain them in the speech.

3) Delete the sound from the speech but do not use it for training (D):

This label indicates that a segment should be deleted from the dataset because our

trained model classifier must not learn its features as either positive or negative. An

example of a D label is a segment of the interviewer’s soft voice which is not stuttered.

We chose to exclude these segments from the speech during cleanup because they

showed no speech disfluency, so we refrained from including them in the training

dataset. These segments were not frequent and mainly of limited consequence on the

overall process.

4) Ignore the segment, leave it in the speech and exclude it from the

training dataset (I ): This label meant that we chose to retain a segment in the

speech but had no intention to analyze it. We elected to bypass the analysis of such

episodes because the block stutter segment disfluency was not pronounced enough

to properly train the classifier; they are border line segments. Training with such

segments would not improve the classifier, but rather confuse it. As in the case of

D tagged segments, these snippets of recording are immaterial to the quality of our

classifier and we left them in the speech.
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Algorithm 5 Listen and label segments
procedure Order Segments(OS Folder, list) . scan folder, create list

segList← Files, Start, End
end procedure . Complete fetching list of all segment files
sort list
for <Items in sorted list> do . Listen and label

if <contained in previous segment> AND <previous segment marked for removal> then
rename segment file with removal label

else
play the segment
accept user label for segment
rename segment file with selected label

end if
end for

3.1.4.1 Approach Pre-qualification - Labeling Optimization

Due to the multi-scan nature of our segment extraction approach, the number of

candidate segments generated is nearly eight fold the segments count from a single

scan because of the eight threshold scans; this makes for a large number of sound

snippets one must review and label individually. To avoid redundant labeling and

minimize the number of segments which must be reviewed, we sorted the list of

segments such that a segment S which is marked for deletion would eliminate the need

to review contained segments and they will all be marked as delete. The prevailing

logic was that if some segment s is void of semantic meaning, then all other segments

contained within s must also be void of semantic meaning.

During the multi-scan pre-qualification, segments identified from various thresh-

olds tended to overlap, see Figure 5 for a visual depiction of the multiple segment

extraction layout.

Note that the opposite is not true, given that some segment s contains some seman-

tic meaning, one must not conclude that segments within it carry semantic meaning.
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Figure 5: Candidate Segment Overlap Illustration

This streamlined labeling approach allowed us to reduce review time by nearly five

fold.

With the labeling options the training and the classification will expect and deliver

two class values: G (positive) and B (negative). The positive class indicates a can-

didate speech segment which must be removed, whereas a negative class means the

segment must remain in the speech.

There are three different courses of action for segments removal, each with different

implication:

1. Remove all candidate segments without additional qualification: This

approach does not require manual labeling, and the only action is to remove

every pre-qualified candidate segment. This limits our ability to distinguish

between truly disfluent candidates and those false candidates i.e. they are not

truly disfluent blocks. With no mechanism to avoid removing false positive

candidates repaired speeches fell short of the intended remediation and had a
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high loss of information due to the semantically valuable segments removal.

This option would not be considered a viable one.

2. Remove only the candidate segments which are manually labeled for

deletion: This approach consisted of deleting all the G and D segments. The

resulting speech is essentially based on the best indicators according to manual

labeling and would yield the best quality of recordings; we will refer to recordings

repaired in this fashion as the Gold Standards. Implementing this option offered

excellent results; no semantically significant recording snippets were removed

and all insignificant portions were deleted. This option requires manual labeling

of each speech prior to remediation and cannot be used for automatic repair due

to the persistent manual labeling requirement.

3. Remove candidate segments determined disfluent by a trained clas-

sifier: The third and only plausible approach was to train classifiers with the

labeled dataset. After successful training and testing of multiple classifiers we

deploy the highest performance model to score segment labels and remove the

candidate segments if true undesired. An accurate classifier makes this approach

the one viable option since it allows the automation of a new speech remediation.

Since Option 2 results helped ensure that the block removal remediation offers the

anticipated improvements we have assurance and motivation to create an automated

system with a trained classifier to perform the block detection and removal process.

As we dismiss Option 1, we use the Option 2 (Gold Standard) speech as the success

measure benchmark of our subsequent work. During the evaluation of Option 3
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the repaired by score speeches are compared to the Gold Standard recording for

confirmation of successful scoring and remediation.

3.1.5 Approach Pre-qualification - Building the Dataset

The second stage of our effort was the classifier training and testing stage to build

a trained model that distinguishes the true undesired from the false undesired candi-

dates.

Even with the 95% intensity and lowest duration thresholds the Praat script thresh-

olds tended to be especially effective and caused a positive class imbalance in the

dataset. After manual labeling of the data, 85 % of our dataset samples were positive

and the remaining negative. To mitigate the impact of the imbalanced class dataset

we considered two class samples balancing techniques:

Sampling based technique: This technique includes two primary methods to

address the imbalanced data problem, and both rely on sampling approach modifica-

tion. The first method uses oversampling minority class tuples thus adding more of

the minority class samples and give them a higher effect on the learning algorithm.

The second approach consists of under-sampling the majority class samples from the

dataset by removing a high proportion of the majority class samples (i.e. eliminate

positive class tuples). This leads the majority class samples to exert a lesser influ-

ence on the machine learning algorithm. We chose the second approach and excluded

many over represented class samples randomly for a near equal distribution of block

and normal samples.

Cost function based technique is where we consider a false positive to be worse
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i.e. more expensive than a false negative and equate a false positive to multiple false

negatives. As stated above we did not experiment with this technique and relied on

the under sampling method to adjust and compensate for the class imbalance.

Throughout Approach Pre-qualification we have presented balanced dataset clas-

sifier performance results. The data balancing we performed limited the block labeled

samples to equal the negative ones and selected all the negative samples then merged

the two class subsets into one balanced dataset.

The training of various classifiers will be based on the dataset described above with

metadata and statistical summaries.

The dataset consisted of (1) the derived statistical analysis predictors (2) the meta-

data and (3) the labels which consisted of the manual review ground truth observa-

tions. With ten statistical analysis per vector and the 12 metadata features plus the

training label, the dataset tuples contained 112 predictors plus the Ground Truth

label (see Algorithm 6).

Algorithm 6 Train a model and predict
Fetch dataset
Clean dataset
Create balanced dataset
Select classifiers of interest
for <all classifier algorithms in list of desired classifiers> do . build and test models

dataset transformation to classifier requirements
build and tune a model
test the model
log and retain model performance

end for
select best performing model
with selected model predict new dataset
export predicted dataset

Figure 6 shows the Approach Pre-qualification data merging process.

With Option 2 Gold Standard and Option 3 classifier enhanced recording as the

basis of our subsequent work, the repaired recordings are examined and compared to
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our Gold Standard audio file.

3.1.6 Approach Pre-qualification - Classifier Training

Figure 7 shows the logical steps leading to the classifier training component and

we provide the pseudo-code in Algorithm 6.

Train	
Classifiers

Extract	
Segments	with	
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candidate	
segment

Extract	
Candidate	
block	

Segments	
Features

Extract	
Segments	
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features	
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for	blocks
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Figure 7: Approach Pre-qualification Classifiers Training Overall Process

With the prepared dataset we trained multiple classifiers in R where libraries for

numerous algorithms are readily available.

In R, classifiers are released by different developers, this leads to wide API vari-

ations. To minimize the impact of API inconsistencies on our work we chose to use

the caret package which offers a common style interface for all supported classifiers.

readily available stuttered speech: 
http://www.uclass.psychol.ucl.ac.uk/ 

Segments Extracted for 
individual speeches Speaker and speech 

information

Each segment 
analyzed (Praat)

Each segment 
analysis (vector) 

statistically analyzed

Segments 
Labeled

Training
Dataset

File	name Gender Handedness Family	History Age	of	onset
Age	at	
recording

Where	
recorded

Recording	
conditions Type	of	therapy

Time	
between	
therapy	
and	
recording

F_0987_1_12y8m_1 F right yes 60 152 Clinic QR H 0
M_0077_1_11y2m_1 M right not	known 36 134 Clinic QR H 0
F_0101_1_10y4m_1 F left no 78 124 Clinic QR F 0
M_0102_1_09y6m_1 M not	known not	known not	known 114 Clinic STR H 0
M_0251_1_15y2m_1 M not	known not	known not	known 182 Clinic QR H 0
M_0394_1_08y10m_1 M right yes 36 106 Clinic QR H 0

File	name Gender Handedness Family	History Age	of	onset
Age	at	
recording

Where	
recorded

Recording	
conditions Type	of	therapy

Time	
between	
therapy	
and	
recording

F_0987_1_12y8m_1 F right yes 60 152 Clinic QR H 0
M_0077_1_11y2m_1 M right not	known 36 134 Clinic QR H 0
F_0101_1_10y4m_1 F left no 78 124 Clinic QR F 0
M_0102_1_09y6m_1 M not	known not	known not	known 114 Clinic STR H 0
M_0251_1_15y2m_1 M not	known not	known not	known 182 Clinic QR H 0
M_0394_1_08y10m_1 M right yes 36 106 Clinic QR H 0

Figure 6: Data Merging
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With the caret classifiers we were able to train and test multiple algorithms with lit-

tle account to their underlying API differences because of the common caret interface

which gives access to the important training hyper-parameters for each algorithm.

With a grid style hyper parameter optimization we created hyper parameter combi-

nations which we iterated through.

Such built-in tuning uniformity simplified experimentation with multiple classifiers

and allowed us to test an ever-larger number of algorithms conveniently.

The scope and range of out of the box caret hyper parameters proved effective

during our search.

With the large selection of classifiers one could choose from, we tried two or more

classifiers from each category: Decision tree, SVM, neural network, and meta algo-

rithms.

After training multiple algorithms from each category, we chose the better per-

forming classifiers; those classifiers formed the basis for Approach Pre-qualification.

Consequently the classifiers we continued to train and test after a first round of test-

ing were: C5.0, NNet, Recursive Partitioning, Random Forests, Polynomial SVM,

and AdaBoost.

In the following remedy improvement discussion, we will use the classifier prediction

confusion matrix results as in Table 2 and derived measurements to help frame the

proposed solution.
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Table 2: Confusion Matrix

Prediction Outcome

p n

Actual Value
p’ TruePositive FalseNegative

n’ FalsePositive TrueNegative

The confusion matrix Table 2 provides general measurements which apply to classi-

fication prediction models. We will describe the confusion matrix and measurements

as they relate to our proposed remediation environment.

In Table 2 the prediction outcome corresponds to the segment evaluation in our

classification, column p represents a positive scores which means that a sound episode

extracted during pre-qualification as candidate for removal is scored as a blocked

utterance segment and must, accordingly be removed from the speech.

The n column in the Table 2 confusion matrix represents a candidate for deletion

which is scored false because of lexical content. The classifier score implies that it

must be retained in the recording.

Column p represents samples a classifier scores as blocks and must be removed.

Actual Value rows show the results obtained from manual segment labeling. Manual

labeling or Ground Truth are assumed to provide the most accurate results we can

obtain.

The p’ row represents an pre-qualified segment manually labeled as blocked and

according to the listener contained no lexical meaning. With a perfect candidate
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extraction system, all p’ segments would be predicted as p’ (positive) by our classi-

fier(s) and consequently removed.

The n’ row represents speech candidates presented for removal consideration but

when manually reviewed the listener/labeler determined that the segments contain

lexically meaningful content and should be retained in the speech.

The confusion matrix is represented by four cells: True Positive, False Positive,

False Negative, True Negative at the intersection of actuals and predictions.

The True Positive cell represents the number of candidate segments manually re-

viewed and determined to be of no value to the speech and scored by the classifier

model as “bad”, lexically void, segments. This is a case where both the Ground Truth

values and the classifier predictions agree.

True Negative represents the number of segments labeled as lexically meaningful,

hence they should be retained, and consistently classified as semantically relevant by

the trained model. This also is a prediction outcome that agrees with the Ground

Truth of the segment.

The True Positive and True Negative cells represent accurate classifier outcomes;

if all our samples fell in these two categories our classifier would be perfect with an

accuracy of 100%.

A False Negative, means that the segment is manually labeled devoid of lexical

meaning (e.g. Positive) but the trained classifier was not able to detect that and

assigned it a class of non-block, to be retained in the recording with no repair to

be performed. This is a case of mistaken classification by the model and a required

repair is missed.
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The False Positive classifications occur when the manual, accurate, label indicates

that the candidate segment is a negative segment implying that it contains semantic

meaning, yet the score indicates that the segment should be deleted and S portion of

good speech will be deleted. The False Positive cells count represents the total number

of samples that fell in that category at time of prediction. These False classifications

cause a loss of speech semantic content.

The False Negative and False Positive cells in the confusion matrix represent pre-

dictions for we wish to minimize and improve the effectiveness of the remediation..

False Positive conditions lead to speech content compromise due to removal of

speech parts which contain semantic information. False Positive mistakes are detri-

mental to the message and must be avoided if possible, albeit at a price.

Avoiding a False Positive means that we will incur additional False Negatives; it

is a trade off because the classifier is generally tuned to minimize the total number

of misclassification thus maximizing accuracy. One can assume that further tuning

the classifier to minimize the total number of False Positives would result in adding

proportionately more False Negatives.

Speech repair quality is not strictly dependent on accuracy, the results must max-

imize speech quality thus the need for remedy optimization.

Our remedy optimization ensures that little meaning loss is incurred by the process.

To this end, we remained cognizant that meaning loss is more “detrimental” to the

message conveyed by a recording than the inconvenience of hearing unnecessary blocks

of speech.

Therefore, we explored the available options to help with a remediation process
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which causes minimal cognitive meaning compromise. The level of tolerance to col-

lateral lexical loss incurred from our remediation approach and attempts to improve

a message prosodic quality were carefully considered.

Deciding our level of tolerance for lexical loss is of central importance to the record-

ing repair. How many bad episodes are we willing to leave in a recording to avoid

losing a good segment is an essential question when repairing a speech. Namely, how

many false negatives are we be willing incur in order to avoid one False Positive.

