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Abstract

ALIREZA BAFANDEH. Hierarchical Control Strategies for Spatiotemporally
Varying Systems with Application to Airborne Wind Energy. (Under the direction

of DR. CHRISTOPHER VERMILLION)

Wind energy represents a leading renewable resource for the production of clean

and sustainable electricity for on- and off-grid networks. Nevertheless, tower and

foundation costs, which typically represent about 30 percent of the total installation

cost of existing wind turbines, limit the operating altitude (hub height) of conventional

turbines to no more than 220m. Consequently, conventional systems are not able to

utilize significantly stronger winds that are present at higher altitudes. Airborne wind

energy (AWE) systems eliminate both the tower and foundation by using tethers and

a lifting body to reach higher altitudes where stronger wind exists. In the target

installation sites, it is desirable to maximize the percentage of total energy generated

from the wind, recognizing that the AWE system will need to be supplemented with

conventional sources. This leads to two critical control challenges: (i) Optimizing the

operating altitude of an AWE system to maximize the energy generated from the wind

and (ii) developing a supervisory controller for an integrated AWE-battery-generator

system, recognizing that the optimal control of the overall system requires strategic

coordination of the three elements.

This dissertation describes and validates, using real wind data, a statistical mod-

eling and hierarchical control approach to addressing the aforementioned challenges.

Specifically, physics-driven models are used to characterize the AWE system itself,

whereas statistical models are used to characterize the stochastically varying wind

profile and electricity demand. A hallmark of the proposed modeling approach lies

in the development surrogate regret metrics from these statistical models (termed

the energy deficit metric for a stand-alone AWE system and generator excess met-

ric for the integrated system), which provide estimates of the difference between the
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optimal output of the system and the existing output of the system. Ultimately,

these surrogate regret metrics are used to manage a balance between exploration

and exploitation of the spatiotemporally varying environment, through several novel

candidate hierarchical control structures. Each of the hierarchical control structures

fuses coarse, global control at an upper level with fine, local control at a lower level,

using a combination of model predictive control and extremum seeking tools.
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CHAPTER 1: Introduction

1.1 Wind Energy, Clean and Cheap

According to the U.S. Energy Information Administration [10], renewable energy

accounted for more than 10% of total energy consumption and about 15% of total

electricity generation in United States in 2016. These figures, along with numerous

studies, show that the fossil fuels are being replaced by renewable energy resources.

Wind is one of several clean and renewable resources with the capacity for displacing

fossil fuels. According to the American Wind Energy Association, the total energy

produced by wind turbines exceeded 5.5% of total US electricity generation in 2016

[11]. These facts and statistics demonstrate that wind energy is becoming a significant

player in the U.S. energy market.

1.1.1 Components of a Contemporary Wind Turbine

A typical wind turbine has the following components, which are shown in Figure 1.1:

Anemometer, blades, brake (mechanical, electrical, or hydraulic), gear box, generator,

high-speed shaft, low-speed shaft, nacelle, rotor, tower, wind vane, yaw drive, and yaw

motor.

The capital cost breakdown of these components is shown in Figure 1.2. It can

be seen that tower and foundation parts of a contemporary wind turbine are costly

and restricting, often representing as much as a one third of the whole system cost,

and more in remote environments [2]. Additionally, tower heights limit the achiev-

able altitude, whereas wind usually is stronger at higher altitudes. Transportation

and installation of the tower, along with implementation of the foundation, is time
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Figure 1.1: Components of a wind turbine (U.S. Department of Energy [1])

consuming and takes three to five months. These deficiencies of conventional wind

turbines motivate the need to develop a new system without the tower. The next

section introduces the technology of Airborne Wind Energy (AWE) systems, which

accomplishes this precise objective.

1.2 Airborne Wind Energy Systems

Wind is generally stronger and more consistent as the altitude from Earth’s sur-

face increases. Since wind power is a function of wind speed cubed, it is desirable to

operate a wind turbine at as high an altitude as possible to maximize the power pro-

duction. Joby Energy Inc. ([3]) has modeled tropospheric winds using the available

worldwide data for the years between 1979 and 2008, and developed global maps of

wind speed and wind power. Two sample global average wind power density maps are
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Figure 1.2: Capital cost breakdown of a typical wind turbine (The International
Renewable Energy Agency [2])

displayed in Figure 1.3. These maps indeed show that a significant increase in power

production will occur by moving the wind turbine to a higher altitude. In particular,

installing wind turbines at altitudes of 600 m or greater introduces many more at-

tractive potential wind farm sites. At these new heights, the energy production will

be high enough to economically justify an investment.

