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ABSTRACT

ZHIQIANG MA. Topic models for tagged text. (Under the direction of DR.
SRINIVAS AKELLA)

Our world has been experiencing a dramatic and continually increasing growth of

digital textual information. This phenomenon raises challenges in analyzing, under-

standing, organizing, and summarizing these large bodies of textual information. A

large portion of the textual information contains meta-data, such as user-annotated

tags, which provides useful information and could help improve the current text min-

ing results. Thus, this thesis focuses on handling tagged text using topic modeling

techniques.

We start from the Latent Dirichlet Allocation (LDA) model and introduce a Trivial

Tag-Latent Dirichlet Allocation (TriTag-LDA) model, which directly connects the

tags to the topics via an improved two-layer LDA model. Speci�cally, the bottom

layer is the standard LDA, while the upper layer is a constrained LDA with the

topics coming from the bottom layer. After that, we propose a new topic model, Tag-

Latent Dirichlet Allocation (Tag-LDA), which more naturally integrates tags into the

generative process. In Tag-LDA, a document is viewed as a mixture of tags rather

than topics, and topics are generated from multinomial distributions under tags.

TriTag-LDA and Tag-LDA bridge the user-generated tags and the latent topics. In

both these models, a tag is described in the form of a mixture of shared topics. This

representation enables the analysis of the relationships between tags. We provide

quantitative and qualitative comparisons between our models and related work, and
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show that Tag-LDA is superior under the perplexity criterion. We also apply Tag-

LDA to explain hashtags on Twitter and discover their relationships.

We then develop two extensions of Tag-LDA: Tag-Dirichlet Processes (Tag-LDP)

and Tag-Dirichlet Allocation with concepts (ConceptTag-LDA). Tag-LDP utilizes the

Dirichlet process in modeling so that the number of topics can be decided automat-

ically based on the data. Our experiments demonstrate that Tag-LDP can infer the

number of topics from the data and that the quality of topics is as good as Tag-

LDA. ConceptTag-LDA provides a mechanism where users' prior knowledge can be

incorporated in learning the topics. Users' knowledge represented as pre-de�ned con-

cepts is modeled through the Dirichlet Tree prior which replaces the original Dirichlet

prior in Tag-LDA. Our experiments study the in�uence of the concepts on the topics,

and demonstrate that the input concepts can in�uence the topics toward users' prior

knowledge.

Finally we present the dynamic Twitter topic model (DTTM), a specialized tem-

poral topic model tailored for the short messages in social media. On social media

such as Twitter, people's discussions are constantly evolving with many discussions

centering around events. A major event usually involves twists and turns re�ected

by multiple sub-events as it develops over time. This temporal event development is

in turn re�ected by people's discussions on Twitter. In DTTM, we assume an event

can be modeled by a mainstream topic plus several facets and that each tweet is a

mixture of two topics: the mainstream topic and one facet topic. To capture the

temporal dynamics of the discussions, DTTM models the temporal evolution of the

mainstream topic and the facet topics. To demonstrate the e�ectiveness of DTTM in
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modeling the temporal dynamics of topics, we did two case studies with our model

using Twitter data and show that our model performs better in summarizing the

discussions than existing topic models.
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CHAPTER 1: INTRODUCTION

1.1 Overview and Research Motivation

The world has been experiencing a dramatic growth of digital textual information,

including news articles, digital books, and reports. In 2006, 1.35 million research

publications were published with a yearly growth rate of 2.5% [76]. In addition, the

prevalence of social media contributes signi�cantly to the generation of unstructured

text. For instance, 200 million tweets were sent out on Twitter every day by the middle

of 2011, and this number doubled after two years in 20131. Organizing, exploring, and

summarizing these vast and fast growing text collections has become an important

and challenging task.

Topic modeling provides us a way to model text corpora by discovering the statis-

tical relationships of terms and �latent topics� that pervade the document collections

[18]. The terms in the latent topics often re�ect semantically meaningful subjects [1]

that we call topics. The representation of text data by applying topic modeling is

useful for a large variety of tasks, such as classi�cation [18, 48, 90], summarization

[59, 78, 73], and similarity measurement [65]. Popular topic modeling algorithms in-

clude early algorithms such as probabilistic latent semantic indexing (pLSI) [34] and

more recent algorithms such as Latent Dirichlet Allocation (LDA) [18]. Compared

1http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-
twitter
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Table 1: Four topics extracted from 74 New York Times news articles related to the
US presidential election.

Topic1 Topic2 Topic3 Topic4

Terms Prob. Terms Prob. Terms Prob. Terms Prob.

news 0.036 clinton 0.026 bush 0.048 percent 0.029

cbs 0.024 york 0.019 president 0.024 election 0.026

report 0.018 pataki 0.019 democrats 0.019 voters 0.015

documents 0.016 abortion 0.015 party 0.018 vote 0.013

panel 0.015 conservative 0.010 campaign 0.015 kerry 0.013

segment 0.015 nation 0.009 democratic 0.015 states 0.011

president 0.012 speech 0.008 senator 0.014 results 0.010

mapes 0.011 administration 0.007 presidential 0.013 ohio 0.010

broadcast 0.011 called 0.007 house 0.013 voting 0.009

national 0.009 faith 0.007 political 0.011 day 0.009

sept 0.009 times 0.007 republican 0.011 american 0.008

minutes 0.009 putin 0.007 dean 0.010 iraq 0.008

wednesday 0.008 america 0.006 republicans 0.010 elections 0.007

network 0.008 family 0.006 kerry 0.009 time 0.006

service 0.008 conservatives 0.006 security 0.009 won 0.006

to pLSI, LDA is a better de�ned and more complete generative model, so we build

on LDA in this thesis. For example, given a set of 74 New York Times news articles

about the US presidential election, four latent topics obtained from LDA are shown

in Table 1. In each topic, terms are ranked based on their probabilities on the right.

A large fraction of textual information contains user-annotated meta-data. For

example, blog writers apply tags to label what their blogs are about; online news

websites adopt keywords to annotate the corresponding news articles. A snapshot of

a news article from Yahoo is shown in Figure 1 indicating how the tags are used in

practice2. The user-annotated data usually captures users' knowledge and provides

a high-level summarization of the documents. In the above examples, blogs or news

can be easily organized and retrieved based on the tags or keywords. In terms of

2http://news.yahoo.com/incredible-technology-supercomputers-solve-giant-problems-
153719212.html
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Figure 1: Snapshot of a news article from Yahoo news channel. Two tags �Science,
Social Science, & Humanities� and �Technology & Electronics� are applied by Yahoo
to categorize this article.

social media data, hashtags are widely used to tag what topic(s) or event(s) a tweet

is related to. These tags provide extra information that could help us organize and

summarize text corpora [89, 86, 39, 70, 87] and help us improve the text mining

results. This thesis focuses on the problem of incorporating user-generated tags in

topic models. Here the user-generated tags do not just strictly refer to the tags used

in blogs, but more generally to the meta-data associated with the documents like

labels, keywords, hashtags, etc.

1.1.1 Research Motivation

The motivation for our work originates from four questions:

1. How can we understand and interpret the user-generated tags?

2. Can we discover which words in a document should be attributed to which tags?

3. Can users' prior knowledge be incorporated in the data modeling procedure?



4

4. Can we summarize people's discussions in social media and also capture the

temporal dynamics of the discussions?

So why are these four questions important to us? Let us take a look at social media

as an example.

Social media such as Twitter captures moment-by-moment updates of discussions

among people. To indicate the theme of the messages, people use a hashtag to label

them. Hashtags, commonly used on Twitter and Google+, have become a unique

tagging convention to organize social media content and associate events, trends, or

topic information. According to Twitter, a hashtag is comprised of the symbol #

followed by a sequence of keywords or phrases (without spaces) and is used to mark

keywords or topics in tweets3. Over the years, the number of hashtags created and

used has been on the rise. On the Twitter platform, for example, our observations

suggest that one out of nine tweets now contains a hashtag. Such an elaborate

tagging system establishes a bi-directional interaction between users and the online

information. It enables the retrieval of all posts that include a speci�ed hashtag, and

it empowers users to follow conversations of interest.

The fact is that there are no restrictions on how a hashtag can be constructed,

resulting in various lengths, forms, or structures of hashtags. Some of the existing

hashtags are constructed in an intuitive manner, serving as meta-data to categorize

what that post is about. For instance, #grammys and #ImmigrationStory, two

trending hashtags in February 2013, denote the Grammy music awards and President

Obama's pledge to share stories of immigration families to support his immigration

3https://support.twitter.com/articles/49309-what-are-hashtagssymbols
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reforms, respectively. Other hashtags, however, are not as easy to make sense of.

For instance, hashtag #NatGat (national gathering) and #tcot (Top Conservatives

on Twitter) are di�cult to decode by reading just the hashtag themselves. Similarly,

hashtags, such as #Jan25, are also challenging to comprehend since they are too

general to infer their signi�cance without knowing the relevant context4.

Ideally, one would like to maintain a clear relation structure for hashtags, with only

a one-to-one relationship to the corresponding topics or events. However, in practice,

this is not an option due to the creativity of the users. Given the ease and �exibility

in creating hashtags, social media users can and often construct multiple hashtags

for the same event or topic. For example, hashtags related to #MichaelJackson can

also be seen in the form of #KingOfPop or #MJ; whereas #occupywallstreet and

#OWS are both used to characterize the same event, but with di�erent expressions.

Sometimes, multiple hashtags are created to denote di�erent aspects of a certain event.

This is exempli�ed in the discussions of the Occupy movement on Twitter. Various

hashtags are used to denote information about the who, what, when, and where in

this movement. Speci�cally, such hashtags include #usdor denoting the organizing

party of OWS, #sep17 denoting the date information about the Occupy movement,

#occupywallstreet or #occupyChicago denoting where the protests occurred, and

#pepperspray denoting a signi�cant event in the movement.

Although the use of hashtags has become a convention, how well the users under-

stand and use the hashtag information is still unclear. Sifting through trending hash-

tags on social media has become a popular way to learn what events have occurred,

4#Jan25 is used to indicate January 25, 2011, the date that Egyptian revolution began.
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as shown in the up-to-the-minute trending topics listed on Twitter. The intrinsically

polylingual, fragmented, unvetted, and dynamic nature of hashtags, however, also

presents a disadvantage in depicting valuable information. Users can be overwhelmed

with the noise of unrelated messages and con�icting information. Therefore, it is

necessary for us to develop a solution that can help users e�ectively make sense of

tags. One of our research goals is therefore to enable users to understand the meaning

of the tags as well as the relationships between tags.

User-generated content on Twitter captures minute-by-minute updates of public

and private snippets of information. Many of the discussions on Twitter center on

events of interest to people, evolving rapidly over time. Using hashtags, the discus-

sions centered around events can be easily located. To analyze and make sense of the

wealth of information on Twitter, summarizing the user-generated content is a nec-

essary step. More interesting, given the velocity of tweets, around 400 million tweets

per day, it is bene�cial to summarize the content in a way that highlights the ebb

and �ow of the moment-by-moment discussions. Therefore, it is essential to consider

the temporal dynamics when summarizing and analyzing tweets.

Moreover, when modeling text data in LDA, the results only re�ect the statistical

relationship of terms and topics embedded in the data. It is also not easy to allow

user customization of the models, like injecting users' prior knowledge into the term

relationships. For example, the term �market� and the term ��nance� might have

similar probabilities under a given topic, since these two terms are semantically closely

related and often appear together in the articles according to users' knowledge. Part of

the reason is due to the unsupervised learning property of LDA. Besides that, asking
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non-expert users to understand the mathematical principles underlying a model and

learn to tune a model is quite overwhelming. In this thesis, we therefore also explore

how to incorporate users' prior knowledge expressed as user-de�ned concepts in our

topic model, such that the data can be modeled in a customizable way based on users'

knowledge.

1.1.2 Thesis Contributions

The contribution of this thesis lies in developing statistical models for mining tagged

text data, and in particular, focusing on applications of the models to social media

data. The contributions of this thesis are listed below:

1. We present an approach to interpret user-generated tags using topics. We de-

velop a new topic model, which views a tag as a distribution of topics. With our

model, the meaning of the tags can be explained and the relationships between

the tags can be discovered.

2. Inspired by recent work on Hierarchical Dirichlet Processes, we utilize Dirichlet

processes as the priors to infer the number of topics from the data automatically.

3. To make the model customizable to non-expert users, we additionally extend

our model to allow users' prior knowledge to be incorporated.

4. Finally, we propose a temporal topic model specially designed for short messages

in social media to summarize the discussions in social media.
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1.2 Background

This section is a brief overview of relevant statistics knowledge that is required in

the subsequent discussion. We begin with the Dirichlet distribution and its conjugate

distribution, the multinomial distribution (categorical distribution). Then we intro-

duce collapsed Gibbs sampling, which is employed to learn the model. In the last

section, the standard LDA is brie�y introduced.

1.2.1 Dirichlet Distribution

The Dirichlet distribution is often used in Bayesian inference as a prior distribution

to model the proportions of events [10]. Basically, the Dirichlet distribution is a mul-

tivariate generalization of the Beta distribution. Let θ denote an n > 2 dimensional

random variable de�ned in the n − 1 simplex, so it implies
n∑
i=1

θi = 1 and θi > 0. In

the Dirichlet distribution with parameter α = (α1, . . . , αn), the probability density

of θ is

p(θ) ∼ Dir(α) =
Γ(
∑

i αi)∏
i Γ(αi)

∏
i

θαi−1
i , (1)

where every element in α is a positive real number and Γ(x) is the Gamma function.

αi is often considered as a �pseudocount� for each θi. The expectation of θi is given

by [6]

E(θi) =
αi∑n
j=1 αj

. (2)

Figure 2 illustrates the support (log of probability density) of three 3-dimensional

Dirichlet distributions with di�erent parameters α on the simplex. It can be observed

that the density for αi < 1 concentrates near the vertices, while the density locates
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somewhere inside the simplex when αi ≥ 1.

An important property of the Dirichlet distribution is its conjugacy to the multi-

nomial distribution. The de�nition of conjugate prior (family) is described as �Let F

denote the class of probability mass functions or probability density functions f(x|θ).

A class Π of prior distributions is a conjugate family for F if the posterior distribu-

tion is in the class Π for all f ∈ Π, and all x ∈ X � [20]. We assume θ ∼ Dir(α) and

X|θ ∼ Multinomial(θ). Bayes' theorem gives us the relationship below

p(θ|x = j) =
p(x = j|θ)p(θ)

p(x = j)

=

(
1

p(x = j)

)(
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

θα1−1
1 · · · θαj−1

j · · · θαn−1
n

)
θj

= C · (θα1−1
1 · · · θαjj · · · θαn−1

n )

∼ Dir(α1, . . . , αj + 1, · · · , αn)

(3)

It is not di�cult to derive C =
Γ(

∑n
i=1 αi+1)∏n

i=1,j Γ(αi)Γ(αj+1)
based on the property of the integral

of probability density. Thus, Dirichlet and multinomial distributions are a conjugate

prior pair. Equation 3 re�ects that, with a Dirichlet prior, given a new observation

from the multinomial distribution, the posterior distribution is still a Dirichlet with

updated parameters.

1.2.2 Gibbs Sampling

In Bayesian inference, it is often intractable to obtain the posterior due to the

high dimensional integral. Markov Chain Monte Carlo (MCMC) is a widely used

alternative approach to avoid the integration; MCMC approximates the distribution

by constructing a Markov chain and using the samples after the Markov chain becomes
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stationary [14]. In MCMC the next sample is generated based on the current sample,

because the transition probability only depends on the variable's current state in a

Markov process.

Gibbs sampling is a special case of MCMC, which was originally introduced for

image processing [27]. The basic idea of Gibbs sampling, loosely speaking, is sampling

each dimension of the random variable alternately while conditioned on the current

observations of all other dimensions. This sampling scheme would construct a Markov

chain that could lead to a stationary distribution after the �burn-in� period, as it �ts

the Metropolis-Hastings algorithm [30, 55]

When we use Gibbs sampling to approximate the posterior p(θ|x) given observation

x, the algorithm iteratively draws sample values for each dimension of θ as below:

Algorithm 1 Gibbs sampler

initialization
repeat

for i← 1, n do

θ̃i ∼ p(θi|θ−i,x) =
p(θ,x)

p(θ−i,x)
=

p(θ,x)∫
p(θ,x)dθi

end for

until end

In Algorithm 1, the subscript −i indicates that the ith dimension is excluded. After

the sampling sequence enters the stationary distribution and then obtainsM samples

θ̃, the posterior is estimated by [31]

p(θ|x) =
1

M

M∑
i=1

δ(θ − θ̃i), (4)

where δ(·) is the Kronecker delta.
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1.2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation [18] is a popular model in probabilistic topic modeling.

LDA is a hierarchical Bayesian model that is used to model collections of text or

other discrete data. Built on the �bag of words� assumption which ignores the order

of words in the document, LDA assumes each word of a document is generated from

one selected �latent� topic from a set of unobserved topics. In other words, a document

can be viewed as a mixture of the latent topics, and each topic is a distribution over

the vocabulary [72]. Figure 3 depicts the basic idea, with the shaded color of the

words indicating the latent topics from which the words come.

LDA is a generative probabilistic model simulating the generative process of the

documents. Like other topic models, LDA captures the statistical relationships among

words, topics, and documents, such that the documents can be described and rep-

resented with the topics [18, 29]. Not only has LDA been successfully applied to

perform classi�cation, summarization, and similarity measurement on text data, but

also to recommend tags for images [15], predict protein-protein relationships [5], and

segment and classify objects in pictures [19].