To realize our tolerance for False positives, we consider the False Positive Rate

(FPR), False Negative Rate (FNR) and Accuracy. False Positive Rate (FPR) repre-

sents the percentage of Negative samples that were classified positively as a percentage

of the total number of Negative samples.

Although our accuracy was negatively affected by this component, the results of

this experimentation proved effective in reducing False Positives.

The lower our FPR, the lesser mistakes our classifier would have made in classifying

segments for removal when they should be retained. Therefore, we would like the

FPR to be as low as possible; and since we would like to compare our measures to the

accuracy which ranges between 0 and 100%, we will consider Specificity SPC instead

of FPR, SPC=1-FPR. When working with SPC we would aim to maximize SPC to

a high value near 100%.

Also, we consider the False Negative Rate FNR. FNR is the percentage of samples

classified as negative when the actual class is Positive; these are segments that must

be deleted, however our classifier has classified them for retention. Such mistakes are

not as damaging to the speech and will have a lower priority and lower cost. We
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would be willing to trade multiple False Negatives for one False Positive. For ease of

comparison with Accuracy and Specificity, we will be considering the True Positive

Rate TPR = 1 - FNR.

There are multiple ways to perform classifications that tilt the balance in favor of

more False Negatives than False Positives (or the opposite).

1. Cost based training: This method of tilting the classifier in favor of lower false

positives is accomplished by training individual classifiers with higher penalties

on False Positives (FP) than False Negatives (FN) thus creating models which

are less prone to FPs.

2. Sampling technique: This method consists of inflating the number of positive

samples in the training sets by repeating positive samples in our dataset, thereby

resulting in a higher count of Positive samples and implicitly tilting the classifier

towards less FPs. This approach, also, creates classifier models with relatively

less FPs and more FNs.

3. Probability cutoff : This technique adjusts the probability threshold for clas-

sifier models to favor minimizing False Positives as opposed to being optimized

to minimize both FNs and FPs combined.

4. Voting consensus: Voting based consensus relies on multiple independent

classifiers and the use of a percentage of positive classifier scores to negative

scores in order to determine a final score.

During Model evaluation we tuned and trained multiple classifiers which performed
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well, we chose to use this abundance of trained classifiers, total of 14, in a voting

scheme. To implement the fourth technique we experimented with a voting mecha-

nism that utilized all 14 classifier results to reach an optimal FPR.

In this case, we varied the percentage of votes threshold to decide whether a segment

should be classified Positive or Negative, i.e. Delete or Retain. In preparation of the

results batch data, we averaged the classes from all classifiers and varied the decision

cutoff threshold to determine a final class for each sample.

For this experimentation, we used the models that were trained and tuned with

the ‘caret’ package with a balanced dataset described in prior sections. The models’

results were combined with the actual label which consists of 15 columns; the one

manual label and the 14 classifiers results.

We used the resulting table of 15 columns to evaluate the impact of changing the

voting threshold on the Specificity (SPC), True Positive Rate (TPR) and Accuracy.

As previously stated, because false positives are especially detrimental to the reme-

diation process, we wanted to maximize the specificity (SPC) while maintaining an

acceptable Accuracy and TPR levels. To make FP’s less frequent, we intuitively

expected that the higher the positive vote threshold we impose on the votes-based

classifier, the less FPs (e.g. High SPC) we will get.

As shown in Figure 8 we varied the voting threshold (Θ) to range from 14/14

(100%) down to 1/14 (7.14%), where Θ denotes the number of classifiers needed to

classify a segment S as Positive. This means that if Θ is set to 14/14 (leftmost row

in Table 3), the audio segment will be classified as Positive if all 14 classifiers vote

Positive; if set to 13/14 (92.9%)the audio segment will be classified as Positive when
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13 or more classifiers vote Positive etc..

In addition to True Positive, True Negative, False Positive, and False Negative

totals, we measured the Accuracy rate, Specificity, and TPR corresponding to each of

the 14 voting threshold results. As shown in Table 3 higher thresholds lead to lower

false positives.

Table 3: Approach Pre-qualification Results by Voting Thresholds

Vote Θ TP TN FP FN Accu SPC

(1-FPR)

TPR

(1-FNR)

14/14 1601 198 1 121 93.65% 99.50% 92.97%

13/14 1679 193 6 43 97.45% 96.98% 97.50%

12/14 1699 180 19 23 97.81% 90.45% 98.66%

11/14 1712 157 42 10 97.29% 78.89% 99.42%

10/14 1715 132 67 7 96.15% 66.33% 99.59%

9/14 1717 99 100 5 94.53% 49.75% 99.71%

8/14 1720 84 115 2 93.91% 42.21% 99.88%

7/14 1720 63 136 2 92.82% 31.66% 99.88%

6/14 1721 50 149 1 92.19% 25.13% 99.94%

Analysis of Table 3 highlights the reverse correlation between FP and FN. A close

review of Accuracy, SPC and TPR shows the best Accuracy results (97.81%) to occur

at Θ = 12/14 but the nature of our speech remediation is partial to lower FP classes

in spite of the relatively high increase in FN. By considering Θ = 13/14 we lower the

FP values by 13 classifications while increasing FN by 20. We choose to trade 13 FPs
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for 20 FNs, in other terms, we prefer to leave 20 block segments in the recording to

avoid deleting 13 semantically meaningful utterances.

Such a trade-off is reasonable considering the negative impact False Positive clas-

sifications have on a recording, varying a voting cut off threshold brings considerable

improvement to the system.

The effect of moving the Θ threshold is illustrated in Figure 8 where the line graph

helps confirm the validity of our decision for Θ = 13/14 (92.9%)

Figure 8: Specificity, TPR, Accuracy Voting Results Graph

The training of various classifiers will be based on our dataset which consists of

tuples combining metadata and statistical summaries.
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3.1.7 Approach Pre-qualification - Results

For our model training we experimented with a large number of classifiers and

selected the best performing ones []. We achieved a high degree of classification

accuracy with decision tree models; the two classifiers which performed best were C5

and AdaBoost. The better classifier of the two was C5 and was chosen as the scoring

model. We used the C5 classifier to drive the remediation work where segments

classified block are removed from the recording.

Although of slightly lower quality, C5 provided a respectable speech quality and

was close to the Gold Standard speeches.

The approach we adopted was to train and build a classifier model for disfluent

episode detection based on the balanced dataset for all eight threshold combinations

i.e. all minimum duration and maximum intensity threshold values; in other words, we

combined all the segments extracted from all eight different unique pairs of minimum

duration and intensity threshold, and built our classifier models accordingly. The

performance results are shown in Table 4. The three best performing classifiers in

order of accuracy are C5.0, AdaBoost and Random Forests. Below, we also provide

a short summary of the classifiers best performing parameters along with a brief

practical explanation of the better performing classifiers below.

As we trained our classifier models, six of them in total, we used 10-fold cross vali-

dation. All classifiers were trained with the R ‘caret’ package. The R ‘caret’ package

with the uniform interface to a large number of classifiers and its built-in grid based

hyper parameter tuning was a good choice.
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Next, we list the parameters chosen for each trained model followed with a brief

theoretical summary of the best performing algorithms.

C5 description C5.0 is an enhanced version of C4.5 with speed performance

enhancements.

Neural Network (nnet) parameter tuning results: Tuned model parameters

when training on the balanced dataset: size = 5 and decay = 0.1. Tuned model

parameters when training on the entire dataset: size = 1 and decay = 0.1. Size

represents the number of units in the hidden layer and can be zero if there are skip-

layer units. The decay parameter represents weight decay or the weights adjustment

with each epoch.

Random Forest (rf) description and parameter tuning results: Random

Forest was one of the best performers:

For a data universe ((x1, y1)..(xn, yn)) = D

A random forest classifier is based on Ti where i = 1..B decision trees based on a

random selection of samples Si and a random selection of predictors Mi.

Random forests are based on two beliefs:

1. Most trees provide a correct prediction of class for most data

2. The mistakes made by the trees are in different places

Observations 1 and 2 imply that to build a classification group of trees with better

prediction capability than a single tree one would use multiple random forest trees

and use the collection of results to reach a better and more accurate classification.
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Random forest provides the class based on all trees T1..Tn where n represents the

number of trees.

The large collection of de-correlated trees successfully mitigates the high variance

between individual trees, by averaging over an ensemble of trees we can reduce the

variance from one tree to the next and improve overall performance.

The rules of thumb for the features used per tree are: M =
√
K where M is the

features per tree and K the number of predictors.

With our K = 127 dataset, for a balanced dataset the optimal M = 2, whereas for

the entire data universe M = 56.

SVM Polynomial (svmPoly) parameter tuning results: Tuned model pa-

rameters when training on the balanced dataset: degree = 3, scale = 0.01 and C =

1. Tuned model parameters when training on the entire dataset: degree = 3, scale =

0.01 and C = 1. The degree parameter represents the polynomial degree of the kernel

function. The scale is the scaling parameter of the polynomial and tangent kernel. C

is the cost regularization parameter.

Adaptive Boosting (AdaBag): Adaptive boosting is an ensemble technique

and one of two best performing classifiers. AdaBoost builds a model on sequentially

built and combined simple decision tree predictors adapted and improved by the

errors from previous models and increased weights on mis-classified samples with

subsequent predictors. Adaboost creates a simple predictor and gradually focuses

on prior mistakes. The collection of weak predictors are combined into one complex

committee based model and the resulting model predicts according to the weighted

sum of all predictions.
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Adaboost classification performed well during Approach Pre-qualification.

Parameter tuning results:

Tuned model parameters from training on the balanced dataset were: mfinal =

100 and maxdepth = 3.

Tuned model parameters when training on the entire dataset were: mfinal = 150

and maxdepth = 3.

The mfinal parameters represents the number of trees for which boosting is run.

Maxdepth is the maximum depth of any final tree node.

Recursive Partitioning (rpart): Tuned model parameters when training on the

balanced dataset: cp = 0.03797468. Tuned model parameters when training on the

entire dataset: cp = 0.05970149. Cp is the complexity parameter; any split that does

not decrease the overall lack of fit by a factor of cp is not attempted. The main role

of this parameter is to save computing time by pruning off under performing splits.

Figure 9 shows a remediation process.

Classify	
Segments	with	
Disfluency	
Classifier

Extract	
Segments	

with	segment	
extractor

Extract	
Segments	
Features

Extract	
Segments	
Statistical	
features	and	
build	dataset

Remedy	Speech	
prediction	results

Recording

Figure 9: Approach Pre-qualification Summarized Process Flow

As can be seen in Table 4 the trained neural network classifier is weak; this is due

to the fact that our dataset is too small for adequate neural network training which

requires large datasets [15].

Following the training we analyzed the features for their relative importance and the

pitch related predictors were the most important for the Approach Pre-qualification
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Table 4: Approach Pre-qualification - TNR, TPR, Accuracy

True Positive Rate True Negative Rate Accuracy
C5.0 100% 94% 97.4%
Neural Networks 75.6% 55.9% 67.7%
Recursive Partitioning 92.6% 94.2% 93.2%
Random Forests 98.4% 91.7% 95.8%
Polynomial SVM 89.9% 75.6% 84.4%
AdaBoost 98.3% 93.8% 96.4%

Table 5: RF, C5.0 Classifier Results by Min Duration & Intensity

Random Forest C5.0 Classifier
True Positive Rate (Averaged) 95.3 % 94.8%
True Negative Rate (Averaged) 82.3 % 76.6%
Threshold with Highest True
Positive Rate

1.2 minimum duration,
90% intensity threshold

0.8 minimum duration,
90% intensity threshold

Threshold with Highest True
Negative Rate

1.2 minimum duration,
90% intensity threshold

1.2 minimum duration,
90% intensity threshold

Threshold with Lowest True
Positive Rate

1.2 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

Threshold with Lowest True
Negative Rate

1.0 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

top classifier (C5.0).

Our approach proved effective in eliminating the vast majority of voice blocks when

applied to a stuttered speech. The results of disfluent recordings remediation repaired

difficult to comprehend speeches by eliminating block segments thus enhancing the

fluency of the speech. This also led to a reduction in speech length by large amounts,

ranging between 60 % for the most severely stuttered speech to 25 % for the milder

ones.

Figure 10 shows the graphical effect of the remediation process.



49

Pre remediation Speech
Speech duration 16.8 secs

Post remediation Speech
Reduced to 7.6 seconds

Figure 10: Remediation effect graphical representation



CHAPTER 4: APPROACH RANDOM-SAMPLING

4.1 Approach Random-sampling

4.1.1 Approach Random-sampling - Summary

The second part of the research was also focused on the detection and removal of

speech blocks albeit with different sampling technique of random segment extraction

and a sliding window classifier segments scoring.

To avoid a pre-qualification stage, training speeches were separated in two seg-

ment pools. Each pool was a merge of adjacently concatenated segments of one long

recording. One recording would include the sound episodes for all positive dataset

tuples and the second for negative dataset tuples. The data features engineering

from the collection of positive and negative segments was identical to Approach Pre-

qualification.

In terms of application, the trained model would scan over the entire recording

submitted for scoring. As we discuss below the results obtained during classifier

sliding with the Approach Random-sampling classifiers were excellent whereas the

Approach Pre-qualification trained models failed this test.

During this approach, Praat was our raw data extraction tool; Python with Jupyter

Notebook was our development environment with heavy reliance onH2O.ai, Numpy

and Pandas libraries were used for sample segments extraction, labeling, feature
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engineering and classifier training.

4.1.2 Approach Random-sampling - Segment Extraction

Approach Random-sampling was built on the assumption that presenting ran-

dom short audio segments to users for labeling would yield more consistent overall

sampling, labeling results and varied dataset.

4.1.3 Approach Random-sampling - Labeling

In order to create the dataset for training we tried two sampling methods.

1. Create random segments of speech and manually label them This tech-

nique although simple was difficult to implement because the random samples

could not be readily labeled, they invariably contained a mix of blocked and non-

Blocked utterances. This preponderance of segments with mixed content was

difficult to manage because mixed sounds were common place and disruptive to

the labeling process.

