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ABSTRACT 

 

 

HONGSHENG WANG. Knee joint biomechanics after anterior cruciate ligament 

reconstruction (Under the direction of Dr. NAIQUAN NIGEL ZHENG) 

 

 

Anterior cruciate ligament (ACL) is an important stabilizer of the knee joint. 

After ACL rupture, the knee joint has difficulty maintaining its stability; thus the patient 

often has to receive an ACL-reconstructive surgery to regain the knee joint functions. 

Unfortunately, traditional transtibial surgical techniques could not fully restore the 

normal knee joint kinematics during daily activities. Moreover, a higher rate of 

osteoarthritis was found from the ACL-reconstructed knees compared to the knees 

without a history of ACL-injuries. The reason for the increased risk of knee osteoarthritis 

is still unclear, and the pathologies due to abnormal knee joint kinematics remain 

controversial.  The dissertation was to delineate the knee joint motion and loading after 

ACL-reconstruction. Thirty patients who received ACL-reconstructive surgeries using 

the traditional transtibial technique and 14 using the recently developed anteromedial 

portal technique were recruited from the same center (OrthoCarolina). Twenty healthy 

subjects without history of knee injuries were recruited as the control group. Human 

motion data and ground reaction force data were collected during level walking and 

downstairs pivoting using an optical motion capture system. Three-dimensional (3D) 

knee joint motions were determined from redundant markers using an optimization 

approach. The 3D knee joint moments and forces were calculated from motion data, 

ground reaction data by using an inverse dynamics model of the lower extremity. A finite 

element model was created, and the distributions of stress/strain within articular cartilage 
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under physiological loading were estimated. The results from two groups of patients 

using different reconstruction techniques were compared. 

In the transtibial group, excessive internal tibial rotation (2º on average during 

stance phase), varus rotation and anterior femur translation (swing phase) were observed 

in the ACL-reconstructed knees when compared to the control group during level 

walking. The 3D knee joint motion following ACL-reconstruction was found to be 

influenced by the leg dominance. The motion and load in the uninjured contralateral knee 

were also affected. During downstairs pivoting, the normal varus rotation and adduction 

moment were not fully restored by the transtibial technique. Overall, the anteromedial 

portal technique improved the postsurgical knee joint kinematics by reducing the offsets 

in the internal tibial rotation, varus rotation and anterior femur translation during level 

walking. It also improved the adduction moment during downstairs pivoting. At the same 

time, the anteromedial portal technique may cause a flexion/extension deficit during the 

stance phase of walking. Results of finite element analysis demonstrated higher pressures 

within the medial femoral cartilage during the stance phase of walking; it also 

demonstrated that there is an increased knee joint laxity after ACL-reconstruction. The 

anteromedial portal technique was overall better than the traditional transtibial technique 

in respect to postsurgical knee joint compressive loading and contact pressure. The study 

provides evidence of the possibility by using anatomical single-bundle ACL-

reconstruction technique to fight the knee joint osteoarthritis after ligament injury.  
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CHAPTER 1: INTRODUCTION 

 

 

This chapter provides a basic knowledge of the knee joint, including the anatomy, 

anterior cruciate ligament (ACL) injuries and their long term impact on the joint function, 

as well as a review of previous experimental studies on knee joint kinematics and 

computational studies on knee joint loading. The objectives of this study were to 

investigate the postsurgical outcomes of knee joints after ACL-injury and reconstruction, 

and to compare the effectiveness of the two most commonly used surgical techniques in 

stabilizing the knee joint. 

1.1. Anatomy of the Knee 

The knee consists of four main parts: bone (femur, tibia and patella), ligament, 

cartilage and meniscus (FIGURE 1.1). The femur has two condyles (the medial and the 

lateral condyles) which individually have an articulation with the tibial plateau (proximal 

tibial surface). The third articulation is the femoropatellar articulation, which consists of 

the patella and the patellar groove on the front side of the femur bone through which it 

slides. The patella acts as a pulley which transmits the quadriceps muscle force to the 

tibia through the quadriceps tendon and the patellar tendon. The meniscus is a wedge 

shape fibrocartilage structure and is located between the tibial and femoral cartilage on 

the medial side and lateral side respectively. The horns of meniscus are attached to the 

tibial plateau. 
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FIGURE 1.1 Anatomy of human knee joint (left) (http://www.fencing.net/548/acl-injuries-

rehabilitation/), 3D knee joint model (middle and right). 

 

 

 

The smart “design” of human joints avoids direct bone-to-bone contact; instead, 

there are articular cartilages (tibial cartilage, femoral cartilage and patellar cartilage) and 

menisci that lie between the bones which act as the lubricant and stabilizer. Additionally, 

the knee joint motion is constrained by four primary stabilizing ligaments: anterior 

cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament 

(MCL) and lateral collateral ligament (LCL). The ACL and PCL are intra-articular 

ligaments (inside joint capsule) which go in opposite directions between the femur and 

the tibia (FIGURE 1.1). The MCL and LCL are extra-articular ligaments that connect the 

femur to the tibia/fibula on the medial and lateral sides of the joint respectively. The 

transverse ligament (TL) connects the anterior horns of the medial and lateral meniscus.  

Natural ACL consists of two bundles – the anteromedial (AM) bundle and the 

posterolateral (PL) bundle, named according to where the bundles insert into the tibial 

http://www.fencing.net/548/acl-injuries-rehabilitation/
http://www.fencing.net/548/acl-injuries-rehabilitation/
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plateau. The bundles attach to the deep notch of the distal femur (FIGURE 1.2), and 

come out along the medial wall of the lateral femoral condyle. The ACL attaches in front 

of the intercondyloid eminence of the tibia, being blended with the anterior horn of the 

medial meniscus. These attachments allow it to resist anterior translation and internal 

tibial rotation, in relation to the femur. 

 
FIGURE 1.2 (1) Double-bundle structure of natural ACL, (2) Computer model of the 

bones after anatomic double-bundle ACL reconstruction (Fu, 2011). 

 

 

 

Cartilage mainly consists of water which accounts for 60 to 80 percent and 

cartilage matrix which is made up of collagen, proteoglycans, and chondrocytes. 

Collagen is a family of fibrous proteins ensuring the elasticity and the ability to absorb 

shock in the cartilage. It is also referred to as the “glue” that holds the cartilage matrix 

together (Mow et al., 2005). Proteoglycans are big molecules made up of protein and 

sugars which interweave with collagen fibers to form a dense mesh-like tissue (FIGURE 

1.3). This structure makes cartilage so resilient that it can stretch out when loaded and 



4 

bounce back when released. Chondrocytes are the only cells found within the cartilage 

matrix; they keep producing new collagen and proteoglycan molecules to help the 

cartilage stay healthy when the cartilage grows. Chondrocytes also produces enzymes 

that get rid of the aging collagen and proteins. In the healthy knee, the cartilage matrix 

and water work together to ensure smooth, pain-free knee motion. Normally, when the 

knee joint is at rest, cartilage soaks up liquid (synovial fluid); when the joint is under 

loading and in motion, the liquid is squeezed out. This continual in and out "squishing" 

happens hundreds of times during the course of a day. If the balance is broken, either by 

acute trauma or degenerative joint diseases (like osteoarthritis or rheumatoid arthritis), 

the protective barriers are disturbed, and cartilage erosion may be initiated. The cartilage 

degeneration usually begins in the cartilage matrix. 

During daily walking, the knee joint bears as much as two times the body weight 

impact (Kutzner et al., 2011a, Kutzner et al., 2011b); it is also subject to constant twisting 

and grinding. Thus, abnormal or excessive repetitive loading at the joint surface could 

accelerate the wear of the knee cartilage matrix. In severe cases, orthopedic surgeons 

have to replace the patients’ joints with artificial joints to restore their mobility. 

Nowadays, total knee replacement surgery has become a commonly performed 

orthopedic surgery among people over 60. 
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FIGURE 1.3 Important structural features of a typical diarthrodial joint at different 

hierarchical scales (Mow et al., 2005). 

 

 

 

1.2. ACL Injury and Long-term Impact on the Joint Function 

As a primary stabilizer of the knee, the ACL mainly prevents the tibia bone from 

excessively moving forward as well as restrains the internal tibial twisting during turning 

or side-stepping activities (Markolf et al., 1995). ACL injuries usually happen when the 

knee joint is hyperextended, twisted, or bent side to side; the risk is even higher when 

more than one of those movements occurs at the same time. Thus, ACL rupture is very 

common in sports activities, such as playing soccer, golf, skiing, and basketball, etc. 

Non-contact ACL tears (accounts for 80% in total) are the most frequent ligament injury 

in sports, especially among elite female athletes (Alentorn-Geli et al., 2009, Brophy et al., 

2010, McLean et al., 2005, Negrete et al., 2007). A popping sensation can often be felt at 

the time of injury. 
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There are about 250,000 new ACL injuries each year in the US according to the 

data from the Centers for Disease Control and Prevention. After ACL rupture, patients 

often have a symptom of the knee “giving-out”, and their knee joint stability and load-

bearing patterns between joint surfaces are often altered, resulting in abnormal loadings 

within the articular cartilage during daily activities (Chaudhari et al., 2008, Li et al., 

2006). Without the ACL, excessive anterior tibial translation, medial tibial translation and 

internal tibial rotation were found in the knee joint during a quasi-static lunge (Defrate et 

al., 2006); abnormal knee joint kinematics has also been reported during level walking 

(Gao and Zheng, 2010a, Georgoulis et al., 2003, Andriacchi and Dyrby, 2005), stairs 

climbing (Gao et al., 2012) and pivoting (Ristanis et al., 2005) after ACL-rupture. The 

abnormal joint motion and loading has been associated with meniscal injuries, 

progressive cartilage degeneration and early onset of knee osteoarthritis (OA) 

(Andriacchi and Mundermann, 2006, Stergiou et al., 2007). Osteoarthritis has been found 

in 41% of the untreated ACL-deficient knees 11 years after the ACL-rupture (Noyes et al., 

1983). Nebelung and Wuschech reported that 79% of the ACL-deficient knees had to 

receive meniscectomy surgery after 10 years, and 53% of the knees ended up with total 

knee replacements due to severe chondral lesion and cartilage damage (Nebelung and 

Wuschech, 2005).  

Although nonsurgical treatments (i.e. knee bracing, physical therapy and 

rehabilitation) sometimes can restore the knee to a condition close to its pre-injury state 

(Buss et al., 1995), reconstructive surgeries are typically recommended, especially for 

those who want to keep active in sports (Woo et al., 2005). There are about 70,000 to 

100,000 ACL reconstruction surgeries performed annually  in the US (Gammons, 2011, 
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Fu and Cohen, 2008). The medical bill for ACL reconstruction ranges from $20,000 to 

$50,000 in the US (data from healthy.costhelper.com). Although the ACL-reconstructive 

surgeries can successfully restore the knee function, it may not fully reproduce the 

inherent joint kinematics and kinetics during dynamic activities (Gao and Zheng, 2010a, 

Georgoulis et al., 2007, Ristanis et al., 2003, Ristanis et al., 2005, Scanlan et al., 2010, 

Wang et al., 2012, Webster and Feller, 2011, Webster et al., 2012, Tashman et al., 2007). 

Previous investigations reported that the traditional ACL-reconstructive surgery cannot 

successfully prevent the cartilage degeneration and premature OA in the long term 

(Lohmander et al., 2004, Seon et al., 2006, Daniel et al., 1994, Holm et al., 2010), which 

might be caused to by the residual alteration in knee joint motion and loading after ACL 

reconstructive surgeries.  

Osteoarthritis is the most common type of arthritis, and the percentage of people 

who have the disease is higher among old people. In the US, there are approximate 27 

million people age 25 or older have osteoarthritis (Lawrence et al., 2008). The average 

out-of-pocket expense cost of OA is $2,600 per year for a patient (Gabriel et al., 1997). 

The cartilage degeneration and bone scratch would cause knee pain and lead to joint 

replacements in the end. The financial burden was approximately $7.9 billion in 1997 for 

all knee and hip replacements in the US (Lethbridge-Cejku et al., 2003). The cost of labor 

loss due to disability caused by OA was even greater. Moreover, since the joint 

replacement implants only last for 15 to 20 years, for those who received total joint 

replacement at relative young age (<60), revision of the failing artificial knee/hip joints is 

needed. (Meier, December 27, 2011). 
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Since ACL injuries occur commonly in individuals aged 14-29 years (Souryal, 

2012), there will be a series of severe consequences if the ACL-reconstruction surgery is 

not performed well. For instance, a collegiate soccer player tore his ACL at 18 years old 

and returned to the field after he received ACL reconstruction surgery. Somehow, after 

the surgery, his knee still had abnormal joint motion; this would accelerate the cartilage 

degeneration. It is most likely that his knee joint surface will wear down, and it will be 

painful to do daily activities in 15-20 years (when he is about 40 years old). However, 

there is a great risk for him to receive total knee joint replacement in his 40s, because the 

total joint implants usually only last for 10-15 years (www.zimmer.com). In this case, he 

has to receive an implant revision at 55, which usually only lasts about another 5 years. 

After that, he will end up staying in wheelchair when he is 60 years old. Therefore, if we 

can stop the vicious circle at the very beginning by improving the ACL-reconstruction 

technique, it will significantly reduce the suffering of the patient and cut down the 

financial burden on society. 

1.3. ACL Reconstructive Surgery 

The basic procedure of ACL reconstruction surgery is shown in the following 

diagram (FIGURE 1.4): 1) remove the damaged ACL and clean up the debris using 

arthroscopic technique, 2) cut an incision from the patella to the proximal tibia in front of 

the knee, 3) drill femoral and tibial tunnels for graft fixation, 4) harvest auto graft from 

patellar tendon or hamstring tendon, or prepare allograft, and 5) insert the graft into the 

tunnels and fix it.  

A number of factors could potentially affect the outcome of the surgery. Among 

them are the graft type (i.e. hamstring tendon vs. patella tendon, allograft vs. autograft, 

single bundle vs. double bundle), tunnel position, graft orientation, and initial graft 
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tension are of great interest to the orthopedic researchers, although previous studies have 

found that the type of graft had no or minor effect on the postsurgical knee performance 

(Moraiti et al., 2009, Spindler et al., 2004). There were no studies found comparing the in 

vivo knee joint motion and loading after ACL reconstruction with different graft 

orientations and tunnel positions.  

 
FIGURE 1.4 ACL reconstruction procedure, the surgery is being performed 

arthroscopically using an autograft cut from patella tendon. 

(http://www.beantownphysio.com/pt-tip/archive/acl-tears.html) 

 

 

 

There are heated debates about the necessity and risk of performing double bundle 

ACL reconstruction. Since double-bundle grafts are closer to the anatomy of natural ACL, 

they have better ability to restore the knee joint rotational stability; however it requires 

four tunnels drilled instead of two into the bones which increases the operational 

complexity and causes more bone damage. Paul Trikha, who was a consultant orthopedic 
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surgeon specializing exclusively in knee surgery, did an on-site survey concerning the 

selection of double-bundle ACL-reconstruction. In his article entitled “Double bundle, 

traditional single bundle or 'more anatomic' single bundle ACL reconstruction?” wrote 

(http://www.kneeguru.co.uk/KNEEnotes/node/2447):  

“In the UK, I think the number of double bundle procedures being performed is 

going down. In 2010, I was at a major knee meeting in Warwick and it seemed then that 

all the talk was about double bundle! This year (2012) they did a quick hands-up survey - 

accepting that a few of the leading knee surgeons in the country weren’t there - but most 

were - when asked how many surgeons were routinely doing double bundle ACL 

reconstructions not one hand went up. 

I think surgeons are gradually coming round to the important concept of anatomic 

single bundle reconstruction with the graft placed in a mid-bundle position on the femur 

through an independent femoral tunnel drilled through an appropriate medial portal. This 

allows both the femoral and tibial tunnels to be placed accurately and independently. This 

technique is straightforward, predictable and reproducible although it presents technical 

challenges for the traditional transtibial technique advocates.”  

The more anatomic single bundle ACL reconstruction has received more and 

more attention among orthopedic surgeons, which is thought of as a practicable 

alternative to the complicated double-bundle ACL reconstruction for a more stable and 

functional knee. In the traditional transtibial tunnel drilling technique, the femoral tunnel 

is drilled through the tibial tunnel (FIGURE 1.5), in which the position of the femoral 

tunnel depends on the initial tibial tunnel location, and the femoral insertion of the ACL 

graft is often anteriorly and superiorly shifted compared to the natural ACL insertion site 
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(Piasecki et al., 2011) The graft is often too vertical using the transtibial technique. In the 

anteromedial portal (AMP) tunnel drilling technique, the femoral tunnel is drilled through 

the anteromedial arthroscopic portal (FIGURE 1.5). This allows the surgeon to have more 

control at the drilling location, thus it yields a more anatomic tunnel position and 

optimizes the orientation of the reconstructed ligament (Kopf et al., 2010). There are, 

however, some limitations when performing AMP ACL-reconstructive surgery: the knee 

needs to be hyper-flexed (>100º), and it demands extra effort to stabilize the knee. 

Therefore, for obese patients who cannot bend their knees that much, the surgeon has to 

make a compromise in continuing use of the transtibial technique.  

The graft fixation also varies case by case. For most Bone-Patella Tendon-Bone 

(BPTB) graft cases, interference screws are used at the tibial fixation site and femoral 

fixation site (FIGURE 1.6 A). There has been a surge of interest in the use of hamstring 

tendon grafts due in part to improvements in the graft fixation technique (FIGURE 1.6 B-

C). Concerns have been raised about the increased length of the graft when it was not 

fixed right at the insertion site which could cause a loss of graft stiffness and therefore 

create a ‘bungee cord’ effect.  
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FIGURE 1.5 Femoral tunnel drilling in transtibial and anteromedial portal femoral 

drilling techniques. 

 

 

 

 
FIGURE 1.6 Diagrams of commonly used fixation techniques for ACL graft. A – BTB, B 

and C – hamstring tendon. 

 

 

 

In this study, we aimed to evaluate and compare the postsurgical knee joint 

biomechanics after ACL-reconstruction by using non-anatomical (traditional transtibial) 

and more anatomical (anteromedial portal) tunnel drilling techniques. 

A B C 
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1.4. Relevant Literature Review of Experimental Studies 

1) Knee kinematics during quasi-static lunge 

By using dual-fluoroscopic imaging and 3D modeling technique, Defrate et al. 

investigated the knee joint kinematics of ACL-deficient knees (Defrate et al., 2006). 

According to their findings, the ACL-deficient knees had significantly greater anterior 

tibial translation and internal tibial rotation at low flexion angles and had a medial tibial 

translation between 15º to 90º of knee flexion. By using the same technique, Li et al. 

investigated the contacting pattern of articular cartilage in the ACL-deficient knees (Li et 

al., 2006). The results showed that on the medial compartment the contacting center 

shifted towards the posterior and medial tibial spine, a region where degeneration was 

observed in patients with chronic ACL injuries. In another study from the same research 

group, Kozanek et al. proved that the kinematics of the uninjured contralateral knees was 

not affected by the ipsilateral ligament injury in the short term (Kozanek et al., 2008). 

Papannagari et al. investigated the in vivo knee kinematics during single-legged weight-

bearing lunge after ACL-reconstruction (Papannagari et al., 2006); the results suggested 

that the restored knee laxity during a passive test (KT-1000 test) did not guarantee a fully 

restored normal knee kinematics during physiological loading conditions. 

Unfortunately, so far the imaging technique has been limited to study the quasi-

static situations due to the confined measurement volume. Therefore, the findings may 

not truly reflect the large range of motion during daily activities, i.e. straight walking and 

turning, etc. Moreover, the high radiation dose also excludes researchers from studying 

the knee joint kinematics using a large sample size. 
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2) Knee kinematics during level walking 

Georgoulis et al. conducted a case control study comparing the knee joint 

kinematics between ACLR, ACLD subjects to the healthy controls (Georgoulis et al., 

2003). According to that study, the normal patterns of knee rotations were maintained by 

all subjects. The rotational instability during early swing phase in ACLD subjects was 

basically restored by ACL-reconstruction. Whereas, Gao and Zheng found that the 

secondary kinematic alterations were not eliminated by ACL-reconstruction and a greater 

internal tibial rotation and varus rotation still existed in the ACLR knee (Gao and Zheng, 

2010a). Scanlan et al. reported a significant offset towards external tibial rotation 

(reduced internal tibial rotation) in the ACLR knees compared to their contralateral knees 

throughout the whole stance phase (Scanlan et al., 2010). Webster and Feller also found a 

reduced internal rotation as well as a reduction in varus rotation in the ACLR knees 

compared to the healthy controls (Webster and Feller, 2011).  

The large inconsistencies across studies may be caused by the differences in the 

methodologies. In Georgoulis’s and Webster’s studies, a simplified marker set was used 

which has limited accuracy in measuring the knee motion, especially the secondary 

rotation, due to the soft tissue artifact (Leardini et al., 2005). In Gao’s study, the patients 

were recruited from more than one surgeon, and both patellar tendon graft and hamstring 

graft were used, which may contribute to the high variances. In Scanlan’s study, no 

healthy controls were recruited, and the contralateral limbs may not be powerful enough 

to uncover the abnormalities in the involved limbs, since the motion of the contralateral 

limbs may also be affected by ACL injury.  
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3) Knee kinematics during high demand activities 

Ristanis and the coauthors investigated rotational knee stability during landing 

and subsequent 90º pivoting (Ristanis et al., 2005). They found significant differences in 

knee joint kinematic between the ACLR knees and the healthy controls, which suggested 

that ACL reconstruction may not fully restore the tibial rotation to its pre-injury state. 

Whereas, Webster and Feller found that the ACLR knees had a reduced internal rotation 

compared to the healthy controls during pivoting (Webster and Feller, 2011), which 

indicated that the ACL reconstruction may have over corrected the knee stability. Lam et 

al. studied the jump-landing and pivoting task among ACL patients pre- and post- surgery 

(Lam et al., 2011). According to the results, the increased tibial rotation in the ACL-

deficient knees was reduced and the significant bilateral differences were gone after 

ACL-reconstruction. Tsarouhas et al. found reduced knee rotational moments in both of 

the ACLD and ACLR knees compared to the healthy controls during pivoting, while no 

significant differences were found in the range of internal/external tibial rotation 

(Tsarouhas et al., 2010). Tashman et al. investigated the patients’ running after ACL-

reconstruction (Tashman et al., 2007), and found an increased external and varus rotation 

in the reconstructed knees during stance phase compared to the contralateral knees. A 

recent study by Gao and coauthors suggested that the ACL-reconstruction “under-

corrected” instead of “over-corrected” the knee kinematics during ascending and 

descending stairs (Gao et al., 2012). 

In those previous studies, only a few kinematic variables were reported, which 

cannot provide a whole picture of the knee joint motion. Furthermore, the joint moments 

and forces, which are very important in distributing the joint contact forces across medial 
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and lateral compartments (Erhart et al., 2010, Crenshaw et al., 2000), were not reported in 

most studies. The mark inconsistencies from study to study may be contributed by the 

large variances in surgical procedures and motion analysis protocols.  The methodologies 

of several recent studies are organized in TABLE 1.1.  

TABLE 1.1 Summary of recent publications about knee joint kinematics after unilateral 

ACL-reconstruction. 

Reference 

Included 

healthy 

controls, ≥ 

10 

subjects in 

each 

group? 

Surgery 

done by 

the same 

surgeon? 

The same 

type of 

graft used 

in each 

group? 

Consid

er-ed 

LLD as 

a 

factor?
1
 

More 

than 6 

markers 

on each 

segment

? 

Present

ed and 

discuss

ed 6 

DOFs? 

