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ABSTRACT 
 
 
DIEGO FERNANDO PAEZ BAUTISTA. Study of hybrid strategies for multi-

objective optimization using gradient-based methods and evolutionary algorithms. 
(Under the direction of DR. HOWIE FANG). 

 
 
Most of the optimization problems encountered in engineering have conflicting 

objectives. In order to solve these problems, genetic algorithms (GAs) and gradient-based 

methods are widely used. GAs are relatively easy to implement, because these algorithms 

only require first-order information of the objectives and constraints. On the other hand, 

GAs do not have a standard termination condition and therefore they may not converge to 

the exact solutions. Gradient-based methods, on the other hand, are based on first- and 

higher-order information of the objectives and constraints. These algorithms converge 

faster to the exact solutions in solving single-objective optimization problems, but are 

inefficient for multi-objective optimization problems (MOOPs) and unable to solve those 

with non-convex objective spaces. 

The work in this dissertation focuses on developing a hybrid strategy for solving 

MOOPs based on feasible sequential quadratic programming (FSQP) and nondominated 

sorting genetic algorithm II (NSGA-II). The hybrid algorithms developed in this 

dissertation are tested using benchmark problems and evaluated based on solution 

distribution, solution accuracy, and execution time. Based on these performance factors, 

the best hybrid strategy is determined and found to be generally efficient with good 

solution distributions in most of the cases studied. The best hybrid algorithm is applied to 

the design of a crushing tube and is shown to have relatively well-distributed solutions 

and good efficiency compared to solutions obtained by NSGA-II and FSQP alone.  

http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html
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CHAPTER 1: INTRODUCTION 
 
 
Optimization is the process of obtaining the best elements from a set of available 

alternatives (called design variables) to achieve the optimal, i.e., minimum or maximum, 

value of an objective function while satisfying some constraints. In mathematics, an 

optimization problem is typically solved by systematically choosing the variables’ values 

from the allowed ranges in order to minimize or maximize the objective function. A large 

number of methods have been developed in the past and they can be categorized into two 

major types: direct search methods based on gradient information such as the conjugate 

gradient method, and heuristic methods such as genetic algorithms (GAs). 

Unlike conventional designs that rely heavily on the designer’s experience in 

order to make design changes, an optimum design process is mathematically formulated 

and involves explicit identification of design variables within the parameter ranges of the 

problem in order to obtain the optimum values of the objectives while satisfying the 

constraints. This formulation process, as illustrated in Figure 1-1, also helps the designer 

to obtain a better understanding of the problem, and ensures that there is an explicit 

process to follow.  
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Figure 1.1: Optimum design process 
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Gradient-based methods can be used to solve continuous, convex optimization 

problems. The continuous condition ensures the existence of gradients at the current 

point, and the convex condition is related to the existence of the descent direction of the 

objective function. These methods were developed to solve nonlinear programming 

problems that cannot be solved using analytical methods, e.g., the Lagrange Multipliers. 

In gradient-based methods, the search operation is performed iteratively along the descent 

directions that are determined using the gradient information so as to approach the 

minimum of the objective function. Gradient-based methods are bounded to the Karush-

Khun-Tuker (KKT) necessary and sufficient conditions, which require a convex solution 

space and therefore guarantees that the solution to the problem is unique. 

Gradient-based methods are convenient for solving single-objective optimization 

problems, with or without constraints. However, there is no direct application to multi-

objective optimization problems (MOOPs) that have multiple, conflicting objectives and 

a set of non-dominant solutions (i.e., the Pareto Front, which means that no single 

solution has the smallest values for all the objective functions in a minimization 

problem). In order to solve multi-objective optimization problems using gradient-based 

methods, one strategy is to convert all but one objective into constraint functions. This 

approach results in a single solution that may not satisfy the design needs. In addition, 

setting the proper constraint for the objective functions may not be easily achieved. 

Another commonly used strategy, the weighted sum formulation (WSF), is to combine all 

the objectives into a single objective that is the sum of all of the original objectives each 

multiplied by a weight coefficient. Each WSF can be solved as a single-objective 

problem that yields a single solution. Multiple solutions can be obtained by varying the 
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weight coefficients among the objective functions to obtain different WSFs. Some issues 

were identified with this method such as the inability to obtain solutions on non-convex 

regions of the Pareto Front (Das et al. 1997; Messac et al. 2000). Another difficulty of the 

WSF method is that there is no guarantee that any given combination of the weight 

coefficients will obtain an acceptable solution in the solution space. 

Another group of methods used to solve MOOPs are evolutionary methods, which 

are heuristic searches based on Charles Darwin’s theory of evolution. These methods suit 

MOOPs particularly well in that they can directly obtain a set of nondominated solutions. 

The main evolutionary methods are evolution strategy (ES), genetic programming (GP), 

and genetic algorithms (GAs). 

Genetic algorithms use operations such as reproduction, mutation and fitness 

evaluation, the same terms used in the biological scenario. The GAs are capable of 

solving optimization problems using only the objective and constraint functions without 

the need for gradient or high-order information. In addition, GAs can be used to solve 

optimization problems regardless of their convexity or continuity. In a GA, each trial 

solution is called an individual, which is a set of variables analogous to the chromosome 

of a human individual. The phenotypes are the actual values of the objective functions to 

be optimized. 

The main operations of a GA are: fitness evaluation, reproduction, and mutation. 

In fitness evaluation, a scalar value of fitness is given to each of the individuals in the 

current population, with a greater value representing a better fit of the individual. After 

assigning fitness values to all of the individuals, the better fit individuals are selected to 

reproduce individuals for the next generation. Finally, the mutation operation, which is 
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introduced in order to maintain genetic diversity, is performed to alter one or more values 

of the chromosome of individuals that account for a small percentage of the new 

population. This operation, like biological mutation, has a low chance of occurring. 

Evolution strategy consists of mutating the individuals of the population and 

keeping the ones that have the best fitness values. This strategy relies heavily on the 

mutation operation in order to obtain better solutions which make the algorithm converge 

slowly. Genetic programming adds a crossover operation to the procedure of the ES. This 

allows the algorithm to obtain a new set of individuals that are later mutated on a small 

proportion (like the biological case). 

One of the drawbacks of GAs is the slow convergence, as a consequence of using 

only zero-order information. Another drawback is that the solution accuracy cannot be 

controlled when approaching to the Pareto front due to oscillations caused by the genetic 

operations. Additionally, there is no standard termination condition for the algorithm; a 

maximum number of generations is usually specified as the termination condition, which 

implies that the algorithm may be over or under iterated and likely makes the final 

solution not ideal. Furthermore, there is no mathematical proof of the convergence of the 

GAs, though the effectiveness of GAs has been shown by empirical results and is widely 

accepted by researchers and engineers. 

Hybrid optimization is the combination of various optimization methods in order 

to take advantage of the strengths of the individual methods. In the past two decades, 

researchers have developed various hybrid methods in which evolutionary algorithms, 

gradient-based methods, particle swarm optimization (PSO) and nested partitions are 

hybridized to create new algorithms. 
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In the work of Michalewicz (1994), a hybrid algorithm named Genocop II was 

proposed by combining a generic GA with simulated annealing (SA) and using the GA as 

a loop inside the SA. This algorithm was tested using nonlinear programming problems 

with nonlinear constraints and was shown to have satisfactory solutions compared to the 

true solutions of the benchmark problems used. 

Shi et al. (1999) proposed a hybrid method named Hybrid NP/GA algorithm that 

was based on a GA and Nested Partitions (NP). The NP method divided the solution 

space into sub-regions and used a random scheme to select a promising sub-region based 

on the objective values of a point in the region. Using a backtracking rule, a new region 

that was larger than the initial sub-region was selected to begin a new iteration. The 

backtracking rule was used to avoid local optima. In the NP/GA method, the GA was 

used inside the NP routine to obtain an overall fitness of the members of the population in 

a partitioned region. This algorithm was tested on a product design problem whose 

objective was to design a single product to maximize the market share of the producer 

with 10, 20, 30 and 50 attributes. The results of the hybrid algorithm was found to 

increase the function value by 1%, 2%, 2% and 3%, respectively, compared to a GA. The 

computational time was increased by ten and eight times for the first two cases, and 44% 

for the 30-attribute problem. The computational time for the 50-attribute problem was the 

same as for the hybrid algorithm and the GA. 

Two hybrid algorithms were proposed by Hu et al. (2003): one combining the 

Strength Pareto Evolutionary Algorithm (SPEA) and Sequential Quadratic Programming 

(SQP), and the other combining the Nondominated Sorting Genetic Algorithm (NSGA) 

and SQP. The two hybrid algorithms were initially tested using benchmark problems 
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ZDT-1 to ZDT-4 and ZDT-6. The results showed that the hybrid algorithms required less 

CPU times compared to SPEA and NSGA up to a factor of 10 and 17, respectively. The 

algorithms were also tested using benchmark problems HU1 to HU5, where the hybrid 

algorithm of NSGA and SQP performed similarly to NSGA and the hybrid algorithm of 

SPEA and SQP was shown to have better convergence and diversity. 

The algorithm proposed by Xia et al. (2004) was named Hybrid Particle Swarm 

Optimization (HPSO) for the job-shop scheduling problem, which was an NP-hard 

problem. This algorithm was based on the PSO and SA and is divided into two stages: the 

PSO was first used to obtain a set of optimal solutions, and the SA was then used to 

diversify the solutions and get out of local optimum points. In the job-shop problem, the 

HPSO was able to obtain the best known solution 74% of the times the algorithm was 

run. The best result of the algorithm was compared to the best result of SB-GA by 

Dondorf, GA3 by Mattfeld, and TS-SB by Kolonko where the HPSO’s result was found 

to have 5% lower objective value than the other algorithms. 

Wang et al. (2005) proposed a hybrid algorithm named RQGA using Quantum 

Genetic Algorithm (QGA) and a GA. The QGA uses principles of quantum computing 

such as Q-bits and linear superposition. The RQGA used one step of QGA followed by 

one step of GA to enhance and balance the exploration of the solution space while 

avoiding being trapped to local optima and avoiding premature convergence. This RQGA 

was tested on two minimization problems, both with a single objective and two variables. 

On the first problem, the RQGA solution was 0.2% smaller and had 10% more 

computational time than that by the QGA alone. On the second problem, the RQGA 

solution was 0.1% smaller and had 13% more time than that by the GA alone. 
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A hybrid algorithm was proposed by Karen et al. (2006) based on Taguchi’s 

method and a GA. Taguchi’s method was used in cascade before using the GA. A two-

bar truss problem was used to test the algorithm and the solution by the hybrid algorithm 

was compared with a generalized center method, GA, game theory, and weighting 

method. The hybrid algorithm was shown to have similar results (less than 1% 

difference) to other methods. The hybrid algorithm was also tested using the design of a 

vehicle part and was found to give similar results to the designs obtained by a GA and a 

CAD design software. 

In the work by Vaz et al. (2006), a hybrid algorithm for global minimization was 

proposed. This hybrid algorithm was based on PSO as a global optimization method, and 

pattern search for local minimization. The hybrid algorithm was tested using several 

benchmark problems including the lj1, lj2, lj3 and hm problems where the hybrid method 

reached competitive solutions ( 10−2  or less difference compared to the best know 

solution) to the ones obtained by DIviding RECTangles (Finkel, 2003), adaptive 

simulated annealing, multilevel coordinate search and parallel genetic algorithm. 

Yan et al. (2006) proposed a hybrid optimization algorithm that involves a 

Support Vector Machine (SVM), which was a classification technique, and a GA. The 

objective of this algorithm was to classify incoming brain waves read by 

electroencephalogram. The SVM was a pattern recognizer which classified data sets 

given their input features, and found an optimal hyperplane by maximizing the margin 

between classes. This hybrid algorithm calculated the fitness of a given solution that was 

evaluated using the average classification accuracy of the SVM, and then continued as a 
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regular GA. The solutions of the hybrid method were found to be 3% to 6% more 

accurate than those using the GA or SVM alone. 

A hybrid algorithm was proposed by Henz et al. (2007) to use a global-local 

approach in which a GA was used as a global search and a continuous sensitivity 

equation (CSE) was used in cascade with the GA to perform a local search. This 

algorithm was initially tested by minimizing the infusion time by changing the injection 

gate locations in a liquid composite modeling process. In this problem the algorithm was 

compared to a GA and CSE by themselves, where the CSE gave a solution six times 

larger than that of the hybrid algorithm, and the GA gave a similar solution to the hybrid 

algorithm. 

In the work by Hiwa et al. (2007), a hybrid optimization algorithm was developed 

using a stacked approach to the hybridization process. The hybrid algorithm used 

DIRECT (Finkel, 2003) as a first stage for a uniform global search and a GA as a second 

stage to improve the search in promising areas and the accuracy of the solutions. Finally, 

the SQP was used to fine tune the optimal solutions. This hybrid algorithm was tested 

using single objective minimization problems including the Rosenbrock function, 

Rastrigin function, and Schwefel function, with ten design variables. For the Rosenbrock 

function, the average optimum value obtained by the hybrid algorithm was 72% smaller 

than that by the GA alone, and the number of function evaluations was 44% less than the 

GA. For the Rastrigin function, the solution by the hybrid algorithm was 50% larger than 

the GA alone, while the number of function evaluations was reduced by 33%. Finally, for 

the Schwefel function, the hybrid algorithm produced a solution that was 11x109 times 

smaller than the GA along and the number of evaluations was reduced by 55%. 
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Kim et al. (2007) proposed a hybrid algorithm combining a GA and a bacterial 

foraging algorithm. The hybrid algorithm was tested and the results were compared to 

those of a GA. The first problem used was a three dimensional paraboloid in which the 

solution by the hybrid algorithm was one order of magnitude smaller than that by the GA 

alone. The second test problem was a two dimensional paraboloid in which the results of 

the two algorithms were similar. Finally, a PID controller for an automatic voltage 

regulator was designed, in which the results of the two algorithms once again were at the 

same magnitude. 

The hybrid algorithm proposed by Ngo et al. (2007) used a staged continuous 

Tabu search (SCTS) algorithm as a global search, and the quasi-Newton method as a 

local search to obtain more accurate solutions. The SCTS strategy was adopted to divide 

the problem in three stages of Tabu Searches: first it randomly generated a trial solution 

and performed a generalized search through the solution space to find a promising 

solution; then, it focused on the search so as to get closer to the optimum based on 

information from the first stage; and lastly it focused on the search to obtain a solution as 

accurate as possible to the real optimum. The hybrid algorithm was used in the 

optimization of band pass filters using fiber bragg gratings. This problem was a single 

objective optimization problem and the designed filter was compared to the standard 

sine-apodized filter. As a result, the filter design by the SCTS had a 25-dB lower 

response in the rejection band decay than the standard filter. 

In the work by Tahk et al. (2007), a hybrid algorithm was proposed to combine an 

EA and a gradient-based method for optimization problems with continuous parameters. 

The main structure of the hybrid method was similar to that of a regular EA except that a 
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special individual called the ‘gradient individual’ was introduced and EA individuals 

were located symmetrically around it. The gradient individual was obtained from the 

gradient-based search after the EA section in the hybrid algorithm. The hybrid algorithm 

was tested using two benchmark problems, the Rosenbrock and Griewank functions, and 

an aircraft control design problem in which the hybrid algorithm was compared to the ES. 

The hybrid algorithm was found to have faster convergence and higher successful rates 

than the ES when running multiple times. 

Blasa-Canto et al. (2008) developed a two-stage hybrid method in which the first 

stage used a GA to perform a global search and the second stage adopted a local multiple-

shooting approach. In this hybrid method, the GA was used to obtain an approximation of 

the real optimum solution of a minimization problem. The local multiple-shooting was 

used to divide an interval into subintervals such that each one contained at least one 

individual from the GA. The hybrid method was tested using two single-objective 

optimization problems: the STAT5 signaling pathway problem and the Goodwin’s model 

for a feedback control system showing a Hopf bifurcation. For the STAT5 problem, the 

computational time of the hybrid method was 4% of the multiple-shooting approach 

alone. For the Godwin’s problem, the time consumed by the hybrid algorithm was 2% of 

the time taken by the multiple-shooting approach alone. 

The algorithm proposed by Kalwij et al. (2008) was a non-adaptive hybrid genetic 

algorithm (AGCT) that integrated a GA and a comprehensive Tabu search. The Tabu 

search was used as part of the GA to replace the usual mutation operation. Another 

algorithm presented was global converge, which includes the same algorithms as AGCT 

plus feedback-driven auto-adaptive control that dynamically changes the Tabu search 
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parameters during run-time. The global convergence algorithm was compared to AGCT 

and an advanced GA and was shown to have 18.79% better convergence than AGCT and 

31.9% better convergence than the GA. 

In the work by Wang et al. (2008), a hybrid optimization method was proposed 

based on the fusion of the clonal selection algorithm (CSA) and harmony search (HS) 

technique. The CSA was employed to improve the members of the harmony memory in 

the HS method. The hybrid optimization algorithm was further used to optimize a fuzzy 

classification system for the Fisher Iris data classification where the classification rate 

achieved was 99.2% which was similar to other methods used for the same purposes. 

Zahara et al. (2008) proposed a hybrid algorithm that combined a PSO and the 

Nether-Mead simplex method (NM-PSO). This algorithm was tested with 13 benchmark 

problems that were studied before by Becerra and Coello (2006) and included 

minimization and maximization of single objective problems. Compared to the results of 

previous studies, the NM-PSO was shown in some cases to produce comparative 

solutions to, if not better than, the cultural differential evolution method, filter SA and 

GA. 

The hybrid algorithm proposed by Zhang et al. (2008) was a method that used an 

SA and GA. This algorithm was used to overlay two CT/MR and MR images taken at 

different times to adequately compare them since these images were taken with different 

parameters such as image resolution, rotation and translation along the three axes. In the 

hybrid algorithm, the SA was used as an elitism mechanism to maintain search width and 

to prevent possible premature convergence in the GA. This was a single-objective 

optimization problem with six design variables. 
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In the work by Chen et al. (2009), a hybrid optimization algorithm named 

AHRGA was proposed. This algorithm was a coupled real-coded GA with the steepest 

descent method as a local search strategy. The hybrid algorithm used GA to find a 

“suboptimal solution” that was subsequently used as an initial point of the local search 

method. This algorithm was tested using a dynamic traffic demand problem and 

compared to an adaptive real-coded GA (ARGA) and a simple GA (SRGA). The 

solutions of the AHRGA were found to be 5% better on average than those of ARGA and 

20% better than those of SRGA. The computing time of the AHRGA was over three 

times more than the ARGA and SRGA; this indicated that the hybrid algorithm was not 

very efficient. 

Cui et al. (2009) proposed an approach that combined co-evolution, Nash 

equilibrium and ε-disturbance technique to form a new hybrid approach called HCPSO. 

This algorithm was tested using six benchmark problems: ZDT1, ZDT2, ZDT3, ZDT4, 

DTLZ2, and DTLZ4. The HCPSO performed well in the test cases used; its convergence 

took 60% of the computational time of NSGA-II. The HCPSO was also used in a case 

study of a cargo ship design in which 2,625 different designs were obtained in the design 

space including 615 infeasible deigns. The results showed that the best design optimized 

by HCSO could hold 100 kg more than the best design from NSGA-II. 

The hybrid algorithm proposed by Dumas et al. (2009) was an adaptive hybrid 

method (AHM), which used a GA as a global search and the steepest descent method 

with a backtracking line search strategy. The hybrid algorithm used the GA in the first 

stage as a global search, and later when there are clustered partial solutions it used the 

steepest descent method. The AHM was tested using the Rast1 and Rast10 problems in 
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which it performed better than the GA. This algorithm was also applied to the Rastrigin 

function and the solutions were shown to be comparable to results available in literature. 

In the work by Hedayat et al. (2009), a hybrid algorithm composed of NSGA-II 

and a fast fitness evaluation system based on the cascade feed forward artificial neural 

networks was proposed. This algorithm was tested in the optimization of the core 

configuration for research reactors in which the result was a uniform and dense Pareto 

front over a wide range of function values. 