LDA is a generative model, which means the model can describe how the doc-

ument is being produced. To generate a document d containing Nd words w =

{w1, w2, . . . , wNd} for a corpus of M documents, the generative model views this doc-

ument as a mixture of T topics following a multinomial distribution Multinomial(θ),

and their proportions θ follow a Dirichlet prior Dir(α). Each topic is also a multi-

nomial distribution Multinomial(β) over the vocabulary. When generating each wi,
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Figure 3: LDA views a document as a mixture of latent topics from which terms
are chosen. The shaded color highlighting a word indicates which topic the word is
selected from. The proportion of one topic is decided by the total counts of the terms
selected from it in the document.
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a sample topic zi is �rst drawn from the Multinomial(θ); then a term is chosen to

be wi according to the multinomial distribution Multinomial(β) of the zi. Similarly,

each β is drawn from a Dirichlet prior Dir(φ). The details of the generative steps are

listed below:

1. For each topic t = {1, 2, . . . , T}, sample a topic-word multinomial distribution

βt over vocabulary from Dir(φ).

2. For each document dj:

(a) Sample a document-topic multinomial distribution θj from Dir(α).

(b) For every wi in dj:

i. Sample a topic zi ∼ Multinomial(θj).

ii. Sample a term wi ∼ Multinomial(βzi).

The LDA model can be illustrated as a probabilistic graphical model (see Fig-

ure 4). In the graphical model, a circle denotes a random variable; if a variable is

observed, the circle is shaded, otherwise the variable is latent. So only the variable

w is observed in the LDA model, and others need to be inferred. The plate notation

groups the repeated variables together to make the graph illustration concise, and

the dimension of the group is indicated in the corner of the plate. For instance, a

total of T multinomial parameters β are combined in the β plate. The directed edge

between variables indicates the dependency relationship. For example, in Figure 4,

w depends on both the topic assignment z and β, while β only depends on φ.
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Figure 4: Graphical model for LDA. θ is the document-topic distribution, z is the
topic assignment for word w, β is the topic-term distribution, and α and φ are the
Dirichlet parameters.

The likelihood for the document d = {w1, w2, . . . , wNd} given hyperparameters α

and φ can be written down as

p(w, z,θ,β|α,φ) = p(w|z,β)p(z|θd)p(θd|α)p(β|φ)

=

document plate︷ ︸︸ ︷
Nd∏
i=1

p(wi|zi,βzi)p(zi|θd)︸ ︷︷ ︸
word plate

p(θd|α) p(β|φ)︸ ︷︷ ︸
topic plate

(5)

Integrating out z, θ, and φ, and expanding the probabilities, Equation 5 leads to

p(w|α,φ) =

∫
β

∫
θd

∑
z

p(w|z,β)p(z|θd)p(θd|α)p(β|φ)dβdθd

=

∫
β

∫
θd

Nd∏
i=1

(
∑
zi

p(wi|zi,βzi)p(zi|θd))p(θd|α)p(β|φ)dβdθd

=
1

B(φ)

1

B(α)

∫
β

V∏
i=1

βφi−1
i

∫
θd

T∏
i=1

θαi−1
i (

Nd∏
i=1

∑
zi

(βziwiθdzi))dβdθd.

(6)

In Equation 6, B(α) =
∏T
i=1 Γ(αi)

Γ(
∑T
i=1 αi)

and B(φ) =
∏V
i=1 Γ(φi)

Γ(
∑V
i=1 φi)

are the Dirichlet normaliza-

tion constants.

To estimate θ and β, we need to obtain the posterior p(z|w) [1]. However, it is
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intractable to compute the posterior due to the coupling between θ and β [14] in the

summation over all possible z [1]. Researchers mainly use two types of approaches to

indirectly tackle this problem: 1) variational inference [18], and 2) Gibbs sampling

[29]. Parts of our subsequent work are based on Gibbs sampling, so we introduce how

Gibbs sampling is adopted to solve the posterior.

Based on our introduction above in Section 1.2.2, z is a hidden variable and our

goal is to approximate the posterior p(z|w). θ and φ can be integrated out during

the sampling, which is called �collapsed� Gibbs sampling [31, 61]. Gibbs sampling

tells us the pursued posterior can be approximated by running an iterative sampler

for each zi. Based on Algorithm 1, the joint distribution is required to compute

p(zi|z−i,w,α,φ) =
p(z,w|α,φ)

p(z−i,w|α,φ)
. (7)

From Equation 5, the joint distribution is computed by integrating out θ and β

p(w, z|α,φ) =

∫
β

p(w|z,β)p(β|φ)dβ ·
∫
θ

p(z|θ)p(θ|α)dθ. (8)

Since p(β|φ) is a Dirichlet prior and p(w|z,β) is a multinomial distribution, applying

the property of conjugate prior, the �rst factor of Equation 8 can be derived as follows:

∫
β

p(w|z,β)p(β|φ)dβ =
T∏
t=1

B(nt + φ)

B(φ)
, (9)

where nt = (n1
t , n

2
t , . . . , n

|V|
t ) is a vector consisting of the number of occurrence of each

term in the vocabulary assigned to topic t. Likewise, the second factor is expanded

as: ∫
θ

p(z|θ)p(θ|α)dθ =
M∏
m=1

B(nm +α)

B(α)
, (10)
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where nm = (n1
d, n

2
d, . . . , n

T
d ) is the occurrence of every topic in document d. Substi-

tute the joint distribution in Equation 7 with Equation 9 and Equation 10, and the

derivation leads us to reach

p(zi = t|z−i,w) ∝
nwit− + φwi∑|V|
w (nwt + φw)

· (nt−d− + αt), (11)

where the subscript �-� means the current term is excluded, as the sampler is updating

the topic assignment for it. The explanation for the sampling update equation is quite

straightforward: the �rst term on the right of Equation 11 denotes the probability of

term wi under topic t with prior φwi , and the second term is directly proportional to

the number of topics t in this document d.

The estimates of the multinomial parameters β and θ are their expectations com-

puted according to Equation 2:

θ̂dt =
ntd + αt∑T
k (nkd + αk)

(12)

β̂kt =
ntk + φt∑|V|

w (nwk + φw)
(13)

Usually α and φ are given by users, although they can be inferred [18]. For the

Dirichlet distribution, if the hyperparameters are identical, it is called a symmetric

Dirichlet. The priors could in�uence the performance of LDA; relevant discussion

can be found in [80]. Another parameter that needs to be speci�ed is the number

of topics T . There are several approaches that can be employed here to decide it:

(1) Compare the perplexity (inverse of the geometric mean per-word likelihood) of

the held-out data. Lower perplexity means better generalization of the model to the

data. (2) Use secondary task based metrics. For example, if the output of LDA is
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applied to perform a classi�cation task, the best classi�cation result can be used to

select T . (3) Decide using algorithms. Teh et al. [75] proposed Hierarchical Dirichlet

Processes where the number of topics is set by the algorithm based on data.

1.3 Thesis Organization

This thesis is organized as follows:

• In Chapter 1, we have introduced our research motivation. This chapter also

introduces the Dirichlet distribution and Gibbs sampling, which provide the

background statistical knowledge for LDA.

• In Chapter 2, we �rst review some extensions and modi�cations made to LDA

in recent years. Additionally, we also survey some related research work on

social media and applying topic models to process social media data.

• In Chapter 3, we introduce the trivial Tag-LDA, our �rst attempt to connect

tags with topics. We then develop Tag-LDA, which naturally connects tags with

topics in the generative model. We qualitatively and quantitatively evaluate our

models and present results on explaining hashtags in tweets and learning the

relationships between tags.

• In Chapter 4, we extend Tag-LDA, demonstrating that the structure of Tag-

LDA makes it amenable to similar extensions as LDA. We propose Tag-Latent

Dirichlet Process to address the problem of setting the number of topics. Ad-

ditionally, we propose ConceptTag-LDA as a mechanism to incorporate users'

pre-de�ned concepts when learning topics.
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• In Chapter 5, we develop a specialized temporal topic model, called dynamic

Twitter topic model, tailored for the short messages in Twitter. It is able to

model the temporal dynamics of topics extracted from the tweets discussing

the same event and thus facilitates event analysis. Experiments are conducted

with tweet data crawled from Twitter to demonstrate the performance.

• Finally, in Chapter 6, we summarize the contributions of the thesis and outline

future research directions.



CHAPTER 2: RELATED WORK

LDA has been reviewed in the previous chapter. This chapter mainly reviews the

variations of LDA. Additionally work related to the topic models used in mining social

media is brie�y discussed.

2.1 Extensions of Latent Dirichlet Allocation

This section brie�y reviews the related research on LDA. As a topic model, LDA

discovers statistical relationships of words and �latent topics� that pervade the doc-

ument collections. LDA, extended from the probabilistic latent semantic indexing

(pLSI) [34], is an unsupervised algorithm, which does not account for tag informa-

tion. To integrate meta-data, such as tags or labels into the unsupervised algorithm,

researchers have proposed a few new approaches.

Blei and McAuli�e [13] introduced a supervised topic model. They took into ac-

count a response variable, which could be a rating or a category associated with a

document. Their goal is to predict the response variables for new documents. Ram-

age et al. [65] developed a labeled LDA. Rather than predicting a response variable,

labeled LDA links the latent topics to the labels in a one-to-one mapping, given a user

labeled document collection. Therefore, the relationship between label and words can

be established since one topic corresponds to one label. This one-to-one constraint

is relaxed in their later work on partially labeled topic models [66], where one label
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contains multiple topics. However, in partially labeled LDA, one topic can only be

assigned to one label exclusively. In contrast, our work does not have this restriction;

the tags are expressed as a distribution over all the topics and the topics are sharable

among all tags.

One work similar to ours is author-topic model (ATM) introduced by Rosen-Zvi et

al. [69]. ATM assumes the distribution of authors' contributions in a given document

is uniform, but our models assume the distribution is multinomial with a Dirichlet

prior, which is the major di�erence. We compared our models with ATM in the

experiments and found the advantage of our model for certain data. Another similar

work is Dependency-LDA proposed by Rubin et al. [70]. The authors discovered the

dependency relationships between labels, assuming �topic� (note that their de�nition

of topic is di�erent from the standard LDA) is a distribution over observed labels. The

main di�erences between our work and theirs are: 1) Dependency-LDA de�nes both

the document-label distribution and document-topic distribution, while our model

de�nes the document-tag distribution; 2) Dependency-LDA learns the dependency of

labels via a higher level of latent topics, while we model the relationship of labels

using latent topics.

Besides the research motioned above, there are a few other studies on topic rela-

tionships. Hierarchical topic models [14] could discover the usage of topics among

the document collection via a topic hierarchy. The higher level topics are more se-

mantically general compared to the lower level topics. The correlated topic models

[17] model the per-document topic proportions with a logistic normal to re�ect the

correlation of topics from the covariance matrix of the logistic normal. Dynamic
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topic models [16] explore the topic evolution over time. These three works explore

the relationships of topics from di�erent aspects.

The topics extracted from LDA are based on the co-occurrence of words in docu-

ments, therefore the topics are not guaranteed to satisfy people's semantic perceptions

[56]. This is a result of the unsupervised learning procedure which lacks the input of

human knowledge [23]. Involving the human knowledge as a prior, several research

works [23, 4, 3, 37] proposed learning more meaningful and semantically coherent

latent topics. In [3], a Dirichlet Tree prior [57] replaces the original Dirichlet prior

to model Must-Link and Cannot-Link relationships between words. In [37], word

constraints are built into the models using Dirichlet Tree priors too. Our work in

Chapter 4 is inspired by [3] and [37].

Temporal topic models integrate temporal information in the models, which there-

fore are able to capture the temporal dynamics of topics, i.e., evolution and change

of topics along the time line. The dynamic topic model (DTM) [16] chains the topics

across time, and assumes current topics depend on their previous states. The contin-

ues dynamic topic model (cDTM) [82] applies the Brownian motion model, instead

of the discrete state space model in DTM, so as to allow handling of data in con-

tinuous time. Instead of making Markov assumption as in DTM and cDTM, Wang

and McCallum [83] in the Topics Over Time (TOT) model introduced a timestamp

variable added to LDA to in�uence the document-topic proportion. An extension of

TOT is introduced in the Trend Detection Model [44], where trends are represented

by topic distributions rather than word distributions. Masada et al. [53] proposed to

use a function of document timestamps to replace the topic Dirichlet priors in LDA.
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Iwata et al. [38] assume topics evolve over multiple timescales, and develop an online

inference procedure updating the model with newly obtained data.

2.2 Related Research on Social Media

Social media has attracted a great amount of research attention. There has been

quite a lot of research on social network structure and identifying in�uential users

[40][45][28][21]. Researchers also have tried employing published topic models to mine

Twitter data. Twitter data has special characteristics compared to normal document

data, because it is more noisy, of short length, and with high volume and velocity.

Hong et al. [35] did an empirical study of topic modeling in Twitter applying LDA

and the author-topic model [69] to predict popular Twitter messages and classify

users and messages. They claim aggregation of the data is necessary, and the length

of the �document� indeed in�uences the e�ectiveness of the models. Zhao et al. [88]

proposed Twitter-LDA, in which each user possesses a topic distribution and each

tweet can only be assigned with one topic. So words of a tweet message are generated

from one topic selected from the user topic distribution or the common background

model. LDA is also used in user recommendation systems to analyze users' interests

[62].

Next, we review the recent related research on hashtags in Twitter. There is some

work focusing on hashtags [24, 68, 43, 77], but very little of it focuses on the content

analysis of hashtags. Most work considers hashtags as ideas, opinions, or information

that �ows and propagates over the social media network via the interaction of users.

To the best of our knowledge, very little work has discussed the semantic meaning
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of the hashtags. In this thesis, we propose new topic models and leverage the topic

modeling techniques to analyze the hashtags.

Cunha et al. [24] studied how the hashtags are created and used from the per-

spective of linguistic theory. Romero et al. [68] studied the widely used hashtags

and found di�erent hashtags exhibit di�erent spreading patterns, and they further

explained that the di�erence of the patterns not only depends on the exposures of the

hashtags but also the speed of decay. To research the spatial spread of social media,

geo-tagged hashtags can also be adopted. Kamath et al. [43] combined two hypotheses

of information spread and developed a probabilistic model to understand the global

spread of social media. They found hashtags have local characteristics and therefore

distance is the most signi�cant factor in�uencing the spread. Tsur and Rappoport [77]

developed a linear regression based approach to predict the spread of hashtags, and

they found that content features combined with temporal and topological features

would deliver the best prediction performance.

Lin et al. [50] assume hashtags are indicators of topics of interest and they track

the topics in continuous streams of Twitter by integrating a �foreground� model and

a �background� model. One popular function of hashtags is to track �trending topics�

[47]. To identify the trendsetters, Saez-Trumper et al. [71] proposed a ranking algo-

rithm in an information network with temporal factors integrated. Sentiment analysis

on tweets can also be performed with hashtags [46][25].

There has been some research on mining events and tracking event trends in the

discussions of social media. Some work applies ideas from previous work to social

media, such as detecting burstiness of words or phrases [54, 49, 84], extracting entities
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[67], and clustering similar tweets [8, 7]. Some work has been specially developed for

microblog data. Vosecky et al. [79] emphasize the function of speci�c entities, and

propose to jointly model entities and general terms together in latent topics with

time characteristics. In [26], personal related posts are separated out to better detect

bursty global topics.



CHAPTER 3: CONNECTING TAGS WITH TOPICS

In this chapter, we describe our work on connecting tags with topics; we do this by

integrating tags with LDA. We introduce two models, Trivial Tag-LDA (TriTag-LDA)

and Tag-LDA; both connect tags with topics assuming tags are a mixture of topics.

We compare these two models with experiments and also present applications of the

models. Portions of the work were introduced in this chapter is published in [52].

3.1 Trivial Tag-LDA: Starting from LDA

In this section, we �rst introduce a straightforward extension, Trivial Tag-LDA, to

the standard LDA so as to incorporate tags. We detail our model and its generative

procedures in Section 3.1.1, and then describe how to learn the model in Section 3.1.2.

3.1.1 Trivial Tag-LDA Model

As an extension of LDA, our topic model is also a probabilistic generative model.

It simulates the procedure of generating documents and further discovers the rela-

tionship between tags and topics. We assume a tag is represented as a multinomial

distribution over topics. Here, tags are observed and can be described by topics.

Speci�cally, we are modeling over a document corpus C = {d1, d2, . . . , dM}; each

document contains a collection of words w = {w1, w2, . . . , wNd} following the bag-of-

words assumption, and is further associated with a set of tags δd = {p1, p2, . . . , pLd}.

We also de�ne a set ∆ = {p1, p2, . . . , pL} which contains all tags without duplica-
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Figure 5: Graphical model of TriTag-LDA. Grey circles δ and w are observed variables
for each document, others are latent variables. Note, z is shared between the two LDA
components, representing the topic assignment for a word. While z is a latent variable
in the bottom LDA model, it is regarded as an observed variable in the top model. η
denotes the tag-topic distribution. φ denotes the document-tag distribution. e is the
tag assignment. ρ and γ are the Dirichlet parameters.

tion. Therefore δd is a subset of ∆. We assume all the elements of w come from a

corpus-wide vocabulary V .

For a document d with a text body w of length Nd, a set of tags δd is observed.

When generating the ith word in w, a topic is chosen based on its multinomial prob-

ability θd on this document. Topics are described as multinomial distributions β over

vocabulary terms, and the distributions are independently drawn from a Dirichlet(φ).