Webster et al., 

Clin Biomech 2011 
Yes, yes Yes Yes No No No 

Webster et al., 

Clin Biomech 2012 
Yes, yes Yes Yes No No No 

Gao et al., Clin 

Biomech 2010 
Yes, yes No No No Yes Yes 

Scanlan et al., J. 

Biomech 2010 
No, yes No No No Yes No 

Lam et al., AJSM 

2011 
No, yes No Yes No No No 

Ristanis et al., 

Arthroscopy 2005 
Yes, yes Yes Yes No No No 

Georgoulis et al., 

AJSM 2003 
Yes, yes N/A Yes No No No 

Tashman et al., 

CORR 2007 
No, yes No No No N/A

3
 No 

Tsarouhas et al., 

Arthroscopy 2010 
Yes, yes Yes Yes No No No 

Moraiti et al., 

Arthroscopy 2009 
Yes, no Yes No No No No 

Gao et al., Hum 

Mov Sci 2012 
Yes, yes No No No Yes Yes 

Wang et al., Clin 

Biomech 2012 
Yes, yes No

2
 No Yes Yes Yes 

1
LLD – lower limb dominance; 

2
30 patients were from OrthoCarolina (all using STG 

tendon graft), the rest 11 patients were from Shands Hospital (patellar tendon); 
3
stereoradiographic system was used for motion measurement.  
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1.5. Relevant Literature Review of Computational Biomechanics 

1) Dynamic knee joint model 

The joint reaction forces and moments calculated by inverse dynamics are 

contributed to by multiple components (muscle, ligament and articular contact). 

However, the individual component (i.e. articular contact forces) is still unknown. 

Moeinzadeh and Engin incorporated articular surface profiles and nonlinear spring 

ligaments into a 2-dimensional (2D) dynamic knee model and estimated the ligament and 

articular contact forces during the simulated joint movement (Moeinzadeh and Engin, 

1983). Kim and Pandy developed a 2D dynamic knee model including muscles, 

ligaments, and articular contact; they used the model to determine the force in each 

component during the human body standing up from a squatting position (Kim and 

Pandy, 1993). Zheng et al. developed an analytical knee model in the sagittal plane which 

was able to calculate the ligament and articular contact forces based on the motion 

analysis results and electromyographic (EMG) data during exercises (Zheng et al., 1998). 

Pandy et al. presented a 3D elastic knee model which included the articular cartilage, 

ligaments, and muscles; the model was used to study the ligament function during 

different functional tests and exercises (Pandy and Sasaki, 1998, Pandy et al., 1998). 

The dynamic models were based on a series of assumptions and simplifications, 

such as the elastic modulus of ligaments, the relationship between EMG and muscle 

force, shapes of articular surfaces, the insertion site and path of muscles. However, the 

dynamic models cannot estimate the distribution of stress/strain within a component (i.e. 

within femoral cartilage).  
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2) Finite element knee joint model 

Compared to the dynamic model, more literature was found on finite element (FE) 

modeling to the human knee joint. By using the state-of-the-art FE method and medical 

imaging technique, the stress/strain distribution within articular cartilage and meniscus, 

which is essential for understanding the development of knee joint degenerative diseases, 

is able to be estimated. Weiss et al. presented a 3-dimensional incompressible, 

transversely isotropic hyper-elasticity model for biological tissues and its FE 

implementation (Weiss et al., 1996). The constitutive model has been used in simulating 

the behavior of ligaments in a previous study (Pena et al., 2006b). In that study, FE 

analysis results showed an increased meniscal stress after ACL-reconstruction, and a 

lower ACL graft tension was obtained at a 60º tunnel angle on the frontal plane. By using 

the FE knee model, the author also studied the effect of meniscal tears and 

meniscectomies; it was found that the maximal contact stress in the articular cartilage 

after meniscectomy was about twice that in a healthy joint (Pena et al., 2005). Donahue et 

al. proved the validity of taking the bones as rigid body in studying the response of soft 

tissues (results changed less than 2% when considering the bones as deformable bodies) 

(Donahue et al., 2002). Li et al. evaluated the influence of the geometrical error and 

material properties on the result of FE knee model (Li et al., 2001); according to their 

findings the geometrical error may cause 10% variations in peak contact stress, and the 

peak von Mise stress was dramatically reduced with the increase of Poisson’s ratio. A 

partial FE knee model was developed to simulate the meniscus translation and 

deformation under anterior loads in the ACL-deficient knee (Yao et al., 2006). A similar 

approach has been used to predict the changes in meniscal strains associated with the 
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kinematic and kinetic changes among patients with partial medial meniscectomy 

(Netravali et al., 2011). 

TABLE 1.2 Summary of previous finite element studies of human knee joint. 

Reference 

Included 

anatomic 

ligament 

models? 

Hyper-

elastic 

material 

for the 

ligament? 

Included 

transver

se 

ligament

? 

Simulat

ed daily 

activitie

s? 

Used 

Implicit 

FE 

solver? 

Hex 

elements 

for soft 

tissues? 

Pena et al., Clin 

Biomech 2006 
Yes Yes No No Yes Yes 

Pena et al., Clin 

Biomech 2012 
Yes Yes No Yes N/A Yes 

Donahue et al., J 

Biomech Eng 2010 
No No Yes No Yes Yes 

Li et al., J Biomech 

Eng 2001 
No No No No Yes Yes 

Papaioannou et al., 

J Biomech 2008 
No No No No Yes Yes 

Penrose et al., 

CMBBE 2002 
No No No Yes No Yes 

Gardiner et al., 

JOR 2003 
Yes Yes No No Yes Yes 

Netravali et al., J 

Biomech Eng 2011 
No No Yes No Yes Yes 

Song et al., J 

Biomech 2004 
Yes Yes No No Yes No 

Yang et al., 

CMBBE 2009 
No No Yes Yes N/A No 

Yao et al., J 

Biomech Eng 2012 
No No No No Yes Yes 

In those studies, only quasi-static loading scenarios (i.e. under an isolated axial 

compressive load, anterior drawing, or at a key frame of gait) were studied. An axial 

compressive load approximating the subject’s body weight was usually used in previous 

studies. However, the actual knee joint contact force during the stance phase of walking 
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was much greater than the body weight. TABLE 1.2 lists some recent studies using the 

FE method to study the knee joint mechanics.  

1.6. Objectives and Framework 

In this dissertation, a series of motion measurements were conducted to 

investigate the knee joint motion and loading of ACL patients during daily activities. The 

effectiveness of different surgical techniques in stabilizing the knee joint was evaluated. 

In addition, a finite element knee model was developed to predict the changes in 

stress/strain within articular cartilage associated with the kinematic changes in the ACLR 

knee under physiological load during level walking. Findings in this dissertation will 

provide surgeons with valuable information on two commonly used surgical techniques. 

This study will also provide insightful information to the knee joint biomechanics after 

ACL reconstruction which will be helpful to understand the etiology of knee joint OA. 

In chapter 2, the details of the motion analysis algorithm are presented. Since the 

accuracy of skin marker based motion analysis was limited by the soft tissue artifact, its 

characteristics on the lower limbs were investigated for the ACL patients. Based on the 

characteristics, an improved motion analysis algorithm was developed.  

In chapter 3, the knee joint motion and loading of patients who received unilateral 

ACL-reconstruction using transtibial technique was evaluated during level walking and 

downstairs pivoting. The lower limb dominance was considered as an independent 

variable in the statistical analysis to evaluate the dominance effect on the postsurgical 

outcome of the knee joints. 

In chapter 4, the knee joint kinematics and kinetics of patients who received 

unilateral ACL-reconstruction using anteromedial portal technique were quantified 
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during level walking and downstairs pivoting. Comparisons were made between two 

surgical techniques (transtibial vs. anteromedial portal).  

In chapter 5, we aimed to investigate the differences in the stress/strain within 

articular cartilage and meniscus during stance phase of level walking between patients 

using transtibial technique and patients using anteromedial portal technique. The 

stress/strain was computed by using the state-of-the-art finite element method.  

In chapter 6, major findings were summarized and clinical relevance was 

discussed.  



 

CHAPTER 2: DATA COLLECTION AND MOTION ANALYSIS ALGORITHM 

 

 

This chapter covers three parts: 1) introduction to a motion analysis algorithm; 2) 

investigation of the characteristics of soft tissue artifact on the lower limbs; 3) design of 

an improved motion analysis algorithm. 

2.1. Techniques for Bone Motion Measurement 

Gait analysis has been widely used in diagnosis of locomotion pathology and limb 

disorder. Accurate measurement of bone motion is critical for understanding the normal 

function as well as clinical problems of the musculoskeletal system. Currently, different 

techniques have been used to measure the in vivo bone motion: 1) optical video motion 

capture using skin markers (Gao and Zheng, 2010a, Scanlan et al., 2010, Wang and 

Zheng, 2010a, Georgoulis et al., 2003) (FIGURE 2.1), 2) invasive technique, in which 

intra-cortical bone pins are directly inserted into bones (Ishii et al., 1997, Lafortune et al., 

1992, Reinschmidt et al., 1997a, Houck et al., 2004), and 3) radiographic technique, 

including video fluoroscopy (Baltzopoulos, 1995, Tashman and Anderst, 2003), 

roentgen-stereo-analysis (Lundberg, 1989), biplanar image-matching (FIGURE 2.2) (Li 

et al., 2008, Van de Velde et al., 2009, Defrate et al., 2006) and cine-phase contrast 

magnetic resonance imaging (Barrance et al., 2005, Barrance et al., 2006, Sheehan and 

Drace, 1999, Sheehan et al., 1999). 
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FIGURE 2.1 Protocol of marker placement in optical video motion analysis. 

 

 

 

Compared to a video optical technique, bone motion can be measured with a 

relatively higher accuracy by using the radiographic or invasive bone-pin techniques. 

However, the application of the invasive technique is largely limited by its invasive 

nature to the subject. For the radiographic technique, although non-invasive, the high 

radiation dose and the confined measurement volume exclude it from studying a large 

sample or investigating the knee joint during daily activities which need a large capture 

volume. With the merits of being non-invasive and radiation-free, skin marker-based 

motion analysis is the most popular approach for in vivo measurement of skeletal 

movement. Unfortunately, 3D joint kinematics is largely limited by the soft tissue artifact 

(STA, referred to as the skin marker movement relative to the underlying bone) (Fuller et 

al., 1997, Holden, 2008, Leardini et al., 2005), especially in the frontal and transverse 

planes (usually referred as the secondary rotation) (Cappozzo et al., 1996). Therefore, 

Reference posture  Level walking  

Force plate 
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developing a reliable measurement of knee joint secondary motion (internal/external, 

varus/valgus) is important for better understanding the joint abnormalities.  

 

FIGURE 2.2 Procedure of reproducing in vivo knee kinematics with use of the combined 

dual fluoroscopic and magnetic resonance imaging technique (Defrate et al., 2006). 

 

 

 

To retrieve the underlying bone motion from skin markers, the effects of non-

rigidity in body segments need to be taken care of. So far, several optimization 

algorithms have been developed (Andriacchi et al., 1998, Lu and O'Connor, 1999, Spoor 

and Veldpaus, 1980, Holden, 2008). Among them, the algorithm proposed by Spoor and 

Veldpaus is the most widely used approach to isolate the rigid body bone motion from 

redundant skin markers (n>3) (Spoor and Veldpaus, 1980). In this study, we were mainly 

interested in the knee joint motion, so redundant markers (n = 19) were placed on shank 

(A) Reconstruct 
knee model from 
MR images 

(B) Capture x-ray 
images while the 
subject is walking in the 
volume of 2 C-arms 

(C) Reconstruct 
knee joint 
motion by 
shape matching 
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and thigh in order to cancel out the effect of STA; the positions of skin markers at neutral 

standing posture (t-pose) and during dynamic trials were collected. By using Spoor’s 

approach, the procedure to determine the bone motion at an instant t is described as 

follows (using the thigh segment in this text, the shank motion could be determined in the 

same way). First, define the local coordinate system (LCS) of the thigh (for details, refer 

to the next section). Second, calculate the position vectors of all markers in segmental 

LCS at t-pose (FIGURE 2.3). Third, plug in the coordinates of each marker in the global 

coordinate system (GCS) in to Eq. 2.1, and solve the optimization algorithm to get the 

rotation matrix and translation vector (Spoor and Veldpaus, 1980). 





n

i

ii OtVLPtRtGP
1

2))}0()()0()](([)({ :Min


                          (2.1) 

)0()]([)( LPtRtLP ii                                                  (2.2) 

)0()()( OtOtV 


                                                   (2.3) 

where, the        and        denote the position vector of marker-i in LCS at t-pose and 

at instant t respectively,        denotes the coordinates in GCS which are directly 

measured by the motion capture system,      and      are the coordinates of the LCS 

origin in GCS,        and  ⃑     denote the couple of rotation matrix and translation 

vector which uniquely determine the motion of the segment. 
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FIGURE 2.3 Position vectors of thigh skin markers in GCS and LCS at the reference 

posture (left) and at a dynamic instant-t (right). 

 

 

 

Therefore, the “continuous” femur motion can be solved by repeating the above 

procedures frame by frame. Following this same method, the tibia motion can also be 

determined. The knee joint translation and rotation were then determined by relating the 

motion of these two bones (FIGURE 2.4). The translation vector was then decomposed 

into 3 anatomical directions (anteroposterior-AP, mediolateral-ML and superoinferior-SI). 

Three rotation angles (flexion/extension-FE, internal/external-IE and varus/valgus-VV) 

were determined from the rotation matrix by using projection approach.  
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FIGURE 2.4 The flowchart of retrieving the knee joint rotation and translation from skin 

markers. 

 

 

 

The accuracy of bone motion measurement by using our marker set has been 

quantified by using six fresh cadaver legs with bone-pin markers which were firmly fixed 

to the bones and skin markers at the same time. By comparing the results from bone-pin 

markers (baseline) and skin markers, the accuracy of motion analysis using our marker 

set was quantified (TABLE 2.1).  

TABLE 2.1 the root mean square (RMS) errors (mean ± standard deviation) (º, mm) of 

skin marker based knee motion measurement. (Gao et al., 2007) 

Variable AP ML SI FE IE VV 

Error 
3.46 ± 

2.15 

0.80 ± 

0.46 

0.72 ± 

0.07 

0.71 ± 

0.43 

1.17 ± 

0.23 

0.34 ± 

0.17 
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FIGURE 2.5 Cadaver setup with skin markers and bone-pin markers. 

 

 

 

2.2. Investigation of Soft Tissue Movement on Lower Extremities  

 This work on characterizing the patterns of skin movements following ACL-

reconstruction is submitted to Clinical Biomechanics for consideration of publication. 

2.2.1. Introduction 

Skin marker-based motion analysis has been widely used for understanding in 

vivo kinematics and pathological disorders of human musculoskeletal system during high 

range of motion activities (Andriacchi and Alexander, 2000). In clinic, assessment to 

knee joint motion during level walking is an important approach to exam the physical 

condition of the joint after anterior cruciate ligament (ACL) injury and treatment. By 

using skin marker-based motion analysis, kinematics alteration in knee joint motion was 

(A) Cadaver 

setup  
(B) Marker 

set  

Bone-

mounted 

markers  
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identified among ACL-deficient knees (Andriacchi and Dyrby, 2005, Georgoulis et al., 

2003) and ACL reconstructed knees (Gao and Zheng, 2010b, Scanlan et al., 2010) during 

level walking.  

However, the accuracy of knee joint kinematics was largely limited by the non-

rigidity nature of human segments (Leardini et al., 2005, Stagni et al., 2005, Akbarshahi 

et al., 2010a, Peters et al., 2010). Various error reduction or compensation algorithms had 

been developed which largely reduced the negative effects of soft tissue movement on 

bone motion estimation (Cereatti et al., 2006, Cheze et al., 1995, Begon et al., 2007, 

Klous and Klous, 2010, Andriacchi et al., 1998, Lu and O'Connor, 1999). With the 

increased understanding of soft tissue movements, it was believed that the characteristics 

of skin movement could provide additional information for improving the motion 

analysis algorithms (Gao and Zheng, 2008, Gao, 2009, Lucchetti et al., 1998, Dumas and 

Cheze, 2009).   

The strength and morphology of knee joint muscles as well as the neuromuscular 

system have been affected by ACL injury and surgical intervention (Lorentzon et al., 

1989, Konishi et al., 2007, Pereira et al., 2009, Johansson et al., 1990, Valeriani et al., 

1999), which could result in changes of skin movement. According to the 2005-2006 

National Health and Nutrition Examination Survey (NHANES), an estimated 32.7 

percent of U.S. adults 20 years and older are overweight (body mass index, 25.0 < BMI < 

30.0), 34.3 percent are obese (BMI   30) and 5.9 percent are extremely obese (BMI   

40). The greater body weight may permit more skin movements during walking. Thus, 

the previous finding of strong skin movement patterns among healthy and healthy weight 
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(BMI 22.0±2.8) population may not apply to the group with ACL reconstruction and 

relatively larger BMI (Gao and Zheng, 2008). 

In this study, we aimed to answer two questions: 1) whether the skin movement 

patterns still exist among ACL-reconstructed patients after discharge from their 

rehabilitation program, and 2) whether the range of skin stretches are greater among 

overweight population. If the skin stretches do have prominent patterns and significant 

correlation with limb size, then in the future, the measure of limb size may provide 

additional information for STA removal in skin marker-based motion analysis.  

2.2.2. Material and methods 

1) Participants 

Forty-one patients with unilateral ACL injury and reconstruction were recruited in 

this study (TABLE 2.2). The subjects had no injuries on their contralateral limbs. At the 

time of testing, they were at least four months after surgery (14 months in average) and 

discharged from their rehabilitation program. The study was conducted following an IRB 

approved protocol and informed consent was obtained from each subject before testing. 

TABLE 2.2 Subject information (BMI-body mass index, HS-hamstring tendon, PT-

patellar tendon). 

Gender Number 
Age 

(years) 

Height 

(cm) 

Weight 

(kg) 
BMI HS PT 

Male 24 31.3±9.4 182.5±7.0 86.9±15.7 25.4±4.6 21 3 

Female 17 33.2±7.5 167.8±5.6 73.9±16.4 27.3±5.3 14 3 

Total 41 32.1±9.9 176.5±9.7 81.6±17.1 26.2±5.4 35 6 
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2) Experimental protocol 

To track the skin movements on lower limbs, a cluster of retro-reflective markers 

(10 mm in diameter) and triads (a rigid triangle of          mm with three markers 

on vertices) were sparsely placed on the anterolateral regions of thigh and shank 

following the protocol of our previous study (Gao and Zheng, 2008). A 10-camera 

motion capture system (MX-F40, VICON, Oxford, UK) which has an accuracy of better 

than 1.0 mm after calibration was used to record the marker trajectories. A static trial (t-

pose) and ten walking trials were recorded from each subject after adequate practice and 

the average of three good trials were used to represent each subject. Good trials were 

selected using the following criteria: 1) no marker drops or marker missing for more than 

4 consecutive frames, 2) trial was long enough to include two complete heel strikes for 

both legs.  

After the motion test, a 3D body scan (Cyberware Inc., Monterey, CA, USA) of 

lower limbs was taken with layer space of 1 mm at straight standing (FIGURE 2.6); the 

total scanning time was about 20 seconds. Since body scan measurement was introduced 

in the middle of the study, some of the patients (13 out of 41) tested earlier did not have 

body scan data. Thigh length was measured as the distance from the great trochanter to 

lateral femoral epicondyle and tibia length was measured as the distance from lateral 

edge of tibial plateau to lateral malleolus. 
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FIGURE 2.6 Lower limb’s nominal radius were measured from subject’s 3D body scan. 

 

 

 

3) Data analysis 

A 4th order Butterworth low-pass filter (cut-off frequency 6 Hz) was used for 

smoothing the raw motion data. One triad was selected as the reference on each segment 

(T7 on the thigh FIGURE 2.7, S3 on the shank FIGURE 2.8). At each marker location, 

skin movements were quantified by skin stretch and skin rotation relative to the reference 

triad by following a published approach (Gao and Zheng, 2008).  

The first heel strike (HS) and toe off (TO) were detected by the force plates with a 

threshold of 5% body weight; the second heel strike was determined by a gait event 

detecting algorithm (Hreljac and Marshall, 2000). All variables were normalized to a gait 

cycle from heel strike (0%) to the next heel strike (100%) by using linear interpolation 

(Helwig et al., 2011). A ratio S was used to assess the prominence of inter-subject 

 
 

1
st
 row 

2
nd

 row 

3
rd 

row 



33 

similarity (Gao and Zheng, 2008). For variables with strong inter-subject similarity, the 

formula would yield a large   value. 


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
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1

100

1

100/)(

))((min))((max

i

std

avgavg

tf
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S                                    (2.4) 

where         and         denote the mean value and standard derivation (SD) of the 

variable at     of gait cycle across subjects. For   value greater than 2, it was taken as an 

indication of strong inter-subject similarity (Gao and Zheng, 2008).  

The 3D body scan models (.ply format) of 28 subjects were input to reverse 

modeling software (Geomagic Studio, Research Triangle Park, NC, USA) to generate the 

cross sections at different heights (FIGURE 2.6). A MATLAB (MathWorks, Natick, MA, 

USA) program was developed to calculate the cross section area enclosed by 2D points 

based on Green’s theorem (Kreyszig, 2005). 

The range of skin stretch was defined as the difference between the maximum and 

minimum values in each direction during a whole gait cycle (FIGURE 2.7). The nominal 

radius (        ) of thigh and shank was calculated from the cross section area (    ), 

eq. (2-5).  

/min Arear alno                                                   (2.5)  

4) Statistical analysis 

Paired student’s t-test (SPSS v16, SPSS Inc, IL, USA) was performed to test the 

bilateral difference of the range of skin movements. Correlation and regression analyses 

were performed to study the relationship between the range of skin stretches and the limb 

size (nominal radius and segmental length) across different subjects by using Matlab 

Statistic and Curve Fitting tool boxes. Significance level (p) of 0.05 was used to indicate 
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the significant correlation, and strong correlation was defined as the Pearson coefficient 

(r) greater than 0.65. 

2.2.3. Results 

No significant bilateral differences were found from the range of skin stretch at all 

marker locations on both thigh and shank (p > 0.1). The skin movements over a gait cycle 

were illustrated as mean values and standard deviations of all subjects’ reconstructed legs 

(FIGURE 2.7 and FIGURE 2.8), and the data presented in this study were from the 

involved legs without further specification.  

TABLE 2.3 S values (involved, contralateral) of inter-subject similarity for skin rotations 

on the shank and thigh. AP-around anterior/posterior axis, ML-around medial/lateral axis, 

SI-around superior/inferior axis  

Shank 

Location 

Shank Thigh 

Location 

Thigh 

AP  ML SI AP ML SI 

S4 1.4, 1.3  1.7, 1.8 2.3, 1.8 T1 2.4, 2.0 2.2, 2.3 3.8, 3.7 

S7 1.3, 1.1 1.1, 1.2 1.0, 1.0 T3 1.9, 1.5 4.3, 3.5 2.1, 1.7 

S8 0.7, 0.9 0.6, 1.1 1.1, 1.0 T9 1.3, 1.0 4.7, 2.4 2.6, 2.3 

Strong inter-subject similarities (S > 2) of skin stretches were found from most 

locations on the thigh and from more than half locations on the shank (FIGURE 2.7 and 

FIGURE 2.8). Some strong patterns (S > 2) were also observed from the skin rotations on 

the thigh (TABLE 2.3). The range of skin stretches was much greater on the thigh 

(anterior/posterior (AP) 12.9 mm, medial/lateral (ML) 10.5 mm, superior/inferior (SI) 

11.0 mm, average of all locations) than those on the shank (AP 4.4 mm, ML 3.2 mm, SI 

4.5 mm) (TABLE 2.3 and TABLE 2.4). 
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FIGURE 2.7 Inter-marker translations on the thigh during walking.  