Kampf et al. (2009) proposed a hybrid method combining the covariance matrix 

adaptation evolution strategy (CMA-ES) and hybrid differential evolution (HDE) 

algorithms coupled with an efficient backwards ray tracing technique. It was tested using 

standard benchmarks, including the Ackley function and Rastrigin function, as well as a 

solar optimization problem. The proposed algorithm outperformed both the standalone 

CMA-ES and HDE algorithms in both benchmark problems and the solar optimization 

problem in which the hybrid algorithm reduced the total computational time from 65 to 

49 hours. 

Nicholson et al. (2009) proposed a hybrid algorithm that combined a binary 

encoded GA for global search and a SQP for local search. This algorithm was tested by 

finding the coefficients of a matrix in order for the matrix to have certain zeros, a 

problem with eight variables. The hybrid algorithm showed significant improvement in 

performance; the number of iterations needed by the hybrid algorithm was 21% of the 

ones needed by the conventional GA. 

In the work by Padilha et al. (2009), two hybrid algorithms, HA-1 and HA-2, 

were proposed. The HA-1 algorithm combined a GA with the Boyden-Fletcher-Goldfarb-
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Shanno (BFGS) method as a local search. The HA-2 used BFGS after each iteration of 

the GA on the individuals that were the best fit, i.e. the individuals with the lowest values 

of the objective function. These individuals were modified using BFGS and reintroduced 

in the population to be used in the next generation of the GA. These two algorithms were 

tested using the CGAM problem with a single-objective function and the HA-1 was 

found to give a better objective value than HA-2 while the later was faster than the 

former. They were also tested using the CGAM multi-objective problem that was a 

convex MOOP with two objective functions. Both algorithms were able to obtain the true 

Pareto front. 

Sadegheih (2009) proposed six hybrid algorithms, Hybrid I to VI, for the problem 

of network planning by combining GA, SA and Tabu search. Hybrid I was a GA that 

used SA to select individuals for crossover operations. Hybrid II algorithm was a GA that 

incorporated SA in order to select individuals for crossover and mutation. Hybrid III used 

Tabu search to filter the individuals before the reproduction stage to prevent unwanted 

strings to enter future generations. Hybrid IV combined SA and Tabu search where Tabu 

search was used to prevent reoccurrences of strings from previous generations. Hybrid V 

was similar to its predecessor by adding the creation of neighborhood solutions. Finally, 

Hybrid VI was a GA without seeded selection but with a Tabu checking mechanism to 

prevent recent solutions from re-occurring and with the SA uphill move restriction 

operator systems. All the algorithms were tested using a single-objective optimization 

problem where Hybrid VI was found to be the best algorithm.  

The hybrid algorithm proposed by Tahk et al. (2009) combined BFGS, a gradient-

based technique, with an EA. The hybrid algorithm used the EA to estimate the Hessian 
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matrix as well as the gradient vector. The hybrid algorithm was compared to RCGA-

DHX developed by Herrera et al. (2003) using multiple single-objective optimization 

problems. The hybrid algorithm was found to outperform RCGA-DHX by six orders of 

magnitude. 

In the work by Vaz et al. (2009), a hybrid solver for linearly constrained global 

derivative-free optimization called PSwarm was developed. This algorithm was an 

extension of that by Vaz et al. (2006) and could solve problems with linear constraints. 

To ensure that the individuals were in the feasible region, the objective values were not 

calculated unless the constraints were satisfied. This algorithm was compared to ASA, 

DIRECT, and NOMADm on their performance using problems introduced by Parpas 

(2006). The PSwarm converged up to 20% faster than the other algorithms. 

Yıldız et al. (2009) proposed a hybrid algorithm based on the PSO and the 

receptor editing property of the immune system. Receptor editing allowed the immune 

system to identify foreign or own cells. In this algorithm, the receptor editing was used to 

avoid premature convergence of the PSO. The hybrid algorithm was tested using a 

tension spring problem and a pressure vessel design problem. In both test cases, the new 

algorithm produced comparable results to those found in literature, with 66% less 

function evaluations than algorithms by Coello (2004), Arora (1989) and Belugdu (1992). 

The hybrid algorithm proposed by Zhang et al. (2009) combined a PSO and a 

Tabu search to solve the flexible job-shop scheduling problem, which was an extension to 

the classical job-shop scheduling problem. This algorithm was compared with the AL-

CGA and PSO-SA from literature. All of these algorithms performed comparably in the 

case of the flexible job-shop scheduling problem. 
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In the work by Dengiz et al. (2010), a hybrid approach based on ant colony 

optimization (ACO) and SA, called ACO_SA, was proposed for the design of 

communication networks. The ACO was used as the global search algorithm and the SA 

was used as a second stage in order to conduct local search and prevent local optima. In 

the design of a small sized network, the hybrid algorithm was compared to the SA, ACO, 

NGA and LS/NGA and was found to outperform the others by finding a solution using 

less than half of the times by the other algorithms in some cases. 

Duan et al. (2010) proposed a hybrid algorithm composed of the artificial bee 

colony (ABC) and quantum evolutionary algorithm (QEA). In this algorithm, the ABC 

was used to increase the local search capabilities in order to avoid premature 

convergence. The hybrid algorithm was tested using the Rosenbrock function and 

compared to the classical QEA algorithm. The comparison showed that the new 

algorithm was more practical and effective. 

In the work by Elhossini et al. (2010), three hybrid algorithms using an efficient 

PSO and an EA were studied. In the first algorithm, the PSO update operator was inserted 

into the EA main loop to improve the performance of the algorithm by exploring the 

objectives’ boundaries. In the second algorithm, the EA solutions, which were obtained at 

a finite number of iterations or until satisfying a specific criterion, were used as the initial 

population of the PSO. In the third algorithm, the PSO and EA were used in the opposite 

order as that in the second algorithm, i.e., the PSO solutions were used as the initial 

population of the EA. These three algorithms were tested using benchmark problems by 

Kurosawe (1991), Zdt-4 and Zdt-6 in which the first and the third algorithms were found 

to generate better solutions but run slower than the second algorithm.  
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In this dissertation, hybrid strategies based on a GA (i.e., NSGA-II) and a 

gradient-based method (i.e., FSQP) were studied to develop an efficient and effective 

strategy that would have the diversity of the Pareto oriented solutions by GA and the 

accuracy of individual solutions by the gradient-based method. The remaining portion of 

this dissertation is arranged as follows. The general procedure of solving optimization 

problems is first introduced in Chapter 2. The gradient-based methods and genetic 

algorithms are then presented in Chapters 3 and 4, respectively, along with discussions of 

the pros and cons of these methods. In Chapter 5, hybrid optimization strategies are 

proposed for multi-objective optimization problems and are evaluated using three 

benchmark problems. In chapter 6 the best hybrid algorithm proposed in the previous 

chapter is applied to other benchmark problems to identify the strengths and drawbacks 

of this strategy. The new hybrid method is then applied to a real world application 

problem and the results and analysis are presented in Chapter 7, followed by the 

concluding remarks given in Chapter 8. 

 



 
 
 

 
 
 

CHAPTER 2: DESIGN OPTIMIZATION 
 
 
In mathematics, optimization refers to choosing the best element from a set of 

feasible alternatives. This means solving problems by minimizing or maximizing a given 

function or a set of functions while satisfying the constraints of some preset conditions. 

In engineering, optimization is used to improve engineering systems in a large number of 

fields such as materials science, thermodynamics, dynamics, controls, machine design, 

and structural design. This chapter will introduce the basic concepts of design 

optimization (or optimum design) as well as notations and the standard formulation. 

2.1. Design Process 

The traditional design process largely depends on the designer’s experience and 

skills, which may lead to erroneous results in the design of complex systems. Figure 2.1 

shows a flowchart for a traditional design process. The main advantage of the traditional 

design process is that the designer’s experience can be used to make conceptual changes 

or to add additional specifications such as changing structural elements, geometries, or 

types of components. However, when it comes to designs with complex constraints and a 

large number of design variables, the designer may find it difficult to decide any changes 

that may lead to better designs and still satisfy the constraints of the particular design 

problem. 
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Collect data to 
describe the 

system

Estimate the 
initial design

Analyze the 
system

Check 
performance 

criteria

Is design 
satisfactory? STOP

Change the design 
based on 

experience/heuristics

YES

NO

 

Figure 2.1: A traditional design process 

 

In contrast to the traditional design process, an optimum design process, as shown 

in Figure 2.2, requires the designer to explicitly identify the set of design variables, 

objective functions, and constraints. By doing so, an optimum design can be obtained by 

using trend information to make better decisions on design changes than the traditional 

design. Nevertheless, the optimum design process may be greatly benefitted by the 

experience of the designer in formulating the problem and identifying certain constraints.  
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NO

 

Figure 2.2: An optimum design process 
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2.2. Problem Formulation 

An optimum solution is as good as its formulation; therefore it is important to 

follow well defined procedures to formulate a design optimization problem. If a critical 

constraint is missing in the formulation, the optimum solution will most likely be an 

infeasible one because the missing constraint will increase the size of the design space 

including infeasible designs. Also if the constraints are inconsistent or redundant, there 

may not be a feasible solution to the design problem. Proper formulation of an 

optimization problem leads to the proper solution of the problem solved by an 

optimization algorithm. 

The formulation of an optimum design problem involves translating a descriptive 

statement into well-defined mathematical equations. The followings are key steps to 

develop a mathematical formulation for design optimization problems. 

2.2.1 Problem Statement 

The design problem begins by developing a linguistic statement of the problem, 

which should include all the objectives to be met and the associated requirements. The 

goals of the problem statement should be as clear as possible to the designer in order to 

translate the linguistic statement into mathematical equations. 

2.2.2 Data and Information Collection 

In order to develop a proper mathematical formulation of the design problem, data 

and information need to be collected on properties, performance, resource limits, 

materials costs, and other information relevant to the design problem. Analysis 

procedures and tools such as software packages should also be identified in this stage. 
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2.2.3 Definition of Design Variables 

In this stage, design variables of the optimization problem are selected and the 

range values (i.e., lower and upper bounds) are identified. In order to do so, the relevant 

operational principles, such as mechanical, electrical, and/or chemical specifications, 

should be clear to the designer in order to identify the minimum amount of relevant 

independent variables. A set of design variables is typically denoted as 𝑥𝑗 , 𝑗 = 1,2,3, … , 𝑛 

and can be represented in vector form as 

 �⃗� = �

𝑥1
𝑥2
⋮
𝑥𝑛

�  (2-1) 

2.2.4 Constraints 

A restriction placed on a design is called constraint. Constraints are imposed by 

the particular characteristics of the design or resources at hand. In order to have a 

satisfactory design, all constraints must be satisfied. If at least one constraint is not 

satisfied, the design is considered to be unacceptable and is referred to as infeasible. 

There are two types of constraints: inequality constraints and equality constraints that are 

defined as follows. 

Inequality constraints: 𝑔𝑖(�⃗�) ≤ 0;  𝑖 = 1,2, … ,𝑚  (2-2) 

Equality constraints: ℎ𝑖(�⃗�) = 0;  𝑖 = 1,2, … ,𝑝  (2-3) 

2.2.5 Optimization Criterion  

In order to determine if a particular design is better than another one, a certain 

criterion is necessary for design evaluation. In optimization, a criterion is typically given 

in the form of a scalar function or a set of functions, whose numerical value can be 

obtained once a design is specified. In other words, a criterion function is a function of 
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the design variables �⃗�. These criteria are called objective functions for optimum design 

problems, which need to be minimized or maximized. The objective functions must be 

directly influenced by the design variables; otherwise, they are not meaningful to the 

optimization problem. 

The objective functions are designated as: 𝑓1(�⃗�),𝑓2(�⃗�), … , 𝑓𝑘(�⃗�), where k is the 

number of objective functions in the optimization problem. The objective functions in a 

vector form are represented as: 

 𝑓(�⃗�) = �

𝑓1(�⃗�)
𝑓2(�⃗�)
⋮

𝑓𝑘(�⃗�)

�  (2-4) 

2.3. Standard Formulation of an Optimization Problem 

The standard formulation is a general mathematical representation and description 

of the optimization problem. In the standard formulation, the optimization problem is 

always defined as the minimization of one or a set of objective functions that are subject 

to all inequality and equality constraints. The standard formulation is given as: 

Min.  𝑓(𝐱) = �

𝑓1(𝑥1𝑥2, , …𝑥𝑛)
𝑓2(𝑥1𝑥2, , … 𝑥𝑛)

⋮
𝑓𝑘(𝑥1, 𝑥2, … 𝑥𝑛)

�  (2-5) 

s.t.  ℎ𝑗(𝐱) = ℎ𝑗(𝑥1, 𝑥2, … 𝑥𝑛) = 0;  𝑗 = 1, … , 𝑝  (2-6) 

 𝑔𝑖(𝐱) = 𝑔𝑖(𝑥1, 𝑥2, …𝑥𝑛) ≤ 0;  𝑖 = 1, … ,𝑚  (2-7) 

Note that the inequality constraints should be of the “less-than-or-equal-to” type, 

i.e., in the form of 𝑔𝑖(�⃗�) ≤ 0. For a maximization problem (i.e., the objective function is 

to be maximized), the formulation can be expressed as a minimization as  

 Max. 𝑓(�⃗�) = Min. –𝑓(�⃗�)  (2-8) 
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where 𝑓(𝑥) is the objective function of the original maximization problem. The solutions 

of Eq. (2-8) are the same as those of the original maximization problem, as graphically 

illustrated in Figure 2.3. The plots of the two functions, F(x) and –F(x), show that both 

the maximum value of 𝐹(𝑥) and the minimum value of –F(x) occur at point 𝑥∗, which is 

the solution of both F(x) and –F(x). Therefore, the maximization of 𝐹(𝑥) is equivalent to 

the minimization of −𝐹(𝑥). 

 

Figure 2.3: Equivalency of max 𝐹(𝑥) to min−𝐹(𝑥) 

The standard optimization formulation handles only the “less-than-or-equal-to” 

type ( ≤ ) of inequality constraints. If an optimization problem has a “greater-than-or-

equal-to” constraint, i.e., 𝐺𝑗(𝑥) ≥ 0, then that constraint need be converted to the 

standard form by multiplying it by -1, given as follows: 

  𝑔𝑗 = −𝐺𝑗(𝑥) ≤ 0  (2-9) 
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2.4. Solution to the Optimization Problem 

The solution to an optimization problem is typically a single point for a single-

objective problem and a set of points for a multi-objective problem. In both cases, the 

solution(s) should not violate any of the constraints. 

2.4.1 Single-Objective Optimization 

 In the case of single-objective optimization, the solution is typically a single 

point in the solution space or a set of points along an active constraint. An active 

constraint is defined as an inequality constraint, 𝑔𝑗(𝑥) ≤ 0 , satisfying the equality 

condition of  𝑔𝑗(𝑥∗) = 0 at point 𝑥∗. When no constraint of the problem is violated, the 

solution point or points are considered a feasible solution or solutions. For example, 

consider the following problem: 

Min. 𝑓(𝑥) = 𝑥2  (2-10) 

s.t. 𝑔1(�⃗�) = 𝑥 − 2 ≤ 0  (2-11) 

 𝑔2(�⃗�) = −2 − 𝑥 ≤ 0  (2-12) 

Figure 2.4 shows the graphical illustration of the problem and its solution. It can 

be seen that the global minimum of 𝑓(𝑥) is located at 𝑥 = 0 without considering the 

constraints. If the constraints are considered, then the feasible points become those that 

are above the red line in Figure 2.4; therefore, the solutions are x = -2 and x = 2, which 

make the constraints active. 
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Figure 2.4: Graphical illustration of optimization problem in Eqs. (2-10) to (2-12) 

 

2.4.2 Multi-Objective Optimization 

In multi-objective optimization, the solution is typically a set of points rather than 

a single point. All the points in the solution set are called nondominated solutions, 

because there is no single solution that is better than another for all the objectives. In 

other words, a point �⃗�∗  is nondominated in a minimization problem where it doesn’t 

exist another point �⃗� such that 𝒇(�⃗�) < 𝒇(�⃗�∗). That there is no point that improves all the 

objective functions simultaneously. However, there may be points that improve some of 

the objective functions. Consider the following problem: 

Min. 𝑓1(𝑥) = (𝑥 − 2)2  (2-13) 

 𝑓2(𝑥) = (𝑥 + 2)2  (2-14) 



28 
 
The graphical illustration of the problem is shown in Figure 2.5 in which there is 

not a clear minimum in the problem. For example, the minimum point of 𝑓1(𝑥) 

corresponds to a point that is far from the minimum of 𝑓2(𝑥). 

 

Figure 2.5: Graphical illustration of Eqs.  2-13 and 2-14 

 

To illustrate the dominancy of the solutions, the objective or solution space is 

shown in Figure 2.6. For the problem given by equations (2-13) and (2-14), the solution 

space is a plane formed by 𝑓1(𝑥) as the horizontal axis and 𝑓2(𝑥) as the vertical axis. 
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Figure 2.6: Solution space of  2-13 and  2-14 

 

In Figure 2.6, the feasible and nondominated solutions are those on the red line, 

which is formally called the Pareto Front. The points on the black line are dominated by 

at least one point on the red line. Among the nondominated solutions, it can be seen that 

there is no single solution having smaller values of both 𝑓1(𝑥) and 𝑓2(𝑥) than any other 

solution.  The nondominated solutions fall in the range of [−2 ≤ 𝑥 ≤ 2] in the design 

space, corresponding to the red line in the objective space in Figure 2.6. The solution of 

the problem gives the designer the liberty to choose any of the solution points in the 

Pareto front, depending on the designer’s preference on the trade-off between the two 

objectives. 



 
 
 

 
 
 

CHAPTER 3: GRADIENT-BASED METHODS 
 
 
Gradient-based methods are iterative methods developed to solve single-objective 

optimization problems. These methods were developed in order to solve nonlinear 

optimization problems that were very difficult to solve using analytical methods. As their 

names indicate, these methods require the gradients of the objective function and 

constraint functions in order to determine the search directions and step sizes to find the 

optimal solution. These numerical methods are rarely done by hand; they need to be 

implemented into computer programs due to the complexity and amount of 

computational work. 

Before discussing gradient-based methods, it is necessary to take a look at the line 

search methods. These methods are used as part of many gradient-based methods to 

calculate a step size by solving a one-dimensional minimization problem. 

The basic idea of a line search method is to reduce an interval of uncertainty 

around the minimum of an objective function in each iteration. Therefore, the line search 

methods do not give an exact solution; instead they give a range in which the minimum 

of the objective function is located. Furthermore, gradient-based methods use line 

searches as a subsequent stage after determining the search direction, which is 

determined by using the first- or even higher-order information of the objective and 

constraint functions. 
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3.1. Equal Interval Search 

Equal interval search is a simple method used to minimize a function 𝑓(𝛼) in 

which an interval for the single variable, a, is determined, i.e., 𝛼0 ≤ 𝛼 ≤ 𝛼�. The interval 

is then used as the solution to the problem. This method is divided in two phases and the 

first phase is given by the following algorithm: 

Step 1: Select a small number 𝛿, and set the iteration counter 𝑘 = 0. 

Step 2: Obtain the function values 𝑓(𝑘𝛿 + 𝛼0) and 𝑓�(𝑘 + 1)𝛿 + 𝛼0�. 

Step 3: If 𝑓(𝑘𝛿 + 𝛼0) ≤ 𝑓�(𝑘 + 1)𝛿 + 𝛼0�, then go to the second phase; 

otherwise increase the iteration counter 𝑘 by 1, and go to Step 2. 

 

Figure 3.1: Equal interval search phase I 
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On a unimodal function, if the condition established in Step 3 is met, then the 

minimum point of the objective function is determined to reside in the range of (𝑘 −

1)𝛿 and (𝑘 + 1)𝛿. At this point the second phase is used to further reduce this interval 

enclosing the solution. The second phase algorithm is the same as the first one except that 

the second phase uses 𝛼0 =  (𝑘 − 1)𝛿  and the step 𝛿 is changed to  𝑟𝛿, where 𝑟 ≪ 1 so 

that the uncertainty of the solution is reduced to 2𝑟𝛿 . If the uncertainty needs to be 

further reduced, then the second phase can be used again and the uncertainty can be 

reduced to 2𝑟2𝛿. 

