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ABSTRACT 
 
 
CRISTINA BACIU. Bioinformatics and biomolecular tools for biomarker discovery in 
peripheral blood lymphocytes from patients with Sporadic Amyotrophic Lateral 
Sclerosis. (Under the direction of DR. JENNIFER W. WELLER) 

 

Sporadic Amyotrophic lateral sclerosis (sALS) is a complex, invariably fatal, disease 

with a poorly understood cause, despite many studies. Diagnostic biomarkers that 

precede active symptoms would be an immense help to clinicians, for patient 

management, following the progress of clinical studies, and uncovering early events in 

the development and progression of the disease.  

Combining bioinformatics of microarrays and molecular biology assays we analyzed 

and extended the results from experiments performed on peripheral blood lymphocyte 

(PBL) fractions from an sALS and a normal-matched coronary artery disease (CAD) 

study. We developed a novel computational pipeline (LO-BaFL) to improve the power 

and discrimination of identifying differentially expressed (DE) genes on long-

oligonucleotide arrays. From sALS samples we performed quantitative polymerase chain 

reaction (qPCR) validation assays that linked three novel genes, ACTG1, B2M, and 

ILKAP, to sALS. Selected regions of the DE transcripts were sequenced, which revealed 

a new, albeit non ALS-linked mutation. Genes revealed as DE by LO-BaFL were 

examined through pathway and network interaction analysis. Heightened profiles are 

seen in the immune response signature, apoptosis and responses to chemical stimulus; 

these correspond well to phenotypes associated with sALS and are good candidates for a 

simplified blood-based biomarker signature. 
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CHAPTER 1: THE LO-BaFL PIPELINE FOR MICROARRAY EXPRESSION 
ANALYSIS 

 
 

1.1 Introduction  

Biomolecular component: Biology and biomarker discovery in ALS 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is one the 

most well known of the motor neuron diseases, being described for the first time in 1869 

[1]. It is characterized by the progressive degeneration of upper (in the brain) and lower 

(in spinal cord) motor neurons that in turn alters the muscle normal functions, causing 

muscle weakness and atrophy that ultimately leads to death, within 1.5-5 year following 

diagnosis [1-3]. ALS usually affects people in their 50s, with an incidence of 1-3 cases in 

100,000/year. About 5 to 10 % of cases are familial ALS (fALS), caused mainly by 

autosomal dominant genetic mutations, the remaining 90 to 95% being sporadic (sALS), 

with an etiology still to be determined [1, 4, 5]. 

Extensive research in the pathogenesis of fALS has been stimulated by the discovery 

of mutations in Cu/Zn superoxide dismutase 1 (SOD1) that are responsible for 

approximately 20% of fALS cases. This fact is substantiated by the demonstration that 

SOD1 mutations in mouse models reproduce a motor neuron disease phenotype [6, 7]. 

Recent studies have shown that mutations in two additional genes are associated with
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premature degeneration of the motor neurons in both forms of ALS: the TARDBP at the 

ALS10 locus on chromosome 1, and the FUS/TLS gene at the ALS6 locus on 

chromosome 16 [2, 8-13]. Mutations in these genes determine, however, independent 

neurodegeneration events in patients with amyotrophic lateral sclerosis, as FUS/TLS 

mutations are not present in fALS patients with SOD1 or TARDBP mutations and vice 

versa [2].  

In recent years, the development of high-throughput and targeted sequencing and 

sequence interrogation methods has increased, at a very large scale, the number of 

available human genome sequences for molecular analysis. Several whole-genome 

association studies (WGAS) have been conducted in order to discover single nucleotide 

polymorphisms, SNPs, conferring susceptibility to sALS [13-15]. While in some studies 

weak associations were found, there were no overlapping results and two of the studies 

could not find any significant association of SNPs with ALS [14, 15]. The other studies 

associated independent, distinct SNPs with sALS, corresponding to the FLJ10986, ITPR2 

and DPP6 genes, respectively [16-18]. Only the association with DPP6 has been 

successfully replicated (in an Italian population) as shown in one study, but not in a 

second pool of samples (from Poland) [19, 20]. In addition, two studies that determined 

copy number variants (CNVs) associated with sALS in geographically different 

populations have been conducted. Again, correlated mutations were not replicated 

between studies [21, 22]. Therefore, either very large studies or different targets will be 

needed in order to clearly demonstrate the link between specific loci and sALS.  
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There are several proposed mechanisms associated with motor neuron degeneration in 

ALS: oxidative stress, toxicity induced by mutant SOD1 through different cellular 

processes, formation of intracellular aggregates (which are sometimes observed), 

mitochondrial abnormalities, deficiency in axonal transport, apoptosis, and others [1, 23, 

24]. Many of these processes are found in sALS, but are also common to 

neurodegenerative diseases in general such as Alzheimer’s, Parkinson’s, Fronto-

Temporal Dementia or prion diseases.  

Many biological and genetic studies have been conducted on biofluids or biopsies 

from sALS patients, but these studies have not yet led to the identification of a common 

aberrant process. RiluzoleTM, a drug that inhibits glutamate uptake by CNS neurons, is 

the only approved FDA drug for ALS treatment. It extends the life of ALS patients by 

only 2-3 months, on average. When ALS is diagnosed earlier, treatment with Riluzole is 

generally more effective. Therefore, early diagnosis biomarkers such as differentially 

expressed genes that can be measured by assays performed on drawn blood are sought for 

quality of life issues alone, although a cure is obviously the eventual goal. It is hoped that 

early biomarkers may provide new insights into causal agents or pathways involved in 

degenerative mechanisms that can be potentially exploited for drug target discovery. 

Early detection might help us capture the mechanisms of initiation and early progression 

in which processes are reversible, or holding patients in pre-symptomatic stages as some 

of the multiple sclerosis treatments appear to do [25]. Even without understanding the 

causal event, markers of disease progression are needed to study responses to new drugs 

and facilitate clinical trials.  
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Bioinformatics component 

Oligonucleotide microarrays are extensively used for genomics studies (particularly 

transcriptomics and genotyping). The platforms were the first fully parallel instruments 

for assessing cell state, and remain powerful tools for pursuing biological mechanisms in 

the context of their full complexity, i.e., covariation in gene expression levels, detection 

of both alleles and haploblocks for SNPs and CNVs in genotyping, etc.[26-29]. However, 

despite their wide-spread use and frequent success, the correct handling of the 

measurements is still subject to debate, and conflicting interpretations are common [26]. 

Many factors contribute to the controversy. An individual’s divergence from the 

‘reference standard’ used in platform design is one factor [5, 6, 7], whose impact will 

become clearer as more genomes and variants are described [30]. Biophysical properties 

of the sensors are also important factors [27, 28]. Alternate transcript forms are a variable 

for eukaryotic genomes [29]; probes are unlikely to report on all variants. Noise has both 

biological and technical sources, including factors such as availability of a homogeneous 

sample and the completeness of amplification and fragmentation steps [31]. The effect of 

these factors on measurements is amenable to description and modeling: doing so 

improves the processing of the data [26].  

In developing the data cleansing pipeline presented here, we considered those factors 

that can be identified with respect to a reference genome and databases of common 

variants, as well as biophysical factors for the most prevalent of the long-oligonucleotide 

arrays used to produce public datasets, the Agilent human 4x44k platform. The pipeline 

logically resembles the BaFL pipeline that was developed for short oligonucleotide 
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probes [32], but differs in the particulars because the Agilent platform uses longer probes 

(60-mers) and has less intentional redundancy, with 1-2 probes per gene compared to 

Affymetrix arrays 11-16 probes (25-mers) per gene. Accommodating these differences 

requires modifying parameters in the algorithms and tests used to identify and map 

probes to the genome, since the length of a duplex affects it’s stability under given 

hybridization conditions. For example, SNPs affect a measurement when they lie in the 

probe-target duplex, but the number required to eliminate the signal is correlated to the 

length of the duplex [33-35]. Similarly, internal probe or target structures compete with 

duplex, usually lowering the signal [36-38]; G runs (> 3) are a well-known special case 

[14-16]. Confirming the target requires remapping the probe to its genomic context, 

outcomes of which include identifying: (i) cross-hybridization to additional distant 

genomic locations; (ii) loss of binding site, where no stable complement exists; (iii) mis-

location, requiring reassignment of the probe to a new gene (re-annotation); (iv) 

confirming correct, unique matches to the intended target. Where a sequence-based 

problem is identified a probe’s measurement should be removed from all samples – this is 

most simply handled by altering the file describing the array layout e.g. with Aroma [39-

41]. 

Not all error comes from sequence bias, sample handling and scanners also 

contribute. The instrument has important response characteristics to consider [42, 43], 

and the upper and lower limits of signal detection must be adjusted by experiment and 

platform. Variance from sample handling steps is examined after problematic probes 



6 
 

have been removed: the pipeline incorporates several statistical tests to determine sample 

membership in the designated classes [32].  

For rare, sporadic diseases such as ALS, it is difficult to obtain large sample sizes, 

therefore for statistical rigor and to make sure that a consistent effect is identified, meta-

experiments are needed. The challenge is to identify samples that can legitimately be 

grouped and then to process the data in such a way that responses are similarly scaled. 

Only high quality sample annotation can ensure the first criterion, while removing probes 

known to have flaws and observing scanner response limitations helps with the second. 

Since all DE predictions require a robust normal control, and the sample size in our 

original study was very small [44], we obtained the CAD study [45] for its normal 

samples, whose age, gender and cell mixture characteristics were well-matched to our 

samples, as an independent control of the quality of our ALS normal cohort. 

The effectiveness of a data processing pipeline is generally assessed by the accuracy 

of subsequent data mining efforts, which at the lowest level are tests for differential 

expression across states [46]. The most accepted confirmatory tests are sample-based, 

using an independent assay method (usually qRT-PCR), but may be meta-analysis based 

when samples are unavailable, using literature reports to reinforce the analysis findings. 

After processing data with both a standard pipeline, TM4 [47], and our LO-BaFL 

pipeline, we used SAM [24] to generate the DE predictions upon which effective 

processing is judged. Since a small amount of the ALS material amplified for the 

microarrays was available, some predictions were tested by qRT-PCR assays. To provide 

meta-analysis support, and because the ALS sample numbers were so small, the CAD 
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normal sample analysis was added. We note that in the original CAD study qRT-PCR 

was used to test some of the predictions, and we have assumed that the reported results 

were accurate.  Microarray and qRT-PCR results were declared concordant when the 

direction and the degree of change in expression compared to a control gene were 

accurately captured [48]. Finally, we performed a literature search for independent 

reports on a number of the genes, or pathway and interaction data predicted and 

confirmed to be important in these ALS samples [49].   

We mention above that a ‘standard’ pipeline is used as well as the one we developed. 

As an open source for microarray data analysis, TM4 [47] consists of a series of 

applications under a graphical interface that facilitates analyses of microarray data. 

Among the TM4 suite of tools, MIDAS (Microarray Data Analysis System) includes 

several normalization steps (e.g., total intensity normalization, Lowess normalization, 

standard deviation regularization), and filtering to remove low intensity signals. There are 

several options for statistical analysis on filtered data to determine differentially 

expressed genes, i.e. parametric versus non-parametric tests. The TM4 pipeline uses 

statistical rather than biophysical criteria to remove poor measurements [47, 50] and it 

does not explicitly list the deprecated probes, so understanding directly what response 

changes have lead to different outcomes is not possible. To test whether the LO-BaFL 

processing pipeline has advantages over TM4 when array studies using small sample 

sizes are involved, we used each pipeline to process two independent data sets. We then 

used a significance test for DE genes, applying a simple Wilcoxon non-parametric test 

because the distributions did not meet criteria to use a parametric test [28]. For the ALS 
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samples, we performed the qRT-PCR assays on the unused portion of the products sent 

for array hybridization [51] while for the subset of samples from the CAD experiment we 

relied on the published qRT-PCR results and literature references.  

1.2 Materials and methods 

For data storage, data organization, and recording the order and parameters used in 

the pipeline transformations, we have used DataFATE (Data - Feature Analysis 

Transformation Extraction), a software system based on a relational model that includes a 

toolset with data import and organization tools for relational database management 

systems (RDBMS), tools for factor (quantitation type, QT) definition, QT set 

construction, and storage of data from processing steps. The RDBMS is currently 

PostgreSQL 8.0.3. [52]. The project instance of DataFATE was installed into a 64 bit, 22-

processor, 120 GB of RAM computer running Ubuntu 9.04 version for Kernel LINUX™ 

2.6.28, as the operating system. Querying, extraction and manipulation of data stored in 

DataFATE has been made with scripts written with Python 2.6 [53], SQL (via 

PGAdminIII) [54] and R [55]. Additional software installed on this hardware and used 

for this project includes TM4 microarray software suite [56], and OligoArrayAux [29] for 

biophysical modeling. For the results using the packages TM4 [47] and Significance 

Analysis of Microarrays (SAM) [57], we set up the relational database in order to 

maintain stable output of intermediate and final results of both pipelines.  

Data acquisition 

Microarray image files and corresponding spot intensity values for the ALS study were 

provided by Carolinas Neuromuscular/ALS-MDA Center, Neuroscience and Spine 
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Institute, Carolinas Medical Center, Charlotte, NC. The microarray experiment used 

Agilent 4x44K human genome microarrays [58] in a pooled reference design [59]. 

Sample and microarray processing were performed at Cogenics [60], producing arrays 

contrasting each sample (healthy and diseased) to the healthy reference pool. The raw 

data sent back by Cogenics includes extracted spot intensities and the background-

subtracted intensity ratios for each contrast.  

CAD raw data was downloaded from GEO, Accession No.GSE10195. 

The LO-BaFL pipeline  

The steps in the pipeline, described below, are summarized in Figure 1.1.   

A. In this section the probe-sequence based filters are described. 

(i) Re-map the Agilent probes to assembly version 36.1 of the human genome (36.1) 

using the accelerated Tera-BLAST algorithm, as implemented by a TimeLogic-Decypher 

[61] server. The corresponding matches were deposited into an instance of the DataFATE 

database. Parameters were: nucleic match = 1; nucleic mismatch = -3; open penalty = -5; 

extend penalty = -2; threshold significance = 10. The input and output files can be found 

in Supplementary Material section, at: http://webpages.uncc.edu/~cbaciu/LO-

BaFL/supplementary_data.html under Input Files/agilent_fasta or Cleansing 

Process/tera_blast_results.  

(ii) Determine the cross-hybridization potential of probes to other sites in the genome, 

using the Kane criteria [62]. Briefly this is an empirical rule stating that any target 

sequence with similarity greater than 75% across the length of a probe can contribute a 

detectable amount of signal to the total intensity. 
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Figure 1.1 Flowchart of the LO-BaFL pipeline: the pipeline step is given on the left and 
the right indicates where intermediate datasets were stored in the project database. Note 
that this output has been made available as flat files. 

 

This rule includes some constraints concerning the positions and lengths of mismatch 

regions. For a probe to cross-hybridize, we input the following conditions: percent 

identity ≥ 85%; presence of 50 matches out of 60 possible; minimum of 15 consecutive 

nucleotides in the Agilent probe sequence. We stored the output, consisting of all the 

Kane-criteria cross-hybridizing probes into DataFATE.  

(iii) Identify probes that no longer anchor to the reference genome. This information 

is acquired when a TeraProbe query returns ‘no hit’, and this is stored as an explicit type.   

(iv) Identify SNPs and short indels known to occur in the probe-binding region. 