 

 

 

Significant correlations (p < 0.05) between the range of skin stretches and 

nominal radius of segment were observed from the thigh and shank during walking 

(FIGURE 2.9 and FIGURE 2.10). Most of the correlations were positive (r > 0), except 

for the skin stretch in the AP direction at T2 (r = -0.2). The correlations between skin 

stretches and nominal radius were much weaker on the shank than those on the thigh. In 

the SI direction, the skin stretches at most locations on the 1
st
 and 2

nd
 rows (T1-T5) had 

significant (p < 0.01) and strong (r > 0.65) correlation with nominal radius of the thigh. 

Although some significant correlations (p < 0.05) between skin stretches and nominal 

radius were found on the shank, all the correlations were not strong (r < 0.65) (S4-S8, 

TABLE 2.5). The segment’s length had no significant (p > 0.1) or strong correlation (r < 

0.5) (TABLE 2.6) with the range of skin stretches for both thigh and shank. 
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FIGURE 2.8 Inter-marker translations on the shank during walking.  

 

 

 

2.2.4. Discussion 

By using a previously described proxy technique (Gao and Zheng, 2008), the soft 

tissue deformation on lower limb was illustrated as a 4D picture (3D space and time) of 

inter-marker translations and rotations during a gait cycle. According to our finding, most 

of the skin movement variables on the thigh and about half of variables on the shank still 

exhibited strong patterns among ACL-reconstructed patients. The limb with larger 

nominal radius was more likely to have greater skin stretches in all three directions, 

although the strength of the response was different across directions. For instance, the 

skin stretches in the SI direction had much stronger (r > 0.65) correlation with the 

nominal radius of thigh than in the other directions (r < 0.65) at the 1
st
 and 2

nd
 rows. 
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These features could be explained by the anatomical structures of quadriceps muscles 

which contract concentrically and eccentrically mainly along the SI direction during 

activities. In algorithm design, the inter-direction variability could be considered by 

assigning a weighting vector  ⃑⃑⃑  [

   

   

   

] , instead of a weighting scalar as in most 

conventional algorithms (Andriacchi et al., 1998, Arun et al., 1987, Cheze et al., 1995, Lu 

and O'Connor, 1999), to each marker (Gao, 2009).  

 

FIGURE 2.9 Linear regression between the range of skin stretches and nominal radius of 

thigh cross section at 3 different rows in three orthogonal directions during walking. 
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In this study, the range of skin stretches was much smaller on the shank than those 

on the thigh, which was consistent with previous studies (Stagni et al., 2005, Akbarshahi 

et al., 2010a). The profiles of skin movement curves in this study were very similar to 

those of the healthy population in our former study. The inter-subject similarities of skin 

stretches slightly decreased across ACL patients compared with those across healthy 

subjects in a former study (Gao and Zheng, 2008), except at some locations (T2, T5, T10 

and T11) where the similarities in SI direction became even stronger. Neuromuscular 

system might have been altered after ACL injuries and reconstruction which could result 

in abnormal muscle activities (Valeriani et al., 1999, Johansson et al., 1990). Following 

ACL injury and surgical intervention, the strength and morphology of knee joint muscles 

also had been changed according to previous studies (Lorentzon et al., 1989, Konishi et 

al., 2007, Pereira et al., 2009). Those neuromuscular abnormalities might have decreased 

the inter-subject similarities in skin movements. After ACL reconstruction, patients 

exhibited significantly greater gait variability than the healthy controls, even though 

clinical outcomes indicated complete restoration (Moraiti et al., 2010, Dingwell and 

Cusumano, 2000). The enlarged variability could also contribute to the weakened inter-

subject similarities of skin stretches.  
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TABLE 2.4 The range of skin stretches (mean ± std, unit: mm) at different locations on 

the thigh relative to the reference triad T7 during a complete gait cycle and their 

correlation with the nominal radius of thigh for the ACL reconstructed legs. 

Location Nominal radius 
Range of skin stretch  

AP  ML SI 

T1 102.0±51.2 13.7±3.7* 17.2±4.7†** 18.6±5.5‡** 

T2 102.0±51.2 10.6±4.2
-
 11.5±4.0* 13.3±5.8‡** 

T3 102.0±51.2 10.1±3.4†** 10.0±2.7†** 9.0±3.5‡** 

T4 90.8±42.6 9.1±2.1†** 7.7±3.7†** 9.2±3.2‡** 

T5 90.8±42.6 9.0±2.4 11.3±4.6 8.1±3.3‡** 

T6 90.8±42.6 10.3±3.1‡** 9.7±3.5†** 7.8±2.5* 

T8 78.2±37.0 7.4±2.0* 6.3±2.7 4.3±1.9 

T9 78.2±37.0 10.0±3.0* 9.4±3.1†** 7.4±2.3* 

T10 N/A 22.9±6.5 10.4±4.3 15.8±7.1 

T11 N/A 24.8±7.1 11.2±3.6 16.9±5.8 

The symbol † r value>0.5 indicates moderate and ‡ r value >0.65 indicates strong correlation 

between the nominal radius and range of skin stretch; * p<0.05 and ** p<0.01 indicate the 

significance of correlation; 
- 
r value<0. 
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FIGURE 2.10 Linear regression between the range of skin stretches and nominal radius 

of shank cross section at 3 different rows in three orthogonal directions during walking. 

 

 

 

The ranges of skin stretch were increased by about 40% on the thigh and about 20% 

on the shank compared with the healthy population in our previous study. The increased 

skin stretches may be contributed by the relatively greater (BMI 26.2 vs. 22.0 in previous 

study) body weight of the subjects in this study. Higher BMI means more fatness or 

greater muscle mass which may permit more soft tissue movements. It indicated that the 

major factor that may influence skin stretch could be BMI, thus the measure of skin 
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movement could be used as a proxy measure of fatness or muscle mass. Unfortunately, 

we had no data from fatness measurement instruments such as DEXA scans. Given the 

strong associations identified between the limb’s nominal radius and the magnitude of 

skin stretches, in the future we would include the fatness measure in our study design and 

check the correlation between skin stretches and fatness during level walking.  

TABLE 2.5 The range of skin stretches (mean ± std, unit: mm) at different locations on 

the shank relative to the reference triad S3 during a complete gait cycle and their 

correlation with the nominal radius of shank for the ACL reconstructed legs. 

Location Nominal radius 
Range of skin stretch  

AP  ML SI 

S1 N/A 8.9±3.7 3.9±1.5 5.2±2.2 

S2 N/A 7.1±2.5 4.1±1.5 8.3±3.2 

S4 62.5±6.1 2.7±0.9 3.6±1.3* 6.2±2.1* 

S5 56.3±6.6 2.2±1.3†** 1.6±0.9†** 1.9±0.7* 

S6 56.3±6.6 3.2±0.8 3.4±1.1†** 3.5±1.3* 

S7 44.3±5.6 2.5±0.9* 2.4±0.9 2.7±0.8 

S8 44.3±5.6 3.1±1.0* 2.5±0.9* 2.7±0.8 

S9 N/A 5.7±1.6 4.1±1.3 4.6±1.1 

S10 N/A 4.5±1.3 3.6±1.3 5.0±1.0 

The symbol † r value>0.5 indicates moderate correlation between the nominal radius and range of 

skin stretch; * p<0.05 indicates the significance of correlation. 

Several limitations should be kept in mind when interpreting the results. Firstly, 

the study indirectly inspected the soft tissue movement by quantifying the skin stretches 

and skin rotations during level walking using a published proxy technique; however, the 

absolute skin motion relative to the bone is still unknown. With the advance of 

radiostereometric technique (Barrance et al., 2005, Defrate et al., 2006), in the future it 
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will be possible to capture dynamic medical imaging and skin marker trajectories at the 

same time during a large range of activities, then the skin-bone relative movement could 

be accurately determined. Secondly, we did not have the body scan data from our first 13 

subjects. With a larger sample size, the correlation between skin stretch and limb size 

may be slightly different, but should be similar to what we reported here. Thirdly, the 

body type of the subjects in the current study were not matched with the subjects in our 

previous study; like the other studies the uninjured contralateral legs were used as the 

control group (Scanlan et al., 2010, Defrate et al., 2006). 

TABLE 2.6 Pearson coefficients (r) of correlation between the range of skin stretches 

and segmental nominal radius. AP-anterior/posterior, ML-medial/lateral, SI-

superior/inferior 

Thigh 

Location 

Thigh Shank 

Location 

Shank 

AP  ML SI AP ML SI 

T1 0.39 0.55 0.65 S4 0.15 0.38 0.38 

T2 -0.20 0.48 0.70 S5 0.56 0.55 0.38 

T3 0.61 0.62 0.65 S6 0.35 0.53 0.38 

T4 0.64 0.64 0.68 S7 0.44 0.30 0.05 

T5 0.02 0.37 0.65 S8 0.46 0.45 0.02 

T6 0.67 0.51 0.40 T9 0.48 0.57 0.39 

T8 0.41 0.37 0.36     

2.2.5. Conclusion 

This is a follow up study to our previous publication (Gao and Zheng, 2008). We 

investigated the skin movements on the lower limbs among a larger number of ACL 

patients during level walking. The results showed that similar patterns of skin movements 

were retained among ACL patients. Subjects with thicker limbs tend to have greater skin 

stretches in all three directions, and the skin stretches in superior/inferior direction have 
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the strongest response to the limb thickness. Measurement of limb nominal radius may 

provide additional information for compensating skin movements in motion analysis 

algorithms. Also it may be more practical to assign a weighting vector to each marker, 

and treat the 3 coordinates separately during the optimization process.  

2.3. An Algorithm Using the Characteristics of Soft Tissue Movement  

It has been proved in the previous section that the soft tissue movement had 

strong patterns, i.e. the displacements of skin markers on the tibial plateau edges (S1 and 

S2 on FIGURE 2.8) along mediolateral direction were very small. Therefore, in motion 

analysis algorithms those patterns may be helpful to search for the optimal solution of the 

bone motion. A new algorithm has been developed which was published in the Journal of 

Biomechanical Engineering, 2010 Dec; 132(12): 124502 

2.3.1. Introduction 

Gait or motion analysis has been widely used in diagnosis of locomotor pathology 

or limb disorder. Accurate bone motion is critical for understanding the normal function 

as well as clinical problems of the musculoskeletal system. With the merits of being non-

invasive and radiation-free, skin marker-based motion analysis is the most popular means 

for in vivo skeletal kinematics measurement. Unfortunately, in skin marker-based motion 

analysis, soft tissue artifact (STA) has been reported as the main error source of 3-

dimensional (3D) joint kinematics (Holden, 2008, Leardini et al., 2005, Fuller et al., 

1997), especially in the frontal and transverse planes, where the ranges of motion are 

much smaller than that in the sagittal plane (Cappozzo et al., 1996). Injuries may change 

joint kinematics and loading, even a minor rotation offset may place the joint loads onto a 

non-weight bearing cartilage area, which may trigger cartilage degeneration (Appleyard 

et al., 1999, Quinn et al., 2005, Thambyah et al., 2006). Therefore, more precise 
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measurement of secondary joint motion of the knee is critical for us to better understand 

the relationships between the abnormalities in knee joint kinematics and the pathological 

changes of articulating surface.  

To retrieve underlying bone motion from skin markers, several optimization 

algorithms have been developed to minimize the effects of STA (Andriacchi et al., 1998, 

Lu and O'Connor, 1999, Spoor and Veldpaus, 1980). In all those algorithms, the skin 

markers were taken as the same entities or were assigned with the same initial weighting 

factors, regardless of their anatomical locations. Those techniques have insufficient 

certainty to assess the secondary rotations and translations (Leardini et al., 2005, Stagni et 

al., 2005, Reinschmidt et al., 1997b). 

In the past decade, several techniques were developed using cine-MRI (Barrance 

et al., 2005), fluoroscopy (Defrate et al., 2006, Papannagari et al., 2006, Dennis et al., 

2005) which successfully obtained more accurate tibiofemoral joint motion. Based on the 

shape matching technique and accurate 3-D bone model built from CT, the knee joint 

kinematics were obtained from 2D fluoroscopic imaging sequence, which claimed to 

have reduced the error to <0.1mm in translation and <1˚ in rotation (Li et al., 2008). 

However, those techniques are not suitable in studying daily activities like level walking 

because of their small capture volume and low frequency of data capture. Therefore, a 

compromise must be made between the acceptance of the larger error associated with 

skin markers and its applicability of measuring a large range of motion during daily 

activities (Andriacchi and Mundermann, 2006).  

Recently, several studies have found that the STA had location- and direction- 

specific characteristics (Gao and Zheng, 2008, Garling et al., 2007, Akbarshahi et al., 
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2010b). Although a number of studies were carried out to quantify the soft tissue 

movements. To our knowledge, little has been done concerning how to use that 

information in developing a better algorithm for determining the underlying bone motion 

from skin markers. 

Motivated by progressive understanding of STA, we incorporated the STA 

characteristics into the optimization problem of kinematic analysis. The objective of this 

study is to develop a new algorithm that uses the STA constraints at special landmarks 

and test its efficiency in removing STA errors in quantifying secondary knee joint 

motions.  

2.3.2. Material and methods 

1) Algorithm by using bony landmark constraints  

Basing on the rigid body assumption of the human segment, Spoor and Veldpas 

presented an analytical technique to calculate the bone rotation matrix and translation 

vector from redundant skin markers (Spoor and Veldpaus, 1980). That analytical 

algorithm was to find the optimal combination of rotation matrix and translation vector 

which minimized the objective function  ( ⃑         ) (Eq. 3-4) without any constraints 

(the algorithm would be referred to as a least mean square (LMS) algorithm later). 

Anatomically, the skin markers at medial and lateral femur epicondyles could not move 

much in the medial-lateral direction, which had also been proved in a previous study 

(Gao and Zheng, 2008) (FIGURE 2.11); the same situation was applicable for the skin 

markers at medial and lateral edges of the tibial plateau. Moreover, the marker at the tibia 

tuberosity had a very small range of motion relative to the underlying bone in all three 

anatomical directions.  
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where,                     denotes the position vector of the     marker in the 

global coordinate system (GCS) at frame t;        denotes the marker position vector in 

LCS at the reference posture;       denotes the origin of the bone local coordinate 

system (LCS) in GCS at the reference posture;      denotes the origin of LCS at frame t; 

 ⃑     and      denote the translation vector and rotation matrix which transport the bone 

from initial posture to the posture at frame t; and n denotes the number of skin marker. 

In our new algorithm, the characteristic of soft tissue movement at special bony 

landmark locations was considered and incorporated into the constraint functions of the 

optimization problem, Eq. 2.8-2.9. The constraint functions limited the STA of certain 

markers in certain direction and refined the optimization results (the new algorithm 

would be referred to as bony landmark constraint (BLC) algorithm henceforth).  

For the femur segment, the optimization problem was organized as: 
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where,                         are known from motion data after defining the LCS at 

reference posture (t-pose);         denote the soft tissue moving limits at T10 and T11 

respectively (FIGURE 2.11).   
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FIGURE 2.11 The moving spaces of skin markers at medial-lateral epicondyles 

(T10/T11), medial-lateral tibia plateau edges (S1/S2), and tibia tuberosity (S11). At T10, 

T11, S1, and S2 locations, only medial-lateral direction displacements are constrained. At 

location S11, the displacement constraints are exerted on all three anatomical directions. 

 

 

 

The problem yields to searching for the optimal combination of  ⃑     and 

     which minimizes the objective function   ( ⃑         ) subjected to constraint 

functions. The 3-dimensional spatial rotation can be uniquely determined by the rotation 

axis (        ) and rotation angle   (≤ 180º). Then it can be expressed by a norm-1 

quaternion which was defined as (Kuipers, 2002, Schmidt and Niemann, 2001, Hamilton, 

1866): 

)2/sin(

)2/sin(

)2/sin(

)2/cos(



















cz

by

ax

w

kzjyixwq

                                        (2.10) 

The rotation matrix can be represented as: 
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Therefore, there are seven designing variables to be determined ( , a, b and c 

for     , and v1, v2 and v3 for  ⃑    ) and the constraint function was increased by one 

which guaranteed the norm-1 property of the quaternion, Eq. 3-10. 

12222  zyxw                                           (2.12) 

The Eq. 3-10 could be restated as            , according to the definition of 

quaternion. 

The tibia segment’s mathematical statement was similar, except for the bony 

landmark constraint at the tibia tuberosity (S11, FIGURE 2.5). To solve the constrained 

optimization, the constraint functions were integrated into the objective function by 

introducing the Lagrangian multipliers (  ). For example, for constraint function (6), the 

form      
            was added into the objective function. To 

minimize  ( ⃑         ), the LMS solution provided the initial guess to the optimizer. 

The optimal solution ( ⃑         ) was then searched by Fletcher’s version of the 

Levenberg-Marquardt optimization technique (Fletcher, 1971, Levenberg, 1944, 

Marquardt, 1963). MatLab codes were developed for iteration and solution. To reduce the 

computation time, the Lagrangian multipliers    were assigned with a constant penalty 

number. For simplification, all moving limits were assigned with equal values (      ). 

By assigning different constraint conditions (           , FIGURE 2.14), the 

sensitivity of the BLC algorithm was also investigated. After the design variables were 
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determined at each frame, the knee joint rotation angles could then be expressed by 

projection method, which will be discussed in the next section.   

2) Definition of local coordinate system and joint rotation angles 

The segmental LCS is defined by the anatomical landmarks at the reference 

posture (Andriacchi et al., 1998). The origin of the femur LCS is the midpoint of the 

medial and lateral epicondyles. The femur superior-inferior (SI) axis (Z-axis) runs 

parallel with the long axis of the femur, passing through the origin of the femur LCS 

(FIGURE 2.12). The medial-lateral (ML) axis (Y-axis) passes through the femur medial 

and lateral epicondyles, and the anterior-posterior (AP) axis (X-axis) is the cross product 

of the Y-axis and Z-axis. The final position of the superior-inferior axis is made 

orthogonal to the X-axis and Y-axis. The origin of the tibial LCS is set at the midpoint of 

the medial and lateral edges of the tibial plateau. The SI axis (Z-axis) points along the 

long axis of the tibia. The ML axis (Y-axis) passes through the medial and lateral edges 

of the tibial plateau. The AP axis (X-axis) is the cross product of the Y-axis and Z-axis. 

The final SI axis is the cross product of the X-axis and Y-axis (FIGURE 2.12). 

The projection method was used to represent the knee joint rotation in terms of 3 

angles: 1) flexion/extension (FE) in the sagittal plane, 2) internal/external (IE) in the 

transverse plane and 3) varus/valgus (VV) angles in the frontal plane (FIGURE 2.12). By 

projecting the femur LCS X-axis (Xf) onto the XZ-plane of the tibial ACS, the projection 

Xf-xz has an intersection angle with Xt, which is defined as the FE angle. By projecting 

the femur LCS Y-axis (Yf) onto the YZ-plane of the tibial ACS, the projection Yf-yz has 

an intersection angle with Yt, which is defined as the VV angle. By projecting the femur 
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LCS Y-axis (Yf) onto the XY-plane of the tibial ACS, the projection Yf-xy has an 

intersection angle with Yt, which is defined as the IE angle. 

 

FIGURE 2.12 Definitions of knee joint rotations angle by a projection method. 

 

 

 

Given the rotation matrix    for the tibia, and    for the femur in the GCS, the 

knee joint rotation in the tibia LCS could be calculated by multiplying the inverse tibia 

rotation matrix with the femur rotation matrix. The rotational angles are calculated in Eq. 

3-11 as well. 
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3) Validation and Comparison 

Two fresh cadavers were used for validation. Passive knee flexion/extension that 

simulated the knee joint range of motion during walking was created during data 
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collection (FIGURE 2.5). Nineteen skin markers with 10 mm diameter (four triads with 

three markers on each vertex, and seven single markers) were sparsely placed on the 

anterolateral side skin of the shank and thigh according to the market set in a previous 

publication (Gao and Zheng, 2008), and one extra marker (S11) was mounted at the tibial 

tuberosity (FIGURE 2.5). A bicortical bone pin with four markers was rigidly inserted in 

the tibia bone and femur bone from the posterior to track the 6-degree knee joint spatial 

movement. An 11-camera motion capture system (MAC, Santa Rosa, CA) was used to 

record motion data at 60 Hz; the instrument accuracy was less than 1 mm after calibration. 

A reference posture with the cadaver leg in natural extension was recorded to define the 

segmental local coordinate system; after capturing the reference trial, three good 

dynamical trials were collected from each cadaver during simulated walking. 

 After reconstructing the 3-D locations of the markers, the ground truth bone 

motion was generated from pin-mounted markers using a rigid-body transform function. 

Matlab codes were developed based on the LMS algorithm and point cluster technique 

(PCT) (Andriacchi et al., 1998).  For each trial, three different methods (LMS, PCT and 

BLC) were run respectively to estimate the knee joint motion from skin-mounted markers. 

The root means square error (RMS-E) and peak error (Peak-E) were calculated from all 

three algorithms; and errors for all three algorithms were compared using one way 

ANOVA with significant factor p=0.05.  

2.3.3. Results 

Three knee joint rotation angles (FE, IE and VV) and three displacements (AP, 

ML and SI) were expressed in the tibia ACS. The rotations and translation of one typical 
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trial is plotted in FIGURE 2.13. The plotted results were solved at      mm in the 

constraint functions of the BLC algorithm and constraint conditions (Eq. 3-7).  

TABLE 2.7 Root mean square error (RMS-E) and peak error (Peak-E) (unit mm for AP, 

ML, SI translations; unit (º) for FE, IE, VV rotations) for three motion analysis 

algorithms (LMS, BLC and PCT) in predicting knee joint kinematics. Mean (standard 

deviation). 

 LMS BLC PCT 

 RMS-E Peak-E RMS-E Peak-E RMS-E Peak-E 

FE 0.6(0.1) 1.1(0.1) 1.1(0.3) 2.0(0.2) 2.2(0.4) 3.5(0.2) 

IE 1.7(0.4) 2.2(0.6) 0.7(0.1) 1.7(0.3) 2.4(0.6) 3.7(0.6) 

VV 0.7(0.1) 1.6(0.1) 0.4(0.1) 0.9(0.1) 1.4(0.1) 2.1(0.1) 

AP 5.9(0.8) 9.0(0.9) 7.7(0.8) 7.7(4.7) 10.2(1.1) 14.0(1.0) 

ML 1.2(0.2) 2.0(0.3) 0.4(0.1) 1.4(0.3) 4.3(0.4) 6.6(0.7) 

SI 2.1(0.4) 4.6(0.3) 5.5(1.1) 11.6(1.1) 3.0(0.6) 6.9(0.6) 

The rotation angle in the sagittal plane was reproducible among all three 

algorithms (FIGURE 2.13). The maximum error came from PCT (peak error: 3.5 ± 0.2º) 

in the sagittal plane, TABLE 2.7. The most accurate FE angle was predicted by LMS 

(peak error: 1.1 ± 0.1º). The BLC algorithm had significantly higher accuracy in the IE 

and VV angles than the other two algorithms (p = 0.01). For the IE angle, the RMS error 

of BLC reduced from 1.7 ± 0.4˚ of  LMS algorithm and 2.4 ± 0.6˚ of PCT to 0.7 ± 0.1˚, 

and the peak error was significantly smaller than the other two algorithms (BLC 2.0 ± 

0.3˚, LMS 2.2 ± 0.6˚, PCT 3.7 ± 0.6˚) (p = 0.02), TABLE 2.7. In the frontal plane, there 

were significant differences in the RMS error (p<0.05, BLC 0.4 ± 0.1˚, LMS 0.7 ± 0.1˚ 

and PCT 1.4 ± 0.1˚) and in the peak error (p<0.05, BLC 0.9 ± 0.1˚, LMS 1.6 ± 0.1˚, PCT 

2.1 ± 0.1˚) (TABLE 2.7). 
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The curves were shifted from each other in the translation results (FIGURE 2.13). 