 

Figure 3.2: Equal interval search phase II 

 

The efficiency of the equal interval search method depends on the number of 

evaluations needed to get to an acceptable solution. In other words, it depends on the 

required uncertainty level, which is determined by the values of the two parameters 
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𝛿 and 𝑟. If 𝛿 is very small, the number of iterations in the first phase will be increased, 

but the second phase may require less function evaluations. 

A variation of this method is to set the parameter 𝛿 dependent on the value of  𝛼� 

so as to reduce the number of parameters to be manually selected and thus improve the 

efficiency of the algorithm. 

3.2. Golden Section Search 

Golden section search is an improved method over the equal interval search and is 

one of the best methods for interval search. The golden section search method also has 

two phases. In the first phase, the increment 𝛿 is not a constant and this value changes by 

multiplying with the golden ratio 1.618 in each iteration to make the algorithm more 

efficient in locating the minimum value. In the second phase, the range located in the first 

phase is reduced by a value of the inverse of the golden ratio, i.e., 1/1.618 = 0.618. One 

of the properties of the golden ratio is: 

 1
1.618

= 0.618  (3-1) 

The golden section search method is given by the following algorithm: 

Step 1: Select a small number 𝛿,  set a convergence parameter 𝜀 > 0, and set the 

iteration counter 𝑘 = 0. 

Step 2: Evaluate the function𝑠 𝑓�∑ 𝛿(1.618)𝑗𝑘
𝑗=0 � and 𝑓�∑ 𝛿(1.618)𝑗𝑘+1

𝑗=0 �. 

Step 3: If 𝑓�∑ 𝛿(1.618)𝑗𝑘
𝑗=0 � > 𝑓�∑ 𝛿(1.618)𝑗𝑘+1

𝑗=0 �, then increase the iteration 

counter 𝑘 by 1, and go to Step 2, otherwise continue. 
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Figure 3.3: Golden section search steps 2 and 3 

 

Step 4: Set 𝛼𝑙 = 𝑓�∑ 𝛿(1.618)𝑗𝑘−1
𝑗=0 �, 𝛼𝑢 = 𝑓�∑ 𝛿(1.618)𝑗𝑘+1

𝑗=0 �, 𝐼 = 𝛼𝑢 − 𝛼𝑙 , 

𝛼𝑎 = 𝑓�∑ 𝛿(1.618)𝑗𝑘
𝑗=0 �, 𝛼𝑏 = 𝛼𝑙 + 𝐼

1.618� . Find 𝑓(𝛼𝑏). 

Step 5: Compare 𝑓(𝑎) and 𝑓(𝑏) and go to i, ii, or iii 

i) If 𝑓(𝑎) < 𝑓(𝑏), then the minimum point lies between 𝛼𝑙 and 𝛼𝑏 , 

set 𝛼𝑢 = 𝛼𝑏 , 𝛼𝑏 = 𝛼𝑎. Find  𝛼𝑎 = 𝛼𝑙 + 0.382(𝛼𝑢 − 𝛼𝑙), compute 

𝑓(𝛼𝑎) and go to Step 6. 

ii) If 𝑓(𝑎) > 𝑓(𝑏), then the minimum point lies between 𝛼𝑎 and 𝛼𝑢 , 

set 𝛼𝑙 = 𝛼𝑎, 𝛼𝑎 = 𝛼𝑏 , 𝛼𝑏 = 𝛼𝑙 + 0.618(𝛼𝑢 − 𝛼𝑙) , compute 

𝑓(𝛼𝑏) and go to Step 6. 

iii) If 𝑓(𝑎) = 𝑓(𝑏), set 𝛼𝑙 = 𝑎,𝛼𝑢 = 𝑏 and return to Step 2. 
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Step 6: Compute the new 𝐼, if 𝐼 < 𝜀, let 𝛼∗ = (𝛼𝑏 − 𝛼𝑎)/2 and stop. Otherwise 

go to Step 5. 

 

Figure 3.4: Golden section search step 5 

 

It is important to note that both golden section search and equal interval search are 

line search methods that do not require determining the search direction. The following 

methods to be discussed require the search directions to be determined in addition to step 

sizes, which are typically determined by a line search method. 

3.3. Steepest Descent Method 

The steepest descent method is a first-order method introduced by Cauchy in 

1847. It utilizes the gradient information to determine the descent direction of the 

objective function and find its local minimum. In each iteration of this method, the 

gradient of the objective function is used to find a direction  𝑑  along which the cost 

function 𝑓(�⃗�) decreases at its highest rate. A one dimensional search algorithm is then 

used to determine the necessary step size along the previously determined search 

direction. This method is a first-order method; in other words, only first-order 

information (or the gradient) of the cost function needs to be calculated. 
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The search direction is given by the negative gradient of the objective function, 

−∇𝑓(�⃗�),  at the current point. Since the gradient vector gives the direction along which 

the function grows the most, the negative gradient thus gives the direction of function 

decrease, which is needed to find the minimum value of the objective. 

The following gives the algorithm of the steepest descent method: 

Step 1: Choose a starting point �⃗�(0), choose a convergence parameter 𝜀 > 0 and 

set the iteration counter 𝑘 = 0. 

Step 2: Calculate 𝒄(𝑘) = ∇𝑓��⃗�(𝑘)�  

Step 3: Calculate �𝒄(𝑘)�. If �𝒄(𝑘)� < 𝜀 then stop and �⃗�(𝑘) is the minimum point, 

otherwise continue. 

Step 4: Calculate a step size 𝛼𝑘 that minimizes 𝑓�𝒙(𝑘) − 𝛼𝑘𝒄(𝑘)�, using any of the 

one-dimensional search algorithms. 

Step 5: Update the design 𝒙(𝑘+1) = 𝒙(𝑘) − 𝛼𝑘𝒄(𝑘). Increment the iteration counter 

𝑘 by 1, and go to Step 2. 

The steepest descent method is a simple and robust method that guarantees 

convergence. However, it has some drawbacks such as the large number of iterations 

needed to reach a local minimum point. In addition, it does not use the information 

obtained from previous iterations, that is, each iteration is independent and orthogonal 

from each other, as illustrated in Figure 3-1. These orthogonal search directions do not 

give the best search direction in the global scheme and thus make the algorithm 

inefficient. Moreover, this method only uses first-order information of the objective 

function; this is another contributor to the slow convergence of the method. The rate of 
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convergence of the steepest descent method also depends on the accuracy of the one 

dimensional search that is used to determine the step size.  

 

Figure 3.5: Steepest descent method approaching a local minimum 

 

3.4. Conjugate Gradient Method 

The conjugate gradient method is a simple yet effective modification of the 

steepest descent method. In the steepest descent method, two consecutive search 

directions are orthogonal to each other and thus make the algorithm converge slowly 

when approaching the optimum. In the conjugate gradient method, the search directions 

are calculated such that they are not orthogonal to each other. The search direction at the 

current point is determined such that it cuts diagonally through the current steepest 

descent directions and the search direction immediately before the current iteration. This 
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makes the conjugate gradient method converge much faster than its predecessor, i.e., the 

steepest descent method. The following gives the algorithm of the conjugate gradient 

method: 

Step 1: Choose a starting point �⃗�(0), choose a convergence parameter 𝜀 > 0 and 

set the iteration counter  𝑘 = 0 , calculate  𝒄(0) = ∇𝑓��⃗�(0)� , if the stopping 

criterion �𝒄(𝑘)� < 𝜀, then stop. Otherwise go to Step 5. 

Step 2: Calculate 𝒄(𝑘) = ∇𝑓��⃗�(𝑘)�  

Step 3: Calculate �𝒄(𝑘)�. If �𝒄(𝑘)� < 𝜀 then stop and �⃗�(𝑘) is the minimum point. 

Step 4: Calculate the conjugate direction as: 

 𝒅𝑘 = −𝒄(𝑘) + 𝛽𝑘𝒅(𝑘−1) (3-2) 

 𝛽𝑘 = � �𝒄(𝑘)�
�𝒄(𝑘−1)� 

�
2
 (3-3) 

Step 5: Calculate a step size 𝛼𝑘 that minimizes 𝑓�𝒙(𝑘) + 𝛼𝑘𝒅(𝑘)� using any one 

dimensional search algorithm. 

Step 6: Update the design 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘𝒅(𝑘). Increment the iteration counter 

𝑘 by 1, and go to Step 2. 

The only modification from the steepest descent method is the calculation 

of 𝑑(𝑘), which requires some additional calculations. However, it substantially improves 

the rate of convergence as shown in Figure 3-2. The conjugate gradient method is 

preferred over the steepest descent method, because the former has a capability that the 

later clearly does not possess. 
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Figure 3.6: Steepest descent method vs. conjugate gradient method 

 

3.5. Quadratic Programming (QP) 

The quadratic programming (QP) method is a search direction determination 

algorithm in which the descent direction is calculated based on a linearized sub problem 

along with a line search method to calculate a step size that minimizes the objective 

function. The sub problem is defined as: 

 min𝑓̅ = 𝒄𝑇𝒅 + 1
2
𝒅𝒅𝑇  (3-4) 

 s.t.  𝐍𝑇𝒅 = 𝒆  (3-5) 

 𝐀𝑇𝒅 ≤ 𝒃  (3-6) 
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where the negative of the jth equality constraint function is defined as: 

 𝑒𝑗 = −ℎ𝑗�𝒙(𝑘)�  (3-7) 

and the negative of the jth inequality constraint function is given by: 

 𝑏𝑗 = −𝑔𝑗�𝒙(𝑘)�  (3-8) 

The derivative of the objective function with respect of 𝑥𝑖 is calculated as: 

  𝑐𝑖 = 𝜕𝑓�𝒙𝑘�
𝜕𝑥𝑖

  (3-9) 

The matrix of the derivative of ℎ𝑗  with respect of 𝑥𝑖 is: 

  𝑛𝑖𝑗 = 𝜕ℎ𝑗�𝒙𝑘�
𝜕𝑥𝑖

  (3-10) 

The matrix derivative of 𝑔𝑗 with respect of 𝑥𝑖 is: 

  𝛼𝑖𝑗 = 𝜕𝑔�𝒙𝑘�
𝜕𝑥𝑖

  (3-11) 

The design change is: 

  𝑑𝑖 = Δ�𝒙𝑖(𝑘)�  (3-12) 

A QP sub problem is strictly convex and thus it has a unique global minimum 

which would not be possible if the QP sub problem is non-convex. 

3.6. Constrained Steepest Descent (CSD) 

The CSD method introduces a penalty parameter and applied it to the objective 

function for constraint violations in order to ensure that the solution is feasible. This 

method is proven to converge to a local minimum from any starting point. The following 

gives the algorithm of the CSD method: 
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Step 1: Set k = 0 and choose a starting point �⃗�(0). Select an initial value of the 

penalty parameter 𝑅0 and two small numbers 𝜀1 and 𝜀2that define the permissible 

constraint violation and convergence parameter, respectively. 

Step 2: Calculate the values and gradients of the cost and constraint functions 

at 𝒙(𝑘). Calculate the maximum constraint violation as 

𝑉𝑘 = max (0; |ℎ1|, … , �ℎ𝑝�,𝑔1, … ,𝑔𝑚). 

Step 3: Define the QP sub problem as given in section 3.5 using the calculations 

from the previous step, and solve it to get the search direction 𝒅(𝑘) and the 

Lagrange multipliers 𝒗(𝑘) and 𝒖(𝑘). 

Step 4: Check the stopping criteria �𝒅(𝑘)� ≤ 𝜀2 and the maximum constraint 

violation 𝑉𝑘 ≤ 𝜀1. If both conditions are met then stop, otherwise continue. 

Step 5: Calculate 𝑟𝑘 = ∑ �𝑣𝑖(𝑘)�𝑝
𝑖=1 + ∑ 𝑢𝑖(𝑘)𝑚

𝑖=1  and set 𝑅 = max (𝑅𝑘, 𝑟𝑘). 

Step 6: Find 𝛼𝑘 using a line search algorithm. Set 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘𝒅(𝑘). 

Step 7: Save the penalty parameter 𝑅𝑘+1 = 𝑅. Update the iteration counter 𝑘 by 1, 

and go to Step 2. 

For unconstrained optimization problems, the CSD method is reduced to its 

predecessor, the steepest descent method. 

3.7. Newton’s Method 

Methods such as the conjugate gradient, QP, and CSD only require the calculation 

of first-order information of the objective and constraint functions in order to determine 

the search direction. In Newton’s method, the second-order information is used to 

improve the efficiency in locating the optimal value of the objective function. With the 
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second-order information, i.e., the Hessian matrix, the method has a second-order 

convergence rate. If the objective function is quadratic and positive definite, the method 

converges in one iteration with a step size of one. 

The basic idea of Newton’s method’s is to use a second-order Taylor’s expansion 

of the change of the objective function at the current point, resulting in a quadratic 

expression of the objective change in terms of  the design change given by 

 𝑓(𝒙��⃗ + ∆𝒙��⃗ ) − 𝑓(𝒙��⃗ ) = 𝒄�⃗ 𝑇∆𝒙��⃗ + 0.5∆𝒙��⃗ 𝑇𝐇∆𝒙��⃗    (3-13) 

where 𝐇 is the Hessian of the objective function 𝑓 at the current point 𝒙��⃗ , 𝑐 is the gradient 

vector of 𝑓, and ∆𝒙��⃗  is a small change of the design variables 𝒙��⃗ . If the Hessian of 𝑓 is 

positive semi-definite, then there exists a ∆𝒙��⃗  that will find the global minimum of the 

objective. If the Hessian is strictly positive definite, the minimum is unique. The 

optimality condition is given by 

 𝜕𝑓
𝜕(∆𝒙��⃗ ) = �⃗� + 𝐇∆𝐱 = 0�⃗   (3-14) 

and ∆𝐱 is solved by 

 ∆𝐱�⃗ = −𝐇−𝟏𝐜  (3-15) 

The design update is given by 

𝐱(1) = 𝐱(0) + ∆𝐱 

Since Eq. (3-13) is an approximation for 𝑓 the update may not be exact minimum 

point there is the need to define an iterative procedure. 

The algorithm of the Newton’s method is given as follows: 

Step 1: Choose a starting point 𝒙��⃗ (0) and set the iteration counter 𝑘 = 0. 

Step 2: Calculate ∆𝒙��⃗ (𝑘) = −𝐇−1(𝑘)𝒄�⃗ (𝑘). 
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Step 3: Update the design as 𝒙(𝑘+1) = 𝒙(𝑘) + ∆𝑥. If 𝑘 = 𝑛(𝑛 + 1)/2, where 𝑛 is 

the number of design variables, stop, otherwise increase 𝑘 and go to Step 2. 

At the end of each iteration, the Hessian matrix 𝑯 and its inverse need to be 

recalculated; thus significant computational effort is required. It should be noted that 

there is no line search associated with Newton’s method; this means that there is no 

certainty that the descent condition 𝑓�𝒙(𝑘+1)� < 𝑓(𝒙𝑘) is satisfied. 

3.8. Modified Newton’s Method 

The Newton’s method does not guarantee that the cost function is reduced in each 

iteration. To correct this deficiency, the modified Newton’s method is developed by 

incorporating a line search that calculates a step so as to reduce the cost function’s value. 

The following gives the algorithm for the modified Newton’s method. 

Step 1: Choose a starting point 𝒙(0), set the iteration counter 𝑘 = 0, and select a 

convergence parameter 𝜀. 

Step 2: Calculate 𝒄(𝑘) = ∇𝑓��⃗�(𝑘)�. If ‖𝒄𝑘‖ < 𝜀, stop. Otherwise, continue. 

Step 3: Calculate 𝐇(𝑘). 

Step 4: Calculate 𝒅(𝑘) = −�𝐇(𝑘)�
−1
𝒄(𝑘). 

Step 5: Calculate the step size 𝛼 that minimizes 𝑓(𝒙(𝑘) + 𝛼𝑘𝒅(𝑘)) using any line 

search algorithm. 

Step 6: Update the design 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝒅(𝑘). Set 𝑘 = 𝑘 + 1, go to Step 2. 

It is important to know that unless the Hessian matrix 𝐇 is positive definite, the 

descent condition  𝑓�𝑥(𝑘+1)� < 𝑓(𝑥𝑘) may not be satisfied. In the case of a singular 

matrix H, the descent direction 𝑑(𝑘) cannot be calculated. 
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3.9. Quasi-Newton Methods 

Both the Newton’s method and modified Newton’s method require the calculation 

of the Hessian matrix H in each iteration. This calculation not only significantly increases 

the computational cost, but also may not always result in a positive definite Hessian, 

which is required to ensure the reduction of the objective function. To this end, quasi-

Newton methods were developed to overcome both the above mentioned deficiencies by 

using approximate Hessian matrices or their inverses that would always be positive 

definite. In this section, two commonly used quasi-Newton methods, the Davidson-

Fletcher-Powell (DFP) method and the Boyden-Fletcher-Goldfarb-Shanno (BFGS) 

method are introduced. 

3.9.1 DFP Method 

The DFP method is a quasi-Newton method that builds and uses a first-order 

approximate matrix of the Hessian’s inverse of the cost unction 𝑓(𝑥). By calculating an 

approximate of the Hessian’s inverse, the complexity of the calculations is significantly 

reduced. The following gives the algorithm of the DFP method. 

Step 1: Choose a starting point 𝒙(0), choose a symmetric positive definite 𝑛 ×

𝑛 matrix  𝐀(0) (the identity matrix can be selected), set the iteration counter 𝑘 =

0 , select a convergence parameter  𝜀 , and compute the gradient vector  𝒄(0) =

∇𝑓(𝒙(0)). 

Step 2: Calculate‖𝒄𝑘‖, if  ‖𝒄𝑘‖ < 𝜀 stop. Otherwise, continue. 

Step 3: Calculate the search direction 𝒅(𝑘) = −𝐀(𝑘)𝒄(𝑘). 

Step 4: Calculate the step size 𝛼𝑘 that minimizes 𝑓(𝒙(𝑘) + 𝛼𝑘𝒅(𝑘)) using any line 

search algorithm. 
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Step 5: Update the design 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘𝒅(𝑘).  

Step 6: Update the matrix 𝐀(𝑘) as 𝐀(𝑘+1) = 𝐀(𝑘) + 𝐁(𝑘) + 𝐂(𝑘), where 

𝐁(𝑘) = 𝒔(𝑘)𝒔(𝑘)𝑇

𝒔(𝑘)∙𝒚(𝑘) ;𝐂(𝑘) = −𝒛(𝑘)𝒛(𝑘)𝑇

𝒚(𝑘)∙𝒛(𝑘)   (3-16) 

𝒔(𝑘) = 𝛼𝑘𝒅(𝑘);𝒚(𝑘) = 𝒄(𝑘+1) − 𝒄(𝑘) (3-17) 

𝒄(𝑘+1) = ∇𝑓�𝒙(𝑘+1)�; 𝒛(𝑘) = 𝐀(𝑘)𝒚(𝑘) (3-18) 

Step 7: Set 𝑘 = 𝑘 + 1 and go to Step 2. 

Note that matrix 𝐀(𝑘) is an approximate of the inverse of the Hessian matrix and 

will always be positive definite. Since this method does not require the direct calculation 

of the Hessian and its inverse, it is much more efficient than the Newton’s method. 

3.9.2 BFGS Method 

The BFGS method is another quasi-Newton method. Unlike the DFP method in 

which an approximate of the inverse of the Hessian is generated and used, the BFGS uses 

an approximate matrix of the Hessian of the cost function. The following gives the 

algorithm for DFP method. 

Step 1: Choose a starting point 𝒙(0), choose a symmetric positive definite 𝑛 ×

𝑛 matrix  𝐇(0) (the identity matrix can be selected), set the iteration counter 𝑘 =

0 , select a convergence parameter  𝜀 , and compute the gradient vector  𝒄(0) =

∇𝑓(𝒙(0)). 