Similarly, the topic distribution θd of d is also sampled from Dirichlet(α). To discover

the tag-topic relationship, wd can be treated as a mixture of observed tags, given by

a multinomial distribution ϕd, where ϕd ∼ Dirichlet(γ). Let T be the prede�ned
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total number of topics. Each tag p in δd is a multinomial distribution ηp over all

topics, and ηp with length equal to T is a sample drawn from a symmetric Dirichlet

distribution with parameter ρ, i.e., ηp ∼ Dirichlet(ρ). So with the notation given in

Table 2, the generative steps of our model are listed together below:

1. For each topic t ∈ {t1, t2, . . . , tT}, sample βt over |V| terms from

βt ∼ Dirichlet(φ).

2. For each document d with wd from the corpus:

(a) Sample a distribution over topics θd ∼ Dirichlet(α).

(b) For the ith word in document d:

i. Sample a topic z ∼ Multinomial(θd).

ii. Sample a term w ∼ Multinomial(βz).

3. For each tag p ∈∆ = {p1, p2, . . . , pL}, sample ηp over all topics

ηp ∼ Dirichlet(ρ).

4. For each document d with wd from the corpus:

(a) Sample a distribution over observed tags from ϕd ∼ Dirichlet(γ).

(b) For the ith topic in document d:

i. Sample a tag e ∼ Multinomial(ϕd).

ii. Sample a topic z ∼ Multinomial(ηe).

We need to point out that this generative procedure implies a two layer structure.

First, a standard LDA is applied to generate the topic assignment z (bottom part in
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Table 2: Notation table for TriTag-LDA

Symbol Size Description
M scalar number of documents in the corpus
L scalar number of distinct tags
C 1×M corpus
Ld scalar number of tags in document d ∈ C
wd 1×Nd words of document d ∈ C
δd 1× Ld tags of document d ∈ C
ηp 1× T tag-topic multinomial distribution for tag p
βt 1× |V| topic-term multinomial distribution for topic t
ϕd 1× Ld document-tag multinomial distribution in d
θd 1× T document-topic multinomial distribution in d
ρ 1× T Dirichlet distribution parameters
φ 1× |V| Dirichlet distribution parameters
α 1× T Dirichlet distribution parameters
γ 1× Ld Dirichlet distribution parameters

Figure 5). Given the topic assignment and considering it already known in the second

layer (top part in Figure 5), the generative process proceeds.

3.1.2 Learning Parameters

For the learning process, we mainly focus on estimating η, β, θ, and ϕ. We

assume other parameters, φ, α, ρ, and γ, are symmetric and choose them in a

heuristic manner. We modi�ed the collapsed Gibbs sampling (detailed by Gri�ths

and Steyvers in [29]) to learn our model estimating the variables.

Note, tuning the Dirichlet parameters is not the main focus of this work; details

on this can be referred in [18]. Here we also adopt and modify the collapsed Gibbs

sampling to learn these parameters.
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3.1.2.1 Estimating the Topic-Term Distribution and Document-Topic

Distribution

Although the entirety of our model di�ers from the original version of LDA, it

retains the same relationship between topics and vocabulary terms as in LDA. In

this process, the estimate of βk,w, the probability of term w given topic k, can be

computed by Equation 14, according to the expectation of the Dirichlet distribution

β̂k,w =
nwk + φ∑|V|

w=1(nwk + φ)
, (14)

where nwk denotes the number of occurrences of term w assigned to topic k.

Following the method in [29], the estimate of the multinomial θd of the topic

distributions in document d is written similarly as

θ̂k,d =
ndk + α∑T

k=1(ndk + α)
, (15)

where ndk is the number of words assigned to topic k respectively in document d.

When training the model, Gibbs sampling updates the topic assignment of each

word, one at a time. The update probability of assigning topic k to word wdi = w in

document d is

P (zi = k|wi = w, z−i,w−i,φ,α) ∝
nCwk,−i + φ∑|V|

w=1(nCwk,−i + φ)
· (ndk,−i + α). (16)

In Equation 16, nCwk,−i is the count of term w assigned to topic k in the whole corpus

and nCk,−i represents the count of topic k assigned in document d, after removing the

current topic assignment of the word wi. The subscript −i refers to excluding the ith

word.
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3.1.2.2 Estimating the Tag-Topic Distribution and Document-Tag Distribution

It is easy to see that the tag-topic and topic-term relationships are similar. So we

derive the estimate of the tag-topic distribution η similarly to the estimation of β, as

η̂p,k =
npk + ρ∑T

k=1(npk + ρ)
, (17)

where npk is the frequency of topic k assigned to tag p in the entire corpus. Very

similarly, the estimate of the tag distribution in a document is

ϕ̂p,d =
ndp + γ∑Ld

p=1(ndp + γ)
, (18)

where ndp is the occurrences of tag p in d.

Now we need to update the tag assignment for topics. Note we can only use the

observed tags of the current document during the update, even though we have the

full set of tags. The Gibbs sampling update equation is given by

P (edi = p|zdi = k,z−i, e−i,ρ,γ) ∝
nCpk,−i + ρ∑T

k=1(nCpk,−i + ρ)
· (ndp,−i + γ), (19)

where nCpk,−i is the frequency of topic k being assigned to tag p over the corpus and

ndp,−i is the frequency of tag p in the current document d excluding the current topic.

3.2 Tag-LDA

3.2.1 Tag-LDA Model

The TriTag-LDA model we have introduced is built on LDA, and adds one more

layer to incorporate the tag information. We can notice that in TriTag-LDA the tag

assignment has no in�uence on the generation of the topic and afterwards the word,
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Figure 6: Graphical model of Tag-LDA. Word w and tags δ are observed. Latent
variables e and z are the tag and topic assignment to the word. Variables θ, γ, and
β are latent variables. Tag set ∆ is included so as to keep the completeness of the
generative process.

as the topic assignment is already decided in the �rst layer. So in this section, we

introduce another model, Tag-LDA, that improves this point.

Tag-LDA is also a probabilistic generative model. It simulates the procedure of

generating documents and further discovers the relationship between tags and topics.

Tags are observed and associated with documents. We de�ne a tag as a multinomial

distribution over topics. To describe the model, we introduce some notation. We have

a corpus of documents C = {d1, d2, . . . , dM}. Each document d consists of a set of

wordswd = {w1, w2, . . . , wNd}, which we assume meets the �bag of words� assumption,

and a set of tags δd = {p1, p2, . . . , pLd}. We also de�ne a set ∆ = {p1, p2, . . . , pL}

containing all tags without duplication in the corpus. δd therefore is a subset of ∆.

In addition, we assume all the elements of w come from a corpus-wide vocabulary V .

More formally, when generating document d, a subset of tags δd are �rst selected
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from ∆. For the ith word in wd of document d, a tag e is chosen from δd based on the

multinomial distribution θd of tags on this document. The multinomial distribution

θd is sampled from a symmetric Dirichlet distribution with hyperparameter α. Then,

under the chosen tag, a topic is sampled from a multinomial distribution γe, where γe

is also assumed to be generated from a symmetric Dirichlet distribution. As the LDA

model, topics are described as multinomial distributions β over vocabulary terms,

and the distributions are independently drawn from a Dirichlet(φ). To discover the

tag-topic relationship, wd can be explicitly thought as a mixture of observed tags and

implicitly as a mixture of topics, because words are in fact generated from the topics

under the tags. Let T be the total number of topics prede�ned. So with the notation

given in Table 3, the generative steps of our model are listed below:

1. For each tag p ∈ ∆, sample γp over all topics from γp ∼ Dirichlet(ρ).

2. For each topic t ∈ {t1, t2, . . . , tT}, sample βt over |V| terms from βt ∼ Dirichlet(φ).

3. For each document d with wd from the corpus:

(a) Sample a distribution over observed tags from θd ∼Dirichlet(α).

(b) For ith word in document d:

i. Sample a tag e ∼ Multinomial(θd).

ii. Sample a topic z ∼ Multinomial(γe) a Multinomial probability condi-

tioned on current tag assignment e.

iii. Sample a term w ∼ Multinomial(βz) a Multinomial probability con-

ditioned on current topic assignment. z
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Table 3: Notation table for Tag-LDA.

symbol size description
M scalar number of documents
L scalar number of distinct tags
∆ 1× L complete set of tags
C 1×M corpus
wd 1×Nd words of document d
δd 1× Ld tags of document d
γp 1× T tag-topic multinomial dist.
βt 1× |V| topic-term multinomial dist.
θd 1× Ld document-tag multinomial dist.
ρ 1× T Dirichlet hyperparameters
φ 1× |V| Dirichlet hyperparameters
α 1× Ld Dirichlet hyperparameters

The graphical model in Figure 6 demonstrates our model. Since δd is already ob-

served, the selection of it from ∆ is not mathematically modeled, but for complete-

ness, it is kept in the graphical model.

3.2.2 Learning Parameters

Given a document with words wd, the associated tags δd, and all the hyperpram-

eters, we would like to compute the posterior distribution of the latent variables

P (e, z|w,α,φ,ρ) =
P (w, e, z|α,φ,ρ)∑
z P (w, e,z, |α,φ,ρ)

.

However, this posterior distribution is not computable, because the denominator is

intractable to compute. In other LDA related work, the researchers mainly use two

types of approaches to indirectly tackle this problem: 1) variational inference [18],

and 2) Monte Carlo Markov chain (MCMC) sampling [29]. We adopt Gibbs sampling,

a MCMC sampling method, in our work.

To build the Gibbs sampler, we require the joint distribution of observed words
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and their tag and topic assignments P (w, e, z|α,φ,ρ). This joint distribution can

be factorized as below

P (w, e, z|α,φ,ρ) = P (w|φ,z) · P (e, z|α,ρ), (20)

based on the independence of variables. We analyze the two terms of the right side

of Equation 20 one by one. First, we compute the �rst term. In fact, the �rst term

is the same as the LDA model (Equation 9). We simply write down the derivations

as follows and do not introduce detailed explanation. Interested readers could refer

to references [31] and [29].

P (w|φ,z) =

∫
β

P (w|z,β)P (β|φ)dβ

=
T∏
t=1

B(nt + φ)

B(φ)
,

where nt = (n1
t , n

2
t , · · · , n

|V |
t ) is a vector of length |V| consisting of the number of

occurrences of each term assigned to topic t, and B(·) is a multinomial beta function.

Now we turn to computing the second term in Equation 20. The second term

can be further factorized as P (e, z|α, ρ) = P (z|e,ρ)P (e|α) by applying Bayes rule

and the independence assumption. Let us �rst look at P (z|e,ρ). We notice that

P (z|e,ρ) can be obtained after integrating out γ:

P (z|e,ρ) =

∫
γ

P (z|γ, e)P (γ|ρ)dγ. (21)

For word i in document d, given its tag assignment edi, P (zdi = t|edi) is a multinomial
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distribution with parameter γedit. So we can obtain

P (z|γ, e) =
M∏
d=1

|wd|∏
i=1

P (zdi|edi) =
M∏
d=1

|wd|∏
i=1

γedizdi =

Ld∏
p=1

T∏
t=1

γ
ntp
pt .

We already assume P (γ|ρ) follows a Dirichlet distribution. Substitute P (z|γ, e)

and P (γ|ρ) in Equation 21 and apply Dirichlet integrals:

P (z|e,ρ) =
1

B(ρ)

∫
γ

Ld∏
p=1

T∏
t=1

γ
ntp+ρ−1

pt dγ

=

Ld∏
p=1

B(np + ρ)

B(ρ)
,

where np = (n1
p, n

2
p, · · · , nTp ) contains the occurrences of each topic assigned to tag p.

The derivation of the tag distribution P (e|α) is quite similar to that of P (z|e,ρ) via

integrating out θ. Therefore, the derivation similarly yields

P (e|α) =

∫
θ

P (e|θ)P (θ|α)dθ

=
M∏
d=1

B(nd +α)

B(α)
,

and nd = (n1
d, n

2
d, · · · , n

Ld
d ) are the occurrences of each tag present in document d.

Note that npd will always be zero if tag p is not associated with document d, i.e.,

the tag distribution per document must be over the associated observed tags only.

Finally, the joint distribution of Equation 20 can be written down:

P (w, e, z|α,φ,ρ) =
T∏
t=1

B(nt + φ)

B(φ)
·
Ld∏
p=1

B(np + ρ)

B(ρ)
·
M∏
d=1

B(nd +α)

B(α)
. (22)

In Gibbs sampling, the value of each variable is sampled sequentially conditioned

on the current values of all other variables. Therefore the update equation that the
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sampler uses to update the topic and tag assignment for the ith word in document d

is a conditional distribution:

P (edi = p, zdi = t|w, e−, z−,α,ρ,φ) =
P (w, e, z|α,φ,ρ)

P (w, e−, z−|α,φ,ρ)
, (23)

where the subscript �−� indicates the current updating assignments of topic and tag

of word wdi are excluded. Equation 23 can be further factored as:

P (edi = p, zdi = t|w, e−, z−,α,ρ,φ) =
P (w, e, z|α,φ,ρ)

P (w−, e−, z−|α,φ,ρ)P (wdi)

∝ P (w, e, z|α,φ,ρ)

P (w−, e−, z−|α,φ,ρ)

(24)

Substituting the joint probabilities in the numerator and denominator above with

Equation 20 and canceling out the common terms, Equation 24 yields

P (w, e, z|α,φ,ρ)

P (w−, e−, z−|α,φ,ρ)
=

B(nt + φ)

B(nt− + φ)
· B(np + ρ)

B(np− + ρ)
· B(nd +α)

B(nd− +α)

=
Γ(nwdit + φ)Γ(

∑|V|
w (nwt− + φ))

Γ(nwdit− + φ)Γ(
∑|V|

w (nwt + φ))
·

Γ(ntp + ρ)Γ(
∑T

k=1(nkp− + ρ))

Γ(ntp− + ρ)Γ(
∑T

k=1(nkp + ρ))

·
Γ(npd + α)Γ(

∑|δd|
l (nld− + α))

Γ(npd− + α)Γ(
∑|δd|

l (nld + α))

Finally, the update equation is given by

P (edi = p, zdi = t|w, e−, z−,α,ρ,φ) ∝

nwdit− + φ∑|V|
w (nwt− + φ)

·
ntp− + ρ∑T

k=1(nkp− + ρ)
·

npd− + α∑|δd|
l (nld− + α)

. (25)

In Equation 25, nwk− is the count of term w under topic t excluding the current topic

assignment of this term. Very similarly, nkp− denotes the count of tag p assigned to

topic k excluding the current tag assignment to the topic, and nld− is the count of

words in document d assigned to tag l excluding the current word. The explanation of
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the update equation is straightforward. The �rst term in the right part of Equation 25

represents the probability of term wdi under topic t with prior φ, and the second term

is the probability of topic t under tag p with prior ρ, while the last term is the

probability of tag p in document d with prior α. Thus, the current topic and tag

assignment to a word is proportional to the tag proportion in the document, the

topic proportion under the tag, and the term proportion under the topic.

To estimate these three multinomial parameters after sampling, compute their

expectations in the Dirichlet distributions. The estimate of topic-term distribution β

is

β̂tw =
nwt + φ∑|V|
w (nwt + φ)

,

where the estimation is identical to the LDA model. The estimates of document-tag

distribution θ and tag-topic distribution γ can be similarly derived and expressed as

follows:

θ̂dp =
npd + α∑|δd|
l (nld + α)

,

γ̂pt =
ntp + ρ∑T

k=1(nkp + ρ)
.

3.3 Experiments

TriTag-LDA and Tag-LDA can �nd the correlation of tags and topics. In this

section, we evaluate the performance di�erence of these two models with di�erent

datasets. Besides that, a comparison to author-topic model is provided. Representing

tags as a distribution of topics provides us an approach to explore the relationships

of tags, so we provides two examples, using Tag-LDA in Twitter tweet dataset and



39

Nation Science Foundation proposal dataset, to demonstrate the application of Tag-

LDA.

For both TriTag-LDA and Tag-LDA in the experiments below, Gibbs sampling

runs iterations between burn-in and sampling after a random initialization. For each

Markov Chain Monte Carlo (MCMC) chain, each sample is drawn after 500 burn-in

steps. For the convergence of the MCMC chain, we hard de�ne an iteration length as

the convergence criterion. Other more complicated convergence criteria can be found

in reference [51].

3.3.1 Quantitative Comparison of Topic Models

We �rst introduce the datasets used to perform the quantitative studies on TriTag-

LDA and Tag-LDA. Here we employ two di�erent datasets: 1) New York Times Cor-

pus and 2) proposal abstract data from National Science Foundation (NSF) awards

database. The New York Times Corpus is a news collection of New York Times. It

comes with General Online Descriptors, assigned automatically and veri�ed by ny-

times.com production sta�, for each news article. A news article might have multiple

descriptors associated with it. Examples of individual descriptor include Crime and

Criminals, Animals, Computers and the Internet. We consider these descriptors as

the tags in our models. For the purpose of experiments, we selected the news pub-

lished in January and February 2005, and �ltered out descriptors that occur less than

150 times, which �nally results in 67 descriptors (tags). Overall 9964 news articles

are left in the dataset. On average, there are 2.39 descriptors attached for each news,

and the average length of each news article is 296.9 words after the stop words are
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eliminated.

The NSF proposal abstract dataset is crawled from the NSF awards database5 by

ourself. NSF has seven directorates, one of which is the Directorate for Computer &

Information Science & Engineering (CISE) 6. There are three divisions under the CISE

directorate: the Division of Computing & Communication Foundations (CCF); the

Division of Computer and Network Systems (CNS); and the Division of Information

and Intelligent Systems (IIS). The abstract data is between the years 2000 to 2009.

Under each division, there are more speci�c programs, for instance, computer vision,

human-centered computing, and robotics, to which the proposals are assigned. These

programs are considered as tags in this dataset. We keep the top 44 most used

programs and obtain a total of 4811 corresponding proposal abstract. Note that

one proposal abstract may be assigned to several programs together. Specially, one

proposal abstract is assigned to 1.26 programs on average, and the average length of

each proposal abstract is 138.5 words excluding the stop words.