One interesting finding was noted in the medial-lateral direction, where the BLC 

algorithm had significantly less RMS error (0.4 ± 0.1 mm) than LMS (1.2 ± 0.2 mm) and 

PCT (4.3 ± 0.4 mm). In the other two directions, although the BLC curves showed 

comparable patterns with the curves of the ground truth bone motion (from bone-

mounted markers), the BLC’s accuracy was very low (percentage RMS error = 60.6±11.3% 

ROM in AP, and 37.6±7.9% in SI). In the SI direction, the LMS (RMS error: 2.1 ± 0.4˚) 

and PCT (RMS error: 3.0 ± 0.6˚) were the better algorithms to estimate the femur 

translation in the tibia LCS compared with the BLC algorithm. 
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FIGURE 2.13 The results of knee joint 6 degrees of freedom (3 rotations and 3 

translations) using three different optimization algorithms. Baseline – the true bone 

motion from bone pins, LMS – traditional least-mean-square based algorithm, PCT – 

point cluster technique, BLC – improved algorithm considered bony landmark constraints. 

 

 

 

Eighteen simulations were respectively run under different constraints (   was 

changed from 1.0 mm to 15.0 mm) in the BLC algorithm, constrained conditions (3.2). 

The peak errors of the BLC algorithm changed as the constraints were changed between 1 

mm and 8 mm (FIGURE 2.14). After that, the RMS errors converged to certain values 

(0.6º for IE rotation, 0.7º for VV rotation, and 1.3 mm for ML translation). The 
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converged RMS errors of VV rotation and ML translation were close to the LMS 

algorithm (0.7º for VV rotation, 1.2 mm for ML translation on average), and the 

converged RMS error of IE rotation was smaller than that of the LMS algorithm (1.7 º on 

average).   

 

FIGURE 2.14 The accuracy of BLC algorithm in predicting secondary tibiofemoral 

rotation and medial-lateral translation under different moving limits. 

 

 

 

2.3.4. Discussion 

The preliminary findings of our study suggested that the bony landmarks could 

provide useful constraints to refine the knee joint kinematics results in certain 

components. For more than two decades, the low accuracy of the secondary rotation has 

been one of the most notable limitations of skin marker-based motion analysis (Leardini 

et al., 2005). These small secondary rotations are of high interest in initialization and 

progression of knee osteoarthritis (Andriacchi and Dyrby, 2005). According to our 

findings, with additional constraint functions, the bony landmark constraint (BLC) 
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algorithm increased the accuracy of IE and VV angles by 45% from LMS and by 65% 

from PCT. Therefore, for secondary rotations of the knee, the BLC algorithm is more 

helpful for detecting abnormal knee kinematics with our marker set. The accuracy of the 

knee joint ML translation was also improved by using the BLC algorithm compared with 

LMS and PCT (FIGURE 2.13). The outcome was probably contributed by the ML 

directional constraints at five bony landmarks (T10, T11, S1, S2 and S11, FIGURE 2.5) 

in optimization. However, the accuracy was deteriorated in the AP and SI directions. It 

was probably because no additional constraints were exerted in AP or SI directions on the 

femur landmarks. During the optimization process, the bone position was fitted in the ML 

direction with priority, while more than likely sacrificing the accuracy in the other two 

directions. Another cause may come from the fixation of Lagrangian multipliers (   ). 

Future study will work on designing a more functional marker set and employing more 

reasonable landmark constraints in the optimization.  

The sensitivity analysis showed that the VV and ML curves had an obvious valley 

(neighboring   =3 mm), while the accuracy of IE was relatively insensitive to the 

constraint value (FIGURE 2.14). That typical value (    3 mm) was probably related to 

the maximum magnitude of soft tissue movement during flexion/extension movement. 

According to a previous fluoroscopic study of seven patients with total knee arthroplasty 

(TKA), the STA could be estimated by a multi-linear function of hip and knee flexion 

angles (Gao, 2009). According to the multi-linear functions, the knee joint flexion angle 

was around 45º in the current study, and the ML component of STA was around 1.8 mm 

at the femur epicondyles, and smaller than 2.4 mm at the tibia plateau edges during a 

whole gait cycle; at the tibia tuberosity, the STA was smaller than 3.4 mm in all three 
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directions. For better functionality, the limits should be adjusted according to the body 

type and the involved activity of the individual subject.  

The sensitivity study showed that the IE, VV and ML results did not change after 

      mm (FIGURE 2.14), which probably indicated the magnitudes of STA were 

smaller than 8 mm in those specific directions and the bony landmarks constraints lost 

their function when they exceed the maximum STA. Another interesting finding was 

noted that the IE rotation result of BLC did not converge to the LMS algorithm. The 

inconsistency may be contributed to by different methods used in the algorithm. In the 

BLC algorithm, a numerical method (Fletcher’s version of the Levenberg-Marquardt) 

was used to solve the constrained optimization problem, whereas, an analytical method 

was developed to minimize the objective function in the LMS algorithm.   

Andriacchi et al. (Andriacchi et al., 1998) introduced the PCT with an optimal 

marker set covering the entire segmental surface. Unfortunately, the skin markers were 

only placed on anterolateral segmental sides, in order to be more visible by the cameras 

in the current study. The marker set limitation might have affected the accuracy of the 

PCT and caused the whole period offsets in predicting VV rotation and ML translation. 

Also in this study, the cadaver knee was passively driven by a rod under the foot. The 

secondary motion of the non-weight bearing cadaver knee may be different from that of 

weight-bearing condition during level walking (Dyrby and Andriacchi, 2004). Before 

implementing this algorithm in clinical application, future in vivo validation work should 

be undertaken during daily activities. 
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2.3.5. Conclusion 

By considering the soft tissue movement at special bony landmarks, the proposed 

bony landmark constraint (BLC) algorithm has higher accuracy in predicting the 

secondary rotations (internal/external, varus/valgus) than the least mean square algorithm 

(LMS) and point cluster technique (PCT) during knee flexion/extension. Also the current 

BLC algorithm can predict more accurate medial-lateral translation. Therefore, the 

presented algorithm may be helpful in detecting abnormal secondary kinematics of the 

knee joint, which is important to early detection of the onset of joint pathologies. This 

pilot study is a start of using STA characteristics as constraints to tune the optimization 

results. More exquisite work should be done on the basis of this study to develop a better 

motion analysis algorithm. 

2.4. Summary 

In this chapter we reviewed the commonly used bone motion measurements 

including invasive, fluoroscopic and optical video techniques, etc. We discussed the 

advantages and limitations of dual-fluoroscopic and skin marker-based motion analysis, 

and decided to use skin marker-based motion analysis in this dissertation. This chapter 

also introduced the technical procedures of how to retrieve the rigid bone motion from 

redundant skin markers by using the LMS based algorithm. 

The accuracy of knee joint motion measurement by using our redundant marker 

set has been quantified in this chapter. We also introduced a quaternion-based 

optimization algorithm which takes the bony landmark as external constraints to improve 

the accuracy of knee joint secondary rotations (referred to as BLC algorithm). Although 

the BLC algorithm has an improved accuracy on the internal/external and varus/valgus 

rotation, it has a relative low accuracy on knee translation measurement compared to the 
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Spoor’s LMS based algorithm. Therefore, in this study we continued to use the Spoor’s 

LMS based motion analysis algorithm in retrieving the bone motion from our subjects. 



 

CHAPTER 3: DOES THE TRANSTIBIAL TECHNIQUE RESTORE KNEE 

KINEMATICS AND KINETICS? 

 

 

In this chapter, we investigated: 1) knee joint kinematics and kinetics after ACL-

reconstruction using the transtibial technique during low demand level walking and high 

demand downstairs pivoting; 2) the effect of lower dominance on the postsurgical knee 

performance. 

3.1. Knee Joint Stability Following ACL-reconstruction Using the Transtibial Technique 

during Level Walking 

Normal ambulatory kinematics of the knee joint is often not fully restored after 

ACL-reconstruction, which may increase the risk of cartilage degeneration and premature 

osteoarthritis in the involved knees. Lower limb dominance may have impacts on knee 

joint kinematics after ACL reconstruction. In this chapter, we presented a study on knee 

joint kinematics among patients with dominant side reconstruction and those with non-

dominant side reconstruction using the traditional transtibial technique. This work was 

published in the Clinical Biomechanics, 2012 Feb; 27(2): 170-175 (Wang and Zheng, 

2010b). 

3.1.1. Introduction 

Altered knee joint motion has been observed after anterior cruciate ligament 

(ACL) injury (Andriacchi and Dyrby, 2005, Georgoulis et al., 2003, Defrate et al., 2006). 

The kinematic alteration has not been fully restored by ACL reconstruction surgeries and 
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the rehabilitation that follows (Gao and Zheng, 2010a, Scanlan et al., 2010, Tashman et 

al., 2007, Brandsson et al., 2002, Papannagari et al., 2006). This residual change in knee 

joint motion might contribute to a higher risk of articular cartilage degeneration and 

premature osteoarthritis (OA) in the involved knees according to previous investigations 

(Andriacchi and Mundermann, 2006, Daniel et al., 1994, Lohmander et al., 2004, Seon et 

al., 2006).  

According to a previous survey of 1538 people (94.8% right dominant), the 

prevalence of knee joint OA was 19% higher on the right side than on the left side (Wang 

et al., 2007). In another study, healthy right dominant individuals displayed significant 

bilateral differences in the cartilage volume of the lateral compartment (−6.5% (SD 

5.9%); left - right) and in the mean cartilage thickness of the medial compartment (−6.2% 

(SD 4.6%); left - right), while no systematic difference was found in the left dominant 

individuals (Eckstein et al., 2002). These asymmetries in knee joint anatomy may lead to 

the different knee joint kinematics after ACL injury and reconstruction. Thus, it is of 

great interest to consider the leg dominance as a factor in knee joint kinematic analysis to 

ACL-reconstructed (ACL-R) patients. 

The cartilage degeneration and OA development after ACL injury are considered 

as a progressive process that develops during even the most frequent daily activities, such 

as level walking (Chaudhari et al., 2008). Routine tests of knee instability (KT-1000 

testing and Lachman’s test, etc.), which are based on knee joint passive response to static 

and non-weight bearing situations, do not necessarily reflect physiological loading 

conditions (Brandsson et al., 2002, Papannagari et al., 2006, Pollet et al., 2005, Borjesson 
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et al., 2005). Instead, level walking was studied as the more relevant ambulatory activity 

for understanding the etiology of OA (Miyazaki et al., 2002). 

In this study, the knee joint motion of patients who had unilateral ACL 

reconstruction on the dominant and non-dominant side was compared to that of healthy 

controls. The purpose was to identify the kinematic alteration of dominant ACLR knees 

and non-dominant ACLR knees during level walking after rehabilitation. We specifically 

tested the hypothesis that individuals with unilateral ACL reconstruction on the dominant 

side developed significantly different motion patterns at the knee joint from those with 

ACL reconstruction on the non-dominant side.  

3.1.2. Material and methods 

1) Participants 

Forty-one patients with unilateral ACL reconstruction using the transtibial 

technique and no other history of serious lower limb injury were recruited (11 were from 

Shands Hospital, University of Florida, Gainesville, FL and 30 from OrthoCarolina, 

Charlotte, NC). Twenty healthy subjects with no history of lower extremity injuries or 

functional disorders were also recruited to test the pre-injury dominance effect on knee 

joint kinematics (TABLE 3.1). The study was conducted following an IRB approved 

protocol and informed consent was obtained from each subject before testing. Nineteen 

subjects underwent ACL reconstruction on their dominant side (Group-d) and twenty-two 

subjects underwent ACL reconstruction on their non-dominant side (Group-n). Patients 

with chondral lesions, posterior cruciate or collateral ligament tears were excluded from 

this study. Hamstring tendon grafts or patellar tendon grafts were used in both groups 

according to surgeon preference (TABLE 3.1). At the time of testing, patients were at 

least 4 months post-operative from surgery (~14 months in average) and had received 
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permission to perform all daily activities from their treating physician. The involved 

knees’ KT-1000 measurements did not differ significantly (p = 0.67) among groups. 

None of the subjects had diagnosed radiographic or symptomatic OA. No statistically 

significant differences in post-surgery time (p = 0.24), body weight (p = 0.51), height (p 

= 0.47), and body mass index (BMI) (p = 0.53) were found between these two groups 

(TABLE 3.1). The lower limb dominance was determined by ball kicking and confirmed 

with subjects afterwards (Porac and Coren, 1981).  

TABLE 3.1 Demographics (mean (SD)) of patients with ACL reconstruction on the 

dominant side (Group-d) and patients with ACL reconstruction on the non-dominant side 

(Group-n) and the healthy controls; BMI: body mass index. 
Variables Group-d Group-n Controls 

Gender (m:f) 12:7 12:10 13:7 

Age (years) 32.4 (8.6) 31.1 (8.0) 23.4 (3.0) 

Weight (kg) 83.9 (18.8) 81.4 (16.4) 70.8 (13.2) 

Height (cm) 179 (10) 174 (7) 176 (10) 

BMI (kg/m
2
) 25.6 (5.0) 26.1 (6.7) 22.7 (2.6) 

Hamstring tendon graft 16 19 N/A 

Bone -patella tendon-bone graft 3 3 N/A 

Post Surgery (months) 14.1 (4.4) 13.9 (5.5) N/A 

2) Experimental protocol 

Redundant retro-reflective markers (10 mm in diameter) were placed on major 

joint landmarks and lower extremity segments (19 on the thigh and 19 on the shank) 

according to previously reported studies (Gao and Zheng, 2010a, Gao and Zheng, 2008, 

Wang and Zheng, 2010b) (FIGURE 2.1). Five markers were placed on the pelvis (the left 
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and right anterior superior iliac spines, the left and right posterior superior iliac spine and 

the sacrum), which were used to predict the hip joint center using a previously reported 

method (Bell et al., 1990). A 10-camera motion capture system (MX-F40, VICON, 

Oxford UK) was used to record the motion data at 60 Hz while the subject was walking 

through a calibrated volume at their self-selected speed. Two floor embedded force 

platforms (OR6-6, AMTI, MA) were used to synchronously record ground reaction force 

at 1200 Hz, which would be used to determine the key frames of a gait cycle (Gao and 

Zheng, 2010a). A static trial (t-pose) was recorded with feet shoulder width apart and toes 

facing forwards at a neutral standing position as the reference posture. After the subjects 

were familiarized with the testing procedure, ten walking trials were recorded from each 

subject at a self-selected walking speed.  

3) Data analysis 

The motion data were initially low-pass filtered with a cut-off frequency of 6 Hz 

in order to get rid of high-frequency noise. The movement of thigh and shank during 

walking was determined using a previously reported approach (Gao and Zheng, 2010a). 

A MATLAB (MathWorks Inc., MA, USA) program was developed to retrieve the knee 

joint kinematics from the spatial coordinates of skin markers by using a least-square-

based algorithm (Spoor and Veldpaus, 1980, Veldpaus et al., 1988). The technique was 

validated by 6 fresh cadaveric lower extremities using intracortical bone pins, which had 

an accuracy of 0.71º (SD 0.43º) for flexion/extension (FE), 1.17º (SD 0.23º) for axial 

rotation (internal/external, IE), and 0.34º (SD 0.17º) for varus/valgus (VV) (Gao et al., 

2007). At t-pose,    of femur local coordinate system (LCS) pointed from the femur 

origin   , which was at the midpoint of femoral epicondyles, to the hip joint center.    
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was the cross product of     and the vector from the heel to the second metatarsal;    was 

the cross product of     and    .    of tibia LCS pointed from the ankle joint center 

(midpoint of medial and lateral malleoli) to tibia origin   which was at the midpoint of 

medial and lateral tibial plateau edges.   was the cross product of    and the vector from 

the heel to the second metatarsal;    was the cross product of    and    (Gao and Zheng, 

2010a).  By projecting the    onto the YZ plane of tibia LCS, the VV angle (φ) was 

determined as the intersection angle between the projection vector (     ) and   ; in the 

same way, the FE angle was the intersection between       and   ; and IE angle was the 

intersection angle between       and    (FIGURE 2.12)(Wang and Zheng, 2010b). The 

FE and VV angles were zero when the leg was completely straight (   was collinear 

with   ). Knee translations were expressed as the femur displacements relative to the 

tibia in tibial LCS. In order to group and compare knee joint motion at the same instant of 

a gait cycle, data was normalized from 0% at heel strike (HS1) to 100% at the next heel 

strike (HS2) of the same foot using linear interpolation (Helwig et al., 2011). The first 

heel strike (HS1) and toe off (TO) were detected by the force plates with a threshold of 

5% body weight; the second heel strike (HS2) was determined by a gait event detecting 

algorithm (Hreljac and Marshall, 2000). Good trials were selected using the following 

criteria: 1) No marker drops or marker missing for more than 4 consecutive frames, 2) 

Foot completely stepped inside the force plate, and 3) Trial was long enough to include 

two complete heel strikes for both legs. Joint motions from three good trials were 

averaged to represent each subject.  

Net external joint reaction moments were determined from an inverse dynamic 

model using previously reported anthropometry data (Winter, 1991). Knee adduction 
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moment was computed for each subject and expressed as the frontal plane component of 

the knee joint moment in the tibia local coordinate system and was normalized by the 

subject’s body mass (Wang and Zheng, 2010a). 

4) Statistical analysis 

All knees were categorized according to their dominance (dominant or non-

dominant) and status (reconstructed or uninvolved): dACLR and nUnInv from Group-d, 

and nACLR and dUnInv from Group-n. A mixed-effect ANOVA with two factors (SPSS 

Inc., Chicago, IL, USA) was used to compare the knee joint kinematics between 

reconstructed and uninvolved contralateral sides. The two factors used were the knee 

status (between-knees factor: reconstructed vs. uninvolved) and the time point (within-

knee factor: HS1, midstance, flexion valley, toe off, flexion peak and HS2). Measures of 

joint kinematic variables were compared bilaterally for group-d, group-n and healthy 

controls at neutral standing and at different time points along a gait cycle using one-way 

ANOVA. Root-mean-squares (RMS) of the bilateral differences over a gait cycle were 

also computed as a comprehensive evaluation of the kinematic asymmetry for each 

subject. Significance level of the statistical analysis was set at 0.05. 

3.1.3. Results 

There were no significant differences in all 3 rotations (p = 0.78 for FE, 0.45 for 

IE and 0.63 for VV) or 3 translations (p = 0.43 for AP, 0.25 for ML and 0.31 for SI) or 

external knee adduction moments (p = 0.57) between the dominant and contralateral 

knees for the control subjects during both static and dynamic trials. 

Group-n: The reconstructed (nACLR) knees were less extended than the 

uninvolved (dUnInv) knees throughout the whole stance phase (FIGURE 3.1 A), and the 

lower extension was statistically significant during the midstance phase (p = 0.02) and at 
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HS1 and HS2 (p = 0.01) (FIGURE 3.1 A). The involved knees had significantly (p = 

0.02) less lateral translation than their contralateral knees at the HS1
 
and the HS2 

(FIGURE 3.1 E). SI translation showed no significant bilateral difference, although there 

was a significant interaction between knee status and time point (p = 0.024) (FIGURE 3.1 

F). At neutral standing, the involved knees were in slight flexion (1.6 (SD 1.3º)) while the 

contralateral knees were in slight hyper-extension (-1.7 (SD 1.2º)), and the difference was 

statistically significant (p=0.015) (FIGURE 3.2).  
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FIGURE 3.1 Subplot A-C: knee joint rotation for dACLR, nUnInv, nACLR and dUnInv 

knees during a gait cycle; subplot D-F: knee joint translation during a gait cycle. Knee 

flexion, varus and internal tibia rotation were illustrated as positive values; anterior, 

medial and superior translations (femur relative to tibia) were illustrated as positive 

values. 
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Group-d: The involved (dACLR) knees had significantly greater (p=0.034) 

external tibial rotation than the uninvolved contralateral (nUnInv) knees at the midstance 

and right before toe off during stance phase and during the midswing phase (FIGURE 3.1 

B). The uninvolved knees exhibited varus offset (2.1º on mean) throughout the whole gait 

cycle, and the offset was significant during the middle and late stance phase and late 

swing phase (p=0.027) (FIGURE 3.1 C). Also the peak valgus rotations during stance 

phase were significantly greater (p=0.017) for the involved knees than the contralateral 

knees. The involved knees had significantly (p=0.031) lower external knee adduction 

moment (peak value: 0.35 (SD 0.16) Nm/kg) than their contralateral knees (peak value: 

0.46 (SD 0.15) Nm/kg) during stance phase (FIGURE 3.3). At neutral standing, the 

involved knees exhibited significantly greater external tibial rotation and valgus (IE: -0.2º 

(SD 0.2º), VV: -1.7º (SD 0.7º)) than the contralateral knees (IE: 0.1º (SD 0.1º), VV: 0.3º 

(SD 0.6º)) (FIGURE 3.2). The mixed-effect ANOVA showed no significant interaction 

between knee status and time point in translations or rotations.  
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FIGURE 3.2 Knee joint rotation angles for different groups at several key events. Int. rot 

@ flex peak of stance: the internal tibial rotation angle at the peak flexion instant of 

stance phase; Flexion valley: minimal flexion during middle stance phase; t-pose: neutral 

standing as the reference frame. Error bars represent the standard derivation. (*p<0.05 

student’s t test) 

 

 

 

For the varus and valgus of the knee, the RMS values of bilateral differences were 

significantly (p = 0.024) different between the two ACLR groups (FIGURE 3.4). Sixteen 

(13 with hamstring tendon graft and 3 with patellar tendon graft) out of the 19 dominant 

involved subjects had reduced varus rotation in the reconstructed knees compared with 

their uninvolved contralateral knees (-2.1º (SD 2.2º)), whereas no obvious trend was 

observed from non-dominant involved subjects (0.9º (SD 3.1º)). Bilateral differences of 

VV in Group-d were significantly different from those in Group-n throughout the whole 

stance phase (p = 0.021). 
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FIGURE 3.3 Knee adduction moment (exerted by shank) for dACLR, nUnInv, nACLR 

and dUnInv knees during a gait cycle. * denotes significant difference between dACLR 

and nUnInv (p<0.05). 

 

 

 

3.1.4. Discussion 

The results of this study supported the hypothesis that significantly different 

kinematics are developed between the subjects with dominant involved knees and 

subjects with non-dominant involved knees following ACL reconstruction and a 

rehabilitation program. The results of this study, therefore, demonstrate the effect of knee 

dominance on knee kinematic outcomes following ACL reconstruction.  

For the healthy control group, the same side-to-side knee joint kinematics 

reflected the same pre-injury starting point between the dominant and non-dominant 

knees. The sagittal plane rotation of the dACLR knees were restored to the normal level 

of the contralateral knees at the time of testing. Whereas 18/22 nACLR knees exhibited 

less extension during the mid-stance than their contralateral knees, which might be 

explained by a stiffening strategy involving less knee motion and higher muscle 

HS     FP1      FV       TO      FP2       HS  

* * 
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contraction to consistently stabilize their ligament in impaired knees (Hurd and Snyder-

Mackler, 2007). The reduced extension of nACLR knees was also found at their neutral 

standing position, which may be explained by an adaptation strategy preventing the ACL 

graft from being overstressed. The finding of extension deficit on the reconstructed knees 

was in line with previous studies (Gao and Zheng, 2010a, Gokeler et al., 2003, Hurd and 

Snyder-Mackler, 2007).  