However, the higher altitude means a taller and heavier tower, and consequently

a stronger foundation. As a result, it is not cost effective to install a towered wind

turbine at these altitudes due to the extreme tower and foundation expenses. To

mitigate these extreme costs and still achieve high altitude operation, airborne wind

energy systems are being developed. The idea is to install the wind turbine on a

lifting body (a wing or aerostat) in order to reach higher altitudes and harness wind

energy with less cost. This type of wind system is called an Airborne Wind Energy

(AWE) system.
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(a)

(b)

Figure 1.3: Global average wind power density in kW/m2 for altitudes of (a) 120 m
(400 ft) and (b) 600 m (2000 ft) [3].
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1.3 Description of the Technology

AWE systems replace conventional towers with tethers and a lifting body (a kite,

aerostat, or rigid wing). In comparison with conventional systems that operate at

fixed altitudes, it is possible to adjust the altitude of an AWE system in order to

reach wind speeds that align more closely with the rated wind speed of the turbine.

This ability enables tethered systems to reach capacity factors of 50 percent or greater

(compared to 20-30 percent capacity factors seen by conventional systems) [12], while

operating with relatively high rated wind speeds and avoiding excessive wind speeds.

Researchers explored the use of wind turbines installed on kites as power sources as

early as the 19th century. However, Miles Loyd was the first person who quantified the

potential power production from airborne wind energy systems in 1980 [13]. There are

two major ways to harness the wind energy from tethered systems. In first setup, the

generated electricity must be transferred to the ground via conductive cables. This

approach is called Fly-Gen. Another technique considered by Loyd is to use the force

exerted by the lifting body on the tethers to generate the electricity using equipment

on the ground station, which is known as a Ground-Gen system. While companies

including Altaeros Energies [6], Google-based Makani [5], and Sky Windpower [14]

are developing systems which the generator is on the lifting body (Fly-Gen), some

other companies including Ampyx Power[15], Enerkite, Kitegen Research, Kitenergy

[16], and Windlift [17] generate electricity on the ground (Ground-Gen).

1.3.1 Ground-Gen Airborne Wind Energy Systems

A Ground-Gen AWE system operate in a two phase cycle. Electrical energy is

produced during the generation phase, while a small amount is consumed during the

recovery phase. A rope connected to the aircraft is wound around a winch that is

connected to an electric generator. The aircraft produces a lift force that, in turn,
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Figure 1.4: Generation phase and recovery phase of Ground-Gen airborne wind energy
systems [4]

produces the traction force, resulting in the rotation of the generator. During the

traction phase, a crosswind flight pattern is ideal because it maximizes lift, thereby

maximizing tether tension (Figure 1.4 (a)).

It is important that the generation phase produces more electrical energy than the

recovery phase consumes; ideally much more than the amount being consumed. The

crosswind flight mode produces a greater apparent wind on the aircraft, which results

in increased tension on the rope. During the recovery phase (Figure 1.4 (b)), motors

rewind the ropes to place the aircraft back into its original position in the sky.

1.3.2 Fly-Gen Airborne Wind Energy Systems

Fly-gen AWE systems produce electricity in the sky and transmit it to the ground

station using conductive cable(s). In these systems, a wind turbine is installed on the

wings of the plane (Figure 1.5 (a)), Aircraft (Figure 1.5 (b)), inside an aerostat body

(Figure 1.5 (c)), or in another configuration like the quadrotor shown in Figure 1.5

(d). The wind power harnessed by the rotor is converted to electricity via an airborne
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generator. This electrical power is conditioned by an inverter and transformer to re-

duce the electrical and heat waste inside the cables. Finally, electricity is transmitted

to the ground station and delivered to the grid or storage system there.

Figure 1.5: Different configurations of Fly-Gen systems. (a) Plane with four turbines,
designed by Makani Power [5]. (b) Aircraft composed of a frame of wings and turbines,
designed by Joby Energy [3]. (c) Toroidal lifting aerostat with a wind turbine in the
center, designed by Altaeros Energies [6]. (d) Static suspension quadrotor in auto
rotation, designed by Sky WindPower [4].

1.4 Control Opportunities for AWE Systems

There are two main mechanisms in the AWE literature for enhancing the energy

output of an AWE system: (1) moving the system in a crosswind motion by controlling

the aerodynamic surfaces and tethers, and (2) optimizing the operating altitude of

the AWE system.
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Figure 1.6: Altaeros Buoyant Airborne Turbine (BAT) [6]

1.4.1 Crosswind Flight

A large body of research focuses on applying crosswind motion to kite- and wing-

based systems in order to increase net energy output. For example, the generation

operating cycle of a KiteGen system, whose design is described in [18, 19, 20, 21],

is optimized in [22]. In [23], the non-convex optimal control problem of kite-based

AWE systems is replaced with a convex problem by introducing fictitious forces and

moments at critical stages of the dynamics. Traction force and output power of a

ground-based AWE system are maximized in [24] and [25] by optimizing general cross-

wind path parameters. Similarly, [26] optimizes the way-points that describe an AWE

system’s figure-8 crosswind path using an iterative learning control-based approach.

