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ABSTRACT 

 

 

JOSHUA DANIEL RAMSEY. Updating and enhancing the North Carolina Department 

of Transportation’s Bridge Management System user costs. (Under the direction of DR. 

TARA CAVALLINE) 

 

 

  A Bridge Management System (BMS) can be used for both storage of data and to 

provide decision making tools for maintenance, repair, and rehabilitation (MR&R) needs 

and cost forecasting.  The North Carolina Department of Transportation’s (NCDOT) BMS 

currently includes bridge deterioration rates, agency costs, MR&R costs, and user costs to 

assist with prediction and prioritization of future needs.  User costs are costs burdened by 

the public when a bridge is unusable by some portion of vehicles or is associated with 

bridge-related accidents.  Key inputs required to compute user costs in NCDOT’s BMS 

include average daily traffic, detour length, percentage of vehicles detoured due to either 

weight or height, vehicle operating cost associated with detour, number of bridge-related 

accidents, frequency of bridge-related accident severities, and the costs of accidents.  To 

provide accurate user costs for forecasting, these BMS inputs need to be regularly updated 

or enhanced as better methodologies for obtaining these inputs becomes available.  In this 

work, updates and enhancements to NCDOT’s BMS user cost inputs and determination 

methodologies were identified, and new inputs were determined.  An analysis of recent 

bridge-related accidents in North Carolina was performed to identify bridge characteristics 

most associated with bridge-related accidents and to produce an equation that predicts the 

number of bridge-related accidents for subsets of bridges based on data currently available 

in the BMS.  A sensitivity analysis on user costs was also performed, indicating that user 

costs for NCDOT’s bridges are largely driven by costs due to bridge-related accidents.  
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CHAPTER 1: INTRODUCTION 

 

 

A well-designed and consistently updated Bridge Management System (BMS) has 

been shown to provide valuable information to assist state and federal agencies in decisions 

regarding maintenance, repair, and rehabilitation (MR&R) or replacement of bridges.  

Currently the Federal Highway Administration (FHWA) requires all bridges nationwide to 

be inspected every two years, with updated information recorded annually within the 

National Bridge Inventory (NBI).  The FHWA requires 116 items to be inspected, 

characterized, or recorded for each bridge.  Additionally, each state agency typically 

collects and records additional data, including inspection data for the specific bridge 

elements, as warranted by conditions, preferences, and management practices specific to 

that state.  This data is used in many BMS systems because it contains information 

pertaining to structural and functional deficiencies and functional characteristics such as 

detour lengths, narrow bridge deck width, load posting, and vertical clearance (Sinha et al. 

2009).  These input data help the BMS system compute user costs for each bridge based 

on its deficiencies and functional data.  User costs assist an agency in forecasting the 

amount of money individuals and companies are expected to lose or spend due to these 

structural and functional deficiencies.  With this cost considered, a state can better allocate 

how funds should be spent based on current needs, as well as forecasted future costs, to 

optimize the scheduling of MR&R or replacement of bridges. 
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The North Carolina Department of Transportation (NCDOT) initially utilized a 

BMS program that was developed in the late 1980’s by North Carolina State University 

(NCSU) (Chen and Johnston 1987).  Updates to this program, including user costs, were 

performed periodically by NCSU (Abed-Al-Rahim and Johnston 1991, Duncan and 

Johnston 2002, Johnston 2010).  Since that time, the BMS software utilized by NCDOT 

has changed to a program developed by a private firm, AgileAssets Inc.  It is reported that 

the algorithms and methodology utilized by the AgileAssets Inc. software is based largely 

on the work done by NCSU.  The method currently utilized to compute bridge user costs 

has reportedly been changed only minimally from the original methodology developed by 

NCSU.  Updates to specific inputs, including vehicle operating cost, accident costs, and 

Average Daily Traffic (ADT) growth rates have been performed periodically (using the 

original methodology), but not yearly.  This reduces the fidelity of the user costs predicted 

by the BMS.  In coordination with AgileAssets Inc., NCDOT has enhanced its BMS during 

the past 10 years and is preparing to move to element-level inspections as part of the FHWA 

mandate.  With over 30 years of bridge condition data now available, as well as new data 

on MR&R costs and timing, improved methodologies to predict user costs should be 

investigated and evaluated for implementation in the BMS.   

Level of service deficiencies that influence user costs are typically associated with 

bridge load capacity restrictions, low vertical clearances, poor roadway alignment, and 

narrow bridge deck widths (Son and Sinha 1997).  To compute the costs associated with 

bridge load capacity and low vertical clearance, vehicle operating cost must be considered.  

This vehicle operating cost is used when determining the cost per mile of a vehicle class 

when it has to detour a bridge.  Although many agencies have based their cost inputs and 
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models on the work of NCSU (Son and Sinha 1997, Thompson et al. 1999), most have 

recently incorporated modified or enhanced methods of determining user costs into their 

BMS.  Much of the data supporting vehicle operating costs in NCDOT’s BMS is currently 

outdated. For example, tables developed by Chen and Johnston (1987) nearly 30 years ago 

are currently used to predict the proportion of each type of vehicle traveling on each type 

of bridge, as well as to predict the proportion of vehicles detoured due to weight.   

Most data supporting the BMS cost features cannot feasibly be collected annually 

(Duncan and Johnston 2002).  Forecasting algorithms utilized by the BMS’s optimization 

scenarios are dependent on growth factors and inflation rates for factors including both cost 

and traffic.  Therefore, it is critical that these BMS input values are accurate.  Additionally, 

it is possible that the inflation indices previously utilized to update costs may be outdated.  

Additionally, updated, locally calibrated data is available to support the existing 

methods of computing user costs.  Possible vehicle operating cost enhancements to 

NCDOT’s BMS may include those associated with vehicle classifications, vehicle 

distributions on roadways, new data associated with percent of vehicles detoured due to 

bridge postings, and others. 

New truck information, including trucking traffic forecasting models developed for 

NCDOT as part of recent research (Stone et al. 2006) could be utilized in the BMS to better 

predict the user costs with truck traffic.  It has been shown that truck traffic is most affected 

by costs due to loss of time in detour traveled (Johnston et al. 1994).  Data utilized in the 

BMS on truck geometries and percentages at certain heights was obtained in the 1950’s 

(Kent and Stevens 1963), data on the percentages of heavy trucks from 1980’s (FHWA 
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1985).  This key input data for the BMS should be updated so that the user costs associated 

with detours due to height, as well as detours due to bridge posting, are accurate.  

Other costs used to predict user costs are accident costs.  Accident costs can be 

incurred due to bridges with low vertical clearances, narrow bridge deck widths, poor 

alignment, and bridge length (Johnston et al. 1994).  Research has been performed to 

determine an average number of injuries per accident type on bridges (Abed-Al-Rahim and 

Johnston 1991).  Accident types are classified in order of decreasing severity as K (fatality), 

severity A, severity B, severity C, and property damage only (PDO).  These values can be 

multiplied by an amount computed using the “Willingness-to-Pay” approach developed by 

the National Safety Council (NSC) to determine the average cost per bridge related 

accident.  This approach to computing accident costs needs to be revisited and revised to 

reflect current day costs. 

New data that would provide updated North Carolina accident rates and severities 

has recently been released, and the NCDOT BMS should be updated to include this data in 

the computation of accident costs.  An outside consultant has also recently provided a 

report outlining accident costs based on North Carolina data.  This data could also be 

included in the computation of accident costs in the NCDOT BMS, improving the fidelity 

of the user costs function of the software.   

Statistics from the National Highway Traffic Safety Administration indicate that 

since 2005, highway fatalities have declined (NCHRP 2015).  However, the reasons for the 

decrease in fatalities and serious injuries on highways are not completely understood, and 

are the subject of an ongoing study by the National Highway Cooperative Research 

Program (NCHRP 17-67).  A revisit of a bridge-related accident study by Abed-Al-Rahim 
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and Johnston (1991), using recent accident data and current bridge characteristics, would 

provide insight into bridge features linked to higher accident rates and findings could be 

incorporated into design of bridges statewide.     

User costs to help determine which bridges are vital to the public, affecting a 

portion of the public sector that can no longer use a bridge due to it deficiencies or pose a 

high accident risk.  They are often significant in magnitude and can be up to five times the 

cost of direct agency costs (Thompson et al. 1999).  A sensitivity analysis to determine 

which cost inputs have the greatest effect on user costs could be utilized by the NCDOT to 

better understand the results of BMS optimization scenarios.  This sensitivity analysis, 

performed using updated inputs and inflation/growth indices, will provide NCDOT more 

confidence in selection of bridges for maintenance, repair, and rehabilitation.   

1.1 Anticipated Contribution of Research Effort 

 Research questions addressed as part of this work include the following: 

 Is the current method of computing user costs in NCDOT’s BMS valid?  

 Are there improved ways to compute user costs using more current data or more 

appropriate methodologies?   

 What can we learn from user costs that can be utilized in design, maintenance, 

repair, and rehabilitation decisions to improve North Carolina’s bridges?  

 If changes are made to the user cost inputs and methodologies to obtain these inputs, 

what are the effects on predicted user costs for a subset of bridges?  

 As part of this research, the four questions listed above were addressed.  It was 

determined some of the current methods utilized in the NCDOT BMS for computing user 

costs could be enhanced, and more recent, locally calibrated data is available to support 
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forecasting of user costs with much more fidelity.  An analysis of bridge-related accidents 

provided insight into the bridge characteristics most associated with accidents.  This 

information can be used to assist NCDOT in decisions regarding design, maintenance, 

repair, and rehabilitation needs, potentially reducing the number of bridge-related accidents 

and reduce the associated user costs.   The findings of a sensitivity analysis of user costs 

will help NCDOT understand the effects of recommended changes on predicted user costs, 

and provide insight into the relative sensitivity of user costs to accident costs and operator 

costs.   

1.2 Organization of the Thesis 

This thesis is comprised of six chapters.  Chapter 1 provides an overview of the 

purpose and use of user cost models in BMS, with an emphasis on the history of NCDOT’s 

BMS user costs.  Chapter 2 is a literature review that provides a more in-depth background 

of user cost models and associated inputs, as used in NCDOT’s BMS as well as BMS used 

by other state highway agencies.  Chapter 3 describes the research efforts utilized to update 

methodologies to obtain user cost inputs, as well as provides updated input tables that are 

suggested for use in NCDOT’S BMS.  Chapter 4 provides a revisit to a study performed 

by NCSU approximately 25 years ago, in which bridge characteristics associated with 

North Carolina’s bridge-related accidents were identified (Abed-Al-Rahim and Johnston 

1993).  The results of a similar analysis of recent bridge-related accidents (presented in 

Chapter 4) provide insight into changes in bridges characteristics associated with bridge-

related accidents, as well as an updated equation that can be used to predict the number of 

annual accidents on a bridge or a subset of bridges.  Once all user cost inputs and 

methodologies were updated and enhanced, a sensitivity analysis was performed (outlined 
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in Chapter 5) to determine whether user costs are more sensitive to accident costs or vehicle 

operating costs.  Chapter 6 provides the conclusions and recommendations of this work.  

Appendix A includes information to support the bridge-related accident analysis.  

Appendix B includes information supporting the sensitivity analysis. 

 

 

 



 

 

 

 

 

 

CHAPTER 2: LITERATURE REVIEW 

 

 

 BMS are a vital tool for many state and federal transportation agencies.  With 

increased agency and user costs and a growing (yet also rapidly deteriorating) 

infrastructure in the United States, there is a need to both protect the public’s safety and to 

determine and implement best practices for MR&R or replacement of bridges.  Currently 

the FHWA requires all bridges to be inspected biennially; these inspections include the 

collection of data on 116 different parameters such as location, bridge age, and material 

components among other information.  Inspection data provide rating information that 

assists in determining the structural condition and functional condition of a bridge.  This 

inspection data is recorded in the National Bridge Inventory (NBI) database.   

Though the FHWA only requires 116 components be inspected, characterized or 

recorded biennially, most state agencies have data on additional inspection items and 

parameters they record that relate to the climate or geography of their respective state, or 

are other items of interest to the agency.  The NCDOT records data on a total of 300 

components, including geographic information, roadway type, bridge structural details, 

and a number of other parameters.  Collection of this data can be used to develop and 

support a BMS.  A BMS can be used to predict user costs associated with structural and 

functional deficiencies (Son and Sinha 1997). 
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2.1 Bridge Management Systems 

 The NBIS was developed in 1971 (NBIS 2012), and most states now have over 30 

years of data collected to support decisions regarding MR&R and replacement of bridges.  

Many state and federal agencies have been using information collected for the NBI to 

support development of a BMS.  North Carolina was one of the first states to develop a 

BMS (Chen and Johnston 1987).  Since then, many other states have developed a BMS, 

along with the federal government.  Over 40 states are currently using the AASHTOWare 

Pontis BMS system (Markow and Hayman 2009). 

Although some states utilize their BMS strictly to store data (Markow and Hayman 

2009), a well-developed BMS system will collect, process, and update data, predict 

deterioration, and identify and predict costs to the transportation agency and bridge users 

(Sinha et al. 2009).  This helps allow the state agency to determine how best to allocate 

funding.  The data supporting a BMS system is typically based upon the NBI data and state 

inspection data, and then enhanced with other stored inventory, which can range from 

accident costs to truck traffic percentages (Sobanjo and Thompson 2001).   Engineering 

and economic models in the BMS utilize this database to predict the deterioration rates of 

bridges and associated costs (Sobanjo and Thompson 2001).  These models are then used 

to predict the required MR&R or replacement of bridges, accounting for both the 

deterioration of bridge elements as well as the effects of inadequate level of services for 

users (Chen and Johnston 1987).  Inadequate levels of services for users are the result of 

bridges being either structurally deficient or functionally obsolete.   

Once a bridge is considered either structurally deficient or functionally obsolete, a 

cost is burdened by the public (or a portion of the public) who can no longer use the bridge 
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because of its deficiencies.  Deficiencies can be due to load postings, inadequate deck 

width, poor alignment, and limited vertical clearance (Chen and Johnston 1987).  A load 

posting is given to bridges and culverts to restrict the weights of vehicles that can pass 

(Hearn 2014).  It is implemented when the maximum legal weight of a vehicle is deemed 

unsafe for the structure.  A BMS system should be able to predict when a bridge is nearing 

a load deficiency by analyzing the data input from previous inspections (Abed-Al-Rahim 

and Johnston 1991).   

Currently most of America’s transportation infrastructure is aging, while traffic 

volume is steadily increasing (Mach and Hartman 2008).  Due to this fact, a BMS system 

must not only be able to utilize deterioration models to forecast bridge conditions, but 

perform analyses to identify how these deficiencies affect the users of the bridge.  All 

federal and state agencies have limited funding for transportation needs and many states 

rely on their BMS system to determine the bridge projects that are most vital to obtain 

maximum levels of service to the public (Rens et al. 1999).  This being noted, user costs 

help determine the bridge projects that provide the greatest benefit to the public.  These 

user costs are often significant in magnitude and will affect a portion of the public sector 

that can no longer use a bridge due to its deficiencies, and pose a high accident risk.  

Thompson et al. (1999) note that these user costs can be up to five times the direct agency 

costs.   

2.2 User Costs in Bridge Management Systems 

A bridge with either a structural or functional deficiency will incur a user cost 

(Chen and Johnston 1987).  Such costs are due to load postings, limited vertical clearances, 

and deck widths that result in vehicles having to detour (Son and Sinha 1997).  Additional 
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user costs are incurred due to accidents resulting from the bridge deck width, approach 

configuration, traffic speed, or other factors.  Currently, NCDOT calculates user costs by 

considering narrow deck widths, low vertical clearances, poor alignment, bridge length, 

and reduced load capacity.  This methodology was developed by Chen and Johnston 

(1987), and is reportedly largely applied in the BMS software utilized by the NCDOT 

today.  The method used to determine user costs for the NCDOT BMS, as developed by 

Chen and Johnston (1987), is shown in Equation 2.1. 

 

AURC(t) = 365 ADT(t) [CWDAUAC+CALAUAC+CCLAUAC+CCLDUDCDL+CLCD(t)UDLDL] 

Equation 2.1: NCDOT BMS user costs 

Where: AURC(t) = annual user cost of the bridge at year t, $/year 

 ADT(t) = average daily traffic using the bridge at year t 

CWDA = coefficient for proportion of vehicles incurring accidents due to width 

deficiency 

CALA = coefficient for proportion of vehicles incurring accidents due to poor 

alignment 

CCLA = coefficient for proportion of vehicles incurring accidents due to vertical 

clearance deficiency 

CCLD = coefficient for proportion of vehicles detoured due to a vertical clearance 

deficiency 

CLCD(t)  = coefficient for proportion of vehicles detoured due to a load capacity 

deficiency at year t 

 UAC = unit cost of vehicle accidents on bridges, $/accident 

UDC = unit cost for average vehicle detours due to vertical clearance deficiency, 

$/mile 

 UDL = unit cost for average vehicle detours due to load capacity deficiency, $/mile 

 DL = detour length, miles 

 

As can be seen in Equation 2.1, in the NCDOT BMS, user costs are incurred by 

vehicles that are required to detour around a bridge due to load postings or low vertical 

clearance, as well as due to accidents related to narrow deck widths and poor alignments.  
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The detour costs for both vertical clearance and load capacity are determined using vehicle 

operating costs, percent of vehicles detoured, and detour length.  In computing the cost of 

accidents related to poor alignment, the alignment appraisal is based on agency-collected 

data or data from other sources (Chen and Johnston 1987).  The width deficiency is based 

on the difference between the existing deck width and bridge clear deck width goals, as 

established by Johnston and Zia (1984). 

Many agencies currently utilize the AASHTOWare Pontis BMS developed by the 

American Association of State Highway and Transportation Officials (AASHTO).  In the 

development of AASHTOWare Pontis, cost considerations were largely based on the cost 

methodologies developed for the NCDOT BMS (Thompson et al. 1999), described 

previously.  In recent years, other agencies have modified or enhanced the source data or 

methodologies utilized in the NCDOT BMS in order to support computation of user costs 

in their BMS.  For example, in a research project to support the Indiana Bridge 

Management System (IBMS), which has a cost analysis component largely based on the 

work of Chen and Johnston (1987), Son and Sinha (1997) explored the incorporation of 

the effect of poor deck surface conditions to user costs.  These poor deck conditions were 

found to cause vehicles to reduce speed on bridges adding to the travel time, which 

increases user costs (Son and Sinha 1997).  

As shown in Equation 2.1, a key factor in determining the appropriate user costs is 

an accurate prediction of the volume of traffic on the bridge.  This traffic information is 

known is Average Daily Traffic (ADT).  ADT considers the traffic resulting from 13 

different vehicle classifications, as denoted by the FHWA (2013), shown in Figure 2.1.   
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Figure 2.1: FHWA vehicle classification 

 

Accurate ADT data is vital when calculating the user costs for a bridge, because a 

bridge with a higher volume of traffic will have an increased user cost associated with it if 

deficiencies are present in that bridge.  Higher ADT volumes are typically seen on major 

roadway systems like interstates and federal and state highways.  Although all 13 vehicle 

classifications are typically affected by user costs, passenger vehicles are not affected 

nearly as much as vehicles in heavier weight classes (Chen and Johnston 1987).  This will 

be discussed in more depth in subsequent sections on vehicle operating costs and accident 

costs. 
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2.3 Average Daily Traffic Growth 

ADT is the total traffic volume a roadway experiences over the course of an average 

day.  This value is utilized in the NCDOT BMS in the computation of user costs.  A bridge’s 

ADT includes both single-unit (SU) and multi-unit (MU) vehicles as well as all other 

vehicle classifications.  The portion of the ADT that can be attributed to trucks is known 

as the Average Daily Truck Traffic (ADTT).  Since load posting related  detours typically 

affect tall and heavy weight vehicles such as trucks, the ADTT (or some portion of the 

ADTT) is the likely set of vehicles that may incur a detour (other types of detours, like 

construction, would affect everyone).  In contrast, user costs attributable to accidents can 

be incurred by all types of vehicles.  Currently, the NCDOT BMS does not utilize ADTT 

data inputs.   

ADT growth rates are used to predict the ADT of a bridge at a future date.  Projected 

ADT is used by a BMS when estimating user costs in future years. Chen and Johnston 

(1987) used ADT values provided by NCDOT to develop ADT growth rates for roadways 

of different types.  The source of the data that Chen and Johnston (1987) used to predict 

the original ADT growth rates used in the NCDOT BMS was automatic traffic recording 

(ATR) data from 1974 to 1984.  At the time of development of these ADT growth rates, 

data was available from a total of 59 ATR stations that were placed at roadways of different 

classifications (Chen and Johnston 1987).  Using this data, ADT growth rates were 

computed for the four road types in each of the state’s counties.  At the time of Chen and 

Johnston’s original work, only seven of the 59 ATR stations were situated on interstates.  

Additionally, insufficient data was available to support development of specific ADT 

growth rates by county or division. Therefore, interstate ADT growth rates were considered 
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equal for the state (Chen and Johnston 1987).  The arterial ADT growth rates were assumed 

to be the same for all counties in a division (for each of the 14 divisions in the state).  Since 

no ATR stations were located on local routes, the population growth rate of the county was 

used to determine the ADT growth rate.  For collector roads, the ADT growth rate were 

assumed to be the average of the local and arterial growth rates for each county.   

The ADT growth rates for the NCDOT BMS were later updated by Duncan and 

Johnston (2002) using the Bridge Management Inventory File (BMIF).  The BMIF 

provided ADT data for all bridges from 1991 to 2000.  This more robust dataset allowed 

Duncan and Johnston (2002) to compute an ADT growth rate (for each of the four roadway 

classifications) for each county.  Duncan and Johnston (2002) noted that if values did not 

exist for a particular roadway in a county, the state average was utilized as the assumed 

value.  Values  determined by Duncan and Johnston (2002) were then reviewed by 

NCDOT’s Traffic Forecast Unit (TFU), where personnel adjusted some values based on 

experience.  A snapshot of the breakdown of ADT growth rates for a portion of North 

Carolina counties is shown in Table 2.1 (Duncan and Johnston 2002). 
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Table 2.1: A portion of the ADT growth rate table used in NCDOT BMS (Duncan and 

Johnston 2002) 

 

 

2.4 Detour Resulting from Bridge Capacity and Vertical Clearance Limits  

User costs due to detours are incurred when vehicles desiring to travel over a bridge 

are required to detour around the bridge due to the bridge being posted at a reduced load 

capacity or when vehicles that desire to travel either on or under a bridge must detour due 

to lack of vertical clearance either on or under a bridge.  User costs associated with detours 

are computed by multiplying the detour length by the unit cost for vehicle detours and the 

coefficient of the proportion of vehicles that must detour.  The NBI coding guide defines 

the detour length as the total additional length of travel a vehicle must go in order to remain 

on course (FHWA 1995).  Detour length is a required component of the NBIS, and is 

therefore easily incorporated into most BMS. It has been noted though that the actual detour 

length may be longer than that posted in the NBI since posting signs are located at the 

bridge and not where the detour runoff is actually located (Chen and Johnston 1987).   
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A load posting results in the restriction of certain vehicles from using a bridge when 

a vehicles’ weights exceeds the safe capacity of a bridge (Hearn 2014).  These restrictions 

typically occur in older bridges that have experienced section loss or material degradation 

(Chen and Johnston 1987).  Environmental effects, such as climate and geography, are 

some of the main causes of section loss and material degradation (Chen and Johnston 

1987).  Bridges that do not receive regular maintenance will have a higher likelihood of 

deteriorating quickly (Sobanjo and Thompson 2013).   

A bridge can have either one or two load postings, the first being for SU vehicles 

and the second being for tractor-trailer semi-trailer (TTST) vehicles.  As discussed 

previously, SU and TTST trucks comprise a segment of the ADT known as Average Daily 

Truck Traffic (ADTT).  These load postings will cause a portion of vehicles to have to 

detour around any bridge where their weight is in excess of the load posting (Chen and 

Johnston 1987).  This creates an increase in travel time as well as an incurred vehicle 

operating cost for all vehicles having to detour.   