 
FIGURE 3.4 Root mean square of bilateral differences of knee joint VV rotation over a 

gait cycle. The shade area denotes the 95% confidence interval of the mean. The dACLR 

knees showed a statistically significant valgus offset of -2.4 ± 2.3º (p<0.01) relative to 

nUnInv knees, whereas no systematic difference existed between nACLR and dUnInv. 
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et al., 2010, Tashman et al., 2007). On the other hand, the axial tibial rotation of nACLR 

knees was not significantly different from their contralateral knees. These differences 

suggest that different compensatory motion patterns were developed between Group-n 

and Group-d patients. According to a study by Brady and coworkers (Brady et al., 2007), 

an increase in initial graft tension might cause the tibia to rotate externally. However, in 

this study, all surgeries using hamstring tendon grafts and patellar tendon grafts were 

performed respectively by the same surgeon and patients went through similar aggressive 

rehabilitation programs; thus, the graft tension should not be significantly different 

between the two groups. Differences in axial rotation may correlate with progressive 

cartilage degeneration and the development of arthritis. Previous morphological studies 

have demonstrated the histological and morphological variation of knee joint articular 

cartilage at different locations (Quinn et al., 2005, Thambyah et al., 2006). Stergiou and 

coauthors suggested that the altered tibiofemoral rotation would change the load 

distribution and might place joint loadings onto non-weight bearing regions of the 

articular cartilage which could initiate cartilage breakdown (Stergiou et al., 2007). 

Therefore, the altered tibia rotation (relative to uninvolved contralateral knees) may cause 

degenerative changes in meniscus and articular cartilage in the long term (Andriacchi and 

Dyrby, 2005, Lohmander et al., 2004).  

The increased varus rotation of the uninvolved knees for Group-d subjects was 

contradicted by a previous finding where the reconstructed knees were more varus than 

their contralateral knees during downhill running (Tashman et al., 2007). The discrepancy 

may be explained by the fact that level walking is much less intensive than downhill 

running, which may initiate different neuromuscular control patterns in the lower 
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extremities. The result was also inconsistent with another study where no difference was 

found in varus rotation compared with the contralateral knee for patients with hamstring 

tendon graft (Webster and Feller, 2011). This difference may be explained by the fact that 

all subjects (9/18 were dominant side involved) were grouped together in that study. 

Medial compartment osteoarthritis is a common knee joint disease that can result from 

undue force on the medial compartment. The valgus offset  in dominant involved knees 

would be helpful in maintaining the joint space at the medial side by more evenly 

distributing the loading across the medial and lateral compartments (Adili et al., 2002). It 

may also be protective to shift the trunk’s center of gravity closer to the uninvolved leg, 

which would reduce the weight bearing stress on the involved knee. Adduction moment 

is directly related to the loading of the medial knee compartment (Zhao et al., 2007), thus 

the smaller peak adduction moment in this study may help to relieve the medial 

compartment loading for dominant reconstructed knees. For Group-n subjects, the knees 

had no difference in varus between two sides during stance phase, which was consistent 

with a previous investigation (Scanlan et al., 2010). Previous studies reported no relevant 

bilateral differences in knee kinematics for healthy population (van der Harst et al., 2007, 

Petschnig et al., 1998), which was further confirmed by 20 healthy subjects during level 

walking in the current study. It may be concluded that the bilateral balance of knee joint 

kinematics was affected by ACL injury and reconstruction.  

There were several limitations in the study. First, all the ACL patients had 

relatively short post-surgery intervals, so the findings may not be applicable to long-term 

post-surgery ACLR population. Second, when interpreting the findings of this study, it is 

important to note that two types of ACL grafts (hamstring tendon and patellar tendon, 
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half allograft) were used. In this study, the subject number of each graft type was 

matched (hamstring tendon 16 vs.19, patellar tendon 3 vs. 3) between the two groups and 

the factor of graft type was not considered. It was supported by previous studies that the 

graft type may not have an important effect on the knee performance after ACL 

reconstruction (Moraiti et al., 2009, Spindler et al., 2004). Also the consistent results of 

dACLR knees (13/16 of the subjects with hamstring tendon graft and all the subjects with 

patellar tendon graft showed valgus offset on the reconstructed knees) suggested that the 

effect of graft type was minimal. Third, the anthropometry (height, weight) of the control 

subjects were different from that of the ACL patients, and we assumed that the finding of 

no dominance effect on knee joint kinematics among the healthy subjects would predict 

the pre-injury situation for the ACL patients.  

3.1.5. Conclusion 

The study showed that the lower limb dominance has significant effects on knee 

joint kinematics following ACL reconstruction and rehabilitation, especially in varus and 

internal tibial rotation. These motion changes could alter the normal contacting and 

loading on articular cartilage, which may contribute to the development of knee 

osteoarthritis. Considering the lower limb dominance may help explain variability in 

ACL reconstruction outcomes and may lead to changes in ACL techniques and 

rehabilitation programs that may improve upon outcomes.  

3.2. Knee Joint Stability Following ACL-reconstruction Using Transtibial Technique 

during Downstairs Pivoting 

It has been shown in the previous section that tibial rotation has not been fully 

restored by traditional single-bundle ACL reconstruction during walking. Downstairs 

turning, a more demand frequently engaged activity, may provide insightful information 
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to evaluate the function of single bundle. This study was submitted to the International 

Journal of Sports Medicine for consideration of publication on May 23, 2012. The work 

on healthy controls is published in the International Journal of Sports Medicine, 2010 Oct; 

31(10): 742-746 (Wang and Zheng, 2010a). 

3.2.1. Introduction 

The balance of knee joint mobility and stability has been broken after anterior 

cruciate ligament (ACL) rupture, which leads to abnormal joint movements during 

dynamic activities (Andriacchi and Dyrby, 2005, Gao and Zheng, 2010a, Georgoulis et 

al., 2003, Li et al., 2006). A reconstruction surgery, which aims to restore joint stability 

using a replacement graft, is regularly recommended by orthopedic surgeons (Woo et al., 

2005). Although reconstruction surgery is an effective treatment to restore the knee 

function, it does not necessarily restore the normal knee moment after the surgery and 

rehabilitation. Abnormal kinematics were observed, especially for the rotation on 

nonsagittal planes, during daily and high demanding sports activities (climbing stairs, 

pivoting, cutting, jump and land, etc.) (Gao and Zheng, 2010a, Lam et al., 2011, Scanlan 

et al., 2010, Stergiou et al., 2007, Webster et al., 2012, Ristanis et al., 2003, Ristanis et al., 

2006, Ristanis et al., 2005, Gao et al.). The abnormal knee rotation could alter the normal 

cartilage contacting and loading which may increase the risk of cartilage degenerative 

diseases in the long term. 

Most ACL reconstruction techniques have focused on reproducing the 

anteromedial bundle of the native ACL. In those techniques, the single-bundle graft is too 

close to the central axis of the tibia and femur that makes it insufficient for resisting 

rotational loads (Woo et al., 2005). The in situ forces in single-bundle graft under 
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rotational knee loading were range from 45% to 61% of those of the intact knees (Woo et 

al., 2002), which indicated the insufficiency. Marked inconsistencies in the type of 

rotational changes were reported across studies. During walking some studies found an 

increase in internal tibial rotation (Gao and Zheng, 2010a, Georgoulis et al., 2003), while 

a decrease in internal tibial rotation was reported in other studies (Scanlan et al., 2010, 

Webster and Feller, 2011). In recent years, concerns have been raised about the success 

of single-bundle techniques in stabilizing axial tibial rotation during high demanding 

activities like downstairs pivoting and jump-to-landing (Chouliaras et al., 2007, 

Georgoulis et al., 2007, Misonoo et al., 2012, Ristanis et al., 2003, Ristanis et al., 2006, 

Ristanis et al., 2005, Tsarouhas et al., 2010, Webster et al., 2012). 

Making a turn is a common daily activity which, on average, happens twice in 

every 10 steps during daily living (Sedgman, 1994). In daily living, the supporting foot is 

sliding on the floor when making a sharp (≥90º) direction change (Wang and Zheng, 

2010a). However, in previous studies, which investigated the tibial rotation during 

pivoting, the supporting foot was planted on the ground that allowed no foot sliding 

during the task (Chouliaras et al., 2007, Georgoulis et al., 2007, Webster et al., 2012, 

Ristanis et al., 2003, Ristanis et al., 2006, Ristanis et al., 2005). Thus, the planted foot 

position in previous studies would trigger excessive tibial rotation which may not reflect 

the situation of daily turning activities.  

Therefore, the purpose of this study was to evaluate the function of transtibial 

single bundle technique in stabilizing the knee joint during downstairs turning without 

any external constraint to the foot. A group of subjects who had undergone unilateral 

ACL-reconstruction were tested. It was hypothesized that on the nonsagittal planes the 
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knee rotation and moment have not been fully restored by using transtibial single-bundle 

ACL-reconstruction technique.  

3.2.2. Material and methods 

1) Participants 

We recruited thirty subjects (28 right dominant, 2 left dominant) who had 

undergone unilateral ACL reconstruction and had no other history of serious lower limb 

injury. All surgeries were performed arthroscopically by a single experienced surgeon 

using traditional transtibial single-bundle technique. Hamstring tendon (semitendinosus 

with gracilis enforcement, STG) grafts were used in all subjects. Tibial interference screw 

and femoral endobutton were used for graft fixation. Tunnel locations and graft fixation 

of a typical patient are shown on x-ray images in FIGURE 3.5. All subjects completed 

their rehabilitation program and were released for daily activities. Six of them were still 

not confident in completing a 90º downstairs pivot turning at the time of testing. Another 

four subjects (all of which were obese, body mass index>33) tilted their torso to one side 

when descending stairs, and were excluded from data analysis. For the remaining 20 

subjects, half of them had ACL reconstruction on their dominant side (TABLE 3.2). Ten 

healthy subjects (with similar body type as ACL patients) with no lower extremity 

injuries or functional disorders were selected as the control group (TABLE 3.2). The 

study was conducted following an IRB approved protocol and signed consent form was 

obtained from each subject before testing.  
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FIGURE 3.5 Front and lateral radiographs of a typical patient taken 3 months after ACL-

reconstruction surgery using transtibial single-bundle technique. 

 

 

 

In our foregoing study of healthy people, the side by side difference was found 

from knee rotation and loading during downstairs turning (Wang and Zheng, 2010a). It is 

possible that some important information could be overshadowed if we group all ACL-

patients together. Therefore, subjects were divided into two groups (Group-d and Group-

n) according to the dominance of the involved leg which was determined by ball kicking 

and confirmed with the subjects afterwards. The subjective IKDC scores were not 

significantly different (p = 0.67) between groups at the time of testing (TABLE 3.2). 

Subjects with chondral lesions, posterior cruciate or collateral ligament tears were 

excluded from this study. None of the subjects had diagnosed radiographic or 

symptomatic OA. No statistically significant differences were found in post-surgery time, 

body weight, height, and body mass index (BMI) between these two groups (TABLE 3.2). 

Femur fixation 
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TABLE 3.2 Demographics (mean (SD)) of patients with ACL reconstruction on the 

dominant side (Group-d) and patients with ACL reconstruction on the non-dominant side 

(Group-n) and the healthy controls; BMI: body mass index. 
Variables Group-d Group-n Controls 

Age (years) 31.4 (8.1) 33.9 (7.8) 22.8 (2.8) 

Weight (kg) 77.6 (17.0) 81.6 (16.0) 73.8 (19.2) 

Height (m) 1.75 (.11) 1.75 (.05) 1.76 (.13) 

BMI (kg/m
2
) 24.8 (4.7) 26.7 (5.3) 23.5 (2.9) 

Post Surgery (months) 12.4 (6.2) 15.8 (8.3) N/A 

IDKC subjective knee evaluation 72.4 (10.7) 72.9 (10.3) N/A 

2) Experimental protocol 

Redundant retro-reflective markers (10 mm in diameter) were placed on the shank 

and thigh including major bony landmarks according to a marker set described in our 

previous studies (Gao and Zheng, 2010a, Wang et al., 2012, Wang and Zheng, 2010a, 

Wang and Zheng, 2010b, Gao et al., 2012). Briefly, nine markers were placed on the 

medial and lateral femoral epicondyles, the medial and lateral ridges of the tibial plateau, 

the medial and lateral malleoli, the tibial tuberosity, the second metatarsal head and the 

heel. Five markers were placed on the pelvis (the left and right anterior superior iliac 

spines, the left and right posterior superior iliac spine and the sacrum), which were used 

to predict the hip joint center using a previously reported method (Bell et al., 1990). A 

10-camera motion capture system (MX-F40, VICON, Oxford UK) was used to record the 

motion data at 60 Hz while the subject was walking through a calibrated volume at their 

self-selected speed. The system was calibrated following manufacturer’s standard 

procedure in NEXUS™ software (VICON, Oxford UK) prior to each motion capture 

session. A floor embedded with force platforms (OR6-6, AMTI, MA) was used to 



81 

synchronously record ground reaction force at 1200 Hz. A threshold of 5% body weight 

was used to determine the initial foot contact time (IC) and toe-off time (TO) of the 

turning process.  

Subjects were allowed to acclimate to the lab environment and the test procedure. 

Practice was suggested before data collection. A neutral standing trial (t-pose) with feet 

shoulder width apart and toes facing forward was recorded to be used as a reference 

position. Then subjects were instructed to walk down a custom-made staircase and make 

a 90  turn around the ipsilateral leg immediately after the foot makes contact with the 

ground (FIGURE 3.6). The iplsilateral foot was free to move while the subject turns. The 

stairs was built following regular building stairs with tread and riser lengths of 0.3 m and 

0.195 m, respectively. Five trials were recorded respectively from each side (land on the 

left foot and turn to left, and land on the right foot and turn to right) at their normal speed 

(FIGURE 3.6). 

 
FIGURE 3.6 Subject turns to the same of the supporting leg (left turn shown). IC – initial 

contact, TO – toe off. 
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3) Data analysis 

The motion data were low-pass filtered with a cut-off frequency of 6 Hz in order 

to get rid of high-frequency noise. The knee joint movement during walking was 

determined from skin markers following a previously reported procedure (Gao and Zheng, 

2010a, Wang et al., 2012, Wang and Zheng, 2010a). The technique was validated by 6 

fresh cadaveric lower extremities using intracortical bone pins, which had an accuracy of 

0.71º (SD 0.43º) for flexion/extension (FE), 1.17º (SD 0.23º) for axial rotation 

(internal/external, IE), and 0.34º (SD 0.17º) for varus/valgus (VV) (Gao et al., 2007). 

Inverse dynamics was used to calculate external joint moments (Andriacchi et al., 2005). 

using the previously reported anthropometry data (Winter, 1990). A custom-developed 

MATLAB (R2008a, MathWorks Inc., Natick, MA, USA) program was used to perform 

the kinematic and kinetic analysis. 

The profile of axial tibial rotation, knee varus/valgus rotation, internal/external 

moment, and adduction-abduction moment were identified and normalized to 0-100% 

stance phase from IC to TO. Three good trials were blindly picked out and the ensemble 

average was used to represent each subject. Moments were normalized by each subject’s 

height (m) multiplied by body mass (kg). One way ANOVA and Tukey’s post hoc tests 

were used to test the difference of each variable between the dominant knees (dACLR: 

dominant ACL-reconstructed vs. dACLI: dominant ACL-intact vs. dControl: dominant 

healthy controls) and between the non-dominant knees (nACLR vs. nACLI vs. nControl) 

in SPSS™ (v16, Chicago, IL, USA). A student’s t-test was performed to compare the 

bilateral difference (ACLR minus ACLI) of the first peak varus rotation and adduction 
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moment to test the effect of leg dominance. Significance level of the statistical analysis 

was set at 0.05. 

3.2.3. Results 

Transverse plane: On the dominant side, after ACL reconstruction (dACLR) the 

mean internal tibial rotation was significantly smaller (p<0.03) than that of dACLI knees 

at early and middle stance (FIGURE 3.7 A). On the non-dominant side, the internal tibial 

rotation was increased following ACL-reconstruction during the middle and later stance  

 
FIGURE 3.7 Knee rotation and moment on the transverse plane from the initial contact 

(IC) to the toe off (TO) during downstairs turning. Dominant and non-dominant knees 

were plotted separately. Error bar denotes ±1 standard deviation of the control group. *p 

< 0.05. 
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(FIGURE 3.7 B), although it was not statistically significant. The moment curves of the 

ACLR and ACLI were ‘swapped’ to each other between the dominant and non-dominant 

limbs in relative to the control curves (FIGURE 3.7 C-D). 

Frontal plane: On the dominant side, significantly greater (p<0.025) varus rotation 

was observed from the dACLR knees compared to the dACLI knees at early stance 

(FIGURE 3.8 A). On the non-dominant side, both the nACLR and nControl knees had 

significantly less (p<0.02) varus rotation than the nACLI knees around early and late 

stance phase (FIGURE 3.8 B). Significantly reduced (p<0.05) external knee adduction 

moments were also found from the nACLR knees compared to that of nACLI knees 

around the 1
st
 and 2

nd
 peaks. The bilateral difference (ACLR minus ACLI) of 1

st
 peak 

adduction moment was significantly greater for group-d subjects (-0.10 ± 0.10 

Nm/(kg*m)) than that of group-n subjects (0.01 ± 0.09 Nm/(kg*m)) (p<0.01), as shown 

in FIGURE 3.9; the bilateral difference of the peak varus rotation was also significantly 

greater for group-d (-1.5 ± 2.2º) than that of group-n (0.3 ± 1.9º) (p=0.02). 
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FIGURE 3.8 Knee rotation and moment on the frontal plane from the initial contact (IC) 

to the toe off (TO) during downstairs turning. Dominant and non-dominant knees were 

plotted separately. Error bar denotes ±1 standard deviation of the control group. *p < 0.05. 

 

 

 

3.2.4. Discussion 

Although the axial tibial rotation of the ACL-reconstructed knees had been 

basically restored, significant malalignment in the frontal plane was found in group-d 

subjects during downstairs turning. The findings proved the hypothesis that the knee 

motion had not been fully restored by single-bundle ACL-reconstruction on the frontal 

plane. The findings also indicated that the dominant knees had developed different 

motion patterns from the non-dominant knees following ACL-reconstruction.  

On the transverse plane, the increased internal tibial rotation in dominant ACL-

intact knees and non-dominant ACL-reconstructed knees, which were from the same 

group of subjects (group-n), suggested that for the group the axial rotation of both the 
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ipsilateral and contralateral knees had been changed. The alteration in the contralateral 

knees was even greater than that in the involved knees, which may be due to a self-

protective strategy. The finding of the increased internal tibial rotation was in agree with 

previous studies which found an excessive internal tibial rotation during pivoting 

following walking downstairs (Chouliaras et al., 2007, Georgoulis et al., 2007, Ristanis et 

al., 2003, Ristanis et al., 2006, Ristanis et al., 2005). In this study, the statistical 

insignificance of the internal rotation offset for nACLR knees indicated that the single 

bundle ACL graft may be capable of limiting the internal knee twisting during daily 

downstairs turning, in which the foot position was not constrained. On the other side, the 

axial tibial rotation had been mainly restored for group-d subjects. The dominant ACL-

reconstructed knees actually exhibited a reduced mean internal tibial rotation compared 

to the controls during early and middle stance, which was in line with previous studies 

(Webster et al., 2012, Tsarouhas et al., 2010). The inconsistent results between these two 

groups suggested that the limb dominance needs to be considered in the future when 

selecting the tunnel location or setting-up rehabilitation programs. 
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FIGURE 3.9 Boxplot of the bilateral difference (ACLR minus ACLI) of the first peak 

varus rotation and the first peak external knee adduction moment with whisker length in 

1.5 units of interquartile range (IQR). + Outliers. 

 

 

 

On the frontal plane, the dominant reconstructed knees had greater varus rotation 

and a little higher adduction moment compared to the controls. This indicated the 

existence of dynamic instability on the frontal plane after ACL-reconstruction on the 

dominant side. With a more varus position, the lateral compartment of the knee joint 

tends to be more separated while the medial compartment tends to be more compressed. 

This could cause much higher stresses on the medial compartment of cartilage and 

menisci. A previous study to a patient with an instrumented knee prosthesis found that the 

increase in knee adduction moment corresponded to an increase in medial contact force 

(Erhart et al., 2010); a similar results was also found in another study by using an 

analytical knee model (Crenshaw et al., 2000). Thus, the adduction shift of the moment 

curve on the dominant reconstructed knee could increase the contact force on the medial 

compartment. The increased contacting force provided a potential explanation why ACL 

patients are at a higher risk of premature osteoarthritis (OA) in the reconstructed knees 

(Andriacchi and Mundermann, 2006, Daniel et al., 1994, Lohmander et al., 2004, Seon et 
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al., 2006, Sharma et al., 1998). By watching the profiles of varus rotation and adduction 

moment, it was noticed that a decrease in varus rotation related with a reduction in 

external knee adduction moment. 

An earlier study found that ACL was also a primary restraint to valgus laxity 

(Inoue et al., 1987), which was consistent with another study that the valgus rotation was 

significantly increased by 123% after the ACL was transected (Woo et al., 2005). 

Previous study found that the ACL was also important in resisting abduction torque when 

the knee was close to full extension (Fukuda et al., 2003). In this study however, varus 

offset was found in dominant ACL-reconstructed knees, which may indicate the ACL-

graft in our dominant involved patients resulted in an over-correction to the valgus laxity. 

Shimokochi and Shultz found that the ACL loading was high when a valgus load was 

combined with internal rotation as compared with external rotation, and the excessive 

valgus knee moment during sports activities also increased the ACL loading (Shimokochi 

and Shultz, 2008). In this study, the abduction offset in non-dominant ACL-reconstructed 

knees therefore may increase the ACL loading. The different inter-group bilateral 

differences in knee varus rotation and adduction moment further proved the existence of 

the dominance effect on knee performance after surgery. 

Most single-bundle ACL reconstruction techniques have focused on reproducing 

the anteromedial (AM) bundle, however, recent studies revealed that the in situ force in 

posterolateral (PL) bundle was also significant (>30% of the total ACL force) which is 

also important for rotational stability (Gabriel et al., 2004). Therefore, single-bundle has 

been recognized as the ‘prime suspect’ for the increased knee laxity. It was suggested that 

more anatomic reconstruction techniques may better stabilize the knee rotational stability. 
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Lam et al. found that the knees with double-bundle ACL-reconstruction exhibited a 

restored axial tibial rotation during pivoting task (Lam et al., 2011). However, other 

studies found that both single- and double- bundle resulted in a dynamic overcorrection 

to the axial tibial rotation, and it found that double-bundle ACL reconstruction did not 

reduce knee rotation further compared with the single-bundle reconstruction technique 

(Tsarouhas et al., 2010, Tsarouhas et al., 2011, Misonoo et al., 2012). According to the 

findings of this study, the contralateral knees exhibited even more alteration than the 

involved knees did. Given the fact that the contralateral knees were completely injury 

free, the changes in dynamic stability should mainly come from the adaptation of 

neuromuscular control system. Therefore, physicians should also give enough attention to 

maintain the motor function of the contralateral limbs in rehabilitation training. We 

should be more cautious when using the contralateral limbs instead of healthy subjects as 

the control group in ACL study. 