2. Create two long recordings, one of block sounds, the second non-Block

sounds. Two recordings were created by listening to numerous speeches and

separating the block disfluent portions from the (non-Block) portions. The

initial part of the process proved tedious but with completed recordings we

extracted an abundance of samples by methodically sampling from each .wav

file. This is the sampling technique we used during the Approach Random-

sampling data preparation.
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4.1.4 Approach Random-sampling - Segment Analysis

Since the Approach Pre-qualification classifier is intended for the detection of

block sounds, i.e. the same disfluency type as Approach Pre-qualification, we saw

no need to re-engineer the features or to consider other feature engineering. Therefore

the feature extraction mechanism and engineering rely on the same raw data and

statistics and we followed the same technique where the individual segment .wav files

are individually fetched and their DSP vectors (F1, F2, F3, P, I) are created with their

respective derivative vectors (dF1, dF2, dF3, dP, dI). The ten vectors are analyzed

and individual vector statistics computed.

The computed vector statistics are the same as in Approach Pre-qualification :

Average, median, Standard Deviation, 25 Percentile, 50 Percentile and 75 Per-

centile, Vector minimum, Vector maximum, Peak-to-peak Amplitude, and Vari-

ance.

The results obtained confirmed our intuition that the same features are equally

effective in both approaches in spite of the sampling method differences.

During this approach, we chose Python for the data preparation and classifier train-

ing. This decision was motivated by the convenience of using the same development

language and environment for data preparation, model training and scoring.

The labels for the training dataset are derived from the segment name embedded

in the .wav file name.
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4.1.5 Approach Random-sampling - Building the Dataset

As stated earlier, the datasets from Approach Pre-qualification and Approach

Random-sampling had the same list of features. The Approach Pre-qualification

dataset consisted of segments stemming entirely from the set of potentially unde-

sired segments, which were obtained with a Praat pre-qualification script. The Ap-

proach Random-sampling dataset tuples, contained the statistical aggregations from

a diverse list of segments. The dataset obtained from Approach Pre-qualification

was used to build classifiers in two environments and sets of libraries. In Approach

Random-sampling the classifiers were developed with H2O.ai libraries. Since Ap-

proach Pre-qualification and two classifiers were trained with the same features, the

main difference was in the sampling, potentially disfluent segments in the pre-qualified

universe for one approach but all segments in the second.

The pre-qualified and random datasets were prepared for training by importing the

previous .csv files and train/test split of 80/20 percent split as shown in Figures 11

and 12:
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2/9/2019 gbm_DL_wPred_1&2-Copy1

http://localhost:8888/notebooks/gbm_DL_wPred_1%262-Copy1.ipynb# 2/14

In [17]:

BLOCKS - Train models (GBM and Deep Learning) for pre-qualified

dataset

In [18]:

BLOCKS - Pre-Qualified dataset model performance

Parse progress: |████████████████████████████████████████████████████████
█| 100% 

gbm Model Build progress: |██████████████████████████████████████████████
█| 100% 
deeplearning Model Build progress: |█████████████████████████████████████
█| 100% 

labeled_path = "/Users/pierrearbajian/Library/\
Mobile Documents/com~apple~CloudDocs/1/wavs/labeled_blocks/"
df_new = h2o.import_file(labeled_path+
                         "approach1_dataset_balanced.csv",
                         col_types = {'label':"enum"})
# df_new.describe()
train, test = df_new.split_frame(seed = 1234, 
                                 destination_frames=
                                 ["train.hex", "test.hex"])
r = df_new["label"].runif(1234)
train = df_new[r < 0.8]
test = df_new[r >= 0.8]
df_names_x = df_new.names[:]
df_names_x.remove("label")
df_names_x.remove("recording_id")

# gradient boost machine
data_gbm = H2OGradientBoostingEstimator(ntrees =10, max_depth      =6,
                                        distribution ="bernoulli")

data_gbm.train(x=df_names_x, y ="label", training_frame=train, 
               validation_frame=test)

# Simple Deep Learning
data_dl = H2ODeepLearningEstimator(variable_importances=True, 
                                   loss ="Automatic")

data_dl.train(x =df_names_x, y ="label", 
              training_frame  =train, 
              validation_frame=test)

train_auc_gbm = data_gbm.model_performance(train).auc()
test_auc_gbm  = data_gbm.model_performance(test) .auc()
train_auc_dl = data_dl.model_performance(train).auc()
test_auc_dl  = data_dl.model_performance(test) .auc()
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Figure 11: Pre-qualification dataset preparation
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BLOCKS - Train models (GBM, Deep Learning) for random samples
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In [23]:

BLOCKS - random samples classifier training

performance

Parse progress: |████████████████████████████████████████████████████████
█| 100% 

gbm Model Build progress: |██████████████████████████████████████████████
█| 100% 
deeplearning Model Build progress: |█████████████████████████████████████
█| 100% 

Out[23]: 0.9538834951456311

labeled_path = "/Users/pierrearbajian/Library/\
Mobile Documents/com~apple~CloudDocs/1/wavs/labeled_blocks/"
df_new = h2o.import_file(labeled_path+"recordings2.csv",
                     col_types = {'label':"enum"})
# df_new.describe()
train, test = df_new.split_frame(seed = 1234, 
                                 destination_frames=
                                 ["train.hex", "test.hex"])
r = df_new["label"].runif(1234)
train = df_new[r < 0.8]
test = df_new[r >= 0.8]
df_names_x = df_new.names[:]
df_names_x.remove("label")
df_names_x.remove("recording_id")

# gradient boost machine
data_gbm = H2OGradientBoostingEstimator(
    ntrees =10, max_depth      =6,
    distribution ="bernoulli")

data_gbm.train(x=df_names_x, y ="label", 
               training_frame=train, 
               validation_frame=test)

# Simple Deep Learning
data_dl = H2ODeepLearningEstimator(variable_importances=True, 
                                   loss ="Automatic")
 
data_dl.train(x =df_names_x, y ="label", 
              training_frame = train, validation_frame=test)

train_auc_gbm = data_gbm.model_performance(train).auc()
test_auc_gbm  = data_gbm.model_performance(test) .auc()
train_auc_dl = data_dl.model_performance(train).auc()
test_auc_dl  = data_dl.model_performance(test) .auc()

data_gbm.model_performance(test).auc()
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Figure 12: Random samples dataset preparation

4.1.6 Approach Random-sampling - Building the Classifiers

To build the classifiers, we used the open source software (H2O.ai) with Python .

The training with GBM and Neural Networks were performed with the H2O GBM

(10 trees and maximum depth fo 6) and H2O Deep Learning libraries with the default
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values, as recommended by H2O.ai. The training script can be found Figures 13 and

14

2/9/2019 gbm_DL_wPred_1&2-Copy1

http://localhost:8888/notebooks/gbm_DL_wPred_1%262-Copy1.ipynb# 2/14

In [17]:

BLOCKS - Train models (GBM and Deep Learning) for pre-qualified

dataset

Y In [18]:

BLOCKS - Pre-Qualified dataset model performance

Parse progress: |████████████████████████████████████████████████████████
█| 100% 

gbm Model Build progress: |██████████████████████████████████████████████
█| 100% 
deeplearning Model Build progress: |█████████████████████████████████████
█| 100% 

labeled_path = "/Users/pierrearbajian/Library/\
Mobile Documents/com~apple~CloudDocs/1/wavs/labeled_blocks/"
df_new = h2o.import_file(labeled_path+
                         "approach1_dataset_balanced.csv",
                         col_types = {'label':"enum"})
# df_new.describe()
train, test = df_new.split_frame(seed = 1234, 
                                 destination_frames=
                                 ["train.hex", "test.hex"])
r = df_new["label"].runif(1234)
train = df_new[r < 0.8]
test = df_new[r >= 0.8]
df_names_x = df_new.names[:]
df_names_x.remove("label")
df_names_x.remove("recording_id")

# gradient boost machine
data_gbm = H2OGradientBoostingEstimator(ntrees =10, max_depth      =6,
                                        distribution ="bernoulli")

data_gbm.train(x=df_names_x, y ="label", training_frame=train, 
               validation_frame=test)

# Simple Deep Learning
data_dl = H2ODeepLearningEstimator(variable_importances=True, 
                                   loss ="Automatic")

data_dl.train(x =df_names_x, y ="label", 
              training_frame  =train, 
              validation_frame=test)

train_auc_gbm = data_gbm.model_performance(train).auc()
test_auc_gbm  = data_gbm.model_performance(test) .auc()
train_auc_dl = data_dl.model_performance(train).auc()
test_auc_dl  = data_dl.model_performance(test) .auc()
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Figure 13: Pre-qualification dataset training
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performance
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█| 100% 
deeplearning Model Build progress: |█████████████████████████████████████
█| 100% 
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labeled_path = "/Users/pierrearbajian/Library/\
Mobile Documents/com~apple~CloudDocs/1/wavs/labeled_blocks/"
df_new = h2o.import_file(labeled_path+"recordings2.csv",
                     col_types = {'label':"enum"})
# df_new.describe()
train, test = df_new.split_frame(seed = 1234, 
                                 destination_frames=
                                 ["train.hex", "test.hex"])
r = df_new["label"].runif(1234)
train = df_new[r < 0.8]
test = df_new[r >= 0.8]
df_names_x = df_new.names[:]
df_names_x.remove("label")
df_names_x.remove("recording_id")

# gradient boost machine
data_gbm = H2OGradientBoostingEstimator(
    ntrees =10, max_depth      =6,
    distribution ="bernoulli")

data_gbm.train(x=df_names_x, y ="label", 
               training_frame=train, 
               validation_frame=test)

# Simple Deep Learning
data_dl = H2ODeepLearningEstimator(variable_importances=True, 
                                   loss ="Automatic")
 
data_dl.train(x =df_names_x, y ="label", 
              training_frame = train, validation_frame=test)

train_auc_gbm = data_gbm.model_performance(train).auc()
test_auc_gbm  = data_gbm.model_performance(test) .auc()
train_auc_dl = data_dl.model_performance(train).auc()
test_auc_dl  = data_dl.model_performance(test) .auc()

data_gbm.model_performance(test).auc()
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1 Figure 14: Random samples dataset training

The train and test performance results are in Figures 15 and 16
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4.1.7 Approach Random-sampling - Classifier Results

2/9/2019 gbm_DL_wPred_1&2-Copy1

http://localhost:8888/notebooks/gbm_DL_wPred_1%262-Copy1.ipynb# 3/14

Y In [19]:

BLOCKS - per-qualified dataset - Predict (recordings2_pred.csv), Save

predictions (approach1_pred_res.csv)

Model AUC Train AUC Test

GBM 0.9891288 0.8525641

DL 0.9838149 0.8620608

 
Deep Learning 
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.7532926987001989:  

Block Normal Error Rate

Block 410.0 14.0 0.033 (14.0/424.0)

Normal 16.0 144.0 0.1 (16.0/160.0)

Total 426.0 158.0 0.0514 (30.0/584.0)

 
 
Gradient Boosting Machine (GBM) 
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.33137010862867966:
  

Block Normal Error Rate

Block 418.0 6.0 0.0142 (6.0/424.0)

Normal 15.0 145.0 0.0938 (15.0/160.0)

Total 433.0 151.0 0.036 (21.0/584.0)

 

header = ["Model", "AUC Train", "AUC Test"]
table  = [ ["GBM", train_auc_gbm, test_auc_gbm],
           ["DL ", train_auc_dl, test_auc_dl]]
h2o.display.H2ODisplay(table, header)

print('\nDeep Learning')
print(data_dl.confusion_matrix())

print('\nGradient Boosting Machine (GBM)')
print(data_gbm.confusion_matrix())
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Figure 15: GBM & DL models performance with pre-qualification
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2/9/2019 gbm_DL_wPred_1&2-Copy1

http://localhost:8888/notebooks/gbm_DL_wPred_1%262-Copy1.ipynb# 8/14

In [24]:

BLOCKS 2 - Random samples, prediction (recordings2_pred.csv)

save predictions (approach1_pred_res.csv)

Model AUC Train AUC Test

GBM 0.9956132 0.9538835

DL 0.9986999 0.9640777

 
D E E P   L E A R N I N G 
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.6698413109946612:  

Block Normal Error Rate

Block 266.0 6.0 0.0221 (6.0/272.0)

Normal 3.0 424.0 0.007 (3.0/427.0)

Total 269.0 430.0 0.0129 (9.0/699.0)

 
 
GLOBAL BOOSTING MACHINE (GBM) 
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.4921912055420896:  

Block Normal Error Rate

Block 253.0 19.0 0.0699 (19.0/272.0)

Normal 1.0 426.0 0.0023 (1.0/427.0)

Total 254.0 445.0 0.0286 (20.0/699.0)

 

header = ["Model", "AUC Train", "AUC Test"]
table  = [ ["GBM", train_auc_gbm, test_auc_gbm],
           ["DL ", train_auc_dl, test_auc_dl]]

h2o.display.H2ODisplay(table, header)

print('\nD E E P   L E A R N I N G')
print(data_dl.confusion_matrix())

print('\nGLOBAL BOOSTING MACHINE (GBM)')
print(data_gbm.confusion_matrix())
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Figure 16: GBM & DL models performance with Random Samples
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From the classification algorithms available on H2O.ai, we decided to focus on

Deep Learning (DL) and Gradient Boosting Machines (GBM ). GBM is a forward

learning ensemble method. The guiding heuristic is that good predictive results can

be obtained through increasingly refined approximations. H2O’s GBM sequentially

builds classification trees on all the features of the dataset in a fully distributed way

- each tree is built in parallel [9].

In the case of both, Approach Pre-qualification andApproach Random-sampling,

theDLmodel performed marginally better thanGBM ; the performance of both mod-

els are illustrated in Figures 15 and 16

4.1.8 Approach Random-sampling - Application performance

Through manual experimentation, we found that 0.8-second segments of sound are

long enough for the labeler to recognize speech blocks, which justifies our selection of

0.8-second lengths for the classifier training segments.