Probes were mapped to the human instance of dbSNP [63], taking all possible alternate 

Re-map the Agilent probes to 
HuRef 36.1 (Tera-BLAST) Perfect Matches

Determine the probes that cross-
hybridize (Kane criteria) Cross-hyb probes

Identify the probes with known 
SNPs (map to dbSNP)

Probes with 4 
SNPs or more

Identify the probes with low 
binding affinity (OligoArrayAux)

Probes forming  too stable 
and unstable structures

Statistical analyses
DataFATE
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alleles into consideration. The minimum number of SNPs expected to significantly 

degrade the signal is a parameter in the BaFL pipeline. Using the Kane criteria, the 

presence of six SNPs will reduce the signal to the point of background, but the presence 

of any SNP will cause the signal to reflect both sequence variation and transcript 

concentration and the question of degree is not simple since it depends on sequence 

context and competition.  For the case study we set the ‘deprecate’ flag to 3 SNPs or 

more, assuming that this many competing alleles would make the intensity information 

useless for differential expression analysis. All of the information was retained, however, 

so another researcher could modify the query to adjust the number of SNPs to allow in 

retrieved probes.  

(v) Employ the OligoArrayAux software [29] to determine the free energy of internal 

probe structures versus heterodimers. Parameters chosen were: temperature 55 to 62º C, 

concentrations of 1.0 M Na+ and 0.0 M Mg++, output was used to define probes 

inaccessible to target (except at very high concentrations) under experimental conditions. 

Probes that predominantly form very stable internal structures have a lower effective 

concentration, and so bind less target. Heterodimers with low stability under specific 

experimental conditions do not yield signal [64-66]. The predicted value of the most 

stable form is stored in the database as an attribute of the probe, allowing adjustment of 

the cut-off value.  

(vi) It has been shown for Affymetrix arrays that four or more consecutive guanines 

(G-runs) lead to unusual probe structures that cause very high signal [14-16]. We 
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identified the probes with this feature; we note that most of them are removed based on 

other filters as well (data not shown). 

(vii) The presence of any member of the transposable elements family, short (SINE), 

long (LINE) or primate-specific (Alu) repeat elements, can have a great affect on gene 

expression [45-47]. Using the TranspoGene database[67] we examined the entire set of 

genes for these elements; none were identified. 

Note that the order of operations is independent for the above filters; some probes fall 

into multiple categories so the total number of ‘bad’ probes identified per step will be 

greater than the total number removed.  

B. Background (Noise Estimation) 

The probes that form very stable heterodimers and have a single target (do not cross-

hybridize) can provide insight into expected noise from the Agilent scanner (it must be 

estimated since the information is not given). Once this value has been determined, it can 

be used as a filter for eliminating the probes that have signal below the detection 

boundary. Candidate probes were identified using queries for uniqueness and free energy; 

measurement values were then retrieved, from each dataset independently, and the mean, 

median and lowess values were determined.  

  C. Sample Outlier Detection 

We compared the signal intensities in the normal and diseased samples to the mean 

and variance of each class, and the distributions in order to identify samples outliers. Two 

contrasts were examined: 
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(i) Sample to class comparison of average number or probes and intensity per probe: 

Using only probes with acceptable measurement-yielding profiles, for each sample class 

and accepting only measurements above the lower detection boundary, we determined the 

mean signal per probe per array and across all arrays in the class. Samples whose probe-

signal mean fell more than two standard deviations outside of the array mean were 

rejected. We then determined the number of acceptable probes that yielded good 

measurements per array, and across all arrays in the class, and similarly rejected any 

sample for which the number of informative probes fell more than two standard 

deviations from the class mean.  

(ii) Sample distribution comparisons using filtered probe intensities: We compared 

the within- category and between-category distributions of probe intensities in the 

measurement-quality class. Non-normal distributions would suggest application of a log 

transformation, while sufficiently dissimilar distributions (test is described below) 

preclude the use of some statistical tests.   

Statistical Analyses for Distribution 

For the arrays that passed the LO-BaFL pipeline, the distributions of the intensities of 

the final set of acceptable probe values were tested for each class and experiment. 

Individual normal and diseased samples were labeled with Cy3 and the pooled reference 

was labeled with Cy5, which means the pooled reference group had twice as many 

members. The Shapiro-Wilk test [68-70], implemented in R, was used to check for 

normal distribution within and between sample classes. Since the results of both 

experiments show a non-normal distribution (data not shown), the Wilcoxon non-
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parametric test[71],[72] for unpaired groups was applied when performing comparisons 

for differential expression.  

Significance of Differential Expression 

Microarrays are the poster child for the multiple-hypothesis testing conundrum [73]. 

We addressed this issue using the Benjamini and Hochberg FDR procedure [74] 

implemented in R. The output consists of a list of DE genes and associated p-values. The 

R scripts for statistical analysis and the output file with DE genes can be found in 

Supplementary Material / Scripts/ stats_R.txt. 

The control method, TM4 [47, 56] takes as input the spot intensity values for a set of 

arrays categorized by experimental design. TM4 allows for signal normalization (total 

intensity normalization, Lowess normalization), standardization (standard deviation 

regularization) and low-signal intensity filtering. Modified intensity values are the output, 

which are then used by the Significance Analysis of Microarray (SAM) package [57] or 

non-parametric tests to identify the differentially expressed genes. The output is a list of 

DE genes and associated p-values. The sequences of steps performed as statistical 

analyses are shown in Figure 1.2. 

1.3 Results and Discussions 

The pipeline for probe filtering 

Data: the raw microarray data is publicly available at NCBI Gene Expression 

Omnibus, GSE28253 [75].  The specified intermediate pipeline output and the final 

results of our analyses are available in the Supplementary Material section unless noted. 
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Figure 1.2 The LO-BaFL pipeline (1) and the TM4 (2) and SAM (3) pipelines. 

Pipeline: 

 (i) Re-mapping the Agilent probes to the Human Reference (HuRef) Genome 36.1 

build. The 41,000 Agilent probes were scanned against the human reference genome 

using the Tera-BLAST algorithm implemented on the FPGA-accelerated platform from 

TimeLogic [61]. This search was implemented to find near-perfect as well as perfect 

matches, using parameter settings mentioned in the Materials and Methods section. We 

found a total of 370,139 hits to the probes, averaging ~9 matches per probe. The full list 
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of matches is available on the project Web site / Cleansing 

process/tera_blast_results/tera_blast_raw.zip. In a gene expression array the impact of a 

perfect match to a secondary target depends on whether it is an expressed sequence from 

the complementary strand. The majority of additional locations did map to genes and did 

not appear to map across exon/intron junctions, although this does depend on the gene 

model used (data not shown).  

(ii) Perfect and partial matches. Where a secondary target is not a perfect match there 

must be some boundary conditions for determining where sufficient signal contamination 

will occur to confound the interpretation of the data. We chose to follow the Kane criteria 

[62], adapted to Agilent 60-mers, such that 50/60 nucleotides have to match overall, with 

a minimum nucleation length of 15 nucleotides somewhere in the duplex. Applying these 

filters to the output above suggests that ~8.63 % of the probes would produce confounded 

measurements (signal coming from distinct loci), and that subset of probes was flagged. 

Oligonucleotides that report on multiple loci are usually eliminated from the 

measurement pool, at least in initial data cleansing efforts, since interpretation of the 

values is problematic [76, 77]. The file so modified is provided on the project Web site 

under Cleansing Process/cross-hybridization_filter/total_probes_no_crosshyb.csv. 

(iii) Identifying the loss of probes. There are 407 probes that no longer map to the 

HuRef Genome 36.1 build (file = probes_info_no_pm_no_crosshyb_not_mapped.csv in 

Supplementary Data/Cleansing Process / loss_of_target_filter), these were flagged for 

removal from the active probes list.  
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(iv) Identifying the presence of SNPs. Although the cut-off is somewhat arbitrary, 

probes with four or more SNPs were removed (~2.53% of the remainder), since their 

presence would significantly distort the apparent concentration [65, 66]. The file showing 

the probes and the major/minor alleles for each SNP position is in Supplementary 

Material/Cleansing process/SNP filter/snp_info_probes_gt_4snp.csv. A separate file, 

’agilent_probe_info_3SNPs.csv’ gives the information on probes with less than four 

SNPs, for those wishing to adjust the stringency of SNP cut-offs.  

(v) Delta G filter. The logic for deciding the cut-off for internal stability is described 

in the original BaFL report. For these 60-mers and hybridization conditions, ∆G = -5.2 

kcal mol-1 shows the comparable response [32], resulting in filtering out ~21.5 % of the 

probes, listed in the Supplementary Material file under “DeltaG_filter” tables.  

The summary of the pipeline effects (as percent of probes filtered out per step) is 

shown in Table 1.1. 

(vi) Poly-G filter. A factor added to the BaFL pipeline subsequent to the published 

report is the presence of poly-G (a run of G’s >3) in the probe (Thompson, personal 

communication). The phenomenon of ‘bright spots’ from such runs has only been 

reported for short oligo arrays [14-16], but it is reasonable to check for them on longer 

oligonucleotide arrays as well. There are 4,742 such probes in the original data set (see 

file ‘log_signal_4G_probes_total_no_filters.csv,’ under polyG_filter of Cleansing 

Process in Supplementary Material). Of these ~10.2% had unusually high intensity 

(log10(I) > 3.5) while 50% had log10(I) < 2.0. Only 11 probes with this feature were 
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present in the final list of acceptable probes (explained below), and these were flagged 

for removal. 

Table 1.1. The % probes removed in total by applying the filtering steps of LO-
BaFL pipeline and comparison with percent probes eliminated in the original 
BaFL pipeline.   

 

 

Applied filter 
% Probes filtered 

out (LO-BaFL) 

% Probes filtered 

out (BaFL) [32] 

Cross-hybridization 8.63 % 60.30% 

Loss of target 0.99 % 2.19 % 

SNP  2.53 % 1.78% 

∆G  21.46 % 5.17% 

 

 

 

 

 

 

 (vii) Repeated elements filter. A screen of the remaining probes for LINE, SINE and 

Alu subsequences was performed against the TranspoGene database [67]; no matches 

were identified. 

Background estimation (instrument cut-off value) 

The lower detection limit for our Agilent scanner was not available as a technical 

specification, so it was necessary to estimate it. Since this is not a standard method in 

most analysis pipelines the rationale for the steps is given here. Probes that do not cross-

hybridize are used, in order to limit the possibility that a high concentration of target 
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comes from an unexpected source. From these we selected those with a very stable 

internal structure so that little was available for duplex formation with target (∆G < -5.2 

kcal mol-1); this subset is given in (Supplementary Data/Cleansing 

process/Determining_instrument_cutoff/delta_g_mean_and_log_int_probes_no_crosshyb

.csv). The goal is to identify a cutoff below which there is little variation in signal across 

many different probes, indicating that the response to changes target concentration has 

been compressed. In examining the intensities of this subset of probes in both normal and 

diseased samples in the ALS study, log10(I)mean and log10(I)median yielded values of 3.51 

and 3.49 respectively, while for the CAD samples the values were 3.0 and 2.9 

respectively, which indicates that this is either an experiment- or a scanner-specific value 

(we cannot separate labeling and scanner sensitivity factors). This is ten-fold higher than 

the value we find for most experiments using Affymetrix scanners (Thompson, personal 

report). If the extremely stable probes are eliminated (∆G < -10 kcal mol-1), the 

background cut-off values approach the Lowess smoothing values, shown in Figure 1.3 

for the ALS samples (lower panel), and also in Figure S1 for the CAD data (see 

‘Supplementary Data/CAD study’), and now approximate the values (200-300 

fluorescent units) seen for the Affymetrix scanners. In the absence of calibration 

standards we cannot discriminate scanner detection limits from target fragmentation and 

labeling efficiency, but clearly the noise limit is experiment dependent and should be 

carefully determined for each experiment, and standardized for meta-experiments. This 

filter caused the largest single-step removal of probes for ALS experiment with all 

samples (~27,000 probes = ~ 95% of the total removed in this step, Supplementary 
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Material/Cleansing Process / Instrument_cutoff / all_samples_gt_instrument_cut-

off_log_intens.csv). If a smaller value (2.5) for instrument cut-off is used, the percent of 

probes removed by this filter is reduced to ~ 78%, but the list of DE genes obtained is not 

any more similar to TM4 than before (see Results). 

Sample outlier identification 

We mirrored the BaFL approach for detecting sample outliers: briefly, one determines 

for each sample in a class the number of probes whose signal is above background and 

the the average signal per probe and compares the values to the sample-class means [32]. 

In experiments conducted on human patients with long-standing debilitating disease there 

is a strong likelihood that multiple conditions are present; a large difference in the 

number and identity of genes expressed may mean that part of the response is due to a 

second agent, so samples are screened for large overall response differences. A second 

difference from the earlier pipeline arose because of the experimental design of one these 

studies: the ALS experiment used a common reference design, so we added a step to 

determine how reproducible the signal of that reference is across all of the samples. Any 

sample (here represented by the array) for which the number of probes or intensity per 

probe falls more than two standard deviations from the mean for the category is 

considered an outlier and is not used. Defining an outlier as more than two standard 

deviations away from the class mean for either of these criteria, none of the samples in 

the ALS experiment failed, including those that were not tested by gene-specific PCR 

because of poor RIN numbers, indicating that the original samples were most likely of 

acceptable quality. No sample outliers were detected in the CAD experiment.  
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Figure 1.3. (upper) Graphical representation of ∆Gcut-off  results: the probes having free 
energy, ∆G < -5.2 kcal mol-1, represented by the red line, were filtered out and the 
proportion to the left of the line is 21.5%; (lower) ∆G vs. Probe signal: the red line 
denotes background cut-off value; grey line is the Lowess smoothing line between ∆G 
and log10 intensities; grey dots represent the probes with very stable structures that have 
been eliminated in the process; black dots represent the probes with signal higher than the 
background cut-off value and ∆G < -5.2 kcal mol-1.  
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Additional Probe Restrictions 

In the set of 12 samples whose cDNA passed the quality control (QC) step (see 

below), a set of 1,552 common probes was retained by the filtering process. Including the 

12 samples with somewhat degraded cRNA (poor RIN scores) decreases the number to 

1,327 probes to test for expression differences.   

Sample Distribution Testing and Predicting Differential Expression 

 Once unreliable sensors (flawed probes) and measurements (scanner limitations) have 

been screened out, comparisons of the remaining intensity distributions allow one to 

select a valid statistical method to identify differentially expressed targets. In both 

studies, the F test indicated unequal variances between the two groups of samples. Probes 

for the same gene in the two sample classes failed the Shapiro-Wilks test for normality 

[68-70]. Our results indicated the presence of unequal and non-normal distributions (see 

Figure 1.4 and Figures S2, S3 in Supplementary Data/CAD Study); therefore, the use of a 

nonparametric equivalent to the t-test was chosen: in this case, the Wilcoxon two-sample 

test for unpaired groups [71, 72] was applied. The multiple-comparison problem is well-

known for these experiments; we controlled for the false discovery rate (FDR) [74] using 

a setting of 0.20 and corrected the p-values accordingly with either the Bonferroni 

correction [78] or the Benjamini and Hockberg correction [74]. In each case no DE genes 

remained, suggesting that the criteria were too stringent. If we accept the argument that 

the multiple-testing criteria are too stringent [79], and use a p < 0.05 for significance, in 

the ALS experiment 87 probes were returned as DE for the complete dataset, with a 

subset of 60 of those reported as DE in the high-quality samples.  
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 For the CAD study, 386 genes were found to be differentially expressed. The list with 

all DE genes for ALS is provided for each set, in Supplementary Material/Data post 

filtering/DE_genes_12(or all)_samples tables. DE genes for the CAD experiment are 

listed in: 

 Supplementary Data / CAD Study / DE_genes_CAD / DE_genes_CAD_data.csv.  