The finding of valgus offset in dACLR knees compared to their contralateral 

knees was consistent with a foregoing study of level walking (Wang et al., 2012), in 

which the nACLI knees has significantly greater varus rotation than the other knees 

(dACLR, dACLI and nACLR) during the stance phase of walking. This suggested that 

the similar kinematic alteration had been maintained during walking and the relatively 

more demand downstairs turning activities. Unfortunately, no literature was found which 

investigated the knee stability on the frontal plane after ACL reconstruction during 

downstairs turning activity.   

Several limitations need to be acknowledged in this study. First, the post-surgery 

time was relatively short for some patients (7 less than 12 months), thus the ACL graft-
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tunnel healing might not have completed yet. The contralateral limb might have 

developed compensatory strategies to protect the involved limb or/and the contralateral 

limb may become weak without doing enough exercise during the rehabilitation, which 

potentially explain the marked alteration in knee motion and moment on the contralateral 

side. Second, our sample size (10 ACL patients for each group) was relatively small, 

which may not be large enough to undercover some significant differences. This may 

explain why some differences were on the border of statistically significant (p-values 

were between 0.05 and 0.07). Strengths of the present study include the use of a healthy 

control group, the same surgeon, the same surgical technique and the similar 

rehabilitation protocol for every patient. 

3.2.5. Conclusion 

This study investigated the knee rotation and moment on the nonsagittal planes 

during downstairs turning. Normal axial tibial rotation had been mainly restored by using 

transtibial single-bundle ACL-reconstruction; however an increased varus rotation was 

found from the dominant ACL-reconstructed knees which may increase the stresses in 

articular cartilage on the medial compartment. There were even more alterations in knee 

joint motion and moment that had been identified from the contralateral knees. Although 

it is unclear whether the alteration in the contralateral knees will persist for a long term, 

the short term results still highlights the issues in the current rehabilitation protocol. By 

grouping the subjects according to the dominance of the involved limb, this study proved 

that the limb dominance plays as an important factor in knee postsurgical outcomes after 

ACL-reconstruction surgery. 
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3.3. Summary 

In this this chapter, we investigated the knee joint kinematics and kinetics for 

transtibial ACL patients during the most engaged level walking. The results show that the 

knee joint kinematics has been bilaterally altered after ACL reconstruction during 

walking, especially for the secondary rotations. The findings demonstrated that lower 

limb dominance had a significant effect on postsurgical knee kinematics. This chapter 

also investigated the knee performances during downstairs pivoting which is the more 

challenging daily activity. The findings suggest that the normal kinematics on the frontal 

plane has not been fully restored by ACL-reconstruction, especially for those with 

dominant leg involved. The findings demonstrate that lower limb dominance effect does 

exist in postsurgical knee performance which should be considered during rehabilitative 

therapy. 

The hypotheses that 1) knee joint kinematics has not been fully restored after 

ACL-reconstruction and 2) individuals with unilateral ACL reconstruction on dominant 

side developed significantly different motion pattern at the knee joint from those with 

ACL reconstruction on non-dominant side has been proved.  

 



 

CHAPTER 4: DOES THE ANTEROMEDIAL PORTAL TECHNIQUE IMPROVE 

POSTSURGICAL KNEE PERFORMANCE? 

 

 

The following hypothesis was tested in this chapter: by using the anteromedial 

portal ACL-reconstruction technique, the knee joint kinematics and kinetics have been 

improved compared to those of the knee joint with ACL-reconstruction by using the 

traditional transtibial technique during low demand level walking and high demand 

downstairs pivoting. 

4.1. Knee Joint Stability Following ACL-reconstruction Using Anteromedial Portal 

Technique during Level Walking  

The more anatomic single bundle ACL reconstruction is thought of as a 

practicable alternative to the complicated double-bundle ACL reconstruction for a more 

stable and functional knee. However, few studies have presented convincing evidence 

showing that the outcomes of the knee joint during daily activities were exceling when 

using the anteromedial portal technique. In this chapter, the surgical technique was 

evaluated by comparing the spatial and temporal parameters of knee joint motion for 

ACL patients to those of the healthy controls. 

4.1.1. Introduction 

Anterior cruciate ligament (ACL) reconstruction has become a commonly 

performed surgery in recent decades. Transtibial (TT) technique, in which the femoral 

tunnel is drilled through the pre-drilled tibial tunnel, has been widely used in endoscopic 

single bundle ACL reconstruction (Duquin et al., 2009). By using this technique, it is 
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possible to further reduce the operative time and surgical trauma in a single-incision 

arthroscopic surgery (Kopf et al., 2010). However, it has been postulated recently that the 

TT technique fails to place the bone tunnels within the insertion sites of the native ACL, 

especially on the femoral side (Arnold et al., 2001, Chhabra et al., 2006, Heming et al., 

2007, Kopf et al., 2010). The non-anatomical tunnel position may lead to abnormal 

postsurgical knee kinematics (Gao and Zheng, 2010a, Scanlan et al., 2010, Loh et al., 

2003, Scopp et al., 2004) and a high rate of post trauma osteoarthritis after ACL-

reconstruction (Daniel et al., 1994, Lohmander et al., 2007, Lohmander et al., 2004). 

Given that the non-anatomical tunnel position is a frequent cause of surgical 

failure (Tudisco and Bisicchia, 2012, Johnson et al., 1996, Kohn et al., 1998, Scopp et al., 

2004), the double-bundle ACL reconstruction emerged which replicates the anatomy of 

the native ACL. Unfortunately, the advantages of the double-bundle technique are 

controversial. It was found that the double-bundle reconstruction resulted in better knee 

functions (Sadoghi et al., 2011) and anterior-posterior stability (Muneta et al., 1999). 

However, the results of another study suggested that the double-bundle reconstruction 

may not better control knee rotation in knee stability tests (Meredick et al., 2008). 

Tsarouhas et al. did not find the exceling rotational stability from patients with double-

bundle reconstruction compared to those with single-bundle reconstruction during 

pivoting maneuver (Tsarouhas et al., 2010, Tsarouhas et al., 2011). There are intense 

debates over the necessity of performing double-bundle ACL reconstruction because it 

increases the operational complexity (Brophy et al., 2009, Meredick et al., 2008) without 

convincing evidences for better clinical outcome.  
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Anteromedial portal (AMP) femoral tunnel drilling technique yields a more 

anatomical placement of the femoral tunnel without increasing operative complexity 

compared to the TT technique (Gavriilidis et al., 2008, Kopf et al., 2010, Steiner, 2009, 

Dargel et al., 2009). Nowadays, more surgeons resort to the AMP technique for drilling 

the femoral tunnel in single bundle ACL-reconstruction (Trikha, 2012). Previous studies 

also showed that the AMP technique improved the knee stability compared to the 

traditional TT technique (Alentorn-Geli et al., 2010a, Alentorn-Geli et al., 2010b, 

Tudisco and Bisicchia, 2012, Sadoghi et al., 2011). In those studies, the routine tests of 

knee stability (KT-1000 testing, Lachman test, pivot shift test, etc.), which are based on 

knee joint passive response to static and non-weight bearing situations, do not necessarily 

reflect physiological loading conditions (Brandsson et al., 2002, Papannagari et al., 2006, 

Pollet et al., 2005, Borjesson et al., 2005). Level walking has been used as the more 

relevant ambulatory activity for understanding the etiology of OA (Miyazaki et al., 2002, 

Andriacchi et al., 2009, Andriacchi and Mundermann, 2006, Andriacchi, 2004). 

Therefore, a well-designed study of joint kinematics is warranted to characterize 

the potential benefits of the AMP techniques for improving stability of the knee. In this 

study, we reported the postsurgical knee joint kinematics for two groups of ACL patients 

who received single-bundle ACL reconstruction using the TT and AMP technique, 

respectively. The spatial and temporal parameters of knee joint motion for ACL patients 

will be compared to those of the healthy controls. The hypothesis was tested that there 

was no significant difference in six-degree-of-freedom postsurgical knee kinematics 

between subjects with ACL reconstruction using the AMP technique and the TT 

technique. 
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4.1.2. Material and methods 

Fourteen patients with unilateral ACL reconstruction were recruited from the 

same center of OrthoCarolina. All the patients received surgeries from the same 

orthopedic surgeon between August 2010 and September 2011. The study was conducted 

following an IRB approved protocol and informed consent was obtained from each 

subject before testing. Twenty healthy subjects with no history of lower extremity 

injuries or functional disorders were recruited to test the pre-injury status of knee joint 

kinematics (TABLE 3.1). Eight subjects underwent ACL reconstruction on their 

dominant side (Group-d) and six subjects underwent ACL reconstruction on their non-

dominant side (Group-n). Patients with chondral lesions, posterior cruciate or collateral 

ligament tears were excluded from this study. Hamstring tendon grafts were used in both 

groups according to the surgeon’s preference. There was no significant difference in post-

surgery time, body weight and height between the two sub-groups (TABLE 4.1). At the 

time of testing, patients were at least 4 months post-operative from surgery (~8 months in 

average) and had received permission to perform all daily activities from their treating 

physician. The involved knees’ KT-1000 measurements did not differ significantly (p = 

0.8) among groups. None of the subjects had diagnosed radiographic or symptomatic OA. 

No statistically significant differences in post-surgery time (p = 0.44), body weight (p = 

0.61), height (p = 0.82), and body mass index (BMI) (p = 0.62) were found between these 

two groups (TABLE 4.1). The lower limb dominance was determined by ball kicking and 

confirmed with subjects afterwards (Porac and Coren, 1981). 
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TABLE 4.1 Demographics (mean (SD)) of patients with ACL reconstruction on the 

dominant side (Group-d) and patients with ACL reconstruction on the non-dominant side 

(Group-n) and the healthy controls; BMI: body mass index 
Variables Group-d Group-n Controls 

Gender (m:f) 3:5 4:2 13:7 

Age (years) 29.2 (6.2) 31.2 (8.6) 23.4 (3.0) 

Weight (kg) 83.1 (10.7) 85.5 (24.5) 70.8 (13.2) 

Height (cm) 172 (8) 174 (9) 176 (10) 

BMI (kg/m
2
) 27.9 (2.1) 27.9 (5.8) 22.7 (2.6) 

Hamstring tendon graft 8 6 N/A 

Post Surgery (months) 7.8 (4.0) 9.0 (4.6) N/A 

The motion tests of the AMP patients were following the exact same procedure as 

the transtibial patients. The knee joint rotations and translations were expressed in the 3 

anatomical planes of tibia. A gait cycle was normalized to 0-100% from heel strike to 

heel strike, and the mean of 3 good trials was used to represent each subject. Inter-

segmental external joint moments and resultant forces were calculated using an inverse 

dynamics approach, and represented in the tibial local coordinate system (Andriacchi et 

al., 2005). The external knee moment includes the moment about the joint center created 

by the ground reaction force and inertial forces. It is equal and opposite in direction to the 

internal joint moment which is created by muscle contraction, ligament pulling and joint 

contact, etc. Moments and forces were normalized by body mass times height (expressed 

in (H*W) %). 

Due to the relatively small sample size of AMP subjects, the dominance was not 

considered this time. Together with the transtibial patients, all knees were categorized 

into three groups according to their status: ACLR using anteromedial, ACLR using 
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transtibial and the control group. Comparisons were made between 3 groups by using one 

way ANOVA (SPSS, IL, USA), and the significance level was set at 0.05. For tests of 

significant omnibus F result, a pos-hoc analysis test was performed using Tukey’s 

honestly significant difference (HSD) procedure. 

4.1.3. Results 

1) Rotations 

On the sagittal plane, the knees using the AMP technique had more flexion 

throughout the whole gait cycle, compared to other two groups (FIGURE 4.1 A). The 

flexion offset was significant at heel strike and flexion valley (FV). The average 

extension loss at FV was about 4.5º (5.9º vs. 10.2º of the healthy controls). On the 

transverse plane, multiple significant differences were observed in axial tibial rotation 

between the transtibial knees and healthy controls, especially during the weight bearing 

stance phase (FIGURE 4.1 B). The ACLR knees using the transtibial technique exhibited 

more internal tibial rotation with an average offset of 2º during the stance phase. On the 

other hand, by using the transportal approach, the axial stability was improved, and 

significant differences were only observed at the heel strikes. On the frontal plane, 

transtibial knees had varus offset compared to the healthy controls, although it was not 

statistically significant during the weight bearing stance phase (FIGURE 4.1 C). For the 

AMP knees, however, the profile was shifted in valgus direction which yielded a valgus 

offset compared to the healthy controls. The offset was not statistically significant either. 

There was significantly less valgus rotation at flexion peak during the swing phase. 
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2) Translations 

In anteroposterior direction, the profiles were close to each other during the stance 

phase. However, the transtibial knees started to exhibit excessive anterior femoral 

translation after TO. The anterior translation was significantly greater for the transtibial 

knees than that of healthy controls around FP (FIGURE 4.1 D). For the AMP knees, the 

normal anteroposterior translation was restored. In the mediolateral direction, the normal 

translation was mainly restored by using either reconstruction technique, except for a 

significant difference at HS between AMP knees and healthy controls (FIGURE 4.1E). In 

the superior-inferior direction, the transtibial knees exhibited greater inferior femur 

translation than the healthy controls during the stance phase. The inferior offset was 

largely reduced by using AMP technique during the stance phase.  
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FIGURE 4.1 Knee rotations and translations during a gait cycle. HS-heel strike, FP1-

flexion peak during stance phase, FV-flexion valley, TO-toe off, FP2-flexion peak during 

swing phase. Translations represented the displacement of femoral origin in tibial ACS. 
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3) Timing of key events 

The timings of six key events were determined for each group, including CTO-

contralateral leg toe-off, FP1-the 1
st
 flexion peak during mid-stance, FV-flexion valley, 

CHS-contralateral heel strike, TO-toe off, FP2-the 2
nd

 flexion peak during swing phase 

(FIGURE 4.2). They were expressed in percentages of gait cycle (from HS-0% to HS-

100%). FP1, FV and FP2 were determined by knee joint flexion angle, and TO and CHS 

were determined by the force plate reaction force. CTO was defined as the instant when 

the Z-axis coordinate (height) of the contralateral toe marker was minimal following the 

heel strike. Since the marker placement of toe marker may vary across subjects, the 

timing may not reflect the truly contralateral toe off instant for everybody. 

  
FIGURE 4.2 Timings of key events in the gait cycle for transtibial, AMP and healthy 

groups. The gait cycle was normalized from one heel strike (0%) to the next heel strike 

(100%). 

 

 

 

One significant difference was found between the transtibial and the control group 

at CTO, where the contralateral leg of transtibial group was taken off the ground 

* 

* 
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significantly earlier, following the ACLR hit the ground, than the control group (FIGURE 

4.2). The knees of the control group reached to their maximum flexion significantly 

earlier than the AMP knees. 

4) Spatial parameters of gait 

The key values of knee joint kinematics were listed in TABLE 4.2. It was found 

that the AMP knees had significantly greater flexion angle than the other groups at static 

posture (FIGURE 4.3). The hyper-flexion was maintained during the stance phase of 

walking. The AMP knees also exhibited external tibial alignment compared to the healthy 

controls at static posture as well as during stance phase of walking. The AMP group of 

patients walked slower than the healthy controls while there was no difference in walking 

speed for the transtibial group. The transtibial knees had significantly greater valgus 

rotation than the healthy controls around the flexion peak instant during the swing phase. 

 
FIGURE 4.3 Knee joint rotation at static posture. TT-transtibial ACL-reconstruction, 

AMP-anteromedial portal ACL-reconstruction. 
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TABLE 4.2 Spatial parameters of gait for different groups. Mean (standard deviation). 

Kinematic Parameters Anteromedial Transtibial Healthy p-values
2
 

@ static posture (º)     

Knee flexion 5.2(5.9) 1.4(4.6) 1.2(4.5) *,# 

Internal tibial rotation -0.5(0.9) -0.1(0.2) -0.2(0.5) * 

Knee varus -3.2(3.9) -2.2(3.2) -2.2(3.4)  

During level walking 

(mm,º, m/sec) 
    

Step speed 1.1(0.2) 1.1(0.2) 1.2(0.1) # 

Step length 0.6(0.1) 0.7(0.1) 0.7(0.05)  

Stride speed 1.1(0.1) 1.1(0.2) 1.2(0.1) # 

Stride length 1.3(0.1) 1.3(0.1) 1.3(0.1)  

AP ROM, stance
1
 16.2(6.8) 21.2(7.4) 16.9(5.6) # 

ML ROM, stance 9.5(4.0) 11.0(3.0) 10.9(4.1)  

SI ROM, stance 16.9(5.0) 18.4(6.3) 19.2(4.9)  

Flexion @ toe off 38.8(6.1) 36.8(5.6) 34.0(6.7) + 

Flexion valley, stance 7.6(5.5) 4.0(4.2) 2.9(4.2) *,# 

Internal peak, stance 4.9(2.7) 5.2(2.7) 3.2(3.4) + 

Varus valley, stance -6.3(4.2) -4.9(3.7) -6.4(3.4)  

Varus valley, swing -8.8(5.2) -6.7(4.6) -10.3(5.6) + 
1
during stance phase, ROM – range of motion; 

2 
*p<0.05 AMP vs. transtibial, #p<0.05 

AMP vs. healthy, +p<0.05 transtibial vs. healthy 

5) Torques  

In the sagittal plane, during the early stance phase, the quadriceps were active to 

generate an extensor moment, which acts to balance the external flexion moment and 

control the amount of knee flexion (FIGURE 4.4 A). The moment direction was reversed 

at the second half of stance phase. The transtibial knees had significantly smaller external 

flexion moment than that of the healthy controls at FP1. While the AMP knees has 
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significantly smaller extensor moment at FV. The profiles of all three groups were 

replicated well during the swing phase. In the transverse plane, the transtibial knees 

exhibited significantly greater peak internal moment compared to the healthy controls 

(FIGURE 4.4 B). The significant difference in peak internal moment was gone in the 

knees using the AMP technique. In the frontal plane, the profiles of both ACLR groups 

were shifted in adduction compared to healthy controls throughout the whole stance 

phase, although it was not statistically significant (FIGURE 4.4 C).  

6) Forces 

Along the anteroposterior direction, the transtibial knees had smaller posterior 

force at FP1 (FIGURE 4.4 D). The AP force profile was improved by using the AMP 

technique. Along the mediolateral direction, the profiles of both ACLR groups have been 

shifted in the medial direction compared to the healthy controls throughout the stance 

phase (FIGURE 4.4 E). The medial offset of the force was statistically significant around 

the FV for both ACLR groups compared to the healthy controls. Along the axial direction 

(inferior/superior), the external force exerted on the tibia was pointing upward (superior) 

with the maximum magnitude of about a body weight. To balance the external tibial force, 

an internal force with equal magnitude and opposite direction needs to be generated, 

which mainly came from the knee joint surface contact (FIGURE 4.4 F).  
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FIGURE 4.4 Normalized external knee joint forces and moments during a gait cycle. HS-

heel strike, FP1-flexion peak during stance phase, FV-flexion valley, TO-toe off, FP2-

flexion peak during swing phase. The forces and torques are expressed in tibial ACS. 

 

 

 

The peak anterior force in AMP knees occurred significantly later than the other 
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transtibial knees and AMP knees than that in the healthy controls during stance phase. 

The superior force in the transtibial knees was significantly smaller than the healthy 

controls during the stance phase. Moreover, the peak external flexion moment during 

stance phase was also significantly smaller in the transtibial knees than those in the 

healthy knees. The peak internal moment was significantly greater in the transtibial knees 

than that in the healthy controls. The internal moment reached its peak value significantly 

later for both ACLR groups than healthy controls. 

TABLE 4.3 Peak values of knee joints loading for different groups. Mean (standard 

deviation). 
Kinematic Parameters Anteromedial Transtibial Healthy p-values

2
 

During level walking 

(N/kg, Nm/kg, %)
1
 

    

AP force valley, stance -1.92(0.26) -1.92(0.35) -1.97(0.39)  

Timing of AP valley 54.6(3.2) 53.6(1.5) 52.2(2.3) #,+ 

ML force peak, stance 0.70(0.18) 0.67(0.16) 0.60(0.14) #,+ 

Timing of ML peak 31.3(14.4) 29.8(12.4) 26.2(13.8)  

SI force valley, peak 5.70(0.45) 5.47(0.50) 5.80(0.52) + 

Timing of SI peak 28.6(14.9) 36(15.9) 28.8(15.8)  

VV torque peak, stance 0.24(0.09) 0.23(0.06) 0.20(0.06)  

Timing of VV peak 21.7(3.7) 29.7(15.3) 28.9(15.6)  

FE torque peak, stance 0.24(0.12) 0.18(0.09) 0.27(0.15) + 

Timing of FE peak 24.4(14.5) 23.4(17.5) 22.8(16.3)  

IE torque peak, stance 0.08(0.02) 0.09(0.03) 0.07(0.03) + 

Timing of IE peak 50.2(4.6) 49.0(2.3) 45.7(7.0) #,+ 
1
force and torque were normalized by subject’s body mass (N/kg, Nm/kg), timing was in 

percentage of gait cycle; 
2 

*p<0.05 AMP vs. transtibial, #p<0.05 AMP vs. healthy, 

+p<0.05 transtibial vs. healthy 



106 

4.1.4. Discussion  

By using AMP technique, the more anatomically placed grafts were closer to the 

native ACL length and orientation (Abebe et al., 2011, Dargel et al., 2009). The AMP 

graft usually has higher frontal obliquity and sagittal obliquity than the transtibial graft 

(FIGURE 4.5). As a result, it is more powerful to constrain the anterior and superior tibial 

translation. In AMP knees, this significantly reduced AP translational during the swing 

phase will cut down the speed of femur excursion on the tibia plateau which is helpful to 

protect the graft from excessive elongation as well as to reduce the abrasion between the 

articular cartilages.  

In the sagittal plane, the more oblique ACL graft in AMP knees tends to exert 

more drag force to the tibial plateau which could stop the knee from full extension. 

Posteriorly shifted tunnel position may result in excessive tightening of the graft when 

the knee approaches full extension which could cause extension deficit (Strobel et al., 

2001, Loh et al., 2003, Yamamoto et al., 2004). From FIGURE 4.5, it was easy to show 

that more strain was built up in the AMP graft, which had a posteriorly shifted femoral 

tunnel entry site, during knee extension. Thus a less vertical graft orientation may 

contribute to the extension loss in AMP knees during stance phase.  

The improved knee axial stability may be contributed by the increased obliquity 

of ACL graft in the frontal plane (FIGURE 4.5), which is more effective to withstand the 

internal rotational moment. Unfortunately, the axial stability still has not been fully 

restored, which may be explained by the material properties of ACL graft which were 

different from the natural ACL (Handl et al., 2007). In our study, all ACL patients were 

using single-bundle hamstring tendon (semitendinosus with gracilis enforcement, STG) 
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grafts. The natural ACL has two bundles; thus the attachment site is much larger than the 

cross section area of the tunnel (which was taken as the attachment area of the graft). The 

reduction of ACL attachment area may affect the graft ability to constrain the knee joint 

axial rotation. In our subjects, the graft was fixed at the bone shaft, instead of at the graft 

entry point inside the knee joint. Thus the graft would elongate more under the same 

force, which could increase the laxity of the knee joint. So the graft fixation technique 

may constitute another explanation to the increased internal tibial rotation. The greater 

internal tibial rotation may cause more excursion of medial femoral condyle on the tibia 

plateau, which could cause abnormal cartilage contact and exaggerate the risk for OA in a 

long term. 