Step 2: Calculate 𝒄(𝑘) = ∇𝑓�𝒙(𝑘)�. If ‖𝒄𝑘‖ < 𝜀, stop. Otherwise, continue. 

Step 3: Solve for the search direction 𝒅(𝑘)the system 𝐇(𝑘)𝒅(𝑘) = −𝒄(𝑘). 

Step 4: Calculate the step size 𝛼𝑘 that minimizes 𝑓(𝒙(𝑘) + 𝛼𝑘𝒅(𝑘)) using any line 

search algorithm. 
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Step 5: Update the design 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘𝒅(𝑘).  

Step 6: Update the Hessian approximation 𝐇(𝑘) as 𝐇(𝑘+1) = 𝐇(𝑘) + 𝐃(𝑘) + 𝐄(𝑘), 

where 𝐃(𝑘) = −𝒚(𝑘)𝒚(𝑘)𝑇

𝒚(𝑘)∙𝒔(𝑘)  ;𝐄(𝑘) = 𝑐(𝑘)𝑐(𝑘)𝑇

𝑐(𝑘)∙𝑑(𝑘) ; 𝒔(𝑘) = 𝛼𝑘𝒅(𝑘);𝒚(𝑘) = 𝒄(𝑘+1) − 𝒄(𝑘)  

 𝒄(𝑘+1) = ∇𝑓�𝒙(𝑘+1)�.  

Step 7: Set 𝑘 = 𝑘 + 1 and go to Step 2. 

Note that the above updating formula can keep the approximate Hessian positive 

definite only when an accurate step size is calculated. Due to numerical errors in the line 

search algorithm, the approximate Hessian may become singular or indefinite and cause 

the algorithm to fail. This problem can be resolved by numerical techniques such as 

decomposing the approximate Hessian by the Cholesky decomposition. 

3.10. Sequential Quadratic Programming (SQP) 

The sequential quadratic programming (SQP) method is considered as a 

constrained quasi-Newton method. This method is capable of handling constraints in the 

optimization problems. This method uses the gradient of the Lagrange function at two 

points to calculate an approximation of its Hessian. This method is based on CSD and has 

been extended to include Hessian updating and potential set strategy. Potential set 

strategy defines a potential constraint index which includes active non-equality 

constraints and all equality constraints in order to reduce the number of calculations using 

only active constraints. 

In the SQP method, first-order information (i.e., gradient) is used to approximate 

the second-order information (i.e., Hessian), which in some cases cannot be calculated or 

is hard to calculate. The method solves an optimization problem by dividing it into a 
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sequence of sub-problems, each optimizing a quadratic model of the objective subject to 

linearized constraints similar to those in the CSD method. Before introducing the 

algorithm, the following vectors are defined to assist the description and discussion: 

 𝒔(𝑘) = 𝛼𝑘𝒅(𝑘)  (3-19) 

 𝒛(𝑘) = 𝐇(𝑘)𝒔(𝑘)  (3-20) 

where 𝛼𝑘  is the step size, 𝒅(𝑘)  is the search direction vector, and 𝐇(𝑘)  is the 

approximation to the hessian in the kth iteration. 

𝑦(𝑘) = ∇𝐿�𝒙(𝑘+1),𝒖(𝑘),𝒗(𝑘)� − ∇𝐿�𝒙(𝑘),𝒖(𝑘),𝒗(𝑘)�  (3-21) 

where 𝑦(𝑘) is the difference in the gradients of the Lagrange function at two points. 

 𝜉1 = 𝒔(𝑘) ∙ 𝒚(𝑘)  (3-22) 

 𝜉2 = 𝒔(𝑘) ∙ 𝑧(𝑘)  (3-23) 

where 𝜉1and 𝜉2 are used to calculate the maximum constraint violation 

 𝜃 = 1 if 𝜉1 ≥ 0.2𝜉2, otherwise 𝜃 = 0.8𝜉2 (𝜉2 − 𝜉1)⁄   (3-24) 

 𝒘(𝑘) = 𝜃𝒚(𝑘) + (1 − 𝜃)𝒛(𝑘)  (3-25) 

 𝜉3 = 𝒔(𝑘) ∙ 𝒘(𝑘)  (3-26) 

where 𝒘(𝑘) and 𝜉3 are used to correct matrices 𝐃(𝑘) and 𝐄(𝑘). 

The following is the algorithm for SQP method: 

Step 1: set k=0 and choose a starting point �⃗�(0) . Select an initial value of the 

penalty parameter 𝑅0 and two small numbers 𝜀1 and 𝜀2that define the permissible 

constraint violation and convergence parameter respectively. Set the initial 

approximate of the Hessian as 𝐇(0) = 𝐈. 
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Step 2: At  𝒙(𝑘) calculate the objective function, constraint function values, and 

their gradients. Calculate the maximum constraint violation as  𝑉𝑘 =

max (0; |ℎ1|, … , �ℎ𝑝�,𝑔1, … ,𝑔𝑚). If  𝑘 > 0 update the Hessian of the Lagrange 

as  𝐇(𝑘+1) = 𝐇(𝑘) + 𝐃(𝑘) − 𝐄(𝑘) , where  𝐃(𝑘) = (1 𝜀3⁄ )𝐰(𝑘)𝐰(𝑘)𝑇 , 𝐄(𝑘) =

(1 𝜀2⁄ )𝐳(𝑘)𝐳(𝑘)𝑇 If 𝑘 = 0 skip updating and go to Step 3. 

Step 3: Using the calculations on the previous step define the QP sub problem and 

solve it as seen on section 3.5, solve it to get the search direction 𝒅(𝑘)and the 

Lagrange multipliers 𝒗(𝑘) and 𝒖(𝑘). 

Step 4: Check the stopping criteria �𝒅(𝑘)� ≤ 𝜀2 and the maximum constraint 

violation 𝑉𝑘 ≤ 𝜀1. If both conditions are met then stop, otherwise continue. 

Step 5: Calculate 𝑟𝑘 = ∑ �𝑣𝑖(𝑘)�𝑝
𝑖=1 + ∑ 𝑢𝑖(𝑘)𝑚

𝑖=1 . Set 𝑅 = max (𝑅𝑘, 𝑟𝑘). 

Step 6: Find 𝛼𝑘 using a line search algorithm. Set 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘𝒅(𝑘). 

Step 7: Save the penalty parameter 𝑅𝑘+1 = 𝑅. Update the iteration counter 𝑘 by 1, 

and go to Step 2. 

The SQP method only uses first-order information. It is one of the most 

commonly used gradient-based methods and is one of the most efficient and reliable 

numeric algorithms for optimization. 

3.11. Solving Multi-objective Optimization Problems 

Gradient-based methods were mainly developed for solving single-objective 

optimization problems. In order to use gradient-based methods to solve multi-objective 

optimization problems, the problems need to be formulated as single-objective problems 

by either converting all but one objective functions into constraints or combining all 
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objectives into one function with a weight coefficient assigned to each objective. The 

later approach is formally called the weighed sum formulation (WSF), which can be used 

to obtain multiple solutions of the original problem by varying the weight coefficients of 

the individual objectives. The WSF is mathematically expressed as 

 𝐹(𝒙��⃗ ) = ∑ 𝑤𝑛𝑓𝑛(𝒙��⃗ )𝑘
𝑛=1   (3-27) 

where Wn (n = 1 to k) is the weighting factor for the nth objective and its value is between 

zero and one. The sum of all the weight coefficients is always equal to one. In order to 

obtain a Pareto front using this method, different combinations of the weight coefficients 

may be used to obtain multiple solutions that are filtered by the non-dominant condition. 

Some drawbacks as pointed out by Athan et al. (1996), Das et al. (1997) and 

Messac et al. (2000) are that the WSF may obtain reliable solutions only for problems 

with a convex and continuous Pareto front. For problems in which the Pareto front is 

continuous and has both convex and concave regions, only solutions in the convex region 

may be obtained. 

3.12. Advantages and Disadvantages 

Generally speaking, gradient-based methods have the advantage of having 

relatively small errors and good convergence rate. Since gradient-based methods were 

primarily developed to solve single-objective optimization problems, strategies such as 

the WSF are necessary to transform a multi-objective problem into one or several single-

objective problems. Another disadvantage of gradient-based methods is that they may not 

be able to provide adequate solutions for non-convex optimization problems since the 

necessary conditions for the minimization would not be satisfied. Furthermore, gradient-
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based methods are not suitable for discontinuous problems (i.e., discrete optimization 

problems) due to the lack of continuous gradients. 



 
 
 

 
 
 

CHAPTER 4: GENETIC ALGORITHMS 
 
 
Genetic algorithms (GAs) are heuristic search methods that widely used for their 

relatively simple handling and easy adaptation to a particular problem, regardless of the 

numbers of variables, objectives, and constraints. GAs belong to the family of 

evolutionary algorithms that are based on Charles Darwin’s theory of evolution, which 

states that the most “fit” individuals of each generation are the ones that have greater 

probability of survival and reproduction. In this chapter, the basic concepts of GAs, their 

operations, and some of the most commonly used GAs are introduced. The advantages 

and disadvantages are also discussed. 

4.1. Basic Procedure 

The GAs start by generating a random population of individuals (or candidate 

solutions), which are represented by strings of data called chromosomes (or design 

variables). A fitness value is then assigned to every individual based on evaluation using 

a fitness function (typically the objective function). The fitness value of an individual is 

proportional to the probability of the individual being selected for reproduction (i.e., 

producing new individuals). After reproduction, a mutation operation may be applied at a 

predefined, small probability emulating the biological genome changes that affects a 

small portion of the new generation. The “child” population is selected and combined 

with some of their “parents” to form a new generation and a new iteration starts. The 

general procedure of a GA is illustrated in Figure 4-1. 
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Figure 4.1: The general procedure of a GA 

 

Depending on the application the fitness evaluation method may be changed. This 

gives the GA flexibility to be used in various applications. 

4.1.1 Fitness Evaluation 

The evaluation of fitness is a crucial process to a GA, because the individuals 

with higher fitness values will have a higher probability to be selected for producing new 

individuals. One way of assigning fitness values is based on the relative size of the 

objective functions; another way is based on rank of the individuals. 
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In the first approach of evaluating the fitness of an individual, the sum of all 

objective functions corresponding to this individual is first calculated after multiplying 

each objective by a weighting factor. The fitness value is proportional (maximization) or 

inversely proportional (minimization) to this sum. The weight factors of the objective 

functions are similar to those used in the WSF. 

In the second approach of fitness evaluation, a rank value is assigned to a group of 

individuals formed by only non-dominant solutions. Since there may exist multiple 

groups of non-dominant solutions, the rank values of each group will indicate the 

dominancy of solutions among different groups, as illustrated in Figure 4.2. For a 

minimization problem, a small rank value indicates better fitness than a large rank value. 

Note that an individual in a lower ranked group (i.e., with a large rank value) will always 

be dominated by at least one individual in the immediate higher ranked group. In rank-

based fitness evaluation, the fitness value is based on the dominant relationships with 

others and is not based on the particular objective values of this individual.  
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Figure 4.2: Fitness based on ranks 

 

4.1.2 Reproduction 

The reproduction process in a GA, similar to that in a biological process, is one 

that produces new populations with improved fitness while inheriting and maintaining 

good features from the old generation. The reproduction starts by selecting the parents 

out of the current population. This is done by selecting each individual at a proportional 

probability to its fitness. For a random number 𝑟, the ith individual is selected if: 

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑖𝑣𝑖)𝑛
𝑖=0 < 𝑟 ≤ ∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑖𝑣𝑖+1)𝑛+1

𝑖=0   (4-1) 

After choosing the parents, a crossover point is selected where the two individuals 

are going to be combined to form two new individuals called “children.” This crossover 

point is selected at random. The above mentioned single-point crossover procedure is 

shown in Figure 4-3. 
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Figure 4.3: Single-point crossover 

 

This procedure is applied to each pair of parents. It is important to note that a 

single individual may be selected to be a parent multiple times; it could even be selected 

as Parent 1 and 2 in the same reproduction operation, depending on the selection 

algorithm. 

4.1.3 Mutation 

The mutation operation is a low probability operation in which a small fraction of 

the individuals are subject to modification based on the predetermined mutation rate. 

When an individual is selected for mutation, a single bit of the binary string representing 

the individual is randomly selected and changed from ‘0’ to ‘1’ or from ‘1’ to ‘0’. This 
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operation is useful in maintaining the diversity of the solution set and discovering new 

solution points which may not be discovered via the reproduction operations. 

4.1.4 Termination Condition 

There is no standard termination condition for a GA; the iteration process is 

usually terminated at reaching a maximum number of generations. Other options for the 

termination conditions can be based on the evolution time (i.e., a maximum time is set for 

the algorithm execution) or based on the fitness value (i.e., the fitness of the best 

individual of the current population is better than a predefined threshold value).  

4.2. Commonly used Genetic Algorithms 

There are a large number of GAs developed to solve multi-objective optimization 

problems. Some of the commonly used GAs includes MOGA, NSGA, NSGA-II, 

MOBES and MOSES; each one of these implementations has additional features over the 

basic GA in order to achieve better performance. 

4.2.1 MOGA 

The multi-objective genetic algorithm (MOGA) was developed by Murata et al. 

(1995); it used a combined objective of the weighted individual objectives in the 

selection procedure. The weight coefficients are not constant, but randomly specified for 

every individual, to keep the search direction not fixed. In addition, an elite preserve 

strategy is introduced such that a certain number of individuals are randomly selected 

from each generation and preserved for the next generation in order to keep the variety of 

each population throughout the algorithm. Figure 4-4 shows the flowchart of MOGA. 

 



57 
 

Start

Initialization

Evaluation

Selection

Crossover

Mutation

Termination
Test

End

Elitist 
strategy

Update 
tentative set of 
Pareto optimal 

solutions

 

Figure 4.4: Flowchart of MOGA 

 

Using test problems, the MOGA was shown to be effective in solving multi-

objective optimization problems. The solutions by the MOGA showed that elitism was an 

effective way of keeping some of the “best” individuals through generations to avoid the 

tendency for a future generation not converging to the true Pareto front. 
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4.2.2 NSGA 

The nondominated sorting genetic algorithm (NSGA), introduced by Srinivas et 

al. (1995), uses non-dominant relationships among individuals to classify and rank the 

individuals to determine their fitness. The individuals in the same front (i.e., a group of 

nondominated individuals with the same rank) are assigned the same fitness value in 

order to give them the same probability of being selected for reproduction. In order to 

obtain a more diverse population, the individuals are classified and shared with their 

dummy fitness values. Sharing is achieved by dividing the original fitness value by a 

quantity proportional to the number of individuals around it. Figure 4-5 shows the 

flowchart of NSGA. 
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Figure 4.5: NSGA flowchart 

 



60 
 
The NSGA was shown to be able to maintain an uniform reproductive potential 

across nondominated individuals and obtain multiple Pareto optimal solutions, which 

were very useful to decision makers or designers. 

4.2.3 NSGA-II 

The nondominated sorting genetic algorithm II (NSGA-II) was developed by Deb 

(2002) to improve the previously developed NSGA based on some of the criticism on 

NSGA such as high computational complexity, lack of elitism, and lack of capability of 

specifying a sharing parameter. 

The computational complexity of NSGA is 𝑂(𝑀𝑁3) where 𝑀 is the number of 

objectives and 𝑁 is the population size. This means that NSGA is computationally very 

expensive for large population sizes. In NSGA-II, the nondominated sorting alogorithm 

was improved by maintaining two entities for each individual: a domination count 𝑛𝑝 that 

is the number of solutions dominating solution 𝑝 and 𝑆𝑝 a set of solutions dominated by 

solution  𝑝 . NSGA-II has a complexity of  𝑂(𝑀𝑁2)  and is given by the following 

algorithm. 

For each 𝑝 𝜖 𝑃 

   𝑆𝑝 = 0  

   𝑛𝑝 = 0 

   for each 𝑞 𝜖 𝑃 

      If 𝑝 < 𝑞 then 

         𝑆𝑝 = 𝑆𝑝 ∪ {𝑞} 

      else if  𝑞 < 𝑝 then 

         𝑛𝑝 = 𝑛𝑝 + 1 

   if 𝑛𝑝 = 0 then 

      𝑝𝑟𝑎𝑛𝑘 = 1 

 

 

 

If 𝑝 dominates 𝑞 

Add 𝑞 to the set of solutions dominated by p 

 

 

 



61 
 
      𝐹1 = 𝐹1 ∪ {𝑝}  

𝑖 = 1  

while 𝐹𝑖 ≠ 0 

   𝑄 = 0 

   for each 𝑝 𝜖 𝐹𝑖 

      for each 𝑞 𝜖 𝑆𝑝 

         𝑛𝑞 = 𝑛𝑞 − 1  

         If 𝑛𝑞 = 0 then 

            𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1 

            𝑄 = 𝑄 ∪ {𝑞} 

𝑖 = 𝑖 + 1  

𝐹𝑖 = 𝑄  

 

Initialize the front counter 

Used to store the members of the next front 

 

 

𝑞 belongs to the next front 

 

NSGA uses the sharing parameter  𝜎𝑠ℎ𝑎𝑟𝑒 that is specified to maintain a good 

spread of solutions in the obtained set. In NSGA-II, the sharing paremeter is replaced 

with the crowding distance, which is a proximity measure of the distances between a 

solution and the rest of solutions in the same front. The crowding distance is used to 

indicate the spread of solutions but does not require any user-defined parameter for 

maintaining diversity among population members. The value of a crowding distance is 

equal to the normalized difference in function values of the two adjacent solutions in the 

same front. Figure 4-6 illustrates the computation of the crowding distance for the 

solution inside the rectangular box formed by the two adjacent solutions. 
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Figure 4.6: Crowding distance calculation 

 

Fang et al. (2008) proposed a new nondominated sorting algorithm that could be 

used in NSGA-II. This algorithm uses a divide-and-conquer mechanism and maintains a 

dominance tree to reduce the number of comparisons of objective values for identifying 

nondominated solutions. This algorithm has a complexity of 𝑂�𝑀𝑁𝑙𝑜𝑔(𝑁)� and thus is 

more efficient than the algorithm in NSGA-II. 

4.2.4 NCGA 

Watanabe et al. (2002) developed the neighborhood cultivation genetic algorithm 

(NCGA) that used a neighborhood crossover mechanism to pair up neighboring 

individuals for exploring the objective space around the obtained solutions. This process 

makes the algorithm explore the section of the objective space around the parent 

individuals. The NCGA was compared to the strength of Pareto evolutionary algorithm II 
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(SPEA2) and NSGA-II; it was shown to possess the same capability of finding Pareto 

optimum solutions. 

4.3. Advantages and Disadvantages of GAs 

GAs are the preferred method for solving MOOPs, because they are relatively 

easy to implement and versatile in dealing with large numbers of objectives and 

variables. The downside of these algorithms is that their convergence rate decreases as 

the iterations number increases, since they use only zero-order information. Another issue 

with the GAs is that, when they converge to the true Pareto front, the solutions may start 

“vibrating” due to the nature of genetic operations. Furthermore, GAs do not have a 

standard termination condition and typically use a fixed number of generations as the 

stopping criterion, which may not ensure to obtain a good solution set for certain 

problems. 



 
 
 

 
 
 

CHAPTER 5: HYBRID OPTIMIZATION ALGORITHMS 
 
 
A hybrid optimization algorithm is one that is composed of different optimization 

algorithms in order to take the advantage of each method to have improved solution 

accuracy and/or computational efficiency in solving optimization problems. After a close 

examination of the gradient-based methods and GAs, a hybrid algorithm is proposed to 

combine the two types of methods and use them at different stages of the optimization 

process. Different hybrid strategies are investigated to achieve the best computational 

efficiency and solution accuracy. In this study, the nondominated sorting genetic 

algorithm II (NSGA-II) and the feasible sequential quadratic programming (FSQP) are 

selected to study different hybrid strategies. 

In this chapter, the performance metrics for evaluating the hybrid methods are 

first defined. Three hybrid strategies are then investigated and the best one is identified. 