When determining the vehicle operating costs in a BMS, it is essential to accurately 

estimate the proportion of vehicles that would be required to detour due to bridge capacity 

(Johnston et al. 1994).  In the NCDOT BMS, this proportion of legal weight vehicles 

required to detour due to bridge capacity is assumed to be dependent upon the type of 

roadway system upon which the bridge is located (Chen and Johnston 1987), as seen in 

Table 2.2.  This percentage does not consider vehicle classifications one through three, 

since their weight, which is considered three tons or less, is the minimum weight a bridge 

must hold in order to be operational (Chen and Johnston 1987).   
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In the NCDOT BMS, the percentage of trucks detoured (in decimal form) is 

multiplied by proportion of the total traffic (ADT) that is trucks.  To facilitate this, Chen 

and Johnston (1987) utilized data provided by the Planning and Research Branch of 

NCDOT to develop a table that provides a percentages of total traffic that are cars and light 

trucks, SV Duals or TTST.  Data utilized to compute these percentages included traffic 

data from portable counting stations at selected locations on primary highways with known 

functional classifications (Chen and Johnston 1987).  The Planning and Research Branch 

also provided data for secondary roadways where ADT was measured on bridges evaluated 

for replacement.  Chen and Johnston (1987) compiled this information, seen in Table 2.3, 

which was then used in conjunction with data on truck weight distributions to produce the 

total percent of vehicles detoured due to bridge capacity (Table 2.2).  As noted in Equation 

2.1, this portion of vehicles detoured due to load is time dependent for each structure, since 

deterioration of bridges over time reduces the load capacity (Chen and Johnston 1987).  To 

predict and account for reduction in load capacity, Chen and Johnston (1987) performed 

regression analysis using time dependent substructure and superstructure condition ratings 

as well as the ratio of the design load at the current state to the design load at construction 

time (time zero) using historical data on bridges.  Chen and Johnston (1987) note that the 

results of the regression analysis showed poor correlation, and thus engineering judgment 

was used along with the regression results to produce Table 2.4.  The deterioration rates in 

this table allow for BMS to predict deterioration in bridge load capacity and, consequently 

the impact on user costs associated with detour due to load posting. 
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Table 2.2: Percent detoured due to load posting (Chen and Johnston 1987) 

 

 

Table 2.3: Vehicle proportions on functional classifications (Chen and Johnston 1987) 
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Table 2.4: Estimated bridge load capacity deterioration rates (Chen and Johnston 1987) 

 

 

One factor affecting detour costs that can be difficult to determine and incorporate 

into a BMS is an accurate prediction of the number of (or the percentage of) vehicles with 

weight over the legal weight limits (Dey et al. 2014).  Currently, the FHWA has a mandated 

maximum allowable gross weight of 80,000 pounds for vehicles, while also allowing the 

purchase of special permits for vehicles over this weight limit on certain roads.   

Low vertical clearance on or under a bridge will also cause a portion of traffic 

passing on or under a bridge to detour due to the height restriction.  The NCDOT BMS 

system predicts a portion of vehicles that will detour due to excessive height.  Johnston et 

al. (1994) notes that only a small portion of bridges have vertical clearance shorter than 

average truck heights, so relatively few vehicles will be required to detour due to vertical 

clearance.  Chen and Johnston (1987) assumed that the distribution of trucks is well 

distributed, and data from a report by Kent and Stevens (1963) was used to predict the 

percentage of trailer heights over the standard height (13.5 feet).  Using this data and Table 

2.3, Chen and Johnston (1987) produced an additional table used in the NCDOT BMS that 

estimates the percentage of vehicles that must detour due to height restrictions (Table 2.5).  

It is of note that the Kent and Stevens (1963) report used to determine the percentage of 

vehicles of each height is entitled “Dimensions and Weights of Highway Trailer 
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Combinations and Trucks – 1959,” indicating that this data may not accurately reflect the 

current geometric characteristics of North Carolina truck traffic.   

 

Table 2.5: Percent detoured due to vertical clearance (Chen and Johnston 1987) 

 

 

 Other agencies have slightly different methods of approaching the computation of 

user costs due to detours.  For example, the Indiana Department of Transportation’s (IDOT) 

BMS (IBMS) computes detour due to excessive weight using a methodology similar to the 

NCDOT BMS, yet has a different approach for determining the portion that must detour.  

For the IBMS, Son and Sinha (1997) developed a system of three categories to determine 

the percent of vehicles that must detour due to weight.  The first category includes vehicle 

classes in which the minimum weight of the vehicle class is greater than the load posting.  

In this category, all vehicles must detour, as reflected in Equation 2.2. 
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If PL < WMIN(j) 

NL(j) = PADT(j) × ADT 

Equation 2.2: All vehicle classes detour 

The second category includes vehicle classes in which the maximum weight of a 

vehicle class is less than the load posting, which results in no vehicles in the category 

having to detour (Equation 2.3).   

If PL > WMAX(j) 

NL(j) = 0 

Equation 2.3: No vehicle classes detour 

 

The third category is utilized for load postings that are between the minimum and 

maximum weights associated with a vehicle class, thereby causing only a portion of the 

vehicle class to detour (Equation 2.4). 

NL(j) = 
(𝑊MA𝑋  (𝑗)−P𝐿)

(𝑊MA𝑋  (𝑗)−𝑊M𝐼𝑁  (𝑗)
× 𝑃𝐴𝐷𝑇(𝑗) × 𝐴𝐷𝑇 

Equation 2.4: A portion of vehicle classes detour 

Where: WMAX(j) = maximum weight of vehicle type j, tons 

 WMIN(j) = minimum weight of vehicle type j, tons 

 PADT(j) = proportion of ADT of vehicle type j 

 PL = posted load limit or load capacity, tons 

 J = vehicle type 

 

 Once the percent detour (NL(j)) is found, the equation used to produce the user costs 

is the same as the one used by the NCDOT BMS (Equation 2.1).  However, the IBMS 

groups vehicles into four different classifications for vehicle operating cost.  In these four 

groups, a maximum and minimum weight is predicted for each group and these weights 
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are then used in the equation to estimate how many vehicles must detour (Son and Sinha 

1997).   

2.4.1 Vehicle Operating Costs 

 When a vehicle must detour due to either weight or height restrictions, an added 

expense is incurred by the operator or owner of the vehicle.  This expense can be a result 

of fuel consumption, oil consumption, tire wear, maintenance and repair, and vehicle 

depreciation (Zaniewski et al. 1982).  In the NCDOT BMS, vehicle operating cost is 

calculated utilizing vehicle characteristics and the operator’s wage rates for said vehicle, 

using a methodology developed by Duncan and Johnston (2002).  In their initial work, 

Chen and Johnston (1987) computed the vehicle operating costs for vehicles of minimum 

weight (three tons) and vehicles of maximum legal gross weight (40 tons).  For the NCDOT 

BMS, the vehicle operator cost for vehicles between these two weights is linearly 

interpolated (Chen and Johnston 1987).   

To estimate the operator costs for vehicles weighing three tons or less, Duncan and 

Johnston (2002) first assumed the cost would be equal for all vehicles weighing three tons 

and less.  They also assumed that the vehicle operating cost would be the sum of vehicle 

cost and operator cost.  The vehicle cost is taken as the standard mileage rate for all business 

mileages, which is published by the Internal Revenue Service (IRS) and routinely updated 

to reflect changes in the fuel cost of fuel.  The estimate for operator cost utilizes the North 

Carolina state government vehicle operator I minimum wage rate as a basis. This minimum 

salary rate per year is divided by the product of the assumed 1,920 hours worked by a 

person in a year and a travel speed of 40 miles per hour (Duncan and Johnston 2002), to 

obtain the operator cost per mile of detour.  The operator cost and vehicle cost are then 
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added to predict the vehicle operating cost of a three ton vehicle (UD3), which is used in 

Equation 2.5. 

To predict operating cost for vehicles at the maximum legal weight, Duncan and 

Johnston (2002) used data from the North American Industry Classification System 

(NAICS) 484, this information is published in the U.S. Census Bureau.  NAICS 484 

provides data on a variety of aspects (including costs and mileage) of overland 

transportation of cargo by means of tractor trailers.  This report provides information on 

the estimated motor carrier revenue yearly in North American (U.S./Canada/Mexico), as 

well as the estimated miles driven per motor carrier.  To calculate the vehicle operating 

cost, the total annual revenue is divided by the total annual number of miles driven obtain 

the vehicle operating cost as a cost per mile of vehicles weighing 40 tons (UDNP) used in 

Equation 2.5.   

For vehicles weighing between three tons and 40 tons, the NCDOT BMS assumes 

a linear relationship between the vehicle weight and vehicle operating costs (Chen and 

Johnston 1987).  Equation 2.5 presents the linear relationship between vehicle weight and 

estimated vehicle operating cost at the weight (Chen and Johnston 1987).  When a bridge 

has a load posting, vehicles at and above the posted weight must detour, so an average 

vehicle operating cost (UDL) is determined for all weight classes having to detour.  Chen 

and Johnston (1987) proposed using the average of the vehicle operating cost at the weight 

for the load posting (UDV) and the vehicle operating cost at the maximum legal weight limit 

(UDNP), to calculate UDL, used in Equation 2.1.   
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UDV =  UD3 +
(UDNP − UD3)

(NP − 3)
× (WV − 3) 

Equation 2.5: Vehicle operating cost at said weight 

 

Where: UDV = operating cost for vehicle V 

 UD3 = operating cost for vehicle weighing 3 tons or less 

 UDNP = operating cost for vehicle weighing the maximum legal load 

 NP = maximum legal load (non-posted capacity of bridge) 

 WV = weight of vehicle V 

It is noted that in NCDOT’s BMS the operating cost for vehicles less than three 

tons is assumed to be the operating cost of a three ton vehicle.  Also, vehicles weighing 

more than the maximum legal load (40 tons) are assumed to have an operating cost equal 

to the operating cost of the maximum legal weight vehicle. 

Other state agencies have different means of deriving this vehicle operating cost for 

their BMS.  In 1982, the FHWA sponsored research in which 11 different vehicle 

classifications were analyzed to determine the overall unit operator cost for five different 

components (fuel consumption, oil consumption, tire wear, maintenance and repair, and 

vehicle depreciation) (Zaniewski et al. 1982).  The vehicles were tested on 51 different 

geometric test sections as well as at differing speeds to ensure accurate results (Zaniewski 

et al. 1982).  The findings of this study have been incorporated into the IBMS by Son and 

Sinha (1997), after grouping the 11 different vehicle classes into a subset of four: passenger 

car, single unit truck, bus, and tractor trailer.  

2.5 Accident Costs 

 Johnston (2010) states that bridge related accidents are a small portion of total 

accidents, but the severity of these bridge related accidents are higher than other non-bridge 

related accidents.  This is also emphasized by Sobanjo and Thompson (2013) who stated 
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that vehicle crashes on bridges as well as on bridge elements are more likely to be deadly 

than other vehicle accidents.  Abed-Al-Rahim and Johnston (1991) reported studies finding 

that the severity of bridge related accidents can be two to 50 times more severe than non-

bridge related accidents.  One factor that can result in increased accident rates are narrow 

deck width bridges that reduce lane width (Wang 2010).  Chen and Johnston (1987) report 

that other factors that increase the likelihood of accidents include low vertical clearance 

and poor deck alignment.  

Accident costs can be calculated by grouping them as accidents that solely result in 

property damage, accidents that are injury producing, and accidents resulting in one or 

more fatalities (Wang 2010).  NCDOT classifies accident types within their BMS in this 

manner (Abed-Al-Rahim and Johnston 1991).  In the NCDOT BMS, a scaled system of A 

through C is used to determine the severity of the injury with A being the most severe and 

C being the least severe.  Two additional components on the extremes of the scale are fatal, 

denoted K, for accidents resulting in loss of life, and property damage, denoted PDO, for 

accidents not inducing injuries. 

 Two approaches have been considered in determining accident costs on bridges 

within the NCDOT BMS (Chen and Johnston 1987): the Willingness-to-Pay approach and 

the Human Capital Approach.  Both approaches consider direct and indirect costs involved 

with bridge related accidents.  Direct cost for both are considered to be accident cost, 

emergency service cost, medical treatment expenses, and legal and court fees as stated by 

the National Safety Council (NSC).  The indirect costs, which can be more difficult to 

determine (Chen and Johnston 1987), consider compensation for pain and suffering and 

the costs of goods and services an individual will not be able to produce as a result of the 
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accident.  The Willingness-to-Pay approach also considers an indirect cost known as value 

of life, which looks at possible long and short term losses in quality of life due to the 

accident.  Both approaches provide a dollar value for each severity type (K-A-B-C-PDO).  

In updating the NCDOT BMS accident costs, Duncan and Johnston (2002) also considered 

a third approach known as the comprehensive cost method that looks at 11 different 

components consisting of both direct and indirect costs, similarly to the Willingness-to-

Pay approach.  

 Costs per accident values calculated by the Human Capital Approach are published 

by the FHWA every few years.   Since this data does not include a cost parameter for value 

of life, the total cost of the five different accident types is less than the Willingness-to-Pay 

approach (Duncan and Johnston 2002).  Costs per accident values calculated by the 

Willingness-to-Pay approach are published by the NSC.  Since data is provided more 

frequently and includes value of life, Duncan and Johnston (2002) recommended that the 

Willingness-to-Pay approach be used to predict accident costs in the NCDOT BMS. 

 To compute accident costs in a BMS, a means of predicting the average number of 

accidents occurring on a bridge is required.  For NCDOT’s BMS, a prediction methodology 

was developed by Abed-Al-Rahim and Johnston (1991).  In this methodology, data 

compiled by NCDOT was utilized to determine the percentage of vehicle accidents 

occurring on bridges.  At the time of this work, North Carolina required that all vehicular 

accident reports be stored for seven years.  These accident reports provided data on whether 

the accident occurred on the bridge or under the bridge, or on a bridge element.  It also 

provided information on the severity of accident.  Using this data, Abed-Al-Rahim and 

Johnston (1991) were able to produce an estimate of the average percentage and the number 



28 

of accidents of each severity type (K-A-B-C-PDO) occurring on North Carolina bridges.  

These values are then multiplied by the costs per accident value for the corresponding 

severity type from the Willingness-to-Pay approach to produce the accident costs 

associated with bridges. Costs associated with each of the five severity types are then 

summed to produce an overall average cost per accident on a bridge. 

 To compute accident costs in NCDOT’s BMS, the accident cost value is multiplied 

by a coefficient expressing the expected rate of accidents occurring on a bridge.  This 

coefficient is determined for individual bridges by an equation using bridge characteristics 

as inputs associated with the likelihood of future contributions to an accident.  Chen and 

Johnston (1987) developed the equation used to determine the coefficient by conducting a 

literature review that showed bridge accident trends typically occur due to clear deck width 

and approach roadway alignment (Hilton 1973). According to prior work, alignment 

contributed to bridge accidents at a rate of at most half of the rate attributed to clear deck 

width (Ivey et al. 1979).  Using that understanding Chen and Johnston (1987) developed 

Equation 2.6 to predict the coefficient of accidents as a function clear deck width and 

approach roadway alignment. 

 

CWDA + CALA = (6.28×107.5CDW-6.5[1+0.5(9-ALI)/7])×10-6 

Equation 2.6: Accident rate of bridge in accidents per million vehicles 

Where: CWDA + CALA = coefficient for proportion of vehicles incurring accidents due to  

 width deficiency and poor alignment 

 CDW = clear deck width  

 ALI = alignment appraisal rating (scale of 1 to 9) 
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Later research by Abed-Al-Rahim and Johnston (1991) attempted to linked bridge 

accidents to features of the corresponding bridge to determine what bridge characteristics 

cause accidents.  However, they note that there was no way to merge the two files directly 

since bridges were not identified on a common bases within the accident reports and the 

North Carolina Bridge Inventory (NCBI) file.  So in order to match accidents to the bridge 

where the accident occurs, Abed-Al-Rahim and Johnston (1991) had to manually match 

accidents to bridges using information from the accident data records on county number, 

milepoint, route type, route number, reference road, direction toward road, distance from 

reference point, and direction from reference road.  Due to this large undertaking, only five 

counties were selected for accident and bridge matching: Guilford, Harnett, Halifax, 

Iredell, and Wake county; these counties were picked as an overall representation of the 

state with high and low population density (Abed-Al-Rahim and Johnston 1991).  

Abed-Al-Rahim and Johnston (1991) looked at accidents from 1983 through 1989.  

The records available totaled 2,895 accidents for the five counties, of which they were able 

to match 2,104 accidents to bridges with confidence.  Once all the bridges with reported 

accidents were matched, Abed-Al-Rahim and Johnston (1991) used Statistical Analysis 

Software (SAS) to develop a prediction model for bridge related accidents based on the 

bridges’ characteristics. A stepwise selection procedure was used first to explore the 

characteristics that have the most significant effect on accident rates (Abed-Al-Rahim and 

Johnston 1991).  This procedure identified bridge clear deck width, approach roadway 

width, ADT, alignment appraisal rating, bridge length, and functional classification the 

most significant explanatory factors.  These factors were then grouped into a number of 

different groupings and subgroupings and tested to determine their significance, through 
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which ADT, bridge length, and the difference between clear deck width for an acceptable 

level of service and actual clear deck width were found to be the most significant.  Using 

this information, the resulting Equation 2.7 was formed and recommended for use in the 

NCDOT BMS.  Abed-Al-Rahim and Johnston (1991) note the strength of the regression 

was low with an R2 value of 0.33, but justified the use of the model on the basis that the 

estimated number of accidents per year was close to actual accidents per year.   

 

NOACC = 0.783(ADT0.073)(LENGTH0.033)(WDIFACC + 1)0.05 – 1.33 

Equation 2.7: Number of accidents per year 

Where: NOACC = number of accidents per year 

 ADT = average daily traffic 

 Length = bridge length, feet 

 WDIFACC = width difference between the goal clear deck width acceptable level  

 of service and the actual clear deck width, but not less than zero, feet 

 

 Equation 2.7 includes a factor of 1.33 subtracted from the accident prediction 

equation, and is shown as published in Abed-Al-Rahim and Johnston (1991) and Abed-Al-

Rahim and Johnston (1993).  However, as described in these same publications, the 1.33 

factor serves as an adjustment factor (denoted in both publications as AF) to account for 

the proportion of accidents that could not be manually matched to a specific bridge in their 

effort (Abed-Al-Rahim and Johnston 1991, 1993).  Therefore, it is assumed that the 

subtraction sign is printed in error, and the adjustment factor for unmatchable accidents AF 

(in this case, equal to 1.33) should be multiplied by the remainder of the equation to predict 

the yearly accidents. 

In BMS used by other state agencies, accident costs are computed or considered in 

a manner that differs from that utilized by NCDOT’s BMS.  The Florida Department of 
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Transportation (FDOT) sponsored research on the effect of the number of lanes on a bridge, 

ADT, and bridge length on accident rates (Wang 2010).  Using these parameters and 

Florida bridge accident data, models were produced to predict accident rates based on 

number of lanes, ADT, and length.  The three types of regression techniques used were 

linear regression models, Poisson regression models, and negative binomial regression 

models.  The research concluded that negative binomial regression produced the best 

prediction of accidents rates due to these bridge characteristics (Wang 2010). 

Other BMS systems, such as that used in Indiana (IBMS), do not account for bridge 

related accident costs in their user costs (Sinha et al. 2009).  These accident costs are not 

considered in the IBMS total user costs since traffic safety is considered in their project 

selection module.  Therefore, Sinha et al. (2009) believe that considering accident costs 

separately in the BMS would essentially incorporate these costs into the project planning 

and prioritization analysis twice. 

2.6 Research Needs 

 A review of literature has indicated that the majority of current BMS have a history 

traceable to NCDOT’s BMS.  Researchers (Chen and Johnston 1987, Abed-Al-Rahim and 

Johnston 1991, Johnston et. al. 1994, Duncan and Johnston 2002, Johnston 2010) have 

periodically updated NCDOT’s BMS, including an update as recently as 2010.  However, 

data tables used to compute user costs in NCDOT’s BMS need to be updated to improve 

the fidelity of user costs predictions.  In some cases, new data is available to enhance the 

existing methodology used to compute detour and accident costs.  Since these methods 

were first developed, NCDOT has made a number of advances in the collection and 

characterization of traffic data and accident data.  Additionally, research by other agencies 
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has yielded new approaches to computing user costs.  Some of these approaches, as well 

as other approaches yet to be identified, could be used in conjunction with updated and 

enhanced data to improve the cost predictions of the NCDOT BMS.   

Computation of all user costs in the NCDOT BMS are dependent on an accurate 

forecast of traffic.  ADT growth rates are currently grouped by county and into the four 

main roadway classifications.  Methods to identify ADT growth rates currently utilized in 

the NCDOT BMS, as described previously, are heavily reliant on date collected in the 

1990’s data, as well as expert opinion.  However, ADT for each bridge is reported 

biennially to the NBI (FHWA 2012).  Therefore, it is possible that the ADT for each bridge 

could be used to predict its own future ADT growth rate to be utilized in forecasting of 

more accurate user costs.  Techniques developed by previous research projects (Stone et 

al. 2006 and Stone et al. 2011) could be used to identify methodologies to compute 

improved ADT growth rate estimates.  Alternatively, bridges could be grouped by some 

reasonable set of rationale, and the grouped ADT growth rates could also be computed. 

Due to both higher operating costs and higher probability of a detour due to a bridge 

posting, heavier weight vehicles will have a greater impact on user costs than lighter weight 

vehicles (Johnston et. al. 1994).  North Carolina has experienced a significant increase in 

truck traffic over recent years (Stone et. al. 2006).  However, the NCDOT BMS currently 

uses data from the 1980’s to predict the portion of SU and TTST that must detour as well 

the percent ADTT associated with different roadway classifications. Therefore, there is a 

need to identify a better procedure to more accurately predict the number of vehicles 

(particularly in heavier weight classes) affected by functional deficiencies on North 

Carolina bridges.   
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Additionally, NCDOT has recently sponsored research that has resulted in the 

development of new truck traffic forecasting tools.  A report published for the NCDOT 

titled “North Carolina Forecasts for Truck Traffic” (2006-28) explores the rapid increase 

in truck traffic in North Carolina (Stone et al. 2006).  The findings of this research project, 

as well as those of another NCDOT research project (2008-11), could be utilized to better 

incorporate truck traffic estimates into the prediction of user costs in the BMS.  As part of 

NCDOT research project 2008-11, Stone et al. (2011) combined vehicle classes four 

through seven as SU vehicles and vehicle classes eight through 13 as MU.  Through this 

research, data collected on various roadways was used to predict the SU and MU portion 

of volume on different road classifications, thus providing an ADTT. This information 

could possibly be utilized to provide a more accurate set of ADTT estimates for the BMS, 

thereby improving user costs predictions.   

Another research need lies in the estimating percentage of vehicles required to 

detour due to vertical clearance, which is currently based on pre-1960 data on trucks (Kent 

and Stevens 1963).  It is very likely that the height distribution of today’s truck traffic is 

different than that of pre-1960 traffic.  Consequently, there is a need to utilize data that 

characterizes current-day truck heights to update the percentage of vehicles required to 

detour due to vertical clearance to improve user costs estimates based on this statistic.  

Likewise, there is also a need to update the percentages of vehicles of each weight that 

must detour due to bridge postings.  NCDOT has sponsored research projects focused on 

developing improved truck forecast models by utilizing Weigh-in-Motion (WIM) stations 

and the NCDOT’s Traffic Forecasting Unit (TFU) (Stone et al. 2009).  Other reports on 

WIM data also exist (Ramachandran 2009).  These models (or predictions obtained from 
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these models), or recent WIM data, could be used to provide better input data regarding 

the percentage of vehicles in each weight class that travel different types of roadways, 

therefore improving the user costs predicted by the BMS.   

Vehicles within a single vehicle class can have a range of weights.  Since detours 

based on bridge postings depend on vehicle weight (not necessarily vehicle class), a means 

of better incorporating vehicle weight into computation of the percent of vehicles detoured 

would improve the fidelity of cost predictions.  This would alleviate inaccuracies in cost 

computation that occur when an entire class of vehicles is assumed to detour when in reality 

only a portion of that class of vehicles would actually be required to detour as a result of 

the load posting. 

Vehicle operating costs predictions are also important when calculating user cost 

due to detour or low vertical clearance.  The NCDOT BMS currently computes vehicle 

operating cost for two vehicle weights (three ton and 40 ton), with linear interpolation of 

the vehicle operating cost for all vehicles between these two weights.  It is possible that 

this relationship is not linear and an effort to develop a more accurate relationship between 

vehicle weight and operating cost is needed.  After base values for three ton (and lighter) 

vehicles and maximum legal weight vehicles are updated to present time, additional 

published information could be utilized to determine the operating costs of vehicles of 

intermediate weights.  This would allow for more accurate forecasting of the operating 

costs of vehicles with weights between three tons and 40 tons.   

Vehicle operating costs for maximum weight vehicles currently depend on travel 

miles and revenue for motor carriers on a North American basis.  Specific data for North 

Carolina motor carriers could be utilized to compute a more accurate vehicle operating cost 
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for these heavier-weight vehicles.  Since user costs for detours are highly dependent on the 

vehicle operator costs for these heavier vehicles, use of North Carolina data would improve 

the quality of these cost predictions. 

Travel time costs due to detour are not currently included in the NCDOT BMS user 

costs. Travel time cost can include cost to a business for a paid employee or an unpaid 

consumer’s personal time spent traveling (Wang 2010).  The possibility of including travel 

time costs in NCDOT’s BMS should be considered. The methodology utilized in the IBMS 

could provide a starting point for incorporating this consideration into the NCDOT BMS.  

The IBMS uses an approach developed by Son and Sinha (1997), shown below in Equation 

2.8.  In this equation, it is assumed that unit travel time costs are broken into four different 

categories that encompass the 13 vehicle classifications.  Unit travel time cost for use in 

this equation were derived by the Texas Transportation Institute (TTI).  The average speeds 

used for calculation are based on an estimation that is dependent upon the roadway 

classification.   