The transtibial knees had varus offsets compared to the healthy controls during 

the stance phase, which tended to create a higher compressive stress on the medial 

compartment of cartilage and menisci. Previous studies found the occurrence of OA was 

much higher on the medial side after ACL-reconstruction (Seon et al., 2006), which may 

be contributed to by the unbalanced compressive stress across the compartments. By 

using the AMP technique, the knee varus rotation was effectively reduced, and the knee 

actually exhibited slightly valgus offset. With a more valgus position, the medial 

compartment tends to be more separated while the lateral compartment tends to be more 

compressed. This was beneficial to unload the vulnerable medial compartment and 

evenly distribute the carrying load across the medial and lateral compartments. A 

decrease in stresses on the medial compartment would be helpful to moderate the high 

risk of postsurgical OA on the medial compartment. The significantly less valgus rotation 

and superior translation during the swing phase may indicate that the ACL grafts were 
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over-tight; it may also be caused by a self-protective strategy that flexor muscles were 

subconsciously over-activated to constrain the knee motion during the swing phase. 

Given the fact that the stride speed was almost equal to the step speed and the 

stride length was about two times that of the step length, it can be concluded that the 

contralateral non-involved limb had developed compensatory motion patterns in order to 

adapt to the involved limb (Gao and Zheng, 2010a). Both transtibial and AMP ACLR 

limbs had a delayed toe off, which indicated the ACL patients tended to extend the 

duration of double leg supporting. The prolonged stance phase may be helpful to 

accomplish a less abrupt weight shift. Since the timing of CTO was determined solely by 

the position of the marker placed on the toe, there were relatively high errors in the CTO 

timing compared to the other key events which were determined by the knee joint motion 

or force plates. The significant difference in the CTO timing may be caused by the 

systematic errors. Those differences plus the postponed timing of flexion peak during the 

swing phase indicated that ACLR knees have not been restored to a normal 

spatiotemporal pattern. 

The moment profiles in the sagittal were very close to a previous study (Besier et 

al., 2009). The peak moments of AMP knees in sagittal and transverse planes were closer 

to the healthy controls, which indicated the dynamic stability was improved by using the 

AMP ACL-reconstruction technique. Around the flexion valley during stance phase, the 

significantly reduced external extension moment indicated that the AMP knee was 

inefficient in generating enough internal flexor moment. The flexor moment is mainly 

generated by hamstring muscles. For the subjects in the AMP group, the ACL grafts were 

cut from the hamstring tendon, and they had a relatively short post surgery time (8 
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months) at the time of testing compared with the transtibial group (13 months). So they 

may still have hamstring pain and subconsciously limit the use of hamstring. The 

increased peak internal rotation moment in transtibial knees indicated the axial instability 

during stance phase. To balance the increased axial rotation moment, higher strain may 

be built up in the ACL graft of the transtibial knees.   

 In the frontal plane, there was no obvious improvement by using the AMP 

approach. Significant differences were observed in the kinetic key values of the 

transtibial patients compared to those of healthy controls (TABLE 4.3). The number of 

significant differences was largely reduced in the AMP groups. The change also indicated 

that the knee joint stability was improved by using AMP technique. 

 
FIGURE 4.5 Diagram of graft orientation in 3d knee joint model (reconstructed from a 

typical patient’s MR images) for different ACL-reconstruction techniques 

 

 

 

4.1.5. Conclusion 

The hypothesis that the postsurgical knee joint kinematics using the AMP drilling 

approach is different from that by using the traditional transtibial approach has been 

proved. In AMP knees, the more anatomically placed grafts restored the normal 

anteroposterior translation; it also reduced the internal tibial rotation offset and varus 
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offset. AMP technique also improved the knee joint forces and moments. But the AMP 

technique may cause knee extension deficit, which needs to be considered when making a 

decision. 

4.2. Knee Joint Stability Following ACL-reconstruction Using Anteromedial Portal 

Technique during Downstairs Pivoting 

4.2.1. Introduction 

The ACL grafts in AMP subjects were more horizontal in the frontal plane and 

sagittal plane, which may be more effective in resisting the axial rotation and varus 

rotation of the knee joint during high demand activities. In this section, we aimed to 

evaluate the knee joint stability during downstairs turning. Since the knee was fully 

extended during the turning process, only the non-sagittal plane data were presented. The 

following hypothesis was generated that the knee joint stability was improved by using 

the AMP tunnel drilling technique compared to the traditional transtibial tunnel drilling 

technique. 

4.2.2. Material and methods 

For the AMP subjects (TABLE 4.1), the motion data of downstairs pivoting were 

collected following the exact same procedure as the transtibial subjects (TABLE 3.2). 

One way ANOVA and Tukey’s post hoc tests were used to test the difference of each 

variable between the dominant knees (dACLR: dominant ACL-reconstructed vs. dACLI: 

dominant ACL-intact vs. dControl: dominant healthy controls) and between the non-

dominant knees (nACLR vs. nACLI vs. nControl) in SPSS™ (v16, Chicago, IL, USA). 

Significance level of the statistical analysis was set at 0.05. 
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4.2.3. Results 

Transverse plane: There is no significant difference in either the axial tibial 

rotation or the axial rotational torque between different groups (FIGURE 4.6). 

 
FIGURE 4.6 Knee rotation and external knee axial moment on the transverse plane from 

the initial contact (IC) to the toe off (TO) during downstairs turning. Dominant and non-

dominant knees were plotted separately. Error bar denotes ±1 standard deviation of the 

control group. 

 

 

 

Frontal plane: For the dominant limbs, the ACLR knees had significantly less 

varus rotation at early stance phase compared to the uninvolved knees (FIGURE 4.7 A), 

whereas, for the non-dominant limbs the ACLR knees had slightly greater varus rotation 

than the uninvolved knees (FIGURE 4.7 B). The adduction torque was close to each other 

between the reconstructed and uninvolved knees. No significant differences were found 

between the patient group and the control group. 
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FIGURE 4.7 Knee rotation and external adduction moment on the frontal plane from the 

initial contact (IC) to the toe off (TO) during downstairs turning. Dominant and non-

dominant knees were plotted separately. Error bar denotes ±1 standard deviation of the 

control group. *p<0.05 

 

 

 

4.2.4. Discussion 

The knee joint normal rotations and moments had been basically restored on both 

the transverse and frontal planes, expect for a significant malalignment in the frontal 

plane between the ACL-reconstructed and uninvolved (ACLI) knees on the dominant 

side during the early turning phase. The findings proved the hypothesis that the knee joint 

stability had been improved by using the single-bundle AMP surgical technique. The 

findings also indicated that the dominant knees had developed slightly different motion 

patterns from the non-dominant knees following ACL-reconstruction.  
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On the frontal plane, the reconstructed knees had similar adduction moment with 

the uninvolved knees. Considering that the height, weight and age were close to each 

other between the group-n and group-d, and all the surgeries were conducted by the same 

surgeon, the uninvolved limbs could be taken as the pre-injury situation of the 

reconstructed limbs. Therefore, the results indicated that the AMP surgical technique had 

restored the normal knee stability in the frontal plane during downstairs turning. The 

external joint moments in both the reconstructed and uninvolved knees were shifted in 

adduction. This may be explained by the not fully recovered agility at the time of testing, 

since all the AMP subjects had relative short post-surgical time.  

4.2.5. Conclusion  

The knee joint stability during downstairs turning was improved by using the 

AMP tunnel drilling technique. In AMP knees, the more anatomically placed graft 

restored the adduction moment to the pre-injury condition; it also restored the knee 

stability on the transverse plane. 

4.3. Summary 

This chapter investigated the knee joint kinematics and kinetics for the subjects 

with ACL reconstruction using the anteromedial portal drilling technique during the high 

demand downstairs turning activity. This chapter compared the knee joint kinematics and 

kinetics between transtibial group and anteromedial portal group during level walking 

and downstairs turning activities. The results showed that the anteromedial portal 

technique had more advantages than the traditional transtibial technique in stabilizing the 

knee joint.  



 
 

CHAPTER 5: FINITE ELEMENT MODELING TO THE KNEE JOINT 

 

 

This chapter covers: 1) development of a computational knee joint model with 

high quality hexahedral finite elements; 2) investigation of the impact of ACL tunnel 

location on knee joint motion during level walking using the state-of-the-art finite 

element method. 

5.1. Introduction 

Being the heavily loaded joint in human body, the knee joint is vulnerable to 

ligament injuries and cartilage degenerative diseases such as osteoarthritis. More than 80% 

of the human weight is carried by the knee joint, which usually causes compressive loads 

as large as 3 times of the body weight during a gait cycle (Kutzner et al., 2011b). In the 

previous chapters, we measured the tibiofemoral motion and calculated the knee joint 

reaction forces and moments using inverse dynamics. According to the findings, the 

ACLR knees by using different surgical techniques exhibited significantly different 

motions and joint reaction moments during level walking. Excessive joint stress is 

considered to be harmful to the articular tissues in the knee joint. Although the stresses 

cannot be measured in vivo, they can be predicted by using elegant computational models.  

Therefore, in this study we estimated the knee joint contact stresses before and 

after surgical intervention during a physiological loading situation (level walking) by 

using a computational knee model. Different graft orientations were modeled to 

respectively simulate the transtibial and AMP surgical interventions. The results are
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helpful to predict the outcome of knee joint performance after ACL-reconstruction and to 

evaluate the effectiveness of two widely used surgical techniques. 

5.2. Material and Methods 

5.2.1. Geometry reconstruction and mesh generation 

1) Reconstruction of the knee joint model 

High-resolution magnetic resonance (MR) images were acquired in the sagittal 

plane with the right knee at its natural extension from a healthy subject (male, 23 years 

old). The images had an interval of 1.00 mm and pixel spacing of 0.35 mm and resolution 

of 512 × 512 pixels (3D fast spoiled gradient-echo, T1-weighted, fat-saturated, no special 

preparation). A total of 106 MR images were collected. The medical images produce high 

quality distinguishable bone surfaces as well as the traceable boundary of soft tissues. A 

generic knee model including ligament, cartilage, meniscus and bone was created from 

the MR images (DICOM standard). Medical image segmentation was performed by the 

author who had extensive hands-on experience and familiarity with knee joint anatomy. 

Previous studies proved that the inter- and intra- observer reproducibility is very decent 

(Bae et al., 2009, Shim et al., 2009).  
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FIGURE 5.1 Medical image segmentation for a typical subject in Mimics. 

 

 

 

Image segmentation was performed in the software package Mimics™ 

(Materialise, Plymouth, MI, USA) (FIGURE 5.1). The boundaries of each part were 

manually traced on each 2D image by using a tablet computer (Lenovo Thinkpad X60, 

Morrisville, NC). The tibia and fibula were treated as an entity for simplicity. After 

finished up masking all the MR image slides, 3D component models were created and 

exported as triangulated surface files (binary .STL format).  The .STL files were then 

imported into Geomagic Studio™ (Version 12, Geomagic Inc., Research Triangle Park, 

NC) for further smoothing and creating Non-Uniform Rational B-Spline (NURBS) 

surfaces. In the software, the “Mesh Doctor” function was used to get rid of spikes, fill 

holes and clean up isolated chips. Then the “Relax” function was used to smooth the 

polygon mesh. This increases smoothness of the surface and makes the model more 

realistic. The smoothing strength was selected with caution in order to avoid distortion. 

Some extra parts which were not important in the analysis were removed to reduce the 
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file size and computational cost. After all holes were filled and the surface was smoothed, 

the function “Make Manifold” was used to create a NURB surface. Then function 

“Extract Surfacing” was used to prepare a polygon object for the process of extracting 

the surface. After this step, the function “Detect Contours” was used to create the 

contours based on the topological characteristics of the model. At the end, the NURB 

surfaces were generated by the “Fit Surfaces” function. The surfaces were then saved as 

Initial Graphics Exchange Specification (.IGES) for the further meshing. The process is 

shown in FIGURE 5.4. 

 
FIGURE 5.2 Process of surface extraction for the femur in Geomagic™. A – auto detect 

contour, B – create contour lines, C – construct patches, D – fit surfaces. 

 

 

 

2) Mesh generation and assembling 

A Previous study proved that hexahedral elements had superior attributes 

compared with the tetrahedral elements (Cifuentes and Kalbag, 1992). Generating high 

quality elements, especially hexahedral elements, for the organic shape parts often proves 

daunting. There was no doubt that a lot of difficulties were encountered when generating 

hexahedral meshes for the knee joint parts. In this section, the process for generating 8-

noded hexahedral elements is discussed. 

A B C D 
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Since the bones are more rigid compared to soft tissues, the femur and tibia were 

meshed by 4-node tetrahedral elements. In this study, the tetrahedral elements for the 

bones were generated in Altair HyperMesh™ (Altair, Troy, MI, USA). For the soft 

tissues, hexahedral elements were used to reduce the rigidity of local element as in 

previous studies (Donahue et al., 2002, Netravali et al., 2011, Pena et al., 2006a, Pena et 

al., 2006b).   

Hexahedral meshes were created by using TrueGrid™ (XYZ Scientific 

Application, Inc., Livermore, CA). TrueGrid is powerful and generates high quality 8-

node hexahedral elements from organic shape geometry by projecting the uniform shape 

faces of the mesh onto the target surfaces. Moreover, the embedded commands offer 

users more versatility in terms of mesh density and mesh size. By running a customized 

code, hexahedral elements were generated. The femoral cartilage and tibial cartilage were 

meshed as three hexahedral element layers. Menisci were meshed as four hexahedral 

element layers. An intermediate element size of about 2 mm by 2 mm, which was judged 

sufficiently fine according to a previous study (Donahue et al., 2002), was used in this 

study. The element numbers are listed in TABLE 5.1. 

The elements of different components were then imported into HyperMesh™ for 

assembling. The coordinates of each part was inherited from the MR images. In 

HyperMesh, element penetrations were cleaned up by mildly adjusting the locations of 

the nodes on interaction surfaces. After clean up all overclosures, the assembly of mesh 

geometries was then imported into the finite element solver ABAQUS™ (Version 6.10-1, 

SIMULIA, Providence, RI, USA) for analysis (FIGURE 5.3). 
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The processes of medical image segmentation, NURB surfaces reconstruction and 

mesh generation were organized in the following flowchart (FIGURE 5.4). 

 
FIGURE 5.3 Assembly of FE knee model in ABAQUS. 

 

 

 

TABLE 5.1 Properties of solid elements of each part. 

Parts Element type Number Min, max length Min Jacobian 

1
FCart C3D8 hex

4
 4275 0.147, 3.92 0.5 

2
Lat. tCart C3D8 hex 1560 0.186, 2.55 0.48 

3
Med. tCart C3D8 hex 1191 0.265, 3.15 0.51 

Lat. meniscus C3D8 hex 2640 0.096, 3.17 0.46 

Med. meniscus C3D8 hex 2640 0.197, 2.67 0.42 

ACL C3D8 hex 4096 0.114, 2.46 0.32 

PCL C3D8 hex 5120 0.077, 2.06 0.41 

MCL C3D8 hex 4736 0.113, 3.11 0.35 

LCL C3D8 hex 5824 0.050, 3.73 0.42 

Femur C3D4 tets
5
 67657 0.453, 8.19 1.00 

Tibia C3D4 tets 55193 0.396, 7.87 1.00 
1
F – femoral, Cart – cartilage, 

2
Lat – lateral, t – tibial, 

3
Med – medial, 

4
hex – hexadral, 

3
tets – tetrahedral 

Tetrahedron 

Hexahedron 
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FIGURE 5.4 Medical image segmentation, smoothing and NURB surface creation and 

mesh generation. 

 

 

 

5.2.2. Material properties 

Material properties were obtained from values identified in the literatures. The 

bone, whose deformation was neglectable compared to the soft tissues, was assumed to 

be rigid relative to the soft tissues. Oloyede et al. found that the viscoelastic effects were 

minimal at short term cartilage response during high strain-rate activities (Oloyede et al., 

1992). The viscoelastic time constant was about 1.50 s (Armstrong et al., 1984), which 

was longer than a gait cycle. Therefore, in this study the articular cartilage was assumed 

to behave as single-phase linear elastic isotropic material according to the experimental 

and numerical investigation in the other studies (Blankevoort and Huiskes, 1996, 
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Blankevoort et al., 1991, Yang et al., 2010) (TABLE 5.2). For the meniscus, due to the 

Type-1 collagen fibers, it was modeled as transversely isotropic with a higher Young’s 

modulus (   = 140 MPa) in the circumferential direction and relatively low Young’s 

modulus in the axial and radial directions (  ,    = 20 MPa) (Donahue et al., 2002, Yang 

et al., 2010). The in-plane Poisson’s ratio was 0.2 (        ) and the out-of-plane 

poisson’s ratio was 0.3 (   ) according to a previous study (Netravali et al., 2011). The 

elastic moduli and Poisson’s ratios are listed in TABLE 5.2.  

TABLE 5.2 Material properties used for cartilage, meniscus and bone. 
1
fCart – femoral 

cartilage, 
2
tCart – tibial cartilage 

Parts Elastic modulus (MPa) Poisson’s ratio ( ) Density (ton/mm
3
) 

 
Elastic   

1
fCart 15 0.45 1×10

-9
 

2
tCart 15 0.45 1×10

-9
 

meniscus 140, 20, 20 0.3, 0.3, 0.2 0.8×10
-9

 

 Rigid body   

Femur infinite N/A 2.0×10
-9

 

Tibia infinite N/A 2.0×10
-9

 

The ACL has already been stretched at neutral extension posture (Beynnon and 

Fleming, 1998). Since the 3D knee model was inherited from the MR images which were 

taken at this posture, there was an initial stretch within the ACL. For the same reason, 

there may be initial stretches in the other ligaments. In a finite element context, modeling 

the initial stretches in elements corresponding to the already stretched state is a very 

challenging task. Therefore, for simplicity the ligaments were modeled as nonlinear 

springs according to their functional bundles based on their anatomic structure.  The ACL 
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was modeled as two bundles: anteromedial bundle and posterolateral bundle. The PCL 

was represented by anterolateral and posteromedial bundle. The MCL was modeled as a 

superficial portion and inferior portion, the superficial portion was divided into the 

anterior bundle and posterior bundle. In a similar way, the LCL was modeled with three 

bundles. The representation of ligaments using nonlinear springs was similar to that used 

in the previous studies (Netravali et al., 2011, Yang et al., 2010, Yao et al., 2006, 

Donahue et al., 2002). Each of the functional ligament bundles was modeled as the 

following piece-wise force-displacement relationship (Blankevoort et al., 1991). 
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where   is the force in each bundle,   is the axial stiffnes which is equivalent to the force 

per unit strain (structural stiffness times original length),   denotes the strain in the 

ligament bundle and    denotes the strain threshold from nonlinear relationship to a linear 

relationship.    was an constant of 0.03 determined from experiment (Blankevoort et al., 

1991).  

The initial strains in each ligament bundle at neutral extension posture were listed 

in TABLE 5.3. Thus the slack length of each ligament can be calculated from     

         , where    is the initial length of ligament from MR images. The strain 

therefore can be calculated from            . The stiffness of ACL was 5 kN which 

was close to that of 4.9 kN in previous experimental study (Noyes et al., 1984). The 

initial ACL strain at neutral knee position was 0.12 for the anterior bundle and 0.20 for 

the posterior bundle according to our preliminary data from cadaver testing.  
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TABLE 5.3 Material properties used for the ligaments.  

Ligament Bundle Stiffness parameter
§
, k (N)       

ACL 
Anterior 2500 0.03 0.12 

Posterior 2500 0.03 0.20 

PCL 
Anterior 9000 0.03 -0.24 

Posterior 9000 0.03 -0.03 

LCL 

Anterior 2000 0.03 -0.25 

Superior 2000 0.03 -0.05 

Posterior 2000 0.03 0.08 

MCL 

Anterior 2750 0.03 0.04 

Inferior 2750 0.03 0.04 

Posterior 2750 0.03 0.03 

§
The stiffness of PCL, LCL and MCL are from Butler et al. (Butler et al., 1986), the 

stiffness of ACL are from Noyes et al. (Noyes et al., 1984). The reference strain values 

are adapted from Blankevoort et al. (Blankevoort et al., 1991). 

To simulate ACL-reconstruction using single-bundle graft (semitendinosus with 

gracilis enforcement, STG), the graft was modeled as having a single nonlinear spring 

element. Previous experimental studies reported that the structural stiffness of commonly 

used four strands STG graft was 954 N/mm (To et al., 1999)  and 776 N/mm (Hamner et 

al., 1999), which is about two times greater than the stiffness of natural ACL (300 N/mm). 

In this study, we modeled the scenario that the graft was fixed at the half-length of the 

tunnels, which made the stretchable length approximately twice that of the natural ACL 

(FIGURE 5.5). That caused a 50% structural stiffness loss of STG graft after installed to 

the knee joint. Considering the stiffness loss, a spring with stiffness 1.5 times that of ACL 

bundles (summation of anterior bundle and posterior bundle) was used to model the ACL 

graft. The initial graft force was set as 500 N at neutral knee position, and the graft length 
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at the neutral position was adjusted accordingly. The insertion site of ACL tunnels at the 

femur and tibia were shown in FIGURE 5.5. 

 
FIGURE 5.5 ACL-reconstruction using single bundle STG graft. The figure of insertion 

sites were adapted from Kopf et al. (Kopf et al., 2010) 

 

 

 

During level walking, the knee joint reaction forces and moments calculated by 

inverse dynamics must be balanced by a set of internal forces and moments provided by 

muscle contractions, ligament stretches and articular reaction forces, etc. Muscle force 

was the major component for balancing the external knee joint moment, at the same time 

it increased the total contact forces at the joint. Since the number of unknown forces was 

greater than the number of equations, it was impossible to determine the individual 

muscle forces without making assumptions. In this study, a muscle force reduction model 

was used to estimate the forces in major muscles including: hamstring (hams), quadriceps 

(quads) and gastrocenemius (gast) adapted from a previous study (Yang et al., 2010) 
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(FIGURE 5.6). For simplicity, it was assumed that there was no muscle co-contraction, 

which means either the flexor or extensor muscle acts at one time.  

For different knee models (healthy, transtibial ACLR and anteromedial portal 

ACLR), the average flexion/extension moments from the same group of subjects were 

used. By assuming that the moments provided by ligaments were trivial compared to the 

moments created by the muscles, the joint reaction moments had to be balanced by 

muscle contraction. During the stance phase, after heel strike the hamstring contracted to 

provide the flexion moment to withstand the external extension moment (FIGURE 5.6). 

After a short period, the moment became an external knee flexion moment which attained 

the peak at CTO. To balance it, the quadriceps muscles were activated to oppose this 

external knee flexion moment. At late stance phase, the moment became an external knee 

extension moment and reached its peak around the CHS. At this moment, the 

gastrocnemius group was activated to provide a knee flexion moment to stabilize the 

knee. The gastrocnemius force also created an ankle plantar flexion moment for 

propulsion. At toe-off, the quadriceps muscle contracted again to balance the external 

knee flexion moment. The moment arm and line of action for each muscle group vary 

with knee flexion. The line of action of the hamstring muscle was assumed along the long 

axis of femur, and the line of action of gastrocnemius muscle was parallel with tibia axis 

which created no additional shear force to the knee joint. The moment arm of the 

gastrocnemius muscle was taken as a constant of 25 mm with respect to the knee joint 

rotation center (Yang et al., 2010). The moment arms and line of action of quadriceps and 

hamstring muscles were listed in TABLE 5.4. 
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FIGURE 5.6 External flexion/extension moment and the activation muscles during stance 

phase of level walking. The insets show the knee joint posture and activated muscle 

respectively at HS, CTO, CHS and TO. 

 

 

 

TABLE 5.4 Moment arm and line of action of muscles at different knee flexion adapted 

from (Yang et al., 2010). 