TM4 and Significance Analysis of Microarrays (SAM) for ALS Data set  

 TM4, a widely-accepted platform for analyzing Agilent microarray data, incorporates 

SAM, which included a choice of non-parametric tests for the statistical analysis; thus we 

selected it as the standard pipeline against which to compare the LO-BaFL pipeline. 

Using the ALS experiment samples, analyses using several parameter settings were 

performed so that we could compare outcomes, and we used both the complete sample 

set and the highest RIN quality-validated subset of samples for each. The base-line 

analysis used TM4 default settings, which includes several normalization steps (e.g., total 

intensity normalization, Lowess normalization, standard deviation regularization), and 

filtering for the lowest 5% intensity signals, a common signal detection boundary of 100 

for Cy5 and Cy3 intensities, and the Wilcoxon non-parametric test to determine DE genes 

(for convenience we label the results of using this method ‘TM4-W’). A second analysis 

path used LO-BaFL to remove problematic probes and the Wilcoxon non-parametric t-

test to determine DE genes. It is possible that the data cleansing results are essentially the 

same even if the approach is not, so we used the LO-BaFl results as input to SAM, and 

within SAM opted for the Wilcoxon test (labelled as ‘SAM-W’). 
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   Figure 1.4. Q-Q plot distribution of diseased (upper) and healthy controls (lower). 

The main caveat in this comparison is that there must be a sufficient number of 

observations in the classes for the method to be valid. SAM takes measurements and 

response variable category as input, and uses permutations to determine the strength of 



25 
 

association; we set the permutation number to 100. Table 1.2 compares the six lists of 5 

most significantly DE genes obtained from our analyses. The R implementation and 

SAM implementation of the Wilcoxon are very similar, with SAM perhaps being slightly 

more stringent since it eliminates one gene allowed by the other algorithm. The number 

of samples made a large difference, with only 1 of 5 genes being in common when 12 or 

22 samples were processed with LO-BaFL (that being JUNB) or with TM4 (the gene 

being DYNLT1). An obvious reason for the disparity is if the probes have been 

deprecated in the list of acceptable probes. Checking the list of such probes showed that 

four of the TM4 DE genes fell below the minimum signal boundary set for LO-BaFL, 

explaining their absence. The fifth TM4-predicted gene, DYNLT1 did not appear on the 

LO-BaFL list because it did not meet the p-value criterion.  

Confirmatory analyses on DE genes in CAD samples 

The list of DE genes determined by LO-BaFL was compared with results reported in 

[45]. Two of the genes appear on both lists (CSPG2, ALOX5), four are close variants of 

the DE genes, while the remainder of the genes reported in the paper were eliminated 

from out list based on specific criteria including the strong structure (delta G), low signal 

(scanner limitation) or p-values that failed our significance criterion (See ‘Supplementary 

Material / CAD study / comparison_with_DE_genes_CAD  / comparison_LO-

BaFL_CAD_DE_genes.csv’). The file listing DE genes for this experiment as determined 

by our pipeline is found as ‘LO-BaFL_DE_genes_CAD_data.csv’, located in the same 

directory mentioned above.   

http://webpages.uncc.edu/%7Ecbaciu/LO-BaFL/cad/comparison_LO-BaFL_CAD_DE_genes.csv
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Analysis of Healthy Control samples from a different experiment and comparison 

with Healthy Controls from ALS data. 

A major shortcoming of many analysis pipelines is that they are over-tuned to a 

particular experiment, so that parameters that yield excellent results in one study give 

poor results in another.Our intent is that the LO-BaFL filters be mostly experiment-blind 

(except for the determination of scanner detection limit and sample outlier status); if this 

is true LO-BaFL should predict the behavior of genes in similar samples but different 

experiments relatively well.  

We looked for experiments in which human peripheral-blood samples and the Agilent 

arrays were used. One such studied coronary artery disease (CAD) [45] from controls 

(n=14) and diseased (n = 27). The data is accessible at GEO, Accession No.GSE10195. 

We compared the behavior of the two control groups: those without CAD in one study 

(six randomly selected samples out of 14) and without ALS in the other (six controls). An 

anomaly in the CAD study was a number of spots with ‘negative’ intensities (often 

saturated spots that the software does not know how to handle), which were removed. 

Prior to probe filtering, all of the samples have measurements for 24,336 genes. After 

LO-BaFL filtering being applied we graphed and compared the probe intensities in 

Normal samples from each study. We found a good correlation across genes between the 

two groups, indicated by the near-linearity of the Lowess smoothing line, shown in red 

(Figure 1.5). The genes that are most highly expressed in each set of samples (e.g. RPS2, 

RPLP1, RPS28, HLA-C) and expressed at low but detectable levels (e.g. CD28, CDV3, 

CD79A, CCD12) are characteristic of white blood cells.  
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Table 1.2 ALS experiment: Selected differentially expressed genes with p < 0.05, 
determined by LO-BaFL-Wilcoxon (LO/W12, LO/W22), TM4-W (TM4/W12, 
TM4/W22) and SAM-W (SAM/W12, SAM/W22). 
 

List of DE 
genes 

Gene/Accession Description p-value /q-value 

LO/W12 FTH1/ NM_002032 Ferritin, heavy polypeptide 1 1.59E-3 

 JUNB/ NM_002229 Jun B proto-oncogene 3.67 E-3 

 B2M/ NM_004048 Beta-2-microglobulin 1.54 E-3 

 ACTG1/ NM_001614 Poly(A) binding protein, cytoplasmic 1 3.7 E-3 

 SLC25A3/NM_005888 
solute carrier family 25 (mitochondrial 
carrier; phosphate carrier), member 3 

4.46 E-3 

LO/W22 EXOC3L2/NM_138568 Exocyst complex component 3-like 2 5.73 E-3 

 FAU/ NM_001997 
Finkel-Biskis-Reilly murine sarcoma 
virus 

1.96 E-3 

 GLTSCR1/ AF182077 
Glioma tumor suppressor candidate 
region gene 1 

2.56 E-3 

 JUNB/ NM_002229 Jun B proto-oncogene 1.24 E-3 

 IRS2/ NM_003749 Insulin receptor substrate 2 1.66 E-3 

TM4/W12 CSE1L/ NM_001316 
CSE1 chromosome segregation 1-like 
(yeast) 

0.0 

 NUP88/ NM_002532 Nucleoporin 88kDa 0.0 

 PARP1/NM_001618 poly (ADP-ribose) polymerase 1 0.0 

 DYNC1I2/NM_001378 
Dynein, cytoplasmic 1, intermediate 
chain 2 

0.0 

 DYNLT1/ NM_006519 Dynein, light chain, Tctex-type 1 0.0 

 
 
 
 
 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=SLC25A3
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Table 1.2 (continued) 
 

TM4/W22 TARDBP/NM_007375 TAR DNA binding protein 0.0 

 DYNLT1/ NM_006519 Dynein, light chain, Tctex-type 1 0.0 

 SKIV2L2/ NM_015360 
Superkiller viralicidic activity 2-like 2 
(S. cerevisiae)  

0.0 

 C12orf35/NM_018169 Chromosome 12 open reading frame 35  0.0 

 IRS2, NM_003749 Insulin receptor substrate 2  0.0 

SAM/W12 FTH1/ NM_002032 Ferritin, heavy polypeptide 1 0.0 

 JUNB/ NM_002229 Jun B proto-oncogene 0.0 

 B2M/ NM_004048 Beta-2-microglobulin 0.0 

 ACTG1/ NM_001614 Poly(A) binding protein, cytoplasmic 1 0.0 

 SLC25A3/NM_005888 
solute carrier family 25 (mitochondrial 
carrier; phosphate carrier), member 3 

0.0 

SAM/W22 IRS2/ NM_003749 Insulin receptor substrate 2 0.0 

 GLTSCR1/ AF182077 
Glioma tumor suppressor candidate 
region gene 1 

0.0 

 FAU/ NM_001997 
Finkel-Biskis-Reilly murine sarcoma 
virus 

0.0 

 EXOC3L2/NM_138568 Exocyst complex component 3-like 2 0.0 

 JUNB/ NM_002229 Jun B proto-oncogene 0.0 

 

This result encourages us that we can extend our studies to additional microarray data 

of ALS samples, since LO-BaFL predictions of DE genes are often confirmed by qRT-

PCR results. 

 

 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=SLC25A3
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1.4 Conclusions 

We performed two related case studies, using data obtained from independent 

experiments, one on ALS and one on CAD. Transcript levels for both experiments were 

measured with the Agilent 4x44k platform. The data was processed using two pipelines: 

LO-BaFL and TM4.  

 

Figure 1.5. Correlation between healthy controls in ALS and CAD studies denoted by the 
Lowess smoothing line in red.  
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Comparing normal samples from the independent CAD experiment [47] to the ALS-

normal samples indicated that the latter microarray hybridizations gave very similar 

results (albeit with somewhat different labeling efficiency), giving us more confidence in 

the differences observed with the diseased samples for the quite small ALS study. Several 

of the most significant DE genes in ALS were related to immune responses, while in the 

CAD study the DE genes were involved in atherosclerosis, cell motility, as signaling 

receptors or transcription factors [45]. Our pipeline was applied to the CAD data as a 

whole (healthy n = 14, diseased n = 27), paying particular attention to those DE genes 

that the researchers of the original study tested with qRT-PCR assays. We compared the 

DE genes determined by LO-BaFL with their list and the result shows that except for 

several genes that have been eliminated by ∆G filter or by the background cut-off filter, 

the rest are found in our list with significant expressed genes. Two of them are confirmed 

to be DE, four are close variants and several others were dropped because the p-value fell 

just below our cut-off (See Supplementary Material/CAD study). Furthermore, a 

comparative analysis of controls in ALS study vs. controls in CAD study shows a very 

good correlation between the two groups. 

We note that these studies had considerably fewer disease samples than were 

available for the original BaFL study, which used a large, publicly available lung cancer 

dataset. ALS is sporadic, rare, and has a mysterious etiology [1, 7, 13]; the inherent small 

number of samples means that methods for increasing the power of studies are even more 

important. 



 
 

 

 

 

CHAPTER 2: VALIDATION OF DIFFERENTIALLY EXPRESSED GENES 
ASSOCIATED WITH sALS BY qRT-PCR ASSAYS 

 
 

2.1 Introduction 

The research described in this chapter represents an extensive investigation of the 

differentially expressed genes, as determined by applying LO-BaFL pipeline, defined in 

details in Chapter 1, to available microarray data and by comparative bioinformatics 

methods, e.g. TM4, in peripheral blood lymphocytes (PBLs) from patients with sALS, 

and normal patients, samples provided by Carolinas Neuromuscular/ALS-MDA Center, 

Charlotte, NC.  

Employing different methods to obtain DE genes on same the data set has the 

advantage of determining a more complete list. More specifically, the LO-BaFL pipeline 

is designed to eliminate and flag any probes that are cross-hybridizing, whereas TM4 and 

SAM do not have this filter. For instance, one Agilent probe representing TARDBP, one 

of the most important genes in sALS studies, was found to cross-hybridize with IlKAP. 

The latter was not identified by TM4 as being differentially expressed and therefore, it 

would have been excluded for further assays if only the TM$-SAM computational 

method was used.  Because LO-BAFL identifies genes by category, cross-hybridizing 

genes can be specifically identified in the absence of microarray DE predictions. Thus we 

added to the list of genes to test by qPCR TARDBP and ILKAP, neither of which was 
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predicted as significantly DE by LO-BAFL and only the first of which was predicted by 

TM4.  

For any diagnostic test a confirmation of the results must be demonstrated using an 

independent method. This is particularly true of microarray results, which tend to produce 

long lists of DE genes that appear only in single studies. While the follow-up assay id not 

prescribed, it is most commonly a quantitative PCR assay, either absolute or relative, 

since the set of collective methods is sensitive and reproducible. Because reagents for the 

absolute quantitation method do not exist for the amplicons in our study we chose the 

relative quantitative approach. This requires that the different efficiencies of 

amplification be considered in the data analysis, explained in more detail in the 

Discussion section.  

2.2 Materials and Methods 

Gene selection 

We selected FTH1, JUNB, B2M, ACTG1, SLC25A3 as top common DE genes for 

LO-W and SAM-W (see Chapter 1), and in addition, SKIV2L2, C12orf35, DYNLT1 and 

TARDBP (determined by TM4-W) and its corresponding cross-hybridizing genes (e.g. 

ILKAP, DIAPH3), to be tested in the lab.  

Also, we adopted a set of four reference genes to assess the sample and assay 

conditions, according to best practice recommendations [49]. A reference is context 

specific: these were selected based on an apparently consistent level of expression in the 

microarray data across sample classes and individuals, in the middle range of 

concentrations. These references included: UBE2Z (ubiquitin-conjugating enzyme E2Z), 
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PGK1 (phosphoglycerate kinase 1), COX4I1 (cytochrome c oxidase subunit IV isoform 

1), and SRRM1 (serine/arginine repetitive matrix 1).  

The qRT-PCR assay reagents and quantitation templates were developed and the 

titrations of samples against standards performed according to standard methods [51]. 

Primers and reference template sequences are provided in Table 2.1. The instrument was 

the Bio-RAD MyiQ Single-Color Real-Time PCR Detection System [80]. We used the 

software that ships with the instrument to perform initial calculations; we chose the 

maximum correlation coefficient approach to determine the Cts, from which the starting 

concentrations of the unknowns were estimated. Further analyses were performed with 

the Pfaffl method [81].  

In the absence of a calibration standard the actual expression levels of genes in the 

individual samples are not readily available. Thus the wet-lab work had two goals: 

determine the level of expression that a microarray value yields in a qRT-PCR assay; 

determine whether either pipeline was accurate in its predictions of the predicted 

difference in expression levels between normal and diseased samples. Table 2.1 shows 

the genes selected and their category. Those marked as ‘reference’ are expected to be 

expressed in PBLs at moderate and consistent levels in all samples.  

 A diagram representing the four steps involved the experimental part of the present 

study is sketched in Figure 2.1. 

Quantitative and qualitative assessment of RNA  

The isolated RNA from peripheral blood lymphocytes samples of healthy controls 

and ALS patients, stored at -80º C, provided by Carolinas Neuromuscular/ALS-MDA 
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Center, Chalotte, NC was qualitatively checked using the Agilent 2100 Bioanalyzer [58], 

and quantified with the Nanodrop ND-1000 from ThermoScientific [82]. We carried 

forward only those samples that satisfied the condition that RIN >5.5.  

cDNA synthesis and QC 

In addition to the samples used in the microarray experiments, we extracted RNA from 

other samples of blood cells, suspended in Trizol and kept at -80º C, as positive controls, 

using the AllPrep DNA/RNA Mini Kit from Qiagen [83], following the manufacturer’s 

instructions. This RNA was qualified and quantified as above. We then synthesized 

double-stranded cDNA from the ALS samples that passed the RNA quality/quantity test 

(6 normal controls and 6 diseased) and from the control RNA, using the Full SpectrumTM 

Complete Transcriptome RNA Amplification Kit from System Biosciences [84], 

according to the supplier’s manual. After quantification of the yield, and standardization 

of the concentrations, the cDNA products were qualified by determining whether the 

reference gene PCR primers yielded the expected size product on 12% acrylamide 

(native, in 1X TBE buffer) gels [85]. Even where the starting concentration of RNA was 

low, e.g; 20 ng, we obtained good yields of cDNA. The PCR reaction conditions were as 

follows, per 50ul final volume: 5.0 µl /reaction of 10X Buffer (InvitrogenTM [86]), 3.5 µl 

/reaction MgCl2 (InvitrogenTM [86], 50 mM stock solution, for Mg++ 3.5 mM final 

concentration), 2.5 µl /reaction dNTP mixture (InvitrogenTM [86], 10 mM stock, 2.5 mM 

final ), 0.5 µl /reaction DNA Taq Polymerase (BioLabs® Inc.[87] concentration of 100 

mM stock; final concentration of 5 mM), 2.0 µl /reaction cDNA as template (100 ng). 
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Table 2.1 The list of reference genes and DE genes as determined by qRT-PCR and their 
corresponding designed primers. 