We moved across the same recording with each of the four classifiers: Approach

Pre-qualification GBM,Approach Pre-qualification DL,Approach Random-sampling

GBM, Approach Random-sampling DL evaluating 0.8 second sound segments, with

0.1 second offsets. The evaluation performed by the sliding classifier provided dis-

fluency scores between 0.0 and 1.0, representing the block likelihood at any given

time.

To perform our experiment we created the full prediction data file by extracting

the formants (formants 1, 2, and 3), pitch and intensity vectors then the statistical

summaries from above. We scored a batch of segments representing 132 seconds at a
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100 ms step which consisted of (132 - 0.8)/0.1 + 1 = 1313 segments.

After extracting the signal parameters and their statistical analysis for each seg-

ment, we had a scoring dataset of 1313 rows, one row per segment. The .csv file was

submitted for scoring and each row was assigned a score.

After completing 1313 classifications, the score for each segment was recorded in a

vector. Table 6 is an illustration of the scored segment results during 1 second speech

interval.

50 seconds or 500 overlapping segments have been graphically plotted with the

sound and other signal analysis for general illustration in Figure 17. Our graph was

limited to 50 seconds for graph legibility.

As an illustration of the window scanning results, we provide Table 6 which shows

an arbitrary one second recording segment block scores by the Approach Random-

sampling GBM classifier. The Segment Start and End columns represent the bound-

aries of each window of 0.8 seconds for which we performed the feature extraction.

The Disfluency Score is the prediction result returned by the Classifier. The lower

scores indicate weak block disfluency and higher values a stronger block disfluency.
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Table 6: Approach Random-sampling Sample Results

Segment Start Segment End Disfluency Score

39.7 40.5 0.146287819

39.8 40.6 0.146287819

39.9 40.7 0.146287819

40 40.8 0.146287819

40.1 40.9 0.145865812

40.2 41 0.300707975

40.3 41.1 0.300707975

40.4 41.2 0.23527621

40.5 41.3 0.413049702

40.6 41.4 0.413049702

40.7 41.5 0.413049702

40.8 41.6 0.413049702

Approach Random-sampling was developed to eliminate the pre-qualification pro-

cess from the system which served three purposes:

1. Eliminate the need for a complex rules based program for the detection of

various disfluency types

2. Eliminate the dependency on multiple components which will invariably com-

plicate the overall process by creating separate sources for errors

3. A diverse dataset to train an algorithm which enhances the generalization ca-

pabilities of a model
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The algorithms trained were GBM and Deep Learning models with limited fine-

tuning. After model development all models were used to perform the same continu-

ous sliding window scan of one recording. The data was split into training 80% and

testing 20%.

Figures 15 and 16 show screenshots of Jupyter Python notebook code snippet with

Area Under the Curve (AUC) and confusion matrices for all trained models.

The dataset for Approach Pre-qualification had a class distribution of 199 normal

samples to 533 block segment samples. The AUC performance for the training and

testing sets gave respectable performance results with a test GBM AUC of 0.853

and a DL AUC of 0.880. The Confusion matrix results were also acceptable with low

error rates and an accuracy of 94%.

The Figure 14 model was trained and tested with the Approach Random-sampling

dataset of 267 block samples and 400 normal samples. The AUC figures were consid-

erably better than Approach Pre-qualification with a test AUC of 0.966 for GBM

and 0.974 for the Deep Learning model.

The implementation of the classifiers was based on a sliding window technique

where we detected the block portions of sound as we moved the classifier one small

step at a time. In the sliding window classifier experiment the results were based

on shifting the classifier over 0.8 second segments one 0.1 second at a time over

the recording entire length of 132 seconds. This test recording was selected for its

moderate block stutter content.

Contrary to the training and testing model statistics in Figures 15 and 16, the
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results from the sliding window test did not corroborate the experiment results. Three

of our models did not perform as well as expected, only the GBM model performed

well.

By applying the trained classifier in a sliding window fashion over the entire record-

ing, we were able to obtain impressively precise scores from one of the four classifiers.

The sliding window extends our insight into the recording quality by offering con-

tinuous evaluation of the speech at small intervals. The continuous nature of the

results is depicted in graphical form.

Figure 17 is a graphical representation of the disfluency measure prediction over a 50

seconds time range. The top part of the figure shows the Approach Pre-qualification

disfluency scores with the Approach Random-sampling scores at the bottom. The

middle portion of the graph displays the speech signal over the time axis. The speech

signal occupies the top part of the Praat graph with the Formants, Pitch and Intensity

signals in red, blue and green respectively.



64

Figure 17: Sliding Window Performance graph

A close review of Figure 17, block Scores - Approach Random-sampling shows

the alignment between classifier model results and Formant, Intensity, Pitch values.

To confirm the consistency between the classifier results and the block stutter occur-

rences we also performed an audio-visual analysis of the entire recording and graph.

Comparison of the Approach Random-sampling graph blocks timing and the block

occurrences during the speech matched with a near perfect alignment between the

Ground Truth and the sliding classifier results.

The Approach Pre-qualification block scores were also reviewed for accuracy and

we found little to no correlation between speech and scores.

The Approach Pre-qualification and Approach Random-sampling sliding win-

dow experiment results establish that the pre-qualified samples from Approach Pre-
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qualification had a major negative impact of the trained classifier, yet the features

we employed are very appropriate for the detection of block type speech problems.

Our insight as to the underlying reasons for the weak Approach Pre-qualification

performance and the high Approach Random-sampling accuracy can be summarized

as follows. The Approach Pre-qualification dataset consisted of a speech universe of

pre-qualified and weak-fluency segments, the Approach Pre-qualification classifier

was trained on a skewed universe of samples and such a dataset would cause the

model to attribute different weights to the features than models trained on diverse

samples.

Because the samples were of a certain constituency the classifier placed the empha-

sis on predictors and values that identify blocks within that particular, semi mono-

lithic, population. As a result of the skewed training dataset, the scoring scan of a

complete speech recording, which requires understanding of a more complex universe

with samples from a broad range of disfluency, yielded unreliable results.

Approach Random-sampling, on the other hand, was reliable over the entire

recording and over a broad selection of segments. We believe Approach Random-

sampling performed well because, the samples in its training dataset spanned a wide

range of disfluency levels which provided the classifier a broad range of good perfor-

mance throughout the recording.

The Approach Random-sampling GBM model was the only, one of four, classi-

fier to provide the desired performance results and offer a practical solution to the

continuous speech scoring experiment. The DL model did not perform well during
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our sliding classifier experiment. We believe the DL model generated poor results be-

cause the dataset was small and DL algorithms are known to require large datasets.

One other peculiar behavior exhibited by the DL model and which contributed to its

lack of fitness to purpose, was its high swings in the recorded prediction values.

Considering the opaque nature of Deep Learning and its limited interpretability

[40], coupled with the strong performance of the GBM model we chose to focus our

analysis on the GBM models.

In conclusion the Approach Pre-qualification classifier is only usable with pre-

qualified potentially disfluent segments.



CHAPTER 5: APPROACH SPECTRAL-ANALYSIS

5.1 Approach Spectral-analysis

5.1.1 Approach Spectral-analysis - Summary

The third approach focused on detecting and repairing speech interjections. We

tried the formant, pitch and intensity vector statistics as features but our classifiers

performed very poorly. With the poor results we obtained from the prior signal

parameters analysis features we chose a different feature development approach. Ap-

proach Spectral-analysis would rely on two dimensional image like features and Deep

Neural Network classifier algorithms.

Inspired by the rapid advancements of Deep Neural Networks and especially (CNN )

we decided to leverage CNN for which we would use spectrographic data. We tried

Spectrogram, Cochleagram and MelSpectrogram data analysis with multiple CNN

models to identify the best data type/model combinations. The results were of high

accuracy and our model/data combination yielded a solution that was able to detect

interjections with a high degree of fidelity.

Praat functions were used during Approach Spectral-analysis, both for segment

extraction and spectrographic matrices extractions, we used Python as the scripting

language with Jupyter Notebook as our development environment, CNN as the Deep

Neural Network architecture and TensorFlow libraries for matrix manipulation, and
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Keras for Tensorflow API, Numpy and Pandas libraries were also used for other

dataset preparation and general mathematical computations.

Figure 18 provides a process flow overview for Approach Spectral-analysis
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Identify recordings for training

Concatenate all recordings

Split recording to two: Interjections Recording, Normal Recording

Enhance Interjections by adding 
manipulated enhancements

Extract silent and sounding 
Interjection segments

Create Cochleagram, Spectrogram, 
MelSpectrogram analysis for each 

Interjection segment

For each Spectrograph type read all matrices and create required files:
1. Matrices, 2. Labels, 3. Starting & 4. Ending times, 5. Original sound file name

Prepare training dataset:
Normalize, Split

Enhance Normal Recording by 
adding manipulated 

enhancements

Extract silent and sounding Normal
segments

Create Cochleagram, Spectrogram, 
MelSpectrogram analysis for each 

Normal speech segment

Prepare eight CNN models

Iterate over each CNN Model and Spectrograph type:
Create a trained model with the training/validation split

Review spectrograph type/Model combinations performance results

Identify best combination Model/Type

Experiment with different matrix sizes 

Experiment with Average Pooling

Figure 18: Approach Spectral-analysis overall process
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5.1.2 Approach Spectral-analysis - Segment Extraction

During data preparation we used the UCLASS corpus. Of the 140 recordings we

chose thirty speakers to maintain an even balance in genders - we only had 15 female

speeches in UCLASS.

The UCLASS corpus provides a number of speaker and speech recording condition

information, these speaker and recording environment data were not included in our

Approach Spectral-analysis list of predictors. The omission of speech metadata

forced the classifiers to better generalize our results so our scoring did not depend on,

hard to obtain and document, speaker and environment information, when deployed

in a production like situations.

Some of the recordings were abnormally soft and some were loud. Because of

this variation in sound intensity it was necessary to ensure that all recordings be

scaled to one level and we used 70 dB SPL average sound volume. This intensity

scaling consists of raising or lowering the overall volume of an entire recording to an

average of 70 dB SPL intensity. Scaling was performed with the Praat <sound: scale

intensity> function and helped us label sound segments easier since we were able to

compare sounds of like volume which improved classifier performance quality because

of consistent volumes and better labeling.

To process all recordings one might work with individual recording files but we

found that combining multiple segments made listening and handling a single record-

ing simpler and more effective thus our decision to concatenate all segments of one

class into a single continuous recording. The concatenation process was performed
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with the Praat function <combine: concatenate>. To concatenate multiple sounds

the sampling frequency must be the same and since the UCLASS wav files did not

have the same sampling rate, we re-sampled the recordings with the Praat function

<sound: resample> at a common Praat default sampling frequency of 10 KHz and a

precision (depth of interpolation) of 50.

Other recording pre-processing options available to us in Praat such as filtering to

attenuate certain frequency ranges as well as Noise removal, where acoustic noise is

removed from the speech using spectral subtraction, would have also been an option.

But because we did not expect our classifiers to benefit from such sound pre-processing

we refrained from applying additional sound manipulation techniques.

To better manage the labeling process, we relied on folder names to designate, and

later determine, the ground truth class of combined sound recordings. During our

folder scans the name of the folder where data files resided determined the class of a

recording i.e. Disfluent (interjection) speech or a fluent (no-interjection).

Since the UCLASS data is not labeled for interjections and manual labeling is a

time consuming and tedious process, it was important to find a method to streamline

the labeling process. The method of choice was to split our combined speeches into two

recordings. One recording would contain all normal (no-non-interjection ) segments

of speech and the other consists of all disfluent (interjection ) segments.

We used the Praat <view and edit> function to observe progress across a speech

to highlight and cut portions that must to be eliminated. Once the recording edit

and splicing is complete we would save the speeches as one interjection speech or

another Normal (non-interjection ) speech.
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This allowed us to expand our recording files for ever larger “interjection ” and

“no-interjection ” sound files and larger training datasets.

Because interjections are less frequent that normal speech and neural networks

are known to require large datasets we expanded our interjection class samples by

creating new interjection sounds which were appended to our interjection recording.

The synthesis of new sounds was performed by (1) adding a lower pitch version of the

interjections to the recording, (2) adding a higher pitch version of the interjections

to the recording, (3) adding a denoised version of the interjections to the recording.

With the variety of synthetic sounds introduced we achieved a balanced class dataset

of 5000 interjection samples to 5000 normal speech samples.

The interjection and non-interjection recordings with merged segments are sub-

sequently used to extract the segments to create the classifier training matrices. The

majority of interjections are isolated sounds of 0.6 to 1.0 seconds in duration which

prompted us to segment our speech segments. Interjection are generally sounds

which can be split away from a speech and have silent boundaries which justified us

segmenting the recordings into episodes of normal and interjection sounds. With

most interjections surrounded with silence, the segmentation approach proved useful

and the remediation was successful.

5.1.3 Approach Spectral-analysis - Extracting “sounding” segment

The eventual interjection classification consists of reviewing sound segment images

sequentially to determine which spectrographic image resembles an interjection .

We split out original recordings into a group of “sounding” and silent segments, and
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because interjections are not silent, we ignored the silent segments and trained our

classifier with the sounding segments.

This was accomplished by listening to each speech and cutting out the normal

speech segments to reach an all interjections recording. To develop the non-interjection

recording we listened to stuttered recordings but this time we cut out the interjec-

tions from the recording.

With two types of recordings we have the audio data which we harvest to create

the interjection and non-interjection segments.

The recordings obtained were used to create segments which can be automatically

labeled. Any segment in the interjection recording is an interjection segment and

all segments in the normal speech recording are non-interjection segments.

Sounding episodes are extracted with a two step process. In Step 1 we annotate the

entire recording and designate its episodes as “sounding” or “silent”, Step 2 extracts

the “sounding” segments according to the annotation results. Silent speech parts are

discarded, Figures 19 and 20 display the Praat UI dialog parameters for annotation

and extraction. Figures 21 displays a list of extracted “sounding” sounds.