Knee flexion angle 

(º) 

Moment arm of quads 

(mm) 

Line of action of 

quads (º) 

Moment arm of 

hams (mm) 

0-10 36.9 135.7 29.9 

11-20 39.3 126.7 25.4 

21-30 40.9 118.2 26.6 

31-40 42.5 112.8 28.2 

41-50 42.6 107.5 27.9 

51-60 41.7 101.0 28.3 

5.2.3. Boundary condition and loading 

In this study, the tibia was fixed and the femur was able to move on the tibial 

plateau. Femoral and tibial elements were constrained to a reference point respectively to 

form rigid bodies. The femur motions were exerted at the femoral reference point (the 



127 

midpoint of the transepicondyle line) which was the location where the joint reaction 

forces and moments were calculated. Surface-to-surface sliding interaction was defined 

between femoral cartilage to meniscus and between tibial cartilage to meniscus (FIGURE 

5.7). The contact is enforced in an average sense over the slave surface/nodes that the 

slave nodes cannot penetrate the master surface. The surface with the fine mesh was 

selected as the master surface. All sliding interaction was simulated with zero friction. 

“Tie” contacts were defined between the femoral cartilage and femur and between the 

tibial cartilage and tibia with a position tolerance enforcing the slave nodes within the 

tolerance to be tied to the master surface. The interactions defined in ABAQUS are listed 

in TABLE 5.5. 

The menisci were attached to tibia plateau using meniscus horn attachments. Horn 

ligaments and transverse ligament were modeled with linear springs with total stiffness of 

2000 N/mm and 900 N/mm respectively (Netravali et al., 2011, Donahue et al., 2002, 

Yang et al., 2010).  
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FIGURE 5.7 Boundary conditions and loading in ABAQUS. Ligaments and meniscus 

horn attachments were modeled as springs. aACL anteromedial bundle, pACL 

posterolateral bundle. 

 

 

 

TABLE 5.5 Interaction and constraint. 

Couples Type 
Discretization 

method 

Position 

tolerance 

Interaction 

properties 

FCart to femur Tie N2S
1
 0.2 mm  

tCart to tibia Tie N2S 0.2 mm  

FCart to med. meniscus Contact N2S  Hard, penalty
2
 

FCart to lat. meniscus Contact N2S  Hard, penalty 

Med. TCart to meniscus Contact N2S  Hard, penalty 

Lat. TCart to meniscus Contact N2S  Hard, penalty 
1
N2S – node to surface, 

2
Hard – hard contact, penalty – penalty constraint enforcement 

method, 
3
S2S – surface to surface 

After determining the muscle forces by using the muscle reduction model, the 

total knee joint compressive forces and shear forces (anteroposterior) were calculated by 

deducting the muscle forces from the joint reaction forces (results of the inverse 
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dynamics, FIGURE 4.4, chapter 4), as shown in FIGURE 5.8. The joint compressive 

force, shear force and knee adduction moment were used to define the femur loading in 

FE analysis similar to a previous study (Yang et al., 2010). The resultant adduction 

moment was also applied to the femur to evaluate the effect of adduction moment on the 

distribution of contact stresses across the medial and lateral compartment. The average 

flexion/extension angles were taken as input (results of the chapter 4, FIGURE 4.1); 

while the other DOFs (2 rotations and 3 translations) of the femur were not controlled. 

The results of compressive and shear forces in average size people (height 1.75 m, weight 

70 kg) for different knee joint physical status are shown in FIGURE 5.9. The adduction 

moments are shown in FIGURE 5.10. 

 
FIGURE 5.8 Calculation of knee joint loading. 
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FIGURE 5.9 Total knee force during stance phase for different knees. The compressive 

force was the axial force and the shear force was the posterior force exerted on the femur 

in the FE model. 
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FIGURE 5.10 The adduction moment at knee joint during stance phase. 

 

 

 

5.2.4. Finite element solution 

There are two approaches in ABAQUS to solve the FE problem, the explicit and 

the implicit analyses. In explicit analysis the stiffness matrix is updated at the end of each 

increment based on geometry changes or/and material changes. Then a new force or 

displacement load is applied to the system after each increment. In this type of analysis, 

the step size should be small enough (i.e. 1e-5 s) to enable accuracy and convergence, 

since the external forces and internal loads are not enforced to be in equilibrium. 

Therefore the solution may not be trustable if the time steps are not sufficiently small. On 

the other hand, in implicit analysis additional Newton-Raphson iterations are performed 

to enforce equilibrium (tolerances are set by the user, i.e. 2e-4) of the internal structure 

forces with the externally applied loads at each increment. Therefore, this type of analysis 

tends to be more accurate and can take somewhat bigger increment steps (the solver 

usually adjusts the step size according to the number of iterations needed to enforce 

equilibrium). Therefore, the explicit method can be recognized as a special case of the 
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implicit method when the convergence tolerance of equilibrium equation is set as a large 

number. Explicit analysis is usually used to study the dynamic response of mechanical 

structures, such as car crash, explosion, etc. Implicit analysis dominates the static or 

quasi-static problems.  

In this study, implicit analysis was used to calculate the cartilage stress variation 

and ligament force during several key frames of the stance phase. The FE model was 

solved using ABAQUS/Standard. The input files were submitted to the Viper cluster of 

the University Research Computing (UNC Charlotte, urc.uncc.edu), and the computation 

was performed by using 32 computing cores (3 GBs/core). 

5.3. Results 

In this study, the knee joint compressive and shear loads were calculated from 

muscle forces and joint reaction forces. The joint reaction forces were transformed to the 

tibial local coordinate system (LCS) and all calculations were conducted in the LCS. The 

maximum compressive forces (1400 N) were about two times the body mass (70kg). The 

shear force pointed to the posterior, which pulled the tibia backward at the first 40% of 

the stance and then it became an anterior force during the rest of stance phase (FIGURE 

5.9). Compared to the healthy knee, the knee with transtibial ACL-reconstruction had a 

smaller compressive force and shear force at CTO. On the other hand, the knee with 

anteromedial portal ACL-reconstruction had a much smaller compressive force at CHS 

compared to the other two knees. At the TO, Both ACLR knees had anterior shear forces, 

while the healthy knee had a posterior shear force. 

1) FE analysis results – Contact pressure 

The contact pressures (MPa) within the femoral cartilage at four key frames 

during the stance phase of a gait cycle are shown in FIGURE 5.11. For all three knees 
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(healthy, transtibial and anteromedial portal), the contact pressures were much lower at 

the beginning (HS) and the end (TO) of stance phase. The pressures reached their peak 

values at CTO, which was the transient point from double-leg supporting to single-leg 

supporting. The high pressures were then maintained until the other leg hit the ground at 

CHS. For the healthy knee, the maximum contact pressures within the femoral cartilage 

were located on the medial compartment at all of the four key frames. For the ACLR 

knees, however, the maximum contact pressure within the lateral femoral cartilage was 

greater than that in the medial at CTO. The contact pressures (MPa) within the tibial 

cartilage at four different key frames are shown in FIGURE 5.12. The evolution of 

contact pressures within tibial cartilage during the stance phase exhibited the same 

tendency as those within femoral cartilage. For the healthy knee, the maximum contact 

pressures within tibial cartilage were located on the lateral compartment at all key frames. 

For the ACLR knees, however, the maximum contact pressure translated to the medial 

tibial cartilage at CTO. 

The maximum contact pressures within the tibial cartilage of anteromedial knee 

were relatively lower than those in the transtibial knee at all key frames (FIGURE 5.12). 

Similar findings also existed in the femoral cartilage where the maximum contact 

pressures in the transtibial knee were greater than those in the transportal knee except at 

the CTO (FIGURE 5.11). The transtibial knee had relatively higher contact pressures in 

the femoral cartilage compared to the healthy knee at all key frames. The contact 

pressures within tibial cartilage of the anteromedial knees were lowest in the three groups 

except at CTO.  
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FIGURE 5.11 The contour of pressure on femoral cartilage surface at different key 

frames during stance phase. The numbers on the contour denote the maximum values of 

pressure.   
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FIGURE 5.12 Stress contour within tibial cartilage at different key frames during stance 

phase. The numbers on the contour denote the maximum values of pressure. 

 

 

 

2) FE analysis results – Contact force 

The total contact forces on the articular surfaces were exported as History Output 

in ABAQUS. The contact forces were much greater at CTO and CHS than at the other 

two key frames (FIGURE 5.13). The load carried by the lateral femoral compartment was 

greater than that carried by the medial compartment except at CTO. At HS, the load 

carried by the lateral compartment was much higher in the healthy knee that those in the 

ACLR knees: 355 N for healthy vs. 270 N for transtibial and 250 N for anteromedial, 
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while the load on the medial side was close to each other. At CHS, the axial load in the 

anteromedial knee was much smaller than those in the other two knees. 

 
FIGURE 5.13 The normal load carried by the medial and lateral tibial compartments in 

different knees. 

 

 

 

3) FE analysis results – Secondary motion 

At HS and CHS, all the three knees had posterior tibial translations, and the 

translation magnitudes in the ACLR knees were greater than that in the healthy knee 

(FIGURE 5.14). At CTO, the healthy knee had a much smaller anterior tibial translation 

than the ACLR knees. There were anterior tibial translations at TO for the healthy knee. 

However, the ACLR knees had posterior tibial translations at TO.   

Medial 
Lateral 
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FIGURE 5.14 Anterior/posterior tibial translation. The tibial translation was reported as 

the opposite value of the femoral translation.  

 

 

 

There were concomitant rotations on the non-sagittal planes (FIGURE 5.15). The 

results showed that the tibial was internally rotated relative to the femur throughout the 

whole stance phase. The FEA results also showed the healthy knee had relative less axial 

and varus rotations from HS to CHS compared to the ACLR knees. Compared to the 

transtibial knee, the anteromedial portal knee had greater varus rotations throughout the 

whole stance process. The knee joint rotations were much greater at TO than those at the 

earlier frames. At this time the healthy knee, for the first time, exhibited greater rotations 

than the ACLR knee. 
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FIGURE 5.15 Internal tibial rotation and varus knee rotation. The internal tibial rotation 

was reported as the external femoral rotation.  

 

 

 

5.4. Discussion 

For the first time, the joint contacting mechanics were evaluated under different 

physical status (healthy vs. ACLR) during the stance phase of walking by using a 

sophisticated FE model. The inputs and boundary conditions of the FE model were 

adapted from the results of kinematic and kinetic analysis. The compressive forces 

estimated by a muscle reduction model in our study was slightly smaller than 200% of 
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body weight in the previous literature (Kutzner et al., 2011b, Kutzner et al., 2011a). The 

differences may come from the assumption of no co-contraction of the flexor and 

extensor muscles. Other than that, the overall profile of the compressive force was in line 

with the previous studies. In the current study, the joint reaction forces calculated by 

inverse dynamics were transformed to the tibial local coordinate system to make it 

consistent with the FE model. The shear force in this study was different from Yang et 

al.’s study during the second half of the stance phase (Yang et al., 2010). According to 

our data, the curve of shear force used in Yang et al.’s study was similar to the shear 

force in the global coordinate system.  

More loads were carried by the lateral compartment at the beginning of walking 

due to the low varus moment. The load was more evenly distributed at CTO when the 

knee adduction moment reached the first peak. Previous literature has suggested that the 

external adduction moment was very important in the overall distribution of the contact 

force across the medial and lateral compartments (Erhart et al., 2010, Zhao et al., 2007). 

The unbalanced loading across the medial and lateral compartments may be contributed 

to by the varus knee rotation found in this study (from 0.2º to 4º) which was similar to 

another FEA study (Adouni et al., 2012).  

The finding of greater maximum contact pressures within the medial femoral 

cartilage may be explained by the relatively smaller contact area between the medial 

femoral condyle and meniscus (i.e. 240 mm
2
 on medial, 355 mm

2
 on lateral at CTO). The 

maximum pressure found on the medial side may explain why it was more common to 

witness cartilage degenerative diseases on the medial compartment according to clinical 

data. On the tibial cartilage in the healthy knee, the maximum contact pressures were 
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found on the lateral compartment, which indicated the importance of the medial meniscus 

in the distribution of the contact stresses. In the ACLR knees, the maximum contact 

pressure was retained on the medial tibial cartilage at CHS. This change interrupted the 

normal knee joint contacting attribute and may increase the risk of developing knee OA 

on the medial compartment after ACL-reconstruction. 

The secondary rotation and anterior/posterior translation of the femur relative to 

the tibia exhibited an obvious correlation with the knee flexion during the stance phase. 

According to our finding, the tibial in the healthy knee tends to translate forward (the 

femur moves posteriorly) when the knee flexion angle was relative high, i.e. at CHS and 

TO. The result was consistent with the rollback effect reported in a previous cadaver 

study by Iwaki et al., in which reported that the femur tends to posteriorly translate with 

respect to the tibia with knee flexion (Iwaki et al., 2000). However, for the ACLR knees, 

the rollback effect was not found. According to previous studies (Draganich et al., 2002, 

Draganich et al., 1987), the rollback increases the quadriceps lever arm to enhance 

quadriceps efficiency especially for high demand activities such as stair climbing, 

downhill walking and sit-to-stand, because it increases the lever arm of quadriceps. 

Therefore, the finding changed the rollback pattern after ACL-reconstruction should raise 

our attention when designing TKA implants. Since the structural stiffness of ACL-graft 

was 1.5 times of the natural ACL in the FE model, the extra stiffness may cause the tibia 

to move more posteriorly (femur move more anteriorly) to reduce the graft tension at HS 

and CHS (FIGURE 5.14) when the knee was close to full extension. The greater posterior 

tibial translation at these two key frames may contribute to the decrease of graft tension 

compared to that in the healthy knee (TABLE 5.6). The increased internal tibial rotation 
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from HS to CHS was consistent with the result of motion analysis. Since one of the ACL 

functions was to restrain the excessive internal tibial rotation, the diminished graft 

tension may explain the increased axial laxity in the ACLR knees.  

TABLE 5.6 ACL/graft tension at different key frames. (unit: N) 

 Healthy TT AMP 

HS 230 104 37 

CTO 50 37 7 

CHS 76 0 0 

TO 23 0 0 

 

The greater varus rotation in the ACLR knees found in this study may explain 

why the maximum contact pressure occurred on the medial tibial cartilage at CHS. The 

varus/valgus rotation is important to maintain the knee joint space; a varus offset tends to 

decrease the space and increase the contact pressure on the medial compartment which 

may explain the higher frequency of knee OA on the medial compartment compared to 

the lateral compartment (Engh, 2003, Sharma et al., 2000).  

By studying the simulated cases, we found that the integrity of ACL was very 

important in maintaining the knee joint motion during physiologic loading. The grafts in 

ACLR knees had a reduced tension compared to the healthy ACL which may increase 

knee joint laxity in the transverse and frontal plane during the stance phase of walking. 

Based on the results, we may conclude that the anteromedial portal technique had more 

advantages than traditional transtibial technique in protecting the medial compartment 

from excessive compressive loading especially around the period of CHS.  
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There were some limitations in this FE model which need to be kept in mind 

when interpreting the results. First, the stiffness of the ACL graft was assumed to be 1.5 

times of the natural ACL according to the literature without considering the inter-subject 

differences. Second, the initial tension in the ACL and grafts were set as 500 N when the 

knee was at the neutral extension (the posture for MR imaging). Unfortunately, there 

were large variances in the pre-strain/tension in ACL/graft across different studies 

(Beynnon and Fleming, 1998). The pre-strain of ACL used in this study was higher than 

that in other studies (Donahue et al., 2002, Netravali et al., 2011, Yang et al., 2010). 

Third, the ligaments and ACL graft were simplified as nonlinear springs. However, in 

reality, there were ligament-to-ligament, ligament-to-meniscus, and ligament-to-bone 

contact/interaction which were not considered in the model. There were more factors 

including graft-tunnel contacting, graft-ligament impingement, etc. which could also have 

significant effects on the outcome of ACL-reconstruction. In a future study, we will 

develop more complex FE models including the geometrically accurate ligaments and 

graft for simulating different ACL-reconstruction techniques, and use the powerfulness of 

computational simulation to addressing the clinical questions concerning the optimal 

graft orientation, graft pre-tension and fixation technique.  



 

CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

 

6.1. Summary 

The objective of this dissertation was to strengthen the scientific knowledge of 

post-trauma knee joint motion and loading following reconstruction of anterior cruciate 

ligament (ACL). Furthermore, the two most currently used ACL reconstruction 

techniques (transtibial single-bundle and AMP single-bundle) were evaluated and 

compared in this dissertation.  

6.1.1. The novelties and strengths  

 A relatively large patient cohort and use of a control group, including 41 ACL 

patients (30 from OrthoCarolina, Charlotte, NC; 11 from Shands Hospital, Gainesville, 

FL) who had unilateral ACL reconstruction using transtibial technique, 14 ACL patients 

using AMP technique and 20 healthy subjects.  

 Most of our patients (30 transtibial and 14 AMP) received their surgeries from the 

same surgeon; hamstring tendon ACL-grafts were used in all our patients, and they went 

through a similar rehabilitation program after surgery. Thus the number of variations was 

minimized and the only major factor came to the tunnel location (transtibial vs. AMP).  

 ACL patients were grouped according to the dominance of their involved limbs. 

The effect of lower limb dominance on postsurgical knee joint performance was 

investigated.
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 A redundant marker-set was used in this study. Since the accuracy of skin marker 

based motion analysis was affected by the soft tissue artifact (STA), it is an effective way 

to cancel out the STA by putting redundant markers covering a large skin area on each 

body segment.  

 All 6 DOFs of knee joint kinematics and loading were quantified throughout the 

whole gait cycle. The complete spatiotemporal profiles make it possible for correlation 

analysis between different variables and between different timings.  

 Development of an anatomically correct knee joint FE models. The stress/strain 

within the knee joint soft tissues was investigated during a simulated dynamic level 

walking.  

 The measured knee contact force and knee flexion angles during the stance phase 

of level walking was used to drive the FE model via load and boundary conditions. These 

data maximally mimicked the real physiological loading during the mostly engaged daily 

activity.  

6.1.2. Key points learned from this study 

After ACL-reconstruction, the normal knee joint kinematics not restored – 

Although single bundle ACL-reconstruction technique is effective to restore the knee 

functions, it does not necessarily restore the normal knee kinematics. The residual change 

in knee joint motion may increase the risk for knee joint osteoarthritis.  

ACL-reconstructed knees exhibited excessive internal tibial rotation during stance 

phase of level walking – Excessive internal tibial rotation was found in ACL-

reconstructed knees from both groups (transtibial and AMP). The abnormal motion will 

change the contact location on the articular surface of tibial cartilage and meniscus, and it 
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could also shift the joint loading to the non-weight bearing location. That could accelerate 

cartilage thinning and cause premature osteoarthritis. 

The non-injured contralateral limb has also been affected –Due to the fact that the 

ACL patients may subconsciously protect their ipsilateral leg by overusing the uninjured 

contralateral leg, caution should be raised when the contralateral legs, instead of healthy 

subjects, were used as the controls in musculoskeletal biomechanics studies. 

Varus rotation offset was found in ACL-reconstructed knees using transtibial 

technique –With more varus position, the medial compartment of the knee tends to be 

more compressed, which could generate greater contacting stresses and accelerate the 

abrasion within the articular cartilage. This provides a potential explanation to the higher 

rate of OA on the medial compartment. 

Anteromedial portal ACL-reconstruction technique creates significantly different 

knee joint kinematics compared to the traditional transtibial technique -- The varus offset 

was gone and the internal offset was reduced by using the anteromedial portal technique. 

The anteromedial portal technique also restored the anteroposterior femur translation. On 

the other side, anteromedial portal technique introduced an extension deficit in the knee 

during stance phase. 

Lower limb dominance effect exists in postsurgical knee joint kinematics and 

kinetics -- Using the same surgical procedure and rehabilitation program, the dominant 

ACL-reconstructed knees have developed significantly different motion than the non-

dominant ACL-reconstructed knees. Thus, in the future, the ACL-reconstruction 

techniques and rehabilitation programs may be accordingly adjusted for better outcomes. 
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The characteristics of soft tissue movement could be used as additional 

constraints for improving the accuracy of motion analysis algorithm –An expedition was 

made in this study, which included the attributes of soft tissue movements at several bony 

landmarks as external constraints to tune the results of the optimization process. The 

results showed improved accuracies on the measurements of internal/external and 

varus/valgus angles of the knee rotation. 

The finite element method (FEM) could be used in studying the physiological 

loading situation during level walking – Implicit analyses were successfully performed 

using ABAQUS/Standard. With the relatively accurate boundary conditions and loading 

conditions, FEM is a useful approach to generate insightful information of soft tissue 

mechanics.   

The graft orientation is important in stabilizing the knee joint especially when the 

knee is close to full extension – The results of secondary knee joint motion showed that 

the ACLR knee had greater axial rotation and varus/valgus rotation. The maximum 

contact pressures on the femoral and tibial cartilage were relatively higher in the 

transtibial knee and relatively lower in the anteromedial portal knee compared to that in 

the healthy knee. 

6.2. Future Directions 

A therapeutic method or modality that will produce maximal rehabilitative 

benefits in a minimal amount of time is the consummate goal of most clinicians. 

Rehabilitation training that follows surgery plays as an important assisting procedure for 

regaining the pre-injury activity level. The information to be gained through this 

dissertation has profound merit for academicians as well as basic and applied science 

researchers. This knowledge will be useful in identifying the effectiveness of current 



147 

treatment strategies, designing innovative motion analysis algorithms, developing novel 

therapeutic devices or orthoses that assist knee injured individuals in achieving normal 

knee kinematics and neuromuscular controls. While the current research focuses on 

discovering the knee kinematic alteration following ACL–reconstruction, further 

scientific investigation should focus on the specific patterns of the kinematic changes 

which have the potential to trigger cartilage degeneration and premature osteoarthritis. 

Knowledge of these specific patterns can lead to direct implementation in the 

rehabilitation setting and have a profound impact on changing clinical practice. 

This dissertation is a starting point, a foundation for future research. The largest 

limitation of this study was the ACL subjects who had relatively short post-surgery time. 

According to a previous study, early returning to sports activities may destabilize the 

ACL-reconstructed knee joint (Fujimoto et al., 2004). About half of our subjects were 

less than 12 month post-surgery at the time of testing. The knee motion at the early 

returning may not reflect a long term result of the ACL-reconstructed knees. Moreover, 

the relatively short postsurgical time may also contribute to the marked motion changes 

in the contralateral knee. Since osteoarthritis was usually diagnosed between 5-12 years 

post surgery (Daniel et al., 1994, Lohmander et al., 2004), in future studies, patients with 

longer postsurgical time should be recruited to investigate the relationship between joint 

kinematics and degenerative diseases.  

Although electromyography (EMG) signals were recorded in a few subjects in 

this study, they were not included in data analysis. After ACL-rupture, the loss of sensory 

information about joint position and velocity typically provided by the intact ACL may 

affect the coordination strategies of the lower extremity (Kurz et al., 2005). As was 
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discussed in the previous chapters, self-adaptation in a neuromuscular control system 

might have been developed after ACL-reconstruction. By monitoring the muscle 

activities using the EMG signals, deeper discussions and persuasive conclusions may be 

generated. Furthermore, with the EMG signal, the muscle force could be estimated which 

can be used in the FE analysis to increase the modeling accuracy. 

The FE results presented in this dissertation were based on a linear isotropic 

material model for cartilage, even though the cartilage has different stiffness along the 

depth. Thus in future studies, a new material model should be derived from more 

advanced material testing techniques. For the cartilage, different layers should be 

assigned with different material properties. Cadaver experiments with implant pressure 

sensors and strain gages should be done to validate the accuracy of FE modeling.  
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