TTCL = ∑ UTTCL(J) × 
𝐷𝐿

𝑆𝑃(𝑗)
 × NL(j) 

Equation 2.8: IBMS travel time cost 

Where: UTTCL(j) = unit travel time cost for each vehicle of type j, $/hour 

 SP(j) = average speed of vehicle type j on detour, miles/hour 

 TTCL = daily travel-time cost due to load capacity, $/day 

 DL = detour length 

 NL(j) = number of type j vehicles to detour because of load capacity, per day 

 

The AASHTOWare Pontis BMS software also accounts for travel time costs when 

predicting overall user cost.  In order to assist FDOT enhance their BMS user costs, 

Thompson (et al. 1999) investigated the travel time costs utilized by the IBMS as well as 

another approach known as the Highway Economic Requirements Systems (HERS) 
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approach.  As outlined above, the IBMS travel time costs for the four different vehicle 

groups were derived by a study from the Texas Transportation Institute (TTI).  The HERS 

travel time costs are based on values for labor wages, fringe benefits, and spoilage cost.  

Thompson et al. (1999) recommended the HERS approach for incorporation of travel time 

costs into BMS.  The appropriateness of the HERS approach for the NCDOT’s BMS could 

be investigated as a means for introducing travel time costs. 

Supporting data for the computation of accident costs in the NCDOT BMS should 

also be updated.  Using the existing methodology developed by Abed-Al-Rahim and 

Johnston (1991), costs per average accident across the range of severity categories could 

be updated to current values.  Additionally, other approaches for determining accident costs 

should be investigated.  Currently, the approach used in the NCDOT BMS uses the NSC 

Willingness-to-Pay values.  Since the NSC Willingness-to-Pay values are not published 

annually, the Consumer Price Index (CPI) is used to project updated cost values to current 

values.  The Traffic Safety Division of NCDOT publishes reports annually with 

Willingness-to-Pay costs per accident based solely on North Carolina data.  Use of these 

accident costs for accidents solely in North Carolina would be an enhancement to the 

NCDOT BMS.   

Additionally, the coefficients used for the average number of accidents per severity 

type occurring on bridges were determined from data collected in the 1980’s.  There is a 

need to update these inputs using more up-to-date, local statistics on accident rates.  

Information available from the Traffic Safety Division of NCDOT could be utilized to 

determine improved estimates to characterizing the number of accidents per severity type.  
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Overall, improvements to the NCDOT BMS could be made to facilitate project 

decisions on a network-level.  Currently, the NCDOT Pavement Management System 

(PMS) uses four roadway classifications: Interstate, US, NC, and SR.  In contrast, the 

NCDOT utilizes eleven functional classifications to describe roadways served by the 

bridge system.  These functional classifications are shown in Table 2.6.  Developing and 

implementing a field in the NCDOT BMS that allows for the BMS functional classification 

to be mapped to a corresponding PMS roadway classification would allow for more 

synergistic use of the BMS and PMS to support network-level project cost predictions and 

optimization. 

 

Table 2.6:  BMS functional classifications, codes, and descriptions 

BMS Functional 

Classification 
Code Description 

Interstate 
01 Principal Arterial – Interstate (Rural) 

11 Principal Arterial – Interstate (Urban) 

Arterial 

02 Principal Arterial – Other 

06 Minor Arterial 

12 
Principal Arterial – Other Freeways or 

Expressways 

14 Other Principal Arterial 

16 Minor Arterial 

Collector 

07 Major Collector 

08 Minor Collector 

17 Collector 

Local 
09 Local (Rural) 

19 Local (Urban) 

 

 



 

 

 

 

 

 

CHAPTER 3: GENERAL IMPROVEMENTS TO BMS INPUTS 

 

 

 To update and enhance the user costs computed in NCDOT’s BMS, several main 

focus areas of general improvements were made as part of this work.    These improvements 

include updates of the ADT growth rates, updates to user cost prediction models for detours 

resulting from bridge capacity and vertical clearance limits, and accident cost input values.  

Specifically, the improvements to user cost inputs for detours resulting from bridge 

capacity and vertical clearance limits include updates to vehicle operating costs, updates to 

the estimated percentages of vehicles in each classification, and updates to the expected 

vehicle weight distributions on certain types of roadways.  Updated truck geometry data 

was also analyzed in order to more accurately predict the percentage of trucks detoured 

due to excessive height in the BMS. 

To accomplish these improvements, data from NCDOT and from other sources 

were examined and utilized.  Much of this data was available from several divisions of 

NCDOT including Traffic Engineering, Division of Motor Vehicles (DMV), and the 

Traffic Survey group.  In order to update ADT growth rate inputs, historical values of ADT 

associated with each North Carolina bridge were utilized, which are available in the BMS 

and the NBI.  Other data that was reviewed and utilized to update the BMS was the weight 

of SU and TTST vehicles.  Information on accidents, including frequency, severity, and 

location (whether on a bridge or not) was obtained from NCDOT’s Traffic Engineering 

Division and utilized to update prediction model inputs for accident frequencies and 
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severity.  Costs associated with vehicle accidents of the different classification of severity 

were also obtained from NCDOT’s Traffic Engineering Division, reviewed, and utilized to 

refine cost estimates in the user cost models.  Updated costs were also determined for 

vehicle operating cost associated with the minimum and maximum weight limits of 

vehicles.  A methodology for identifying the vehicle operating cost of a mid-range vehicle 

(vehicles approximately between the size of a passenger vehicle and maximum allowable 

highway load) was also developed.  For cost values that could not be obtained in current 

(2014) cost figures, the Consumer Price Index (CPI) was to adjust the most recent cost to 

2014 adjusted cost. 

3.1 Average Daily Traffic Growth 

As part of the bridge inspection and NBI reporting programs, NCDOT biennially 

updates the ADT estimate for each bridge.  The BMS program therefore stores historical 

and current information on the ADT for each bridge.  The expected ADT growth rate is an 

input in the BMS program that is used to predict the future ADT for user costs estimates 

and in optimization scenarios.  Biennially updated ADT values were used to update the 

ADT growth rates for the four different roadway types (Interstate, Arterial, Collector, and 

Local).  To update the average ADT inputs for each roadway type in every county, 

historical ADT values from the BMS were utilized.  It should be noted, however, that some 

bridges did not have ADT values recorded in the BMS for all years.  Therefore, it was 

decided that, for this analysis, only bridges with a minimum of ten years of data would be 

used.  Additionally, only bridges that had an ADT value recorded for 2010 or more recent 

would be utilized.   
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Due to the large volume of data (most bridges have nearly 30 years of ADT 

estimates), a macro was generated in Excel to the parse the ADT data and compute an ADT 

growth rate for each bridge.  Using the LOGEST function in Excel, the ADT for each 

bridge was plotted against time and an exponential curve was fit to the data.  Based on the 

exponential best fit curve, the average growth rate for each bridge was identified.  This 

value was converted to a percentage by subtracting one from the value and then putting the 

value in percentage form.  This percent growth rate was then compiled with other bridges 

in the same counties after grouping the bridges based on one of the four types of roadways 

mentioned above.  For each group over each county, a histogram was produced so that the 

distribution of the growth rates could be evaluated and a representative value for the group 

identified statistically.  Examples of these histograms are provided in Figures 3.1 through 

3.4.  Some of these distributions could be visually classified as normally distributed (Figure 

3.4), while others could not (Figures 3.1-3.3).   

 

 

Figure 3.1: Anson County arterial histogram of ADT growth rates 
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Figure 3.2: Forsyth County collector histogram of ADT growth rates 

 

 

Figure 3.3: Gaston County local histogram of ADT growth rates 

 

 

Figure 3.4: Orange County collector histogram of ADT growth rates 
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Table 3.1 provides the number of ADT growth rates used in each roadway grouping 

by county as well as the distribution type (color coded) where green indicates the data was 

considered to be well distributed (N>15), yellow indicates the data was considered to be 

not well distributed (N>15), orange indicates the data was considered to be well distrusted 

(N<15), red indicates the data was considered to be not well distributed (N<15), and gray 

indicates that no data was available.  Due to a number of roadways exhibiting non-normally 

distributed data, it is recommended that the median, rather than mean, values be used by 

NCDOT as the ADT growth rate estimate to be used in the BMS.  These values developed 

from the analysis of the current BMS database are presented in Table 3.2.  Since some 

counties do not have Interstate or Arterial routes, the statewide average for each 

respectively is suggested for use in the BMS as a place holder.  In the event that these 

routes are constructed in the future, new ADT growth rates could be developed in a manner 

similar to the method outlined above as data becomes available.   
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Table 3.1: Number of ADT growth rate values used and distribution type 
County No. County Name Local Collector Arterial Interstate 

 00 Alamance 68 58 19 3 

01 Alexander 47 16 5   

02 Alleghany 77 4 2   

03 Anson 86 32 16   

04 Ashe 187 24 4   

05 Avery 74 8 3   

06 Beaufort 63 42 15   

07 Bertie 28 16 26   

08 Bladen 35 35 14   

09 Brunswick 40 35 28   

10 Buncombe 265 72 56 86 

11 Burke 85 60 30 14 

12 Cabarrus 65 43 41 8 

13 Caldwell 110 20 18   

14 Camden 7 7 4   

15 Carteret 12 28 10   

16 Caswell 46 13 5   

17 Catawba 67 35 45 10 

18 Chatham 70 40 33   

19 Cherokee 83 38 25   

20 Chowan 12 8 12   

21 Clay 34 17 2   

22 Cleveland 127 45 33 2 

23 Columbus 75 58 33   

24 Craven 36 33 33   

25 Cumberland 57 28 72 15 

26 Currituck 7 3 7   

27 Dare 8 5 11   

28 Davidson 85 51 69 21 

29 Davie 29 14 8 8 

30 Duplin 67 57 11 10 

31 Durham 49 24 89 34 

32 Edgecombe 40 47 33   

33 Forsyth 116 61 83 25 

34 Franklin 38 31 8   

35 Gaston 55 36 75 5 

36 Gates 12 7 5   

37 Graham 69 15 1   

38 Granville 52 33 3 7 

39 Greene 24 12 5   

40 Guilford 167 69 126 37 

41 Halifax 65 26 13 8 

42 Harnett 38 27 10 2 

43 Haywood 187 48 35 21 

44 Henderson 149 33 42 10 

45 Hertford 20 10 7   

46 Hoke 17 11 3   

47 Hyde 16 22 11   

48 Iredell 136 51 11 54 

49 Jackson 163 27 28   
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Table 3.1: Number of ADT growth rate values used and distribution type (continued) 
50 Johnston 92 61 32 32 

51 Jones 26 13 1   

52 Lee 19 13 17   

53 Lenoir 31 24 25   

54 Lincoln 65 22 25   

55 Macon 150 35 16   

56 Madison 140 66 8 4 

57 Martin 44 12 26   

58 McDowell 102 48 8 22 

59 Mecklenburg 106 28 137 103 

60 Mitchell 95 21 1   

61 Montgomery 77 13 3 10 

62 Moore 74 22 25   

63 Nash 67 73 62 12 

64 New Hanover 9 5 22 8 

65 Northampton 29 20 7 2 

66 Onslow 21 30 22   

67 Orange 59 31 20 21 

68 Pamlico 15 23     

69 Pasquotank 14 7 10   

70 Pender 40 28   2 

71 Perquimans 17 10 4   

72 Person 39 15 6   

73 Pitt 69 45 33   

74 Polk 85 19 12 7 

75 Randolph 136 61 37 13 

76 Richmond 56 20 30   

77 Robeson 85 84 30 14 

78 Rockingham 86 62 32   

79 Rowan 97 38 22 8 

80 Rutherford 209 29 34   

81 Sampson 80 53 25   

82 Scotland 14 23 38   

83 Stanly 59 29 13   

84 Stokes 56 21 4   

85 Surry 130 41 30 29 

86 Swain 75 6 16   

87 Transylvania 98 32 11   

88 Tyrrell 14 3 2   

89 Union 109 66 16   

90 Vance 18 22 13 6 

91 Wake 168 55 109 54 

92 Warren 52 11   2 

93 Washington 9 13 1   

94 Watauga 133 12 6   

95 Wayne 42 31 37   

96 Wilkes 235 31 8   

97 Wilson 51 35 22 8 

98 Yadkin 82 18 12 6 

99 Yancey 130 24 4   
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Table 3.2: ADT growth rates 
County No. County Name Local Collector Arterial Interstate 

00 Alamance 2.55% 3.23% 2.30% 6.36% 

01 Alexander 2.74% 2.98% 2.27% 3.64% 

02 Alleghany 1.79% 2.35% 2.21% 3.64% 

03 Anson 1.81% 2.33% 2.00% 3.64% 

04 Ashe 1.69% 2.30% 3.82% 3.64% 

05 Avery 2.92% 3.79% 1.05% 3.64% 

06 Beaufort 2.31% 1.49% 2.45% 3.64% 

07 Bertie 2.57% 2.85% 1.71% 3.64% 

08 Bladen 2.95% 3.13% 1.43% 3.64% 

09 Brunswick 5.26% 3.41% 2.85% 3.64% 

10 Buncombe 3.20% 3.92% 3.46% 3.65% 

11 Burke 2.60% 4.04% 2.48% 3.64% 

12 Cabarrus 4.15% 5.07% 2.96% 4.42% 

13 Caldwell 2.44% 2.11% 2.13% 3.64% 

14 Camden 1.00% 3.31% 2.22% 3.64% 

15 Carteret 0.61% 2.41% 1.74% 3.64% 

16 Caswell 1.92% 2.39% 2.91% 3.64% 

17 Catawba 3.79% 3.61% 3.38% 3.62% 

18 Chatham 2.54% 3.03% 3.06% 3.64% 

19 Cherokee 3.29% 2.97% 0.89% 3.64% 

20 Chowan 1.57% 1.13% 1.46% 3.64% 

21 Clay 3.15% 3.40% 4.21% 3.64% 

22 Cleveland 2.63% 2.74% 2.38% 2.26% 

23 Columbus 2.12% 2.56% 2.75% 3.64% 

24 Craven 2.56% 2.94% 1.74% 3.64% 

25 Cumberland 2.46% 2.57% 3.28% 2.34% 

26 Currituck 2.67% 2.68% 3.59% 3.64% 

27 Dare 6.34% 2.18% 2.28% 3.64% 

28 Davidson 2.23% 2.87% 1.61% 2.43% 

29 Davie 2.61% 2.88% 2.81% 3.42% 

30 Duplin 2.63% 2.59% 0.34% 1.83% 

31 Durham 3.08% 4.40% 2.84% 5.56% 

32 Edgecombe 1.72% 0.79% 2.38% 3.64% 

33 Forsyth 1.87% 2.39% 1.83% 4.52% 

34 Franklin 3.55% 3.31% 2.38% 3.64% 

35 Gaston 3.83% 3.43% 2.02% 6.60% 

36 Gates 0.95% 2.68% 2.33% 3.64% 

37 Graham 3.01% 3.68% 2.40% 3.64% 

38 Granville 3.29% 4.05% 4.36% 2.96% 

39 Greene 2.76% 2.37% 2.91% 3.64% 

40 Guilford 2.57% 3.02% 2.31% 3.15% 

41 Halifax 1.85% 0.96% 1.17% 2.96% 

42 Harnett 3.89% 3.79% 1.92% 2.89% 

43 Haywood 3.50% 2.33% 2.76% 2.76% 

44 Henderson 4.28% 3.87% 1.67% 3.31% 

45 Hertford 1.44% 2.79% 2.25% 3.64% 

46 Hoke 2.48% 4.11% 2.90% 3.64% 

47 Hyde 1.34% 4.21% 0.18% 3.64% 

48 Iredell 3.24% 3.70% 3.58% 3.37% 

49 Jackson 2.54% 4.20% 3.42% 3.64% 
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Table 3.2: ADT growth rates (continued) 
50 Johnston 2.78% 3.90% 1.60% 4.46% 

51 Jones 2.31% 2.08% 2.07% 3.64% 

52 Lee 3.28% 3.22% 3.86% 3.64% 

53 Lenoir 1.90% 1.66% 1.51% 3.64% 

54 Lincoln 3.36% 3.26% 2.03% 3.64% 

55 Macon 2.67% 4.40% 6.07% 3.64% 

56 Madison 2.85% 2.95% 4.55% 3.26% 

57 Martin 1.75% 2.90% 1.51% 3.64% 

58 McDowell 2.33% 1.76% 4.31% 3.28% 

59 Mecklenburg 1.49% 4.49% 2.75% 4.87% 

60 Mitchell 2.36% 2.12% 2.63% 3.64% 

61 Montgomery 1.70% 3.22% 3.39% 4.36% 

62 Moore 3.06% 4.37% 2.68% 3.64% 

63 Nash 2.70% 3.15% 2.57% 2.96% 

64 New Hanover 3.12% 3.66% 2.64% 3.79% 

65 Northampton 0.89% 2.02% 0.47% 2.69% 

66 Onslow 3.61% 2.74% 1.92% 3.64% 

67 Orange 3.82% 3.67% 2.12% 2.57% 

68 Pamlico 1.77% 3.17% 2.40% 3.64% 

69 Pasquotank 2.81% 2.44% 1.35% 3.64% 

70 Pender 2.61% 3.75% 2.40% 4.63% 

71 Perquimans 2.14% 1.61% 2.16% 3.64% 

72 Person 3.16% 2.90% 2.77% 3.64% 

73 Pitt 1.78% 3.09% 2.77% 3.64% 

74 Polk 3.07% 2.15% 4.64% 2.71% 

75 Randolph 3.20% 2.45% 2.84% 4.01% 

76 Richmond 1.70% 1.92% 2.95% 3.64% 

77 Robeson 2.74% 3.22% 2.56% 2.26% 

78 Rockingham 2.40% 1.75% 0.77% 3.64% 

79 Rowan 3.24% 2.98% 2.06% 4.20% 

80 Rutherford 2.49% 2.00% 2.55% 3.64% 

81 Sampson 2.89% 2.77% 2.27% 3.64% 

82 Scotland 2.36% 2.58% 1.93% 3.64% 

83 Stanly 2.05% 2.57% 2.19% 3.64% 

84 Stokes 3.23% 2.30% 3.03% 3.64% 

85 Surry 3.05% 2.78% 2.61% 3.81% 

86 Swain 2.20% 4.43% 3.37% 3.64% 

87 Transylvania 3.74% 2.63% 2.45% 3.64% 

88 Tyrrell 0.38% 1.10% 2.92% 3.64% 

89 Union 3.86% 4.90% 2.84% 3.64% 

90 Vance 2.27% 3.28% 1.18% 4.60% 

91 Wake 4.11% 4.79% 2.59% 5.84% 

92 Warren 2.54% 2.56% 2.40% 2.83% 

93 Washington 1.73% 1.54% 0.33% 3.64% 

94 Watauga 2.85% 4.97% 2.63% 3.64% 

95 Wayne 1.57% 2.98% 0.90% 3.64% 

96 Wilkes 2.57% 2.06% 2.06% 3.64% 

97 Wilson 1.74% 2.19% 0.27% 2.93% 

98 Yadkin 3.13% 3.23% 2.66% 3.39% 

99 Yancey 2.86% 2.38% 3.63% 3.64% 
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Table 3.3 provides a look at how the ADT growth rate values have changed from 

the study conducted by Duncan and Johnston (2002) and the work done as part of this 

research.  To help illustrate the difference between the 2002 ADT growth rates and the 

current growth rates, the difference has been color coded on the table, where: yellow is a 

difference of plus or minus 1 percent, orange is minus 1 percent to minus 2 percent, red is 

minus 2 percent and less, green is plus 1 percent to plus 2 percent, and blue is plus 3 percent 

and greater.  Additionally, Figures 3.5 through 3.8 were prepared using the same color 

coding key for each of the four roadway types on the counties.  These figures provide a 

useful illustration of the areas of North Carolina experiencing higher growth rates, and 

could be utilized by NCDOT in a number of forecasting applications.  For counties not 

having an Interstate, a gray color was used in Figure 3.8, since only a placeholder value is 

suggested for the NCDOT BMS input in Table 3.2. 
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Table 3.3: Change in ADT growth rates 

    Local Collector Arterial Interstate 

County 

No. 

County 

Name 

2001 

(%) 

2014 

(%) 

Diff. 

(%) 

2001 

(%) 

2014 

(%) 

Diff. 

(%) 

2001 

(%) 

2014 

(%) 

Diff. 

(%) 

2001 

(%) 

2014 

(%) 

Diff. 

(%) 

00 Alamance 3.82 2.55 -1.27 3.50 3.23 -0.27 3.50 2.30 -1.20 6.81 6.36 -0.45 

01 Alexander 4.57 2.74 -1.83 4.28 2.98 -1.30 2.86 2.27 -0.59 5.38 3.64 -1.74 

02 Alleghany 2.75 1.79 -0.96 3.99 2.35 -1.64 2.75 2.21 -0.54 5.38 3.64 -1.74 

03 Anson 2.67 1.81 -0.86 2.86 2.33 -0.53 2.98 2.00 -0.98 5.38 3.64 -1.74 

04 Ashe 2.50 1.69 -0.81 3.61 2.30 -1.31 2.97 3.82 0.85 5.38 3.64 -1.74 

05 Avery 3.42 2.92 -0.50 3.52 3.79 0.27 3.50 1.05 -2.45 5.38 3.64 -1.74 

06 Beaufort 2.50 2.31 -0.19 2.55 1.49 -1.06 2.93 2.45 -0.48 5.38 3.64 -1.74 

07 Bertie 3.45 2.57 -0.88 3.28 2.85 -0.43 0.48 1.71 1.23 5.38 3.64 -1.74 

08 Bladen 4.93 2.95 -1.98 2.50 3.13 0.63 3.00 1.43 -1.57 5.38 3.64 -1.74 

09 Brunswick 5.96 5.26 -0.70 4.56 3.41 -1.15 3.50 2.85 -0.65 5.38 3.64 -1.74 

10 Buncombe 2.50 3.20 0.70 2.55 3.92 1.37 3.50 3.46 -0.04 5.47 3.65 -1.82 

11 Burke 2.72 2.60 -0.12 3.37 4.04 0.67 3.01 2.48 -0.53 5.19 3.64 -1.55 

12 Cabarrus 3.61 4.15 0.54 3.50 5.07 1.57 2.86 2.96 0.10 7.75 4.42 -3.33 

13 Caldwell 2.50 2.44 -0.06 2.50 2.11 -0.39 3.92 2.13 -1.79 5.38 3.64 -1.74 

14 Camden 4.43 1.00 -3.43 3.47 3.31 -0.16 3.16 2.22 -0.94 5.38 3.64 -1.74 

15 Carteret 3.50 0.61 -2.89 2.59 2.41 -0.18 3.25 1.74 -1.51 5.38 3.64 -1.74 

16 Caswell 1.44 1.92 0.48 3.92 2.39 -1.53 4.24 2.91 -1.33 5.38 3.64 -1.74 

17 Catawba 3.42 3.79 0.37 2.93 3.61 0.68 2.84 3.38 0.54 5.00 3.62 -1.38 

18 Chatham 4.21 2.54 -1.67 3.49 3.03 -0.46 2.58 3.06 0.48 5.38 3.64 -1.74 

19 Cherokee 4.28 3.29 -0.99 2.87 2.97 0.10 2.25 0.89 -1.36 5.38 3.64 -1.74 

20 Chowan 2.50 1.57 -0.93 2.50 1.13 -1.37 2.60 1.46 -1.14 5.38 3.64 -1.74 

21 Clay 2.40 3.15 0.75 2.47 3.40 0.93 3.50 4.21 0.71 5.38 3.64 -1.74 

22 Cleveland 2.59 2.63 0.04 3.15 2.74 -0.41 2.79 2.38 -0.41 2.96 2.26 -0.70 

23 Columbus 2.50 2.12 -0.38 3.87 2.56 -1.31 2.32 2.75 0.43 5.38 3.64 -1.74 

24 Craven 2.41 2.56 0.15 2.22 2.94 0.72 2.50 1.74 -0.76 5.38 3.64 -1.74 

25 Cumberland 2.50 2.46 -0.04 2.50 2.57 0.07 3.50 3.28 -0.22 5.00 2.34 -2.66 

26 Currituck 2.50 2.67 0.17 2.5% 2.6% 0.18 3.15 3.59 0.44 5.38 3.64 -1.74 

27 Dare 3.50 6.34 2.84 3.50 2.18 -1.32 4.00 2.28 -1.72 5.38 3.64 -1.74 

28 Davidson 2.45 2.23 -0.22 2.99 2.87 -0.12 3.50 1.61 -1.89 5.84 2.43 -3.41 

29 Davie 3.37 2.61 -0.76 3.25 2.88 -0.37 3.50 2.81 -0.69 4.50 3.42 -1.08 

30 Duplin 2.55 2.63 0.08 2.55 2.59 0.04 3.50 0.34 -3.16 4.50 1.83 -2.67 

31 Durham 3.39 3.08 -0.31 3.25 4.40 1.15 3.50 2.84 -0.66 5.00 5.56 0.56 

32 Edgecombe 2.50 1.72 -0.78 2.50 0.79 -1.71 3.50 2.38 -1.12 5.38 3.64 -1.74 

33 Forsyth 2.50 1.87 -0.63 2.55 2.39 -0.16 3.50 1.83 -1.67 3.60 4.52 0.92 

34 Franklin 3.43 3.55 0.12 2.82 3.31 0.49 3.50 2.38 -1.12 5.38 3.64 -1.74 

35 Gaston 2.50 3.83 1.33 2.50 3.43 0.93 3.50 2.02 -1.48 5.07 6.60 1.53 

36 Gates 2.50 0.95 -1.55 2.69 2.68 -0.01 3.55 2.33 -1.22 5.38 3.64 -1.74 

37 Graham 2.50 3.01 0.51 2.50 3.68 1.18 3.02 2.40 -0.62 5.38 3.64 -1.74 

38 Granville 3.00 3.29 0.29 3.45 4.05 0.60 3.75 4.36 0.61 5.00 2.96 -2.04 

39 Greene 2.50 2.76 0.26 3.50 2.37 -1.13 3.50 2.91 -0.59 5.38 3.64 -1.74 

40 Guilford 2.50 2.57 0.07 3.55 3.02 -0.53 3.50 2.31 -1.19 5.00 3.15 -1.85 

41 Halifax 3.50 1.85 -1.65 3.00 0.96 -2.04 3.50 1.17 -2.33 4.04 2.96 -1.08 

42 Harnett 2.50 3.89 1.39 3.50 3.79 0.29 3.00 1.92 -1.08 5.03 2.89 -2.14 

43 Haywood 4.63 3.50 -1.13 3.00 2.33 -0.67 3.61 2.76 -0.85 5.62 2.76 -2.86 

44 Henderson 3.20 4.28 1.08 3.11 3.87 0.76 4.01 1.67 -2.34 5.01 3.31 -1.70 

45 Hertford 2.50 1.44 -1.06 3.38 2.79 -0.59 3.75 2.25 -1.50 5.38 3.64 -1.74 

46 Hoke 3.52 2.48 -1.04 2.50 4.11 1.61 3.50 2.90 -0.60 5.38 3.64 -1.74 

47 Hyde 2.47 1.34 -1.13 2.50 4.21 1.71 3.50 0.18 -3.32 5.38 3.64 -1.74 

48 Iredell 3.67 3.24 -0.43 3.50 3.70 0.20 3.33 3.58 0.25 4.50 3.37 -1.13 

49 Jackson 2.81 2.54 -0.27 3.00 4.20 1.20 3.50 3.42 -0.08 5.38 3.64 -1.74 

50 Johnston 6.68 2.78 -3.90 3.21 3.90 0.69 3.50 1.60 -1.90 4.24 4.46 0.22 
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Table 3.3: Change in ADT growth rates (continued) 
51 Jones 2.50 2.31 -0.19 2.50 2.08 -0.42 3.00 2.07 -0.93 5.38 3.64 -1.74 