Gene information Gene role 
Forward primer (5` to 3`) 

Reverse primer (3` to 5`) 

UBE2Z, NM_023079.3 Reference gene 
GCAGAGCATGTCTGGCATAG 

TTCTCCTTCTGCCAAAACAAA 

PGK1, NM_000291.3 Reference gene 
TGCATCTCCACTTGGCATTA 

TGGGATCTTGAAGAATGTATGC 

SRRM1, NM_005839.3 Reference gene 
GGAAATCCTTGGGTTTGAAGA 

GGCCACAGTTCTCCCATAAA 

COX4I1, NM_001861.2 Reference gene 
GGCACTGAAGGAGAAGGAGA 

GGGCCGTACACATAGTGCTT 

B2M, NM_004048 
DE gene determined 
by LO-BaFL / SAM 

GATGAGTATGCCTGCCGTGTG 

CAATCCAAATGCGGCATCT 

ACTG1, NM_001614 
DE gene determined 
by LO-BaFL / SAM 

AGAGGCTGGCAAGAACCAGTTGTT 

CAATGACGTGTTGCTGGGGCCT 

DYNLT1, NM_006519.1 
DE gene determined 
by TM4  

CCAGCCTATGGCCTTTCTCCTTTTGT 

CAACGCAGGCTGCAGGTGAC 

SKIV2L2, NM_015360.4 
DE gene determined 
by TM4  

TGCAGAAGGAATCACCAAAA 

ATGGGAGAACCAAATCCACA 

C12orf35, NM_018169.3 
DE gene determined 
by TM4  

CGGGGAAACAAGGTATTTGA 

TTCACATCACAGTGGGCATT 

TARDBP, NM_007375.3 
DE gene determined 
by TM4 

TTTGCTGCAGTTCTGTGTCC 

TCCATCTCAAAAGGGTCAAAA 

ILKAP, NM_030768.2 
Cross-hybridizing 
gene with TARDBP 

CACAGGAGTACACAAAACACAC 

TGCGGATAGGGCACTGAG 



36 
 

 

   
RNA quantification/ Quality 

assessment 

cDNA synthesis (Reverse 
transcription) 

Primer design 

qRT PCR 
 

Figure 2.1 Schematic diagram of the experimental design 

 

The GeneAmp® PCR System 9700 from Applied Biosystems [88] was set up to the 

following profile: the initial DNA denaturation at 95° C for 5 minutes; 30 cycles of 

denaturation at 94° C for 30 seconds, primer annealing at 57° C for 30 seconds and 

extension at 72° C for 30 seconds; a final elongation at 72° C for 4 minutes and a 4° C 

hold. 

Primer design and synthesis 

The primers were designed using Primer3 software [89] in combination with NCBI 

Primer-BLAST [90] to check for the specificity. Whenever possible (exceptions are 
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discussed below), the primers were designed to bridge the positions occupied by the 

corresponding Agilent probes, in order to account for sensitivity to transcriptional 

isoforms. Primers were purchased in dry form from Eurofins mwg|operon [91] and 

resuspended in DNA Suspension Buffer; concentrations were verified with the Nanodrop 

spectrophotometer, length was gel-verified using 12% Acrylamide in 1X TBE buffer 

[85]. PCR performance was checked with the cDNA made from the control RNA. PCR 

conditions were optimized by changing the Mg++ concentration in a range of 2.5 – 4.0 

µM, the annealing temperature in interval 55 to 60° C or the dNTP mixture concentration 

from 2.5 µM to 3.5 µM. Where necessary new primers were designed and run again 

through the QC protocol mentioned above. The list of primers and their designed 

sequences are provided in Table 2.1. 

qRT-PCR assay 

Before proceeding with qRT-PCR assays with patient samples, we performed a 

quality-control process, using the reference samples, for each gene product in order to  

optimize the PCR reaction conditions. By adjusting the primer annealing temperature, the 

concentration of Mg++ or of the dNTP mixture concentration within the parameters 

described above, we amplified products with similar efficiency using a common set of 

PCR reaction and cycling conditions. These are: annealing temperature = 57° C; Mg++ 

concentration = 3.5 µM; dNTP mixture concentration = 2.5 µM; primer mixture 

concentration = 5.0 µM. 

The quantification consistency was verified using parallel reactions, taking PCR 

reagents from a master mix to amplify the gene product reference at known 
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concentrations against a mass-titration of a sample’s cDNA product [51]. We used the 

following reagents: 10.0 µl/well of iQTM SYBR® Green Supermix from Bio-Rad [80] that 

includes 2X reaction buffer with dNTPs, iTaq DNA Polymerase, 6mM MgCl2, SYBR 

Green I, fluorescein and stabilizers according to the BIO-RAD specifications [80]; 

forward and reversed primer mixture (2.0 µl/well at 5 mM); 5.0 µl/well of template 

(either the standard gene, the unknowns or Accugene water-for the negative controls),  

and 3.0 µl/well Accugene water in final reaction volumes of 20.0 µl/well. Titration series 

were set up as follows: six 10- fold serial dilutions of the gene product reference and of 

the samples, in triplicates, with negative controls in all series to identify any cross-

contamination problems. The reactions were set up in 96-well clear Multiplate® PCR 

Plates, covered with iCycler iQTM Optical Tape from BIO-RAD [80]. The instrument 

employed for these reactions was MyiQ Single-Color Real-Time PCR Detection System 

from BIO-RAD [80]. We used a 2-step protocol with the following profile: Cycle 1: (1X) 

step 1: 95.0ºC for 03:00; Cycle 2: (40X) step 1: 94.0ºC for 00:15; step 2: 57.0ºC for 00:30 

(data collection and real-time analysis enabled); step 3: 72.0ºC for 00:15; Cycle 3: (1X) 

step 1: 95.0ºC for 01:00; Cycle 4: (1X)  step 1: 55.0ºC for 01:00. 

The data were analyzed using the relative quantification method applied for reactions 

with different efficiencies, as described by Pfaffl [81]. According to this method, the 

relative expression ratio is calculated with formula: 
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where: Etarget = real time PCR efficiency of a target gene transcript;  
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       Eref = real time PCR efficiency of a reference gene transcript; 

       ∆Cttarget = Ct deviation of control - sample of the target gene; 

       ∆Ctref = Ct deviation of control - sample of the reference gene. 

The corresponding real-time PCR efficiency of one cycle in the exponential phase was 

calculated, according to equation:  

                                        E =10[−1/ slope]

were the slope was determined automatically by the machine software [81]. 

 A standard curve is derived from serial dilutions, in our case six-point ten-fold 

dilutions and running standards in triplicates. Initial concentrations of standards and 

specific samples (unknowns), in logarithmic scale (base 10) are plotted against crossing 

points (Ct values). The regression coefficient R is calculated and adjusted for fitting the 

standards and unknowns: the greater and closer to 1 value of R, the better fit and thus, the 

better efficiency. We used the median value of efficiencies for Eref . The summarized 

results are shown in Table 2.2 and selected standard curves can be found in Figure 2.2. 

  Table 2.2 Relative expression ratio for DE genes. 

 
Gene Symbol Gene Accession Expression Ratio 

ACTG1 NM_001614 48.5 

SKIV2L2 NM_015360.4 37.3 

C12orf35 NM_018169.3 22.4 

B2M NM_004048 18.2 

DYNLT1 NM_006519.1 17.4 

ILKAP NM_030768.2 8.8 

TARDBP NM_007375.3 5.6 
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2.3 Results and Discussions 

We observed significant differential expression ratios for ACTG1, SKIV2L2, C12 

orf35, B2M and DYNLT1 and differential but smaller differences in the values for ILKAP 

and TARDBP. Our experimental results are in good agreement with very recent findings 

by Mougeot et al. [75] showing, by computational methods, that SKIV2L2, C12orf35, 

DYNLT1 were differentially expressed in PBLs samples from patients with sALS vs. 

Normals. 

 It is also confirmed here, as in previous studies, that TARDBP is among the genes 

with differential expression for ALS [8, 12]. The present work confirms the differential 

expression of three previously unreported genes (ACTG1, B2M, ILKAP) as determined by 

the LO-BaFL pipeline, with differential expression in the PBL samples from ALS 

patients vs. Controls.  

 Some of the TM4 genes were DE – that is LO-BaFL may exclude some genes that are 

actually DE, due to multiple and strict filtering steps, but the example of TARDBP and 

its cross-hybridizing gene, ILKAP, highlights why only TM4 is not efficient. In fact using 

both and then confirming the predictions with qRT-PCR may be the only way to be 

complete (pursuing mechanisms), while LO-BaFL is probably best for robust diagnostic 

predictions (less complete, but more likely to be right). 

2.4 Conclusions 

 Testing of 12 genes with qRT-PCR, confirmed the microarray observations and most 

of our computational predictions when applying LO-BaFL and comparative methods for 

microarray analysis: ACTG1, SKIV2L2, C12orf35, B2M, DYNLT1, TARDBP, ILKAP  
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(a) (b)  

    (c) (d) 

 Figure 2.2 qRT-PCR standard curves for selected genes.(a) ACTG1; (b) DYNLT1; (c) 
ILKAP; (d) SKIV2L2. 
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were found to have higher expression ratio in patients with ALS vs. Healthy Controls. 

This confirms the results of previous and more recent studies [8, 12, 75, 92], with 

additional new candidate biomarkers in the genes ACTG1, B2M, ILKAP.



 
 

 

 

 

Chapter 3: SEARCHING FOR SEQUENCE VARIANTS ASSOCIATED WITH 
DIFFERENTIALLY EXPRESSED GENES DETERMINED BY LO-BaFL AND 

COMPARATIVE METHODS 
 
 

3.1 Introduction 

Although in the absence of a known cause no definitive statement can be made, it is 

thought at this time that ALS is a complex disease. This means that the condition is not 

determined by genetic mutations in a single gene, but is the result of accumulating errors 

(since it is usually late in onset, like many cancers) that change interactions between 

multiple genes. Sequence variants within transcripts, as distinct from their regulatory 

regions, are broadly of two types: single nucleotide polymorphisms that may or may not 

create a minor change in the coding sequence of a protein and may or may not change the 

processing of the transcript, and alternative splice forms that result in different exon 

presence and thus a significantly different protein form, possibly leading to different 

modification and localization. A likely example of the latter is seen with the TARDBP 

protein, for which aggregates are seen in all post-mortem sALS patients. Studies of 

genetic markers, such as SNPs, through linkage mapping or genome wide association 

studies (GWAS), can reveal genes associated with a particular disease if the association is 

sufficiently strong [16, 18, 93-95]. It is believed that single nucleotide polymorphisms are 

responsible for most of the genetic variation in humans, on average one site per 300 bases 

[96]. This variation conditions all biochemical responses and influences the variable 
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responses seem for many human diseases, e.g.: altered responses to pathogens, chemicals, 

drugs and vaccines. Tuning treatments to specific variants may lead to interventions for 

genetic diseases and in gene therapy [97].  However, to uncover relatively weak effects 

over many gene combinations against a wide range of backgrounds requires sample sizes 

in the tens of thousands; with polygenic conditions the correct stratification of patients is 

often problematic. Worldwide the number of patients with ALS barely meets the required 

number and the majority will not be eligible for GWAS studies, for a variety of reasons. 

Thus studies of genetic variants present in ALS patients usually focus on genes with 

interesting molecular phenotypes, from expression of the transcript or expression and 

localization of the protein product. We investigated sequence variants in the samples that 

passed the quality criteria that occurred in our list of differentially expressed genes 

identified in Chapter 1 and Chapter 2. 

We formulate the hypothesis that there are SNPs present in the differentially 

expressed genes that correlate to the disease state. Wet lab analysis of DNA from 10 

patient samples (n=5, diseased; n=5, normals) were tested for the presence of sequence 

polymorphisms in specific regions of DE genes. Several of these genes have known 

SNPs, although they have not been linked to sALS, including ACTG1, B2M and 

SLC25A3; ACTG1 is linked to muscle development, and one study showed reduced 

expression levels of the gene in an animal model correlating with human muscle 

weakness and myopathies [98]; B2M is found in amyloid particles characteristic of 

Alzheimer’s disease:  its structure can adopt a fibrillar configuration seen in amyloid 

structures in certain pathological states [99]. We selected FTH1 because defects in 
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ferritin proteins are associated with several neurodegenerative diseases [100, 101], as 

well as two ribosomal proteins, RPS10A and RPL21, and TARDBP, which has been 

extensively studied at the protein level in both familial and sporadic ALS [108-111]. The 

genes and their dbSNP IDs are listed in Table 3.1. Of these genes, SLC25A3 is a 

mitochondrial phosphate carrier (PiC), was of particular interest, because Mayr et al. 

[102] have shown that a deficiency in PiC in muscle is caused by a homozygous mutation 

in the alternatively spliced exon 3A of the gene. By replacing the guanine in position 215 

with adenine (215G-to-A in the mRNA), a glycine becomes a glutamate (Gly72-to-Glu in 

the protein). The consequences are severe, including hypertrophic cardiomyopathy, 

muscular hypotomia, and lactic acidosis [102]. Studies on a separate glutamate solute 

carrier gene, SLC1A2 did reveal an association with sALS [103-105]. Since LO-BAFL 

detected differential expression in the gene and the phenotype is relevant to the disease 

state we sequenced part of SLC25A3.  

Table 3.1. Selected genes with known SNPs for sequencing 
 and their dbSNP IDs. 

Gene Symbol Accession Exon / dbSNP ID 

B2M NM_004048 Exon 1 / rs104894481  

ACTG1 NM_001614 Exon 3 / rs28999111 

  Exon 5 / rs28999112 

  Exon 6 / rs104894547 

SLC25A3 NM_005888 Exon 3A / rs104894375 

 

3.2 Materials and Methods  
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Due to limited materials, only ten PBLs samples from patients with sALS (n=5) and 

Healthy Controls (n=5), were available from the original lot. Samples are described in 

detail in Chapter 1. Preparation for Sanger sequencing [106] required cDNA synthesis 

and PCR amplification: these protocols were described in Chapter 2. Design of 

amplification primers followed methods similar to those used for qRT-PCR (see Figure 

3.1). From the list with differentially expressed genes (see Chapter 1) we targeted ten 

exons as follows: five for expressed genes with identified SNPs, (Table 3.1), and in 

addition, the exons comprising the Agilent probes for corresponding DE genes. The 

complete information for the sequenced genes (exon), primer sequences, annealing 

temperatures and product size are given in Table 3.2. 

Obtained sequences were BLAST-ed against target sequences, with NCBI bl2seq, to 

check for similarity. The electropherograms were visualized and analyzed with FinchTV 

[107], a free tool for DNA trace view with enhanced capabilities for BLAST, reverse 

complement, and heterozygote detection.  