Three benchmark problems are solved: the Schaffer problem, ZDT-1 problem and ZDT-2 

problem. The Schaffer problem was developed by Schaffer (1985); it has one design 

variable and two objective functions that form a convex Pareto front. The ZDT-1 and 

ZDT-2 problems were both developed by Zitzler et al. (2000).  The ZDT-1 problem has 

thirty design variables and two objectives forming a convex Pareto front. The ZDT-2 

problem is the same as the ZDT-1 problem except that the two objective functions of 

ZDT-2 form a non-convex (or concave) Pareto front. 
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5.1. Performance Metrics 

The performance metrics are used to evaluate the hybrid algorithms and compare 

their performance to that of the non-hybrid algorithms, i.e., FSQP and NSGA-II. The root 

mean square error (RMSE), Piling Factor (PF), and execution time are the performance 

metrics of this study. The RMSE and PF are used to determine the quality of the solutions 

and the execution time is used to compare the computational efficiency. 

5.1.1 Root Mean Square Error (RMSE) 

The RMSE is a measure of the differences between the solutions of an 

optimization algorithm and the true Pareto front. The RMSE values can only be 

calculated when the true Pareto front is known and thus it is only used for benchmark 

problems. Since there is no standard definition of the distance between a point (e.g., a 

solution point in the objective space) and a curve (e.g., the true Pareto front), a distance 

needs to be defined in order to calculate the RMSE values. As a first step, the points on 

the Pareto front are located using the objective values of the solution point, as illustrated 

in Figure 5-1. 

After the points on the Pareto front are determined, a line is traced and its slope is 

calculated. A perpendicular line is drawn through the solution point and this direction is 

used to find an interception with the Pareto front. The points  [𝑓(�⃗�1)∗,𝑓(�⃗�2)]  and 

[𝑓(�⃗�1),𝑓(�⃗�2)∗] are calculated using the equitation of the Pareto front. After calculating 

the slope of a perpendicular line, the interception point on the Pareto front is obtained. 

The distance between the solution point and the point on the Pareto front is defined as the 

difference between the solution point and the corresponding true optimal solution on the 

Pareto front (see Figure 5-2). 
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Figure 5.1 Points on the Pareto front corresponding to a solution point 

 
 
 

 

Figure 5.2: Definition of the distance between a solution point to the Pareto front 
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If the MOOP has more than two objectives, the line shown in Figure 5-2 becomes 

a surface and the slope of the surface becomes the gradient of this surface. After 

obtaining the perpendicular direction the distance is calculated. From this equation a 

point �𝑓1(�⃗�∗),𝑓2(�⃗�∗) … 𝑓𝑛(�⃗�∗)� is obtained and the difference between this point and the 

solution point is calculated. After obtaining this distance, the RSME value is calculated 

as follows. 

 𝑅𝑆𝑀𝐸 = �∑ 𝑑𝑖2𝑛
𝑖=1
𝑛

  (5-1) 

5.1.2 Piling Factor (PF) 

The PF is a metric used to compare the distribution of the solution points in or 

close to the Pareto front. The PF is defined as the maximum value of the sum of distances 

between a solution point and the adjacent solution points in the objective space, as given 

by: 

 𝑃𝐹 = max 〈��𝑓(𝒙𝑛) − 𝑓(𝒙𝑛+1)��
𝑛=1

𝑚
〉  (5-2) 

where m is the number of solutions in the objective space. The PF reflects the distribution 

of a solution set in the objective space: a smaller PF value indicates a more homogeneous 

distribution than a larger PF value, as illustrated in Figures 5-3 and 5-4. 
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Figure 5.3: A solution set with a low of piling factor 

 

When the distribution is more homogeneous over the Pareto front, the maximum 

distance between adjacent points is smaller than that when some points are clustered and 

others are much farther away. This is because the largest distance between two adjacent 

solution points determines the PF value. It is important to note that the minimum number 

of points needed to calculate the PF is two. The PF is considered infinity if there are two 

or fewer points in the solution set. 
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Figure 5.4: A solution set with a high piling factor 

 

5.1.3 Execution Time 

The execution time is defined as the time that takes the algorithm to be executed 

from beginning to obtaining the last solution to the problem. This value is given by the 

software with a resolution of 0.01 seconds. 

5.2. The First Hybrid Stragety 

The first hybrid strategy is a brute-force approach mainly used as a test algorithm 

in order to determine the feasibility that NSGA-II and FSQP can be combined and work 

together. In this strategy, the NSGA-II is first executed for a certain number of 

generations and the results are used as the initial points for FSQP, which uses a weighted 

sum formulation (WSF) on each of the initial points. The computational cost of this 
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algorithm is expected to be high, because it is simply a combination of the time of both 

individual methods. 

5.2.1 Algorithm of the First Strategy 

 This approach uses the NSGA-II as a first layer in order to get an initial set of 

solutions that are closer to the Pareto front than a set of randomly generated initial points. 

These solution points are then used by FSQP as initial points to obtain the final solutions 

to the problem. 

NSGA-II

FSQP

Start

End

Maximum 
number of 

generations 
reached?

Yes

No

All weight 
combinations 
performed?

Yes

No

 

Figure 5.5: First hybrid algorithm flowchart 
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It is important to note that FSQP is run as many times as the points yielded by 

NSGA-II, i.e. if there are 20 points as an output to NSGA-II, FSQP is executed 20 times, 

each time with one initial point and a WSF to obtain a set of solutions. 

5.2.2 Test Problems and Results of the First Strategy 

In order to test the performance of the algorithm, three benchmark problems, 

Schaffer, ZDT-1 and ZDT-2, are chosen, because these problems can test the ability of an 

algorithm to identify nondominated solution points. 

5.2.2.1. The Schaffer Problem 

This MOOP was introduced by Schaffer (1985); it has two objective functions 

and one design variable, as given by: 

Min  �𝑓1(𝑥),𝑓2(𝑥)�  (5-3) 

 𝑓1(𝑥) = 𝑥2  (5-4) 

 𝑓2(𝑥) = (𝑥 − 2)2  (5-5) 
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Figure 5.6: The Pareto front and feasible domain of the Schaffer problem 

 

The Pareto front of the Schaffer problem is obtained when the design variable is 

in the range of 0 ≤ 𝑥 ≤ 2, as shown in Figure 5-6. The expected solution points for this 

problem is set to 50, which is set as a guideline in order to compare the different methods 

in a fair manner. The input parameters for FSQP are: number of initial points (50), 

minimum weight (0.02) for WSF, and weight increase (0.02) for WSF. The results of the 

FSQP are shown in Figure 5-7 and the performance metrics are given in Table 5-1. It 

should be noted that the formulation of this problem does not allow feasible points to be 

off the Pareto front, hence the RMSE value is always zero for all the three methods. Also, 
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the simulation times for FSQP and NSGA-II are less than the resolution that the software 

can record; therefore their execution times are shown as 0 second. 

 

Table 5-1: Schaffer problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0 0 

PF 0.15 0.69 0.15 

Execution time 0s 0s 0.02s 

Number of solutions 49 50 49 

 

 

 

Figure 5.7: The Schaffer problem solved by FSQP 
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The input parameters for NSGA-II are the number of initial points (50), the 

number of generations (300), crossover rate (0.9), and mutation rate (0.01). For the 

Schaffer problem, the best PF value is obtained at 300 generations, as can be seen in 

Figure 5-8; therefore, 300 generations are specified for the NSGA-II. The results of 

NSGA-II are shown in Figure 5-9 and the performance metrics are also given in Table 

5-1. 

 

Figure 5.8: The PF vs. number of generations for Schaffer problem 

.   
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Figure 5.9: The Schaffer problem solved by NSGA-II 

 

For the first hybrid algorithm, the input parameters are the number of initial points 

(50) for both the NSGA-II and FSQP, and the maximum number of generations (10) only 

for the NSGA-II. The results of the hybrid algorithm are shown in Figure 5-10, and the 

performance metrics are given in Table 5-1. 
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Figure 5.10: Schaffer problem solved by the first hybrid algorithm 

 

It can be seen from Table 5-1 that the PF of NSGA-II is four times larger than that 

of FSQP and the hybrid algorithm due to its uneven distribution on the Pareto front. For 

both FSQP and the first hybrid algorithm, there is one solution point lost due to the 

nondominance check performed on all the final solutions. Regarding the execution time, 

it can be seen that FSQP and NSGA-II are executed in less than 0.01 seconds, while the 

first hybrid algorithm takes more than double the time of its counterparts due to the brute-

force approach. Nevertheless, the hybrid algorithm is able to obtain solutions on the 

Pareto front that are difficult for the GA. This indicates that the hybrid strategy provides a 

viable means to improve the solutions of an individual algorithm (e.g., the NSGA-II in 

this case). 
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5.2.2.2. The ZDT-1 Problem 

This problem was introduced by Zitzler et al. (2000) with two objective functions 

and thirty design variables. The ZDT-1 problem is stated as: 

 Min �𝑓1(𝑥),𝑓2(𝑥)�  (5-6) 

 𝑓1(�⃗�) = 𝑥1  (5-7) 

 𝑓2(�⃗�) = 1 −�𝑥1 𝑔(�⃗�)�   (5-8) 

where 

 𝑔(�⃗�) = 1 + 9∑ 𝑥𝑖𝑛
𝑖=2

(𝑛 − 1)� , 𝑛 = 30 (5-9) 

The Pareto front of the ZDT-1 problem is obtained when 𝑔(�⃗�) = 1, which gives 

𝑓2(�⃗�) = 1 −�𝑓1(�⃗�) as shown in Figure 5-11. 

 

Figure 5.11: The Pareto front and feasible domain of ZDT-1 problem 
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Similar to the previous problem, the expected number of solutions is 50. The 

input parameters for FSQP are: number of initial points (50), minimum weight (0.02), 

and weight increase (0.02). The results of FSQP are shown in Figure 5-12 and the 

performance metrics are given in Table 5-2. In this case, the problem gives an RMSE 

value of 1.08 × 10−5, a piling factor of 0.235, an execution time of 16 sec, and 31 final 

solutions. The reduction in the number of final solutions is due to the nondominance filter 

that is used in the algorithm of FSQP, because not all the solutions from the WSF are 

nondominated solutions. 

 

Table 5-2: ZDT-1 problem results 

 FSQP NSGA-II Hybrid 

RMSE 1.93E-06 8.43E-04 2.84E-07 

PF 2.95 0.16 0.2 

Execution time 16s 1.25s 8.260s 

Number of solutions 31 50 33 

. 
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Figure 5.12: The ZDT-1 problem solved by FSQP 

 

Using NSGA-II, the ZDT-1 problem is solved with (50) initial points, crossover 

rate (0.9), and mutation rate (0.01). In order to select the adequate number of generations 

for which the results of NSGA-II have the best PF, the algorithm is run with different 

numbers of generations with the PFs shown in Figure 5-13. 
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Figure 5.13: The PF and RMSE vs. number of generations  

for the ZDT-1 problem solved by NSGA-II 

 

It can be seen from Figure 5-13 that the least number of generations to have the 

best PF is 2000. The results of NSGA-II are shown in Figure 5-14 and the performance 

metrics are also summarized in Table 5-2.  
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Figure 5.14: The ZDT-1 problem solved by NSGA-II 

 

The parameters for this problem on the first hybrid are the number of initial points 

(50) for NSGA-II and FSQP, and the maximum number of generations (10) for the 

NSGA-II section. The results of the algorithm are shown in Figure 5-15, and the results 

are given in Table 5-2. 
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Figure 5.15: The ZDT-1 problem solved by the first hybrid algorithm 

 

It can be seen from the results in Table 5-2 that the hybrid algorithm has the 

lowest RMSE value. The NSGA-II has slightly better PF than the hybrid algorithm and 

both have much smaller PFs than the FSQP. The fastest algorithm for the ZDT-1 problem 

is NSGA-II followed by the hybrid algorithm that has eight times more than the NSGA-

II. The FSQP takes twice as much time as the hybrid algorithm. Finally, the number of 

solutions from the hybrid algorithm and FSQP are 33 and 31 solutions, respectively, 

while NSGA-II has 50 solutions. Similar to the case of the Schaffer problem, the reduced 

number of solutions in the hybrid algorithm and FSQP is due to the nondominance check 

on the final solutions obtained by the WSF. 
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5.2.2.3. The ZDT-2 Problem 

This problem was introduced by Zitzler et al (2000). It has two objective 

functions to be minimized, and thirty design variables. The ZDT-2 problem is stated as: 

Min  �𝑓1(𝑥),𝑓2(𝑥)�  (5-10) 

 𝑓1(�⃗�) = 𝑥1  (5-11) 

 𝑓2(�⃗�) = 1 − �𝑥1 𝑔(�⃗�)� �
2
  (5-12) 

where 𝑔(�⃗�) = 1 + 9∑ 𝑥𝑖𝑛
𝑖=2

(𝑛 − 1)� , 𝑛 = 30   (5-13) 

The Pareto front is obtained when 𝑔(𝑥) = 1, the feasible space and the Pareto 

front are shown in Figure 5-16. 

 

Figure 5.16 The Pareto front and feasible domain of the ZDT-2 problem 

 



84 
 
Similar the ZDT-1 problem, the expected number of solutions is 50. The settings 

for FSQP are: number of initial points (50), minimum weight (0.02), and weight increase 

(0.02). The result of the problem is shown in Figure 5-17, and the performance metrics 

are summarized in Table 5-3. In this case the problem gives an error of 0, this due to the 

fact that the solution points are exactly at the Pareto front. The piling factor infinity, since 

there are only two solution points in the solution set. This factor can only be calculated 

when there are more than three points in the solution set. The execution time is 4 sec. 

 

Table 5-3: ZDT-2 problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0.286 0 

PF 1.41 0.1 1.41 

Time 4s 3.11s 2.39s 

Number of solutions 2 50 3 
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Figure 5.17: The ZDT-2 problem solved by FSQP 

 

In this problem the settings for NSGA-II are (50) initial points, crossover rate 

(0.9), and mutation rate (0.01). In order to select the most adequate number of 

generations the problem was run with several numbers generations and shown in Figure 

5-18. 
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Figure 5.18 The PF and RMSE vs. number of generations  

for ZDT-2 problem solved by NSGA-II 

 

It can be seen from the above figure that 5000 generations yield the best result 

regarding both PF and RMSE. The results of NSGA-II are shown in Figure 5-19 and the 

performance metrics are given in Table 5-3. 
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Figure 5.19: The ZDT-2 problem solved by NSGA-II 

 

The parameters for this problem on the first hybrid algorithm are number of initial 

points (50) for both NSGA-II and FSQP, the maximum number of generations (5000) for 

the NSGA-II section. The results of the algorithm are shown in Figure 5-19, and the 

performance statistics are given in Table 5-3. 
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Figure 5.20: The ZDT-2 problem solved by the first hybrid algorithm 

 

In this case, only the NSGA-II can generate an acceptable set of solutions; both 

the FSQP and the first hybrid algorithm are unable to properly solve this multi-objective 

optimization problem with a non-convex Pareto front. This is due to the WSF, which is 

adopted to obtain multiple solutions using a single-objective optimization method, has the 

inherent limitation of being suitable only to multi-objective optimization problems with 

convex Pareto fronts. 

It can be seen from the three benchmark problems that the first hybrid algorithm 

is capable of solving a multi-objective optimization problem with a convex Pareto front. 

The accuracy and quality of solutions by the hybrid algorithm is better than both FSQP 

and NSGA-II when the optimization problem can be properly solved. An expected 
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drawback of the hybrid algorithm is that it is not capable of solving multi-objective 

optimization problems with non-convex Pareto fronts, as seen on the ZDT-2 problem. 

These results suggest that the hybrid algorithm provides a good initial approach to 

making a more efficient and effective hybrid algorithm. 

5.3. The Second Hybrid Strategy 

The second hybrid algorithm follows the same structure of the first one, except 

that, before running FSQP, a direction is calculated for each initial point towards the 

Pareto front. The basic idea is, for each initial point, a single solution is to be obtained 

using the single-objective optimization method without using the expensive WSF. With 

this strategy, the computational efficiency of the hybrid algorithm is expected to be 

significantly improved.  

5.3.1 Algorithm of the Second Strategy 

In the second hybrid algorithm, a new block called “direction calculation” is 

included in the flowchart shown in Figure 5-21. In this case there is no combination in 

the weighted sum, but a single set of weights per point are calculated and used.  
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Figure 5.21: Flowchart of the second hybrid algorithm 

 

The calculation of the weights of the individual points is based on the squared 

value of the direction cosines. In order to obtain evenly distributed solutions in the 

objective space, each of the objectives is normalized so as to make the maximum value of 

each direction equal to one and the minimum equal to zero. After normalizing the 

objectives, the square of the direction cosines are calculated as follows. 

 cos2(𝛼) = 𝑥𝑖
∑ 𝑥𝑗2𝑛
𝑗=0

�   (5-14) 
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where 𝑖 is the current objective and 𝑛 is the number of objectives in the optimization 

problem. 

Another property of the direction cosine is that the closest the point is to an axis 

the higher the value of its direction cosine is. If this value is used as the weight, which 

implies that the direction of the minimization would be more dominant in the direction of 

the objective of higher value. This would make the solutions of this problem cluster since 

all the solutions would be directed towards the middle of the Pareto front as shown in 

Figure 5.22. 

 

Figure 5.22: Direction calculation with direction cosines 
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This concern of solution clustering makes it necessary to swap the weights of 

solutions to spread out the solutions on the Pareto front. Specifically, the largest and the 

smallest weights are swapped; the second largest weight is swapped with the second 

smallest, and so on. 

 

Figure 5.23: Solution direction with inverted direction cosines 

 

Also, it is important to note that the direction cosines have the property that its 

sum of squares is equals to one, and the squares are non-negative. Therefore it coincides 

with the condition of the weighted sum combination that the sum of weights should be 

equal to one and they should be non-negative. 
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5.3.2 Results of the Second Approach 

Same as the case of the first algorithm, the problems used to evaluate the 

performance of this algorithm are the Schaffer, ZDT-1 and ZDT-2 problems. 

5.3.2.1.  The Schaffer Problem 

The input parameters for the second hybrid algorithm are: number of initial points 

for both NSGA-II and FSQP (50), and the maximum number of generations for NSGA-II 

(10). The performance metrics are given in Table 5-4 and the plot of the objective space 

is shown in Figure 5.24. 

 

Table 5-4: Schaffer problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0 0 

PF 0.15 0.69 1.25 

Execution time 0s 0s 0s 

Number of solutions 49 50 50 
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Figure 5.24: Schaffer solved by the second hybrid algorithm 

 

In this case, the piling factor of the hybrid algorithm is slightly larger than those 

of both FSQP and NSGA-II, and the execution time is the same as those for FSQP and 

NSGA-II. This indicates that the second hybrid strategy is capable of obtaining a 

nondominated Pareto front with improved computational efficiency compared to the first 

hybrid algorithm. 

5.3.2.2. The ZDT-1 Problem 

For the ZDT-1 problem, the parameters for the second hybrid algorithm are the 

number of initial points (50) for NSGA-II and FSQP, and the maximum number of 

generations (10) for NSGA-II. The results of the algorithm are shown in Figure 5-25, and 

the performance metrics are given in Table 5-5. 
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Table 5-5: ZDT-1 problem results 

 FSQP NSGA-II Hybrid 

RMSE 1.93E-06 8.43E-04 2.75E-06 

PF 2.95 0.16 0.33 

Execution time 16s 1.25s 0.29 

Number of solutions 31 50 21 

 

 

 

Figure 5.25: The ZDT-1 problem solved by the second hybrid algorithm 

 

In this case, the RMSE by the hybrid algorithm is about fifty percent larger than 

FSQP yet the RSME of NSGA-II is 102 times larger than the hybrid algorithm. The PF of 
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the hybrid algorithm is twice as large as that of NSGA-II, which is the smallest among 

the three algorithms. The PF of the hybrid algorithm is more than ten times smaller than 

that of FSQP. Regarding the execution time the hybrid algorithm is the fastest followed 

by the NSGA-II and FSQP that has the highest value, which is significantly larger than 

both the hybrid algorithm and NSGA-II. Again, the number of solutions of FSQP and the 

hybrid algorithm are reduced due to nondominance check performed by the WSF. 