Authors of [27] show that the optimal performance under crosswind motion occurs

on the verge of closed-loop instability of the system. In [28] flight characteristics of

a laboratory-scale model of Altaeros Buoyant Turbine (BAT) are studied in a water

channel experimental setup. The same setup was used by [29] to evaluate the closed-

loop optimal control of a multi-tethered aerostat in crosswind motion. Crosswind
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motion has been also studied by other researchers in [30, 31, 32, 33, 34].

1.4.2 Optimize the Operating Altitude Trajectory

The possibility of harnessing more energy from wind by adjusting the altitude

of the AWE system is studied in a relatively smaller body of literature. Prior to

the research described in this dissertation, those who have examined the impact of

altitude adjustment ([35],[36]) had assumed a deterministic, monotonic wind shear

profile (wind velocity vs. altitude), which implies that the optimal operating altitude

is predictable (in reality, it is not, as evidenced by data presented in this work).

1.5 The Key Challenges in Altitude Optimization of AWE Systems

This section explores the key challenges in optimizing the operating altitude of an

AWE system to maximize the net power generation. First, we economically evaluate

the methods available for measuring the wind shear profile in real-time. Then, the two

main challenges in developing an optimal control solution to the altitude optimization

problem are introduced. These challenges originate from a spatiotemporally varying

and partial observable wind environment.

1.5.1 Why not simply measure the wind shear profile?

One may pose the following question: “If flying at an altitude where vw = vr is

so important, why not simply use a weather balloon or other type of wind speed

measurement device to measure the instantaneous wind velocity at different altitudes

(wind shear profile) instead of designing and implementing a controller that hunts for

the optimal altitude?”

Light Detection and Ranging (LiDAR) and Sonic Detection and Ranging (SODAR)
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systems are Doppler effect measurement devices, which can be used to measure the

wind velocity remotely. Another approach for measuring the wind speed involves in-

stalling and moving a weather balloon continuously to explore the space and measure

the wind velocity for different altitude in a short time. Unfortunately, according to

Report no. 79 published by World Meteorological Organization, the hourly cost of

using a wind profiler to measure the wind velocity in an onshore site is about 12.39e

($ 13.85) per hour [37]. The operation and maintenance of the profiler during the

lifetime of AWE system is another issue that must be considered. On the other hand,

developing a control system to optimize (in real-time) the power production of the

AWE system is a one-time effort that can utilize the available wind measurements

from the on-board anemometer that is already part of the system.

Table 1.1 shows a preliminary cost comparison for different wind profiling technolo-

gies, including LiDAR, SODAR, and a weather balloon to map the wind velocity at

different altitudes. An interest rate of 5% is considered in the calculation of cost. It

is also worth noting that the LiDAR system of Table 1.1 is only capable of measuring

wind speeds up to 200 m. Hence, the cost of a LiDAR system that is capable of

measuring wind speeds up to 1500 m is likely to be even higher.

Table 1.1: Cost Comparison for Different Technologies of Mapping Wind Velocity

Technology Capital Cost Annual Operational Cost Total Cost
LiDAR [38] $190,000 $32,000 $588,790
SODAR [37] $990,000 $36,000 $1,634,000

Weather Balloon $10,000 $10,000 $134,620

For the weather balloon approach, the costs of winches and cabling have also been

considered in the cost. Altaeros Energies estimates that the total cost of an AWE

system of 30kW capacity will be around $500,000. It can be seen that the cost of

the wind profiling hardware is considerable compared to the total cost of an AWE

system. Additionally, there are potential issues that could arise during operation of
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the wind profiling hardware. This motivates a control strategy that determines an

optimum altitude in real-time, using sensors that are already available, as opposed to

measuring the wind velocity at all altitudes within the working domain.

1.5.2 Partial observability

The previous subsection shows that it is not economically feasible to measure the

wind shear profile during the operation of an AWE system. Hence, wind speed is

only measurable with the anemometer or other wind measurement devices that are

installed on the AWE system. This means that the wind velocity is only known at the

operating altitude of the system, and the wind speed at other altitudes is unknown.

This makes the altitude optimization of AWE systems a partially observable problem.

1.5.3 Wind shear profile changes spatially and temporally

The optimal altitude for maximizing the net energy production in an AWE system

changes dynamically with the wind shear profile (i.e., wind speed vs. altitude). The

wind shear profile at lower altitudes is often assumed to follow a monotonic structure,

conforming closely to either a power law or logarithmic approximation [39]. However,

while these simplified wind shear models have been proven accurate for the prediction

of average wind shear profiles over long periods of time, they are often extremely inac-

curate for predicting instantaneous and short-term wind shear profiles. One example

of the non-conformity of the wind shear profile to well-known power and logarithmic

laws lies in the presence of low-level jets [40, 41]. Fig. 1.7 shows the instantaneous

wind shear profile based on the data from a wind profiler in Cape Henlopen State

Park in Lewes, Delaware [7]. This figure shows a complex wind shear profile between

100 m and 1600 m in the presence of a low level jet, which is an especially common

occurrence during warmer months.
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Figure 1.7: Instantaneous wind shear profile based on the data obtained from Dr.
Archer’s group at the University of Delaware [7]

This figure clearly shows that the wind shear profile is not only monotonic, but

also temporally varying [42]. Therefore, altitude optimization of AWE systems is a

challenging real-time optimization problem that must be solved in a spatiotemporally

varying, partially observable environment.