We adopt the perplexity to quantitatively evaluate the models and to pro�le the

performance variation of the models as the number of topics varies. The perplexity

measures the generalization performance of the model, with a lower score indicating

better generalization of the model and better distribution prediction on the unseen

data. The perplexity of the testing data Dtest is mathematically expressed as:

Perplexity(Dtest) = exp

[
− log(P (w|Dtest))

NDtest

]
(26)

5http://www.nsf.gov/awardsearch/
6http://www.nsf.gov/dir/index.jsp?org=CISE
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where P (w|Dtest) is the likelihood of the testing data and given by

P (w|Dtest) =
∏
w

∑
z∈T

∑
e∈∆

P (w|z)P (z|e)P (e|d).

After obtaining the trained model, it is employed on the testing data to infer the

likelihood. NDtest is the total number of words in the testing data.

We split each of the datasets mentioned above into a training set and a testing set.

The setup is that 10 percent of each dataset is drawn randomly as the corresponding

testing data and the remainder is used to train.

Besides TriTag-LDA and Tag-LDA, we added author-topic model (ATM) [69] in

the quantitative evaluation as a comparison, since ATM assumes each author can be

viewed a distribution of topics, which is a similar assumption to ours. However, ATM

does not have a Dirichlet prior in the model, which is the major di�erence between

our models and ATM.

We compare the perplexities of TriTag-LDA, Tag-LDA and ATM on these two text

datasets. The number of topics was varied along during the evaluation of the perplex-

ities, so that we could pro�le the performance of the models. Figure 7 demonstrates

the testing perplexity of Tri-LDA, Tag-LDA, and ATM on the NSF proposal abstract

data as the number of topics was varied from 5 to 150. The results shows Tri-LDA

gains the best generalization at 5 topics and 20 topics, but its performance drops with

an increase in the number of topics. Through comparison, we can clearly note that

the overall performance of Tag-LDA is the best. The testing perplexities on the New

York Times data are shown in Figure 8. Comparing to the model performance in the

prior experiment, we can see a similar conclusion that TriTag-LDA becomes worse as
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the number of topics grows, but it is still superior to ATM. Tag-LDA produces the

lowest perplexity when the number of topics exceeds 60. Basically we conclude that

introducing a Dirichlet prior for the distribution of tag in the documents in Tag-LDA,

improves the perplexity on the unseen data. Please note, if each document only con-

tains only one tag, there would be no di�erence no matter which prior is assumed,

therefore our Tag-LDA would become the same as ATM.

We select several tags listed in Table 4 and Table 5 to show the corresponding

topics extracted by TriTag-LDA and Tag-LDA from New York Times corpus. We

can observe that there are di�erences in the topics between these two methods. For

instance, the topic for �Crime and Criminals� looks to be inclined to justice and jury

in TriTag-LDA, while the topic in Tag-LDA is closer to law enforcement and crime.

Another example is the tag �Advertising and Marketing�, it can be noticed that these

two topics are quite related to this tag, but they focus on di�erent perspectives.

3.3.2 Understanding Hashtags in Twitter

To demonstrate the capability of our proposed methods, we conducted experiments

on a dataset of tweets. In our experiments, we extracted hashtags from individual

tweets as the tags. We try to understand the hashtags by modeling the tweet content,

and further discover the relationships between the hashtags.

The tweet dataset used here is drawn from the TREC 20117 microblog data, which

contains 16 million tweets sampled between January 23rd and February 8th, 2011.

In this dataset, there are around 1.78 million tweets containing at least one hashtag.

7http://trec.nist.gov/data/tweets/
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Figure 7: Perplexity comparison among ATM, Tag-LDA, and TriTag-LDA on NSF
proposal abstract data. Lower perplexity value denotes a better generalization on the
testing data of the model.
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Figure 8: Perplexity comparison among ATM, Tag-LDA, and TriTag-LDA on the
New York Times data. Lower perplexity value denotes a better generalization on the
testing data of the model.
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Among tweets containing hashtags, 19.9% use two or more hashtags. We ranked

and selected the 200 most frequent hashtags. We then �ltered out the hashtags that

mainly appeared in non-English tweets, which left 161 hashtags and 150K tweets;

nearly 22.0% of these tweets have more than one hashtag. For the purpose of cleaning

the data, the words in the tweets are stemmed by utilizing the NLTK package [9],

and the resulting vocabulary size is 21,139.

To understand the hashtags in the TREC2011 dataset, 140 topics are extracted

from the corpus. The number of topics was determined by the lowest perplexity.

Each hashtag is then epresented as a distribution over all topics.

To illustrate our results, we selected a few hashtags belonging to di�erent categories

(sports, politics, world, etc.) and list the topic with the highest probability for each

hashtag in Table 6. At a �rst glance, one can see that some hashtags are di�cult

to interpret. The hashtag #tcot (Top Conservatives on Twitter) for example, it is a

coalition of conservatives on the Internet. However, without reading the topic, the

meaning of the hashtag is hard to infer. The keywords of the highest probability topic

for hashtag #tcot capture terms related to conservative American political parties.

Another interesting example is the hashtag #tahrir, which is an Arabic word meaning

liberation. The topic results for the hashtag clearly indicate that the hashtag refers

to a speci�c location � Tahrir Square in Cairo, Egypt. In addition, the topic also

contains information regarding possible protests in Tahrir Square that might warrant

further investigation. The examples demonstrate that topic terms could greatly help

with the interpretation of the hashtags, which could otherwise be di�cult to decode

through reading the hashtags alone or merely examining a few tweets containing the
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hashtag.

In addition to understanding the meaning and contexts of the hashtags, knowing

the relationships among hashtags also contributes to proper categorization of tweets

using hashtags. However, even with the topic results for each hashtag, the discovery

of similar hashtags through a manual process is still a challenging and laborious task.

Such a task can be adequately addressed through combining the Tag-LDA results

with proper distance measures and visual representations.

As mentioned in Section 2.1, the di�erence between Tag-LDA and a previously

proposed similar model, partially labeled LDA [66], is that in our model all tags are

modeled as a distribution over a shared topic space. Therefore, the computation of

the similarity between every pair of tags becomes straightforward. Since a tag is

in the form of a probabilistic distribution over topics, we utilize the Hellinger dis-

tance [33] to measure the distance between a pair of tags. Given any two discrete

probability distributions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), the Hellinger

distance is de�ned as H(P,Q) = 1√
2

√∑
i(
√
pi −
√
qi)2. Therefore a distance matrix

can be constructed by measuring the distance between every pair of hashtag distribu-

tions over topics. We invert the distances between the hashtags to get the similarity

measurement.

To enable users to discover similar hashtags, we visualize the similarities using a

matrix metaphor. Figure 9 illustrates the similarities between pairs of hashtags in the

TREC2011 data. At a glance, one can detect two major clusters in the visualization

(lower left and upper right), with a larger dot size denoting higher similarity. The

upper right cluster in Figure 9 highlights a group of hashtags related to football teams
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Figure 9: Visualization of the hashtag similarity matrix. Dots with larger size rep-
resents higher similarity; the larger the radius, the greater the similarity. Similarity
values are scaled and self similarities on the diagonal are removed for clarity of the
display.

and events. The two biggest dots in pink denote the high similarity between #steelers

and #jets. Indeed, there are a lot of discussions in the tweets about the game between

the New York Jets and Pittsburgh Steelers on that Sunday weekend.

A more interesting and intriguing example is the lower left cluster of hashtags in-

cluding #egypt, #tahrir, #mubarak, #jan25. Coupling the results with the main

topic for hashtag #tahrir and #mubarak (Table 6), which includes keywords such

as �protest�, �protestors�, �anti�, �government�, �police�, one can infer that there may

be a big protest event occurring at Tahrir Square in Egypt on January 25. Indeed,

according to Wikipedia, the event was the 2011 Egyptian Revolution against for-
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mer president Hosni Mubarak, and over 50,000 protestors occupied Tahrir Square in

Cairo8. The hashtags in the lower left cluster are related to one event and di�erent

hashtags are created to describe temporal, geospatial, and people information. This

example illustrates that by coupling the hashtag similarity results with the topics for

hashtags, one can conduct deep analysis of events discussed on Twitter.

In summary, the above examples illustrate that visually presenting the similarities

among hashtags could help users identify groups of hashtags used to characterize

similar topics or events. In addition, combining the hashtag similarity results with

the hashtag-topic results supports the development of comprehensive understanding

of events discussed on Twitter. Retrospective examination of the hashtags and tweet

content provides an overview of what has been discussed on Twitter. However, if the

modeling and visualization can be done in real time, the implication is that one can

monitor and even respond to certain events such as protests and gatherings.

3.4 Summary

In this chapter, we focused on integrating tag information in topic models. Our

contribution are summarized below. We proposed two models, TriTag-LDA and Tag-

LDA, to incorporate tags. The key idea is that we assume a tag is a multinomial

distribution of topics. TriTag-LDA adds an extra layer to standard LDA, to discover

the topic representations of tags. Tag-LDA inserts the tags in the generative process

of the document. A Gibbs sampling based algorithm is adopted to learn the models.

In the experiments, we compared these two models with the author-topic model using

8http://en.wikipedia.org/wiki/Tahrir_Square
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perplexity. The comparison shows Tag-LDA is superior to the other two models. As

an application of our Tag-LDA model, we used Tag-LDA to analyze the hashtags

in Twitter. We demonstrated that Tag-LDA is capable of solving two challenges:

�rst, understanding how hashtags can be interpreted, and second, elucidating the

relationships between hashtags.
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Table 4: The highest probability topic for each of several tags extracted from the
New York Times dataset by TriTag-LDA.

Tag Prominent Topic

Medicine and

Health

health drug medical patient doctor disease study hospital heart care

aids treatment percent risk patient medicine pain merck doctor

university blood center cancer surgery

Crime and

Criminals

court judge law lawyer lawyers federal trial justice prison legal jury

charges death attorney prosecutors district supreme criminal �led

states decision appeals lawsuit ruling

Art

art museum artists artist gallery exhibition collection painting

paintings design gates modern century park contemporary arts

sculpture photographs images street glass york

Terrorism

o�cials public department government time president federal agency

report states o�ce united board director law national former million

decision called administration commission program

Football

game season football jets team bowl super coach patriots play eagles

�eld yards quarterback games players england steelers sunday

edwards pro philadelphia touchdown victory

Airlines and

Airplanes

fashion airlines airline designer airport �ights airways plane �ight

delta designers fares dress air passengers clothes travel collection

southwest wear fare business aviation class jet runway york seats

elite clothing

Religion and

Churches

church gay religious jewish catholic marriage christian jews religion

sex faith rabbi churches holocaust orthodox conservative rev

community nazi lesbian evangelical roman

Advertising

and Marketing

advertising media marketing campaign ads york commercials

magazine super brand business bowl commercial agency advertisers

spot president division creative worldwide

Stocks and

Bonds

percent oil market prices china growth funds investors price dollar

stocks rates average stock fund economy economic trade markets

quarter billion rose energy american rise

Books and

Literature

book novel author world life story history published wrote american

century writing writes writer read war stories written self literary

�ction society readers writers
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Table 5: The highest probability topic for each of several tags extracted from the
New York Times dataset by Tag-LDA.

Tag Prominent Topic

Medicine and

Health

health medical drug patient doctor care hospital heart study research

company disease pain medicine risk cancer companies treatment

surgery percent medicare

Crime and

Criminals

police death o�cer prison murder ross court crime drug family

charges prosecutors county arrest shot killing o�cer killed jury

charged woman authorities home

Art

art museum artists artist paintings painting gates exhibition gallery

park collection sculpture project modern drawings city christo

century building heizer central design arts curator

Terrorism

united bush states american o�cials president administration iraq

security palestinian iran intelligence north nuclear government

military china nations israel world korea war foreign

Football

season game team jets football yankees bowl players mets super

coach play baseball league patriots �eld games eagles yards ball

quarterback teams player giambi beltran

Airlines and

Airplanes

airlines airline airport air �ights airways united passengers fares delta

plane �ight boeing travel pilots southwest fare bankruptcy aviation

industry aircraft planes class miles airbus jet business airports

carriers elite travelers

Religion and

Churches

church religious jewish jews christian religion pope israel holocaust

rabbi catholic faith muslim nazi orthodox churches muslims marriage

anti war father evangelical community islam survivors rev death

auschwitz prayer

Advertising

and Marketing

company internet online computer web technology site software

advertising video business media digital service sites google mail

customers sales marketing services companies industry apple

consumers microsoft computers

Stocks and

Bonds

percent stocks market china funds growth oil economic investors fund

rates prices economy in�ation dollar stock average index countries

markets term poverty poor earnings energy rose treasury bonds

world rise rising mutual

Books and

Literature

life american world time love black house york street woman women

story white home company father family mother music art play

children makes wife name london century self live book review

culture night history set war
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Table 6: The list of high probability terms of the highest probability topic for each
hashtag. We manually added the categories to aid understanding.

C
at
eg
or
ie
s

H
as
h
ta
g

Topic with the highest probability

P
ol
it
ic
s

#
tc
ot teaparty gop obama ocra tlot sgp obamacare bill palin

twisters tpp vote repeal reagan repeal vote tpp
conservative gore republicans constitution

S
p
or
t

#
st
ee
le
r

game yellow afc black championship beat fan lose n�
nyjets steelernation jersey blackandyellow sunday

twitpic pittsburgh picks

W
or
ld

#
m
u
b
ar
ak

egypt jan mubarak people pro square thugs protesters
internet protests egyptian cnn tahrir watch government

police news anti egyptians feb violence

#
ta
h
ri
r

square thugs pro jan liberation clashes blessed cairo
live protesters aje egyptian breaking mubarak armed

twitpic



CHAPTER 4: TAG-LATENT DIRICHLET PROCESSES AND TAG-LDA WITH
CONCEPTS

In the previous chapter, we discussed incorporating tags in the topic models, and

speci�cally proposed Tag-LDA to describe the tags using a distribution of topics. We

develop two extensions of Tag-LDA in this chapter. Our goal is to make the model

more complete, and also to illustrate Tag-LDA can be extended like LDA.

One natural question for Tag-LDA is whether the number of topics can be de-

cided automatically and how we can achieve that. In this chapter, we develop the

Tag-Latent Dirichlet Processes (Tag-LDP), by modifying Tag-LDA with Dirichlet

processes, so that the number of topics can be inferred from the data.

Furthermore, the topics extracted from Tag-LDA are based on the co-occurrence

of words in the documents, so there is no assurance that they are consistent with the

semantic perception of users. We thus introduce the second extension of Tag-LDA,

Tag-LDA with concepts, which incorporates users' prior knowledge by employing

the Dirichlet Tree priors. Users can in�uence the learned topics to some extent by

providing their own knowledge expressed as concepts, which is an easy scheme for

non-expert users to express their prior knowledge in topic models.

4.1 Tag-Latent Dirichlet Processes

LDA provides a way to learn the unobserved topic structure in the corpus, and views

the documents as mixtures of latent topics and topics as mixture of terms. In LDA,
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the number of topics is an important parameter that needs to be speci�ed in advance.

The setting of the number of topics normally depends on the user's experience and

is determined in a heuristic way. So one question that might arise unavoidably when

applying LDA is: How many topics should be set and is there an automatic method

to decide the number? Fortunately, non-parametric statistical methods can help infer

the number of topics from data. Teh et al. [75] developed Hierarchical Dirichlet

Processes (HDP) which assumes the number of mixture component is an unknown

prior and is to be decided from the data. Unlike the parametric Dirichlet prior in

LDA, HDP have non-parametric Dirichlet process priors. Inspired by HDP, our work

on Tag-Latent Dirichlet Processes (Tag-LDP) utilizes Dirichlet processes so as to

decide the topic size automatically from data. Thus we �rst brie�y introduce HDP

below.

The Dirichlet process (DP) is a stochastic process, which generalizes the Dirich-

let distribution, generating discrete multinomial parameters [32]. Formally, G0 is a

probability measure on a measurable space (Θ,B) and (A1, A2, . . . , Ar) is a �nite mea-

surable partition of Θ. A Dirichlet process DP(α0, G0) is de�ned as the distribution

of random probability measure G over the space (Θ,B), such that (G(A1), G(A2), . . . ,

G(Ar)) is distributed as a Dirichlet distribution with parameters (α0G0(A1), α0G0(A2),

. . . , α0G0(Ar)) [75]. G0 is called the base probability measurement [75] or base dis-

tribution [32].

Samples from a DP are discrete and show a cluster property [75]. Let θ1, θ2, . . .

be a sequence of samples drawn from G. The distribution of θk given θ1, θ2, . . . θk−1
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follows [11]

θk|θ1, . . . , θk−1, α0, G0 ∼
k−1∑
l=1

1

k − 1 + α0

δθl +
α0

k − 1 + α0

G0 (27)

where δθi is a probability measure at θi . To better exhibit the clustering property,

Equation 27 can be rewritten as

θk|θ1, . . . , θk−1, α0, G0 ∼
M∑
m=1

nm
k − 1 + α0

δφm +
α0

k − 1 + α0

G0, (28)

where φ1, . . . , φM are the distinct values that θ1, . . . , θk−1 take, and nm is the amount

of θl taking value φm. We can obtain from Equation 28 that a new sample can take the

same value as the previous draws with probability proportional to the number of times

the value that has previously been taken. In addition, with probability proportional

to α0, the new sample will take a new value. Comparing to the Dirichlet prior with

�nite number of components, DP can allow an in�nite number of components. There

exists a metaphor for this phenomenon known as the Pólya urn scheme. In a urn,

each atom is associated with a ball painted with distinct color. Every ball can be

drawn with equal probability. If a ball is drawn from the urn, it will be put back with

an extra one of the same color, i.e. sampling with over-replacement. Additionally,

there is certain probability that a new atom can be generated and thus a ball painted

with a new color is added to the urn [75]. Alternatively, the sampling behavior can

be described by another metaphor called Chinese restaurant process (CRP) [75]. In

CRP, we assume there is a Chinese restaurant which can hold in�nite number of

tables. Guest θi enters this restaurant, and could share a table φm with probability

proportional to nm, or could sit at a new table sampled from the base distribution
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G0.