3.3 Results and Discussions 

We analyzed the outcome of 200 sequencing reactions to identify any sequence 

variants in our selected exons. There were no mutations that consistently segregated with 

the disease samples. A novel mutation in exon3 of the ACTG1 gene, was found. This 

exon was screened for the SNP rs28999111, which has the sequence: 

CGACATGGAGAAGATCTGGCACCACA[C/T]CTTCTACAACGAGCTGCGCGTGGCC 

Shown below, the target amplified was designed to include the known mutation 

(shown in blue, the primer sites are also highlighted).  
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TGACCCTGAAGTACCCCATTGAGCATGGCATCGTCACCAACTGGGACGACATGGAGAAGATCTGGCAC

CACACCTTCTACAACGAGCTGCGCGTGGCCCCGGAGGAGCACCCAGTGCTGCTGACCGAGGCCCCCCTG

AACCCCAAGGCCAACAGAGAGAAG 

 
Table 3.2 PCR primers for sequencing purposes. Note: The gene symbol in column 1 is 
followed by the exon number, parenthesis specifying the presence of a SNP or the fact 
that the primer was designed around the Agilent probe; F, R denote forward and reversed. 
 
Exon Sequence Annealing 

temperature (ºC) 
Product 
size (bp) 

B2M-e2(probe)-F GTGTCTGGGTTTCATCCATCCGAC 57.5 176 

B2M-e2(probe)-R ACATGGTTCACACGGCAGGCAT 59.3  

FTH1-e4(probe)-F CCCCATAGCCGTGGGGTGACT 60 170 

FTH1-e4(probe)-R CCCAAGACCTCAAAGACAACACCTG 58  

ACTG1-e3(SNP)-F TGACCCTGAAGTACCCCATT 59 161 

ACTG1-e3(SNP)-R CTTCTCTCTGTTGGCCTTGG 60  

ACTG1-e5(SNP)-F GTATGGAATCTTGCGGCATC 60 152 

ACTG1-e5(SNP)-R GGTGATCTCCTTCTGCATCC 60  

ACTG1-e6(SNP)-F TGAGGCTAGCATGAGGTG TG 56.8 169 

ACTG1-e6(SNP)-R CCTTCCAGCAGATGTGGATT 55  

RPL21-e2,3(probe)-F AGTTGTTCCTTTGGCCACATA 59.5 162 

RPL21-e2,3(probe)-R TTTACAACAATGCCAACAGCA 60  

RPS10-e1(probe)-F CTCACAAGAGGGGAAGCTGA 60.5 151 

RPS10-e1(probe)-R TTTACTGAGGTGGCTGACCA 60  

SLC25A3-e3A(SNP)-F CATTCCAGTGGCCTTAGTCA 54.5 203 

SLC25A3-e3A(SNP)-R TGCAAAACAAACCTGCATTC 52.5  

SLC25A3-e8(probe)-F 
AGCTGTGGCACAACACATACAGC 

59 152 

SLC25A3-e8(probe)-R AGCCAAGGAAAGTCGGAGCCCA 58  
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Primer design 
 

 

PCR 
 

 

                                 
QC on 12% PAGE  

                

Ethanol precipitation 
 

 

 
Nanodrop quantification 

 

 
Bi-directional sequencing 

 

 
Ethanol precipitation 

 

 
Electrophoresis 

 
                              Figure 3.1. The flow chart for sequencing assay  

 

The electropherograms were analyzed with FinchTV (PerkinElmer/ Geospiza), by 

which we were able to resolve the nucleotides originally shown as ‘ambiguous’ 

(highlighted in red below); several examples are given. The small grey letters above the 
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alignment represent either the original majority call from the ABI software or minor 

known alleles. The nucleotides in green are the replacement calls we made that agree 

with the known major alleles, and the ‘C’ nucleotide in blue is the location of the dbSNP-

characterized variant (present in all of our samples). 

The nucleotides shown in magenta highlight the newly identified mutation. Text 

labels include F and R for the forward and reverse reactions and HC# or ALS# for the 

healthy control and ALS sample number.  

F-HC7; Score = 170 bits (188), Expect = 7e-48, Identities = 105/111 (95%), Gaps = 

1/111 (1%), Strand=Plus/Plus.  

                    a                       c        c     c  g                              

Query  20   ATGGAGAAGATCTGGCACCACACCTTCTACAATGAGCTGCGTGTGGCTCCCGAGGAGCAC  78 

            |||||||| ||||||||||||||||||||||| |||||||| ||||| || ||||||||| 

 Sbjct  51  ATGGAGAAGATCTGGCACCACACCTTCTACAACGAGCTGCGCGTGGCCCCGGAGGAGCAC  110 

R-HC7:Score = 187 bits (206), Expect = 1e-52, Identities = 114/121 (94%), Gaps = 

0/121 (0%), Strand=Plus/Minus.   

                    t           c  g     g        g 

Query  13   AGCAGCACGGGGTGCTCCTCGGGAGCCACACGCAGCTCATTGTAGAAGGTGTGGTGCCAG  72 

            |||||||| ||||||||||| || ||||| |||||||| ||||||||||||||||||||| 

Sbjct  121  AGCAGCACTGGGTGCTCCTCCGGGGCCACGCGCAGCTCGTTGTAGAAGGTGTGGTGCCAG  62 

         

              c                                a 

Query  73   ATTTTCTCCATGTCGTCCCAGTTGGTGACGATGCCGTGCTCAATGGGGTACTTCAGGGTC  132 

            || |||||||||||||||||||||||||||||||| |||||||||||||||||||||||| 

Sbjct  61   ATCTTCTCCATGTCGTCCCAGTTGGTGACGATGCCATGCTCAATGGGGTACTTCAGGGTC  2 

F-HC7; Score = 170 bits (188), Expect = 7e-48, Identities = 105/111 (95%), Gaps = 
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1/111 (1%), Strand=Plus/Plus.  

                    a                       c        c     c  g                               

Query  20   ATGGAGAAGATCTGGCACCACACCTTCTACAATGAGCTGCGTGTGGCTCCCGAGGAGCAC  78 

            |||||||| ||||||||||||||||||||||| |||||||| ||||| || ||||||||| 

 Sbjct  51  ATGGAGAAGATCTGGCACCACACCTTCTACAACGAGCTGCGCGTGGCCCCGGAGGAGCAC  110 

R-HC7:Score = 187 bits (206), Expect = 1e-52, Identities = 114/121 (94%), Gaps = 

0/121 (0%), Strand=Plus/Minus.   

                    t           c  g     g        g 
Query  13   AGCAGCACGGGGTGCTCCTCGGGAGCCACACGCAGCTCATTGTAGAAGGTGTGGTGCCAG  72 

            |||||||| ||||||||||| || ||||| |||||||| ||||||||||||||||||||| 

Sbjct  121  AGCAGCACTGGGTGCTCCTCCGGGGCCACGCGCAGCTCGTTGTAGAAGGTGTGGTGCCAG  62 

              c                                a 

Query  73   ATTTTCTCCATGTCGTCCCAGTTGGTGACGATGCCGTGCTCAATGGGGTACTTCAGGGTC  132 

            || |||||||||||||||||||||||||||||||| |||||||||||||||||||||||| 

Sbjct  61   ATCTTCTCCATGTCGTCCCAGTTGGTGACGATGCCATGCTCAATGGGGTACTTCAGGGTC  2 

F-ALS1: Score = 188 bits (208), Expect = 3e-53,Identities = 116/121 (96%), Gaps = 

2/121 (2%), Strand=Plus/Plus. 

                  -  -                                c              c 

Query  12   CTGGGACGACATGGAGAAGATCTGGCACCACACCTTCTACAATGAGCTGCGCGTGGCTCC  69 

            |||||| || |||||||||||||||||||||||||||||||| |||||||||||||| || 

Sbjct  41   CTGGGACGACATGGAGAAGATCTGGCACCACACCTTCTACAACGAGCTGCGCGTGGCCCC  100 

R-ALS1:  Score = 179 bits (198),  Expect = 6e-50, Identities = 114/121 (94%), 

Gaps = 2/121 (2%), Strand=Plus/Minus. 

 

                  -          -     a     a        g 

Query  11   AGCAGCACTGGGTGCTCCTCCGGGGCCACACGCAGCTCATTGTAGAAGGTGTGGTGCCAG  68 
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            |||||| |||||||||| ||||| ||||| |||||||| ||||||||||||||||||||| 

Sbjct  121  AGCAGCACTGGGTGCTCCTCCGGGGCCACGCGCAGCTCGTTGTAGAAGGTGTGGTGCCAG  62 

              t                                a 

Query  69   ATCTTCTCCATGTCGTCCCAGTTGGTGACGATGCCGTGCTCAATGGGGTACTTCAGGGTC  128 

            || |||||||||||||||||||||||||||||||| |||||||||||||||||||||||| 

Sbjct  61   ATCTTCTCCATGTCGTCCCAGTTGGTGACGATGCCATGCTCAATGGGGTACTTCAGGGTC  2 

In 9 of the 10 samples analyzed, the cytosine in position 350 of the ACTG1 gene, 

in exon 3, is replaced by a thymine (c.350C-to-T): 

TCTGGCACCACACCTTCTACAA[C/T]GAGCTGCGCGTGGCCCCGGAGGAGCAC 

To our knowledge, the SNP has not been reported in the literature. It cannot be 

associated with the disease state since is present in both sample classes. To validate the 

amino acid change (ACG ATG equivalent to THR MET), if present, further protein 

assays are necessary, for which we do not have materials at present. Selected screenshots 

showing the presence of this mutation are given in Figure 3.2.  

The results for the rest of the genes, by the respective exons (see Table 3.2) are 

presented below. The colors follow the scheme described above.  

FTH1, with the target sequence: 

CCCCATAGCCGTGGGGTGACTTCCCTGGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTT

TTCTATAAGTTGTACCAAAACATCCACTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAGAAATTTG

GTACCCAGGTGTTGTCTTTGAGGTCTTGGG  

For most of the obtained sequences, the identity with the target was between 96 - 

99%, of which 6 were perfect matches (100% identity); thus no SNP was present. 
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      (a)      (b) 

Figure 3.2 Electropherograms showing the presence of a novel mutation (the highlighted 
section) in forward (a) and reversed sequencing (b) for sample HC7. 

 

F-HC7: Score = 232 bits (256), Expect = 3e-66, Identities = 129/130 (99%), Gaps = 

0/130 (0%), Strand=Plus/Plus. 

                                                   - 

Query  13   TGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACATCCACTTAA  72 

            |||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||| 

Sbjct  41   TGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACATCCACTTAA  100 

R-HC7: Score = 208 bits (230), Expect = 3e-59, Identities = 122/126 (97%), Gaps = 

1/126 (1%), Strand=Plus/Minus. 

                                    N    N-      N 

Query  18   TGAAGGAATGGTACAAATCAAAGAACTTAAGTGGATGTTTTGGTACAACTTATAGAAAAG  76 

            || ||||  |||||| |||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  126  TGAAGGAATGGTACAAATCAAAGAACTTAAGTGGATGTTTTGGTACAACTTATAGAAAAG  67                                
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F-ALS1: Score = 242 bits (268), Expect = 6e-69, Identities = 135/136 (99%), Gaps = 

0/136 (0%), Strand=Plus/Plus. 

              N 

Query  9    AGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACATCC  68 

            || ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  35   AGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACATCC  94 

R-ALS1: Score = 226 bits (250), Expect = 5e-64, Identities = 131/134 (98%), 

Gaps = 2/134 (1%), Strand=Plus/Minus. 

                         ga 

Query  9    TCTTTATTTGAGG--ATGGTACAAATCAAAGAACTTAAGTGGATGTTTTGGTACAACTTA  66 

            ||||||||||| |  ||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  134  TCTTTATTTGAAGGAATGGTACAAATCAAAGAACTTAAGTGGATGTTTTGGTACAACTTA  75 

For B2M-exon 2, the target sequence that includes the Agilent probe is: 

GTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGT

GGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCA

CTGAAAAAGATGAGTATGCCTGCCGTGTGAACCATGT 

This sequence alignment with the oligonucleotide obtained after sequencing shows a 

very good identity (96 - 99 %) with the exon, and the visual inspection of the 

electropherogram did not suggest the presence of any sequence variants. Below we 

present selected examples. 

F-HC12: Score = 219 bits (242), Expect = 2e-62, Identities = 128/130 (98%), Gaps = 

2/130 (2%), Strand=Plus/Plus. 

                        -       - 
Query  16   ATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTT  73 

            ||||||||||| ||||||| |||||||||||||||||||||||||||||||||||||||| 

Sbjct  47   ATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTT  106 
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R-HC12: Score = 244 bits (270), Expect = 1e-69, Identities = 139/140 (99%), Gaps = 

1/140 (1%), Strand=Plus/Minus. 

                      - 

Query  9    GTGGGGGTGAATTCAGTGTAGTACAAGAGATAGAAAGACCAGTCCTTGCTGAAAGACAAG  67 

            |||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  140  GTGGGGGTGAATTCAGTGTAGTACAAGAGATAGAAAGACCAGTCCTTGCTGAAAGACAAG  81 

F-ALS8: Score = 219 bits (242), Expect = 2e-62, Identities = 128/130 (98%), Gaps = 

2/130 (2%), Strand=Plus/Plus. 

                       -       - 

Query  15   ATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTT  72 

            ||||||||||| ||||||| |||||||||||||||||||||||||||||||||||||||| 

Sbjct  47   ATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTT  106 

R-ALS8: Score = 208 bits (230), Expect = 8e-59, Identities = 132/138 (96%), Gaps = 

4/138 (3%), Strand=Plus/Minus. 

                   c                    -    -                 - 
Query  8    GGGGGTGAATTCAGTGTAGTACAAGAGATAGAAAGACCAGTCCTTGCTGAAAGACAAGTC  64 

            ||||||| |||||||||||||||||||| |||| ||||||||||||||||| |||||||| 

Sbjct  138  GGGGGTGAATTCAGTGTAGTACAAGAGATAGAAAGACCAGTCCTTGCTGAAAGACAAGTC  79 

For ACTG1- exon 5, with SNP ID: rs28999112 and corresponding sequence: 

GGAATCTTGCGGCATCCACGAGACCA[C/T]CTTCAACTCCATCATGAAGTGTGAC;   

the target sequence was designed to incorporate the mutation: 

GTATGGAATCTTGCGGCATCCACGAGACCACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGC

AAAGACCTGTACGCCAACACGGTGCTGTCGGGCGGCACCACCATGTACCCGGGCATTGCCGACAGGATG

CAGAAGGAGATCACC 

In our samples no polymorphism was seen as all of them contained the ancient allele 

(C) and 97-100 % identities were observed. Selected examples are given here. 

F-HC3: Score = 185 bits (204), Expect = 3e-52, Identities = 109/112 (97%), Gaps = 
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1/112 (1%), Strand=Plus/Plus. 

                    a 

Query  9    CATCATGA-GTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACGGTGCTGTCGGG  67 

            |||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  41   CATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACGGTGCTGTCGGG  100 

                           c           c 

Query  68   CGGCACCACCATGTATCCGGGCATTGCTGACAGGATGCAGAAGGAGATCACC  119 

            ||||||||||||||| ||||||||||| |||||||||||||||||||||||| 

Sbjct  101  CGGCACCACCATGTACCCGGGCATTGCCGACAGGATGCAGAAGGAGATCACC  152 

R-HC3: Score = 187 bits (206), Expect = 8e-53, Identities = 108/110 (98%), Gaps = 

1/110 (1%), Strand=Plus/Minus 

              N 

Query  11   GGTGGTGC-GCCCGACAGCACCGTGTTGGCGTACAGGTCTTTGCGGATGTCCACGTCACA  69 

            || ||||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  110  GGTGGTGCCGCCCGACAGCACCGTGTTGGCGTACAGGTCTTTGCGGATGTCCACGTCACA  51 

                                                                      

Query  70   CTTCATGATGGAGTTGAAGGTGGTCTCGTGGATGCCGCAAGATTCCATAC  119 

            |||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  50   CTTCATGATGGAGTTGAAGGTGGTCTCGTGGATGCCGCAAGATTCCATAC  1 

F-ALS2: Score = 190 bits (210), Expect = 1e-53, Identities = 110/112 (98%), Gaps = 

1/112 (1%), Strand=Plus/Plus.  