5.3.2.3. The ZDT-2 Problem 

As in the case of the ZDT-1 problem, the parameters for the ZDT-2 problem are 

the number of initial points for NSGA-II and FSQP (50) and the maximum number of 

generations (10) for NSGA-II only. The results of the hybrid algorithm are shown in 

Figure 5-26, and the performance metrics are given in Table 5-6. 

 

Table 5-6: ZDT-2 problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0.286 0 

PF 1.41 0.1 1.41 

Time 4s 3.11s 0.7s 

Number of solutions 2 50 2 

 

 



97 
 

 

Figure 5.26: ZDT-2 problem with second hybrid algorithm 

 

In this case, the only algorithm that is capable of obtaining an acceptable set of 

solutions is NSGA-II. Both the second hybrid algorithm and FSQP are shown to be 

unable to properly solve a multi-objective optimization problem with a non-convex 

Pareto front. 

As seen from the results, there is a significant improvement in the execution time 

to obtain similar results with respect to the RMSE and PF. Despite its improvement on 

computational efficiency over the first hybrid algorithm, the second hybrid algorithm is 

still not capable of giving a satisfactory solution set for optimization problems with non-

convex Pareto fronts. 
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5.4. The Third Hybrid Strategy 

To overcome the issue of the first two hybrid algorithms in solving optimization 

problems with non-convex Pareto fronts, the third hybrid algorithm is proposed. In this 

case, a calculation is introduced in order to change the multi-objective problem into the 

minimization of one objective subjected to the original constraints and additional equality 

constraints converted from the rest of objectives in the original optimization problem. 

The expectation of this approach is to keep the execution time lower than or at least the 

same as the second hybrid algorithm, with the added capability of solving optimization 

problems with non-convex Pareto front. 

5.4.1 Algorithm of the Third Strategy 

The third hybrid algorithm includes a calculation that transforms the MOOP into 

several single objective optimization problems with as many equality constraints as extra 

objectives the original problem has; i.e. if the original problem has four objectives and no 

constraints, then the modified problem would have one objective and three equality 

constraints. The flowchart of the algorithm is shown in Figure 5-27. 
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Figure 5.27: Third hybrid algorithm 

 

In the third hybrid algorithm, the equality constraints are set based on a set of 

virtual points that are built by normalizing the objectives obtained from the results of the 

NSGA-II stage and tracing a line between the original point and its normalized image, as 

shown in Figure 5-28. 



100 
 

 

Figure 5.28: Constraint calculation in the third hybrid algorithm 

 

The following equations give the general equation of a line in 𝑛  dimensions. 

Equation (5-16) shows how an equation can be obtained for any two dimensions. 
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𝑓1��⃗�2
∗�

= 𝑓2(�⃗�)−𝑓2��⃗�1
∗�

𝑓2��⃗�2
∗�

  (5-16) 

This algorithm also includes an additional termination condition for the NSGA-II 

segment of the hybrid algorithm. This termination condition is based on the crowding 

distance that is calculated as part of the NSGA-II algorithm, as discussed in Section 4.2.3. 
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This termination condition is included to improve the quality and/or efficiency of the first 

stage whose results will be used in the second stage to obtain more accurate solutions. 

In order for the hybrid strategy to be effective, the objective functions are 

normalized to a range from 0 to 1 to avoid clustering. Also, it is important to note that 

there is a limitation regarding the quantity of equality constraints of the transformed 

problem. Therefore, this algorithm is suitable only for problems that, after being 

transformed, have less number of total equality constraints than the number of design 

variables. If the number of equality constraints is equal to or greater than the number of 

variables after the problem is transformed, the problem cannot be solved. 

5.4.2 Results of the Third Approach 

Same as the two previous hybrid approaches, the third hybrid algorithm is tested 

using the Schaffer, ZDT-1 and ZDT-2 problems. In this case, the hybrid algorithm is 

expected to be capable of solving optimization problems with non-convex Pareto fronts. 

5.4.2.1. The Schaffer Problem 

The input parameters for the third hybrid algorithm are: number of initial points 

for both NSGA-II and FSQP (50), the minimum crowding distance for NSGA-II (0.01), 

and the maximum number of generations for NSGA-II (10). The results are shown in 

Figure 5-29 and the performance metrics are given in Table 5-7. 

 

 

 

 

 



102 
 

Table 5-7: Schaffer problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0 0 

PF 0.15 0.69 1.13 

Execution time 0s 0s 0.01s 

Number of solutions 49 50 50 

 

 

Figure 5.29: The Schaffer problem solved by the third hybrid algorithm 

 

Similar to the previous algorithms, the third hybrid algorithm is capable of 

solving this problem, with the PF higher than the other algorithms and the execution time 

of 0.01s. In addition, the third hybrid algorithm is capable of obtaining solution points on 

the Pareto front. 
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5.4.2.2. The ZDT-1 Problem 

The parameters for this problem using the third hybrid algorithm are initial points 

(50) for both NSGA-II and FSQP, the maximum number of generations (10) for the 

NSGA-II section, and the minimum crowding distance (0.01) for NSGA-II. The results of 

the third hybrid algorithm are shown in Figure 5-30 and the performance metrics are 

given in Table 5-8. 

 

Table 5-8: ZDT-1 problem results 

 FSQP NSGA-II Hybrid 

RMSE 1.93E-06 8.43E-04 8.1E-07 

PF 2.95 0.16 0.12 

Time 16s 1.25s 2.02s 

Number of solutions 31 50 50 
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Figure 5.30: The ZDT-1 problem solved by the third hybrid algorithm 

 

In this case, the RMSE of the hybrid algorithm is about 2.5 times smaller than that 

of FSQP, which in turn is 102 times smaller than that of NSGA-II. The PF of the hybrid 

algorithm is 33% larger than that of NSGA-II, which is approximately twenty times 

smaller than that of FSQP. Regarding the execution time, the NSGA-II is the fastest 

followed by the hybrid algorithm; FSQP takes significantly more time than both of them. 

This results show that the third hybrid strategy is capable of accurately solving multi-

objective optimization problems with convex Pareto fronts. 

5.4.2.3. The ZDT-2 Results 

Same as the previous problems, the inputs for the ZDT-2 problem are number of 

initial points for NSGA-II and FSQP (50) generations in the NSGA-II stage (10) and the 
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minimum crowding distance (0.01) for NSGA-II. The results of the algorithm are shown 

in Figure 5-31 and the performance metrics are given in Table 5-9. 

 

Table 5-9: ZDT-2 problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 2.86E-01 8.3E-07 

PF 1.41 0.1 0.2 

Execution time 4s 3.11s 1.6s 

Number of solutions 2 50 50 

 

 

 

Figure 5.31: The ZDT-2 problem solved by the third hybrid algorithm 
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This problem can be solved properly only by this hybrid approach and NSGA-II 

because of limitations of the other algorithms in solving optimization problems with non-

convex Pareto fronts. In this case, the RMSE of the hybrid algorithm is in the order of 106 

times smaller than that of NSGA-II. The PF of the hybrid algorithm doubles that of the 

NSGA-II. The execution time of the hybrid algorithm is approximately half of that of 

NSGA-II. Finally, the number of solutions of each problem remained the same at 50. 

The results of the third hybrid algorithm show that it is capable of solving both 

MOOPs with convex and non-convex Pareto fronts. Its performance is better than 

NSGA-II and FSQP with regards to the RMSE values, particularly in the cases of ZDT-1 

and ZDT-2 problems. The hybrid algorithm also has comparable results regarding the PF; 

this means that the distribution of solution points on the Pareto front is as good as the 

other algorithms. The execution time and number of solutions of the hybrid algorithm are 

at the same levels as those of NSGA-II, except for the execution time on solving the 

ZDT-2 problem in which case the hybrid algorithm is faster than NSGA-II. 

From the results shown in this chapter it can be concluded that the third hybrid 

algorithm gives the best approach in terms of not only keeping a good distribution of the 

solutions on the Pareto front, but also being capable of solving MOOPs with non-convex 

Pareto fronts. The third hybrid algorithm will be the only hybrid algorithm that will be 

tested and compared to other algorithms in the following chapters. 



 
 
 

 
 
 

CHAPTER 6: BENCHMARK OPTIMIZATION PROBLEMS 
 
 
In this chapter, eight benchmark optimization problems are used to test the hybrid 

algorithm and compare its solutions and performance with those of the NSGA-II and the 

FSQP. 

The benchmark problems are used for the fact that their Pareto fronts are available 

in analytical forms. This makes it possible to calculate errors of the solutions by the 

hybrid algorithm. Without a known Pareto front, it is not possible to calculate the error 

between a solution point and the true Pareto optimum in the objective space. In addition, 

the convexities and ranges of the benchmark problems are known as well. 

In order to solve problems in which the Pareto front’s range is not between zero 

(0) and one (1), these problems need to be rescaled in order to be properly solved. 

6.1. The Bihn Problem 

Introduced by Bihn (1996), this problem has two objective functions and two 

design variables. The problem is stated as follows. 

Min �𝑓1(𝑥),𝑓2(𝑥)�  (6-1) 

 𝑓1(𝑥) = 𝑥12 + 𝑥22  (6-2) 

 𝑓2(𝑥) = (𝑥1 − 5)2 + (𝑥2 − 5)2 (6-3) 

The Pareto front is given by: 

 𝑓2(𝑥) = 2��𝑓1(𝑥) 2⁄ − 5�
2
  (6-4) 

 0 ≤ 𝑓1(𝑥) ≤ 50  (6-5) 
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This problem is an unconstrained convex minimization problem as shown in 

Figure 6-1.  

 

Figure 6.1: The Pareto front and feasible domain of the Bihn problem 

 

In order to set the range of both objectives between zero and one, the original 

objective functions are divided by fifty. The settings to solve this problem for FSQP are 

the number of initial points (50), minimum weight for WSF (0.02), and weight increment 

(0.02). The solution is shown in Figure 6-2 and the performance metrics are given in 

Table 6-1. 
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Table 6-1: Bihn problem results 

 FSQP NSGA-II Hybrid 

RMSE 8.75E-07 7.27E-01 1.8E-05 

PF 1.94 6.19 11.5 

Execution time 0.03s 0.35s 0.04s 

Number of solutions 49 50 50 

 

 

 

Figure 6.2: The Bihn problem solved by FSQP 

 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the maximum 
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number of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-3. 

 

 

Figure 6.3: The PF and RMSE vs. number of generations  

for the Bihn problem solved by NSGA-II 

 

From Figure 6.3, it is determined that 600 generations give the best results and 

thus are selected. The results of NSGA-II are shown in Figure 6-4 and Table 6-1 gives 

the performance metrics. 
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Figure 6.4: The Bihn problem solved by NSGA-II  

 

The settings for the hybrid algorithm are the number of initial points for both 

NSGA-II and FSQP (50), maximum number of generations (100), and the minimum 

crowding distance (0.01). It is observed that, when the maximum number of generations 

is reached, the NSGA-II portion of the algorithm does not fully satisfy the crowding 

distance condition, which affects the distribution of initial points for the FSQP portion 

and thus the distribution of the final solutions. The results of the hybrid algorithm are 

shown in Figure 6-5, and the performance metrics are given in Table 6-1. 
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Figure 6.5: The Bihn problem solved by the hybrid algorithm 

 

By solving the Bihn problem with the three algorithms, it can be concluded that 

the fastest algorithm is FSQP, followed closely by both NSGA-II and the hybrid 

algorithm. Regarding the piling factor, FSQP has the best distribution from the three 

algorithms followed by NSGA-II and the hybrid has highest value. Finally, regarding the 

RMSE, FSQP has the lowest value followed by the hybrid algorithm which is about 100 

times larger than the hybrid algorithm, and NSGA-II has the highest value that is 104 

times larger than the hybrid algorithm. 

6.2. The Messac Problem 

Introduced by Messac (2000), this problem contains a convex as well as a non- 

convex region on the Pareto front as seen in Figure 6-6. Also, all of the solution points 
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are part of the Pareto front making the RMSE zero for any of the possible solution sets. 

This problem is used to identify if the algorithms are capable of solving problems that 

have a partially concave Pareto front. 

Min  �𝑓1(𝑥),𝑓2(𝑥)�  (6-6) 

 𝑓1(𝑥) = 𝑒−𝑥 + 1.4𝑒−𝑥2  (6-7) 

 𝑓2(𝑥) = 𝑒𝑥 + 1.4𝑒−𝑥2  (6-8) 

s.t  −2 ≤ 𝑥 ≤ 2  (6-9) 

 

Figure 6.6: The Pareto front of the Messac problem 

 

In order to set the range of the objectives between zero and one, the original 

objective functions are divided by 7.5. The inputs to solve this problem with FSQP are 

the number of initial points (50), the minimum weight for WSF (0.02) and the weight 
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increment (0.02). The results of the algorithm are shown in Figure 6-7, and the 

performance statistics are given in Table 6-2. 

 

Table 6-2: Messac problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0 0 

PF 3.12 2.29 1.53 

Execution time 0.05s 0.01s 0.02s 

Number of solutions 49 50 50 

 

 

 

Figure 6.7: The Messac problem solved by FSQP 
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As seen on Figure 6-7, FSQP is unable to provide solution points where the 

Pareto front is non-convex and thus leaves this portion blank on the Pareto front. 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to set the maximum number 

of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-8. 

 

Figure 6.8: The PF vs. number of generations  

for the Messac problem solved by NSGA-II 

 

As shown in Figure 6.8, the best solutions are obtained at 20 generations. The 

results of the algorithm are shown in Figure 6-9 and the performance statistics are given 

in Table 6-2. 
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Figure 6.9: The Messac problem solved by NSGA-II 

 

The inputs for the hybrid algorithm are the number of initial points (50), 

maximum number of generations (100), and minimum crowding distance (0.01). It is 

observed that, when the maximum number of generations is reached, the NSGA-II 

portion of the algorithm does not fully satisfy the crowding distance condition, which 

affects the distribution of initial points for the FSQP portion and thus the distribution of 

the final solutions. The results of the algorithm are shown in Figure 6-10 and the 

performance statistics are given in Table 6-2. 
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Figure 6.10: The Messac problem solved by the hybrid algorithm 

 

The solutions to the Messac problem show that FSQP is unable to provide 

solutions on the non-convex region of the Pareto front. This is also demonstrated by the 

largest PF by FSQP. The hybrid algorithm has the lowest PF among the three. The fastest 

algorithm is NSGA-II followed closely by the hybrid algorithm and the slowest algorithm 

is FSQP. This problem shows that the hybrid algorithm is capable of properly solving 

MOOPs that have both convex and non-convex regions on the Pareto fronts. 

6.3. The Murata Problem 

Introduced by Murata (1995), this problem is an unconstrained minimization 

problem with two objectives and its formulation is given by: 

Min �𝑓1(𝑥),𝑓2(𝑥)�  (6-10) 
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 𝑓1(𝑥) = 2√𝑥1  (6-11) 

 𝑓2(𝑥) = 𝑥1(1 − 𝑥2) + 5  (6-12) 

The Pareto front of this problem is non-convex, as shown in Figure 6-11, and can 

be analytically given by: 

 𝑓2(𝑥) = 5 − 𝑓12(𝑥)
4

  (6-13) 

 

Figure 6.11: The Pareto front and feasible domain of the Murata problem 

 

In order to set 𝐹1(𝑥) range from zero to one, the objective function is subtracted 

by two and then divided by two. For  𝐹2(𝑥), the function is subtracted by one and then 

divided by three. To solve this problem with FSQP, the inputs for the algorithm are 

number of points (50), minimum weight for WSF (0.02), and weight increase (0.02). The 
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results of the algorithm are shown in Figure 6-12 and the performance statistics are given 

in Table 6-3. 

 

Table 6-3: Murata problem results 

 FSQP NSGA-II Hybrid 

RMSE 6.26E-02 2.04E-06 1.16E-04 

PF 3.62 0.36 0.58 

Execution time 0.04s 0.49s 0.02s 

Number of solutions 5 50 50 

 

 

 

Figure 6.12: The Murata problem solved by FSQP  
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It can be seen from Figure 6.12 that FSQP is unable to properly solve this 

problem because of the concavity of the Pareto front. 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the number of 

generations that yields the best solutions, the problem was solved with different 

maximum numbers of generations and .The results are shown in Figure 6-13. 

 

Figure 6.13: The PF and RMSE vs. number of generations  

for the Murata problem solved by NSGA-II 

 

From Figure 6.13, it is determined that the adequate number of generations is 800. 

The results of the algorithm are shown in Figure 6-14 and the performance statistics of 

NSGA-II are given in Table 6-3. 
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`  

Figure 6.14: The Murata problem solved by NSGA-II 

 

The inputs for the hybrid algorithm are the number of initial points for NSGA-II 

(50), the maximum number of generations for NSGA-II (100), and the minimum 

crowding distance (0.01). It is observed that, when the maximum number of generations 

is reached, the NSGA-II portion of the algorithm does not fully satisfy the crowding 

distance condition, which affects the distribution of initial points for the FSQP portion 

and thus the distribution of the final solutions. The results of the solutions for this 

problem are shown in Figure 6-15, and the performance statistics are given in Table 6-3. 



122 
 

 

Figure 6.15: The Murata problem solved by the hybrid algorithm 

 

The optimization results of the Murata problem show once again that FSQP is 

unable to obtain a satisfactory set of solutions for optimization problems with non-convex 

Pareto front. This can be seen from the highest PF of FSQP and the least number of 

solutions. The hybrid algorithm gives an error that is 100 times larger than that by 

NSGA-II. Furthermore, the hybrid algorithm has a larger PF than that of NSGA-II yet 

both PFs are significantly smaller than that of FSQP. Finally, the hybrid algorithm is 

about 25 times faster than NSGA-II. 

6.4. The Rendon Problem 

Introduced by Rendon (1997), this is a minimization problem of two objectives. 

The problem is stated as follows. 
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Min �𝑓1(𝑥),𝑓2(𝑥)�  (6-14) 

 𝑓1(𝑥) = 1
(𝑥12 + 𝑥22 + 1)�   (6-15) 

 𝑓2(𝑥) = 𝑥12 + 3𝑥22 + 1  (6-16) 

 −3 ≥ 𝑥1,2 ≥ 3  (6-17) 

The Pareto front, as shown in Figure 6-16, is convex and can be given explicitly by the 

following equation: 

 𝑓2(𝑥) = 1
𝑓1(𝑥)  (6-18) 

 

Figure 6.16: The Pareto front and feasible domain of the Rendon problem 

 

For this problem, 𝐹2(𝑥)  is divided by 40 in order to keep the range of the 

objective functions between zero and one. To solve this problem with FSQP, the inputs to 
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the algorithm are the number of initial points (50), minimum weight for WSF (0.02) and 

the weight increment (0.02). The results of this problem are shown in Figure 6-17 and the 

performance statistics are given in Table 6-4. 

 

Table 6-4: Rendon problem results 

 FSQP NSGA-II Hybrid 

RMSE 8.36 8.12 9.23 

PF 10.37 7.58 8.21 

Execution time 0.12s 0.05s 0.06s 

Number of solutions 41 50 50 
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Figure 6.17: The Rendon problem solved by FSQP 

 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the maximum 

number of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-18. 
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Figure 6.18: The PF and RMSE vs. number of generations  

for the Rendon problem solved by NSGA-II 

 

According to Figure 6.18 the best solutions are obtained at 80 generations. The 

problem’s solution is shown in Figure 6-19, and the performance statistics given in Table 

6-4. 
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Figure 6.19: The Rendon problem solved by NSGA-II 

 

The inputs for the hybrid algorithm are the initial points for NSGA-II (50), 

maximum number of generations (100), and the minimum crowding distance (0.01). It is 

observed that, when the maximum number of generations is reached, the NSGA-II 

portion of the algorithm does not fully satisfy the crowding distance condition, which 

affects the distribution of initial points for the FSQP portion and thus the distribution of 

the final solutions. The results of the hybrid algorithm are shown in Figure 6-20, and the 

performance statistics are summarized in Table 6-4. 
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Figure 6.20: The Rendon problem solved by the Hybrid algorithm 

 

This problem has a Pareto front with steep slopes, which makes the problem to 

have a very high RMSE when solved by the three algorithms. The PFs are also relatively 

high when it is considered that the three algorithms to some extent are able to have a 

good solution along the Pareto front. Furthermore, the execution time of NSGA-II and 

the hybrid algorithm are along the same value (0.01s difference), and the solution time by 

FSQP doubles that by the hybrid algorithm. 