When using DP to model the mixture structure of LDA, it becomes more compli-

cated due to the topics shared among documents. To overcome this problem, Teh

et al. [75] proposed that the document DPs use a shared base distribution which is

sampled from another DP, i.e. chain a DP over the document DPs in a hierarchical

structure. Teh et al. also described the generative process of the HDP using the

metaphor of a Chinese restaurant franchise. In their metaphor, a restaurant franchise

(corpus) comprises of multiple restaurants (documents) with a shared menu (topics).

Each restaurant can hold an in�nite number of tables. Each table can serve only one

dish from the menu ordered by the �rst guest siting at it, and all guests sitting at the

table share the same dish. Each guest (word) that enters a restaurant, could either

sit at an already occupied table and enjoy the dish with the other guests, or sit at an

unoccupied table and order a dish that has never been ordered before (new topic) or

has already been ordered by other guests. Figure 10 demonstrates the metaphor.

Our work on Tag-LDP is inspired by the idea of HDP, so that the number of topics

can be decided from the data. In Tag-LDP, the tag-topic mixture is expressed by

a DP mixture model. Formally the generative process of Tag-LDP is described as

follows:

1. De�ne a base distribution H.

2. Draw G0 ∼ DP(H, ε).

3. For each tag p ∈ ∆:

(a) Draw Gp ∼ DP(G0, γ).
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Figure 10: Chinese restaurant franchise. There are M restaurants in this franchise.
Each restaurant is able to hold an in�nite number of tables and each table can only
serve one dish d. Dish d is ordered from the shared menu in this franchise by the �rst
guest g sitting at this table.



57

4. For each document d with wd from the corpus:

(a) Sample a distribution over observed tags from θd ∼Dirichlet(α).

(b) For ith word in document d:

i. Sample a tag e ∼ Multinomial(θd).

ii. Sample a topic z ∼ Ge, where z could be an existing topic or a newly

generated one.

iii. Sample a term w ∼ φz, where φz|G0 is drawn from G0.

In the generative process, ε and γ are two parameters required to be set; ε in�uences

the new topic generation and γ in�uences the new table generation as in Chinese

restaurant process. The graphical model is shown in Figure 11. Please note the

probability of generating a new topic is proportional to ε and the probability selecting

an existing one is proportional to the count of the topic previously used. With the

replacement of the Dirichlet prior by the DP, the Gibbs sampling update equation

can be written:

P (edi = p, zdi = t|w, e−, z−,α,ρ,φ) ∝
npd− + α∑δd
l (nld− + α)

·
1
|V| ·

εH∑Γ
k n

k
p−+ε

, new t

n
wdi
t− +φ∑V

w(nwt−+φ)
· ntp−+Gt0∑Γ

k n
k
p−+ε

, existing t

.
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Figure 11: Graphical model of Tag-LDP.

4.2 Experimental Study on Tag-LDP

In our experiments with Tag-LDP, we used the NIPS conference paper dataset9.

The NIPS paper dataset contains Volume 0 to Volume 12 of the conference proceed-

ings, which consists of 1740 articles contributed by 2037 authors. The vocabulary

size of the dataset is 13649. We further processed the dataset by keeping the authors

publishing more than ten papers. The process �nally retains 28 authors and 379

papers published by these authors. The average word count for each paper is 1378.9,

and there are 1.15 authors in average associated with each paper. Our experiments

are conducted on a server with Intel XEON E7540 2.0GHz CPU and 128G memory.

Tag-LDA is coded in C++, while Tag-LDP is coded in Java. The number of Gibbs

9http://www.cs.nyu.edu/~roweis/data.html



59

10 20 30 40 60 100
−3.9473

−3.9173

−3.8873

−3.8573

−3.8273

−3.7973

−3.7673

x 10
6

Number of Topics

Lo
g−

Li
ke

lih
oo

d

 

 

Tag−LDP
Tag−LDA

Figure 12: Log-likelihood for Tag-LDP and Tag-LDA with respect to di�erent num-
bers of topics. Tag-LDP is drawn in the solid blue line. Please note it does not require
pre-de�ned number of topics.

sampling iterations is �xed at 1000 times for both models.

We have mentioned that tags could be any type of meta-data coming with the

documents. In this study, the tags refer to the authors. We compared Tag-LDA

and Tag-LDP by plotting their log-likelihood on the NIPS dataset in Figure 12. The

log-likelihood is given by log (
∏

w

∑
z

∑
e P (w|z)P (z|e)P (e|d)). When inferring Tag-

LDA, the number of topics is varied from T = 10 to T = 100. For Tag-LDP, we do

not need to set the number of topics, because the number can be inferred from the

data. Figure 12 illustrates that the likelihood of Tag-LDP is comparable with the

best case of Tag-LDA, so Tag-LDP is able to decide approximately the best number

of topics from the data under the likelihood criterion.

To evaluate the quality of the topics, we examine the prominent topic, the topic with
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Table 7: The prominent topics for ten authors discovered by Tag-LDP.

Author Prominent Topic (Tag-LDA)

Jordan_M jordan model networks �eld bound forward hidden
variables mixture algorithm models likelihood

boltzmann probability parameters tree distribution
experts architecture em

Hinton_G hidden hinton units image visible models model
mixture data unit cost images vector control code

energy weights digit space distribution
Bower_J cortex neural bower simulation cell networks brain

system overlap �ber neuron �g classi�cation olfactory
vor �sh electric cerebellar cortical model

Lippmann_R training classi�ers classi�er rbf speech error word
decision �gure lippmann gaussian layer classi�cation
centers performance nodes regions features rate

mixture
Smola_A kernel support sv space functions pca feature vector

regularization data kernels smola training vapnik linear
regression sch machines margin kopf

Williams_C gaussian data distribution covariance posterior process
model prior tree matrix noise williams models neural
regression space hidden processes networks bayesian

Moody_J moody data error prediction models decay committee
variables smoothing networks trading weight nonlinear

information risk inputs selection price stochastic
validation

Koch_C motion voltage koch velocity chip current circuit
analog direction spike vlsi �ow units pyramidal noise
attention conductance image contrast conductances

Waibel_A word speech recognition tdnn waibel phoneme speaker
units connectionist training words multi time

vocabulary hme delay networks system sentences
connections

Tresp_V data model gaussian density em variables missing tresp
mixture likelihood bayesian models step conditional

neural posterior distribution markov nonlinear
gaussians
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Table 8: The prominent topics for ten authors discovered by Tag-LDA.

Author Prominent Topic (Tag-LDA )

Jordan_M jordan model network bound state probability hidden
forward models variables networks �eld tree algorithm
likelihood distribution output mixture boltzmann

approximation
Hinton_G units network hidden hinton image object model

weights visible unit images models input training
mixture layer recognition data gaussian weight

Bower_J cortex neural bower neuron cell simulation system �g
�ber neurons electric brain stimulus overlap olfactory

cerebellar classi�cation �sh cells spikes
Lippmann_R training classi�ers classi�er rbf speech error layer word

input decision performance gaussian �gure lippmann
state classi�cation nodes centers output regions

Smola_A kernel space support functions vector sv feature pca
function regularization linear data kernels smola
vapnik case regression sch problem machines

Williams_C gaussian data distribution process prior covariance
model function posterior matrix space tree williams
regression processes noise models neural log hidden

Moody_J moody data input prediction error units models decay
committee training network variables weight

smoothing functions inputs networks information
trading nonlinear

Koch_C motion voltage koch noise current velocity chip circuit
spike analog direction vlsi time �ow channel pyramidal

synaptic neuron contrast �g
Waibel_A word recognition speech training network tdnn waibel

networks units phoneme input level speaker time
hidden neural performance system connectionist layer

Tresp_V data network model variables tresp gaussian missing
density training input neural bayesian likelihood based

networks models distribution conditional markov
variable
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the greatest probability, for each author. Table 7 and 8 show the prominent topics for

ten authors as examples. We list the top 20 terms of each topic here. We review the

�rst four authors in here. Jordan_M refers to Michael I. Jordan, and his prominent

topic expresses his research related to graphical models with the representative terms:

forward, hiden, variables, likelihood, boltzmann, etc., while James Bower (Bower_J),

as a neuroscientist, seems to mainly works on neuron computing simulation and neural

network related directions. Signi�cant di�erence in the prominent topics from Tag-

LDP and Tag-LDA is not identi�ed from our observation. Therefore, Tag-LDP is

able to discover topics of similar quality as Tag-LDA, and also can decide the number

of topics automatically.

4.3 Tag-LDA with Concepts

Topic models discover the statistical pattern of topics from documents. However the

topics might not satisfy people's semantic perception [56]. The semantic perception

can be re�ected by users' strong beliefs about the probabilities of terms in the topics.

For example, the term �market� and term ��nance� might have similar probability

under a given topic, since these two terms often co-occur in users' minds.

One possible reason for this weakness in topic models is the unsupervised learning

procedure lacking input from human knowledge [23]. So several researchers [23, 4, 3,

37] have proposed learning more meaningful and semantically coherent latent topics

by involving human knowledge as a prior. Our work is inspired by the previous

work of [37, 3], and similarly allows concepts provided by users to be incorporated in

Tag-LDA. We name this extension Tag-LDA with concept (ConceptTag-LDA).
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Speci�cally, users might have pre-de�ned constraints on the terms in practice, which

can be viewed as concepts. A concept is a set of terms that are considered semantically

close to each other, pre-de�ned by the users with respect to the speci�c application

domain. The concepts can be viewed as users' intuition or prior knowledge. Like the

example we used above, �market� and ��nance� are usually seen together in docu-

ments. Thus a concept is a set of terms that are considered semantically related to

some extent, so they might have high probabilities in the same topic. Topic models

with concepts inserted are therefore able to bias the topics based on terms that users

view relevant, such that data is modeled with users' intuition encoded.

To model concepts in our topic model, we adopt the Dirichlet Tree prior [57, 3] to

replace the original Dirichlet prior. The Dirichlet Tree distribution is able to describe

the correlation of terms of the concepts in the topics. All terms in a concept are

likely to share high probabilities together or low probabilities in the topics. Figure 13

shows the structure of a Dirichlet Tree prior with two concepts, and the corresponding

Dirichlet prior for comparison. The Dirichlet Tree on the �rst level is a multinomial

distribution over both terms and concepts, and the concepts on the second level can be

viewed as multinomial distributions over terms. Although we only show an example

of a two-level prior structure, theoretically the prior structure can be generalized to

more than two levels [57]. That is, a concept can recursively have sub-concepts. In

this paper, we only allow concepts of one level. For the sake of simplifying model

inference and not introducing ambiguity in the generative process, we add a restriction

to the concepts, which is that concepts are not allowed to share common terms, which

means terms under each concept exclusively belong to their parent concept.
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(b) Dirichlet Tree prior structure with two concepts.

Figure 13: Dirichlet prior structure of LDA and Dirichlet Tree prior structure with
concepts. Assume there are eight terms in the vocabulary, and two concepts are
provided. (a) The Dirichlet prior for LDA, where each term has an equal prior. (b)
The Dirichelt Tree prior with two concepts: {family, children} and {market, �nance,
stock}. On the �rst level, the priors of the concepts are not identical to those of the
regular terms. Once a concept is selected, the probabilities of terms being emitted
in the concepts are likely to be simultaneously high or low. Note that one concept is
not correlated with the other.
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Tag-LDA can be viewed as a three-layer structure. With the illustrations of the

Dirichlet prior above, we draw Figure 14 as an example illustrating the three-layer

structure for one tag. From the top to the bottom, the block denotes a tag; the middle

circles denote topics; and the triangles at the leaves denote the terms. In the Dirichlet

distribution, the terms under one topic are mutually independent with the constraint

that their probabilities sum to one [58]. We want to capture the constraints on the

terms in a concept that the terms have similar probabilities despite their mutual

independence. There are internal nodes between topics and terms in Dirichlet Tree

distribution, which are able to capture these constraints on the concepts. The shaded

circle in Figure 15 is a concept consisting of two terms. The advantage of using a

Dirichlet Tree prior is avoiding large probability of terms in concepts being forced in

all topics [1]. Reversely, in Dirichlet distribution, increasing the priors of terms may

generate similar probabilities for terms in topics, however, the increased priors would

in�uence the probabilities of terms in every topic, which de�nitely is not what we

like.

In standard LDA with a Dirichlet prior, each topic is a distribution of terms. After

substitution of the Dirichlet Tree prior as in the example above, each topic is a

distribution of terms and concepts on the �rst level, and a concept is a distribution

over terms on the second level. As we discussed above, please note one term can only

appear once in the structure, either under a concept on the second level or on the

�rst level. When generating a document, if the word belongs to a certain concept,

the corresponding concept is �rst selected and then the word is emitted. Otherwise,

the word is emitted directly as in the standard LDA. More speci�cally, the generative
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Figure 14: Tag-LDA structure. The block, the circle, and the triangles denotes tag,
topic, and terms respectively.

Figure 15: ConceptTag-LDA structure. The shadowed circle is a concept of two terms
denoted by triangles. The blank circle denotes a topic and the block denotes a tag.
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process is updated with concepts introduced as below:

1. For each tag p ∈ ∆, sample γp over all topics from γp ∼ Dirichlet(ρ).

2. For each topic t ∈ Γ = {t1, t2, . . . , tT}:

(a) sample βt over B edges (terms and concepts) from βt ∼ Dirichlet(φ′).

(b) for each concept s ∈ C :

i. sample βs over the terms in the concept βs ∼ Dirichlet(η).

3. For each document d with wd from the corpus:

(a) Sample a distribution over observed tags from θd ∼Dirichlet(α).

(b) For ith word in document d:

i. Sample a tag e ∼ Multinomial(θd).

ii. Sample a topic z ∼ Multinomial(γe) a multinomial probability condi-

tioned on current tag assignment e.

A. If emit a word, sample the word w ∼ Multinomial(βz).

B. Otherwise, �rst sample a concept c, and then sample a term w ∼

Multinomial(βc).

The Dirichlet Tree distribution is also conjugate to the multinomial distribution

like the Dirichlet distribution. This property is helpful in deriving the Gibbs sam-

ple update equation. Please note that regardless of whether or not concepts are

involved in the model learning procedure, the joint distribution P (w, e, z|α,φ,ρ) in
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Equation 20 still holds. It is easy to observe that introducing concepts would not

in�uence the second term in the joint distribution but only the �rst term. Formally,

we de�ne the symmetric Dirichlet prior η for the terms in the concepts, and assume

there are π given concepts C = {s1, s2, . . . sπ}. The vocabulary V can be split into

two subsets (1) Vr regular terms not in concepts and (2) VC terms belonging to con-

cepts. P (w|φ′,η, z) can be be factored as below (interested readers please refer to

the detailed mathematical derivation in Section 3 in [58])

P (w|φ′,η, z) =
T∏
t=1

(
B(n′t + φ′)

B(φ′)

π∏
s=1

B(nts + η)

B(η)

)
, (29)

where n′t = (n1
t , n

2
t , . . . n

|Vr|
t , nts1 , nts2 , . . . ntsπ) is the vector of the counts of the indi-

vidual terms in Vr and the counts of the concepts in C assigned to topic t; the size

of n′t is |Vr|+ π; nts = (n
ws1
t , n

ws2
t , . . . , n

wsm
t ) contains the counts of terms in concept s

assigned to topic t; φ′ and η are their corresponding Dirichlet priors. When counting

ntsi , it is the sum of nw
si

t . Substituted P (w|φ,z) in Equation 22, the joint distribution

for ConceptTag-LDA is

P (w, e, z|α,φ′,η,ρ) =
T∏
t=1

(
B(n′t + φ′)

B(φ′)

π∏
s=1

B(nts + η)

B(η)

)
·

Ld∏
p=1

B(np + ρ)

B(ρ)
·
M∏
d=1

B(nd +α)

B(α)
. (30)

Now we turn to the Gibbs sampling update equation. As before, we utilize Equa-

tion 23 to derive the update equation. We can easily see that the change to P (w|φ, z)

in the joint distribution would not in�uence the second and third terms in the orig-

inal update equation, so only the �rst term must be modi�ed. Speci�cally, during
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sampling iteration, if the word wdi being generated is a regular term in Vr the sim-

pli�cation to P (edi = p, zdi = t|w, e−, z−,α,φ′,η,ρ) will result in a similar update

equation as Equation 25. However, if the word wdi is from concept c in VC , updating

the topic assignment might alter both the count of the concept it belongs to and its

own count. After simpli�cation, the Gibbs sampling update equation is rewritten as

P (edi = p, zdi = t|w, e−, z−,α,η,ρ,φ) ∝
n
wdi
t− +φ∑Vr

w (nwt−+φ)+
∑C
s (nst+φs)

· ntp−+ρ∑Γ
k (nkp−+ρ)

· npd−+α∑δd
l (nld−+α)

, if wdi ∈ Vr

ntc−+φc∑Vr
w (nwt +φ)+

∑C
s (nts−+φs)

· n
wdi
tc−+η∑c

w(nwtc−+η)
· ntp−+ρ∑Γ

k (nkp−+ρ)
· npd−+α∑δd

l (nld−+α)
, if wdi ∈ VC

, (31)

Equation 31 is the simpli�ed update equation for the Dirichlet Tree prior with con-

cepts of one level. A Generalized updating equation for multiple level concepts is not

di�cult to derive by directly rewriting Equation 29.