Figure 19: “sounding”, silent Recording Annotation
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Figure 20: “sounding” Segment Extraction

Figure 21: Extracted “sounding” Segments

Each “sounding” segment is converted into a set of predictors for classifier train-

ing as one dataset row where the predictor features of the sound segments are the

spectrogram matrix scalars.

5.1.4 Approach Spectral-analysis - Feature Extraction

We began our investigation with the same features as Approach Pre-qualification

and Approach Random-sampling but the formant, pitch and intensity statistical

analysis did not capture the essence of the differences between interjections and

normal speech. The interjection could not be detected by the old features with

the GBM and Neural Network models therefore both Approach pre-qualifier and
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Approach Random-sampling models and features were discounted from the inter-

jection detection system.

The observation about the inadequacy of statistical analysis values of the formant,

pitch and intensity features can be intuitively confirmed by close visual examination

of Figures 22 and 23.

Figure 22: interjection segment Formant, Pith, Intensity Parameters
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Figure 23: normal segment Formant, Pith, Intensity Parameters

Review of the formants (1, 2, 3), Pitch and Intensity show that, the interjection

and normal sounds would be difficult to distinguish with summary statistics. The

features which reduce the vectors to 10 statistical values per analysis could not convey

the presence of interjection in the first sound nor detect its absence from the second

sound.

However the same examination of the gray background gradations section at the

bottom which represent the spectrogram shows different patterns.

With the poor performance of the Approach Pre-qualification and Approach

Random-sampling features, coupled with recent Deep Neural Networks accomplish-

ments in the field of speech analysis we chose to experiment with neural networks to
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detect the interjection sounds.

With the advent of (CNN ) we chose to use spectrum sound analysis data as

predictors. Deep Neural Networks, CNN in particular, have been successfully used

in the field of image and sound recognition, where the later relies on image like matrix

recognition of spectral frequency analysis.

Spectral sound analysis yields two dimensional image-like matrix representation, we

trained CNN classifiers to recognize whether a spectral image of a sound can detect

interjections. The classifiers we trained were designed to detect the interjection

nature of a sound according to its spectral graphical appearance. Figures 24 and 25,

offer a contour graphic visual sampling of interjection and normal sounds from one

of the explored spectral matrix types, the cochleagram:
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(a) Cochleagram interjection 1 (b) Cochleagram interjection 2

(c) Cochleagram interjection 3 (d) Cochleagram interjection 4

Figure 24: Four Interjection Sounds in Cochleagram Contour Format
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(a) Cochleagram non-interjections 1 (b) Cochleagram non-interjections 2

(c) Cochleagram non-interjections 3 (d) Cochleagram non-interjections 4

Figure 25: Four non-interjection Sounds Cochleagram Contour Format

Visual exploratory examination of the interjection and no interjection segments

show a clear and distinguishable pattern for each class.

Capturing the visual difference between these two classes will be the object of

training new classifiers designed for image identification.

Sounds can be converted to multiple types of spectrograhic images, with the va-

riety of the available representations we wanted to determine the most appropriate

spectrographic matrices for interjection detection.

With reports of varying classifier performances from different types of spectral anal-

ysis data [35] we used three spectral analysis methods: Spectrograms, Cochleagrams

and Melspectrograms. The examples below represent a one second sound analysis

representation of a spectrogram, cochleagram and a melspectrogram.
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1. Spectrograms (Figure 27) The spectrogram analysis results were obtained through

Praat . Figure 26 presents the analysis criteria during this and subsequent

cochleagram analysis.

Figure 26: Spectrogram Analysis

Figure 27: Spectrogram Visualization

2. Cochleagram (Figure 29): The cochleagram analysis results were also obtained

with Praat . Figure 28 shows the default cochleagram analysis configuration we

used for this and other cochleagrams.
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Figure 28: Cochleagram Analysis

Figure 29: Cochleagram Visualization

3. Melspectrograms Figure 31: the MelSpectrogram analysis results shown were

obtained through Praat. Figure 30 shows the analysis configuration used in

this graph and later in the research.

Figure 30: Melspectrogram Analysis
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Figure 31: Melspectrogram Visualization

In spite of the basic similarity between the three representations, visually, the

cochleagram is especially distinctive. We will work with all three matrix types to

decide which of the three will be the matrix type of choice.

5.1.5 Approach Spectral-analysis - Dataset Preparation

CNN models have been successfully trained to distinguish between image classes

by processing every pixel of an image as a feature, for instance a 50 by 25 pixels image

will consist of 50 x 25 = 1250 feature columns. As the features are input into the

classifiers they are scored by a trained model for a likelihood of interjection .

Note that it is possible to feed all pixel values as one vector into a Deep Neu-

ral Network and train a decent classifier, but Neural Network techniques known as

(CNN ) have been developed to better detect image characteristics by pattern detec-

tors, which previously depended on manual expert effort. CNN models have been

known to offer excellent image classification performance.

The CNN classifiers we trained were designed to view images of similar dimensions

and process the same number of features from every image/matrix sample i.e. every

sound spectrogram. However, the sounds lengths we extracted with Praat had dif-



83

ferent durations causing their x-axis dimension to vary from one “sounding” segment

to the next.

This variation in sound spectrogram matrix length meant that the pixels on any

one image would differ from one sound segment to the next. From the interjection

and normal sound segment images (Figures 22 and 23) we can intuitively see that

the primary task of our classifier is to recognize the overall shape of the image in

spite of its dimensions, therefore zooming in and zooming out on a picture should not

affect the performance of our classifier since the overall shape will remain intact.

To perform the zooming at spectral analysis extraction time we attempted to force

a frequency range and scale the sound duration in Praat but this resulted in sound

frequency modifications, the sound became abnormal, and the models were inferior

in performance as they exhibited lower accuracy of classification. The low fidelity of

the sound stretched classifier made us dismiss this option and we opted for the matrix

zooming approach.

All sound file spectrogram dimensions were therefore adjusted post spectral analysis

with Python matrix zooming package which casted all matrices to the same dimen-

sions to ensure consistent pixel numbers i.e. the same number of features from every

training tuple.

Previously we used R and H2O.ai libraries to select and train classifiers. With 2-D

spectrographic matrices as training sample features we considered H2O.ai and other

neural network libraries and chose Tensorflow as the computation engine of choice.

The computer we used to run the Tensorflow neural network training was an Apple

macbook pro computer with a 2.4 GHz intel core I7, 16 GB RAM and 1600 MHz
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DDR3 and no GPU.

5.1.6 Approach Spectral-analysis - Classifier Training

We began our work with the native Tensorflow user interface but soon switched to

the Keras API. Keras offers a consistent and simple user interface, with minimal user

interaction for most common use cases. Keras was easy to implement with superior

TensorFlow integration. With Keras we were able to focus on our exploration and

experimented with numerous CNN models with the full range of tuning parameters

such as Dropouts, Decay, Loss function, Epochs, etc.. After extensive exploration

we found the high performance interjection classifiers. Keras was also flexible and

integrated with Tensorflow seamlessly.

The training of our CNN models was performed with the “sounding” .wav files

created and saved to be fetched for the creation of sound matrices as in Figures 27,

29 and 31.

Matrix processing and training was performed separately by spectrogram type: 1-

Spectrogram 2-Cochleagram and 3-Melspectrogram. All spectrogram training were

performed similarly and the performance results compared. This effort was intended

to identify the best representation/analysis of a sound to train the interjection clas-

sifiers.

We also compared the performance of several CNN models. Our first task was to

determine the analysis type best suited for interjection detection and we tried each

CNN model with each of the three spectral analysis types.

A Convolutional Neural Network (ConvNet/CNN ) is a Deep Learning algorithm
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which can take in an input image, assign importance (learnable weights and biases) to

various aspects/objects in the image and be able to differentiate one from the other.

The pre-processing required in a ConvNet is much lower when compared to other

classification algorithms. In primitive methods filters are hand-engineered but with

enough training, ConvNets have the ability to learn these characteristics and create

effective classifier filters. The architecture of a ConvNet is similar to the neuron

connectivity pattern in the human brain and was inspired by the organization of the

Visual Cortex. Individual neurons respond to stimuli only in a restricted region of

the visual field known as the Receptive Field. A collection of such fields overlap to

cover the entire visual area [44].

The specifics of CNN are beyond the scope of this dissertation and there are

excellent resources which describe the foundations of CNN s in detail.

By reviewing well known CNN networks such as LeNet, AlexNet [16] and VGG we

built multiples CNN models. The details of the model implementation are included

in the Appendix Section both in tabular form and as Keras API Python code.

Figures 32 through 41 depict the AlexNet style representation of the ten models

we employed.

Figure 32: MODEL 1
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Figure 33: MODEL 2

Figure 34: MODEL 3

Figure 35: MODEL 4

Figure 36: MODEL 5

Figure 37: MODEL 6
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Figure 38: MODEL 7

Figure 39: MODEL 8

Figure 40: MODEL 9

Figure 41: MODEL 10
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From a simple viewing perspective, the cochleagram seemed the provide the crispest

image but we would not know how well various CNN networks would train and what

the performance results would be until we trained and reviewed the performance

numbers.

The labeling approach we used is similar to Approach Random-sampling where

we took 30 speeches which contain stuttered speech segments and separated them

into interjection and non-interjection recordings.

5.1.7 Approach Spectral-analysis - Results

We trained the first eight of the models above with the three spectrogram types.

With MaxPooling we experimented with different activation techniques and dis-

covered that relu activations are the best choice for early layers of a network and

sigmoids are the better activation method with dense connections for the later lay-

ers.

The training optimizer we used consistently was the adam optimizer [25] and the

loss function we used was the binary crossentropy with class balanced 10, 000 sam-

ples, 5, 000 interjections and 5, 000 no-interjection segments, in our dataset we

consistently split our training and validation data by 80%, 20%. After numerous ex-

ploratory iterations we settled on what we considered the optimal hyper-parameters.

We used early stopping during training with the Validation accuracy as the stopping

trigger with a minimum delta of 0.0001.

The early stopping patience we used was 10 which means we would stop executing

new epochs if the early stopping trigger i.e. Validation Accuracy does not improve
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after 10 epochs.

The batch size which represents the number of training examples used between

weights adjustments in each iteration was 16 and until epoch completion.

The maximum number of epochs was 200 but with early stopping and a patience

of 10 we at no point reached the maximum number of epochs and always stopped

early.

Figure 42 represents a graph of the training data and validation data model accu-

racy value change and loss change by epoch during training progress. The trigger

we selected was the validation data accuracy. In the shown graph the number of

epochs executed was 80 which means that there was no improvement in the perfor-

mance of the classifier on the early stopping trigger (validation test accuracy) for

ten (patience) consecutive epochs after execution of 80 back propagation epochs.

The training and testing results will be further analyzed to better assert the best

spectrogram types and models.
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Figure 42: Model Accuracy & Loss by Training Epoch

With the eight models (models 1 - 8) trained and tested with MaxPooling on the
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three spectrogram types the cochleagram data trained the best classifiers. Tables 7,

8, 9 show the training and testing data with loss and accuracy for each of the three

spectrogram types.

Model Train	Loss Train	Accu Test	Loss Test	Accu
1 0.0498 0.9822 0.3478 0.9098
2 0.0824 0.9669 0.3145 0.9077
3 0.1671 0.9321 0.2514 0.9077
4 0.0681 0.9804 0.1483 0.9414
5 0.0047 0.9992 0.2985 0.9440
6 0.0059 0.9981 0.3188 0.9398
7 0.1459 0.9356 0.2244 0.9082
8 0.0842 0.9688 0.1900 0.9331

Cochleagram

Table 7: Models Training and Testing Performance for Cochleagram

Model Train	Loss Train	Accu Test	Loss Test	Accu
1 0.0004 1.0000 0.8759 0.8481
2 0.0006 1.0000 0.9067 0.8514
3 0.0280 0.9950 0.4915 0.8431
4 0.0157 0.9983 0.4029 0.8648
5 0.0011 1.0000 0.6502 0.8765
6 0.0349 0.9887 0.7701 0.8264
7 0.1644 0.9387 0.3634 0.8331
8 0.0420 0.9883 0.4294 0.8564

Spectrogram

Table 8: Models Training and Testing Performance for Spectrogram
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Model Train	Loss Train	Accu Test	Loss Test	Accu
1 0.0544 0.9766 1.0029 0.8739
2 0.0101 0.9965 0.6968 0.9063
3 0.0678 0.9858 0.2428 0.9135
4 0.0220 0.9934 0.4554 0.9045
5 0.0162 0.9960 0.4630 0.8973
6 0.0181 0.9934 0.8562 0.8937
7 0.0874 0.9743 0.2646 0.8865
8 0.0884 0.9788 0.2728 0.8793

MelSpectrogram

Table 9: Models Training and Testing Performance for MelSpectrogram

The training results in Figures 43 and 44 provide an interesting view of the results

with models 4, 5 and 6 performing very well with all three data types. We could say

that the performance of the classifiers from model 4, 5 and 6 in relation to the data

types requires further scrutiny. The testing data split results will be reviewed next

to better determine the best classifiers by model/data combinations.
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Figure 43: Models Train Accuracy for Cochleagram, Spectrogram &
MelSpectrogram
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Figure 44: Models Train loss for Cochleagram, Spectrogram & MelSpectrogram

The test samples results in Figures 45 and 46 show the performance of the cochlea-

gram data classifiers provide the results in loss and accuracy. The spectrogram and

melspectrogram classifiers performed well during training but the difference between

the training and testing results were considerably higher that the cochleagram, a sign

of weak generalization and high degree of overfitting.

Figures 47 and 48 provide a classifier generalization measure by showing the clas-

sifier comparative loss and accuracy on test and train data. We can see that the

cochleagram training results track each other better for all our models and both Loss

and Accuracy.