6.5. The Rendon 2 Problem 

Introduced by Rendon (1997), this is a minimization problem of two objectives. 

The problem is stated as follows. 
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Min �𝑓1(𝑥),𝑓2(𝑥)�  (6-19) 

 𝑓1(𝑥) = 𝑥1 + 𝑥2 + 1  (6-20) 

The Pareto front is a convex given by: 

 𝑓2(𝑥) = 𝑓1
2(𝑥) + 4𝑓1(𝑥) − 3  (6-21) 

 

Figure 6.21: The Pareto front and feasible domain of the Rendon 2 problem 

 

In order to normalize the objective functions, 𝑓1(𝑥) is added 5 and divided by 3, 

and 𝑓2(𝑥) is added 7 and divided by 9. To solve this problem with FSQP, the number of 

initial points is set to (50), the minimum weight is set to (0.02) and the weight increase is 

selected as (0.02). The solution to this problem is shown in Figure 6-22 and the 

performance statistics are given in Table 6-5. 
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Table 6-5: Rendon 2 problem results 

 FSQP NSGA-II Hybrid 

RMSE 1.22E-02 1.71E-05 1.54E-04 

PF 2.14 3.44 1.15 

Execution time 0.4s 0.3s 0.07s 

Number of solutions 44 50 50 

 

 

 

Figure 6.22: The Rendon 2 problem solved by FSQP 

 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the maximum 
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number of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-23. 

 

Figure 6.23: The PF and RMSE vs. number of generations  

for the Rendon 2 problem solved by NSGA-II 

 

From Figure 6.23, it is determined that the best solutions are obtained at 700 

generations. The results of the algorithm are shown in Figure 6-24, and the performance 

statistics are given in Table 6-5. 
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Figure 6.24: The Rendon 2 solved by NSGA-II 

 

The inputs for the hybrid algorithm are the initial points for NSGA-II (50), 

maximum number of generations (100), and the minimum crowding distance (0.01). It is 

observed that, when the maximum number of generations is reached, the NSGA-II 

portion of the algorithm does not fully satisfy the crowding distance condition, which 

affects the distribution of initial points for the FSQP portion and thus the distribution of 

the final solutions. The plot of the solutions for this problem is shown in Figure 6-25 and 

the performance statistics are summarized in Table 6-5. 
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Figure 6.25: The Rendon 2 problem solved by the hybrid algorithm 

 

Solving the Rendon 2 problem, it can be concluded that the RMSE of NSGA-II is 

the lowest, which is approximately ten times smaller than the hybrid algorithm, and the 

RMSE of FSQP is approximately 80 times larger than the one obtained by the hybrid 

algorithm. The lowest PF is the one from the hybrid algorithm followed by FSQP and the 

largest value is obtained from NSGA-II. Finally, regarding the execution time, the fastest 

is the hybrid algorithm followed by NSGA-II whose time is about three times more than 

the hybrid algorithm. The FSQP has the most time. 

6.6. The ZDT-3 Problem 

Introduced by Zitzler et al (2000), this problem is an unconstrained optimization 

problem with two objectives and thirty design variable. The problem is stated as follows. 
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Min  �𝑓1(𝑥),𝑓2(𝑥)�  (6-22) 

 𝑓1(�⃗�) = 𝑥1  (6-23) 

  𝑓2(�⃗�) = 1 −�𝑥1 𝑔(�⃗�)� − �𝑥1 𝑔(�⃗�)� � sin(10𝜋𝑥1)  (6-24) 

where 

 𝑔(�⃗�) = 1 + 9∑ 𝑥𝑖𝑛
𝑖=2

(𝑛 − 1)� , 𝑛 = 30   (6-25) 

The Pareto front is obtained at 𝑔(𝑥) = 1; it is discontinuous, though the feasible 

domain is continuous as shown in Figure 6-26 

 

Figure 6.26: The Pareto front and feasible domain of the ZDT-3 problem 

 

To solve this problem with FSQP, the number of initial points is set to (50), the 

minimum weight for WSF is (0.02) and the weight increment is set to (0.02). The results 
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of the algorithm are shown in Figure 6-27 and the performance statistics are given in 

Table 6-6. This algorithm is unable to solve properly the problem because of the 

discontinuity of the Pareto front. 

 

Table 6-6: ZDT-3 problem results 

 FSQP NSGA-II Hybrid Hybrid 2 

RMSE 2.40E-06 2.69E-04 0.198 4.60E-01 

PF 0.28 0.18 0.34 0.19 

Execution time 34.21s 1.5s 1.71s 4.78s 

Number of solutions 2 50 20 27 

 

 

Figure 6.27: The ZDT-3 problem solved by FSQP 
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The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the maximum 

number of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-28. 

 

 

Figure 6.28: The PF and RMSE vs. number of generations  

for the ZDT-3 problem solved by NSGA-II 

 

According to Figure 6.28, the best solutions are obtained at 1000 generations. The 

results of the algorithm are shown in Figure 6-29, and the performance statistics are given 

in Table 6-6. 
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Figure 6.29: The ZDT-3 problem solved by NSGA-II 

 

The inputs for the hybrid algorithm are the number of initial points (50), 

maximum number of generations for NSGA-II (100), and the minimum crowding 

distance (0.01). It is observed that, when the maximum number of generations is reached, 

the NSGA-II portion of the algorithm does not fully satisfy the crowding distance 

condition, which affects the distribution of initial points for the FSQP portion and thus 

the distribution of the final solutions. The plot of the solutions for this problem is shown 

in Figure 6-30, and the performance statistics are summarized in Table 6-6. 
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Figure 6.30: The ZDT-3 problem solved by the hybrid algorithm 

 

As seen on the above figure almost all the solutions to this problem are off the 

true Pareto front. To overcome this, the parameters of initial points and maximum 

number of generations of the NSGA-II stage, these are set to 50 initial points and 5000 

generations. The results are shown in Figure 6-31 and the performance statistics given in 

Table 6-6. 
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Figure 6.31: The ZDT-3 problem solved by hybrid algorithm, second attempt 

 

The solutions to the ZDT-3 problem show that FSQP is unable to provide 

adequate solutions due to the limitation of its capabilities to solve problems with 

discontinuous Pareto fronts. NSGA-II has the smallest error and the best distribution of 

the solutions. The hybrid algorithm does not have better performance than NSGA-II in 

this case; this is primarily caused by the second stage of the algorithm, which uses FSQP 

and thus is unable to obtain solutions on the Pareto front. However, it is observed that by 

increasing the number of generations for the NSGA-II portion, the solution quality of the 

hybrid algorithm can be improved. This is mainly attributed to the fact that many of the 

initial points for the second stage are already close to the Pareto front. 
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6.7. The Bihn 2 Problem 

Introduced by Bihn (1997), this constrained minimization problem has two 

objective functions, two design variables and two constraints. The problem is stated as 

follows. 

Min  �𝑓1(𝑥),𝑓2(𝑥)�  (6-26) 

 𝑓1(𝑥) = 4𝑥12 + 4𝑥22  (6-27) 

 𝑓2(𝑥) = (𝑥1 − 5)2 + (𝑥2 − 5)2  (6-28) 

s.t. (𝑥1 − 5)2 + 𝑥22 − 25 ≤ 0  (6-29) 

 −(𝑥1 − 8)2 − (𝑥22 + 3)2 + 7.7 ≤ 0  (6-30) 

The Pareto front is shown in Figure 6-32 and its equation is given by: 

 𝑓2(𝑥) = 2��𝑓1(𝑥) 8⁄ − 5�
2
  (6-31) 

 

Figure 6.32: The Pareto front and feasible domain of the Bihn 2 problem 
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In order to set the proper ranges of both objective functions between zero and one, 

𝐹1(𝑥) is divided by 200 and 𝐹2(𝑥) is divided by 50. The inputs for solving this problem 

using FSQP are number of initial points (50), minimum weight for WSF (0.02), and 

weight increase of (0.02). The solution is shown in Figure 6-33, and the performance 

statistics are given in Table 6-7. 

 

Table 6-7: Bihn 2 problem results 

 FSQP NSGA-II Hybrid 

RMSE 3.43 1.583 5.59 

PF 12.01 10.86 12.66 

Execution time 0.1s 0.0s 0.03s 

Number of solutions 49 50 50 

 

 



142 
 

 

Figure 6.33: The Bihn 2 problem solved by FSQP 

 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the maximum 

number of generations that yields the best solutions, the problem is solved with different 

maximum numbers of generations and the results are shown in Figure 6-34. 
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Figure 6.34: The PF and RMSE vs. number of generations  

for the Bihn 2 problem solved by NSGA-II 

 

From Figure 6.34, it is determined that the best solutions are obtained at 20 

generations. The results of the algorithm are shown in Figure 6-35 and the performance 

statistics are given in Table 6-7. 
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Figure 6.35: The Bihn 2 problem solved by NSGA-II 

 

The settings for the hybrid algorithm are the number of initial points for NSGA-II 

(50), maximum number of generations (100), and the minimum crowding distance (0.01). 

It is observed that, when the maximum number of generations is reached, the NSGA-II 

portion of the algorithm does not fully satisfy the crowding distance condition, which 

affects the distribution of initial points for the FSQP portion and thus the distribution of 

the final solutions. The results of this algorithm are shown in Figure 6-36, and the 

performance statistics are given in Table 6-7. 
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Figure 6.36: The Bihn 2 problem solved by the hybrid algorithm 

 

It can be concluded that the smallest RMSE for the Bihn 2 problem is obtained by 

NSGA-II, followed by the error obtained by FSQP which is approximate twice as much; 

the largest RSME is obtained from the hybrid algorithm which is about twice as much as 

FSQP. The piling factor given by the three algorithms is similar, though NSGA-II has the 

smallest value. Regarding the execution time NSGA-II took less than 0.01 seconds 

followed by the hybrid algorithm that took three times as much and finally FSQP took a 

tenth of a second. 

6.8. The Jimenez Problem 

Introduced by Jimenez (1998), this constrained maximization problem has two 

objective functions, and three constraints. 
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Max �𝑓1(𝑥),𝑓2(𝑥)�  (6-32) 

 𝑓1(𝑥) = 5𝑥1 + 3𝑥2  (6-33) 

 𝑓1(𝑥) = 2𝑥1 + 8𝑥2  (6-34) 

s.t.  𝑥1 + 4𝑥2 ≤ 100  (6-35) 

 3𝑥1 + 2𝑥2 ≤ 150  (6-36) 

 2𝑥1 + 8𝑥2 ≥ 200  (6-37) 

The Pareto front is a straight line section given by the following equation and 

shown in Figure 6-37: 

 𝑓2(𝑥) = 20𝑓1(𝑥) − 5100  (6-38) 

 

Figure 6.37: The Pareto front and feasible domain of the Jimenez problem 
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To solve this problem as a minimization problem as seen in section 2.3, the 

objective functions need to be multiplied by -1 and then normalized. To normalize the 

objectives, 𝐹1(𝑥) is added by 250 and divided by 5. 𝐹2(𝑥) is added 200 and divided by 

100. To solve this problem with FSQP, the inputs for the algorithm are the number of 

initial points (50), minimum weight for WSF (0.02) and the weight increment (0.02). The 

solution to this problem is shown in Figure 6-38 and the performance statistics are given 

in Table 6-8. 

 

Table 6-8: Jimenez problem results 

 FSQP NSGA-II Hybrid 

RMSE 0 0.19 0.24 

PF 100.12 6 52.25 

Execution time 0.15s 3.12s 0.04s 

Number of solutions 2 50 23 
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Figure 6.38: The Jimenez problem solved by FSQP 

 

The inputs for solving this problem with NSGA-II are the number of initial points 

(50), crossover rate (0.9), and mutation rate (0.01). In order to determine the number of 

generations that yields the best solutions, the problem is solved with different maximum 

numbers of generations and the results are shown in Figure 6-39. 
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Figure 6.39: The PF and RMSE vs. number of generations  

for the Jimenez problem solved by NSGA-II 

 

According to the Figure 6.39, the best solutions are obtained at 1000 generations. 

The results of the algorithm are shown in Figure 6-40, and the performance statistics are 

given in Table 6-8. 
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Figure 6.40: The Jimenez problem solved by NSGA-II 

 

The inputs for the hybrid algorithm are the number of initial points for NSGA-II 

(50), maximum number of generations (100), and the minimum crowding distance (0.01). 

It is observed that, when the maximum number of generations is reached, the NSGA-II 

portion of the algorithm does not fully satisfy the crowding distance condition, which 

affects the distribution of initial points for the FSQP portion and thus the distribution of 

the final solutions. The results of the hybrid algorithm are shown in Figure 6-41, and the 

performance statistics are given in Table 6-8. 
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Figure 6.41: The Jimenez problem solved by the hybrid algorithm 

 

The optimization results of the Jimenez problem show that FSQP is unable to 

obtain a satisfactory set of solutions, since it only provides two points in the extreme 

points of the Pareto front. This is also shown by the largest PF obtained by this algorithm. 

The RMSE of the hybrid algorithm doubles that of NSGA-II and the PF of the hybrid 

solutions is significantly larger than that of NSGA-II. The execution time of the hybrid 

algorithm is significantly less than that of NSGA-II, but the hybrid algorithm loses more 

than half of its solution points. 

The solutions of the benchmark problems in this chapter showed that the hybrid 

algorithm is able to solve both convex and non-convex optimization problems. It can also 

solve problems with constraints and discontinuities in their Pareto fronts. As stated in the 
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no free lunch theorem (Wolpert et al. 1996), there are some drawbacks from the other 

algorithms such as a sacrifice on the spread of the solution when compared to the one 

obtained from NSGA-II. It also shows that the hybrid algorithm is capable of solving 

multi-objective problems with linear and nonlinear Pareto fronts. 

 



 
 
 

 
 
 

CHAPTER 7: APPLICATION PROBLEMS 
 
 
This chapter presents a real world application problem that has an unknown 

Pareto front. This problem will be first solved without any constraints and later will be 

solved by adding constraints to the formulation. 

7.1. Problem Statement and Formulation 

The application problem is the design of a square, hollow aluminum tube that is 

200 mm long and subjected to a quasi-static crash at 1 mm/s into a rigid wall. During this 

crash, the energy absorbed by the hollow tube is to be maximized and the mass of the 

tube is to be minimized. In order for the tube to provide adequate crash protection and 

sufficient structural stiffness, the maximum crushing force is set to be 200 kN and the 

mean crushing force (MCF) is set to have a minimum of 70 kN. The design variables are 

the side length of the outer part of the tube and the wall thickness of the tube. As side 

constraints, the thickness of the tube is set from 1 to 3 mm, and the side length of the tube 

is set from 30 to 70 mm. The problem is formulated as follows. 

Min (mass(𝑡, 𝑠 ), -energy(𝑡, 𝑠))  (7-1) 

s.t. Max force(𝑡, 𝑠) − 200kN≤ 0 (7-2) 

 −MCF(𝑡, 𝑠) +70kN ≥ 0 (7-3) 

 1𝑚𝑚 ≤ 𝑡 ≤ 3𝑚𝑚 (7-4) 

 30𝑚𝑚 ≤ 𝑠 ≤ 70𝑚𝑚 (7-5) 
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Figure 7.1: Side view of the 200 mm aluminum tube 
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Figure 7.2: Cross section of the 200mm aluminum tube 

 

Since there is no analytical equation that states the relationship between the 

absorbed energy by a crushing tube and design variables, metamodeling is needed in 

order to obtain explicit functions that relate the absorbed energy, the maximum crushing 

force, and the MCF to the design variables. 

As stated by Fang et al (2005) and (2006), radial basis functions (RBFs) are a 

series of functions that are symmetric and concentric at each sampling point. An RBF 

approximation of a true function can be stated as: 

 𝑓′(𝑥) = ∑ 𝜆𝑖𝜙(‖𝑥 − 𝑥𝑖‖)𝑛
𝑖=1   (7-6) 

where 𝑛 is the number of is sampling points, 𝑥 is the vector of design variables, 𝑥𝑖  is the 

vector of design variables at the 𝑖th sampling point, ‖𝑥 − 𝑥𝑖‖ is the Euclidean distance 
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and 𝜙 is the basis function and 𝜆𝑖  is the coefficient for the ith basis function. Some radial 

basis functions are given in Table 7-1. 

 

Table 7-1: Commonly used radial basis functions 

Name Function 

Linear 𝜙(𝑟) = 𝑟 

Gaussian 𝜙(𝑟) = 𝑟2 ln(𝑐𝑟), 0 < 𝑐 ≤ 1 

Compactly supported (2, 0) 𝜙2,0(𝑡) = (1 − 𝑡)5(1 + 5𝑡 + 9𝑡2 + 5𝑡3 + 𝑡4), 𝑡 = 𝑟 𝑟𝑜⁄  

Compactly supported (2, 1) 𝜙2,1(𝑡) = (1 − 𝑡)4(4 + 16𝑡 + 12𝑡2 + 3𝑡3) 

Compactly supported (3, 0) 𝜙3,0(𝑡) = (1 − 𝑡)7(5 + 35𝑡 + 101𝑡2 + 147𝑡3 + 101𝑡4 + 35𝑡5 + 5𝑡5) 

Compactly supported (3, 1) 𝜙3,1(𝑡) = (1 − 𝑡)6(6 + 36𝑡 + 82𝑡2 + 72𝑡3 + 30𝑡4 + 5𝑡5) 

 

Due to its formulation characteristics, the RBF models have an exact match of the 

predicted values at the sampling points. Therefore, as stated by Fang et al. 2006, there is 

the need to obtain some off-design points to calculate the difference between the 

approximation model and the true model. 

To compare the RBF approach to other methods of generating the approximation 

of the objective and constraint functions, response surface methodology (RSM) is used as 

well. The RSM typically uses a linear or quadratic polynomial to approximate the true 

response. The approximation function 𝑓′(𝑥) can be written in the general form as: 

𝑓′(𝑥) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑚
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖2𝑚

𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1  (7-7) 

where 𝛽′𝑠 are the unknown coefficients which are solved by the least square method. 
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In order to obtain the function values at the sampling points, simulations are 

conducted using LS-Dyna, where the geometry can be changed according to the 

simulation matrix 25 design points given by Table 7-2. 