52 Lee 2.50 3.28 0.78 3.50 3.22 -0.28 3.50 3.86 0.36 5.38 3.64 -1.74 

53 Lenoir 3.06 1.90 -1.16 3.38 1.66 -1.72 4.11 1.51 -2.60 5.38 3.64 -1.74 

54 Lincoln 2.60 3.36 0.76 3.34 3.26 -0.08 3.50 2.03 -1.47 5.38 3.64 -1.74 

55 McDowell 2.54 2.33 -0.21 2.54 1.76 -0.78 3.00 4.31 1.31 5.17 3.28 -1.89 

56 Macon 2.58 2.67 0.09 3.00 4.40 1.40 3.00 6.07 3.07 5.38 3.64 -1.74 

57 Madison 2.50 2.85 0.35 3.20 2.95 -0.25 2.59 4.55 1.96 5.38 3.26 -2.12 

58 Martin 2.50 1.75 -0.75 3.50 2.90 -0.60 3.55 1.51 -2.04 5.38 3.64 -1.74 

59 Mecklenburg 2.67 1.49 -1.18 4.74 4.49 -0.25 2.90 2.75 -0.15 4.93 4.87 -0.06 

60 Mitchell 1.05 2.36 1.31 1.18 2.12 0.94 2.97 2.63 -0.34 5.38 3.64 -1.74 

61 Montgomery 2.02 1.70 -0.32 3.77 3.22 -0.55 5.84 3.39 -2.45 6.25 4.36 -1.89 

62 Moore 5.01 3.06 -1.95 4.78 4.37 -0.41 3.43 2.68 -0.75 5.38 3.64 -1.74 

63 Nash 3.00 2.70 -0.30 3.00 3.15 0.15 3.09 2.57 -0.52 4.50 2.96 -1.54 

64 New Hanover 4.84 3.12 -1.72 3.06 3.66 0.60 3.50 2.64 -0.86 6.50 3.79 -2.71 

65 Northampton 2.17 0.89 -1.28 2.05 2.02 -0.03 3.50 0.47 -3.03 5.25 2.69 -2.56 

66 Onslow 3.06 3.61 0.55 3.25 2.74 -0.51 3.50 1.92 -1.58 5.38 3.64 -1.74 

67 Orange 2.42 3.82 1.40 3.20 3.67 0.47 3.50 2.12 -1.38 4.56 2.57 -1.99 

68 Pamlico 3.50 1.77 -1.73 4.16 3.17 -0.99 3.50 2.40 -1.10 5.38 3.64 -1.74 

69 Pasquotank 2.50 2.81 0.31 2.50 2.44 -0.06 4.93 1.35 -3.58 5.38 3.64 -1.74 

70 Pender 3.00 2.61 -0.39 3.50 3.75 0.25 3.50 2.40 -1.10 6.50 4.63 -1.87 

71 Perquimans 2.50 2.14 -0.36 2.50 1.61 -0.89 3.50 2.16 -1.34 5.38 3.64 -1.74 

72 Person 2.50 3.16 0.66 2.75 2.90 0.15 3.50 2.77 -0.73 5.38 3.64 -1.74 

73 Pitt 2.55 1.78 -0.77 2.55 3.09 0.54 3.04 2.77 -0.27 5.38 3.64 -1.74 

74 Polk 2.50 3.07 0.57 3.28 2.15 -1.13 3.50 4.64 1.14 4.42 2.71 -1.71 

75 Randolph 3.50 3.20 -0.30 2.71 2.45 -0.26 3.67 2.84 -0.83 5.47 4.01 -1.46 

76 Richmond 2.63 1.70 -0.93 3.20 1.92 -1.28 3.50 2.95 -0.55 6.25 3.64 -2.61 

77 Robeson 3.06 2.74 -0.32 3.08 3.22 0.14 3.49 2.56 -0.93 4.50 2.26 -2.24 

78 Rockingham 3.88 2.40 -1.48 2.85 1.75 -1.10 3.20 0.77 -2.43 6.25 3.64 -2.61 

79 Rowan 3.00 3.24 0.24 3.50 2.98 -0.52 4.63 2.06 -2.57 6.91 4.20 -2.71 

80 Rutherford 4.09 2.49 -1.60 3.25 2.00 -1.25 3.50 2.55 -0.95 5.38 3.64 -1.74 

81 Sampson 2.50 2.89 0.39 2.50 2.77 0.27 3.50 2.27 -1.23 6.25 3.64 -2.61 

82 Scotland 2.50 2.36 -0.14 3.50 2.58 -0.92 3.50 1.93 -1.57 5.38 3.64 -1.74 

83 Stanly 2.50 2.05 -0.45 3.64 2.57 -1.07 3.08 2.19 -0.89 5.38 3.64 -1.74 

84 Stokes 2.50 3.23 0.73 3.55 2.30 -1.25 3.55 3.03 -0.52 5.38 3.64 -1.74 

85 Surry 2.60 3.05 0.45 2.60 2.78 0.18 3.50 2.61 -0.89 6.25 3.81 -2.44 

86 Swain 2.50 2.20 -0.30 3.50 4.43 0.93 3.55 3.37 -0.18 5.38 3.64 -1.74 

87 Transylvania 2.50 3.74 1.24 2.50 2.63 0.13 3.50 2.45 -1.05 5.38 3.64 -1.74 

88 Tyrrell 0.84 0.38 -0.46 2.50 1.10 -1.40 2.50 2.92 0.42 5.38 3.64 -1.74 

89 Union 3.00 3.86 0.86 3.00 4.90 1.90 3.50 2.84 -0.66 5.38 3.64 -1.74 

90 Vance 3.25 2.27 -0.98 3.25 3.28 0.03 3.50 1.18 -2.32 5.82 4.60 -1.22 

91 Wake 3.00 4.11 1.11 5.00 4.79 -0.21 4.00 2.59 -1.41 6.50 5.84 -0.66 

92 Warren 2.50 2.54 0.04 3.15 2.56 -0.59 3.50 2.40 -1.10 7.51 2.83 -4.68 

93 Washington 2.50 1.73 -0.77 2.50 1.54 -0.96 3.00 0.33 -2.67 5.38 3.64 -1.74 

94 Watauga 2.50 2.85 0.35 3.00 4.97 1.97 3.50 2.63 -0.87 5.38 3.64 -1.74 

95 Wayne 2.82 1.57 -1.25 3.00 2.98 -0.02 3.50 0.90 -2.60 5.38 3.64 -1.74 

96 Wilkes 2.50 2.57 0.07 3.20 2.06 -1.14 3.50 2.06 -1.44 5.38 3.64 -1.74 

97 Wilson 3.39 1.74 -1.65 2.81 2.19 -0.62 2.92 0.27 -2.65 4.50 2.93 -1.57 

98 Yadkin 2.50 3.13 0.63 3.25 3.23 -0.02 3.50 2.66 -0.84 6.25 3.39 -2.86 

99 Yancey 2.50 2.86 0.36 2.65 2.38 -0.27 4.35 3.63 -0.72 5.38 3.64 -1.74 
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Figure 3.5: Change in ADT growth rates for Local Routes 

 

 

Figure 3.6: Change in ADT growth rates for Collector Routes 

 

 

Figure 3.7: Change in ADT growth rates for Arterial Routes 
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Figure 3.8: Change in ADT growth rates for Interstate Routes 

 

3.2 Detour Resulting from Bridge Capacity and Vertical Clearance Limits 

To compute user costs associated with detours, it is necessary for the BMS to 

accurately predict the number of vehicles that are too heavy or oversized to traverse each 

individual bridge.  This is accomplished in the software by multiplying the overall ADT 

by a percentage (in decimal form) of each type of vehicle class (SU and TTST) restricted 

from traveling over the bridge due to load posting or vertical clearance.  To update the 

percentages of vehicles that will have to detour due to bridge posting or low vertical 

clearance, data collected from North Carolina WIM stations was utilized in addition to data 

from a research study in Florida (Sobanjo and Thompson 2004).  The WIM data was used 

to compute percentages of vehicles in each classification and distributions of vehicle 

weight for each vehicle class, while the Florida study provided data on vertical clearance 

distributions for modern trucks (Sobanjo and Thompson 2004).  The vehicle classes were 

grouped into two different categories, SU or TTST.  The capacity and vertical clearance 

distributions for each category can then be calculated by the percentage it accounts for on 

any particular roadway. This can be used to generate an updated table showing the 
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percentage that will have to detour based on different bridge postings or vertical limits, 

ultimately improving the accuracy of user costs computed by the NCDOT’s BMS.   These 

percentages are then multiplied by an associated vehicle operating cost per mile, supplied 

from state and government sources, which is used to determine an overall detour cost. 

3.2.1 Vehicle Operating Costs 

Currently, vehicle operating costs used in the NCDOT BMS are based on values 

computed for two vehicles:  a passenger car (3-tons) and a vehicle at maximum allowable 

load (40-tons).  Vehicle operating cost for the minimum and maximum vehicle weights 

were updated using current locally calibrated data.  Additionally, an effort was made to 

obtain an intermediate value for vehicle operating costs, with the intent of identifying 

whether the currently utilized linear relationship between user vehicle operating cost and 

vehicle weight was applicable.   

To obtain user costs at the 3-ton weight limit (the minimum used in the BMS), the 

North Carolina State government employee wage rate for a Vehicle Operator I was 

obtained from the North Carolina Office of State Human Resources ($23,975).  This 

employee wage rate is noted as a Grade 53 (OSHR 2014).  This value was then be divided 

by the product of the estimated number of hours worked in a year (1920 hrs) and an 

assumed average speed (40 mph).  Lastly, the value was added to the Internal Revenue 

Service (IRS) standard mileage rate for business use ($0.56), which is published yearly 

(IRS 2014), resulting in a vehicle operating cost for a 3-ton vehicle of: 

[$23,975 / (1920hrs × 40mph)] + $0.56 = $0.87 per mile 

To determine user costs at the 40-ton weight limit (maximum in the BMS), 

information published by the U.S. Census Bureau was utilized.  This organization publishes 
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a report called the Service Annual Survey which uses the North American Industry 

Classification System (NAICS) to sort data.  This report contains a section on 

transportation of cargo using tractor-trailers.  In this section of the report, a table is provided 

that contains a value for the estimated motor carrier revenue ($183,496 million) and 

another table that provides the estimated total distance traveled for a one year period 

(76,740 million miles) (U.S. Census Bureau 2012).  The revenue was divided by the 

distance traveled to produce a vehicle operating cost for the maximum legal weight 

vehicles.  For any values not current, the appropriate CPI (2015) was used to adjust to 

current costs as follows for the vehicle operating cost at 40 tons: 

($183,496 / 76,740miles) = $2.39 per mile (year 2012) 

CPI inflation: year 2014 / year 2012 = 2.20/2.03 = 1.069 

$2.39 per mile × 1.069 = $2.59 per mile 

 

 As mentioned earlier, a study was conducted to determine vehicle operating costs 

for vehicles with an operating rate between the minimum (3-ton) and maximum (40-ton) 

values.  This method developed in this study used the U.S. Army Corps of Engineers’ 

(USACE) Construction Equipment Ownership and Operating Expense Schedule report for 

Region III, which includes North Carolina.  This report is published annually and includes 

operating costs for a wide variety of different machines and equipment in units of dollars 

per hour.  After reviewing this report, a 3-axle dump truck was chosen as an intermediate 

point for computation of a vehicle operating cost.  The USACE lists its average operating 

costs for the vehicle at $60.87 per hour (USACE 2014).  This value was divided by the 

assumed average speed (40 mph), resulting in an operating cost of $1.52 per mile for the 

vehicle.   
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To determine the operator costs, the method used for the minimum value (3-ton 

vehicle) was utilized, though this time the wage rate was for a Vehicle Operator III, since 

driving a larger vehicle such as a dump truck is a skilled operation since is requires a special 

driver license.  The North Carolina Office of State Human Resources lists this wage rate at 

$26,159 (OSHR 2014).  This rate was divided by the product of the estimated number of 

hours worked in a year (1920 hrs) and assumed average speed (40 mph), which results in 

an operating cost of $0.34 per mile.  The two values were added together to produce a 

vehicle operating costs of $1.86 per mile.  North Carolina law governs the maximum 

weight permitted for a vehicle and its load by the number of axles the vehicle has and by 

the distance between the axles.  A 3 axle dump truck has an average spacing of 22 feet 

from the two furthest axles, allowing for a gross vehicle weight of 26.25 tons.  Values for 

the vehicle operating costs at the three weights are presented in Table 3.4.  This table also 

shows the increase in cost over time.   

 

Table 3.4: Vehicle operating costs for minimum and maximum weights over time 

Vehicle Operating Costs at each 

individual weight (UDV) ($ per mile) 

  Year 

Weight 2002 2010 2014 

3 tons 0.60 0.81 0.87 

26.25 tons N/A N/A 1.86 

40 tons 1.95 2.39 2.59 

 

To determine the costs at intermediate weights, the three costs (from year 2014) 

were plotted against their respective weights, this was done once for weights between 3 ton 

and 26 ton, and then for weights between 27 ton and 40 ton, providing linearly functions 

for both segments.  A best fit line can be used to provide intermediate values for the vehicle 
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operating costs of vehicles with other operating weights.  The equation for the best fit line 

shown in Equation 3.1 can be used to compute the vehicle operating costs, UDV, between 

the weights of 3 and 26 tons, while the best fit line shown in Equation 3.2 can be used to 

compute the vehicle operating costs, UDV, for vehicles weighing between 27 and 40 tons.   

 

UDV= 0.0426 × (W) + 0.7423 

Equation 3.1: Vehicle operating cost at weight X (between 3 and 26 tons) 

UDV = 0.0531 × (W) + 0.4664 

Equation 3.2: Vehicle operating cost at weight X (between 27 and 40 tons) 

Where: UDV = Vehicle operating costs at weight X ($/mile) 

 W = Weight (tons) 

 

In order to determine the average operating costs for all vehicles that would have 

to detour around a bridge posted at a specific weight, UDL, the vehicle operating cost 

associated with vehicles with weights equal to the posted weight is added to the maximum 

allowable weight, and then divided by two, providing the UDL used in Equation 2.1.  Figure 

3.9 provides a comparison of the average operating cost (UDL) estimated for vehicles 

between 3 and 40 tons using the traditional method with two point linear interpolation and 

using the newly proposed method of adding a third intermediate point.   
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Figure 3.9: Average vehicle operating cost for detoured vehicles 

 

 

It can be seen in Figure 3.9 that the two approaches provide similar vehicle 

operating costs throughout.  Given the similarity between the two approaches, it seems the 

two point linear interpolation method currently used in NCDOT’s BMS is acceptable, and 

a modification to this approach is not suggested at this time. 

3.2.2 Vehicle Distribution  

 In order to determine the percentage of vehicles that will be required to detour due 

to load postings or vertical clearance, an input table listing the percentages of different 

types of vehicles (SU and TTST) operating on different roadway types is needed.  As 

outlined in Chapter 2, the FHWA currently classifies vehicles into 13 different classes.  To 

estimate the percentile of different vehicle classes operating on different routes, data 

collected from North Carolina Weigh-in-Motion (WIM) stations on four different roadway 

types (Interstate, US, NC, and SR) was obtained.  This data was compiled and provided by 

NCDOT’s Traffic Survey Group (Traffic Statistics Section) from data obtained at a number 
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of Weigh-in-Motion (WIM) stations.  WIM stations count the different vehicle types 

passing over a sensor installed along a roadway.   

During discussions with Traffic Survey Group personnel, it was determined that 

WIM data could be provided on the four different roadway types.  Due to roadway 

accidents and aging of the WIM systems, most of the North Carolina WIM stations are 

currently not in operation.  To provide most current data, Traffic Survey Group personnel 

selected eight different WIM stations from the stations with operational data available 

within the range of 2007 to 2014.  WIM stations at two locations for each roadway type 

were selected to provide a representative data set to estimate North Carolina vehicle 

classification percentages on the different roadways.  Maps of the locations of the eight 

stations, provided by NCDOT, are shown in Figures 3.10 through 3.17. 

 

Figure 3.10: Interstate site 542 (Source: NCDOT) 
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Figure 3.11: Interstate site 515 (Source: NCDOT) 

 

Figure 3.12: US site 508 (Source: NCDOT) 
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Figure 3.13: US site 512 (Source: NCDOT) 

 

Figure 3.14: NC site 545 (Source: NCDOT) 
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Figure 3.15: NC site 555 (Source: NCDOT) 

 

Figure 3.16: SR site 532 (Source: NCDOT) 
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Figure 3.17: SR site 516 (Source: NCDOT) 

 

 

One year of continuous data from each site was provided by NCDOT for analysis.  

Since NCDOT’s Traffic Survey Group also utilizes the vehicle classification counts for 

other purposes, the data had already been cleansed of anomalies and adjusted using 

correction factors typically utilized by NCDOT’s Traffic Statistics Section.  Data was 

provided in an Excel spreadsheet and listed the recorded counts for vehicles within each of 

the 13 vehicle classes.  From the spreadsheets provided, vehicle classes were grouped into 

three categories: cars (classes 1-3), SU (classes 4-7), and TTST (classes 8-13).  These three 

categories were subsequently used to determine overall percentage of occurrence of each 

type of vehicle group on each specific roadway.  After analyzing individual roadways the 

vehicle distribution percentages obtained from the two WIMs on similar roadway types 

were averaged together.  The averaged results for each roadway type are presented in Table 
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3.5.  These percentages can be used in the NCDOT BMS to update the input tables for 

vehicles required to detour due to either load postings or vertical clearance, as they provide 

more current estimates of vehicle distribution.  The roadway grouping shown in Table 3.5 

differs from the roadway grouping currently used for vehicles detoured due to weight or 

height.  However, it is suggested that the grouping shown in Table 3.5 be used since it is 

consistent with the roadway grouping used in NCDOT’s PMS.  This would allow NCDOT 

to eventually move to corridor-level analysis (consideration of both roads and bridge 

together) to assist in condition forecasting and project selection. 

 

Table 3.5: Vehicle distribution by functional classification 

 Cars SU TTST 

Interstate 81.64% 4.13% 14.23% 

US 91.77% 3.85% 4.38% 

NC 93.75% 3.70% 2.54% 

SR 92.04% 7.50% 0.46% 

 

3.2.3 Vehicle Height and Weight Distributions 

 Like many states, North Carolina has a number of bridges with load postings.  This 

results in a significant number of vehicles (primarily trucks) detoured at these bridges due 

to loads in excess of the bridge posting.  As mentioned in Chapter 2, truck traffic has grown 

significantly over the past several decades.  To improve user cost predictions in the BMS, 

weight distributions of different SU and TTST vehicles need to be updated as part of this 

work.  Current North Carolina vehicle weight distribution data was also provided by the 

Traffic Survey Group and was used to update the weight distribution estimates.  Weight 

data from each of the eight WIM stations described in Section 3.2.2 were provided for a 

one-week span.  This WIM data included weights on each vehicle class of 4 through 13 
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separately, the WIM station is able to determine the vehicle class based on the number of 

axles and their spacing.  Upon providing this data to UNC Charlotte, NCDOT personnel 

noted that this data should be considered “raw,” as anomalies had not been removed, and 

no correction factors for the weights had been applied.  To provide a basis for weight ranges 

of different classes, Table 3.6 was used (U.S. Department of Energy 2012). This table lists 

average weight ranges for commercial classes, which are grouped differently from the 13 

vehicle classifications used be the FHWA, though the commercial classes are equal to the 

FHWA’S vehicle classes 4 through 13.   

 

Table 3.6: Vehicle weight ranges  

Gross Vehicle 

Weight Ratings 

(lbs) 

Federal Highway Administration 

Vehicle Class GVWR Category 

<6,000 Class 1: <6,000 lbs Light Duty           

<10,000 lbs 10,000 Class 2: 6,001-10,000 lbs 

14,000 Class 3: 10,001-14,000 lbs 

Medium Duty 

10,001-26,000 lbs 

16,000 Class 4: 14,001-16,000 lbs 

19,500 Class 5: 16,001-19,500 lbs 

26,000 Class 6: 19,501-26,000 lbs 

33,000 Class 7: 26,001-33,000 lbs Heavy Duty >26,001 

lbs >33,000 Class 8: >33,001 lbs 

 

Using the information in Table 3.6, the vehicle classes 4 through 13 were assigned 

minimum and maximum weight ranges, which bounded the expected weights for each class 

and thereby allowed for developing a method for cleaning the data set.  Table 3.7 shows 

the weight ranges utilized for grouping the vehicle classes, with SU classes separated in 

this initial step due to the wide variance in weight range of these vehicle classes. 
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Table 3.7: Minimum and maximum weight ranges 

Vehicle Class 
Minimum 

Weight (lbs.) 

Maximum 

Weight (lbs.) 