1.6 Problem Statement

The wind turbine of an AWE system, like all the other wind energy systems, has

a rated wind speed (vr) at which the power production is maximized. Higher wind

speeds will not increase the amount of energy produced, but they will increase the lift

and drag forces to the lifting body. Consequently, the amount of energy required to

control the altitude of the airborne system will increase due to bigger forces, resulting

in reduced net energy production. As a result, it is desirable to find the altitude at
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which the wind velocity is closest to the rated wind speed rather than just searching

for the altitude with the fastest wind. Fig. 1.8 compares the power curves for the

wind turbine alone and the net power output of a 100kW BAT with rated wind speed

of 12m
s
, operating at a constant altitude. This figure shows an increasing difference

between the net output power of the full AWE system and the power generated

by the wind turbine alone. This difference arises because a portion of the energy

output of the turbine is required to reject typical levels of atmospheric disturbances.

Additionally, while the power production of the turbine alone remains constant for

velocities greater than the rated wind speed (vr), the net power generation of the AWE

system decreases in this region because the energy required to maintain altitude in

the presence of disturbances increases with wind velocity squared (v2
w).

Because the wind shear profile is partially observable (wind speed is only measured

at the AWE system’s operating altitude), optimizing altitude involves a balance be-

tween exploration and exploitation. Exploration involves physically adjusting the

AWE system’s altitude to maintain an accurate estimate of the wind shear profile.

Exploitation, on the other hand, involves operating at the estimated optimal alti-

tude. Furthermore, for an integrated AWE-battery-generator system, it is possible to

prioritize exploration during times of low electricity demand and high energy storage

(when large amounts of wind energy production are unnecessary) and prioritize ex-

ploitation during high electricity demand or low energy storage (when large amounts

of wind energy production are highly valuable).

In light of these challenges, this dissertation focuses on two key problems in the

optimal control of an AWE system:

1. Optimization of the operating altitude of an AWE system in a partially observ-

able, spatiotemporally varying wind environment;

2. Optimal control of an integrated AWE-battery-generator system.
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Figure 1.8: Sample power output curve for the wind turbine alone and the full AWE
system. The maximum instantaneous power of the AWE system is produced when the
wind speed is close to vr, since greater wind speeds require more energy to reject the
disturbance and control the AWE system to desired altitude set-point under typical
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For this purpose, an integrated AWE system consisting of a 100kW Altaeros Buoy-

ant Airborne Turbine (BAT), a battery storage system and an auxiliary generator are

considered (see Figure 1.9).

1.7 Proposed Solution

For the purpose of optimally controlling an integrated AWE system, two candidate

“core” control tools are used in this dissertation, namely Lyapunov-based extremum

seeking (LSES) and model predictive control (MPC). These control tools are detailed

in Chapter 4. Comparing LSES and MPC control schemes, LSES is computationally
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Figure 1.9: Schematic of an integrated AWE system including the airborne turbine
(here Altaeros BAT [6]), battery, and auxiliary generator ([8]).
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cheap but only guarantees convergence to the local optimum. On the other hand,

MPC can use a global optimization which is capable of accounting for statistical and

historical measurements. However, achieving global optimality is contingent upon

using an exhaustive search or dynamic programming (DP) optimization for the MPC

operation. Not only is this computationally burdensome, but it is only global up to

the finite horizon length of the MPC optimization and the grid resolution used by the

underlying optimization technique. Unfortunately, fine grid resolution and long hori-

zon length wreak havoc on computational complexity. Based on these observations,

a fused hierarchical structure incorporating both LSES and MPC is introduced and

evaluated in this dissertation to leverage pros and address cons of the two control

techniques.

This hierarchical structure is based on a coarse, global optimization technique at

an upper level and a fine, local one in a middle control level. The low-level controller

in this proposed hierarchy is the flight controller. The structure of this controller and

the candidate control tools for each level of hierarchy used in altitude optimization

problem, are introduced in Subsections 1.7.1 and 1.7.2, respectively.