The estimates of document-tag distribution θ and tag-topic distribution γ are the

same as those of Tag-LDA, because the Dirichlet Tree prior has no in�uence on them

in the model. The estimate of topic-term distribution β is updated as follows:

β̂ =


nwt +φ∑Vr

w (nwt +φ)+
∑C
s (nst+φs)

if w ∈ Vr

nct+φc∑Vr
w (nwt +φ)+

∑C
s (nst+φs)

· nwtc+σ∑c
w(nwtc+σ)

if w ∈ VC

(32)

4.4 ConceptTag-LDA Evaluation Experiments

We conducted several experiments to evaluate ConceptTag-LDA. Our experiments

were conducted on a server with Intel XEON E7540 2.0GHz CPU and 128G mem-

ory. Both Tag-LDA and ConceptTag-LDA are coded in C++. The hyper-parameter
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settings are con�gured as follows: α = 0.1, ρ = 0.1, η = 100, unless stated otherwise.

The number of Gibbs sampling iterations is �xed at 1000 for both models.

The proceeding discussion of ConceptTag-LDA assumes the concepts are already

known. How the concepts are initially de�ned has not been touched so far. In

practice, when de�ning the concepts, users normally apply their subjective knowledge

[74]. There is no doubt that the concept re�ects users knowledge very well in this

way, but the quality and rationality of the concepts cannot be guaranteed due to this

subjective approach, which presumably depends on how well users understand the

data.

In our work, we extract concepts automatically from the corpus with respect to the

tags. Speci�cally, the extraction steps are as follows:

1. Extract top �ve important words out of each document based on word's TF-

IDF.

2. Compute the co-occurrence frequency of each pair of important words.

3. Select the most frequently co-occurring pair as the concept seeds.

4. Expand the concept by adding words from the remaining three most important

words which co-occur mostly with either one of the seeds. In our experiments,

we added one word to make the concepts be of three words.

5. Check whether there are common words between concepts.
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4.4.1 Qualitative Comparison on Topics

To explore the quality of topics generated by ConceptTag-LDA and to compare it to

Tag-LDA, we present results on the New York Times corpus10. The New York Times

Corpus is a news collection of the New York Times. It comes with General Online

Descriptors, assigned automatically and veri�ed by nytimes.com production sta�, for

each news article. A news article might have multiple descriptors associated with

it. Examples of individual descriptors include �Finances�, �International relations�,

�Computers and the Internet�, etc.. We consider these descriptors as the tags in our

models. For the purpose of our experiments, we randomly selected the news articles

published in the period October 1�15, 2006, and �ltered out descriptors that occur

infrequently, which �nally results in 24 descriptors (tags). Overall, 1933 news articles

remain left in the dataset. On average, there are 2.14 descriptors attached for each

news article, and the average length of the article is 323.9 words after the stop words

are eliminated.

We generated six concepts from the dataset following the approach above for six

randomly selected tags. The concepts are listed in Table 9. Among these six concepts,

every concept consists of three terms except C4 where the term �percent� is removed

since it is shared with C3.

Inferring topic models by Gibbs sampling methods usually takes some time, be-

cause Gibbs sampling is a sequential procedure where the topic and tag assignment

are sampled for each word in the documents until the convergence is reached. For

10https://catalog.ldc.upenn.edu/LDC2008T19
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Table 9: Six concepts automatically extracted for six tags from the New York Times
dataset. The second column is the terms in the concept and the third column is the
corresponding tag.

Concept ID Concept Terms Tag

C1 series league manager baseball
C2 life novel set books and literature
C3 executive percent web computers and the internet
C4 money billion �nances
C5 children food family medicine and health
C6 president bush united politics and government

ConceptTag-LDA inferring on this dataset with 30 topics, the running time is 14

hours in average, while Tag-LDA cost less time at four hours 18 minutes.

We trained 30 topics using Tag-LDA and ConceptTag-LDA. We list the topics by

showing the top terms for several topics below in Figure 10. We can see that among

the example topics, terms belonging to the same concept are ranked high together.

Please note although the concepts are extracted with respect to the tags, it does not

mean the concepts must be ranked high in the prominent topics. This re�ects the

advantage of the Dirichlet Tree prior, which is able to restrict the co-occurrence of the

terms inside of concepts without increasing the probability of the concepts in every

topic. One future research direction is to tie the concepts with the tags, which might

increase the e�ciency of the topics in explaining the tags.

To provide a comparison showing the topic di�erences between Tag-LDA and

ConceptTag-LDA, we also present the topics extracted by Tag-LDA in Figure 11.

Without the concept restriction in Tag-LDA, parts of the concepts are ranked high in

the prominent topics. Taking the topic of �baseball� as an example, �manager� and

�league� are shown but not �series�.
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Table 10: Prominent topics of several tags extracted by ConceptTag-LDA. Terms in
each topic are ordered based on their probability. Concepts terms show up in the
prominent topics of the �rst three tags but not the last one.

Tag Prominent Topic

books and

literature

book books story author life novel bosch stone set hepburn writes history

father woman pamuk street reader mother read hughes death literary writer

american louis black

baseball

game mets yankees series baseball season team league manager tigers torre

games rodriguez play postseason run runs left ball pitch inning division

players cardinals

�nances

company companies funds money fund billion percent market million stock

investors executive prices web pay chief stocks investment oil �nancial

business shares �rm markets price

politics and

government

court law government religious political tax justice church federal party

hamas states supreme palestinian judges judge israel courts county city

country legal o�cials justices

medicine and

health

health patients drug food care medical disease drugs cancer doctors children

treatment family patient study hospital pigeons school eat milk heart fats

researchers fat trans

computers and

internet

company google youtube video site internet computer microsoft software

online yahoo companies web technology media music friendster windows

parks sites executive ads percent vista sandy

1

Table 12 illustrates the statistics of concept term co-occurrence in the topics. For

these two models, we checked the top 20 terms of each topic and count how many

topics contain only one concept term, two concept terms, and three concept terms. For

instance, all of the three terms of concept C1 are observed in one topic in ConceptTag-

LDA, while no topic contains those three terms of C1 in Tag-LDA. From this table,

we see that most of concept terms are ranked high simultaneously in ConceptTag-

LDA, which means ConceptTag-LDA can integrate the human's concepts in the topic

representation to some extent.

A natural question that arises is: What topics would ConceptTag-LDA generate if

the concepts have low quality? This can occur if the concepts �t the users intuition

but deviate too much from the real data. This is a valid question and it could happen



74

Table 11: Prominent topics of several tags extracted by Tag-LDA. Terms in each
topic are ordered based on their probability.

Tag Prominent Topic

books and

literature

book books novel life story author stone bosch world father love hepburn

writes history writer mother war reader woman pamuk death writing read

�lm literary published street

baseball

torre yankees baseball team rodriguez players fans steinbrenner season

manager league sports yankee fan played leyland base mets teams piniella neil

cashman joe jeter world

�nances

percent company companies funds money fund billion market million stock

investors prices executive investment chief pay �nancial stocks oil business

private �rm shares price markets

politics and

government

time york day city american public home world million life percent �ve

president family country left days month national set states times united

o�ce university director former

medicine and

health

health patients drug medical food care disease drugs cancer treatment

doctors study patient hospital pigeons states percent milk researchers

medicine research pigeon hospitals companies heart

computer and

internet

company google youtube video site web internet computer microsoft software

online companies yahoo media technology sites friendster windows parks

music billion executive vista sandy ads

1

Table 12: Concept term co-occurrence statistics of Tag-LDA and ConceptTag-LDA.
The left column is the concept ID. For each concept, we count the number of topics
where only one concept term, two concept terms, and three concept terms appear
together in the �rst 20 terms of the topic.

Concept ID
Tag-LDA ConceptTag-LDA
1 2 3 1 2 3

C1 2 1
C2 1 2 1
C3 6 1 1 2
C4 2 1
C5 4 1 1 1 1
C6 2 2 1 1
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in practice. Users may not understand the data very well so the concepts de�ned by

them could be very biased. Taking an extreme case as an example, consider what

the topics would be if the concepts are made up arbitrarily. To test this scenario,

we made up two fake concepts by mixing the concepts above. The two concepts are

FC1 = {league, web, money, children} and FC2 = {food, series, united, novel} .

We conducted the experiment using these two concepts with the same experiment

setup as above. We checked the top 50 terms in each topics, and Table 13 shows

the distribution of concept terms in the topics. We observe that concept terms still

appear up together in most cases as expected. However, the introduction of the fake

concepts seems to deteriorate the quality of the topics. Table 14 lists Topic 0 which

contains all terms of FC1 and Topic 8 which contains all terms of FC2. Most terms of

Topic 0 appear to discuss a family related theme, but �league� and �web� do not seem

to belong in this theme. Topic 8 illustrates the same phenomenon; �series�, �food�,

and �novel� do not appear relevant in a topic related to international relationships.

Therefore, although ConceptTag-LDA provides an intuitive method for non-expert

users to model data in a customized way, improper selection of on the concepts will

lead to the generated topics deviating from the data too much.

4.4.2 Quantitative Comparison Between ConceptTag-LDA and Tag-LDA

In our next experiment, we studied the in�uence of the concepts in modeling data.

We compare ConceptTag-LDA and Tag-LDA by comparing their log-likelihood. In

these experiments, we use the same New York Time dataset and those concepts as in

Section 4.4.1.
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Table 13: Topics that contain the terms of the fake concepts. The symbol * indicates
that term appears in the top 50 terms of that topic.

Concept
Topics

Topic
0

Topic
26

Topic
8

Topic
16

Topic
22

Topic
26

Topic
27

F
C

1

league *
web *

money * *
children * *

F
C

2

food * * * *
series * * *
united * * * *
novel * * *

Table 14: Two topics extracted from ConceptTag-LDA with two fake concepts.

Terms

T
op
ic
0 school parents parenting child mother roberts kids jabari children

police amish teenagers night money web league youth alexander
mcdonald girl love family families care parent daughter chess baby
miller life evangelical college son nickelodeon day street minutes
hour football brewster ben play game �eming boys husband home

friends arrived crew

T
op
ic
8 north korea nuclear american states military security o�cials test

iraq weapons iran china bush iraqi war south korean government
nations country administration baghdad united president

international japan forces council russia killed sanctions bomb
countries troops police o�cial world threat series food novel shiite
minister foreign policy intelligence monday afghanistan sunni
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Figure 16: Log-likelihood for ConceptTag-LDA and Tag-LDA with number of topics
T = {10, 20, 40, 60, 100}. The blue solid line is ConceptTag-LDA, and the red dotted
line is Tag-LDA.

First we learned both models with varying number of topics T = {10, 20, 40, 60, 100}

and output the corresponding log-likelihood. Figure 16 illustrates the log-likelihood

for both models corresponding to di�erent T . We can observe that the di�erence in

log-likelihood is insigni�cant between these two models, especially for small and high

values of T . So, with only six concepts containing 17 terms, it is not surprising that

they have a minor in�uence in modeling the data overall. We can also observe that the

log-likelihood of ConceptTag-LDA is slightly lower than Tag-LDA for T = 40. Our

explanation of the discrepancy is that, although the introduction of concepts makes

the learned topics semantically closer to users prior knowledge, the given concepts

may violate the true statistical relationship of the terms in the data. So users should

be cautious when de�ning the concepts.
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In the next experiment, we examined the parameter η, which is the prior for concept

terms. Its value in�uences the co-occurrence of the concept terms in the topics. We

compare the log-likelihood of the model with multiple η settings, changing from 50 to

1200; other hyper-parameters were kept the same as in the previous experiments and

the number of topics T is also �xed at 30. The log-likelihood is shown in Figure 17.

The blue solid curve is ConceptTag-LDA, and the red dashed line is Tag-LDA with

�xed T = 30 as a reference. We see that the likelihood gets lower as η increases.

As a prior, η in�uences the co-occurrence of concept terms in the topics. Large

η encourages equivalent probabilities of the terms, but may not represent the true

statistical relationship of the terms and eventually leads to inaccurate modeling of

the data, which might be the reason for inducing the lower log-likelihood. Again,

from the likelihood criterion perspective, users pay a small price to integrate their

prior knowledge in the model.

4.5 Summary

This chapter has presented two extensions building on Tag-LDA: Tag-LDP and

ConceptTag-LDA. To avoid the users having to set the number of topics, we propose

Tag-LDP model, which is inspired by Hierarchial Dirichlet Processes. Tag-LDP can

infer the number of topics from the data automatically and can generate topics with

quality comparable to Tag-LDA. ConceptTag-LDA replaces the Dirichlet prior by

the Dirichlet Tree prior, which models the concepts in the form of a group of terms

given by the users. The concepts re�ect users' prior knowledge regarding the terms,

so ConceptTag-LDA enables customized modeling of the text by users. We provide
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Figure 17: Log-likelihood values for ConceptTag-LDA and Tag-LDA. The num-
ber of topics is �xed for both models. ConceptTag-LDA has a varying η =
{50, 200, 400, 800, 1200}.

Gibbs sampling based solutions to learn the models and our experiments show the

characteristics and the usefulness of these two models.



CHAPTER 5: A DYNAMIC TWITTER TOPIC MODEL

Social media such as Twitter captures moment-by-moment updates of discussions

among people. The discussions are constantly evolving with many discussions center-

ing around events. Therefore, it is essential to consider the temporal dynamics when

summarizing and analyzing the discussions. A major event usually involves twists

and turns re�ected by multiple sub-events. This temporal event development is in

turn re�ected by people's discussions on Twitter. To highlight this temporal dynam-

ics, we propose the dynamic Twitter topic model (DTTM), a specialized topic model

tailored for the short messages in Twitter. We assume an event can be modeled by

a mainstream theme plus several facets. We are inspired by temporal topic models

and model the mainstream theme and these facets to evolve with time.

5.1 Introduction

User-generated content on Twitter captures minute- by-minute updates of public

and private snippets of information. Many of the discussions on Twitter center on

events of interest to people, evolving rapidly over time. To analyze and make sense

of the wealth of information on Twitter, summarizing the user-generated content is

a necessary step. More interesting, given the velocity of tweets, it is bene�cial to

summarize the content in a way that also highlights the ebb and �ow of the moment-

by-moment discussions.
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One way to summarize social media content and capture the major themes is

to leverage topic models [12]. Most of the topic models are designed for regular,

well-written text such as news, blogs, and scienti�c papers [18, 29, 70, 69, 66, 64].

Others have developed specialized topic models for the analysis of social media such

as Twitter [63, 88]. Since the short and noisy nature of social media messages di�ers

from other regular text resources, researchers have developed ways of assembling social

media content in order to better utilize topic models designed for regular texts. Such

methods include aggregation strategies [35, 85] for shorter, more fragmented data.

Hong and Davison in [35] empirically examined three di�erent aggregation schemes

where the standard Latent Dirichlet Allocation (LDA) model [18] was applied.

Although the above topic model with aggregation strategies can extract topics

as meaningful summaries of social media data, they did not consider the temporal

evolution of the discussions, which is an essential characteristic of communications on

social media. To incorporate the temporal evolution of topics, some previous work,

e.g., [16, 36], model topics along time in a Markovian manner, in that the current

state of a topic is dependent on its previous state. Wang et al. in the continuous

dynamic topic model (cDTM) [82] replaced the state space model in the dynamic

topic model (DTM) [16] with the Brownian motion model such that continuous time-

series data can be modeled with arbitrary granularity. However, the aforementioned

topic models are designed for regular texts, and thus may be less e�ective at modeling

the dynamics of short messages such as tweets.

To explore the temporal evolution of topics that pervade a collection of tweets, we

propose the dynamic Twitter topic model (DTTM), a new model that not only models
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the dynamic nature of the topics, but is also tailored for shorter tweets. Speci�cally,

for a collection of related tweets discussing one major event, we assume it can be

described by one mainstream topic plus multiple facet topics, and each tweet can be

viewed as a mixture of two topics: the mainstream topic and one facet topic. In

addition, our work is inspired by previous dynamic topic models and assumes these

topics evolve as time proceeds.

To evaluate the quality of topics from DTTM, we compared it to the dynamic topic

model (DTM) [16] and LDA. Our experiment results show that the DTTM model

provides more distinctive topics and better coverage of the details of the events. To

enable the understanding of the changes in topics over time, we used a visualization

to convey the statistical results. The visualization enables the analysis of topic trends

over time, as well as highlights the topic term di�erence in time. By combining the

change in topic trends (such as bursts) and the change in topic terms, the visualization

illustrates the evolution of events that may otherwise be buried in the topics.

5.2 Dynamic Twitter Topic Model

In this section, we introduce a dynamic Twitter topic model particularly designed

to capture the dynamic property of topics. The special characteristic of tweets, which

is of much shorter length than regular articles, is considered in designing DTTM. Usu-

ally, topic models assume each document is a mixture of topics across all topics, while

DTTM limits the number of topics in tweets due to their short length. To discover

the topic trends over time, in DTTM we adopt the idea of modeling temporally vary-

ing topics from DTM. This will potentially enable us to analyze the development of
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related events and evolution of people's discussion.