This cochleagram data performance in comparison to spectrograms has been pre-

viously reported in the literature [35].
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Figure 45: Models Test Accuracy for Cochleagram, Spectrogram & MelSpectrogram
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Figure 46: Models Test loss for Cochleagram, Spectrogram & MelSpectrogram
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Figure 47: Models Train-Test Accuracy Variance
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Figure 48: Models Train-Test Loss Variance

With the cochleagram’s superior performance on all models we selected this data

type for additional experimentation. We went on to train the three models 4, 5 and
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6 under different conditions and determined that Model 6 (Figure 37) provides the

best overall results.

The disadvantages of large matrices consist of long computation time requirements,

the high data collection requirement and storage demands. Python has a limit of

2Gb files which we reached during spectrogram data extraction and analysis. One

could split the data into multiple files but large data files management could prove

cumbersome and expensive. Also, the computational time is considerably different

for various file. We tried different matrix sizes to determine the impact of matrix size

on the model accuracy with our leader models. The three cochleagram matrix sizes

we experimented with were 100x50 pixels, 50x25, 40x20. The times per epoch and

the accuracies we achieved are displayed in Table 10.

The only data type we experimented with was the cochleagram. The results were

interesting, the best performance was achieved with the 50x25 matrices. The three

matrix sizes we compared with training and accuracy results are shown in Table 10 .

Table 10: Cochleagram Matrix Training Performance

Matrix Size Training dura-

tion per epoch

Acuracy

100x50 324 sec. 93.1 %

50x25 67 sec. 96.4 %

40x20 10 sec. 94.9 %

Figures 49, 50, 51 display the ROC curves for the three sizes we explored.
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Figure 49: Cochleagram 100x50 Model 6 performance
Accuracy: 93.1%, Duration:324 seconds per epoch

Figure 50: Cochleagram 40x20 Model 6 performance
Accuracy: 94.9%, Duration:10 seconds per epoch
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Figure 51: Cochleagram 50x25 Model 6 performance
Accuracy: 96.4%, Duration:67 seconds per epoch

On the Average the training for the cochlegrams took 100 epochs. The amount of

time consumed was therefore not trivial when considering a 100x50 matrix training

duration coming at 32,400 seconds or 9 hours, the 50x25 matrix came in at 67 seconds

or 111 minutes for 100 epochs, and 40x20 matrix took 10 seconds per epoch or 17

minutes for 100 epochs.

We found Model 6 with cochleagram spectral analysis and a matrix of 50x25 pixel

the optimal combination of meta parameters. We analyzed and remedied random

UCLASS speeches and were able to eliminate 80% of all interjections.

Note that we arrived to the results described above with CNN networks that utilize

Max Pooling. The section below considers an alternative pooling technique.
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5.1.8 Approach Spectral-analysis - Average vs Max Pooling

The general consensus in the literature with respect to pooling techniques is that

Max Pooling models perform better that Average Pooling. But we chose to experiment

with two Pooling techniques: MaxPooling and AveragePooling.

After systematic trials, we reached results which were not consistent with the gen-

eral belief that Max Pooling is better, at least not for our cochleagram data and

interjection detection. These tests were conducted with the original eight plus two

additional models for a total of ten CNN s. We trained each model twice, one time

with Max-Pooling and again with Average-Pooling for a maximum of 200 epochs

and early stopping. The accuracy of the results for Max-Pooling and Average-

Pooling pooling are graphically depicted in Figure 52. The majority of models per-

formed considerably better with Average pooling, those models which showed better

Max-Pooling results were only marginally better. In summary, Average pooled CNN

models proved superior to the Max-pooled ones for cochleagram spectrograms in our

case.
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Figure 52: Pooling Impact on Classifier Accuracy

The numeric table with the exact accuracy results is shown in Table 11.



101

Table 11: Avg vs Max Pooling Performance

Model Avg Pooling Max Pooling

1 91.21% 90.95%

2 92.26% 92.00%

3 95.40% 90.48%

4 95.61% 95.87%

5 93.62% 94.93%

6 95.61% 95.29%

7 93.72% 93.31%

8 92.83% 91.53%

9 97.07% 91.74%

10 95.66% 93.62%



CHAPTER 6: CONCLUSION

6.1 Conclusion - Approach Pre-qualification

In Approach Pre-qualification we implemented Blocked speech remediation de-

signed to perform one remediation function i.e. blocked speech segment removal. The

approach was based on a pre-qualification stage. We were successful in classifying var-

ious segments of speech detected under different extraction constrains. Our ability to

create segments derived with different perspectives generated overlapping segments

of speech, thus a large number of block candidate segments. The tedium of manually

labeling a large population of speech segments was addressed by devising a process

which simplified the labeling effort.

With the labeling completed we confirmed our hypothesis that eliminating Ground

Truth blocked segments improves speech quality. Recordings repaired by cutting out

entire block segments showed a marked improvement in the speech. To automate

the process of labeling candidate speech segments, frequency and time domain signal

analysis was performed on the candidate segments followed by statistical analysis to

create the features for classifier training. The trained models were tested and their

performances tabulated.

The accuracy of the top performing classifier models was high; removing segments

based on its predictions was performed and the remedied speech was compared to the
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Gold Standard speech. The top classifier repaired recording was at par with the Gold

Standard remedied recording.

This approach proved effective in eliminating the vast majority of voice blocks when

applied to a blocks prone stuttered speech.

The effectiveness of our remediation process was highly dependent on the speech

intensity threshold during the pre-qualification stage.

As an added measure we implemented a voting based classification system to reduce

speech meaning loss by tilting the model in favor of high specificity at the expense of

retaining a relatively larger number of blocked segments.

6.2 Conclusion - Approach Random-sampling

In order to streamline the detection process and eliminate the pre-qualification

stage, we introduced an enhancement which would expand the types of disfluency

types to include arbitrary speech anomalies by removing the dependency on a com-

plex pre-qualification step. The data samples for training were selected from entire

speeches and not only the pre-qualified segments. The results of Approach Random-

sampling were of improved accuracy thanks to the unbiased samples pool.

The training and testing of the classifier followed a similar methodology to Ap-

proach Pre-qualification where multiple classifier algorithms were trained and their

performance evaluated.

The main accomplishment of Approach Random-sampling was the implementa-

tion of a sliding window classifier. The results of scoring every segment of a block

prone speech were graphed and manually evaluated. The comparison revealed com-
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plete consistency between the listener’s audio stutter identification and the GBM

classifier’s graph.

Although Approach Pre-qualification performed adequately with a set of pre-

qualified samples and application, its shortcomings during the sliding classifier appli-

cation were evidence of the importance of training models with data which resembles

production data.

We find Approach Random-sampling ’s implications in terms of simplicity, flex-

ibility and performance a big advancement over Approach Pre-qualification and

confirmation of the positive implications of adequate sampling. This approach also

proved to be research friendly by making crowd sourcing readily accessible [47].

6.3 Conclusion - Approach Spectral-analysis

Approach Spectral-analysis was designed to detect another type of stutter: inter-

jections. We tried the sampling, feature engineering and model algorithms used in

prior approaches but the performance of our classifiers was inadequate. The features

used previously failed to properly train our models.

We would not use the statistical features or the model algorithms from the prior

experiments, instead we used spectral analysis results as predictors. We elected to

use three different types of spectral analysis data, Cochleagram, Spectrogram, Mel-

Spectrogram with multiple CNN models.

As we labeled the training speech segments we created a new technique of compiling

speech data by separating all samples of a class interjection from the class normal

and creating two long duration recordings which we would harvest for training dataset
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creation.

Although the other two spectral analysis matrices performed well on training data,

the cochleagram analysis provided the best results on test data. The differences in

model performance between training and testing was consistently better with cochlea-

gram which became our spectral analysis data type of choice.

Approach Spectral-analysis made use of a matrix zooming technique which casted

the matrices to a consistent dimensions for proper image comparison. This zooming

technique was further explored to evaluate the impact of varying image sizes on

the CNN classifier performance where we found that the optimal image size is not

always the largest one. Of the three different sizes we tried, the medium size matrix

was consistently the best performing one.

Our analysis of image sizes was not exhaustive but we find that the image size

50x25 was close to optimal since bigger and smaller images yielded worse classifiers.

The smaller representation did not only provide smaller storage requirements ben-

efit, it proved considerably faster in training and scoring. Based on these findings,

subsequent experimentation was performed on 50x25 cochleagram representations.

In Approach Spectral-analysis we experimented with the two pooling techniques,

Max-Pooling and Average-Pooling with the previously developed 8 models in addi-

tion to two newly designed models. This was a valuable experiment given the superior

results we achieved with the majority of our CNN s and especially the two new models

when using Average pooling instead of Max pooling.



REFERENCES

[1] Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., and Yu, D.

Convolutional neural networks for speech recognition. IEEE/ACM Transactions

on audio, speech, and language processing 22.10 (2014): 1533-1545.

[2] Ai, O. C., Hariharan, M., Yaacob, S., Chee, L. S. (2012). Classification of speech

dysfluencies with MFCC and LPCC features. Expert Systems with Applications,

39(2), 2157-2165.

[3] Boey, R. A., Wuyts, F. L., Van de Heyning, P. H., De Bodt, M. S., Heylen, L.

(2007). Characteristics of stuttering-like disfluencies in Dutch-speaking children.

Journal of fluency disorders, 32(4), 310-329.

[4] Brown, G.J. and Cooke, M.P. (1994) Computational auditory scene analysis. Com-

puter Speech and Language, 8: 297-336.

[5] Chee, L. S., Ai, O. C., Yaacob, S. (2009, October). Overview of automatic stut-

tering recognition system. In Proc. International Conference on Man-Machine

Systems, no. October, Batu Ferringhi, Penang Malaysia (pp. 1-6).

[6] Chee, L. S., Ai, O. C., Hariharan, M., Yaacob, S. (2009, December). Automatic

detection of prolongations and repetitions using LPCC. InTechnical Postgraduates

(TECHPOS), 2009 International Conference for (pp. 1-4). IEEE.



107

[7] Chen, L. (2008). Incorporating Nonverbal Features Into Multimodel Models (Doc-

toral dissertation, Purdue University West Lafayette).

[8] Chen, J., Wang, Y., & Wang, D. A feature study for classification-based speech

separation at low signal-to-noise ratios. IEEE/ACM Transactions on Audio,

Speech, and Language Processing 22.12 (2014): 1993-2002.

[9] Click, C., Lanford, J., Malohlava, M., Parmar, V. and Roark, H. Gradient Boosted

Models, http://h2o.ai/resources, August 2015

[10] Czyzewski, A., Kaczmarek, A., Kostek, B. Intelligent processing of stuttered

speech. Journal of Intelligent Information Systems 21.2 (2003): 143-171.

[11] Deng, L., Hinton, G., and Kingsbury, B. New types of deep neural network

learning for speech recognition and related applications: An overview. Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on.

IEEE, 2013.

[12] Esmaili, I., Dabanloo, N. J., Vali, M. "Automatic classification of speech dysflu-

encies in continuous speech based on similarity measures and morphological image

processing tools." Biomedical Signal Processing and Control 23 (2016): 104-114.

[13] Ferguson, J., Durrett, G., Klein, D. (2015, June). Disfluency Detection with a

Semi-Markov Model and Prosodic Features. In Proc. NAACL HLT.

[14] Fook, C. Y., Muthusamy, H., Chee, L. S., Yaacob, S. B., Adom, A.H. (2013).

Comparison of speech parameterization techniques for the classification of speech



108

disfluencies. Turkish Journal of Electrical Engineering Computer Sciences, 21(Sup.

1), 1983-1994.

[15] Geetha, Y. V., Pratibha, K., Ashok, R., Ravindra, S. K. (2000). Classification of

childhood disfluencies using neural networks. Journal of fluency disorders, 25(2),

99-117.

[16] Graves, A., Abdel-rahman, M., and Hinton, G. Speech recognition with deep

recurrent neural networks. Acoustics, speech and signal processing (icassp), 2013

ieee international conference on. IEEE, 2013.

[17] Hariharan, M., Chee, L. S., Ai, O. C., Yaacob, S. (2012). Classification of speech

dysfluencies using LPC based parameterization techniques. Journal of medical

systems, 36(3), 1821-1830.

[18] Honal, M., Schultz, T. (2005, March). Automatic Disfluency Removal on Recog-

nized Spontaneous Speech-Rapid Adaptation to Speaker Dependent Disfluencies.

In ICASSP (1) (pp. 969-972).

[19] Honal, M., Schultz, T. Correction of disfluencies in spontaneous speech using a

noisy-channel approach. Eighth European Conference on Speech Communication

and Technology. 2003.

[20] Howell, P., Sackin, S. (1995, August). Automatic recognition of repetitions and

prolongations in stuttered speech. In Proceedings of the first World Congress on

fluency disorders (Vol. 2, pp. 372-374).



109

[21] Howell, P., Davis, S., Bartrip, J. (2009). The University College London archive of

stuttered speech (UCLASS). Journal of Speech, Language, and Hearing Research,

52(2), 556-569.

[22] Huang, Z., Chen, L., Harper, M. (2006, May). An open source prosodic fea-

ture extraction tool. In Proceedings of the Language Resources and Evaluation

Conference (LREC).

[23] Huang, Z., Chen, L., Harper, M. P. (2006). Purdue Prosodic Feature Extraction

Tool on Praat.

[24] Jaitly, N., Nguyen, P., Senior, A., and Vanhoucke, V. Application of pretrained

deep neural networks to large vocabulary speech recognition. Thirteenth Annual

Conference of the International Speech Communication Association. 2012.

[25] Kingma, D. P., Ba, J. "Adam: A method for stochastic optimization." arXiv

preprint arXiv:1412.6980 (2014).

[26] Km, R. K., Ganesan, S. (2011). Comparison of multidimensional MFCC feature

vectors for objective assessment of stuttered disfluencies. age, 2(05), 854-860.

[27] Kons, Z., Satt, A., Hoory, R., Uloza, V., Vaiciukynas, E., Gelzinis, A., Ba-

causkiene, M. "On feature extraction for voice pathology detection from speech

signals." Proceedings of the 1st Annual Afeka-AVIOS Speech Processing Confer-

ence, Tel Aviv Academic College of Engineering, Tel Aviv, Israel. 2011.