                    - 

Query  10   CATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACGGTGCTGTCGGG  68 

            |||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  41   CATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACGGTGCTGTCGGG  100 

                           c 

Query  69   CGGCACCACCATGTATCCGGGCATTGCCGACAGGATGCAGAAGGAGATCACC  120 

            ||||||||||||||| |||||||||||||||||||||||||||||||||||| 

Sbjct  101  CGGCACCACCATGTACCCGGGCATTGCCGACAGGATGCAGAAGGAGATCACC  152 

 

R-ALS2: Score = 192 bits (212), Expect = 5e-54, Identities = 110/111 (99%), Gaps = 
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1/111 (1%), Strand=Plus/Minus.                     

                     - 

Query  11   TGGTGGTGCCGCCCGACAGCACCGTGTTGGCGTACAGGTCTTTGCGGATGTCCACGTCAC  69 

            ||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  111  TGGTGGTGCCGCCCGACAGCACCGTGTTGGCGTACAGGTCTTTGCGGATGTCCACGTCAC  52 

 

Query  70   ACTTCATGATGGAGTTGAAGGTGGTCTCGTGGATGCCGCAAGATTCCATAC  120 

            ||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  51   ACTTCATGATGGAGTTGAAGGTGGTCTCGTGGATGCCGCAAGATTCCATAC  1 

ACTG1 was also screened for the SNP reported in exon 6, rs104894547. Therefore, 

we designed the target sequence to include this mutation. 

TGAGGCTAGCATGAGGTGTGTGCATTTGCCAGGGGCAAATTTCTATTCTCAATTAACCCATGCAGCAAA

TGCTACGCATCTGCTGAGTCCGTTTAGAAGCATTTGCGGTGGACGATGGAGGGGCCCGACTCGTCGTACT

CCTGCTTGCTAATCCACATCTGCTGGAAGG 

F-HC14: Score = 188 bits (208), Expect = 8e-53, Identities = 119/128 (93%), Gaps = 

4/128 (3%), Strand=Plus/Plus.             

                        a- 

Query  13   TCTATTCTCATT--ACCCATGCAGCAAATGCTACGCATCTGCTGAGTCCGTTTAGAANAN  70 

            |||||||||| |  |||||||||||||||||||||||||||||||||||||||||||    

Sbjct  42   TCTATTCTCAATTAACCCATGCAGCAAATGCTACGCATCTGCTGAGTCCGTTTAGAAGCA  101 

 

Query  71   T--GCGGTGGACGATGGAGGGGCCCGACTCGTCGTACTCCTGCTTGCTAATCCACATCTG  128 

            |  ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  102  TTTGCGGTGGACGATGGAGGGGCCCGACTCGTCGTACTCCTGCTTGCTAATCCACATCTG  161 

 

 

R-HC14: Score = 230 bits (254), Expect = 2e-65, Identities = 132/135 (98%), Gaps = 

1/135 (1%), Strand=Plus/Minus. 

                 N N 
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Query  9    GACGAAGTCGGGCCCCTCCATCGTCCACCGCAAATGCTTCTAAACGGACTCAGCAGATGC  68 

            ||||| | |||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  134  GACGA-GTCGGGCCCCTCCATCGTCCACCGCAAATGCTTCTAAACGGACTCAGCAGATGC  76 

F-ALS8: Score = 223 bits (246), Expect = 4e-63, Identities = 129/132 (98%), Gaps = 

1/132 (1%), Strand=Plus/Plus. 

                N         - 

Query  10   AATTTCTATTCTCAATTAACCCATGCAGCAAATGCTACGCATCTGCTGAGTCCGTTTAGA  68 

            |||| ||||||||| ||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  38   AATTTCTATTCTCAATTAACCCATGCAGCAAATGCTACGCATCTGCTGAGTCCGTTTAGA  97 

                          g 

Query  69   AGCATTTGCGGTGGACGATGGAGGGGCCCGACTCGTCGTACTCCTGCTTGCTAATCCACA  128 

            |||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  98   AGCATTTGCGGTGGCCGATGGAGGGGCCCGACTCGTCGTACTCCTGCTTGCTAATCCACA  157 

R-ALS8: Score = 219 bits (242), Expect = 2e-62, Identities = 128/131 (98%), Gaps = 

1/131 (1%), Strand=Plus/Minus. 

                    c                    - 

Query  11   GAGTCGGGGCCCTCCATCGTCCACCGCAAATGCTTCTAAACGGACTCAGCAGATGCGTAG  69 

            |||||||| |||||||||| ||||||||| |||||||||||||||||||||||||||||| 

Sbjct  131  GAGTCGGGCCCCTCCATCGGCCACCGCAAATGCTTCTAAACGGACTCAGCAGATGCGTAG  72 

For RPL21, the target sequence was designed around the Agilent probe sequence, 

where no SNPs were previously reported.   

AGTTGTTCCTTTGGCCACATATATGCGAATCTATAAGAAAGGTGATATTGTAGACATCAAGGGAATGG

GTACTGTTCAAAAAGGAATGCCCCACAAGTGTTACCATGGCAAAACTGGAAGAGTCTACAATGTTACCCA

GCATGCTGTTGGCATTGTTGTAAA 

Sequencing assays did not show any new sequence variant, the two-sequence 

alignment providing identities in 90 – 100 % interval. Selections for two samples, in both 

forward and reversed directions, are presented. 

F-HC10: Score = 214 bits (236), Expect = 7e-61, Identities = 122/123 (99%), Gaps = 
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1/123 (1%), Strand=Plus/Plus. 

Query  10   AGGTGATATTGTAGACATCAAGGGAATGGGTACTGTTCAAAAAGGAATGCCCCACAAGTG  68 

            |||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  40   AGGTGATATTGTAGACATCAAGGGAATGGGTACTGTTCAAAAAGGAATGCCCCACAAGTG  99 

R-HC10:  Score = 208 bits (230), Expect = 3e-59, Identities = 119/120 (99%), Gaps = 

1/120 (1%), Strand=Plus/Minus. 

                 c 

Query  14   TCTTC-AGTTTTGCCATGGTAACACTTGTGGGGCATTCCTTTTTGAACAGTACCCATTCC  72 

            ||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121  TCTTCCAGTTTTGCCATGGTAACACTTGTGGGGCATTCCTTTTTGAACAGTACCCATTCC  62 

F-ALS6: Score = 201 bits (222), Expect = 4e-57, Identities = 115/116 (99%), Gaps = 

1/116 (1%), Strand=Plus/Plus. 

Query  15   ATTGTAGACATCAAGGGAATGGGTACTGTTCAAAAAGGAATGCCCCACAAGTGTTACCAT  73 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  47   ATTGTAGACATCAAGGGAATGGGTACTGTTCAAAAAGGAATGCCCCACAAGTGTTACCAT  106 

R-ALS6: Score = 179 bits (198), Expect = 2e-50, Identities = 112/118 (95%), Gaps = 

2/118 (2%), Strand=Plus/Minus. 

                          at                                                                  

Query  22   CAGTTTTGCCATGGGGAACACTTGTGGGGGCATTCCTTTTTGAACAGTACCCATTCCCCT  81 

            ||||||||||||||  |||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  116  CAGTTTTGCCATGGT-AACACTTGTGGGG-CATTCCTTTTTGAACAGTACCCATTCCCTT  59 

  

 

            g                       t 

Query  82   GATGTCTACAATATCACCTTTCTTAGAGATTCGCATATATGTGGCCAAAGGAACAACT  139 

            ||||||||||||||||||||||||| |||||||||||||||||||||||||||||||| 

Sbjct  58   GATGTCTACAATATCACCTTTCTTATAGATTCGCATATATGTGGCCAAAGGAACAACT  1 

For RPS10, the target sequence comprising the Agilent probe is: 
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CTCACAAGAGGGGAAGCTGACAGAGATACCTACAGACGGAGTGCTGTGCCACCTGGTGCCGACAAGAA

AGCCGAGGCTGGGGCTGGGTCAGCAACCGAATTCCAGTTTAGAGGCGGATTTGGTCGTGGACGTGGTCA

GCCACCTCAGTAAA  

Although the presence of any sequence variant was not confirmed, we selected one of 

each HC / sALS sample to exemplify the sequence alignment query-to-target obtained 

with bl2seq. In general, 96 – 100% identities were found. 

F-HC14: Score = 188 bits (208), Expect = 2e-53, Identities = 109/111 (98%), Gaps = 

1/111 (1%), Strand=Plus/Plus. 

                     a                  a 

Query  11   GTGCTGTGCCACCTGGTGCCGACAAGAA-GCCGAGGCTGGGGCTGGGTCAGCAACCGAAT  69 

            ||||||||| |||||||||||||||||| ||||||||||||||||||||||||||||||| 

Sbjct  41   GTGCTGTGCCACCTGGTGCCGACAAGAAAGCCGAGGCTGGGGCTGGGTCAGCAACCGAAT  100 

R-HC14: Score = 187 bits (206), Expect = 9e-53, Identities = 111/114 (97%), Gaps = 

2/114 (2%), Strand=Plus/Minus. 

              N     a 

Query  8    GCCTCTAA-CTGGA-TTCGGTTGCTGACCCAGCCCCAGCCTCGGCTTTCTTGTCGGCACC  65 

            || ||||| ||||| ||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  114  GCCTCTAAACTGGAATTCGGTTGCTGACCCAGCCCCAGCCTCGGCTTTCTTGTCGGCACC  55 

F-ALS8: Score = 181 bits (200), Expect = 3e-51, Identities = 108/111 (97%), Gaps = 

2/111 (2%), Strand=Plus/Plus. 

                

 N-                 - 

Query  13   GTGCTGTGCCACCTGGTGCCGACAAGAAAGCCGAGGCTGGGGCTGGGTCAGCAACCGAAT  70 

            |||||||||  ||||||||||||||||| ||||||||||||||||||||||||||||||| 

Sbjct  41   GTGCTGTGCCACCTGGTGCCGACAAGAAAGCCGAGGCTGGGGCTGGGTCAGCAACCGAAT  100 

R-ALS8: Score = 183 bits (202), Expect = 1e-51, Identities = 105/106 (99%), Gaps = 

1/106 (1%), Strand=Plus/Minus. 
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                  a 

Query  15   ACTGGA-TTCGGTTGCTGACCCAGCCCCAGCCTCGGCTTTCTTGTCGGCACCAGGTGGCA  73 

            |||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  106  ACTGGAATTCGGTTGCTGACCCAGCCCCAGCCTCGGCTTTCTTGTCGGCACCAGGTGGCA  47 

The gene in which we had the most interest, SLC25A3 was searched for the presence 

of SNPs in exon 3A (a previously reported mutation) and also in exon 8 where the 

Agilent probe used in microarray analysis was located. In regards to exon 3A, after 

repeated trials, where no probe signal was received from the DNA Analyzer, we 

concluded that this particular exon is not expressed in PBLs, but most probably is tissue 

specific. This result is concordant with work of Mayr et al. [102] and Shah et al.[108], 

who showed that exon 3A is expressed only in muscle, heart and thyroid tissues.  

For exon 8, only 80% of the sequencing reactions were successful, as for four of the 

samples no signal was detected. Since other sequencing from these samples were 

successful this may also indicate variant isoforms. In the sequences present no 

polymorphisms were detected. The designed target sequence is: 

CTCCGTGAAGGTCTACTTCAGACTTCCTCGCCCTCCTCCACCCGAGATGCCAGAGTCTCTGAAGAAGAA

GCTTGGGTTAACTCAGTAGTTAGATCAAAGCAAATGTGGACTGAATCTGCTTGTTGATCAGTGTTGAAGA

AAGTGCAAAAGGA 

A single example from a diseased sample is shown, since the control samples did not 

yield usable data.  

F-ALS1: Score = 179 bits (198), Expect = 1e-50, Identities = 111/115 (97%), Gaps = 

3/115 (3%), Strand=Plus/Plus. 

                  -                              g 

Query  8    CCCGAGGATGCCAGAGTCTCTGAAGAAGAAGCTTGGG-TTAACTCAGTAGTTAGATCAAA  67 

            |||||| |||||||||||||||||||||||||||||| |||||||||||||||||||||| 

Sbjct  41   CCCGAG-ATGCCAGAGTCTCTGAAGAAGAAGCTTGGG-TTAACTCAGTAGTTAGATCAAA  98 
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                    cc 

Query  68   GCAAATGTG-GACTGAATCTGCTTGTTGATCAGTGTTGAAGAAAGTGCAAAAGGA  122 

            ||||||||  ||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  99   GCAAATGTG-GACTGAATCTGCTTGTTGATCAGTGTTGAAGAAAGTGCAAAAGGA  152 

R-ALS1: Score = 185 bits (204), Expect = 3e-52, Identities = 109/112 (97%), Gaps = 

1/112 (1%), Strand=Plus/Minus. 

                 c                          g 

Query  10   CAGTC-ACATTTGCTTTGATCTAACTACTGAGTTAACCCAAGCTTCTTCTTCAGAGACTC  68 

            ||||| |||||||||||||||||||||||||| ||||||||||||||||||||||||||| 

Sbjct  112  CAGTCCACATTTGCTTTGATCTAACTACTGAGTTAACCCAAGCTTCTTCTTCAGAGACTC  53 

                                                   g 

Query  69   TGGCATCTCGGGTGGAGGAGGGCGAGGAAGTCTGAAGTAAACCTTCACGGAG  120 

            ||||||||||||||||||||||||||||||||||||||| |||||||||||| 

Sbjct  52   TGGCATCTCGGGTGGAGGAGGGCGAGGAAGTCTGAAGTAGACCTTCACGGAG  1 

PCR amplification failed to yield products for B2M (exon 1) and for TARDBP (exon 

8) in the regions selected. Since the primers and conditions had been reported as 

successful previously, and since microarray detection was well within the reliable range, 

this outcome is most probably due to sample degradation.  

3.4 Conclusions 

Direct sequencing was performed to screen for possible mutations in selected exons 

of differentially expressed genes determined by the LO-BaFL pipeline, for the five 

healthy controls and five diseased (sALS) samples for which we had good quality cDNA. 

In the majority of the products good quality sequence that matched database records was 

obtained and no polymorphisms were found. In one case we identified a novel mutation 

in exon 3 of ACTG1 gene, c.350 C-to-T, as follows: 

TCTGGCACCACACCTTCTACAA[C/T]GAGCTGCGCGTGGCCCCGGAGGAGCAC 
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Previous studies on this actin, gamma 1 gene showed the presence of several allelic 

variants related to hearing loss [109-112] (see Table 3.3).  

   Table 3.3 Allelic variants for ACTG1, from OMIM database. 