To describe the multiple aspects of an event, we intuitively assume there is a

mixture of multiple facet topics for that event at every time slice. Each tweet at a

certain time slice is generated by one of these facet topics and the shared mainstream

topic between tweets. Formally, an event p is modeled as a multinomial distribution

θt of K facet topics plus a shared mainstream topic c between tweets at time t, with

a total of K + 1 topics in the model. Topics are latent and normally are de�ned

as a multinomial distribution over all terms in vocabulary V . A tweet at time t is

composed of words generated by facet topic s, where s ∼ Multinomial(θt), and the

shared mainstream topic c. So as to model the temporal dynamics of topics, we adopt

the idea of DTM [16] mentioned before and assume βt, the topic-term distribution

for time t, depends on βt−1 with Gaussian noise in a state space model. In other

words, we assume βkw,t, the probability of a term w in topic k at time slice t follows a

Gaussian distribution with mean βkw,t−1 and a constant variance. So topics evolve as

time proceeds, and words in tweets are generated by the corresponding topics at the

same time slice. In cDTM [82], this assumption is generalized by using a Brownian

motion model where the variance linearly depends on the time lag.

DTTM is also a generative model like other topic models. The generative process

for it is described as follows:

1. For each topic k in K + 1:

(a) Draw topic βkt |β
k
t−1∼N (βkt−1, σ

2I).

2. For the event at time slice t:
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Table 15: Notation table for DTTM.

symbol size description

t scalar time slice
wd 1×Nd words of tweet d
s scalar topic assignment for each tweet
εd 1× 2 tweet-topic multinomial distribution
z scalar topic assignment for each word
βt (K + 1)× |V| topic-term multinomial distribution at

time t
θt 1×K event-topic multinomial distribution at

time t
η 1× 2 Dirichlet hyperparameters
α 1×K Dirichlet hyperparameters

(a) Draw θt ∼ Dirichlet(α).

3. For each tweet d at time slice t:

(a) Draw s ∼ Multinomial(θt).

(b) Draw ε ∼ Dirichlet(η).

(c) For each word :

i. Draw z ∼ Multinomial(ε).

ii. Draw w ∼ Multinomial(f(βzt )).

Function f maps the multinomial natural parameters to mean parameters and we

adopt f =
exp(βz,wt )∑V
w′ exp(βz,w

′
t )

. The graphical model is demonstrated in Figure 18 and

the notation in Table 15. Note that the model, for simplicity, does not allow the

hyperparameter α to evolve unlike in DTM [16].
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Figure 18: Dynamic Twitter Topic Model.

5.2.1 Approximate Inference with Kalman Filtering

In this section, we are going to estimate the distribution of the latent variables in

the model via posterior inference. The coupling of latent variables in the multino-

mial models makes the posterior inference intractable to compute in topic models.

Researchers mainly use two types of approaches to indirectly tackle this problem

by approximation: 1) variational inference [18, 82, 16], and 2) Monte Carlo Markov

chain (MCMC) sampling [29, 83]. In our case, due to the nonconjugacy of Gaussian

and multinomial models, we employ variational inference rather than the sampling

approach. Variational inference method has been applied in modeling temporal data

[82, 16, 60]. In variational methods, the true posterior is approximated by �nding a

tractable family of distributions over the latent variables, which is closest to the true
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posterior in Kullback-Liebler (KL) divergence [41, 16]. These distributions are called

variational distributions and indexed by a set of free variational parameters.

The latent variables in our models include the event-topic proportions θ, per-tweet

topic assignment sd, per-tweet topic proportions εd, per-word topic assignment zdw,

and the K + 1 sequences of topics βt. By breaking the coupling between latent

variables and introducing free variational parameters below, we adopt the following

variational distribution:

q(β1:T ,θ, s, ε, z|β̂1:T ,γ, τ ,ρ,φ) =

K+1∏
k

q(βk1 , · · · , βkT |β̂k1 , · · · , β̂kT )× (33)

T∏
t

[
q(θt|γt)

Dt∏
d

(
q(sd|τ d)q(εd|ρd)

Nd∏
w

p(zdw|φdw)

)]
,

where β̂1:T are the �variational observations� of topic β1:T ; to incorporate the temporal

dynamics of the topics, variational Kalman �lter is applied to approximately model

the sequential structure [16]. In variational Kalman �lter, the variational β̂1:T are

viewed as �observations� while the true parameters are viewed as latent states, and

the chained structure of the true parameters are kept. The probability of variational

observations given the true parameters is also a Gaussian distribution:

β̂kt |βkt ∼ N (βkt , σ̂
2
t I), (34)

where σ̂t is another variational parameter. Besides that, Dirichlet hyperparameters

γ are the variational parameters for the event-topic proportions, multinomials τ for
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the per-tweet facet topic assignments, Dirichlet hyperparameters ρ for the per-tweet

topic proportions, and multinomials φ for word topic assignments.

Now we turn to the forward-backward algorithm, which is used to compute the

variational parameters so as to obtain the lower bound in the variational inference

eventually. According to the standard Kalman �lter calculations [42], the variational

forward distribution is a Gaussian βkt |β̂
k

1:t ∼ N (mk
t , V

k
t ) and the forward mean and

variance of the variational posterior are characterized by:

mk
t = E(βkt |β̂

k

1:t) = hktm
k
t−1 +

(
1− hkt

)
β̂kt , (35)

V k
t = E((βkt −mk

t )
2|β̂k1:t) = hkt (V

k
t−1 + σ2), (36)

and hkt =

(
σ̂2
t

V k
t−1 + σ2 + σ̂2

t

)
.

Constants m0 and V0 are set as the initial status in the forward. Similarly, the

variational backward distribution βt given variational β̂1:T is βkt |β̂
k

1:T ∼ N (m̃k
t , Ṽ

k
t )

with the mean and variance characterized by

m̃k
t−1 = E(βkt−1|β̂

k

1:T ) = h̃ktm
k
t−1 +

(
1− h̃kt

)
m̃k
t , (37)

Ṽ k
t−1 = E((βkt−1 − m̃k

t−1)2|β̂k1:T ) = V k
t−1 +

(
V k
t−1

V k
t−1 + σ2

)2 (
Ṽ k
t − V k

t−1 + σ2
)
, (38)

where h̃kt = σ2

V kt−1+σ2 and the initial setting is m̃k
T = mk

T and Ṽ k
T = V k

T .

Next, we compute the values of the variational parameters by bounding the log

likelihood of documents. With the variational distribution in Equation 33 and using
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Jensen's inequality [41], the log likelihood is bounded as:

logp(w|p,α,η) ≥ Eq(logp(β1:T ,θ, s, ε, z,w|α,η))

+ Eq(logq)

= Eq(logp(β1:T )) + Eq(logp(θ|α)) + Eq(log(s|θ))

+ Eq(log(ε|s,η)) + Eq(logp(z|ε)) + Eq(p(w|z,β1:T ))

+ H(q),

(39)

where H(q) is the entropy. Maximizing the lower bound is equivalent to minimizing

the KL divergence between the variational posterior and the true posterior probabil-

ity [18]. So we �rst introduce the derivation of these seven expectations and then

discuss how to maximize the lower bound with respect to the variational parameters.

The �rst term Eq(logp(β1:T )) is the same as that in DTM, therefore we just write

down the �nal result here after following similar derivation steps:

Eq(logp(β1:T )) = −|V|(K + 1)T

2
(logσ2 + log2π)

− 1

2σ2

T∑
t

K+1∑
k

||m̃k
t − m̃k

t−1||2 −
1

σ2

T∑
t

K+1∑
k

Tr(Ṽ k
t )

+
1

2σ2
(Tr(Ṽ k

0 )− Tr(Ṽ k
T )).
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The second term Eq(logp(θ|α)) can be expanded as below:

Eq(logp(θ|α)) =
T∑
t

Eqlogp(θt|α)

=
T∑
t

[
logΓ(

K∑
j

αj)−
K∑
k

logΓ(αk)+

K∑
k

(αk − 1)

(
Ψ(γk)−Ψ(

K∑
j

γj)

)]
.

Interested readers may refer to Section A.1 in [18] to �nd similar derivation steps.

For Eq(log(s|θ)), we have:

Eq(log(s|θ)) =
T∑
t

Dt∑
d

K∑
k

τk(Ψ(γk)−Ψ(
K∑
j

γj))ρd,k.

and similarly we have Eq(log(ε|s,η)) expanded as:

Eq(log(ε|s,η)) =

=
T∑
t

Dt∑
d

[
logΓ(

∑
j∈Λ

ηd,j)−
∑
i∈Λ

logΓ(ηd,i)+
∑
i∈Λ

(ηd,i − 1)

(
Ψ(ρd,i)−Ψ(

∑
j∈Λ

ρd,j)

)]
,

where Λ = {s, c} comprises the selected facet topic s and the shared topic c. For the

�fth term, we have:

Eq(logp(z|ε)) =
T∑
t

Dt∑
d

Nd∑
w

∑
i∈Λ

φd,w

(
Ψ(ρd,i)−Ψ(

∑
j∈Λ

ρd,j)

)
.

The term Eq(p(w|z,β1:T )) can be expanded as

Eq(p(w|z,β1:T )) =
T∑
t

Dt∑
d

Nd∑
w

[∑
i∈Λ

φd,wm̃
i,w
t −

∑
i∈Λ

Eq(log
V∑
v

exp(βi,vt ))

]
(40)

Due to the non-conjugate mapping function, we have to further compute the third

term in Equation 40. We apply Taylor expansion on it with another variational
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parameter ςt, so it is upper bounded as:

Eq(log
V∑
v

exp(βi,vt )) ≤ φd,w

(
ς−1
t

V∑
v

Eqexp(βi,vt )− 1 + log(ςt)

)
, (41)

where exp(βi,vt ) is a log normal distribution and Eq(exp(βi,vt )) is its mean. With

Equation 41, Equation 40 is rewritten as

Eqp(w|z,β1:T ) ≥
T∑
t

Dt∑
d

Nd∑
w

[∑
i∈Λ

φd,wm̃
i,w
t −

∑
i∈Λ

φd,w

(
ς−1
t

V∑
v

exp(m̃i,v
t + Ṽ i,v

t /2)− 1 + log(ςt)

)]
.

Finally, we expand the entropy as:

H(q) = −Eqq(β1:Tθ, s, ε, z|β̂1:T ,γ, τ ,η,φ)

= −
T∑
t

K+1∑
k

(
|V|
2
log2π

)
− 1

2

T∑
t

K+1∑
k

V∑
v

log(V̂ k
v )−

T∑
t

[
logΓ(

K∑
j

γj)−
K∑
k

logΓ(γk)+

K∑
k

(γk − 1)

(
Ψ(γk)−Ψ(

K∑
j

γj)

)]
−

T∑
t

Dt∑
d

K∑
k

τdlogτd−

T∑
t

Dt∑
d

[
logΓ(

∑
j∈Λ

ρj)−
∑
i∈Λ

logΓ(ρi)+

∑
i∈Λ

(ρi − 1)

(
Ψ(ρi)−Ψ(

∑
j∈Λ

ρj)

)]
−

T∑
t

Dt∑
d

Nd∑
w

∑
i∈Λ

φd,wlogφd,w.

We need to maximize the lower bound in Equation 39 so as to approximate the
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true posterior. We take derivatives with respective to ςt, set to zero, and solve for ςt:

ςt =
1∑Dt
d Nd

Dt∑
d

Nd∑
w

(
∑
i∈Λ

φd,w

V∑
v

exp(m̃i,v
t + Ṽ i,v

t /2)). (42)

Then we follow similar optimization procedures as introduced in Section A.3 of [18]

to solve other variational parameters. We have them listed below:

τ kt ∝ exp(Ψ(γp,kt )−Ψ(
K∑
j

γp,jt ))
Dt∑
d

ρd,k (43)

γp,kt = αk +
Dt∑
d

τ kt (44)

φid,w ∝ exp(Ψ(ρd,i)−Ψ(
∑
j∈Λ

ρd,j))× exp(m̃i,w
t − Eqlog

V∑
v

exp(βi,vt )), i ∈ Λ (45)

ρd,i = ηi +

Nd∑
w

φd,w, i ∈ Λ (46)

In DTTM, the facet topic s in Λ is selected for each tweet. So we have the restriction

on i in Equation 45 and 46. This selection can be understood as �hard assignment�.

In implementation, rather than solving the hard assignment directly, we replace it

with a soft assignment by introducing changes in Equation 45 below:

φid,w ∝ exp(Ψ(τ itρd,i)−Ψ(
K∑
j

τ jt ρd,j))× exp(m̃i,w
t − Eqlog

V∑
v

exp(βi,vt )), i ∈ [1, K]

With the change, the topic for the tweet is not exclusive to the selected one anymore,

but can be theK facet topics weighted by their probabilities. Similarly, the constraint

in Equation 46 is removed.

To maximize the lower bound with respect to β̂, the partial derivative of the lower
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bound with respect to β̂k,wt is obtained:

− 1

σ2

T∑
t

(m̃k,w
t − m̃k,w

t−1)

(
∂m̃k,w

t

∂β̂k,wt
−
∂m̃k,w

t−1

∂β̂k,wt

)
T∑
t

(
Nw
t φ

k
w −

V∑
v

N v
t φ

k
vς
−1
t × exp(m̃i,v

t + Ṽ i,v
t /2)

)
∂m̃k,w

t

∂β̂k,wt

The conjugate gradient algorithm is employed to �nd a local optimum of β̂ [16, 36],

where the gradients
∂m̃k,wt
∂β̂k,wt

are needed. The gradients can be computed with forward

and backward mean in Equation 35 and 37:

∂mk,w
t

∂β̂k,ws
= ht

∂mk,w
t−1

∂β̂k,ws
+ (1− ht)It(s)

∂m̃k,w
t−1

∂β̂k,ws
= ĥt

∂mk,w
t−1

∂β̂k,ws
+ (1− ĥt)

∂mk,w
t

∂β̂k,ws
.

It(s) is the indicator function, and the initial conditions for forward and backward

recurrence are ∂mk,w0 /∂β̂k,ws = 0 and ∂m̃k,wT /∂β̂k,ws = ∂mk,wT /∂β̂k,ws respectively.

The overall variational inference procedure can be performed using the EM algo-

rithm. With the derivation introduced above, we sketch the inference �ow in Algo-

rithm 2.

5.3 Case Studies

To demonstrate the capability of our proposed method, we conducted two case

studies on Twitter data. In the �rst study, we examine the performance of our model

on tweets related to one event and compare its performance with other topic models.

We further evaluated our model on an un�ltered tweet dataset in the second study.

The two studies show that our model can support both focused investigation and

explorative analysis.
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Algorithm 2 Variational inference algorithm.
Initialization parameters
repeat

E step:
for t← 1, T do

Update τ t with Equation 43
Update γt with Equation 44
for d← 1, Dt do

Update φd with Equation 45
Update ρd with Equation 46

end for

Update ςt with Equation 42
end for

M step:
Update β̂ using conjugate gradient descent

until converged

5.3.1 Occupy Movement

In this study we analyzed events related to the Occupy Movement, with ground

truth available in Wikipedia. The Occupy Movement consisted of a series of demon-

strations and was known to use social media to organize and attract protestors. It

is interesting to summarize the major events throughout the long-running, widely

participated movement. We illustrate how the topic results can explain the events

and help make sense of the movement in a temporal manner. We visualize the results

to help end users better understand the developing event trends. We also compare

our model with DTM and LDA.

We �rst collected tweets through Twitter's public streaming API11, which yields

one percent samples. To identify a collection of tweets related to the Occupy Move-

ment, we queried for tweets containing occupy-related hashtags such as �#occupy".

The query captures a wide range of protests including �#OccupyWallSt�, �#Occupy-

11https://dev.twitter.com/docs/streaming-apis/streams/pu-blic
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London�, �#OccupyTogether�, etc. The resulting collection contains around 200,000

tweets posted between August 19, 2011 and July 2, 2012. We removed stop words and

excluded tweets in non-English characters. Tweets of length less than �ve words are

also removed. To remove noise words, terms appearing less than �ve times in total

are considered noise and not included in the vocabulary. After the cleaning steps,

74,362 tweets are retained and the size of the vocabulary is 13,813 terms.

We use the methods described in Section 3 to learn topics with K = 3 and one

shared mainstream topic. The parameter setting is: σ2 = 0.1, σ̂2 = 1, α = 0.1, and

η = 1. Due to space constraints, we are able to list only a few topic samples in Figure

16 and Figure 17. For purpose of comparison, we also ran DTM program with the

same setting on the dataset and list the topics together.

Based on our analysis of the topic results, the shared topic primarily captures

the main story of the movement as well as the most signi�cant events of the move-

ment. More speci�cally, the shared topic always cover major events related to protests

(sometimes international) and marches participated by the masses. For example, the

shared topic captures multiple con�icts between protesters and police that occurred

in November 2011 (Figure 16). Such con�icts include the NYPD (New York Police

Department) raiding the protesters' camp in an e�ort to evict the protestors, and

the LAPD (Los Angeles Police Department) using of pepper spray on protestors. As

the movement progressed, in January 2012, the shared topic captured the breakout

of a major international event �OccupyNigeria�. As shown by multiple sources12, the

12http://en.wikipedia.org/wiki/Timeline_of_Occupy_Wall_Street;
http://www.motherjones.com/mojo/2012/09/occupy-wall-street-anniversary-timeline
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Table 16: Topics discovered by DTTM and DTM for November 2011.

Topic 1 Topic 2 Topic 3 Shared

envoyez police reading city

soutenons occupy psychic protesters

police street time police

@boldprogressives movement police park

time live rondo eviction

protesters wall protesters almudena

park protesters occupy lapd

movement video voxer cops

@robinsage time change pepper

@providesecurity protest calling occupy

@occupy day nyc arrested

mayor news movement raid

occupy media arnold camp

eviction tonight country mayor

stand world call tents

pour march street oakland

@kanyewest park day hall

defend nyc protest dbkl

protest protests video nlc

urgent check wall live

Topic 1 Topic 2 Topic 3 Topic 4

city lapd movement police

park stand time protesters

almudena eviction occupy encroaching

subsidy unesco cops street

hall democracy protesters occupy

catedral nlc protest wall

caixa real tonight live

twitter demand day pepper

video send scanzi video

zuccotti nyc @fattoquotidiano raid

occupy reading world camp

@kevskewl street mayor arrested

@ruggedybaba ojota photo riot

time message eviction march

evict friday live arrests

movement psychic media fadzil

press wall night femi

live dbkl love @fckh

kami cover envoyez @fahmi

obama temp check @robinsage

DTTM (11/2011)

DTM (11/2011)
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Table 17: Topics discovered by DTTM and DTM for January 2012.