110

[28] Lease, M., Johnson, M., Charniak, E.: Recognizing disfluencies in conversational

speech. In: IEEE Transactions on Audio, Speech, and Language Processing, 14(5),

1566-1573 (2006).

[29] LeCun, Y., and Yoshua B. Convolutional networks for images, speech, and time

series The handbook of brain theory and neural networks 3361.10 (1995): 1995.

[30] Lei, Y., Scheffer, N., Ferrer, L., and McLaren, M. A novel scheme for speaker

recognition using a phonetically-aware deep neural network. Acoustics, Speech

and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,

2014.

[31] Liu, Y., Shriberg, E., Stolcke, A., Harper, M. P. (2005, September). Comparing

HMM, maximum entropy, and conditional random fields for disfluency detection.

In INTERSPEECH (pp. 3313-3316).

[32] Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf, M., Harper, M. (2006).

Enriching speech recognition with automatic detection of sentence boundaries and

disfluencies. IEEE Transactions on audio, speech, and language processing, 14(5),

1526-1540.

[33] Mareüil, P. B. D., Habert, B., Bénard, F., Adda-Decker, M., Barras, C., Adda,

G., and Paroubek, P. A quantitative study of disfluencies in French broadcast

interviews. Disfluency in Spontaneous Speech. 2005.



111

[34] Medeiros, H., Moniz, H., Batista, F., Trancoso, I., Nunes, L. (2013, July). Dis-

fluency detection based on prosodic features for university lectures. In INTER-

SPEECH (pp. 2629-2633).

[35] Muthusamy, Y. K., Ronald A. C., & Slaney, M. Speaker-independent vowel

recognition: Spectrograms versus cochleagrams. Acoustics, Speech, and Signal

Processing, 1990. ICASSP-90., 1990 International Conference on. IEEE, 1990.

[36] Oppenheim, A. V. "Speech spectrograms using the fast Fourier transform." IEEE

spectrum 7.8 (1970): 57-62.

[37] Palfy, J. (2014). Analysis of dysfluencies by computational intelli-

gence.Information Sciences and Technologies, 6(2), 45.

[38] Rabiner, L., Juang, B. (1986). An Introduction to Hidden Markov Models. IEEE

ASSP Magazine, 3(1), 4-16.

[39] Ravikumar, K. M., R. Rajagopal, and H. C. Nagaraj. "An approach for objec-

tive assessment of stuttered speech using MFCC." The International Congress for

Global Science and Technology. 2009.

[40] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). Why should i trust

you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining (pp.

1135-1144). ACM.

[41] Shriberg, E. (2001). Toerrrr’is human: ecology and acoustics of speech disfluen-

cies. Journal of the International Phonetic Association, 31(1), 153-164.



112

[42] Shriberg, E., Stolcke, A., Hakkani-TÅr, D., TÅr, G. (2000). Prosody-based auto-

matic segmentation of speech into sentences and topics. Speech communication,

32(1), 127-154.

[43] Stouten, F., Duchateau, J., Martens, J. P., Wambacq, P. (2006). Coping with

disfluencies in spontaneous speech recognition: Acoustic detection and linguistic

context manipulation. Speech Communication, 48(11), 1590-1606.

[44] Sumit, S. A Comprehensive Guide to Convolutional Neural Networks the ELI5

way. Retrieved from

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53

[45] Wiśniewski, M., Kuniszyk-Jóźkowiak, W. (2011). Automatic detection and classi-

fication of phoneme repetitions using HTK toolkit. Journal of Medical Informatics

Technologies, 17, 141-147.

[46] Wiśniewski, M., Kuniszyk-Jóźkowiak, W., Smołka, E., Suszyński, W. (2007).

Automatic detection of prolonged fricative phonemes with the hidden Markov

models approach. Journal of Medical Informatics Technologies, 11, 2007.

[47] Winkelmann,R.,Raess,G.(2014,May).Introducing a web application for labeling,

visualizing speech and correcting derived speech signals. In LREC (pp. 4129-4133).



113

Appendix A - Model Definitions



MODEL: <<<< 1 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d (Conv2D)              (None, 48, 23, 256)       2560      
activation (Activation)      (None, 48, 23, 256)       0         
max_pooling2d (MaxPooling2D) (None, 24, 11, 256)       0         
conv2d_1 (Conv2D)            (None, 22, 9, 256)        590080    
activation_1 (Activation)    (None, 22, 9, 256)        0         
max_pooling2d_1 (MaxPooling2 (None, 11, 4, 256)        0         
flatten (Flatten)            (None, 11264)             0         
dense (Dense)                (None, 64)                720960    
dense_1 (Dense)              (None, 1)                 65        
activation_2 (Activation)    (None, 1)                 0         
================================================================
=
Total params: 1,313,665
Trainable params: 1,313,665
Non-trainable params: 0

MODEL: <<<< 2 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_2 (Conv2D)            (None, 48, 23, 128)       1280      
activation_3 (Activation)    (None, 48, 23, 128)       0         
max_pooling2d_2 (MaxPooling2 (None, 9, 11, 128)        0         
conv2d_3 (Conv2D)            (None, 7, 9, 64)          73792     
activation_4 (Activation)    (None, 7, 9, 64)          0         
max_pooling2d_3 (MaxPooling2 (None, 1, 4, 64)          0         
flatten_1 (Flatten)          (None, 256)               0         
dense_2 (Dense)              (None, 32)                8224      
dense_3 (Dense)              (None, 1)                 33        
activation_5 (Activation)    (None, 1)                 0         
================================================================
=
Total params: 83,329
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Trainable params: 83,329
Non-trainable params: 0

MODEL: <<<< 3 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_4 (Conv2D)            (None, 48, 23, 32)        320       
dropout (Dropout)            (None, 48, 23, 32)        0         
activation_6 (Activation)    (None, 48, 23, 32)        0         
max_pooling2d_4 (MaxPooling2 (None, 24, 11, 32)        0         
conv2d_5 (Conv2D)            (None, 22, 9, 32)         9248      
dropout_1 (Dropout)          (None, 22, 9, 32)         0         
activation_7 (Activation)    (None, 22, 9, 32)         0         
max_pooling2d_5 (MaxPooling2 (None, 11, 4, 32)         0         
conv2d_6 (Conv2D)            (None, 9, 2, 64)          18496     
dropout_2 (Dropout)          (None, 9, 2, 64)          0         
activation_8 (Activation)    (None, 9, 2, 64)          0         
max_pooling2d_6 (MaxPooling2 (None, 4, 1, 64)          0         
flatten_2 (Flatten)          (None, 256)               0         
dense_4 (Dense)              (None, 64)                16448     
dropout_3 (Dropout)          (None, 64)                0         
activation_9 (Activation)    (None, 64)                0         
dense_5 (Dense)              (None, 1)                 65        
activation_10 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 44,577
Trainable params: 44,577
Non-trainable params: 0

MODEL: <<<< 4 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_7 (Conv2D)            (None, 48, 23, 64)        640       
activation_11 (Activation)   (None, 48, 23, 64)        0         
average_pooling2d (AveragePo (None, 24, 23, 64)        0         
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conv2d_8 (Conv2D)            (None, 22, 21, 64)        36928     
activation_12 (Activation)   (None, 22, 21, 64)        0         
average_pooling2d_1 (Average (None, 11, 21, 64)        0         
conv2d_9 (Conv2D)            (None, 9, 19, 64)         36928     
activation_13 (Activation)   (None, 9, 19, 64)         0         
average_pooling2d_2 (Average (None, 4, 19, 64)         0         
flatten_3 (Flatten)          (None, 4864)              0         
dense_6 (Dense)              (None, 64)                311360    
dropout_4 (Dropout)          (None, 64)                0         
activation_14 (Activation)   (None, 64)                0         
dense_7 (Dense)              (None, 64)                4160      
dropout_5 (Dropout)          (None, 64)                0         
activation_15 (Activation)   (None, 64)                0         
dense_8 (Dense)              (None, 1)                 65        
activation_16 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 390,081
Trainable params: 390,081
Non-trainable params: 0

MODEL: <<<< 5 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_10 (Conv2D)           (None, 50, 25, 16)        160       
activation_17 (Activation)   (None, 50, 25, 16)        0         
average_pooling2d_3 (Average (None, 5, 12, 16)         0         
conv2d_11 (Conv2D)           (None, 5, 12, 32)         4640      
activation_18 (Activation)   (None, 5, 12, 32)         0         
average_pooling2d_4 (Average (None, 2, 6, 32)          0         
conv2d_12 (Conv2D)           (None, 2, 6, 64)          18496     
activation_19 (Activation)   (None, 2, 6, 64)          0         
average_pooling2d_5 (Average (None, 1, 3, 64)          0         
flatten_4 (Flatten)          (None, 192)               0         
dense_9 (Dense)              (None, 128)               24704     
dropout_6 (Dropout)          (None, 128)               0         
activation_20 (Activation)   (None, 128)               0         
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dense_10 (Dense)             (None, 1)                 129       
activation_21 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 48,129
Trainable params: 48,129
Non-trainable params: 0

MODEL: <<<< 6 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_13 (Conv2D)           (None, 50, 25, 96)        2496      
activation_22 (Activation)   (None, 50, 25, 96)        0         
conv2d_14 (Conv2D)           (None, 50, 25, 96)        83040     
activation_23 (Activation)   (None, 50, 25, 96)        0         
conv2d_15 (Conv2D)           (None, 50, 25, 96)        83040     
activation_24 (Activation)   (None, 50, 25, 96)        0         
conv2d_16 (Conv2D)           (None, 50, 25, 96)        83040     
activation_25 (Activation)   (None, 50, 25, 96)        0         
average_pooling2d_6 (Average (None, 5, 12, 96)         0         
conv2d_17 (Conv2D)           (None, 5, 12, 128)        110720    
activation_26 (Activation)   (None, 5, 12, 128)        0         
conv2d_18 (Conv2D)           (None, 5, 12, 128)        147584    
activation_27 (Activation)   (None, 5, 12, 128)        0         
conv2d_19 (Conv2D)           (None, 5, 12, 128)        147584    
activation_28 (Activation)   (None, 5, 12, 128)        0         
average_pooling2d_7 (Average (None, 2, 6, 128)         0         
flatten_5 (Flatten)          (None, 1536)              0         
dense_11 (Dense)             (None, 64)                98368     
dropout_7 (Dropout)          (None, 64)                0         
activation_29 (Activation)   (None, 64)                0         
dense_12 (Dense)             (None, 64)                4160      
dropout_8 (Dropout)          (None, 64)                0         
activation_30 (Activation)   (None, 64)                0         
dense_13 (Dense)             (None, 1)                 65        
activation_31 (Activation)   (None, 1)                 0         
================================================================
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=
Total params: 760,097
Trainable params: 760,097
Non-trainable params: 0

MODEL: <<<< 7 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_20 (Conv2D)           (None, 50, 25, 64)        640       
dropout_9 (Dropout)          (None, 50, 25, 64)        0         
activation_32 (Activation)   (None, 50, 25, 64)        0         
conv2d_21 (Conv2D)           (None, 50, 25, 64)        36928     
dropout_10 (Dropout)         (None, 50, 25, 64)        0         
activation_33 (Activation)   (None, 50, 25, 64)        0         
max_pooling2d_7 (MaxPooling2 (None, 5, 12, 64)         0         
conv2d_22 (Conv2D)           (None, 5, 12, 128)        73856     
dropout_11 (Dropout)         (None, 5, 12, 128)        0         
activation_34 (Activation)   (None, 5, 12, 128)        0         
max_pooling2d_8 (MaxPooling2 (None, 2, 6, 128)         0         
conv2d_23 (Conv2D)           (None, 2, 6, 256)         295168    
dropout_12 (Dropout)         (None, 2, 6, 256)         0         
activation_35 (Activation)   (None, 2, 6, 256)         0         
max_pooling2d_9 (MaxPooling2 (None, 1, 3, 256)         0         
flatten_6 (Flatten)          (None, 768)               0         
dense_14 (Dense)             (None, 512)               393728    
activation_36 (Activation)   (None, 512)               0         
flatten_7 (Flatten)          (None, 512)               0         
dense_15 (Dense)             (None, 512)               262656    
activation_37 (Activation)   (None, 512)               0         
dense_16 (Dense)             (None, 512)               262656    
activation_38 (Activation)   (None, 512)               0         
dense_17 (Dense)             (None, 1)                 513       
activation_39 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 1,326,145
Trainable params: 1,326,145
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Non-trainable params: 0