4 and 5 6,000 26,000 

6 and 7 10,000 80,000 

8 - 13 26,000 90,000 

 

Using Excel, the WIM data obtained from each of the eight stations were filtered 

by weight to bound the data in records obtained within the minimum and maximum range 

developed for each respective class.  The records for vehicles with weights within the range 

limits were then exported. These records were then grouped by vehicle classes 4 through 7 

(SU) and vehicle classes 8 through 13 (TTST) by weight. Data from WIM stations on 

similar roadway types were also combined prior to statistical analysis.  Table 3.8 shows 

the cumulative percentage of truck weights distributed amongst the different roadway 

types.  These percentages were then multiplied by the corresponding percentage of 

occurrence (shown in Table 3.5) to determine the overall percent of ADT that is expected 

to be detoured at bridges with different load capacities across the four different roadways 

types.  A table of the analysis as results is presented in Table 3.9.  These percentages are 

used in Equation 2.1, in decimal form (as a coefficient) to determine the overall ADT that 

must detour due to load restrictions (CLCD). 
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Table 3.8: Truck weight distribution cumulative percent 

  SR  NC US Interstate 

Weight 

(tons) SU TTST SU TTST SU TTST SU TTST 

> 3 100% 100% 100% 100% 100% 100% 100% 100% 

> 4 70.78% 100% 82.93% 100% 86.87% 100% 86.36% 100% 

> 5 53.74% 100% 64.09% 100% 72.34% 100% 63.39% 100% 

> 6 44.05% 100% 52.31% 100% 62.82% 100% 51.07% 100% 

> 7 38.03% 100% 44.08% 100% 53.28% 100% 44.12% 100% 

> 8 31.37% 100% 36.88% 100% 43.59% 100% 38.17% 100% 

> 9 26.28% 100% 30.34% 100% 35.15% 100% 31.98% 100% 

> 10 20.80% 100% 23.99% 100% 27.59% 100% 24.73% 100% 

> 11 16.20% 100% 19.48% 100% 21.62% 100% 18.10% 100% 

> 12 11.66% 100% 15.75% 100% 17.19% 100% 12.29% 100% 

> 13 6.81% 100% 12.62% 100% 13.45% 100% 7.67% 100% 

> 14 6.39% 94.39% 10.70% 94.67% 11.36% 92.10% 6.98% 98.84% 

> 15 5.75% 88.27% 8.96% 88.17% 9.80% 83.32% 6.19% 97.22% 

> 16 5.21% 80.10% 7.31% 81.78% 8.28% 75.52% 5.21% 95.02% 

> 17 4.69% 71.68% 6.22% 75.56% 7.29% 68.84% 4.50% 92.30% 

> 18 4.15% 63.52% 5.56% 70.30% 6.22% 63.00% 3.97% 89.38% 

> 19 3.78% 56.38% 4.85% 65.34% 5.14% 57.89% 3.51% 86.59% 

> 20 3.33% 48.72% 4.39% 60.71% 4.47% 53.18% 3.03% 83.65% 

> 21 2.82% 44.13% 3.93% 56.61% 3.73% 49.39% 2.56% 80.81% 

> 22 2.51% 37.50% 3.58% 53.30% 3.20% 46.30% 2.15% 77.99% 

> 23 2.36% 32.14% 3.21% 50.07% 2.72% 43.03% 1.84% 75.28% 

> 24 2.09% 29.34% 2.85% 46.84% 2.29% 39.91% 1.60% 72.57% 

> 25 1.82% 27.55% 2.49% 44.08% 1.87% 37.09% 1.35% 69.82% 

> 26 1.57% 26.02% 2.13% 41.97% 1.37% 34.07% 1.08% 67.11% 

> 27 1.36% 23.21% 1.78% 40.01% 1.12% 31.32% 0.93% 64.43% 

> 28 1.09% 20.92% 1.40% 37.62% 0.89% 28.56% 0.79% 61.60% 

> 29 0.97% 19.64% 1.19% 35.35% 0.67% 25.72% 0.59% 58.78% 

> 30 0.79% 17.60% 0.98% 33.09% 0.51% 23.00% 0.47% 56.03% 

> 31 0.65% 15.82% 0.81% 30.05% 0.39% 20.67% 0.36% 53.20% 

> 32 0.42% 13.52% 0.66% 27.63% 0.28% 18.24% 0.30% 50.24% 

> 33 0.30% 13.27% 0.47% 24.94% 0.23% 16.00% 0.20% 47.17% 

> 34 0.27% 11.48% 0.30% 22.35% 0.20% 13.81% 0.17% 44.02% 

> 35 0.15% 9.44% 0.19% 19.92% 0.12% 11.77% 0.14% 40.57% 

> 36 0.15% 8.67% 0.09% 17.29% 0.07% 10.07% 0.09% 36.88% 

> 37 0.09% 6.38% 0.07% 14.93% 0.05% 8.66% 0.05% 32.55% 

> 38 0.03% 5.36% 0.04% 12.29% 0.02% 7.37% 0.04% 27.65% 

> 39 0% 3.57% 0.01% 9.89% 0.01% 5.97% 0.02% 22.30% 

> 40 0% 3.06% 0% 7.48% 0% 4.59% 0% 16.65% 

> 41 0% 2.30% 0% 5.37% 0% 3.49% 0% 11.95% 

> 42 0% 1.02% 0% 3.45% 0% 2.54% 0% 8.15% 

> 43 0% 0.26% 0% 1.96% 0% 1.62% 0% 4.98% 

> 44 0% 0% 0% 0.81% 0% 0.78% 0% 2.36% 

> 45 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 3.9: Percentage of ADT detoured by bridge load posting level 

Bridge 

Posting 

(tons) 

SR NC US Interstate 

SU TTST SU TTST SU TTST SU TTST 

3 7.50% 0.46% 3.70% 2.54% 3.85% 4.38% 4.13% 14.23% 

4 5.31% 0.46% 3.07% 2.54% 3.34% 4.38% 3.56% 14.23% 

5 4.03% 0.46% 2.37% 2.54% 2.79% 4.38% 2.62% 14.23% 

6 3.30% 0.46% 1.94% 2.54% 2.42% 4.38% 2.11% 14.23% 

7 2.85% 0.46% 1.63% 2.54% 2.05% 4.38% 1.82% 14.23% 

8 2.35% 0.46% 1.37% 2.54% 1.68% 4.38% 1.58% 14.23% 

9 1.97% 0.46% 1.12% 2.54% 1.35% 4.38% 1.32% 14.23% 

10 1.56% 0.46% 0.89% 2.54% 1.06% 4.38% 1.02% 14.23% 

11 1.21% 0.46% 0.72% 2.54% 0.83% 4.38% 0.75% 14.23% 

12 0.87% 0.46% 0.58% 2.54% 0.66% 4.38% 0.51% 14.23% 

13 0.51% 0.46% 0.47% 2.54% 0.52% 4.38% 0.32% 14.23% 

14 0.48% 0.44% 0.40% 2.41% 0.44% 4.03% 0.29% 14.07% 

15 0.43% 0.41% 0.33% 2.24% 0.38% 3.65% 0.26% 13.84% 

16 0.39% 0.37% 0.27% 2.08% 0.32% 3.31% 0.22% 13.53% 

17 0.35% 0.33% 0.23% 1.92% 0.28% 3.01% 0.19% 13.14% 

18 0.31% 0.29% 0.21% 1.79% 0.24% 2.76% 0.16% 12.72% 

19 0.28% 0.26% 0.18% 1.66% 0.20% 2.53% 0.14% 12.32% 

20 0.25% 0.22% 0.16% 1.54% 0.17% 2.33% 0.13% 11.91% 

21 0.21% 0.20% 0.15% 1.44% 0.14% 2.16% 0.11% 11.50% 

22 0.19% 0.17% 0.13% 1.35% 0.12% 2.03% 0.09% 11.10% 

23 0.18% 0.15% 0.12% 1.27% 0.10% 1.88% 0.08% 10.72% 

24 0.16% 0.14% 0.11% 1.19% 0.09% 1.75% 0.07% 10.33% 

25 0.14% 0.13% 0.09% 1.12% 0.07% 1.62% 0.06% 9.94% 

26 0.12% 0.12% 0.08% 1.07% 0.05% 1.49% 0.04% 9.55% 

27 0.10% 0.11% 0.07% 1.02% 0.04% 1.37% 0.04% 9.17% 

28 0.08% 0.10% 0.05% 0.96% 0.03% 1.25% 0.03% 8.77% 

29 0.07% 0.09% 0.04% 0.90% 0.03% 1.13% 0.02% 8.37% 

30 0.06% 0.08% 0.04% 0.84% 0.02% 1.01% 0.02% 7.98% 

31 0.05% 0.07% 0.03% 0.76% 0.02% 0.90% 0.01% 7.57% 

32 0.03% 0.06% 0.02% 0.70% 0.01% 0.80% 0.01% 7.15% 

33 0.02% 0.06% 0.02% 0.63% 0.01% 0.70% 0.01% 6.71% 

34 0.02% 0.05% 0.01% 0.57% 0.01% 0.60% 0.01% 6.27% 

35 0.01% 0.04% 0.01% 0.51% 0.00% 0.52% 0.01% 5.78% 

36 0.01% 0.04% 0.00% 0.44% 0.00% 0.44% 0.00% 5.25% 

37 0.01% 0.03% 0.00% 0.38% 0.00% 0.38% 0.00% 4.63% 

38 0.00% 0.02% 0.00% 0.31% 0.00% 0.32% 0.00% 3.94% 

39 0.00% 0.02% 0.00% 0.25% 0.00% 0.26% 0.00% 3.17% 

40 0.00% 0.01% 0.00% 0.19% 0.00% 0.20% 0.00% 2.37% 

41 0.00% 0.01% 0.00% 0.14% 0.00% 0.15% 0.00% 1.70% 

42 0.00% 0.00% 0.00% 0.09% 0.00% 0.11% 0.00% 1.16% 

43 0.00% 0.00% 0.00% 0.05% 0.00% 0.07% 0.00% 0.71% 

44 0.00% 0.00% 0.00% 0.02% 0.00% 0.03% 0.00% 0.34% 

45 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Figures 3.18 and 3.19 provide a graphical representation of the overall percentage 

of ADT detoured due to load posting on the four roadway classifications for SU and TTST 

respectively, using the updated data from Table 3.9.  These plots illustrate that the majority 

of detours are by heavier vehicles.  SU trucks must detour when the load posting is below 

15 tons.  It can be observed in Figure 3.18 that since SU vehicles represent a higher portion 

of traffic on SR Routes, user costs from SU are highest on SR Routes (when a bridge has 

a load posting below 15 tons).  TTST traffic is most frequent on Interstates, and all TTST’s 

must to detour if a load posting is below 13 tons.  It can be observed in Figure 3.19 that 

user costs due to TTST are most incurred on interstates.  It is noted that it would be of 

interest to compare the percent detoured due to load posting using the previous NCDOT 

BMS inputs.  However, due to the change in grouping of roadways to match the NCDOT 

PMS roadway grouping (Section 3.2.2), it is not possible to compare these at this time. 

 

 

Figure 3.18: SU portion of ADT detoured due to load posting 
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Figure 3.19: TTST portion of ADT detoured due to load posting 
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was so extensive and heights of truck traffic in Florida could reasonably be expected to 

represent the distribution of truck traffic heights in North Carolina, the data obtained by 

Sobanjo and Thompson for FDOT was used to create an updated table for NCDOT’s BMS 

detour to height prediction model.  Although these values are not based on local 

measurements, they do provide data more current than that sourced from the Kent and 

Stevens study.  It should also be noted that previous data used to develop the prediction 

model was not locally based and was a much smaller sample size than the one generated 

by this FDOT study.  Additionally, the previous study had only one point of data for SU 

and TTST (13.6 foot height), and that “heights of duals were assumed to be well distributed 

between 8.0 and 13.5 feet; and between 10 and 13.5 feet for trailer combinations” (Chen 

and Johnston 1987).  It is recommended that the results from the Sobanjo and Thompson 

(2004) report, shown in Table 3.10, be used to update the percentage of trucks detoured 

due to height in NCDOT’s BMS. 

 

Table 3.10: Sampled distribution of truck heights from Sobanjo and Thompson (2004) 

Height (ft.) Percent Detoured 

< = 10 100% 

10.1-11.9 93.7% 

12-12.9 79.25% 

13-13.9 36.2% 

14-15.9 0.245% 

> 16 0% 

 

 

 As a comparison, Figure 3.20 provides the percent of vehicles that would have to 

detour around a bridge due to vertical clearance using the data previously used in 

NCDOT’s BMS (labeled “old”), and the new suggested data (labeled “new”).  Note that 

the previous method provided data for SU and TTST, while the new approach provides 
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data on all trucks (both SU and TTST together).  These percentage of detours are a step 

function since both the previous and new data provide percent detoured in brackets of 

height ranges.  Figure 3.20 illustrates that by using the previous truck height data from 

Kent and Stevens (1963), NCDOT BMS has been under estimating the percent of vehicles 

that would have to detour due to height, and therefore underestimating user costs associated 

with detours due to height.  For design purposes, it could also be of interest to NCDOT to 

be aware that the findings of Sobanjo and Thompson (2004) indicate that over 99 percent 

of vehicles are under 14 feet in height. 

 

 
 

Figure 3.20: Percentage of trucks detoured due to vertical clearance 
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are used in Equation 2.1, in decimal form (as a coefficient) to determine the overall ADT 

that will detour due to height (CCLD). 

 

Table 3.11: Percentage of ADT expected to be detoured by bridge vertical clearance 

posting level 

  SR  NC US Interstate 

Height (ft) SU TTST SU TTST SU TTST SU TTST 

< = 10 7.50% 0.46% 3.70% 2.54% 3.85% 4.38% 4.13% 14.23% 

10.1-11.9 7.02% 0.43% 3.47% 2.38% 3.61% 4.10% 3.87% 13.34% 

12-12.9 5.94% 0.37% 2.94% 2.01% 3.05% 3.47% 3.27% 11.28% 

13-13.9 2.71% 0.17% 1.34% 0.92% 1.39% 1.58% 1.49% 5.15% 

14-15.9 0.02% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.03% 

> 16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

3.3 Accident Costs by Injury Severity 

Currently, user costs associated with accidents are calculated utilizing the 

percentage of accidents that occur on a bridge, providing an accident rate for each bridge.  

These accident rates are then multiplied by the corresponding accident costs predicted 

using the NSC methodology and occurrence of severity type as outlined in Section 2.5.  

Similar to some of the data contained in other input tables that currently support NCDOT’s 

BMS, these percentages of accident severity types occurring on bridges have not been 

updated in the BMS since the original tables were generated by previous researchers 

(Abed-Al-Rahim and Johnston 1991).   

The North Carolina DMV currently keeps a record of all accidents in the state for 

a designated period of time.  NCDOT’s Traffic Engineering Division provided records on 

all accidents (both bridge-related and non-bridge-related) in North Carolina occurring over 

a period of five years (1/1/2009-12/31/2013).  Using these records, the accidents that 

occurred on a bridge, bridge approach, or on a bridge rail were extracted from the full 
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dataset.  The number of accidents of each severity was totaled for each of the five accident 

severity types (K-A-B-C-PDO).  The percentage of each accident type observed was used 

to produce the expected frequency of each severity of accident occurring on a bridge in 

North Carolina, which is a key user cost input in the BMS.  Table 3.12 shows the average 

number of injuries per bridge related accident, along with the values that were previously 

used.  From Table 3.12, it is noted that the occurrence of deaths due to bridge-related 

accidents has been reduced by half.  The occurrence of the two most severe injuries types 

(A and B), have also decreased significantly.  The causes of these reductions in accident 

rates are likely complex, but research (ongoing) is being undertaken to understand the 

factors driving the reduction in fatal and severe injury causing accidents (NCHRP 2015).  

Therefore, and it is beyond the scope of this study to suggest causes for the reductions in 

accident occurrence.  From a user cost perspective, the reduction in accident rates for the 

most severe types of accidents (K, A, and B) will significantly reduce the overall accident 

cost predicted per accident. 

 

Table 3.12: Bridge related accidents 

Avg. # of injuries per bridge related 

accident 

  Year 

Severity 1991 2013 

K 0.02 0.01 

A 0.13 0.02 

B 0.20 0.13 

C 0.34 0.40 

PDO N/A N/A 
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3.4 Accident Costs 

Once the occurrence rate of accidents for each of the different severities was 

calculated, a cost for each accident severity was needed to determine an overall accident 

cost for bridges (UAC).  The bridge accident costs currently utilized in the BMS are obtained 

from information published by the National Safety Council (NSC), as outlined in the 

Section 2.5.  In computing accident costs in the BMS, costs per severity type are multiplied 

by the percent (in decimal form) of occurrence, from Table 3.12.  Values can be summed 

to produce one total cost figure for use statewide as the cost per accident (UAC) on bridges.  

Since these NSC costs are not always updated annually, an appropriate CPI value can be 

utilized to update values between periodic updates to the NSC costs, if needed.   

As part of this work, a different approach to computing accident costs in the 

NCDOT BMS was utilized, since it was deemed more appropriate than the method 

developed by Duncan and Johnston (2001).  Recently, NCDOT has been retaining an 

outside expert to produce a report on annual Standardized Crash Cost Estimates for North 

Carolina (2013).  The locally calibrated accident cost values provided in this report, 

prepared by a private consultant (Dr. Ted Miller of Child’s Safety Network), can be used 

in lieu of the accident costs obtained via the NSC methodology.   For this user cost update, 

these locally calibrated accident costs were multiplied by the average number of injuries 

by severity category for North Carolina specific accidents, providing North Carolina 

specific values, presented in Table 3.13.   
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Table 3.13: Accident costs 
  Currently Used Method New Method Suggested 

Severity Avg. # of 

injuries per 

bridge related 

accident 

W-to-P 

Cost per injury, 

(NSC Updated 

with CPI) 

 Cost per 

bridge-

related 

accident 

Avg. # of 

injuries per 

bridge related 

accident 

W-to-P  

Cost per 

injury, 

(NC Values) 

 Cost per 

bridge 

related 

accident 

K 0.0103 $4,687,150  $48,370  0.0103 $4,287,340  $44,244  

A 0.0172 $237,177  $4,069  0.0172 $216,026 $3,706 

B 0.1258 $60,630  $7,630  0.1258 $55,322 $6,962  

C 0.3987 $28,921  $11,531  0.3987 $26,325  $10,496  

PDO N/A $2,582  $2,582 N/A $5,388 $5,388 

    Total (UAC) = $74,182   Total (UAC) = $70,796 

 

Using Table 3.13, the accident costs computed using the current method can be 

compared to the accident costs computed using the new method suggested in this work.  In 

the data presented for the currently utilized method, NSC cost figures from 2012 were 

updated using the CPI inflation rate (2015) and are multiplied by the updated frequency of 

severity type.  Using the new method based on the North Carolina specific accident cost 

study and updated accident likelihoods, the cost per accident decreases by approximately 

5%.  This new suggested cost per accident has decreased from the value presented by 

Duncan and Johnston (2001) in large part due to a decrease in the likelihood of fatal (Type 

K) accidents and severe (Type A and Type B) accidents, where costs are greatest.  

The report on Standardized Crash Cost Estimates for North Carolina, was not 

available at the time of previous enhancements to NCDOT’s BMS, but is reportedly going 

to be produced annually according to NCDOT personnel.  It is likely that these cost values 

produce more accurate user costs in NCDOT’s BMS, since they are based on North 

Carolina data and updated annually.  It is therefore suggested that these figures be utilized 

in conjunction with regularly updated accident rates in order to compute the accident costs 

used in NCDOT’s BMS 
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To further evaluate the impact of the changes in predicted user costs associated with 

updated accident likelihoods and locally calibrated costs, in Table 3.14, the cost per 

accident (using updated NSC values multiplied by the original frequency severity values) 

is shown.  Using this old approach, the cost per accident is double the value of the new, 

suggested approach, resulting in a significant overestimation of user costs for bridges with 

higher accident rates.   

 

Table 3.14: Accident costs (currently used severity frequency and updated costs) 

Severity 

Avg. # of 

injuries per 

bridge related 

accident 

W-to-P      Cost 

per injury,       

(NSC Updated 

with CPI) 

Cost per 

bridge-related 

accident 

K 0.02 $4,687,150  $ 93,743  

A 0.13 $237,177  $30,883  

B 0.2 $60,630  $12,126  

C 0.34 $28,921  $9,833  

PDO N/A $2,582  $2,582  

    Total (UAC) = $149,166  

 

 



 

 

 

 

 

 

CHAPTER 4: ANALYSIS OF BRIDGE CHARACTERISTICS ASSOCIATED WITH 

ACCIDENTS 

 

 

4.1 Bridge Related Accident Data 

The methodology currently utilized by NCDOT’s BMS to predict the number of 

annual accidents was developed as part of research conducted to produce an earlier report 

for NCDOT, Research Project 1990-06 (Abed-Al-Rahim and Johnston, 1991). This 

methodology predicts accident costs by multiplying the number of annual accidents 

predicted to occur on or at each bridge by the cost per accident.  The researchers utilized 

data from bridge-related accidents from five North Carolina counties (Halifax, Harnett, 

Iredell, Guilford, and Wake) over a six year period to develop an equation that could be 

used to predict the number of annual accidents associated with individual bridges.  A 

bridge-related accident was defined as any accident occurring on or near a bridge, as 

detailed in the road feature field of the accident report.  As part of this work, each accident 

record for accidents occurring on or at a bridge was individually matched to the bridge at 

which it occurred.  For the research performed as part of Research Project 1990-06 (Abed-

Al-Rahim and Johnston 1991), a total of 2,895 bridge-related accident records were 

obtained and reviewed.  Of these, 2,104 accidents were matched to a specific bridge, for a 

total of 72.7% of the total bridge-related accidents. 

Statistical analysis was performed on the characteristics of the bridges matched to 

the accident reports to predict the bridge characteristics or features that are most influential 

in affecting the rate of bridge-related accidents.  To perform this analysis, Abed-al-Rahim 
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and Johnston (1991) used statistical analysis to identify bridge characteristics that may 

contribute to accidents, with two objectives considered when producing an equation to 

estimate accident rates.  The first goal was to produce a prediction equation that is useful 

for and capable of reliably predicting the dependent variable (accident rate), with a 

coefficient of multiple determination (R2) closest to one.  The second goal was to produce 

an equation that would be economical, meaning that is should utilize a minimum of 

independent variables needed to sufficiently achieve the first objective (Abed-Al-Rahim 

and Johnston 1991).  Analysis was performed using a stepwise regression procedure to 

determine the bridge characteristics associated with the greatest influence on bridge-related 

accidents, using a significance level of 5 percent associated with the null hypothesis.  The 

characteristics found to be significant were then fit with higher order polynomial models 

to determine an equation that could predict accidents on bridges (Abed-Al-Rahim and 

Johnston 1991).  Abed-Al-Rahim and Johnston (1991) found that ADT, bridge length, and 

the difference in deck width between acceptable and actual level of service had the most 

significance.  The prediction equation for bridge accident rates based on bridge 

characteristics that resulted from their work is shown as Equation 2.7 in Section 2.5 

Accident Costs, where it is discussed in further detail.   

As part of the current research, the techniques utilized by Abed-Al-Rahim and 

Johnston (1991) were revisited, and a similar analysis was performed to identify the 

characteristics and features of bridges most influential in affecting the rate of bridge-related 

accidents.  The purpose of this work is to provide a nearly 25-year revisit of the 1991 study, 

which will provide useful insight into the bridge characteristics that have been most 

associated with bridge-related accidents currently.  To perform this analysis, the previously 
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mentioned accident reports provided by the North Carolina DMV via NCDOT’s Traffic 

Engineering division over five years (1/1/2009-12/31/2013) were utilized.  Bridge related 

accidents in the same five counties from the 1991 study (Halifax, Harnett, Iredell, Guilford, 

and Wake) were analyzed as part of this 2015 research. 

A total of 2,416 bridge-related accidents occurred in the five selected counties 

during this five-year time frame.  These accidents were denoted as either occurring on a 

bridge, a bridge approach (within 500 ft.), or on a bridge railing in the accident report.  It 

should be noted that the information about each accident’s location, as well as other 

information on the accident report, is based on a police officer’s judgment and, therefore, 

includes some subjectivity in the data collection.  Furthermore, The North Carolina DMV 

accident reports are not directly linked to the structure numbers assigned by the NCDOT.  

Therefore accidents had to be manually matched to bridges using features coded in the 

accident reports that indicate the “facility carried,” “road measured from,” and “road 

measured to” (a snapshot is presented in Appendix A, Table A-1).  This manual matching 

was similarly done in the original study by Abed-Al-Rahim and Johnston (1991).   

The NCDOT BMS also includes a field for the facility carried by each structure, 

which was used to link the accidents and bridges; Appendix A, Table A-2 provides a 

snapshot of this information.  Other tools utilized to facilitate matching of bridges to 

accident reports were maps sourced from the NCDOT Geographic Information Systems 

(GIS) unit that depict where bridges are located on the facilities carried.  For bridges not 

found on the NCDOT maps, Google Maps was used to determine the bridge location.  

However, since accidents needed to be manually matched to bridges, there were instances 

where some accidents could not be matched to bridges using the limited data provided in 
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the accident reports.  This obstacle was similarly recounted within the experiences of the 

researchers performing the original 1991 study, in which a number of accidents could also 

not be matched to specific bridges (Abed-Al-Rahim and Johnston 1991).  The researchers 

indicated that likely explanations for “unmatchable” accidents could have been associated 

with recorded locations being incorrectly coded on accident reports, a culvert being 

denoted as a bridge in the accident report, or the accident occurring under the bridge instead 

of on the bridge or approach.  As found in the 1991 study some accidents reported had 

actually occurred on culverts.  To maintain consistency in the analysis, accidents occurring 

on culverts in the 2009-2013 dataset were excluded from the analysis, similar to the 1991 

study.  A number of reported accidents were also not successfully matched either because 

the accident occurred near two closely-spaced but separate bridges, or where a roadway 

featured separate bridges for each direction and the direction of traffic was not stated in the 

accident report to allow for identification of the bridge the accident occurred on.  Others 

were simply not found because they were recorded incorrectly, or because the accident did 

not occur on or near a bridge and was accidently mid-coded by the responding officer.  

 For the current study, 1,938 of the 2,416 reported accidents, or 80.2% of the total 

accidents that occurred over the five year span, were successfully matched to a specific 

bridge.  This percentage is comparable to but higher than the percentage of matches 

obtained in the previous study (72.7%). 