Topic 1 Topic 2 Topic 3 Shared

envoyez protest occupy nigeria

soutenons gej protesters protest

protesters protesters police @omojuwa

@boldprogressives police live gej

occupy occupy voxer almudena

police @omojuwa city @ogundamisi

protest live arnold police

live movement movement subsidy

@robinsage day protest fuel

@providesecurity news oakland nigerians

nigerian join street strike

movement peaceful day nlc

@rosanwo street arrested @rosanwo

@kanyewest time video protesters

day change watch jonathan

@occupy vacancy wall @elrufai

street wall nyc govt

brt @naijacyberhack time lagos

park crowd scanzi nigerian

@anonlgrisback video adriana protests

Topic 1 Topic 2 Topic 3 Topic 4

almudena unesco gej police

occupy nigerian occupy nigeria

subsidy @rosanwo movement encroaching

fuel @ogundamisi protest protesters

president protest live london

city @omojuwa time arrested

house nigerians day live

govt protesters scanzi rally

news nlc government occupy

catedral lagos @fattoquotidiano video

@elrufai strike dey fadzil

caixa jonathan envoyez femi

removal ojota country @fahmi

street nyc photo @fckh

@kevskewl dbkl soutenons march

hall lapd action protest

park temp cops dis

protest lockouts join street

twitter @eggheader money day

@omojuwa forecast bank bakare

DTTM (01/2012)

DTM (01/2012)
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Figure 19: Topic proportions of DTTM at each time slice.

scale of discussions of the OccupyNigeria event on Twitter is much more signicant

than any domestic Occupy events. As shown in Figure 17, terms including �nige-

ria�, �fuel�, �subsidy� in the shared topic highlight the �OccupyNigeria� event, and its

cause, the ending of the government oil subsidy. In comparison, although the topics in

DTM cover several words related to the event, coverage of the major �OccupyNigeria�

event is divided into several topics, with term �nigeria� in Topic 4, terms �nigerian�

and�lagos� appearing in Topic 2, and terms �fuel� and �subsidy� in Topic 1.

To provide evidence that DTTM captures more distinctive events that occur at

di�erent times, we present several quantitative measures. First, we visualize the

event-topic proportions over time in Figure 19. The hypothesis is that if the topic

proportions are more concentrated on a few of the topics, as opposed to relatively

uniform trends, then those topics re�ect themes that are the focus of more discussions

on Twitter. For comparison purposes, we also compute the topic proportions for DTM
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Figure 20: Topic proportions of DTM at each time slice.
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Figure 21: Topic proportions of LDA at each time slice.
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Figure 22: Entropy comparison for DTTM, DTM, and LDA.

and plot it in Figure 20. DTM does not have a variable for the topic proportion; we

compute it by
∑
dt
|dkt |∑

dt

∑
k |dkt |

, the frequency of words assigned to topic k normalized by

the total number of words. We ran LDA13 on the data and extracted 10 topics.

LDA natively cannot discover the temporal dynamics because time is not modeled.

We inferred the per document-topic proportions, and aggregated and normalized the

proportions for each month such that we obtain pseudo topic proportions for every

month. Figure 21 shows the topic proportions for LDA.

To view the di�erence in topic proportions among these three models, we compute

the entropy of topic proportions at each time slice. The results are shown in Figure 22.

A lower entropy implies less uncertainty in the topic proportions, and thus indicates

that a few topics are more informative. As shown in Figure 22, DTTM generally

exhibits the lowest entropy compared to the other two models, thus it helps end users

to better identify and analyze the event by observing the importance of the topics

13http://www.cs.princeton.edu/~blei/lda-c/index.html
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Figure 23: Variation in topic frequency with time for DTTM. The y-axis represents
the topic frequency.

from their probabilities. Please note although the number of topics in LDA is more

than in DTTM and DTM, we can see from Figure 21 that the topic proportions of

di�erent topics do not di�er much, so it becomes harder for users to identify which

topic conveys more information at a given time.

In addition to comparing the topic proportions produced by di�erent models, we

now evaluate the topic quality. We did not employ perplexity for this evaluation, since

it may not be adequate [81, 22]. Instead we interpreted the topics and match to the

timeline of the Occupy Movement in Wikipedia as the ground truth. We observed that

the shared topic covers more terms related to the major events in the movement while

facet topics can capture smaller yet still signi�cant events di�erent from the main

storyline. For instance, Topic 2 and the shared topic dominate the topic proportions

in November 2011. Topic 2 includes relevant terms �police�, �occupy�, �movement�,

�wall�, �media�, etc.. The shared topic has been discussed above.
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To facilitate the understanding of the topics with respect to their temporal evolu-

tion, we developed visualizations (Figure 23) to represent the topic trends, showing

the ebb and �ow for each topic. The area under the curve represents the frequency

of the topics. We further extract the term di�erence between two consecutive time

frames, with the new terms in a topic usually signaling an emergence of new sub-

events. More speci�cally, we compare the topics at t with the corresponding topics

at t − 1. With the topic di�erences, we can notice emerging of sub-events and how

the events develop. The visualizations for the topic di�erences are shown in Fig-

ure 24, 25, and 26, in which a group of unique terms are visualized together with the

trends of the topics. In September 2011, two distinct events are captured by DTTM

results. The shared topic (A in Figure 24) covers the big social media event �Occu-

pySesameStreet�, with the slogan �1% of the monsters consume 99% of the cookies�,

while Topic 2 captures the �virtual march movement on Wednesday� shown in A in

Figure 25. In October�November 2011, the topic di�erences in the shared topic high-

light the signi�cant event of NYPD evicting the protesters from Zucotti Park, as well

as other signi�cant events in California, including police pepper spraying protesters

and the Oakland port being occupied (B in Figure 24).

Visually representing the topic term di�erences in time together with the temporal

trend of the topic helps users to make sense of the events. As we can see, although

the Occupy Movement started in New York City, the movement quickly spread to the

west coast of the US. After December 2011, although the number of tweets started

to reduce in general, DTTM is still able to capture signi�cant events. The shared

topic covered the big international event �OccupyNigeria� (C in Figure 24), while
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Figure 24: Topic di�erences for the shared topic in September�October 2011,
October�November 2011, and December 2011�January 2012.
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Figure 25: Topic di�erences for Topic 2 in September�October and October�
November 2011.
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Figure 26: Topic di�erences for Topic 3 in December 2011�January 2012 and January�
February 2012.
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Topic 3 captures another violent event in Oakland that resulted in 400 arrested (A in

Figure 26). As described, DTTM together with the visualization helps users observe

and understand signi�cant sub-events or facets throughout the Occupy Movement.

We tried to perform a similar analysis using DTM and LDA, but found the results

from these two models were not as intuitive. Therefore, we believe the proposed

modeling approach of DTTM provides a better analysis and summarization of the

movement.

5.3.2 Epidemic Spread

In the previous case study, we evaluated our model using tweets related to the

Occupy Movement. In practice, it is usually di�cult to know exactly what event oc-

curred, and thus �ltering for tweets discussing one event is infeasible. To demonstrate

that our DTTM model can be applied to general tweet collections for analyzing major

events, we applied it to un�ltered raw tweets that were collected during a three week

period and report the results.

We used the benchmark dataset release by the IEEE VAST Challenge 2011 com-

mittee14. The dataset contains 1,023,077 tweets posted from April 30, 2011 to May 20,

2011. The dataset was generated by a group of experts by combining real tweets with

manufactured tweets regarding a threat scenario. The dataset serves as a benchmark

to evaluate DTTM. The size of the vocabulary is 45,185 after removing stopwords.

Compared to the Occupy Movement dataset, this dataset is much noisier and closer

to situations in practical tasks.

14IEEE VAST Challenge 2011. http://hcil.cs.umd.edu/localphp/hcil/vast11/index.php/
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Figure 27: Topic examples and topic proportions of DTTM at each time slice on the
epidemic dataset.

For analysis, we divided the tweets at daily intervals, and trained K = 4 facet

topics and one shared mainstream topic. The topic proportions over time are shown

in Figure 27. Additionally, several topics for di�erent time slices are also displayed in

the �gure. Topic 2 (in red) and the mainstream topic (in blue) are dominant from the

beginning until May 11. The two topics include terms �twitter�, �cars�, �world�, �life�,

�sleep�, �playing�, etc. Topic 2 and the shared mainstream topic capture people's posts

on Twitter on their daily life and personal status updates, as opposed to discussions

driven by external events.

While the mainstream topic continues to be signi�cant during the rest of the time,

other topics (Topic 1, Topic 3, Topic 4) peak at di�erent times as indicators of poten-

tial events. Topic 1 (in navy) peaks on May 17; the topic terms for that time include
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�smog�, �truck�, �explosion�, �accident�. It clearly outlines a major tra�c accident oc-

curred on that day involving a truck that led to an explosion. This topic successfully

captures this sub-event (facet) embedded in the tweets. The ground truth of this

dataset indeed veri�ed this facet. More interestingly, during the last three days of

the 3-week period, the proportion of Topic 3 (in purple) increased signi�cantly. By

reading prominent terms of Topic 3, which include �chills�, ��u�, �sick�, and �pneumo-

nia�, one can infer that people are reporting �u-like symptoms. In addition, the topic

proportions and the temporal pattern can inform us of the �rst reports of symptoms

and the magnitude of the disease spread. According to the ground truth, the facet

described in Topic 3 is the inserted threat scenario that a sound model should be able

to capture. Through deeper investigation of tweets related to Topics 1 and 3, it is not

di�cult for one to uncover the causal relationship between the truck accident event

captured by Topic 1 and the disease spread event captured by Topic 3. It turns out

the truck accident caused the chemicals carried by the truck to leak into a local river

so people got sick from drinking the water.

In this study, we applied DTTM to analyze and summarize an un�ltered tweet

collection. We observe that DTTM provides meaningful summarization of the data

that correctly re�ects the events according to the ground truth. It is worth noting

that this case study demonstrates DTTM is also capable of analyzing tweets with

diverse themes even though DTTM assumes the tweet data centers on one event.

The topics plus their temporal dynamics learned from DTTM can facilitate event

summarization on general tweet data.
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5.4 Summary

We developed a new temporal topic model for analyzing and summarizing event de-

velopment in Twitter. We designed the model speci�cally for the short length tweets.

In our model, a event is described as a mixture of topics. To capture the mainstream

theme of the event, we assume there is a topic shared by all tweets. The temporal

dynamics of the topics are expressed in a state space model with Gaussian noise in

a chained structure. A variational inference based approach is used to compute the

posterior. With visualization of the results, it o�ers a new and intuitive view of the

event development over time, and therefore eases user understanding of unstructured

and noisy Twitter data.

Our focus for the future is a more comprehensive quantitative evaluation of the

model and comparison with other topic models. We also would like to test if the

model is extensible to perform event detection. Additionally, determining how to

automatically decide the number of topics per time slice, i.e., how to model the

disappearance and emergence of topics, is another direction for future work.



CHAPTER 6: CONCLUSION

This thesis has developed topic models for tagged text, with a special emphasis

on processing social media data such as tweets with hashtags. Tags, as one kind of

important meta-data, are primarily used to organize and cluster relevant documents.

However, as large volumes of user-generated tags are generated especially in the so-

cial media community, understanding the meanings of tags and summarizing tagged

text is becoming a challenging and increasingly important problem. This thesis ex-

plores using topic modeling techniques to address this problem. We summarize the

contributions of the thesis in this chapter and present directions for future work.

6.1 Summary and Contributions

In Chapter 1, we �rst introduced the fundamental concepts of topic modeling and

our research motivation for tagged text. We then brie�y introduced Latent Dirichlet

Allocation (LDA) along with essential mathematical background.

In Chapter 2, we surveyed recent research work on topic modeling, especially im-

portant extensions that build on LDA. Additionally, we also reviewed work applying

topic models to mine social media data.

Starting from Chapter 3, we introduced our contributions for modeling tagged

text. We �rst proposed TriTag-LDA, in which tags are represented as a multinomial

distribution of topics. After the topic assignment for each term of the documents
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is inferred by LDA, TriTag-LDA uses the same mechanism as LDA to infer the tag

assignments for the topics the terms are assigned to. We improved TriTag-LDA by

introducing Tag-LDA, which views a document as a mixture of observed tags. The

tags are thus naturally involved in the generative process. To learn the models,

we derived and used Gibbs sampling based solutions. We conducted experiments

quantitatively comparing our models with the author-topic model using perplexity

measurements. The experiments show that Tag-LDA is superior to the other two

models. We applied Tag-LDA to a practical application, understanding the hashtags

in tweets and the relationships between the hashtags, to demonstrate the capability

of Tag-LDA.

Chapter 4 presents two extensions that build on Tag-LDA. The �rst extension

is Tag-Latent Dirichlet Processes (Tag-LDP), which is inspired by prior work on

Hierarchical Dirichlet Processes. Tag-LDP utilizes a nonparametric approach, the

Dirichlet process, to answer the question of how many topics should be learned given

a text corpus. The second extension is ConceptTag-LDA. We introduced the use of

the Dirichlet Tree prior, which replaces the Dirichlet prior in LDA. The Dirichlet

Tree prior allows users' prior knowledge to be conveyed in the form of a set of terms,

which are called concepts, to be integrated in topic modeling. Simply speaking,

ConceptTag-LDA constraints the co-occurrence of the concept terms in the topics;

the probabilities of the concept terms are encouraged to be similar in the topics.

Compared to Tag-LDA, ConceptTag-LDA provides an additional layer of �exibility

for users under the modeling procedure. The extensibility of Tag-LDA is exempli�ed

by these two extensions. We believe other extensions of LDA can be successfully
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adapted, with reasonable e�ort, to Tag-LDA. For instance, Tag-LDA can adopt the

essence of the work in [2] by specifying the topic constraint for each term.

Finally, in Chapter 5 we turned to applying topic modeling techniques in analyzing

and summarizing discussions in Twitter. We emphasize the temporal dynamics of

the events, since a major event usually involves twists and turns re�ected by multiple

sub-events throughout its development in di�erent time periods. This temporal event

development is in turn re�ected by people's discussions on Twitter. We proposed the

dynamic Twitter topic model (DTTM), which assumes an event can be modeled by

a mainstream theme plus several facets. The mainstream theme of the event is a

topic shared by all tweets. The temporal dynamics of the topics are expressed in a

state space model with Gaussian noise in a chained structure. A variational inference

based approach is used to compute the posterior. To demonstrate the e�ectiveness

of DTTM in modeling the temporal dynamics of topics and its ability to facilitate

event analysis, we conducted two case studies with our model using Twitter data and

showed that our model performs better than the other general purpose topic models.

In this thesis we addressed the four motivating questions raised in Chapter 1 on

utilizing topic modeling techniques for text with tags. The contributions of this thesis

are summarized below:

1. This thesis models tagged text data. We developed a new topic model, Tag-

LDA, to interpret user-generated tags using topics. Our model can make sense

of the tags and also help to understand their relationships.

2. To avoid having the user set the number of topics, we extended our model
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to Tag-Latent Dirichlet Processes to infer the number of topics from the data

automatically.

3. We additionally extended our model to allow users' prior knowledge to be in-

volved in ConceptTag-LDA, which helps non-expert users to model the data

according to their prior knowledge.

4. We developed a temporal topic model focused on modeling the short messages

in social media. Our model, DTTM, is capable of summarizing the discussions

in social media and also capturing the temporal dynamics of the discussions.

6.2 Future Work

There are several directions for future work. We introduced ConceptTag-LDA,

where users' prior knowledge is expressed by specifying constraints on the co-occurrence

of concept terms in topics. It is a useful tool that enables users to have a certain de-

gree of �exibility compared to LDA. However, users' prior knowledge usually is much

more complex than constraining the co-occurrence of terms in topics. For example,

when de�ning the concept terms, users can additionally provide the degree of the

correlation between terms, e.g., �stock� and �money� are relatively highly correlated

while �stock� and �sports� are less correlated. Another example is people's knowledge

of many polysemic terms. �Apple� can appear in a fruit related concept, and also

it could appear in a consumer electronics related concept. How to mathematically

represent the additional knowledge and smartly incorporate the knowledge in topic

modeling is an interesting direction. One potential solution is to enable interactive

topic modeling by asking users to be involved in the learning procedure, such that
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topics can be adjusted in realtime by users. However, the long training time as well

as establishing an appropriate metric for evaluating topic quality are challenges. Fur-

thermore, in ConceptTag-LDA, we did not explicitly constrain the linkage between

concepts and the tags. So another potential direction is to link the concepts with the

tags. In other words, the concept constraints only take e�ect in the dominant topics

of the tag. For example, we de�ne concept c ={stock, money} is linked with tag

��nance�, so terms �stock� and �money� are encouraged to have higher probabilities

in the dominant topics of ��nance�; otherwise there are no restrictions on c in the

other topics.

For summarizing and analyzing discussions of events in social media, we could also

incorporate other data sources, like traditional news media, e.g., newspapers. Tradi-

tional news media are much less noisy and normally provide more accurate informa-

tion on event participants, locations, etc., which de�nitely helps better characterize

and summarize the events. Additionally, a system that can predict the temporal

development of the discussions based on the historical temporal dynamics obtained

would be especially useful.
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