The power produced by renewable energy systems depends on the availability of

the renewable resource. The varying nature of wind velocity causes fluctuations in

the power delivery of an AWE system. Hence, a high-penetration AWE system typ-

ically must be integrated with an energy storage system. The ultimate objective for

an integrated AWE-battery-generator system is to minimize the excess energy that

is required from the auxiliary generator in addressing the electricity demand. There-

fore, in addition to developing controllers that seek to to maximize the net power

production of an AWE system, another set of candidate hierarchical structures that

minimize the excess generator energy have also been developed in this research. These

controllers are evaluated for both standalone and integrated AWE systems, and are

detailed in Chapters 5 and 6, respectively.
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1.7.1 Hierarchical Control Structure for Altitude Optimization of an AWE System

For altitude optimization of an AWE system, multiple candidate controllers are

built on a simple hierarchical strategy wherein a global (up to the horizon length

and grid resolution) computation provides an input to a fine, local controller. For

the hierarchical architectures considered in this work, Table 1.2 shows the controller

options for upper and middle levels. In the first candidate control strategy, an upper-

level coarse, global MPC selects an altitude set-point that dictates the local domain of

altitudes that can be explored by a mid-level LSES controller. In the second candidate

strategy, an upper-level coarse, global MPC selects an altitude that dictates the local

domain of altitudes that can be explored by a fine mid-level MPC optimization.

In these two controllers, the upper level MPC finds the global optimum up to the

grid resolution and finite horizon length, and the mid-level controller explores within

the optimal altitude “bin”. Finally, in the third candidate strategy, the upper-level

controller estimates the difference between the optimal power output of the system

and the output at the present altitude; this estimated difference, termed the surrogate

power deficit, is used to adjust the perturbation amplitude for a mid-level LSES

controller, and this hierarchical structure is termed globalized LSES (GLSES).

The hierarchical control structures for optimizing standalone and integrated AWE

systems are shown in Figs. 1.10 and 1.11, respectively. These block diagrams also

include a lower-level flight controller that regulates the altitude to its set-point, along

with a turbine torque controller. The turbine torque controller is similar to the system

described in [43], and the flight control system for the Altaeros BAT is discussed in

[44]. Because these lower-level controllers have been validated through simulations

and experiments in legacy work, they are not the focal point of this research.
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Table 1.2: Controller Choice for Each Level of Candidate Hierarchical Structures

Candidate Structure Upper level Mid-level

MPC – LSES Coarse MPC LSES

MPC – MPC Coarse MPC Fine MPC

GLSES Calculation of LSES perturbation LSES

based on surrogate power deficit

1.7.2 Controller Choices for Different Levels of the Hierarchy

One of the most prevalent methods for optimization of unknown systems is ex-

tremum seeking (ES). ES is a (typically) non-model-based control scheme that is

used to find the optimal operating point of an unknown system in real time [45].

Here, a modified ES control scheme is used, where the amplitude of the perturbation

signal is diminished upon convergence to the optimal point. This controller, termed



20

Lyapunov-based switched ES (LSES), is discussed in Section 4.1. Another control

tool for different levels of the hierarchical control structure is model predictive con-

trol (MPC), which is briefly described in Section 4.3.

One metric for evaluating the performance of the altitude controller is to calculate

how much more energy could be produced by selecting other altitudes as the setpoint.

This deficiency is termed the power deficit. However, finding the maximum available

power at each time step requires omniscient knowledge of the wind velocity over all

altitudes in the domain. In light of this, the power deficit is estimated by calculating

a metric named surrogate power deficit which is detailed in Section 3.3.1.

The proposed hierarchical control structure, as shown in Figs. 1.10 and and 1.11

and described in Chapters 5 and 6, includes the following components:

1. Model Predictive Control (MPC): One of the control choices for both the top and

middle levels is model predictive control (MPC). The coarse MPC is capable of

finding the global optimum in upper control level if a global optimization tool

is used. The local, fine MPC is used for the mid-level controller. The statistical

characterization of wind velocity used in MPC and the MPC controller are

developed and included in Section 3.1 and Chapter 4, respectively.

2. Lyapunov-Based Switched Extremum Seeking (LSES): Another candidate for the

middle control level is LSES, which is a computationally fast but local controller.

The use of LSES for altitude optimization of AWE systems is detailed in Chapter

4.

3. Calculation of Surrogate Metric: In the GLSES control scheme introduced in

Section 1.7.1, a surrogate deficit metric, which estimates the amount by which

the present operating condition falls short of the optimum, is calculated in

the upper level. This metric is used to adjust the amplitude and frequency

of the perturbation in the lower-level LSES. This surrogate metric is either an
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estimate of the difference between the maximum possible and current power

production (surrogate power deficit), or an estimate of the difference between

the minimum possible and current generator energy excess (surrogate generator

excess energy). These two surrogate metrics are detailed in Chapters 5 and 6.

4. Flight Controller : The lower-level flight controller regulates altitude to its set-

point, along with a turbine torque controller. The turbine torque controller is

similar to the system described in [43], and the flight control system for the

Altaeros BAT is discussed in [44]. Because these lower-level controllers have

been validated through simulations and experiments in legacy work, they are

not the focal point of this research.