4.2 Statistical Analysis of Bridge Related Accidents 

After the matching procedure was completed for this research, statistical analysis 

was performed in a manner similar to the previous study conducted by Abed-Al-Rahim 

and Johnston (1991).  Since some percentage of the total number of accidents reported 
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could not be matched to a specific bridge, the number of accidents predicted by the 

statistical regression should be less than the reported number of accidents (since the sum 

of the dependent variables would be less than the reported total).  To account for this 

difference, an adjustment factor (AF) can be produced and multiplied by the resulting 

equation to correct for the difference.  This is consistent with the approach taken by Abed-

Al-Rahim and Johnston (1991).  To compute the AF for the current analysis, the number 

of accidents identified as occurring on a culvert (29), a closed bridge (1), private bridge 

(2), and railroad bridge (1) were subtracted from the total number of reported accidents 

(2,416).  This value was then divided by the total number of accidents linked to a bridge 

(1,938), which produced an AF of 1.23. 

Once the accident-to-bridge matches were completed manually, statistical 

regression of the accident data in the five counties using the bridge characteristics as 

independent variables was performed to identify the bridge features most influential in the 

rate of bridge-related accidents.  In multiple linear regression modeling, independent 

variables (bridge characteristics) are used as the predictor of an equation, while the 

dependent variable (number of accidents) is the resulting prediction of those variables in 

the regression model.  To facilitate this analysis, an Excel spreadsheet was used to organize 

and prepare the data.  Specifically, relevant bridge characteristics were provided for each 

bridge and a column was created in which the number of accidents occurring on each 

particular bridge was recorded.  Table 4.1 shows a snapshot of this bridge-accident dataset 

with the number of accidents associated with the total observed over the five year period.  

This data was then exported from Excel to Minitab to facilitate the multiple linear 

regression. 
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Table 4.1: Snapshot of number of accidents associated with bridge data 

 

Prior to running the statistical analysis on the accident data, the specific bridge 

characteristics to be included in the analysis as potential independent variables needed to 

be determined.  Based on a review of the literature (Chen and Johnston 1987; Abed-Al-

Rahim and Johnston 1991; Wang 2010) as well as relevant items available in the NCDOT 

BMS, the following thirteen bridge characteristics were selected: 

 ADT 

 Approach Alignment Appraisal 

 Approach Roadway Width 

 Bridge Deck Width 

 Bridge Roadway Width 

 Deck Geometry Appraisal 

 Structure Length 

 Structure Appraisal 

 Through Lanes On 

 Average Index (BMS) 

 Total Horizontal Clearance 

 WDIFACC (width difference between goal clear deck width for acceptable level 

of service and actual clear deck width) 

 Functional Classification (referenced as categorical data) 

 

Structure No. # of accidents ADT Approach Align. Appraisal Approach Rdwy Width Bridge Deck Width

400001 1 22000 7 40 45.333

400002 0 23000 8 68 80.70

400003 0 23000 8 52 79.50

400004 0 12750 7 38 42.80

400005 1 12750 7 38 42.8

400006 0 13000 7 38 42.80

400007 0 13000 7 38 42.80

400009 0 130 7 21 27.00

400010 0 2700 7 23 25.42

400011 1 2550 8 18 36.3

400012 2 8900 7 62 71

400013 2 11000 7 56 77

400015 4 27000 7 88 102

400016 2 1000 7 19 27.5

400017 3 17750 7 40 49.417

400018 6 17000 7 40 49.5



82 

Functional Classification includes six categorical data listed in the NCDOT BMS 

Sorting Code as: Interstate, US Route, NC Route, SR Route, Municipal Road not in contact 

with State System road, and Municipal Road over State System.  Since this is non-

continuous and not linearly related data, it must be treated differently in the linear 

regression reference cell coding.  As shown in the Minitab Figure 4.1, binary variables 

were given to the terms in place of these original classification data.  Minitab software uses 

this reference cell coding to determine an independent regression coefficient depending on 

the bridge functional classification.  

To begin the multiple linear regression analysis, a multicollinearity check was 

performed on all of the independent variables.  Multicollinearity occurs when one or more 

of the independent variables are correlated to each other.  Multicollinearity introduces 

significant inaccuracies in the final model because the model will use more than one of 

these variables in the prediction, but the data provided with it is no more helpful; this will 

also reduce the significance of other variables in the equation (Rawlings et al. 1998).  To 

measure the severity of multicollinearity, Minitab uses a linear regression analysis to 

generate a variance inflation factor (VIF) for each independent variable.  VIF is computed 

as shown in Equation 4.1, where the coefficient of determination (R2) is determined from 

the regression of each independent variable on the other independent variables being tested 

(Rawlings et al. 1998).  Variables that exhibit high correlation with other variables must 

be removed one at a time, and then linear regression can be rerun to generate an updated 

VIF for the remaining independent variables.  This step is repeated until all remaining 

independent variables are shown to be uncorrelated.  A threshold of 10 is commonly used 

as a maximum VIF to determine whether variables are highly correlated or not (Rawlings 
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et al. 1998).  Shown in Figures 4.1 and 4.2 is the result of removing independent variables 

that are highly correlated.  This resulted in the removal of bridge roadway width and bridge 

deck width, with 11 independent variables remaining for further analysis (Figure 4.3).   

𝑉𝐼𝐹𝑗 =  
1

1 − 𝑅2
𝑗
 

Equation 4.1: Variance inflation factor 

Where: VIFj= Variance Inflation Factor (for variable j) 

 R2
j= coefficient of determination (for variable j) 

 

 

Figure 4.1: Minitab output showing VIF prior to removal of bridge roadway width 
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Figure 4.2: Minitab output showing VIF prior to removal of bridge deck width 

 

 

Figure 4.3: Minitab output showing reduced set of uncorrelated independent variables 

 

 Once all highly correlated independent variables were removed, a best subsets 

stepwise regression was computed in Minitab on the remaining 11 independent variables.  

A best subsets in Minitab provides the two best fitting regression models with X number 

of variables, up to the regression model containing all of the variables.  These best subset 
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results in Minitab provide different coefficient of determination values along with the 

Mallows Cp.  The Mallows Cp is a statistic that provides an approximation of the quality 

fit for a particular model, penalized by the number of independent variables included in the 

model, (Rawlings et al. 1998) and is calculated by Equation 4.2.   

 

𝐶𝑝 =  
𝑆𝑆𝐸𝑝

𝑆2
− 𝑁 + 2𝑃 

Equation 4.2: Mallows Cp 

Where: Cp= Mallows Cp Statistics 

 SSEp= Error sum of squares (for P variables) 

 S2= Residual mean square 

 N= Sample size 

 P= Number of variables 

 

Use of the Mallows Cp to determine the model size balances the two previously mentioned 

objectives of developing an effective prediction model with minimal number of 

independent variables required.  From the Mallows Cp equation, it is noted that the model 

associated with the smallest Mallows Cp, should be used in the final regression model.  The 

Mallows Cp should be approximately equal to (or approaching) the number of variables in 

the output.  The results of the Minitab analysis performed on the best subsets for the 11 

different independent variables are shown in Figure 4.4.  The results indicate that seven 

variables: Average Daily Traffic, Approach Roadway Width, Deck Geometry Appraisal, 

Structure Length, Average Index (BMS), Total Horizontal Clearance, and Functional 

Classification are the most influential bridge characteristics on bridge-related accidents and 

should be retained in the final regression model. 
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Figure 4.4: Minitab output showing lowest Mallows Cp 

 

 Once the seven variables associated with the final regression model were identified, 

multiple linear regression analysis was performed in Minitab to generate a prediction 

equation for bridge-related accidents specific to individual bridges in North Carolina.  

Equation 4.3 shows the representative equation associated with a multiple linear regression 

model, where each independent variable (xi) is multiplied by a coefficient (bi) and then 

these products are summed to return a result (y) for the prediction.  With Functional 

Classification coded as a categorical variable, the intercept value (b0) will vary based on 

the bridge’s Functional Classification coding.  Using Minitab’s multiple linear regression 

analysis algorithm, the seven variables produced the regression model presented in Figure 

4.5.   
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𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 

Equation 4.3: Multiple linear regression model 

Where: y= dependent variable 

 b0= Intercept 

 bi= Coefficient assoicated with independent variable i 

 xi= Independent variable i 

 

 

Figure 4.5: Minitab output showing model for multiple linear regression 

 

 

As can be seen in Figure 4.5, the constant (intercept) term has a p-value of 0.501.  

Therefore, the regression analysis performed again, this time constrained to eliminate the 

intercept.   The results of the final model are presented in Figure 4.6.  In Table 4.2 is a list 

of the coded values for Functional Classification represent in the equation.   



88 

 

Figure 4.6: Minitab output showing final model for multiple linear regression 

 

Table 4.2: Functional classification code 

Code Functional Classification Intercept Value 

0 Interstate 0 

1 US Route 1.879 

10 NC Route 1.849 

100 SR Route 1.356 

1000 Municipal Road not in contact with State System road 0.781 

10000 Municipal Road over State System 2.248 
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Once the final bridge accident prediction equation was produced in Minitab, the 

equation was manipulated algebraically to provide an estimate that predicts the annual 

number of accidents.  To do this, the result of the prediction equation was divided by 5, 

since 5 years of accidents were used to build the equation.  To account for the number of 

accidents that could not be matched to specific bridges, the equation was then multiplied 

by the AF, which was computed to be 1.23 as previously discussed.  After this 

manipulation, the final equation that can be used to predict the annual number of bridge-

related accidents is shown in Equation 4.4. 

 

NOACC = ((FC+(ADT×0.000066)+(ARW×-0.01679)+(DGA×-0.2611)+ 

(SL×0.001434)+(AI×-0.2016)+(THC×0.05936))/5) × 1.23 

Equation 4.4: Prediction equation for annual number of bridge-related accidents with AF 

Where: NOACC = Number of Accidents, per year 

 FC = Functional Classification (values from Table 4.1) 

 ADT = Average Daily Traffic 

 ARW = Approach Roadway Width 

 DGA = Deck Geometry Appraisal 

 SL = Structure Length 

 AI = Average Index (BMS) 

 THC = Total Horizontal Clearance 

 

To provide a cleaner equation to be used in NCDOT BMS, coefficients in Equation 

4.4 (including the functional classification intercept values presented in Table 4.2) were 

divided by 5 and then multiplied by 1.23, giving Equation 4.5, with Table 4.3 providing 

the updated intercept values for the functional classifications.   

 

NOACC = FC + (0.00001624×ADT) - (0.004130×ARW) - (0.06423×DGA) + 

(0.0003528×SL) - (0.04959×AI) + (0.01460×THC) 

Equation 4.5: Prediction equation for annual number of bridge-related accidents 
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Table 4.3: Functional classification code for prediction equation 

Code Functional Classification Intercept Value 

0 Interstate 0 

1 US Route 0.4622 

10 NC Route 0.4549 

100 SR Route 0.3336 

1000 Municipal Road not in contact with State System road 0.1921 

10000 Municipal Road over State System 0.5530 

 

As is current practice in the BMS user costs equation, the number of predicted 

accidents on any bridge cannot be less than zero.  Applying this constraint in Excel, and 

utilizing Equation 4.5, the number of bridge-related accidents occurring on all bridges 

statewide was calculated.  By using the prediction equation on the bridges contained in all 

100 counties in North Carolina (a total of 13,928 bridges), the total predicted number of 

accidents per year was 3,304 accidents.  Over the last 5 years, the actual annual average 

number of accidents was 2,985 accidents per year (obtained by dividing a total of 14,923 

accidents that were reported statewide over 5 years).   This demonstrates that Equation 4.4 

is reasonably plausible, as it predicts the statewide number of accidents within 11 percent 

of the actual reported total.  Utilizing this equation to predict the number of accidents 

occurring on the bridges in the 95 North Carolina counties not used in the regression 

analysis yields a prediction of 2,807 accidents annually.  The actual annual average number 

of accidents in those 95 counties over the last 5 years was 2,502 accidents per year 

(obtained by subtracting 2,416 accidents from 14,923 then dividing by 5 years).  This again 

shows that the prediction equation provides plausible results. 

A key purpose of this analysis was to identify the bridge characteristics that could 

be most closely linked to bridge-related accidents (i.e. the characteristics showing the 

strongest predictive capability).  When comparing the results of this analysis to those from 
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the analysis performed by Abed-Al-Rahim and Johnston (1991), some bridge 

characteristics were found to be consistent amongst the models are influential factors 

related to accident rates.  Bridge characteristics that were determined to be influential in 

bridge-related accidents by both Abed-Al-Rahim (1991) and in this analysis are ADT and 

structure length. 

Ultimately, this analysis provides a very useful look at bridge-related accidents and 

can be used to provide insight into accident causes over the past 25 years.  Based on the 

associated negative coefficients, it is evident that having a larger approach roadway width 

and increased deck geometry appraisal helps decrease the incidence of bridge-related 

accidents.  Likewise, the model indicates that regular and preventative maintenance to 

maintain or improve condition ratings will reduce bridge-related accidents, since the 

Average Index (BMS) is developed from the average of the deck, superstructure, and 

substructure condition ratings.  

As stated earlier, in comparing the 1991 and 2015 studies, ADT remained an 

influential factor.  This shows the continued role of traffic on bridge-related accidents.  

Structure length, identified as an influential factor in the 1991 study, also remained an 

influential factor in the 2015 study.  This demonstrates that longer bridge lengths are 

associated with increased incidence of bridge-related accidents.  The larger the total 

horizontal clearance, the higher the likelihood a bridge will have an increased number of 

accidents.  This is potentially due to bridges being wider because of number of lanes needed 

for traffic.  Lastly, the functional classification of a bridge will affect the likelihood of 

having an accident.  As evidenced by the intercept values, interstate bridges are associated 

with lower incidences of bridge-related accidents, while municipal roads over a state 
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system, US, and NC routes (with higher intercept values) are more likely to have an 

accident.  This information could be incorporated by NCDOT in the design of non-

interstate bridges statewide, possibly reducing the possibility of bridge-related accidents. 

As shown in Figure 4.6, the predictive equation developed has a poor fit, with an 

R2 value of only 35.77 percent.  Some reasons for the inaccuracies in the bridge-related 

accident prediction equation produced as part of the current work are that only recorded 

characteristics related to each bridge could be considered as coefficients.  Accidents can 

be the result of numerous causes, or contributing causes, such as weather, speed, time of 

day, and cell phone use.  It is noted that cell phone use was likely not a human factor during 

the original study.  Obviously, these factors cannot be easily accounted for within a 

predictive accident forecasting tool for use within the BMS.  Another factor contributing 

to the inaccuracy of the equation was the inability to match all of the accidents reported 

over the last 5 years.  This was due to the fact that some accidents were coded incorrectly.  

As seen in the Abed-Al-Rahim and Johnston (1991) report, the previous researchers 

determined that roughly 3.5 percent of the accidents listed actually occurred on a culvert.  

A similar rate of occurrence was observed within this study, as it was determined that 29 

of 2,416 accidents (or 1.2 percent) occurred on a culvert.  An additional error recognized 

in this study but not discussed in the previous study, is the presence of accidents that 

occurred under a bridge instead of on it.  This would be a result of incorrect coding in the 

responding officer’s report which is used in the bridge-accident matching procedure.  

Based on the manual bridge-accident procedure utilized, it is estimated that 189 of the 

2,416 accidents in this current study potentially occurred under a bridge.   
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This effort provided a useful look at bridge characteristics linked to bridge-related 

accidents.  As discussed, the results of this analysis, including the bridge-accident 

prediction equation, could be influenced by a number of additional unaccounted for factors.  

If NCDOT finds this analysis useful, a key procedural recommendation that would result 

in an improvement in this analysis would be to introduce a field on the accident for the 

Structure ID (six-digit code).  To facilitate this, a means for the responding officer to 

identify the Structure ID would also need to be provided.  This would involve placing a 

marker, plaque, or other indicator of the code on and/or beneath all bridges.  It is noted that 

many bridges in North Carolina already have a sign posted indicating the Structure ID.  

Implementing this change in the accident report would eliminate the time needed to 

manually match bridges to accident reports and would help to reduce the number of errors 

associated with coding in the accident reports. 

 



 

 

 

 

 

 

CHAPTER 5: USER COSTS SENSITIVITY ANALYSIS 

 

 

5.1 Overview of User Costs Sensitivity Analysis 

As outlined in previous chapters, user costs and BMS input tables were updated 

over the course of this research.  In some cases, new methodologies to obtain these user 

costs were utilized and in other cases, previous methods used to obtain these input values 

were determined to still be the most appropriate method and only new, updated values were 

obtained.  Equation 5.1 shows the original NCDOT BMS user costs equation based on 

research conducted by Chen and Johnston (1987).  As a result of work performed as part 

of this project, it is recommended that the user costs equation be modified to Equation 5.2 

to predict user costs for bridges in the NCDOT BMS. 

 

 

 

AURC(t) = 365ADT(t) [CWDAUAC+CALAUAC+CCLAUAC+CCLDUDCDL+CLCD(t)UDLDL] 

Equation 5.1: NCDOT BMS user cost equation (Chen and Johnston 1987) 

Where: AURC(t) = annual user cost of the bridge at year t, $/year 

 ADT(t) = average daily traffic using the bridge at year t 

CWDA = coefficient for proportion of vehicles incurring accidents due to width 

deficiency 

CALA = coefficient for proportion of vehicles incurring accidents due to poor 

alignment 

CCLA = coefficient for proportion of vehicles incurring accidents due to vertical 

clearance deficiency 

CCLD = coefficient for proportion of vehicles detoured due to a vertical clearance 

deficiency 

Accident cost 

due to width 

Accident cost 

due to 

alignment 

Accident cost 

due to under 

vertical clearance 

VOC due to 

vertical 

clearance 

VOC due 

to load 

capacity 
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CLCD(t)  = coefficient for proportion of vehicles detoured due to a load capacity 

deficiency at year t 

 UAC = unit cost of vehicle accidents on bridges, $/accident 

UDC = unit cost for average vehicle detours due to vertical clearance deficiency, 

$/mile 

 UDL = unit cost for average vehicle detours due to load capacity deficiency, $/mile 

 DL = detour length, miles 

 

 

 

AURC(t)=365ADT(t)[CLCD(SU)(t)UDLDL+CLCD(TTST)(t)UDLDL+CCLD(t)UDCDL] + NOACC(t)UAC 

 

Equation 5.2: Updated user costs equation 

 

Where: AURC = annual user cost of the bridge at year t, $/year 

 ADT = average daily traffic using the bridge at year t 

 UAC = unit cost of vehicle accidents on bridges, $/accident 

 DL = detour length, miles 

 UDC = unit cost for average vehicle detours due to vertical clearance deficiency, 

$/mile 

 UDL = unit cost for average vehicle detours due to load capacity deficiency, $/mile 

 CLCD = coefficient for proportion of vehicles detoured due to a load capacity 

deficiency at year t 

 CCLD = coefficient for proportion of vehicles detoured due to a vertical clearance  

 deficiency 

 NOACC = number of annual accidents per year at year t 

 

As reflected in the difference between Equation 5.1 and 5.2, changes to the user 

costs equation are recommended based on the results of this work.  An extensive analysis 

of recent bridge-related accidents resulted in the development of an updated bridge-related 

accident prediction model.  As part of this work, the characteristics most significantly 

correlated to bridge-related accidents were identified and are included in Equation 4.4, 

which is in turn utilized in Equation 5.2.  It is noted that the accident cost is also no longer 

multiplied by the ADT and 365 days, since NOACC, predicted by Equation 4.4, directly 

VOC due to 

load capacity 

for SU 

VOC due to 

load capacity 

for TTST 

VOC due to 

vertical 

clearance 

Annual total 

accident 

cost 
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estimates the annual number of bridge-related accidents.  To assist the reader, Equation 4.4 

is again presented below. 

 

NOACC = FC + (0.00001624×ADT) - (0.004130×ARW) - (0.06423×DGA) + 

(0.0003528×SL) - (0.04959×AI) + (0.01460×THC) 

Equation 4.5: Prediction equation for annual number of bridge-related accidents 

Where: NOACC = Number of Accidents, per year 

 FC = Functional Classification 

 ADT = Average Daily Traffic 

 ARW = Approach Roadway Width 

 DGA = Deck Geometry Appraisal 

 SL = Structure Length 

 AI = Average Index (BMS) 

 THC = Total Horizontal Clearance 

 

Accident costs due to the vertical clearance under a bridge are not specifically 

included in Equation 5.2, as data currently included in the BMS does not support this 

calculation.  However, accidents occurring as a result of vertical clearance issues are 

considered as part of the accident prediction equation (Equation 4.4), since this model was 

developed with actual bridge-related accident data that includes accidents due to vertical 

clearance issues.  Also included in Equation 5.2 are the vehicle operating costs separated 

into two separate components (for SU and for TTST).  This is now possible because the 

current BMS provides load postings for both SU and TTST.  Since these load postings can 

be different for SU and TTST, treating the user costs of these types of vehicles separately 

(as shown in Equation 5.2) should result in more accurate prediction of user costs.  

Changes to these user cost input values will result to changes in the user costs 

predicted by the NCDOT BMS.  When forecasting an outcome in the future, such as bridge 

user costs, inputs will not always remain constant, due to economic and inflation rate 
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uncertainties.  In order to analyze the impact of the model inputs on the calculated user 

costs, a sensitivity analysis was performed on the updated equation.  Sensitivity analysis is 

used to analyze an equation to determine which inputs (when varied) have the greatest 

effect on the outcome of an equation.  In this case, the sensitivity analysis was performed 

to determine the cost inputs (user costs due to accidents or user costs due to vehicle 

operating costs) that have the greatest impact on the resulting user costs for a given set of 

parameters.   

Identifying the key factors influencing user costs will assist in MR&R, preventative 

maintenance, and replacement decisions.  Results of this sensitivity analysis can also assist 

NCDOT in identifying future design requirements that could provide improved long-term 

user costs, as well provide a prioritized listing of key input values that should be updated 

regularly (or more frequently) to more accurately predict bridge user costs.  Ultimately, 

factors deemed most influential in user costs estimation could also provide data to support 

design and MR&R decisions that could reduce accident occurrences on bridges. 

The sensitivity analysis for the NCDOT BMS user costs was performed using an 

add-on program within Excel, called @RISK, developed by Palisade Corporation.  In order 

to perform the sensitivity analysis, a representative subset of bridges was selected.  To 

provide continuity with prior work developing and enhancing the NCDOT’s BMS, a 

method similar to the one developed by Abed-Al-Rahim and Johnston (1991) was utilized.  

This approach should facilitate some comparison between the analyses of the most 

significant inputs driving user costs approximately 25 years ago and today.  It is noted, 

however, that the sensitivity analysis performed by Abed-Al-Rahim and Johnston (1991) 

additionally studied the effects of input variability on costs other than user costs, including 
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agency costs such as maintenance costs, rehabilitation costs, and replacement costs.  A 

sensitivity analysis to this extent was beyond the scope of the current research. 

In the sensitivity analysis performed for this work, as well as for the 1991 study, 

four counties were selected for testing: Guilford, Halifax, Harnett, and Haywood.  A total 

of 969 bridges are included in these four counties, which represents roughly 7 percent of 

the 13,928 bridges statewide.  Consistent with the method and constraints utilized by Abed-

Al-Rahim and Johnston (1991), a 20-year horizon was used for the sensitivity analysis with 

a 6 percent rate of return and net present value (NPV) utilized as the evaluation method.  

@RISK uses a Monte Carlo simulation to perform a user-specified number of independent 

analyses for the sensitivity analysis.  For this work, based on the input distributions 

assigned to the accident and VOC costs uncertainties, 1,000 analyses were utilized in the 

@RISK Monte Carlo simulation, with the output of each analysis being the user costs in 

NPV terms.  

5.2 Time Dependent Variables Utilized in the Sensitivity Analysis 

Six items associated with the user costs equation will vary with time. In order to 

accurately predict the user costs over the 20 year horizon, the change in the variables listed 

below were estimated: 

 Accident cost 

 Vehicle operating cost (VOC) 

 ADT 

 Deck geometry appraisal 

 Average index (BMS) 

 Bridge capacity 
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Accident and VOC Cost 

Since changes in economic behavior and inflation largely drive cost, accident costs 

and vehicle operating costs (VOC) were identified as the two variables to be evaluated in 

the sensitivity analysis. Similar to the sensitivity analysis performed by Abed-Al-Rahim 

and Johnson (1991), the sensitivity of the user costs was evaluated using the variance of 

the user cost increase predicted over a 20 year timeframe.   

ADT 

ADT is used in nearly all aspects of the user costs equation, so predicting future 

ADT values was very important to this process.  As discussed in Section 3.1, ADT growth 

rates for each county were computed for four different roadway types.  These growth rate 

percentages were used to predict the future ADT of the bridges and a snapshot is provided 

in Appendix B, Table B-1.   