 

Table 7-2: Simulation matrix for the application problem 

t (mm) s (mm) Mass (kg) Energy Absorbed (J) MCF (N) Max Force (N) 
1 30 0.000189 1682.052 66893.7 16536.91 
1 40 0.000252 1585.880 54371.7 16114.74 
1 50 0.000316 1621.139 66893.7 16536.91 
1 60 0.000379 1960.639 80979.4 20329.53 
1 70 0.000442 1871.044 94989.2 20272.34 

1.5 30 0.000284 3532.179 65861.4 35785.56 
1.5 40 0.000379 3671.653 85829.3 37327.19 
1.5 50 0.000473 4007.591 105310 40964.98 
1.5 60 0.000568 4338.155 125479 44123.23 
1.5 70 0.000663 3832.673 145957 38930.81 

2 30 0.000379 6043.962 93797.3 60944.34 
2 40 0.000505 6469.260 117815 64651.39 
2 50 0.000631 6934.390 145734 64712.46 
2 60 0.000757 7471.032 171616 66211.03 
2 70 0.000884 7317.908 196723 75106.1 

2.5 30 0.000473 8650.141 125263.4 87865.56 
2.5 40 0.000631 9573.997 155586 96494.26 
2.5 50 0.000789 9507.073 186933 97367.45 
2.5 60 0.000947 10791.100 220528 110589 
2.5 70 0.001105 10828.870 251487 112039.7 

3 30 0.000568 12371.290 161141 123355.4 
3 40 0.000757 13506.290 197489 135181.8 
3 50 0.000947 14002.310 233296 142203.7 
3 60 0.001136 16207.650 272658 149138.7 
3 70 0.001326 15868.780 309819 159806.2 

 

In the metamodeling work of this study, the range of the variables are set to [-1, 1] 

and the function values are set to the range of [0, 1]. The normalized values of design 

variables and functions are given in Table 7-3. 
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Table 7-3: Simulation matrix 

Thickness Side Mass Energy Absorbed MCF Max Force 
-1 -1 0 0.006577 0.002938 0.04902 
-1 -0.5 0.055556 0 0 0 
-1 0 0.111111 0.002411 0.002938 0.04902 
-1 0.5 0.166667 0.02563 0.029332 0.104161 
-1 1 0.222222 0.019503 0.028934 0.159005 

-0.5 -1 0.083333 0.13311 0.136896 0.044979 
-0.5 -0.5 0.166667 0.142648 0.147625 0.123147 
-0.5 0 0.25 0.165624 0.172942 0.199408 
-0.5 0.5 0.333333 0.188231 0.194921 0.278364 
-0.5 1 0.416667 0.153661 0.158785 0.358529 

0 -1 0.166667 0.304893 0.311985 0.154339 
0 -0.5 0.277778 0.33398 0.337784 0.248362 
0 0 0.388889 0.365791 0.338209 0.357656 
0 0.5 0.5 0.402492 0.348638 0.458976 
0 1 0.611111 0.39202 0.410542 0.557263 

0.5 -1 0.25 0.483133 0.499339 0.27752 
0.5 -0.5 0.388889 0.546317 0.55939 0.396224 
0.5 0 0.527778 0.54174 0.565466 0.518938 
0.5 0.5 0.666667 0.629556 0.65748 0.650452 
0.5 1 0.805556 0.632139 0.667576 0.771648 

1 -1 0.333333 0.737627 0.746326 0.41797 
1 -0.5 0.5 0.815251 0.82863 0.560262 
1 0 0.666667 0.849174 0.877498 0.700435 
1 0.5 0.833333 1 0.925761 0.854526 
1 1 1 0.976824 1 1 

 

To select the adequate formulation for the metamodels, sixteen off-design points 

are selected at the mid points of the ones given in Table 7-3. The function values of these 

off-design points are also obtained by simulations and are given in Table 7-4. 
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Table 7-4: Off-design points matrix 

Thickness Side Mass  Energy Absorbed MCF Max Force 
-0.75 -0.75 0.076389 0.081901 0.084108 0.031609 
-0.75 -0.25 0.145833 0.090057 0.092042 0.094774 
-0.75 0.25 0.215278 0.081091 0.084523 0.158615 
-0.75 0.75 0.284722 0.091575 0.096161 0.224897 
-0.25 -0.75 0.173611 0.235668 0.24392 0.139163 
-0.25 -0.25 0.270833 0.254721 0.262151 0.233595 
-0.25 0.25 0.368056 0.281553 0.293989 0.322753 
-0.25 0.75 0.465278 0.268052 0.278757 0.41184 
0.25 -0.75 0.270833 0.405545 0.417487 0.268377 
0.25 -0.25 0.395833 0.475043 0.492097 0.377641 
0.25 0.25 0.520833 0.385671 0.397206 0.497814 
0.25 0.75 0.645833 0.523107 0.541738 0.608694 
0.75 -0.75 0.368056 0.62872 0.641475 0.409749 
0.75 -0.25 0.520833 0.693936 0.720539 0.542332 
0.75 0.25 0.673611 0.727528 0.751652 0.685379 
0.75 0.75 0.826389 0.809144 0.838767 0.81797 

 

To select the adequate formulation for the functions to be used in optimization, 

six RBFs and a polynomial function are used and compares. The R2 statistics and the 

RSME values are used to select the most adequate function, as seen in Tables 7-5a and 7-

5b. 

 

Table 7-5a: R2 statistic for the crashing tube problem 

 
Gauss Poly CS(2,0) CS(2,1) CS(3,0) CS(3,1) 

Mass 1 1 0.667543 0.878221 0.999998 0.999993 
Absorbed Energy 0.98227 0.986719 0.540395 0.984769 0.985528 0.986488 
Max Force 0.998835 0.998752 0.644272 0.905028 0.999862 0.999805 
MCF 0.949235 0.986186 0.556634 0.987641 0.987354 0.98795 
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Table 7-5b: RMSE statistic for the crashing tube problem 

 
Gauss Poly CS(2,0) CS(2,1) CS(3,0) CS(3,1) 

Mass 1.65E-4 6.22E-10 0.542477 0.291961 0.001015 0.002143 
Absorbed Energy 0.127406 0.113846 0.738313 0.120956 0.117488 0.113204 
Max Force 0.038555 0.036879 0.597573 0.274382 0.011536 0.013139 
MCF 0.227895 0.120502 0.727672 0.110344 0.112076 0.110014 

 

For the mass function, the highest values of 𝑅2 are given by the Gaussian and the 

polynomial functions. Upon looking at the RSME values, the polynomial function is 

shown to be a better choice than the Gaussian function to approximate the mass. 

The absorbed energy is not well represented by the compactly supported function 

(2, 0) according to the RMSE value. Looking at the 𝑅2  statistic, the lowest one is 

obtained from the compactly supported function (3, 1), and thus this function is selected 

to model the absorbed energy. 

For the maximum force, the compactly supported functions (2, 0) and (2, 1) do 

not represent the model well according to the RMSE values in Table 7-5b. By checking 

the 𝑅2 values in Table 7-5a, the compactly supported function (3, 0) is selected. 

Finally, the mean crushing force is best represented by the compactly supported 

function (3, 1) and thus selected, because it has the highest 𝑅2 statistic and the smallest 

RMSE value. 

7.2. Unconstrained Optimization of a Crushing Tube 

Now that the approximation functions for the objectives and constraints have been 

defined, the problem can be solved. As a first step, this problem will be solved without 

any constraints, which will later on be added and solved in section 7.3. 
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Before solving this problem properly, the maximization of absorbed energy needs 

to be converted to a minimization problem. Therefore, this function is multiplied by -1 

and then added by one (1) to keep the range of function values between zero (0) and one 

(1). 

7.2.1 FSQP Solution 

To solve this problem with FSQP, the inputs to the algorithm are the number of 

initial points (100), minimum weight for WSF (0.01), and weight increment (0.01). This 

way 100 solution points are expected. The results of this problem are shown in Figure 7.3 

and the performance statistics are given in Table 7-6. It is important to note that the PF is 

calculated after the objective functions are normalized. 

 

Table 7-6: Unconstrained tube problem results 

 FSQP NSGA-II Hybrid 

PF 0.803 0.22 0.15 

Execution time 11.74s 6.6s 1.08s 

Number of solutions 51 100 96 
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Figure 7.3: The unconstrained optimization problem solved by FSQP 

 

As seen in Figure 7.3, FSQP identifies certain clusters on the solution space. At 

this point there is no information of the objective space regarding its convexity; therefore 

a judgment on parts of the Pareto front without solutions cannot be given.  

7.2.2 NSGA-II Solution 

Next, the unconstrained optimization problem is solved using NSGA-II using the 

following inputs: the number of initial points (100), number of generations (1000), 

crossover rate (0.9) and mutation rate (0.01). The solutions for this problem are shown in 

Figure 7.4 and the performance statistics given in Table 7-6. 
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Figure 7.4: The unconstrained optimization problem solved by NSGA-II 

 

It can be seen from Figure 7.4 that NSGA-II identifies a wider range of solutions 

and spreads more evenly than FSQP solutions. It is also observed that there exists a non-

convex region on the Pareto front, which could not be identified by FSQP. 

7.2.3 Hybrid Algorithm Solution 

The parameters for solving this problem using the hybrid algorithm are the 

number of initial points for NSGA-II (100), the maximum number of generations (10) 

and the minimum crowding distance (0.01). It is observed that, when the maximum 

number of generations is reached, the NSGA-II portion of the algorithm does not fully 

satisfy the crowding distance condition, which affects the distribution of initial points for 
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the FSQP portion and thus the distribution of the final solutions. The results of this 

algorithm are shown in Figure 7.5 and summarized in Table 7-6. 

 

 

Figure 7.5: The unconstrained optimization problem solved by the hybrid 

algorithm 

 

To compare the solutions of different methods to this problem, Figure 7.6 shows 

the sets of solutions obtained by the three algorithms. The combined set of solutions 

helps to identify solutions dominated by solutions by other algorithms. There are two 

solution points by NSGA-II that are evidently off the Pareto front, as these are dominated 

by solutions obtained by the hybrid algorithm. 
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Figure 7.6: Comparison of solutions to the unconstrained optimization problem  

 

As seen in Table 7-6 the largest PF is on the solutions obtained from FSQP, this is 

because FSQP solutions are in separate clusters, and no solutions are obtained in the non-

convex regions of the Pareto front. The solutions of the hybrid algorithm have the lowest 

PF and thus have the best distribution out of the three algorithms. Regarding the 

execution time, FSQP takes approximately twice as much as NSGA-II, which is 

approximately six times more than that of the hybrid algorithm. Finally, the number of 

solutions obtained by FSQP is 51, an indication of losing nearly half of the initial points 

through the algorithm’s execution. The hybrid algorithm loses four solution points out of 

the total 100 solution points provided by NSGA-II. 
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In order to determine the accuracy of the solutions obtained with the  

approximation functions,  two points are chosen from the solutions by  the hybrid 

algorithm and validated by simulation results on these  two points. The points chosen in 

the objective space are (459.8E-3 kg, 8241.47 J) and (607.9E-3 kg, 12793.65 J) where the 

first value is the mass and the second one is the absorbed energy. The design variables 

corresponding to the two points are (2.428 mm, 30 mm) and (3.0 mm, 32.1 mm), 

respectively. The simulation results for the first point are 459.7 kg for mass and 8345.5 J 

for absorbed energy. The simulation results for the second point are 607.8E-3 kg for mass 

and 12180.4 J for absorbed energy. The relative errors of the solutions from the 

approximation functions are calculated as follows: 

 𝜂 = �𝑥𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝑥𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
𝑥𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

�  (7-8) 

The relative errors for the first point are 0.00633% for the mass and 1.25% for the 

absorbed energy. For the second point, the relative errors are 0.0163% for the mass and 

5.03% for the absorbed energy. These results show that the optimization results by the 

approximation models are sufficiently accurate. 

In this case, the hybrid algorithm takes less time than its counterparts, while it 

yields 96 nondominated solutions. In addition, the solutions by the hybrid algorithm have 

the best distribution among the solutions of the three algorithms. This can be seen from 

the lowest PF of the solutions by the hybrid algorithm as well as by a visual comparison 

of the solution distributions. 

7.3. Constrained Optimization of a Crushing Tube 

In this section, the optimization problem of the crushing tube will be solved with 

constraints to show the difference in the solutions between the constrained and 
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unconstrained optimization problems. As stated earlier, the constraints are the maximum 

crushing force less than 200 kN and the mean crushing force being at least 70 kN. 

7.3.1 FSQP Solution 

In order to solve this problem with FSQP, the inputs for the algorithm are the 

number of initial points (100), minimum weight for WSF (0.01), and weight increment 

(0.01). This results in 100 possible solution points. The results of this problem are shown 

in Figure 7.7 and the performance statistics are given in Table 7-7. 

 

Table 7-7: Constrained tube problem results 

 FSQP NSGA-II Hybrid 

PF 0.018 0.552 0.078 

Execution time 3min 2.26s 19.95s 3.99s 

Number of solutions 25 99 97 
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Figure 7.7: The constrained optimization problem solved by FSQP 

 

As seen in Figure 7.7, FSQP identifies points on a small section of the objective 

space. At this point there is no information regarding the convexity of the objective space 

and thus a judgment on the part of the Pareto front without solutions cannot be given. 

7.3.2 NSGA-II Solution 

In order to solve the constrained optimization problem with NSGA-II, the input 

parameters for the algorithm are the number of initial points (100), number of generations 

(1000), crossover rate (0.9) and mutation rate (0.01). The results for this problem are 

shown in Figure 7.8 and the performance statistics are given in Table 7-7. 
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Figure 7.8: The constrained optimization problem solved by NSGA-II 

 

This algorithm identifies more points in the neighboring region than the ones 

identified by FSQP. In addition, the solutions by NSGA-II also show that there is a 

concave region on the Pareto front where FSQP fails to yield any solution points. 

7.3.3 Hybrid Algorithm Solution 

The input parameters for solving this problem with the hybrid algorithm are the 

number of initial points for NSGA-II (100), the maximum number of generations (10) 

and minimum crowding distance (0.01). It is observed that, when the maximum number 

of generations is reached, the NSGA-II portion of the algorithm does not fully satisfy the 

crowding distance condition, which affects the distribution of initial points for the FSQP 
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portion and thus the distribution of the final solutions. The results of this algorithm are 

shown in Figure 7.9 and summarized in Table 7-7. 

 

 

Figure 7.9: The constrained optimization problem solved by the hybrid algorithm 

 

To compare the quality of the solutions by different approaches on this problem, 

Figure 7.10 shows the combined set of solutions from the three algorithms. It can be seen 

that FSQP obtains the least amount of points on the solution space. The hybrid algorithm 

obtains most of its points in the mid section (between 0.25 and 0.35 kg), but NSGA-II is 

the algorithm whose solutions cover the most of the objective space with its solutions. 

Finally, two solutions by NSGA-II are dominated by solutions given by the hybrid 

algorithm and thus should be removed from the final solutions. 
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Figure 7.10: Comparison of the constrained tube solutions 

 

In this case, FSQP has the smallest PF followed by the one obtained by the hybrid 

algorithm and that by FSQP being the highest. Since range of solutions by FSQP is much 

narrower than the other algorithms, it cannot be said having a good spread of the solution 

set. The execution time of the hybrid algorithm is the least followed by that of NSGA-II 

whose time is more than one and half minutes, and that by FSQP that is more than two 

and half minutes. Regarding the number of solution points, FSQP loses seventy five 

points out of the total of 100 points. The hybrid algorithm loses three points and NSGA 

loses one solution point. 

To verify that the accuracy of the solutions, two simulations are conducted on two 

solution points selected from the two main clustering areas on the Pareto front. These two 
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solution points are (0.542 kg, 11177.08 J) and (0.605 kg, 12774.73 J). The simulation 

results are given in Table 7-8 along with those predicted by the approximate functions. 

 

Table 7-8: Constrained Tube Problem Results 

Mass 
[kg] 

Absorbed 
Energy 

[J] 

t 
[mm] 

d 
[mm] 

Sim. 
Mass [kg] 

Sim. 
Energy 

[J] 

Sim. 
MCF 
[kN] 

Sim. Max 
Force 
[kN] 

0.542 11177.08 2.864 30 0.542 11574.27 115.805 147.541 

0.605 12774.73 3 31.99 0.605 12244.1 122.554 170.176 

 

The relative errors for the mass in both cases are zero. The relative errors for the 

absorbed energy are 3.4% on the first point and on 4.3% on the second point, 

respectively. Therefore, both solution points have sufficient accuracy and are feasible 

since they do not violate any of the constraints. 

In this chapter the optimization of an aluminum crushing tube is presented and 

solved with and without constraints. On the unconstrained problem the hybrid algorithm 

is the fastest and has the lowest PF among the three algorithms; this makes its distribution 

the best among these methods. On the constrained problem, the solutions of the hybrid 

algorithm once again yield the smallest PF, though it failed to identify a feasible solution 

that is obtained by NSGA-II. Regarding the execution time, the hybrid algorithm is the 

fastest among the three algorithms for both the constrained and unconstrained problems. 

The biggest difference on the execution time is on the constrained problem in which the 

hybrid algorithm takes only 5.62 seconds while NSGA-II takes more than 1.5 minutes 

and FSQP takes more than 2.5 minutes. 

  



 
 
 

 
 
 

CHAPTER 8: CONCLUSIONS 
 
 
In this dissertation, the strategies to hybridize a gradient-based method and a 

genetic algorithm are studied for solving multi-objective optimization problems 

(MOOPs). Genetic algorithms (GAs) have the characteristics of being capable of solving 

MOOPs with both convex and non-convex Pareto fronts, but they have the drawbacks of 

slow convergence and inaccurate solutions when approaching the Pareto front. Gradient-

based methods, on the other hand, are computationally stable and robust and are capable 

of obtaining accurate solutions on the Pareto fronts. However, gradient-based methods 

are computationally expensive for solving MOOPs using the weighted sum formulation 

(WSF). Additionally, they are unable to obtain a full set of solutions for MOOPs with 

non-convex Pareto fronts. The hybrid algorithms investigated in this study aim at 

improving the solution accuracy and computational efficiency in solving MOOPs by 

taking advantage of both GAs and gradient-based methods. In this study, the NSGA-II 

and FSQP are combined using three hybrid strategies and the performance is evaluated. 

The first hybrid algorithm is a brute-force approach that demonstrates the 

potential to successfully hybridize the two algorithms. This algorithm uses a two-stage 

process: in the first stage, the problem is solved by NSGA-II for a certain number of 

generations, and in the second stage, solutions from NSGA-II are used as the initial 

points of FSQP with WSF. While demonstrating the potential advantages of combining 
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the two methods, the first hybrid algorithm or strategy is computationally more expensive 

than NSGA-II and is unable to solve MOOPs with non-convex Pareto fronts. 

The second hybrid algorithm is developed to improve the computational 

efficiency by eliminating the expensive WSF used in the first hybrid algorithm. In this 

second strategy, a direction towards the Pareto front is calculated for each of the initial 

points before they are used by FSQP. Each of the directions is represented by a certain 

combination of the weighted objectives based on the point’s initial location; therefore, 

only one solution on the Pareto front is expected instead of attempting to obtain a number 

of solutions by the WSF. The second hybrid algorithm is shown to have significant 

improvement in computational efficiency; however, it is still unable to obtain a full set of 

solutions for MOOPs with non-convex Pareto fronts.  

The third hybrid algorithm is proposed to further improve the computational 

efficiency and solution quality as well as its applicability to MOOPs with non-convex 

Pareto fronts. In this third strategy, the NSGA-II is first run for only a small number of 

generations to obtain a set of well spread points. For each initial point, FSQP is used to 

solve a single-objective minimization subjected to a set of equality constraints, which are 

converted from all but one objective functions. The third hybrid algorithm is shown to 

obtain better solutions than NSGA-II and FSQP, or to have better computational 

efficiency with comparable solutions. In addition, this algorithm is capable of solving 

MOOPs with non-convex Pareto fronts as well as constrained problems. The third hybrid 

algorithm, however, is incapable of obtaining a satisfactory set of solutions of MOOPs 

with discontinuous Pareto fronts, such as the ZDT-3 problem.  
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Using a real world optimization problem to minimize the weight of an aluminum 

tube subject to crushing forces, the third hybrid algorithm is compared to NSGA-II and 

FSQP with and without constraints. For the unconstrained optimization, the hybrid 

algorithm is shown to produce solutions with better spread on the Pareto front than both 

NSGA-II and FSQP. In particular, FSQP is unable to obtain solutions because the Pareto 

front is non-convex, and some of the solutions by NSGA-II are dominated by those 

obtained by the hybrid algorithm. The computational time of the hybrid algorithm is the 

least among the three compared methods. For the constrained optimization, the hybrid 

algorithm and NSGA-II produced comparable solutions, with the former having slightly 

better spread on the Pareto front. Similar to the case of unconstrained optimization, FSQP 

is not capable obtaining a full set of solutions on the non-convex Pareto front. 

The contribution of this dissertation is the third hybrid algorithm that was 

proposed in this work. Despite its limitation on MOOPs with discontinuous Pareto front, 

the hybrid algorithm is shown to be generally efficient and effective, and is applicable to 

a wide range of MOOPs. For future research on the hybrid strategy, the calculation or 

determination of the directions for each initial point of FSQP can be investigated to 

improve the spread of final solutions on the Pareto front. With the capability of obtaining 

a solution at a given direction, further research can be conducted on constructing the 

Pareto front using adaptive metamodeling methodology based on a small set of solution 

points. 
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