Number Phenotype Mutation dbSNP  

.0001 Deafness, autosomal dominant 20 THR89ILE rs28999111 

.0002 Deafness, autosomal dominant 20 LYS118MET rs104894544

.0003 Deafness, autosomal dominant 20 PRO332ALA rs104894545

.0004 Deafness, autosomal dominant 20 PRO264LEU rs104894546

.0005 Deafness, autosomal dominant 20 THR278ILE rs28999112 

.0006 Deafness, autosomal dominant 20 VAL370ALA rs104894547

 

Research on animal models that reduced expression levels of the gene correlate with 

human muscle weakness and myopathies [98], not surprising given the role of ACTG1 in 

skeletal muscle development. However, since we found this variant in what are labeled 

‘healthy controls’, it does not correlate with sALS.  

Further studies, at the protein level, are needed to shed light into possible protein 

changes. Since the exons show evidence of differential expression but no local SNP was 

present, the change is due to turnover or regulation, not to disturbed binding to the DNA 

probe from an uncharacterized SNP. So it might be worthwhile to sequence each of these 

genes in their entirety, including the regulatory regions. The changes might be due to 

changes in the transcription factors that bind those regions - that should be indicated by 

changes in other genes controlled by those factors. That is one type of pathway analysis, 

which is covered in the next chapter. 



 
 

CHAPTER 4: PATHWAY ANALYSIS 
 
 

4.1 Introduction 

As discussed in Chapter 3, Amyotrophic Lateral Sclerosis is a complex disease whose 

pathology and etiology have not been deciphered. While biomarker discovery can be 

pursued using patterns of expression-level change, described in Chapter 2, our eventual 

goal must be to understand the mechanism underlying its biology. Since this is a motor-

neuron disease it is unlikely that the circulating blood cells are directly affected by the 

causative agent, but subsets of these cells respond to signals from decaying cells and 

these signals may provide clues to the original source of the pathology. Having confirmed 

increased levels of expression of marker genes, the cause for such increases was 

investigated. One possibility is expression of specific alleles in the patient. Therefore, a 

search for sequence variants by direct sequencing was performed, described in Chapter 3; 

since we could not demonstrate the presence of a specific SNP linked to the disease in the 

candidate genes, we hypothesize that the observed changes in expression level are due to 

other sources, e.g. transcription factors or other regulatory molecules elicited in the 

disease process. Such factors nearly always affect multiple genes, so their presence can 

be inferred by looking for a concerted suite of effects (not always in the same direction or 

to the same extent) in pathways sharing the regulatory element. This type of analysis is 

covered by computational systems biology methods, e.g. pathway and network analysis.
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Identification of ‘signature’ networks that co-regulate the genes of interest often 

provide insights into the bigger picture of processes and development, by transitioning 

from examining single molecules to global states [113, 114]. Such states may include 

descriptions of the biologically relevant interactions between genes, proteins and 

compounds; the interactions are grouped into functional structures (described with 

specific ontologies) such as metabolic signaling, transcription factor interactions, 

regulatory networks and functional roles [124-128]. Collectively known as systems 

biology, analysis on this level is an important tool for discovery because a single 

phenotype may result from errors in any one of the many component elements of such 

pathways or networks [115]. 

Pathway analysis in previous sALS studies using human motor cortex samples 

emphasized the involvement of defense responses, cytoskeletal development, and 

mitochondrial and proteosomal dysfunction in ALS pathology [116]. More recently, 

Kudo et al. (2010) performed Gene Ontology analysis using DAVID [117, 118] on tissue 

microarrays from human postmortem spinal cord tissues from subjects with sALS that 

revealed associations between the biological processes corresponding to motor neurons 

and surrounding cells and protein modification/posphorylation, signaling, muscle 

contraction regulation, stress responses, immune responses and cell communications 

[119]. We would predict that immune responses, communication and signaling and stress 

responses would be propagated to the PBLs, the question being whether the responses are 

disease-specific or a general systems-alert.  
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Despite increasing evidence that peripheral blood can be a powerful source of 

biomarkers for neurological diseases, very few studies have attempted to use sALS blood 

samples. Results from studies of patients with multiple sclerosis [120], Alzheimer’s 

disease [121], Huntington’s disease [122], and a few with ALS [119, 123-125] have 

proved that the peripheral blood transcriptome is a reliable source for biomarker 

detection.  

More specifically for the current discussion, network analysis using weighted gene 

co-expression method on peripheral blood from ALS by Saris et al. (2009) found several 

significant pathways related to sALS, i.e. post-translational modification, infection 

mechanism, neurological disorder (Huntington), genetic disorder, skeletal and muscular 

disorder and inflammatory disease [123]. Zhang et al. (2011) show a strong association 

between aberrant activity of monocytes circulating in peripheral blood from patients with 

sALS and LPS (plasma endotoxin/lipopolysaccharide system) / TLR4 (toll-like receptor 

4) pathways, suggesting that activation of monocytes /macrophages via these signaling 

pathways would affect the disease progression [126]. 

However, early studies have used whole blood or peripheral blood mononuclear cells. 

There is an increased literature support for potential differences between the disease-

related signatures due to subpopulations of the cells, i. e. PBLs compared with monocytes 

and even subpopulations within the PBL grouping [127-129]. Therefore, it was suggested 

that, in order to detect disease-specific changes in transcription, it is necessary to profile 

purified leukocyte subsets [92, 127].  
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Taking this approach, an examination of microarray data from PBLs (a subpopulation 

of PBMCs) from subjects with sALS [75] showed alterations in the KEGG-designated 

ALS disease pathway, suggesting the propagation of gene expression changes first 

induced in brain and spinal cord tissue to cells in the circulating PBLs [116, 130]. We 

performed a pathway analysis using the genes identified as differentially expressed using 

the LO-BaFL pipeline (see Chapter 1), which differed from the TM4-based study 

described in [51] by a number of filters.  

Note: since TM4 genes have been already extensively discussed in the pathway 

context elsewhere [75], we do not replicate those comments here but only highlight the 

points most relevant to our own findings. 

4.2 Materials and Methods 

In order to identify the pathways and regulatory elements possibly associated with the 

genes in our list, we conducted an analysis using the MetaCore™ program, version 6.0. 

This is composed of a suite of tools for gene set enrichment analysis, multi-experiment 

comparison, interactome analysis and biological network identification [115]. The 

canonical pathways and network maps were obtained from the manually curated GeneGo 

database (GeneGo Inc., St. Joseph, MI) which incorporates, for human cells, protein-

protein, protein-DNA, and protein-compound interactions, as well as experimentally 

verified information on metabolic and signaling pathways [114]. Statistical tests (using 

hypergeometric distributions) assign to each pathway or network a corresponding p-

value, Z-score and G-score, to assess their change from baseline, depending on the degree 

of saturation of the modeled set with the objects from the initial gene list [131, 132]. 
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Networks with higher scores are considered more relevant to the phenotype, relative to 

the context presented in the specific data set. The p-value is corrected using the False 

Discovery Rate algorithm, which represents the probability that a given number of genes 

from the input list will match a certain number of gene nodes in the network [145, 146]. 

In this study, only pathways or networks with p < 0.01 were considered statistically 

significant. 

4.3 Results and Discussions 

As a first step, the entire set of sixty LO-BaFL differentially expressed genes 

(including those supported by qRT-PCR) with their corresponding intensities 

(Supplementary Material/ Data post filtering/ DE_genes_12_samples from Chapter 1) 

was uploaded in MetaCore for building the biological networks. The software returned 

twelve networks whose involvement met our criteria. The two most strongly supported 

pathways (G-score=42.8, p=1.44e-15) are involved in immune system signaling; the 

TWEAK gene (TNFSF12) via the TNF (tumor necrosis factor) receptor-associated 

factors 2 (TRAF2) or 5 (TRAF5). See Table 4.1 for Gene Ontology processes, and 

scores. To clarify the roles of these genes in the pathways, a GeneGo map of the network 

with the highlighted pathways is given in Figure 4.1. Other networks in which these 

genes participate are shown in Appendix A, Figure A1.  

The TWEAK (TNFSF12/ Apo-3L) gene codes for a type II transmembrane protein, 

and is a member of the TNF superfamily. The gene is involved in immune regulation, 

induced cell death, and hence inflammation [147-151]. Although it is expressed in 

various tissues, the highest levels of expression have been found in brain tissue skeletal 
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muscle, heart muscle and immune system cells [133]. It has been shown that the TWEAK 

signaling pathway has roles in apoptosis, proliferation, migration, angiogenesis, and 

inflammation [134].  

Several genes (ACTG1, DIA1, IRS2, JUNB) from our list participate in signaling 

pathways, alone or in combination. A myriad of complex processes can be invoked; we 

provide some examples that we consider most likely to be relevant to ALS below. 

ACTG1 participates in cytoskeleton remodeling by RhoGTPAse regulation of the actin 

cytoskeleton (Figure 4.2 (a)); in combination with DIA1 it is a component in immune 

responses via CCR3 signaling in the eosinophil pathway (Figure 4.2 (b)); in combination 

with IRS2, it has been shown to interact with alpha-6/beta-4 integrins in carcinoma 

progression (Figure 4.2 (c)) and it contributes to the regulation by growth factors of 

transport macropinocytosis (Figure 4.2 (d)). JUNB and IRS2 are part of developmental 

growth hormone signaling pathways, working through the PI3K/AKT and MAPK 

cascades (Figure 4.2 (e)).  

Our results are in good agreement with the work of Lederer et al. (2007), which 

showed the involvement of similar biological processes based on candidate genes derived 

from motor cortex samples from patients with sALS. The concurrence of gene expression 

results from PBLs to those of presumably more directly involved tissues is also suggested 

by the studies of Mougeot et al. (2011), perhaps not surprising where sensitive signaling 

cascades are involved. It does suggest that the microarray assay of PBLs, or derivative 

qPCR assays, are quite sensitive to the system-wide changes and that further cell sorting 

is not required. 
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Examination of the cross-section of functional networks (Table 4.1) by co-expression 

networks (Figure A1) shows the ribosomal proteins RPS10, RPS15A which are involved 

in translational regulation, but on further inspection, in Figure A1 (ii), these genes are in a 

set (RPS10, RPS25, RPS15A, RPL21), that, with the solute carrier transporter, SLC25A3, 

are part of an immune-response network, with the HLA-A, HLA-B, HLA-C proteins. 

Using a wider lens, members of the LO-BaFL gene set PABC1, PTMA, SFRS3, DIA1, 

LAMR1, FTH1, B2M, SLC25A3, CCDC6, OAZ1 also interact to regulate immune 

responses, and other types of cellular responses including apoptosis, which is discussed 

below. Some of their known interactions are with integrin-type proteins having roles in 

cell adhesion and cell-surface mediated signaling, and specifically with Myosin II and 

similar smooth muscle-specific genes whose degeneration is characteristic of ALS. That 

is, the genes converge in pathways that play important roles in sALS pathology. 

Some genes balance cell processes, especially ubiquitin. Ubiquitin helps up-regulate 

the subset of genes including PTMA, JUNB, SCP1, and OAZ1, seen in network 5 (Figure 

2A (iv)), and IRS2, JUNB seen in network 9 (see Table 4.1; graphics are not shown), 

whose functions include essential metabolic processes and cellular development. But 

upon interaction with PABPC1 and JUNB, ubiquitin leads to apoptosis, seen in network 

10 (Table 4.1). Aberrant forms of the ubiquitin protein and the resultant apoptosis are 

present in patients with neurodegenerative diseases, e.g. Alzheimer’s disease or Down’s 

syndrome [135]. Although this effect is well documented in motor neurons it is not 

reported for circulating cells, however the indication that it is induced is reinforced by the 

upregulation of IRS2, SPON2, and DIA1 shown in network 8 (see Table 4.1). 
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Figure 4.1 (upper) GenoGo map of networks with known interactions (highlighted lines). 
Red circles denote the genes from input list; (lower) Symbol legend (selections from 
MetaCore full legend). 
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(a) 

Figure 4.2. MetaCore analysis of signaling pathways in PBLs from sALS samples. 
Symbols are explained in the Figure 4.1 key. (a) cytoskeleton remodeling regulation of 
actin cytoskeleton by RhoGTPase; (b) immune responses via CCR3 signaling in 
eosinophils; (c) role of alpha-6/beta-4 integrins in carcinoma progression; (d) transport 
macropinocytosis regulation by growth factors; (e) development growth hormone 
signaling, via PI3K/AKT and MAPK cascades. Numbers in the red bars refer to the 
experiment in which the target was quantified. The letter for the mechanism involved is 
written inside the colored hexagon annotating the interaction arrow, abbreviations 
indicate the following: CF = complex formation; Cm = covalent modification; Tr = 
transcription regulation; B = binding; +P = phosphorylation; -P = dephosphorylation; Z = 
catalysis; Tn = transport; CS = complex subunit; GR = group relation. 
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(b) 

Figure 4.2 (continued). 
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(c) 

Figure 4.2 (continued). 
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(d) 

Figure 4.2 (continued). 
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(e) 

Figure 4.2 (continued). 

The last two networks in Table 4.1, involving JUNB and/ or OAZ1 are predicted to 

play roles in general cell responses to chemical stimulus and subsequent transcriptional 

regulation. 
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Regulation of cell processes over time is the product of many partially independent 

networks, from epigenetic marks to RNA polymerases whose activity is regulated by 

transcription factors to splicing, translation and protein modification. We next looked for 

evidence that specific sets of transcription factors (TFs, which are DNA binding proteins 

that regulate the transcription of their target genes by binding in the promoter region) 

were involved in the altered expression of the DE genes. Transcription factors are often 

expressed in very small amounts and any changes in their concentration are difficult to 

quantify, so TF networks are usually inferred based on enrichment of their binding sites, 

relative to randomly selected genes, in the DE genes [136]. The MetaCore software 

prioritizes the most statistically significant transcription factor networks, providing 

visualization with GeneGo maps, such as those shown in Figure 4.3. The prediction of 

activation versus deactivation is indicated by the arrow direction. For our set of genes, 29 

significant networks are predicted; of these 9 have been selected for discussion, based on 

their statistical importance (by p-value, Z-score and G-score): the scores and GO process 

annotations are given in Table 4.2. Only network 8 includes a known regulatory pathway 

(see Figure 4.3 (a)), discussed in detail after the individual TFs have been described. 

Only seven TFs (SP1, SP1/SP3, c-Myc, p63, ESR2, SREPB1 and STAT3) have the 

most significant influence patterns on our DE genes set, combining both activation and 

inhibition.  These are discussed in the following paragraphs. 

SP1 (specificity protein 1) causes cells to respond to various physiological or 

pathological stimuli. It is both an activator and repressor, affecting the transcription of 

many genes involved in cell growth, immune responses, and apoptosis [137]. When the 
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SP1/SP3 complex is dissected the proteins have been shown to carry a wide range of 

post-translational modifications, including phosphorylation, glycosylation, and 

proteolytic cleavage [138]. Previous studies have shown an association of SP1 regulated 

genes with neurodegenerative diseases, including Alzheimer’s [139] and Prion diseases 

[140]. SP1 positively regulates S100A6 (Calcyclin), IRS2, SLC25A3 and UBB as 

indicated in networks 1, and 5-8 (Figure 4.3 (a-b, f-h)). The mode of regulation for 

RPS10, OAZ1, PABC1, LAMR1, SCP1, and PSMA is unknown and likely depends on 

what other TFs are present.  SP1 is known to interact with the TFs E2F3 (network 1, 

Figure 4.3 (b)) and FB1-1 (network 5, Figure 4.3 (f)), which in turn are connected with 

JUNB through an unknown mode of action. SP1 activates the TF p63 that in turn inhibits 

JUNB and activates B2M (network 6, Figure 4.3 (g)). Through the p63 interaction it 

affects STAT3 (network 6, Figure 4.3 (g)) and HNF3 (network 9, Figure 4.3 (i)), the 

latter being responsible for JUNB upregulation; SP1 activates SLC 25A3, leading to a c-

Myc connection, that may also by modulated by several genes whose mechanism of 

interaction is currently unknown, including PABC1, RPS10, OAZ1, PSMA1 (network 8, 

Figure 4.3 (a)). SP1 is inhibited by RIPK1 kinase following positive regulation initiated 

by the TWEAK (TNFSF12) and TNFRSF12A receptors (Figure 4.3 (b, f-h)).  