MODEL: <<<< 8 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_24 (Conv2D)           (None, 50, 25, 6)         60        
dropout_13 (Dropout)         (None, 50, 25, 6)         0         
activation_40 (Activation)   (None, 50, 25, 6)         0         
max_pooling2d_10 (MaxPooling (None, 10, 25, 6)         0         
conv2d_25 (Conv2D)           (None, 10, 25, 12)        660       
dropout_14 (Dropout)         (None, 10, 25, 12)        0         
activation_41 (Activation)   (None, 10, 25, 12)        0         
max_pooling2d_11 (MaxPooling (None, 5, 12, 12)         0         
conv2d_26 (Conv2D)           (None, 5, 12, 24)         2616      
dropout_15 (Dropout)         (None, 5, 12, 24)         0         
activation_42 (Activation)   (None, 5, 12, 24)         0         
max_pooling2d_12 (MaxPooling (None, 2, 6, 24)          0         
conv2d_27 (Conv2D)           (None, 2, 6, 48)          10416     
dropout_16 (Dropout)         (None, 2, 6, 48)          0         
activation_43 (Activation)   (None, 2, 6, 48)          0         
max_pooling2d_13 (MaxPooling (None, 1, 3, 48)          0         
flatten_8 (Flatten)          (None, 144)               0         
dense_18 (Dense)             (None, 120)               17400     
activation_44 (Activation)   (None, 120)               0         
flatten_9 (Flatten)          (None, 120)               0         
dense_19 (Dense)             (None, 120)               14520     
activation_45 (Activation)   (None, 120)               0         
dense_20 (Dense)             (None, 1)                 121       
activation_46 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 45,793
Trainable params: 45,793
Non-trainable params: 0
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MODEL: <<<< 9 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_28 (Conv2D)           (None, 50, 25, 64)        640       
dropout_17 (Dropout)         (None, 50, 25, 64)        0         
activation_47 (Activation)   (None, 50, 25, 64)        0         
conv2d_29 (Conv2D)           (None, 50, 25, 64)        36928     
dropout_18 (Dropout)         (None, 50, 25, 64)        0         
activation_48 (Activation)   (None, 50, 25, 64)        0         
max_pooling2d_14 (MaxPooling (None, 25, 12, 64)        0         
conv2d_30 (Conv2D)           (None, 25, 12, 128)       73856     
dropout_19 (Dropout)         (None, 25, 12, 128)       0         
activation_49 (Activation)   (None, 25, 12, 128)       0         
conv2d_31 (Conv2D)           (None, 25, 12, 128)       147584    
dropout_20 (Dropout)         (None, 25, 12, 128)       0         
activation_50 (Activation)   (None, 25, 12, 128)       0         
max_pooling2d_15 (MaxPooling (None, 12, 6, 128)        0         
conv2d_32 (Conv2D)           (None, 12, 6, 256)        295168    
dropout_21 (Dropout)         (None, 12, 6, 256)        0         
activation_51 (Activation)   (None, 12, 6, 256)        0         
conv2d_33 (Conv2D)           (None, 12, 6, 256)        590080    
dropout_22 (Dropout)         (None, 12, 6, 256)        0         
activation_52 (Activation)   (None, 12, 6, 256)        0         
max_pooling2d_16 (MaxPooling (None, 6, 3, 256)         0         
conv2d_34 (Conv2D)           (None, 6, 3, 512)         1180160   
dropout_23 (Dropout)         (None, 6, 3, 512)         0         
activation_53 (Activation)   (None, 6, 3, 512)         0         
conv2d_35 (Conv2D)           (None, 6, 3, 512)         2359808   
dropout_24 (Dropout)         (None, 6, 3, 512)         0         
activation_54 (Activation)   (None, 6, 3, 512)         0         
max_pooling2d_17 (MaxPooling (None, 3, 1, 512)         0         
flatten_10 (Flatten)         (None, 1536)              0         
dense_21 (Dense)             (None, 512)               786944    
activation_55 (Activation)   (None, 512)               0         
flatten_11 (Flatten)         (None, 512)               0         
dense_22 (Dense)             (None, 4096)              2101248   
activation_56 (Activation)   (None, 4096)              0         
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dense_23 (Dense)             (None, 4096)              16781312  
activation_57 (Activation)   (None, 4096)              0         
dense_24 (Dense)             (None, 1)                 4097      
activation_58 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 24,357,825
Trainable params: 24,357,825
Non-trainable params: 0

MODEL: <<<< 10 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_36 (Conv2D)           (None, 46, 21, 32)        832       
dropout_25 (Dropout)         (None, 46, 21, 32)        0         
activation_59 (Activation)   (None, 46, 21, 32)        0         
average_pooling2d_8 (Average (None, 23, 10, 32)        0         
conv2d_37 (Conv2D)           (None, 21, 8, 64)         18496     
dropout_26 (Dropout)         (None, 21, 8, 64)         0         
activation_60 (Activation)   (None, 21, 8, 64)         0         
average_pooling2d_9 (Average (None, 10, 4, 64)         0         
conv2d_38 (Conv2D)           (None, 8, 2, 128)         73856     
dropout_27 (Dropout)         (None, 8, 2, 128)         0         
activation_61 (Activation)   (None, 8, 2, 128)         0         
average_pooling2d_10 (Averag (None, 4, 1, 128)         0         
flatten_12 (Flatten)         (None, 512)               0         
dense_25 (Dense)             (None, 64)                32832     
dropout_28 (Dropout)         (None, 64)                0         
activation_62 (Activation)   (None, 64)                0         
dense_26 (Dense)             (None, 64)                4160      
dropout_29 (Dropout)         (None, 64)                0         
activation_63 (Activation)   (None, 64)                0         
dense_27 (Dense)             (None, 1)                 65        
activation_64 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 130,241
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Trainable params: 130,241
Non-trainable params: 0

MODEL: <<<< 11 >>>>>
Layer (type)                 Output Shape              Param #   
================================================================
=
conv2d_39 (Conv2D)           (None, 48, 23, 96)        960       
activation_65 (Activation)   (None, 48, 23, 96)        0         
conv2d_40 (Conv2D)           (None, 46, 21, 96)        83040     
activation_66 (Activation)   (None, 46, 21, 96)        0         
average_pooling2d_11 (Averag (None, 23, 21, 96)        0         
conv2d_41 (Conv2D)           (None, 21, 19, 96)        83040     
activation_67 (Activation)   (None, 21, 19, 96)        0         
conv2d_42 (Conv2D)           (None, 19, 17, 96)        83040     
activation_68 (Activation)   (None, 19, 17, 96)        0         
conv2d_43 (Conv2D)           (None, 17, 15, 96)        83040     
activation_69 (Activation)   (None, 17, 15, 96)        0         
average_pooling2d_12 (Averag (None, 8, 15, 96)         0         
conv2d_44 (Conv2D)           (None, 6, 13, 128)        110720    
activation_70 (Activation)   (None, 6, 13, 128)        0         
conv2d_45 (Conv2D)           (None, 4, 11, 128)        147584    
activation_71 (Activation)   (None, 4, 11, 128)        0         
conv2d_46 (Conv2D)           (None, 2, 9, 128)         147584    
activation_72 (Activation)   (None, 2, 9, 128)         0         
average_pooling2d_13 (Averag (None, 1, 9, 128)         0         
flatten_13 (Flatten)         (None, 1152)              0         
dense_28 (Dense)             (None, 64)                73792     
dropout_30 (Dropout)         (None, 64)                0         
activation_73 (Activation)   (None, 64)                0         
dense_29 (Dense)             (None, 64)                4160      
dropout_31 (Dropout)         (None, 64)                0         
activation_74 (Activation)   (None, 64)                0         
dense_30 (Dense)             (None, 64)                4160      
dropout_32 (Dropout)         (None, 64)                0         
activation_75 (Activation)   (None, 64)                0         
dense_31 (Dense)             (None, 1)                 65        
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activation_76 (Activation)   (None, 1)                 0         
================================================================
=
Total params: 821,185
Trainable params: 821,185
Non-trainable params: 0
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Appendix B - Model Definitions with Keras API



All Models Definition Keras

February 26, 2019

1 Model 1

In [ ]: # model 1

#-- layer 1
model = Sequential()
model.add(Conv2D(256, (3, 3),

input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#-- layer 2
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#-- layer 3
model.add(Flatten())
model.add(Dense(64))

model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,

patience = patience_val,
verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

2 Model 2

In [ ]: #-- layer 1
model = Sequential()
model.add(Conv2D(128, (3, 3), input_shape=X_train_norm_conv.shape[1:]))
model.add(Activation('relu'))

1
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model.add(MaxPooling2D(pool_size=(5, 2))) # changed from (2,2) to (5,2)

#-- layer 2
model.add(Conv2D(64, (3, 3))) # went from 256 to 64
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(4, 2)))

#-- layer 3
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(32)) # went from 64 to 32
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience = patience_val,

verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

3 Model 3

In [ ]: # model 3

#-- layer 1
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Dropout(0.3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#-- layer 2
model.add(Conv2D(32, (3, 3)))
model.add(Dropout(0.3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#-- layer 3
model.add(Conv2D(64, (3, 3)))
model.add(Dropout(0.3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#-- layer 4
model.add(Flatten())
model.add(Dense(64))

2
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model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
optimizer='adam',metrics=['accuracy'])

earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,
patience = patience_val,
verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

# #########################

4 Model 4

In [ ]: # model 4
epochs = min(global_epochs, 200)
batch_size = 16

#-- layer 1
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 2
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 3
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 4
model.add(Flatten())
model.add(Dense(64))
model.add(Dropout(0.2))
model.add(Activation('relu'))

#-- layer 5
model.add(Dense(64))
model.add(Dropout(0.2))
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model.add(Activation('relu'))

model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience = patience_val,
verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

5 Model 5

In [ ]: # model 5
epochs = min(global_epochs, 200)
batch_size = 16

#-- layer 1
model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(10, 2)))

#-- layer 2
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 3
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 4
model.add(Flatten())
model.add(Dense(128))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,
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patience = patience_val,
verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

6 Model 6

In [ ]: # model 6
epochs = min(global_epochs, 200)
batch_size = 16

''' define the CNN model '''

#-- layer 1
model = Sequential()
model.add(Conv2D(96, (5, 5), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))

#-- layer 2
model.add(Conv2D(96, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))

#-- layer 3
model.add(Conv2D(96, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))

#-- layer 4
model.add(Conv2D(96, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(10, 2)))

#-- layer 4
model.add(Conv2D(128, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))

#-- layer 5
model.add(Conv2D(128, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))

#-- layer 6
model.add(Conv2D(128, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 7
model.add(Flatten())
model.add(Dense(64))
model.add(Dropout(0.5))
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model.add(Activation('relu'))

#-- layer 8
model.add(Dense(64))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,

patience = patience_val, verbose = verbosity, mode='auto')
callbacks_list = [earlystop]

7 Model 7

In [ ]: # model 7
epochs = min(global_epochs, 200)
batch_size = 16

''' define the CNN model '''
dropout = 0.2
model = Sequential()

#-- layer 1
model.add(Conv2D(64, (3, 3), input_shape=input_shape, padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))

#-- layer 2
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(10, 2)))

##--layer 3
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 4
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Dropout(dropout))

6

130



model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##-- layer 5
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))

#-- layer 6
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))

#-- layer 7
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

sgd = SGD(lr=learningRate, decay = lr_weight_decay)
model.compile(loss='binary_crossentropy',optimizer='sgd',metrics=['accuracy'])

earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,
patience = patience_val, verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

8 Model 8

In [ ]: # model 8
epochs = min(global_epochs, 200)
batch_size = 16

''' define the CNN model '''
dropout = 0.2
model = Sequential()

#-- layer 1
model.add(Conv2D(6, (3, 3), input_shape=input_shape, padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(5, 1)))

##--layer 2
model.add(Conv2D(12, (3, 3), padding='same'))
model.add(Dropout(dropout))
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model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 3
model.add(Conv2D(24, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 4
model.add(Conv2D(48, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##-- layer 4
model.add(Flatten())
model.add(Dense(120))
model.add(Activation('relu'))

#-- layer 5
model.add(Flatten())
model.add(Dense(120))
model.add(Activation('relu'))

#-- layer 6
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience = patience_val,

verbose = verbosity, mode='auto')
callbacks_list = [earlystop]

9 Model 9

In [ ]: # model 9
epochs = min(global_epochs, 200)
batch_size = 16

''' define the CNN model '''

8

132



dropout = 0.2
model = Sequential()

#-- layer 1
model.add(Conv2D(64, (3, 3), input_shape=input_shape, padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))

#-- layer 2
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 3
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))

#-- layer 4
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 5
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))

#-- layer 6
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

##--layer 7
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))

#-- layer 8
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
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##-- layer 6
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))

#-- layer 7
model.add(Flatten())
model.add(Dense(4096))
model.add(Activation('relu'))

#-- layer 8
model.add(Dense(4096))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

sgd = SGD(lr=learningRate, decay = lr_weight_decay)
model.compile(loss='binary_crossentropy',optimizer='sgd',metrics=['accuracy'])

earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001,
patience = patience_val, verbose = verbosity, mode='auto')

callbacks_list = [earlystop]

# train the model
with tf.Session() as sess:

keras.backend.get_session().run(tf.global_variables_initializer())

history = model.fit(X_train_norm_conv, Y_train, batch_size=32,
nb_epoch=epochs, callbacks=callbacks_list,
validation_split=0.2,
validation_data=(X_test_norm_conv, Y_test))

plot_history(history)

save_nn_model(style_todo,model_number)

10 Model 10

In [ ]: # Model 10
epochs = min(global_epochs, 200)
batch_size = 16

#-- layer 1
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=input_shape))
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model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 2
model.add(Conv2D(64, (3, 3)))
model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 3
model.add(Conv2D(128, (3, 3)))
model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 2)))

#-- layer 4
model.add(Flatten())
model.add(Dense(64))
model.add(Dropout(0.5))
model.add(Activation('relu'))

#-- layer 5
model.add(Dense(64))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience = patience_val,

verbose = verbosity, mode='auto')
callbacks_list = [earlystop]

11 Model 11

In [ ]: # Model 11
epochs = min(global_epochs, 200)
batch_size = 16

#-- layer 1
model = Sequential()
model.add(Conv2D(96, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
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#-- layer 2
model.add(Conv2D(96, (3, 3)))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 3
model.add(Conv2D(96, (3, 3)))
model.add(Activation('relu'))

#-- layer 4
model.add(Conv2D(96, (3, 3)))
model.add(Activation('relu'))

#-- layer 5
model.add(Conv2D(96, (3, 3)))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 6
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))

#-- layer 7
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))

#-- layer 8
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(AveragePooling2D(pool_size=(2, 1)))

#-- layer 9
model.add(Flatten())
model.add(Dense(64))
model.add(Dropout(0.1))
model.add(Activation('relu'))

#-- layer 10
model.add(Dense(64))
model.add(Dropout(0.1))
model.add(Activation('relu'))

#-- layer 11
model.add(Dense(64))
model.add(Dropout(0.1))
model.add(Activation('relu'))

model.add(Dense(1))

12

136



model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

# define early stopping callback
earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience = patience_val,

verbose = verbosity, mode='auto')
callbacks_list = [earlystop]
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