1.8 Wind Shear Profile and electricity Demand Data

In order to design and evaluate candidate controllers for the altitude optimization

problem at hand, wind velocity and electricity demand data are required. In this

research, we used the real wind and load data as described in Subsections 1.8.1 and

1.8.2, respectively.

1.8.1 Wind Shear Profile

The wind data set used in this research includes wind velocity at 30 minute time

intervals, at 48 altitudes between 146 and 3000m, over the course of one year (2014).

Considering the practical limitations of AWE system flight altitude, the portion of

data involving altitudes up to 1km was considered for this research. Fig. 1.12 illus-

trates the variability and (common) non-monotonicity of the wind shear profile for

four sample days, plotted at 3 hour intervals. This figure demonstrates the progres-
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Figure 1.12: Sample real wind shear profiles based on real data from a wind profiler in Cape
Henlopen State Park, Lewes, Delaware. Selected dates: (a) January 4th, (b) Apr. 8th, (c)
March 5th and (d) March 20th, 2014 at three hour intervals [7]. While in some cases the
wind shear roughly conforms with the power law, (subplots(a) and (b)), there are many cases
at which the wind shear profile can be non-monotonic (subplots(c) and (d)). Additionally,
these plots clearly show that the wind shear profile exhibits significant temporal variability.
Moreover, the optimal operating point corresponding to a rated wind velocity of 12ms (which
is assumed in this paper), varies noticeably.

sion of the wind shear profile over a 24 hour period, with instantaneous wind shear

profiles plotted at each 3 hour interval. It can be inferred from this figure that the

wind shear profile at any given time does not fit neatly into a power law or logarithmic

approximation.

1.8.2 Electricity Demand Data

Real hourly electricity demand data for this study were obtained from the PJM

Interconnection website [46]. This data is for the same geographical location as the
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wind data. To emulate an AWE system configuration where the AWE system can

supply a large fraction of the total energy demand, the research results presented here

utilize a scaled load profile where the average electricity demand is two thirds of the

AWE system’s rated power.

1.9 List of Contributions

In this dissertation, candidate hierarchical structures are developed for altitude

optimization of an integrated AWE system. Specifically, this research makes the

following contributions:

1. A novel altitude optimization algorithm for an integrated AWE-battery-generator

system is developed;

2. AN LSES controller is applied in isolation to the partial observable, spatiotem-

porally varying problem of AWE altitude optimization;

3. A mechanism is developed for globalizing an initially local LSES controller;

4. A probability-based surrogate power deficit metric is introduced for standalone

AWE systems;

5. A probability-based surrogate generator energy excess metric is introduced for

integrated AWE systems;

6. Candidate hierarchical optimization strategies are simulated and verified for a

100kW AWE system, using real wind and electricity demand data for 15 days.



24

1.9.1 Dissertation Outline

This dissertation is organized as follows: Chapter 2 details the deterministic model-

ing tools required for the proposed controllers. These models characterize the energy

generation of an AWE system with integrated battery and generator. Statistical mod-

els are described in Chapter 3, including a conditional probability model for the wind

speed and details of the surrogate power deficit and surrogate generator excess energy

metrics. Chapter 4 introduces the candidate control tools for the upper and middle

levels in the hierarchical structure. Then, Chapters 5 and 6 detail the hierarchical

control structure for standalone and integrated AWE systems, respectively.



CHAPTER 2: Physical Modeling Tools

Because the focus of this dissertation lies in the optimal control of an integrated

AWE-battery-generator system, it is important for both simulations and control to

have adequate models of the AWE system (in terms of its power curve and control

energy required to adjust/maintain altitude), as well as the battery dynamics and

generator behavior.

2.1 The Energy Generation Model of an AWE system

An appropriately-designed altitude optimization should take into account not only

the energy generated by the turbine, but also the energy consumed in both adjusting

and maintaining the altitude of the AWE system. This results in an instantaneous

power generation function that contains three elements and is given as follows [47]:

Pnet = k1 min(vw(z), vr)
3 − k2v

2
w + Pz(vw, ż), (1)

where z is the operating altitude, vw(z) is the wind speed at the operating altitude,

vr is the turbine’s rated wind speed, and Pz is the instantaneous power required

for or regenerated by adjusting altitude. k1 and k2 are constant parameters that

depend upon the turbine’s power curve and flight control system (comprising both

the controller and the aerodynamics of the lifting body), respectively. Generally, the

power produced by a wind turbine can be modeled as:

Ptur =
1

2
ρAv3

wCP (2)

in which ρ is the air density, A is the rotor area, and CP is the power coefficient.
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Accordingly, k1 can be defined as:

k1 =
Ptur
v3

w

=
1

2
ρACP (3)

In order to calculate k2, it is important to consider that maintaining altitude re-

quires the tethers to apply a total force that overcomes the lifting force on the BAT.