The SP1/SP3 complex, shown in network 7 (Figure 4.3 (h)), has a more restricted set 

of functions than SP1 alone. It positively regulates UBB, SLC25A3, S100A6 and IRS2, 

while its regulation of PSMA1, OAZ1, SCP1, PABC1, RPS10 is more nuanced. The 

complex connects indirectly to the JUNB pathway through inhibition of the activated 

HMGA2 binding protein. 
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(a) 

Figure 4.3 GeneGo maps of transcription factors interaction networks (corresponding 
numbers are found in Table 4.2). Some symbols are explained in the Figure 4.1 key. (a) 
network 8; (b) network 1; (c) network 2; (d) network 3; (e) network 4; (f) network 5; (g) 
network 6; (h) network 7; (i) network 9. (j) Symbol legend from MetaCore. 
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           (b) 

                    (c) 

Figure 4.3 (continued) 
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                                     (d) 

                                           (e) 

Figure 4.3 (continued) 
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                                                                                     (f) 

    (g) 

  Figure 4.3 (continued). 
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                                                (h) 

                              (i) 

Figure 4.3 (continued). 
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(j) 

Figure 4.3 (continued) 

Appearing in four of the nine TFs networks, c-Myc or the c-Myc proto-oncogene, is 

known for its wide range of functions as transcription factor and particularly for its 

importance in various tumors, leukemias and lymphomas [141-143]. It is known to 

activate RPS15A and PTMA1, shown in networks 1-4 (Figure 4.3 (b-e)), but it inhibits 

TGOLN2. Its mode(s) of influence on PABC1, SLC25A3, RPS10, RPS25, OAZ1, PSMA1, 

JUNB, S100A6, ACTG1, SFRS3 is not currently known. c-Myc itself is activated by small 

GTPase Rac1, a member of RAS superfamily, following positive regulation from 
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TWEAK (TNFSF12) via the FN14 receptor. Transcription factors are themselves 

regulated by transcription factors, and c-Myc transcription is regulated by SP1 (network 

1), discussed above, HNF1-alpha and JUNB (network 2, Figure 4.3 (c)), STAT3 via 

JUNB (network 3, Figure 4.3 (d)) and ZNF206 (network 4, Figure 4.3 (e)). 

The p63 gene encodes a member of p53 family of transcription factors; it has known 

roles in development and the maintenance of stratified epithelial tissues [144].  As 

described above and shown in network 6 (Figure 4.3 (g)), p63 interacts directly with the 

TFs SP1 and STAT3 and regulates two of the DE genes, activating B2M and inhibiting 

JUNB. Similar to the TFs SP1 and c-Myc, p63 is activated through the pathway 

connecting the surface receptor TWEAK FN14 Rac1 STAT3 p63.  

STAT3 is one member of the large STAT family, that play key roles in many cellular 

processes, i.e. cell growth and apoptosis [145]. As seen in network 6, STAT3 activates 

JUNB and p63, and is induced by the small GTPase Rac1. 

The final two TFs, ESR2 (estrogen receptor 2) and SREPB1 (sterol regulatory 

element binding TF1) are part of a large network with complex regulatory interactions. 

Shown in network 8, Figure 4.3 (a)), the pathways also are modulated by SP1 and JUNB. 

The highlighted interactions show the positive regulation leading from 

Ubiquitin ESR2 SP1 SREBP1 precursor, but Ubiquitin itself is activated by 

interactions that start with the TWEAK (TNFSF12) ligand receptor. This highly 

connected network is the reason that such high-level GO processes are involved, i.e. cell 

maintenance and cell death. 
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4.4 Conclusions 

From a set of 60 differentially expressed genes, assayed from circulating white blood 

cells and selected using the LO-BaFL pipeline we used several forms of pathway analysis 

to see whether they are more likely connected to specific sALS pathology or to general 

disease responses. We input the entire list to derive the meaningful biological interactions 

and transcription factors networks from GeneGo maps of MetaCore. 12 statistically 

significant networks involving several of the selected genes were obtained; the most 

highly ranked was TWEAK (TNFSF12) via TNF receptor-associated factors 2 (TRAF2) 

or 5 (TRAF5). Of the constituent genes, ACTG1, IRS2, DIA1 and JUNB in a variety of 

associations promote processes such as cytoskeleton remodeling, regulation of the actin 

cytoskeleton by RhoGTPase, immune responses via CCR3 signaling in eosinophils, the 

role of alpha-6/beta-4 integrins in carcinoma progression, transport macropinocytosis 

regulation by growth factors, development growth hormone signaling, via PI3K/AKT and 

MAPK cascades, with many other roles in apoptosis, proliferation, migration, 

angiogenesis, and inflammation [134]. These are in good agreement with previous 

reports [116, 119, 123].  

As would be expected in a disease in which cell death occurs, many of the genes are 

part of immune response pathways (HLA-type), including RPS10, RPS15A, RPS25, 

RPL21, LAMR1 and SLC25A3, other genes participate in regulation of the immune 

response or responses to other stimuli including PABC1, PTMA, SFRS3, DIA1, LAMR1, 

FTH1, B2M, SLC25A3, CCDC6, OAZ1. Responses more specific to a disease involving 

muscle-neuron interactions were seen for integrin-type proteins with roles in cell 
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adhesion and cell-surface mediated signaling, and with Myosin II and myosin smooth 

muscle specific genes characteristic of ALS.  

Programmed cell death and cellular responses to the products of those events are 

prominent through networks that include ubiquitin, UBB. Examples of affected genes 

include PTMA, JUNB, SCP1, OAZ1, IRS2 or PABC1, while IRS2, SPON2, DIA1 are 

nodes in one network that regulates apoptosis. Other networks including JUNB and / or 

OAZ1 are predicted to play roles in cell responses to chemical stimulus. Although we do 

not show here the direct affect of these genes on Ubiquitin/Proteasome System that has 

been proved to perturb the ALS pathway [92], the presence of Ubiquitin in several 

significant interaction networks might suggest a similar trend. 

MetaCore also derived 29 statistically significant transcription factors networks, for 

which we summarized the 9 most significant. SP1, SP1/SP3, c-Myc, p63, STAT3, ESR2 

and SREPB1 were identified although not all of the interactions are currently defined. For 

instance, S100A6, IRS2, UBB and SLC25A3 are activated by SP1 or the SP1/SP3 

complex, but the way they regulate RPS10, PABC1, LAMR1, SCP1, OAZ1, PSMA is not 

known. c-Myc activates RPS15A and PTMA, while it inhibits TGOLN2 and the mode of 

action is not known for  PABC1, SLC25A3, RPS10, OAZ1, PSMA1, JUNB, S100A6, 

RPS25, ACTG1 and SFRS3. JUNB, in direct connection with STAT3 and p63, is 

activated by the first and inhibited by the latter, which in turn stimulates B2M activity. 

PTMA activity is shown to be stimulated by ESR2, while IRS2 is inactivated by SREPB1.  

Because the targeted cells were of several types, an effect in one cell type may mask an 

opposing effect in another cell type, particularly when complexes of TFs have different 

     



91 
 

effects.  For instance, p63 in Figure 4.3 (g) is activated by two other TFs: SP1 and 

STAT3, as a result of which B2M becomes activated while JUNB is repressed. 

It is interesting that a large subset of the DE genes in our list (ACTG1, IRS2, DIA1, 

JUNB, PABC1, PTMA, SFRS3, LAMR1, FTH1, B2M, SLC25A3, CCDC6, OAZ1, UBB, 

RPS10, RPS15A, RPS25, RPL21, PSMA1, S100A6, TGOLN2, SFRS3, SCP1) are 

regulatory and while many are engaged in normal cell processes that are perhaps ramped 

up to accommodate a higher than normal cell turnover, the immune response signature 

and apoptosis and responses to chemical stimulus are likely more specific to sALS and 

are good candidates for a simplified blood-based biomarker signature for its presence 

than have been yielded by previous studies. The mechanism of action and their exact role 

in sALS pathology is still to be determined by future work. 
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SUMMARY 
 
 
Amyotrophic Lateral Sclerosis is a heterogeneous, complex disease whose etiology is 

poorly understood, despite many studies performed over many sample types, from 

biopsies to biofluids, and DNA, RNA and proteins. The goal of the present study was to 

find diagnostic markers that will help determine who has ALS, hopefully as early as 

possible and in a readily obtainable medium, in this case blood, which is drawn during 

most routine physicals.  This has immediate benefits in the clinic, since with a 18 month-

5 year life expectancy even the gain of 2-3 months from Riluzol is significant. We were 

looking for markers that are clearly present in all patients of a particular group and 

clearly distinct from individuals in the contrast group, whether as present/absent 

expression of genes, or expression levels that are completely distinct. 

The approach taken in the first stage of this research was to revise the array design for 

a set of microarray experiments in order to remove design errors and compare the 

subsequent predictions of differential expression to the standard method. As a control, an 

independent experiment performed on the same platform for which independent assays 

had been performed to test the microarray predictions was analyzed, despite not being 

focused on the disease phenotype of interest (CAD versus sALS). The novel pipeline, 

LO-BaFL, was developed to correct for errors that arise in microarray design, i.e. cross-

hybridization, loss of binding site, miss-assignment of particular probes. Because of its 

strict filtering, LO-BaFL improves the power and discrimination of identifying the 

differentially expressed genes but also it eliminates genes that are not problematic in 

specific populations.  
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Comparison of the responses from a similar set of Normal samples in an independent 

study using the same Agilent platform revealed a good correlation (R=0.81) between 

Healthy Controls in sALS and CAD studies, giving us confidence in the disease 

responses as well. 

LO-BaFL pipeline, and SAM and TM4 as comparative methods, were used to cleanse 

data and analyze microarray data from sALS study. LO-BaFL revealed a subset of 87 DE 

genes, versus 209 of SAM and 264 of TM4. Of particular note was that by combining 

TM4, which predicts a TARDBP expression change, with LO-BaFL, which indicates that 

4 genes all contribute signal to the probe mapped to TARDBP, it became clear that 

several genes had to be tested in the follow-up assay, including ILKAP.  

After comparing the three lists of DE genes identified by LO-BaFL, SAM and TM4, 

we selected the top genes for validation with qRT-PCR assay, an independent method. 

Such validation is recommended as a follow-up for microarray predictions. The selected 

genes are described in details in Chapter 2. 

The biomolecular assays have been performed on RNA - derived PBLs samples from 

subjects with sALS. Testing of 12 genes with qRT-PCR, using the samples that passed 

the quality assessment (RIN > 5.5) confirmed the microarray observations and most of 

our computational predictions when applying LO-BaFL and comparative methods for 

microarray analysis: ACTG1, SKIV2L2, C12orf35, B2M, DYNLT1, ILKAP, TARDBP 

were found to have higher expression ratio in patients with sALS vs. Healthy Controls. 

With respect to the genes listed, the corresponding expression ratio values are: 48.5; 37.3; 

22.4; 18.2; 17.4; 8.8; 5.6. This confirms the results of previous and more recent studies 
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[8, 12, 75, 92], with additional new candidate biomarkers in the genes ACTG1, B2M, 

ILKAP. Also importantly, qRT-PCR results confirmed TARDBP is among the DE genes 

for sALS. However, the results show less differential expression than the microarray 

predicted. This is due to increased expression of two genes that cross-hybridize 

(TARDBP and ILKAP) measured by the same Agilent probe.  

Following up on selected DE transcripts, we searched for the presence of sequence 

variants, e.g. SNPs, by performing Sanger sequencing assays, as described in Chapter 3. 

Direct sequencing was performed to screen for possible mutations in selected exons 

of DE genes determined by the LO-BaFL pipeline, for the five Healthy Controls and five 

sALS samples that passed quality control step. No sequence variant that consistently 

segregated with the sALS samples was found. In 9 out of 10 samples we identified a 

novel mutation in exon 3 of the ACTG1 gene, c.350 C-to-T, as follows: 

       TCTGGCACCACACCTTCTACAA[C/T]GAGCTGCGCGTGGCCCCGGAGGAGCAC 

However, since we found this variant in what are labeled ‘Healthy Controls’, it does not 

correlate with sALS.  

For the other DE genes tested, since the exons do show differential expression, but no 

sequence variant was found, we assume that changes could have other causes: more 

distant structural changes or regulatory changes due to presence of transcription factors or 

other modulators. This is one type of pathway analysis we performed, described in 

Chapter 4. 

We input the entire LO-BaFL DE genes list to derive the meaningful biological 

interactions and transcription factors networks from GeneGo maps of MetaCore. Twelve 
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statistically significant networks involving several of the selected genes were obtained; 

the most highly ranked was TWEAK (TNFSF12) via TNF receptor-associated factors 2 

(TRAF2) or 5 (TRAF5), with roles in apoptosis, proliferation, angiogenesis and 

inflammation. Of the constituent genes, ACTG1, IRS2, DIA1 and JUNB in a variety of 

associations promote processes such as cytoskeleton remodeling, immune responses, 

playing roles in carcinoma progression, transport macropinocytosis regulation by growth 

factors, development growth hormone signaling, via PI3K/AKT and MAPK cascades, 

with many other roles in apoptosis, proliferation, migration, angiogenesis, and 

inflammation [134]. These are in good agreement with previous reports [116, 119, 123].  

Many of the genes are part of immune response pathways (HLA-type), including 

RPS10, RPS15A, RPS25, RPL21, LAMR1 and SLC25A3, other genes participate in 

regulation of the immune response or responses to other stimuli including PABC1, 

PTMA, SFRS3, DIA1, LAMR1, FTH1, B2M, SLC25A3, CCDC6, OAZ1. Responses more 

specific to a disease involving muscle-neuron interactions were seen for integrin-type 

proteins with roles in cell adhesion and cell-surface mediated signaling, and with Myosin 

II and myosin smooth muscle specific genes characteristic of ALS.  

MetaCore also derived 29 statistically significant transcription factor networks, for 

which we summarized the 9 most significant. SP1, SP1/SP3, c-Myc, p63, STAT3, ESR2 

and SREPB1 were identified although not all of the interactions are currently defined. A 

large selection of genes from our input list (ACTG1, IRS2, DIA1, JUNB, PABC1, PTMA, 

SFRS3, LAMR1, FTH1, B2M, SLC25A3, CCDC6, OAZ1, UBB, RPS10, RPS15A, RPS25, 

RPL21, PSMA1, S100A6, TGOLN2, SFRS3, SCP1), regulated by these transcription 
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factors, are regulatory, and while many are engaged in normal cell processes that are 

perhaps ramped up to accommodate a higher than normal cell turnover, the immune 

response signature and apoptosis and responses to chemical stimulus are likely more 

specific to sALS and are good candidates for a simplified blood-based biomarker.  
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APPENDIX A: ADDITIONAL NETWORK INTERACTIONS 
 
 

  
(i) 

 

Figure A1. Other relevant networks (from Table 4.1) for our selection of genes. (i) 
network 2, (ii) network 3;(iii) network 4; (iv) network 5; (v) network 6. 
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(ii) 

 

Figure A1 (continued). 
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  (iii) 

    (iv) 

Figure A1 (continued). 
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(v) 

 

Figure A1 (continued). 
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