Deck Geometry Appraisal 

Deck geometry appraisal is listed as Federal Item 68 in the FHWA Recording and 

Coding Guide (FHWA 1995).  The FHWA Recording and Coding Guide provides two 

comparative methods by which to appraise a bridge deck geometry (vertical clearance or 

number of lanes).  This method consists of identifying the appropriate deck geometry 

appraisal rating from three different tables in which a bridge is rated, with the lowest 

appraisal rating from the table used for the condition rating assignment.  In one method, a 

bridge is given a deck geometry appraisal rating based on its vertical clearance and 

functional classification, therefore it is assumed that this rating will remain constant for the 

bridge’s service life.  The other method to determine a bridge’s appraisal rating is based on 

the total number of lanes.  A bridge with three or more lanes is assigned a deck geometry 
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appraisal rating based on its number of lanes and roadway width.  If a deck geometry 

appraisal rating is assigned in this manner it is also assumed to remain constant for the 

bridge’s service life, unless major reconstruction occurs.  Bridges with two lanes and two-

way traffic are differentiated by their ADT and assigned a lower deck geometry appraisal 

rating with increasing ADT.  Using Table 5.1 provided by the FHWA (1995) for Federal 

Item 68, bridges analyzed in this study that fit the two-lane, two-way traffic classification 

were assigned future appraisals based on the their future ADT (discussed above) and their 

bridge roadway width.  A snapshot of these bridges is provided in Appendix B, Table B-2. 

 

Table 5.1: Snapshot of Deck Geometry Appraisal Tables (FHWA 1995) 
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Average Index (BMS) 

Average Index (BMS) is calculated as the average of the deck, superstructure, and 

substructure condition ratings for a particular bridge.  As part of ongoing work being 

completed for updating the BMS, a new set of deterministic models were developed using 

the Duncan and Johnston (2001) methodology to determine the deterioration rates of these 

condition ratings (Goyal, 2015).  Table 5.2 provides a sample table (for timber decks) that 

illustrates the typical number of years that a timber deck condition remains at each 

condition rating prior to changing to the next lower rating.  These tables provide the years 

in each condition rating for timber, steel, concrete, and prestressed concrete deck bridges 

based on different ADT bins.  Tables for deck, substructure, and superstructure condition 

deterioration rates, illustrating the typical number of years the each component can be 

expected to remain at each condition rating, are provided in Appendix B, Table B-3 through 

B-12.  The bins were then averaged for each condition rating associated with the deck, 

substructure, and superstructure over each material type.  This average was used to provide 

a slope, which serves in this analysis to compute the expected change in each condition 

rating over time.  Using these material-specific deterministic models to predict how long 

each part of the bridge structure (deck, superstructure, and substructure) can be expected 

to remain at each condition rating, a predicted condition rating for deck, superstructure, 

and substructure of each bridge was computed for the 20-year timeframe of the sensitivity 

analysis.  Snapshots of this work are provided in Appendix B, Tables B-13 through B-15.  

The Average Index (BMS) was additionally computed at each year for each structure.  A 

snapshot of this calculation is provided in Table 5.3.  It is noted that the lowest rating that 
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a bridge component could be assigned at any point in the 20-year timeframe was a 

condition rating of 3.   

 

Table 5.2: Deterministic timber deck condition ratings (Goyal 2015) 

 

 

Table 5.3: Snapshot of typical Excel spreadsheet showing prediction of average index 

(BMS) deterioration 

 

 

 

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Timber 0-200 2.9361 8.4615 7.3584 6.9167 4.9352 4.302

Timber 200-800 3.0151 8.3017 7.9498 6.8142 4.8426 4.4534

Timber 800-2000 3.0517 7.4764 7.8105 6.8052 4.5854 4.203

Timber 2000-4000 2.6429 7.3468 7.8414 6.217 4.9135 3.959

Timber >4000 3.1667 8.9063 6.7352 5.2826 5.5646 5.1196

Timber Average 2.9625 8.09854 7.53906 6.40714 4.96826 4.4074

Slope 0.33755 0.123479 0.13264 0.156076 0.20128 0.22689

Timber Deck (Years in Rating)

Averge Index (BMS)

Structure No. year 0 year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 5.67 5.67 5.33 5.33 5 5 4.67 4.67 4.33 4 4

400002 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5 5 4.33 4.33

400003 5 4.67 4.67 4.33 4.33 4.33 3.67 3.67 3.67 3.67 3.67

400004 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5.33 5 5 4.33

400005 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5.33 5 5 4.33

400006 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5.33 5 5 4.33

400007 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5.33 5 5 4.33

400009 6.67 6.33 6.33 5.67 5.33 5.33 5.33 5.33 5.33 5 5

400010 5 4.33 4.33 4.33 4 3.33 3.33 3.33 3.33 3.33 3.33

400011 7 6.67 6.67 6.67 6.33 6 6 6 6 6 5.67

400012 4 3.67 3.67 3 3 3 3 3 3 3 3

400013 5 5 4.67 4.67 4 4 4 3.67 3.67 3.33 3.33

400015 5.67 5.33 5.33 5 4.67 4.67 4.67 4.67 4.33 4.33 3.67

400016 5.67 5.33 5.33 5 5 4.33 4.33 4.33 4.33 4.33 4.33

400017 5 5 5 4.67 4.33 4 4 3.67 3.67 3.33 3.33

400018 5 5 5 4.67 4.33 4 4 3.67 3.67 3.33 3.33

400019 7 6.33 6.33 6.33 6 6 6 6 5.67 5.67 5.67

400020 7 7 7 7 6.67 6 6 6 6 6 6

400021 7 6.67 6.67 6.67 6.67 6.67 6 6 6 6 5.67

400022 5.67 5 5 5 5 4.67 4.33 4.33 4 4 4

400023 7 6.67 6.67 6.67 6.67 6.33 6 6 5.67 5.67 5.67

400024 7 7 7 7 6.33 6 6 6 6 6 6

400025 5.33 5.33 5.33 5 4.67 4.67 4.33 4.33 4 4 4

400027 5.67 5 4.67 4.67 4.67 4.33 4.33 4.33 4.33 4 3.67

400028 5 5 5 5 4 4 4 4 4 4 4

400030 5 4.33 4.33 4.33 4 4 3.33 3.33 3.33 3.33 3.33

400031 6.33 6.33 6.33 6.33 6 5.67 5.33 5.33 5.33 5 5

400032 5.67 5 4.67 4.67 4.67 4.67 4.33 3.67 3.67 3.67 3.67
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Bridge Capacity 

The estimated future bridge capacity reduction is currently predicted based on the 

substructure condition rating, as outlined by Johnston et al. (1994).  This is explained in 

Section 2.4.  Based on the substructure material type and condition rating at each year (as 

determined as part of this project and presented by Goyal 2015), the capacity of the bridge 

will either remain constant or will be reduced.  As part of work performed by others 

involved in this research project, an updated table that provides the predicted reduction in 

capacity of a bridge based on its substructure condition rating was developed and is 

presented in Table 5.4 (Goyal 2015). 

 

Table 5.4: Predicted load capacity deterioration rates (Goyal 2015) 

Load Capacity Deterioration Rates (tons/year) 

Substructure 

Condition Rating 

Bridge Main Structural Material 

Timber Concrete Steel Prestressed 

5-9 0 0 0 0 

4 0 0.22 0.06 0.84 

3 0.57 1.67 0.61 1.61 

 

As can be seen in Table 5.5, a snapshot of the TTST capacity for each bridge was 

predicted for the 20-year horizon.  A snapshot of calculations for load capacity 

deterioration rates for SU is provided in Appendix B, Table B-16.  Both SU and TTST 

loads were constrained so that they would not go below 3 tons, which is the minimum load 

a bridge must hold to remain open to traffic. 
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Table 5.5: Snapshot of TTST load capacity deterioration prediction 

 

 

Inflation Rate 

A base inflation rate was required for prediction in @RISK as the base percentage 

of increase in accident and VOC costs at each year.  Using CPI (2015), a median inflation 

rate of 2.50 percent was calculated from the annual indexes of years 1999 through 2014.  

Each inflation rate is assigned a distribution and parameter type in @RISK with which it 

will vary in the analysis, based on the inflation rate being the mean value of increase.  A 

normal distribution was assigned to the inflation rate along with a standard deviation of 

1.04 percent, which was calculated using the CPI (2015) annual indexes of year 1999 

through 2014.  

TTST Load Capacity Deterioration

Structure No. year 0 year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 99 99 99 99 99 99 99 99 99 98 97

400002 99 99 99 99 99 99 99 99 99 99 99

400003 99 99 99 99 99 99 99 99 99 99 99

400004 99 99 99 99 99 99 99 99 99 99 99

400005 99 99 99 99 99 99 99 99 99 99 99

400006 99 99 99 99 99 99 99 99 99 99 99

400007 99 99 99 99 99 99 99 99 99 99 99

400009 99 99 99 99 99 99 99 99 99 99 99

400010 99 99 98 97 96 96 94 92 91 89 88

400011 99 99 99 99 99 99 99 99 99 99 99

400012 99 99 99 99 98 97 96 95 95 94 93

400013 99 99 99 99 99 99 99 99 99 99 98

400015 99 99 99 99 99 99 99 99 99 99 99

400016 99 99 99 99 99 99 99 99 99 99 99

400017 99 99 99 99 99 98 97 96 96 95 93

400018 99 99 99 99 99 98 97 96 96 95 93

400019 99 99 99 99 99 99 99 99 99 99 99

400020 99 99 99 99 99 99 99 99 99 99 99

400021 99 99 99 99 99 99 99 99 99 99 99

400022 99 99 99 99 99 99 99 98 97 96 95

400023 99 99 99 99 99 99 99 99 99 99 99

400024 99 99 99 99 99 99 99 99 99 99 99

400025 99 99 99 99 99 98 97 96 95 95 94

400027 99 99 99 99 99 99 99 99 99 99 99

400028 99 99 99 99 99 99 99 98 98 98 98

400030 19 19 19 19 19 19 19 18 17 16 15

400031 99 99 99 99 99 98 97 96 96 95 93

400032 99 99 99 99 99 99 99 98 97 96 95
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5.3 Sensitivity to Accident and Vehicle Operating Costs 

The result of the @RISK Monte Carlo simulation used to perform the sensitivity 

analysis is a series of predicted NPV user costs for bridges in Guilford, Halifax, Harnett, 

and Haywood over the 20 year horizon with the uncertainties due to accident and VOC 

costs.  The @RISK output for the range of predicted NPV is shown in Figure 5.1 as a 

probability density histogram prepared from the 1,000 analyses performed on the user costs 

equation in @RISK (Palisades 2015).  From Figure 5.1, it can be noted that the uncertainty 

in change of both the accident and vehicle operating costs will have a large effect on the 

resulting predicted NPV user costs.  This is depicted in the x-axis where the predicted NPV 

user costs range from 645 million dollars to 967 million dollars.  In Figure 5.1, values on 

the y-axis indicate the probability density of the histogram, where the area of each bar is 

the proportion of samples within it, the y-axis is scaled so that the total area of the histogram 

bars is 1 (Palisade 2015).  It is noted that the standard deviation is over 47 million dollars.   

 

Figure 5.1: @RISK output showing user NPV costs, 20-year horizon for bridges in 

(Guilford, Halifax, Harnett, and Haywood) 
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Table 5.6 provides an in-depth look at the increase in predicted NPV user costs 

increase at each percentile, due to the range of accident and vehicle operating costs used in 

the analysis.  Based on the 20-year sensitivity analysis performed using the parameters 

discussed above, it can be observed that the median NPV user cost predicted for bridges in 

the selected four counties is just over 786 million dollars. 

 

Table 5.6: @RISK output showing summary statistics for sensitivity analysis of NPV 

user costs for bridges in (Guilford, Halifax, Harnett, and Haywood), over 20-year horizon 

Summary Statistics for NPV 

Statistics   Percentile   

Minimum  $ 645,238,774.78  5%  $ 713,419,833.49  

Maximum  $ 967,284,516.76  10%  $ 727,916,723.29  

Mean  $ 786,269,854.39  15%  $ 737,465,819.82  

Std Dev  $   47,300,158.42  20%  $ 746,972,525.60  

Variance 2.2373E+15 25%  $ 752,804,979.27  

Skewness 0.353863083 30%  $ 759,122,160.22  

Kurtosis 3.2223143 35%  $ 766,013,018.03  

Median  $ 783,022,696.32  40%  $ 771,513,065.41  

Mode  $ 765,691,814.78  45%  $ 778,461,340.41  

Left X  $ 713,419,833.49  50%  $ 783,022,696.32  

Left P 5% 55%  $ 789,447,058.36  

Right X  $ 866,625,226.62  60%  $ 795,669,919.78  

Right P 95% 65%  $ 801,597,208.62  

Diff X  $ 153,205,393.13  70%  $ 808,511,342.41  

Diff P 90% 75%  $ 816,244,890.40  

#Errors 0 80%  $ 824,573,385.39  

Filter Min Off 85%  $ 834,907,274.40  

Filter Max Off 90%  $ 847,213,270.63  

#Filtered 0 95%  $ 866,625,226.62  

 

To illustrate how user costs are affected by each variable (the sensitivity to each 

variable), @RISK computes how each uncertain variable affects the predicted NPV user 

costs.  The @RISK output is formatted to show the variance in costs from the lowest 
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(bottom of the chart) to the highest (top of the chart).  The results of the sensitivity analysis 

of the user costs based on accident costs and vehicle operating costs (VOC), compared 

separately, is shown in Figure 5.2.  The results indicate that accident costs have a much 

larger effect on the resulting predicted NPV user costs than the VOC.  For clarity the range 

of computed values (corresponding to the bars in Figure 5.2) are provided in Table 5.7.   

 

Figure 5.2: @RISK output showing sensitivity analysis 

 

Table 5.7: @RISK output showing NPV output change 

Change in Output Statistic for  NPV 

Rank Name Lower Upper 

1 Accident Cost  $ 709,896,455.52   $ 875,198,552.23  

2 Vehicle Operating Cost  $ 781,043,939.46   $ 794,559,542.87  

 

Ultimately, the results of this sensitivity analysis should allow NCDOT to identify 

ways to reduce user costs.  Since user costs are most sensitive to accidents, and because 

the cost associated with an accident is something that NCDOT cannot directly control, it is 

apparent that reducing accidents themselves is the key to reducing future user costs for the 
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state’s bridges.  As presented in Chapter 4, bridge characteristics most associated with 

recent bridge-related accidents were identified as part of this work.  Possible methods for 

reducing accidents on both existing bridges and design of new bridges were discussed in 

Section 4.2.  To conclude, this sensitivity analysis reinforces that an increased focus on 

addressing factors that most greatly influence bridge-related accidents will greatly reduce 

user costs, as well as improve the safety North Carolina’s traveling public in the future. 

 

 



 

 

 

 

 

 

CHAPTER 6: CONCLUSIONS 

 

 

6.1 Conclusions 

 The purpose of this study was to update and enhance inputs and methodologies 

utilized to compute user costs in NCDOT’s BMS.  As part of this work a number of input 

tables and methodologies for computing costs, were updated, including: 

 ADT growth rate 

 Vehicle operating cost 

 Vehicle distribution 

 Vehicle weight distribution 

 Vehicle height distribution 

 Accident injury severity 

 Accident cost 

 Predicted number of annual accidents 

 

 It is recommended that the updated and enhanced input tables and methodologies 

presented be considered for implementation into NCDOT’s BMS.   

Additionally, an analysis of bridge-related accidents was performed, resulting in 

the identification of seven bridge characteristics that are most associated with bridge-

related accidents.  These seven characteristics are: 

 Average Daily Traffic  

 Approach Roadway Width  

 Deck Geometry Appraisal  

 Structure Length  

 Average Index (BMS)  

 Total Horizontal Clearance  

 Functional Classification 
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The findings of this analysis resulted in the generation of an equation that can be 

used to compute the predicted number of bridge-related accidents per year for a specific 

set of bridge characteristics (Equation 4.4). 

 

NOACC = FC + (0.00001624×ADT) - (0.004130×ARW) - (0.06423×DGA) + 

(0.0003528×SL) - (0.04959×AI) + (0.01460×THC) 

Equation 4.5: Prediction equation for annual number of bridge-related accidents 

Where: NOACC = Number of Accidents, per year 

 FC = Functional Classification (values from Table 4.1) 

 ADT = Average Daily Traffic 

 ARW = Approach Roadway Width 

 DGA = Deck Geometry Appraisal 

 SL = Structure Length 

 AI = Average Index (BMS) 

 THC = Total Horizontal Clearance 

 

Consolidating this work resulted in the generation of a new equation suggested for 

estimating the annual user costs for NCDOT’s BMS, Equation 5.2.   

AURC(t)=365ADT(t)[CLCD(SU)(t)UDLDL+CLCD(TTST)(t)UDLDL+CCLD(t)UDCDL]+NOACC(t)UAC 

 

Equation 5.2: Updated user costs equation 

 

Where: AURC=annual user costs per bridge (at year t) 

 ADT= average daily traffic (at year t) 

 UAC= cost per accident 

 DL= detour length 

 UDC= cost per mile of vehicles detoured due to vertical clearance 

 UDL= cost per mile of vehicles detoured due to load 

 CLCD= coefficient of vehicles detoured due to load (at year t) 

 CCLD= coefficient of vehicles detoured due to vertical clearance 

 NOACC= number of annual accidents per year (at year t) 

 

The bridge-related accident analysis provides a useful look-back on bridge related 

accidents, providing insight into changes in causes and severities over the past 25 years.  
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The total number of bridge related accidents occurring per year in these five counties has 

remained constant, even with an increase in population (and subsequently higher ADT), 

which is promising.  Based on the analysis results, increased ADT and increased structure 

length continue to be associated with an increased number of bridge related accidents.  It 

is evident that having a larger approach roadway width and increased deck geometry 

appraisal help decrease the incidence of bridge-related accidents.  Regular and preventative 

maintenance to maintain or improve condition ratings will reduce bridge-related accidents, 

since the Average Index (BMS) was found to be influential. The larger the total horizontal 

clearance, the higher the likelihood a bridge will have an increased number of accidents. 

As evidenced by the equation’s intercept values, interstate bridges are associated with 

lower incidences of bridge-related accidents, while municipal roads over a state system, 

US, and NC routes (with higher intercept values) are more likely to have an accident.    

The results of a sensitivity analysis on user costs indicated that NCDOT’s BMS 

user costs are most sensitive to accident costs.  Since the cost associated with each accident 

is something that NCDOT cannot directly control, it is apparent that reducing the number 

of accident occurrences is the key way to reduce future user costs for the state’s bridges.   

6.2 Recommendations for Future Work 

 Future work identified as part of this study includes further study of accident causes 

and identifying design or operational tactics that could reduce the occurrence of bridge-

related accidents.  Continued preventative maintenance to existing bridges has been shown 

to reduce user costs.  Recommended future work could include a study of past maintenance, 

repair, and rehabilitation work and its effect on Average Index (BMS), and subsequently 

accident rates.  The costs of more severe injuries and fatalities are significantly higher than 
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those of less severe and property-damage-only accidents.  Study of the bridge-related 

characteristics associated with fatal and very severe accidents could be useful.  

Forecasting using user costs will help NCDOT optimize MR&R strategies, as well 

as assist with design decisions  recommended future work also includes an implementation 

plan for use of these new user costs inputs as updated methodologies develop as part of 

this work.   
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APPENDIX A: BRIDGE-RELATED ACCIDENTS 

 

 

Table A-1: Snapshot of accident report location summary (Source: NCDOT) 

 

 

Table A-2: Snapshot of BMS structure location 

  

CRASHID CNTY_NBR ON_RD DSTNC DRCTN FRM_RD TWRD_RD MLPST_RD MLPST ACDNT_DT_TM

102483531 40 I 40 1 N I 85 I 85BUS I 40 22.849 2-Jan-09

102483567 40 US 29 0.019 S NC 150 SR 4771 US 29 29.578 2-Jan-09

102483971 40 US 220 0.1 S SR 2104 SR 2313 US 220 28.819 2-Jan-09

102484225 40 I 85BUS 0.42 N I 85 *MILE 121 I 85BUS 999.999 3-Jan-09

102486906 40 I 85BUS 1 N SR 1129 HOLDEN I 85BUS 11.425 3-Jan-09

102505459 40 SR 3056 0.2 NW SR 3232 SR 3143 SR 3056 3.82 2-Jan-09

102506038 40 SR 3411 0.3 E SR 3621 SR 3412 SR 3411 0.3 28-Jan-09

102507237 40 I 85BUS 0 I 85 I 73 I 85BUS 999.999 31-Jan-09

102513181 40 US 29 0 NC 150 SR 2510 US 29 29.597 7-Feb-09

102526222 40 JOSEPH BRYAN 1 W FLEMING INMAN SR 2085 3.205 6-Jan-09

102526231 40 CONE 0 NE US 29 US 29 CONE 0 6-Jan-09

102526244 40 WENDOVER 0.019 W I 40 STANLY SR 1541 1.569 6-Jan-09

102526966 40 I 40BUS 0 E I 840 GUILFORD COLLEGE I 40BUS 999.999 3-Jan-09

102526981 40 FREEMAN MILL 0 SPRING GARDEN LEE FREEMAN MILL 3.884 2-Jan-09

102527279 40 I 840 0 W I 85 MT HOPE CH I 840 999.999 2-Jan-09

102530146 40 WENDOVER 0 E I 40 BIG TREE SR 1541 1.55 14-Jan-09

102530995 40 SR 2022 0.2 N SR 2096 SR 2028 SR 2022 1.884 28-Feb-09

102531836 40 SUMMIT 0 SUNRISE VALLEY *LCL PHLLIPS AVE SR 2526 9.496 7-Jan-09

102532788 40 MCCONNELL 0 E US 29 US 29 MCCONNELL 10.922 20-Jan-09

102534844 40 SR 1546 0.4 N SR 1546 SR 4178 SR 1546 999.999 12-Feb-09

Structure No. Facility Carried Location

400001 SR2254 WBL 0.1 MI. N. JCT. SR1598

400002 S.ELM-EUGENE ST. 1.1 MI.N.JCT.VANDALIA RD.

400003 S.ELM-EUGENE STREE 0.15 MI.S.JCT.I40

400004 I73, US220 NBL 1.4 MI. S. JCT. SR1104

400005 I73, US220 SBL 1.4 MI. S. JCT. SR1104

400006 I73, US220 NBL 1.3 MI. N. JCT. NC62

400007 I73, US220 SBL 1.3 MI. N. JCT. NC62

400009 SR3392 0.5 MI. S. JCT. SR3393

400010 SR3394 0.45 MI. N. JCT. SR3397

400011 SR3394 0.4 MI. S. JCT. US421

400012 SR1970 0.4 MI. N. JCT. US311

400013 SR1278 0.1 MI. N. JCT. SR1970

400015 US220 0.6 MI. N. JCT. SR1118

400016 SR3411 2.45 MI. E. JCT. NC22

400017 US70 EBL 0.9 MI. S. JCT. US29A

400018 US70 WBL 0.9 MI. S. JCT. US29A

400019 SR1993 0.2 MI. S. JCT. SR1970

400020 SR4121 0.8 MI. N. JCT.SR1332
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APPENDIX B: SENSITIVITY ANALYSIS 

 

 

Table B-1: Snapshot of ADT growth rate forecast 

 

 

Table B-2: Snapshot of deck geometry appraisal forecast 

 

Structure No. ADT Growth Rate ADT year 0 ADT year 1 ADT year 2 ADT year 3 ADT year 4 ADT year 5 ADT year 6 ADT year 7 ADT year 8 ADT year 9 ADT year 10

400001 2.31% 22000 22508 23028 23560 24104 24661 25231 25814 26410 27020 27644

400002 2.57% 25000 25643 26302 26977 27671 28382 29111 29859 30627 31414 32221

400003 2.57% 25000 25643 26302 26977 27671 28382 29111 29859 30627 31414 32221

400004 3.15% 13500 13925 14364 14816 15283 15764 16261 16773 17302 17847 18409

400005 3.15% 13500 13925 14364 14816 15283 15764 16261 16773 17302 17847 18409

400006 3.15% 14000 14441 14896 15365 15849 16348 16863 17395 17942 18508 19091

400007 3.15% 14000 14441 14896 15365 15849 16348 16863 17395 17942 18508 19091

400009 2.57% 130 133 137 140 144 148 151 155 159 163 168

400010 3.02% 2700 2782 2866 2952 3041 3133 3228 3325 3426 3529 3636

400011 3.02% 2550 2627 2706 2788 2872 2959 3048 3140 3235 3333 3434

400012 2.31% 9200 9413 9630 9852 10080 10313 10551 10795 11044 11299 11560

400013 2.31% 10000 10231 10467 10709 10957 11210 11469 11733 12005 12282 12566

400015 2.31% 27000 27624 28262 28915 29583 30266 30965 31680 32412 33161 33927

400016 2.57% 1000 1026 1052 1079 1107 1135 1164 1194 1225 1257 1289

400017 2.31% 17750 18160 18580 19009 19448 19897 20357 20827 21308 21800 22304

400018 2.31% 17000 17393 17794 18206 18626 19056 19497 19947 20408 20879 21361

400019 2.31% 16000 16370 16748 17135 17530 17935 18350 18774 19207 19651 20105

400020 2.31% 12500 12789 13084 13386 13696 14012 14336 14667 15006 15352 15707

400021 2.57% 20000 20514 21041 21582 22137 22706 23289 23888 24502 25131 25777

400022 2.31% 19000 19439 19888 20347 20817 21298 21790 22294 22809 23335 23875

400023 2.57% 530 544 558 572 587 602 617 633 649 666 683

400024 3.02% 5400 5563 5731 5904 6082 6266 6455 6650 6851 7058 7271

400025 2.57% 1200 1231 1262 1295 1328 1362 1397 1433 1470 1508 1547

400027 2.57% 1300 1333 1368 1403 1439 1476 1514 1553 1593 1634 1676

400028 2.31% 40000 40924 41869 42837 43826 44838 45874 46934 48018 49127 50262

400030 3.02% 2200 2266 2335 2405 2478 2553 2630 2709 2791 2876 2962

400031 2.31% 1100 1125 1151 1178 1205 1233 1262 1291 1320 1351 1382

400032 2.57% 90 92 95 97 100 102 105 107 110 113 116

400033 2.57% 320 328 337 345 354 363 373 382 392 402 412

Structure No. Deck Geometry Appraisal 0 year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 4 4 4 4 4 4 4 4 4 4 4