The application of this force alone does not require energy - however, in the presence

of turbulence (or any wind environment that is less than perfect), small adjustments

are necessary to maintain altitude - the power required to make these adjustments is

proportional to the tension in the tethers. The lifting force on the aerostat body is

given by:

L =
1

2
ρArefv

2
wCL + Fb, (4)

where L is the total lift force, Aref is the reference area for the BAT, CL is the lumped

coefficient of lift, and Fb is the buoyant force. Under high wind conditions (under

which the tether tensions are significant), Fb is much smaller than the aerodynamic

lifting force, and the lifting force can be approximated by:

L =
1

2
ρArefv

2
wCL. (5)

Since the power expenditure for maintaining altitude is proportional to this lifting

force, that power expenditure, Pmaint, can be expressed as:

Pmaint =
1

2
ρArefv

2
wvaveCL, (6)

where vave is the average tether release speed over typical operation. Accordingly, k2

can be defined as:

k2 =
Pmaint
v2

w

=
1

2
ρArefvaveCL. (7)
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The power required to adjust altitude, Pz, is given as follows:

Pz(vw, ż) =


k3
ηm
żv2

w, ż ≤ 0

k3ηgżv
2
w, otherwise.

(8)

Here, ηm is the efficiency of the motors that drive the winches, ηg is the regenera-

tive efficiency of the winches, and k3 is a constant parameter that depends on the

aerodynamics of the lifting body and its trim pitch angle. Because any upward alti-

tude adjustment of the system must later be compensated with a downward altitude

adjustment (the system must land eventually), and because it is not the explicit objec-

tive of a system with airborne energy generation to strategically leverage additional

energy through regeneration on the ground, it is possible to simplify the objective

function for the system, which should be maximized, as follows:

P = k1 min(vw(z), vr)
3 − k2v

2
w − k̄3v

2
w|ż|, (9)

where k̄3 is a lumped parameter that is dependent on overall winch efficiency and

aerodynamics of the lifting body.

2.2 Battery Model and Generator Energy Calculation

In this study, we use a simple difference equation to model the battery storage

system. This is appropriate for high-level dynamic modeling of battery systems, as

discussed in [48]. Specifically, the battery state of the charge at time step k + 1,

denoted by Cb(k + 1), is equal to the previous state of charge of the battery plus

the amount of additional energy stored in or discharged from the battery, considering

charging and discharging efficiency of the storage system:
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Cb(k + 1) =


Cb(k)− 1

ηbat
Ebat(k), Ebat(k) > 0

Cb(k)− ηbatEbat(k), otherwise.

(10)

Here, Ebat(k) is the amount of energy discharged from the battery at step k, and ηbat

is the efficiency of the battery during charging/discharging .

In our formulation, Ebat(k) is the amount of energy discharged from the battery

to supply the balance of energy, termed the deficit, that is not provided by the wind

turbine. This energy deficit, denoted by Ed(k), is given by:

Ed(k) = (Ql(k)− Pw(k)) ∆t (11)

where Ql and Pw are electricity demand and wind turbine power output, respectively.

The energy supplied by the battery, which is limited by the state of charge of the

storage system, is given by:

Ebat(k) =


ηbatCb(k), Ed(k) > ηbatCb(k)

1
ηbat

(Cb(k)− Cmax), Ed(k) < 1
ηbat

(Cb(k)− Cmax)

Ed(k), otherwise

(12)

Here, Cmax is the maximum capacity of the battery.

In typical applications of integrated AWE system, fossil fuels are expensive, and it

is therefore desirable to address the electricity demand through the AWE system and

battery prior to resorting to the generator. Hence, the generator is considered as the

last option for energy supply. The generator is responsible to supply the remainder

of the electricity demand that is not supplied through either the wind turbine or the

battery:
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Egen(k) = max{0, Ed(k)− Ebat(k)} (13)



CHAPTER 3: Statistical Modeling Tools

In addition to modeling AWE power production, battery dynamics, and generator

behavior, it is of great use to develop statistical models that characterize the stochastic

properties of the wind shear and electricity demand profiles. It is also required to

assess the performance of the candidate controllers in real-time as they operate in a

partially observable environment. For this, we will describe in this chapter a surrogate

power deficit metric and a surrogate generator excess metric. These metrics are used

in the higher control level to evaluate how much better the mid-level controller can

perform.

3.1 Statistical Characterization of Wind Shear Profile

In this section, a statistical model for wind shear profile, based on historical data,

is described. The first subsection describes the spatiotemporal behavior of the wind.

Next, the basics of statistical wind shear profile characterization are discussed, and

finally, the appropriate mathematical structure for the modeling the conditional stan-

dard deviation of the statistical model is discussed.