400002 5 5 5 5 5 5 5 5 5 5 5

400003 9 9 9 9 9 9 9 9 9 9 9

400004 6 6 6 6 6 6 6 6 6 6 6

400005 6 6 6 6 6 6 6 6 6 6 6

400006 6 6 6 6 6 6 6 6 6 6 6

400007 6 6 6 6 6 6 6 6 6 6 6

400009 5 5 5 5 5 5 5 5 5 5 5

400010 2 2 2 2 2 2 2 2 2 2 2

400011 4 4 4 4 4 4 4 4 4 4 4

400012 6 6 6 6 6 6 6 6 6 6 6

400013 9 9 9 9 9 9 9 9 9 9 9

400015 9 9 9 9 9 9 9 9 9 9 9

400016 4 4 4 4 4 4 4 4 4 4 4

400017 2 2 2 2 2 2 2 2 2 2 2

400018 2 2 2 2 2 2 2 2 2 2 2

400019 2 2 2 2 2 2 2 2 2 2 2

400020 9 9 9 9 9 9 9 9 9 9 9

400021 7 7 7 7 7 7 7 7 7 7 7

400022 2 2 2 2 2 2 2 2 2 2 2

400023 6 6 6 6 6 6 6 6 6 6 6

400024 4 4 4 4 4 4 4 4 4 4 4

400025 4 4 4 4 4 4 4 4 4 4 4

400027 5 5 5 5 5 5 5 5 5 5 5

400028 5 5 5 5 5 5 5 5 5 5 5

400030 2 2 2 2 2 2 2 2 2 2 2

400031 5 5 5 5 5 5 5 5 5 5 5

400032 4 4 4 4 4 3 3 3 3 3 3

400033 6 6 6 6 6 6 6 6 6 6 6
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Table B-3: Deterministic concrete deck condition ratings (Goyal 2015) 

 

 

Table B-4: Deterministic steel deck condition ratings (Goyal 2015) 

 

 

Table B-5: Deterministic timber substructure condition ratings (Goyal 2015) 

 

 

 

 

 

 

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Concrete 0-200 3.7451 9.5058 7.9186 9.5769 6.6521 8.5954

Concrete 200-800 3.7467 9.4109 8.3469 10.8644 7.3464 7.7575

Concrete 800-2000 3.8162 8.7405 8.4399 11.0959 7.3481 8.0029

Concrete 2000-4000 3.1431 8.1471 8.5608 10.7817 7.6112 6.8569

Concrete >4000 3.725 6.7675 7.9295 10.4082 6.6865 8.11

Concrete Average 3.63522 8.51436 8.23914 10.54542 7.12886 7.86454

Slope 0.27509 0.117449 0.12137 0.094828 0.14027 0.12715

Concrete Deck (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Steel 0-200 4.7125 13.9435 8.0621 8.0815 3.5468 5.8889

Steel 200-800 3.4 12.8483 7.9489 8.0594 4.02 3.5222

Steel 800-2000 4.4167 12.0412 7.6999 7.9808 4.9801 4.5533

Steel 2000-4000 3.5347 11.5146 6.8626 8.1006 5.0948 4.3061

Steel >4000 2.9 6.8583 6.7492 8.4368 7.0507 4.2552

Steel Average 3.79278 11.44118 7.46454 8.13182 4.93848 4.50514

Slope 0.26366 0.087404 0.13397 0.122974 0.20249 0.22197

Steel Deck (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Timber Coastal 3.5714 3.7829 4.8219 7.1158 7.55 5.1827

Timber Piedmont 3.8571 3.716 4.7011 7.2793 7.1357 5.4644

Timber Mountain 2.4828 4.5874 6.996 9.3507 5.1218 3.6215

Timber Average 3.3038 4.02877 5.50633 7.91527 6.6025 4.7562

Slope 0.3027 0.24821 0.18161 0.12634 0.15146 0.2103

Timber Substructure (Years in Rating)



120 

Table B-6: Deterministic concrete substructure condition ratings (Goyal 2015) 

 

 

Table B-7: Deterministic steel substructure condition ratings (Goyal 2015) 

 

 

Table B-8: Deterministic prestressed substructure condition ratings (Goyal 2015) 

 

 

Table B-9: Deterministic timber superstructure condition ratings (Goyal 2015) 

 

 

 

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Concrete Coastal 7.6667 6.3412 7.5895 11.1303 7.2854 8.5743

Concrete Piedmont 4.25 5.3788 8.8016 11.1221 7.9547 8.82

Concrete Mountain 5.3 6.2894 11.8728 11.3939 6.0848 5.1627

Concrete Average 5.7389 6.00313 9.4213 11.2154 7.1083 7.519

Slope 0.1742 0.16658 0.10614 0.08916 0.14068 0.133

Concrete Substructure (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Steel Coastal 3.3794 7.0468 6.6435 8.7156 7.1533 5.9018

Steel Piedmont 4.3031 8.6568 7.6843 8.8638 6.6995 5.9895

Steel Mountain 3.6946 8.1939 9.1922 9.7371 5.2814 4.2883

Steel Average 3.7924 7.96583 7.84 9.1055 6.37807 5.3932

Slope 0.2637 0.12554 0.12755 0.10982 0.15679 0.1854

Steel Substructure (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Prestressed Coastal 3.6537 7.4576 5.5805 8.5565 6.1615 5.815

Prestressed Piedmont 4.1304 9.0317 6.205 9.6623 5.6743 4.903

Prestressed Mountain 3.621 9.9501 7.434 9.6117 5.0374 3.8633

Prestressed Average 3.8017 8.81313 6.4065 9.27683 5.6244 4.8604

Slope 0.263 0.11347 0.15609 0.1078 0.1778 0.2057

Prestressed Substructure (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Timber State System 1, Mulit-Beam 3 5.2143 6.3492 8.3945 8.3754 3.6382

Timber State System 2, Multi-Beam 2.8718 7.3554 7.5268 7.9011 6.0105 4.1333

Timber Average 2.9359 6.28485 6.938 8.1478 7.19295 3.88575

Slope 0.34061 0.15911 0.14413 0.12273 0.13903 0.25735

Timber Superstructure (Years in Rating)
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Table B-10: Deterministic concrete superstructure condition ratings (Goyal 2015) 

 

 

Table B-11: Deterministic steel superstructure condition ratings (Goyal 2015) 

 

 

Table B-12: Deterministic prestressed superstructure condition ratings (Goyal 2015) 

 

 

 

 

 

 

 

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Concrete State System 1, Slab 2 6.3377 9.0555 11.9508 6.5447 6.7905

Concrete State System 2, Slab 4.2 7.6139 9.7329 11.0284 7.2725 9.7722

Concrete State System 1, Tee-Beam n/a 6.3637 9.8673 11.6001 7.0814 7.7721

Concrete State System 2, Tee-Beam 2 6.9713 11.4245 11.6894 7.3262 9.8259

Concrete Average 2.73333 6.82165 10.0201 11.5672 7.0562 8.54018

Slope 0.36585 0.14659 0.0998 0.08645 0.14172 0.11709

Concrete Superstructure (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Steel State System 1, Multi-Beam 4.4206 11.4589 7.4071 7.8273 5.0145 5.2466

Steel State System 2, Multi-Beam 3.2702 10.0682 10.3105 7.97 4.4272 4.2707

Steel State System 2, Truss 5.2083 5.6058 6.668 7.3878 6.5156 5.9543

Steel State System 1, Floor-Beam n/a 6.1688 6.4777 6.6292 6.5335 4.767

Steel State System 2, Floor-Beam 3.1429 6.9651 7.6751 6.7853 4.8972 4.4541

Steel Average 4.0105 8.05336 7.70768 7.31992 5.4776 4.93854

Slope 0.24935 0.12417 0.12974 0.13661 0.18256 0.20249

Steel Superstructure (Years in Rating)

Rating 9 Rating 8 Rating 7 Rating 6 Rating 5 Rating 4

Prestressed State System 1, Multi-Beam 4.582 10.888 5.5108 7.8039 4.3542 5.0316

Prestressed State System 2, Multi-Beam 4.2044 13.3114 5.3833 5.7458 2.5653 3.5833

Prestressed State System 1, Slab 3.8018 9.218 5.9944 9.049 3.232 5.875

Prestressed State System 2, Slab 3.8508 9.8914 6.2964 7.998 2.886 3.5833

Prestressed State System 2, Tee-Beam 2.6481 8.8033 9.5877 9.0104 5.6423 5.4577

Prestressed Average 3.81742 10.4224 6.55452 7.92142 3.73596 4.70618

Slope 0.26196 0.09595 0.15257 0.12624 0.26767 0.21249

Prestressed Superstructure (Years in Rating)
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Table B-13: Snapshot of spreadsheet showing prediction of deck deterioration 

 

 

Table B-14: Snapshot of spreadsheet showing prediction of substructure deterioration 

 

Structure No. Deck Structure Type Deck Condition year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 1 7.69 7.571528109 7.45016 7.32878 7.20741 7.08604 6.96467 6.86984 6.77501 6.68018 6.58536

400002 1 6.11 6.012272103 5.91744 5.77717 5.63689 5.49662 5.35634 5.21607 5.07579 4.93552 4.80837

400003 1 4.35 4.225246982 4.09809 3.97094 3.84379 3.71663 3.58948 3.46233 3.33518 3.20802 3.08087

400004 1 5.01 4.869725117 4.74257 4.61542 4.48827 4.36111 4.23396 4.10681 3.97965 3.8525 3.72535

400005 1 5.01 4.869725117 4.74257 4.61542 4.48827 4.36111 4.23396 4.10681 3.97965 3.8525 3.72535

400006 1 5.01 4.869725117 4.74257 4.61542 4.48827 4.36111 4.23396 4.10681 3.97965 3.8525 3.72535

400007 1 5.01 4.869725117 4.74257 4.61542 4.48827 4.36111 4.23396 4.10681 3.97965 3.8525 3.72535

400009 2 7.31 7.189428109 7.06806 6.94668 6.85186 6.75703 6.6622 6.56737 6.47254 6.37772 6.28289

400010 1 5.49 5.345225117 5.20495 5.06468 4.9244 4.79725 4.67009 4.54294 4.41579 4.28864 4.16148

400011 1 7.45 7.332528109 7.21116 7.08978 6.96841 6.87358 6.77876 6.68393 6.5891 6.49427 6.39945

400012 1 4.01 3.882846982 3.75569 3.62854 3.50139 3.37423 3.24708 3.11993 2.99278 3 3

400013 1 5.49 5.347925117 5.20765 5.06738 4.9271 4.79995 4.67279 4.54564 4.41849 4.29134 4.16418

400015 1 5.01 4.869725117 4.74257 4.61542 4.48827 4.36111 4.23396 4.10681 3.97965 3.8525 3.72535

400016 2 5.62 5.482025117 5.34175 5.20148 5.0612 4.92093 4.79377 4.66662 4.53947 4.41231 4.28516

400017 1 5.63 5.490425117 5.35015 5.20988 5.0696 4.92933 4.80217 4.67502 4.54787 4.42071 4.29356

400018 2 5.69 5.549325117 5.40905 5.26878 5.1285 4.98823 4.86107 4.73392 4.60677 4.47961 4.35246

400019 2 7.01 6.888628109 6.7938 6.69897 6.60414 6.50932 6.41449 6.31966 6.22483 6.13 6.03518

400020 1 7.60 7.482028109 7.36066 7.23928 7.11791 6.99654 6.90171 6.80688 6.71206 6.61723 6.5224

400021 1 7.68 7.557328109 7.43596 7.31458 7.19321 7.07184 6.95047 6.85564 6.76081 6.66598 6.57116

400022 1 5.63 5.488625117 5.34835 5.20808 5.0678 4.92753 4.80037 4.67322 4.54607 4.41891 4.29176

400023 2 7.65 7.531328109 7.40996 7.28858 7.16721 7.04584 6.92447 6.82964 6.73481 6.63998 6.54516

400024 1 7.57 7.443828109 7.32246 7.20108 7.07971 6.95834 6.86351 6.76868 6.67386 6.57903 6.4842

400025 6 7.71 7.571733272 7.43777 7.3038 7.16983 7.03587 6.9019 6.77893 6.65595 6.53298 6.41

400027 1 5.27 5.124925117 4.98465 4.8575 4.73034 4.60319 4.47604 4.34889 4.22173 4.09458 3.96743

400028 1 5.56 5.417825117 5.27755 5.13728 4.997 4.86985 4.74269 4.61554 4.48839 4.36124 4.23408

400030 1 5.49 5.350325117 5.21005 5.06978 4.9295 4.80235 4.67519 4.54804 4.42089 4.29374 4.16658

400031 1 7.68 7.559628109 7.43826 7.31688 7.19551 7.07414 6.95277 6.85794 6.76311 6.66828 6.57346

400032 8 7.01 6.877357469 6.72128 6.56521 6.40913 6.25305 6.09698 5.9409 5.73962 5.53835 5.33707

400033 2 7.58 7.461428109 7.34006 7.21868 7.09731 6.97594 6.88111 6.78628 6.69146 6.59663 6.5018

Structure No. Structure Type Main Substructure Condition year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 302 5.2612 5.1044 4.9476 4.7622 4.5768 4.3914 4.2060 4.0205 3.8351 3.6497 3.4643

400002 302 6.0304 5.9206 5.7638 5.6070 5.4502 5.2934 5.1366 4.9799 4.7944 4.6090 4.4236

400003 302 6.5709 6.4611 6.3513 6.2414 6.1316 6.0218 5.9120 5.7552 5.5984 5.4416 5.2848

400004 302 7.01 6.8824 6.7726 6.6628 6.5530 6.4432 6.3333 6.2235 6.1137 6.0039 5.8940

400005 302 7.01 6.8824 6.7726 6.6628 6.5530 6.4432 6.3333 6.2235 6.1137 6.0039 5.8940

400006 302 7.01 6.8824 6.7726 6.6628 6.5530 6.4432 6.3333 6.2235 6.1137 6.0039 5.8940

400007 302 7.01 6.8824 6.7726 6.6628 6.5530 6.4432 6.3333 6.2235 6.1137 6.0039 5.8940

400009 501 7.3957 7.2396 7.0835 6.9274 6.8196 6.7118 6.6040 6.4962 6.3884 6.2807 6.1729

400010 522 5 4.7943 4.5885 4.3828 4.1770 3.9713 3.7655 3.5598 3.3541 3.1483 2.9426

400011 302 7 6.8902 6.7804 6.6705 6.5607 6.4509 6.3411 6.2312 6.1214 6.0116 5.9018

400012 402 4.4586 4.2732 4.0878 3.9023 3.7169 3.5315 3.3461 3.1607 2.9753 3.0000 3.0000

400013 402 5.4709 5.3141 5.1573 5.0005 4.8438 4.6583 4.4729 4.2875 4.1021 3.9167 3.7312

400015 402 5.6235 5.4667 5.3099 5.1531 4.9964 4.8109 4.6255 4.4401 4.2547 4.0693 3.8838

400016 501 7.3957 7.2396 7.0835 6.9274 6.8196 6.7118 6.6040 6.4962 6.3884 6.2807 6.1729

400017 502 5.6183 5.4405 5.2627 5.0849 4.9071 4.7014 4.4956 4.2899 4.0841 3.8784 3.6727

400018 502 5.5527 5.3749 5.1971 5.0193 4.8415 4.6358 4.4300 4.2243 4.0185 3.8128 3.6071

400019 501 7.5714 7.4153 7.2592 7.1031 6.9470 6.8392 6.7314 6.6236 6.5159 6.4081 6.3003

400020 602 7.6034 7.4473 7.2912 7.1351 6.9790 6.8712 6.7634 6.6556 6.5479 6.4401 6.3323

400021 302 7 6.8902 6.7804 6.6705 6.5607 6.4509 6.3411 6.2312 6.1214 6.0116 5.9018

400022 302 5.01 4.8532 4.6678 4.4824 4.2970 4.1115 3.9261 3.7407 3.5553 3.3699 3.1844

400023 501 7.6431 7.4870 7.3309 7.1748 7.0187 6.8626 6.7548 6.6471 6.5393 6.4315 6.3237

400024 602 7.5652 7.4091 7.2530 7.0969 6.9408 6.8330 6.7252 6.6174 6.5097 6.4019 6.2941

400025 302 4.6017 4.4163 4.2309 4.0454 3.8600 3.6746 3.4892 3.3038 3.1184 2.9329 3.0000

400027 522 7.01 6.8539 6.7461 6.6383 6.5305 6.4227 6.3149 6.2071 6.0993 5.9915 5.8137

400028 104 5.5432 5.4025 5.2618 5.1212 4.9805 4.8475 4.7145 4.5815 4.4485 4.3155 4.1825

400030 302 5 4.8146 4.6292 4.4437 4.2583 4.0729 3.8875 3.7021 3.5167 3.3312 3.1458

400031 502 5.6117 5.4339 5.2561 5.0783 4.9005 4.6948 4.4890 4.2833 4.0775 3.8718 3.6661

400032 302 5 4.8146 4.6292 4.4437 4.2583 4.0729 3.8875 3.7021 3.5167 3.3312 3.1458

400033 501 7.5637 7.4076 7.2515 7.0954 6.9393 6.8315 6.7237 6.6159 6.5082 6.4004 6.2926
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Table B-15: Snapshot of spreadsheet showing prediction of superstructure deterioration 

 

 

Table B-16: Snapshot of SU load capacity deterioration prediction 

 

Structure No. SuperStructure Type - Material (det) Superstructure Condition year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 3 - Steel 5.6760 5.4934 5.3109 5.1283 4.9458 4.7433 4.5408 4.3383 4.1358 3.9333 3.7308

400002 3 - Steel 7.0952 6.9655 6.8288 6.6922 6.5556 6.4190 6.2824 6.1458 6.0092 5.8726 5.6900

400003 3 - Steel 5.0100 4.8274 4.6249 4.4225 4.2200 4.0175 3.8150 3.6125 3.4100 3.2075 3.0050

400004 3 - Steel 7.2491 7.1194 6.9896 6.8530 6.7164 6.5798 6.4432 6.3066 6.1699 6.0333 5.8967

400005 3 - Steel 7.2491 7.1194 6.9896 6.8530 6.7164 6.5798 6.4432 6.3066 6.1699 6.0333 5.8967

400006 3 - Steel 7.2491 7.1194 6.9896 6.8530 6.7164 6.5798 6.4432 6.3066 6.1699 6.0333 5.8967

400007 3 - Steel 7.2491 7.1194 6.9896 6.8530 6.7164 6.5798 6.4432 6.3066 6.1699 6.0333 5.8967

400009 5 - Prestressed Concrete 6.0000 5.7323 5.4647 5.1970 4.9293 4.7168 4.5044 4.2919 4.0794 3.8669 3.6544

400010 5 - Prestressed Concrete 5.0000 4.7875 4.5750 4.3625 4.1501 3.9376 3.7251 3.5126 3.3001 3.0876 2.8751

400011 3 - Steel 7.5336 7.4039 7.2741 7.1444 7.0146 6.8849 6.7483 6.6117 6.4751 6.3384 6.2018

400012 4 - Steel Continuous 4.4586 4.2561 4.0536 3.8511 3.6486 3.4462 3.2437 3.0412 2.8387 3.0000 3.0000

400013 4 - Steel Continuous 5.2899 5.1073 4.9248 4.7223 4.5198 4.3173 4.1148 3.9123 3.7098 3.5074 3.3049

400015 4 - Steel Continuous 7.3325 7.2028 7.0730 6.9433 6.8067 6.6701 6.5334 6.3968 6.2602 6.1236 5.9870

400016 5 - Prestressed Concrete 5.0000 4.7875 4.5750 4.3625 4.1501 3.9376 3.7251 3.5126 3.3001 3.0876 2.8751

400017 5 - Prestressed Concrete 5.5588 5.2911 5.0235 4.7558 4.5433 4.3308 4.1183 3.9058 3.6934 3.4809 3.2684

400018 5 - Prestressed Concrete 5.6295 5.3618 5.0942 4.8265 4.6140 4.4015 4.1890 3.9765 3.7641 3.5516 3.3391

400019 5 - Prestressed Concrete 7.0000 6.8738 6.7475 6.6213 6.4950 6.3688 6.2426 6.1163 5.9901 5.7224 5.4547

400020 6 - Prestressed Concrete Continuous 7.6240 7.4714 7.3189 7.1663 7.0137 6.8612 6.7349 6.6087 6.4824 6.3562 6.2300

400021 3 - Steel 7.6499 7.5202 7.3904 7.2607 7.1309 7.0012 6.8715 6.7348 6.5982 6.4616 6.3250

400022 3 - Steel 7.0100 6.8803 6.7436 6.6070 6.4704 6.3338 6.1972 6.0606 5.9240 5.7414 5.5588

400023 5 - Prestressed Concrete 7.0000 6.8738 6.7475 6.6213 6.4950 6.3688 6.2426 6.1163 5.9901 5.7224 5.4547

400024 6 - Prestressed Concrete Continuous 7.5260 7.3734 7.2209 7.0683 6.9157 6.7895 6.6633 6.5370 6.4108 6.2845 6.1583

400025 3 - Steel 5.5205 5.3379 5.1554 4.9728 4.7703 4.5678 4.3653 4.1629 3.9604 3.7579 3.5554

400027 5 - Prestressed Concrete 5.0000 4.7875 4.5750 4.3625 4.1501 3.9376 3.7251 3.5126 3.3001 3.0876 2.8751

400028 1 - Concrete 5.5188 5.3771 5.2354 5.0936 4.9519 4.8348 4.7177 4.6006 4.4835 4.3665 4.2494

400030 3 - Steel 5.0100 4.8274 4.6249 4.4225 4.2200 4.0175 3.8150 3.6125 3.4100 3.2075 3.0050

400031 5 - Prestressed Concrete 7.6974 7.5448 7.3923 7.2397 7.0871 6.9346 6.8083 6.6821 6.5558 6.4296 6.3034

400032 3 - Steel 5.2988 5.1162 4.9337 4.7312 4.5287 4.3262 4.1237 3.9212 3.7187 3.5163 3.3138

400033 5 - Prestressed Concrete 7.0000 6.8738 6.7475 6.6213 6.4950 6.3688 6.2426 6.1163 5.9901 5.7224 5.4547

SU Load Capacity Deterioration

Structure No. year 0 year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10

400001 99 99 99 99 99 99 99 99 99 98 97

400002 99 99 99 99 99 99 99 99 99 99 99

400003 99 99 99 99 99 99 99 99 99 99 99

400004 99 99 99 99 99 99 99 99 99 99 99

400005 99 99 99 99 99 99 99 99 99 99 99

400006 99 99 99 99 99 99 99 99 99 99 99

400007 99 99 99 99 99 99 99 99 99 99 99

400009 99 99 99 99 99 99 99 99 99 99 99

400010 41 41 40 39 38 38 36 34 33 31 30

400011 99 99 99 99 99 99 99 99 99 99 99

400012 99 99 99 99 98 97 96 95 95 94 93

400013 99 99 99 99 99 99 99 99 99 99 98

400015 99 99 99 99 99 99 99 99 99 99 99

400016 99 99 99 99 99 99 99 99 99 99 99

400017 99 99 99 99 99 98 97 96 96 95 93

400018 99 99 99 99 99 98 97 96 96 95 93

400019 99 99 99 99 99 99 99 99 99 99 99

400020 99 99 99 99 99 99 99 99 99 99 99

400021 99 99 99 99 99 99 99 99 99 99 99

400022 99 99 99 99 99 99 99 98 97 96 95

400023 99 99 99 99 99 99 99 99 99 99 99

400024 99 99 99 99 99 99 99 99 99 99 99

400025 40 40 40 40 40 39 38 37 36 36 35

400027 99 99 99 99 99 99 99 99 99 99 99

400028 99 99 99 99 99 99 99 98 98 98 98

400030 15 15 15 15 15 15 15 14 13 12 11

400031 99 99 99 99 99 98 97 96 96 95 93

400032 99 99 99 99 99 99 99 98 97 96 95