3.1.1 Spatiotemporal Characterization of the Wind Shear Profile

Figure 3.1 shows the spatial variation of wind speed at 31 separate instances during

January, 2014. All the measurements were taken at a specific time, t0, during each

day (which happened to be midnight). To illustrate the spatial variability of wind

shear profiles taken at significantly different times (all at least 24 hours apart from

each other), Figure 3.1 plots the difference between the wind speed at a particular
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altitude, z, and the wind speed at a reference altitude, z0 (which is taken as 546m in

Figure 3.1), denoted by ∆vw,spatial(∆z, t0, z0):

∆vw,spatial(∆z, t0, z0) = vvw(t0, z0 + ∆z) (1)

−vw(t0, z0)

∆vw,spatial(∆z, t0, z0) increases with increasing ∆z. From an altitude optimization

perspective, this implies, unsurprisingly, that one’s ability to predict wind speed at a

particular altitude depends on the proximity of that altitude to ones where data has

already been gathered.

Figure 3.1: Spatial variation in wind speed, with respect to wind speed at a base
altitude (z0) of 546m (at 00.00 hour, i.e., midnight), for 31 days during the month of
January, 2014 [9].



32

Figure 3.2 shows the temporal nature of wind speed over the 31 days in Jan-

uary, 2014, at a constant altitude z0 = 146m. As with Figure 3.1, Figure 3.2 plots

the difference in wind speed between time t and a reference time t0, denoted by

∆vw,temporal(∆t, t0, z0):

∆vw,temporal(∆t, t0, z0) = vw(t0 + ∆t, z0) (2)

−vw(t0, z0).

Figure 3.2 shows that, given a measurement of wind speed at time t0, the prox-

imity of wind speed to vw(t0, z0) diminishes with increasing time. From an altitude

optimization perspective, Figures 3.1 and 3.2 show that in order to maintain accurate

knowledge of the wind shear profile, it is necessary to continually explore different

altitudes; otherwise, the uncertainty in wind speed grows to be very large. Large-

scale analysis of the data from Cape Henlopen can be (and was) used to quantify the

statistical variability of wind speed with respect to time and altitude, thereby pro-

viding the appropriate mathematical mechanism for encouraging exploration, which

is detailed in Section 3.1.

3.1.2 Statistical Wind Shear Profile Characterization

For spatiotemporal optimizations where the random variable is partially observable

in space (such as the altitude optimization problem, where wind speed is partially

observable in altitude at which AWE system is flying), an appropriate balance between

exploitation and exploration must be achieved. Exploitation involves making the best

decision given the current information. Exploration, on the other hand, involves

information gathering. In the case of AWE systems, exploitation involves using past

and present wind data to determine and go to the optimal altitude for maximum

energy generation. However, if the AWE system sits at a fixed altitude for a long
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Figure 3.2: Temporal variation of wind speed, with respect to base data taken at time
t0, at an altitude of 146m, for 31 days during the month of January, 2014 [9].

time, the knowledge of the wind velocity at altitudes it visited earlier becomes less

effective, as earlier wind velocity measurements could be very different from the wind

velocities at the present instant (see Figure 3.2).

To quantify the need for exploration, the statistical characteristics of the wind

shear profile are very important. Instantaneous wind velocity has traditionally been

characterized by 2-parameter Weibull distributions [49], 1-parameter Rayleigh distri-

butions [50], and 2-parameter log normal (LN2) distributions [51], all of which yield

reasonable statistical characterizations. In this work, we consider a 2-parameter log

normal (LN2) distribution, whose probability density function (PDF) and cumulative

density function (CDF) are:

f(x;µ, σ) =
1

xσ
√

2π
exp

[
−(lnx− µ)2

2σ2

]
, x > 0 (3)
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and

F (x;µ, σ) =
1

2
+

1

2
erf
[

lnx− µ
σ
√

2

]
(4)

respectively. Here, x is the random variable, and the parameters µ and σ are the

mean and standard deviation of ln(x). erf() is the error function from the normal

distribution.

In the AWE application, x is taken as the ratio of the wind velocity (vw) to a

reference wind velocity, v0:

x =
vw

v0

. (5)

In striking the appropriate balance between exploration and exploitation, we are

interested in understanding the value of new data in terms of predicting wind speed.

As such, we are interested in the conditional statistical characteristics of wind speed,

conditioned upon past and present measurements. These can be characterized through

a conditional mean and conditional standard deviation, denoted by:

µc , µ(ln(x(t, z))|D) (6)

and

σc , σ(ln(x(t, z))|D), (7)

respectively, where D represents a matrix of m previously-measured wind speeds and

corresponding measurement points. D is specified by:

D =


t0 . . . tm−1

z0 . . . zm−1

vw(t0, z0) . . . vw(tm−1, zm−1)

 . (8)
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To precisely characterize the aforementioned conditional statistics, D should include

all previously-acquired data points; however, for practical purposes, considering a

finite set m of recent points is sufficient to accurately approximate the quantities, as

distant past measurements provide little predictive value.

Available wind shear data was used to characterize the conditional distributions in

(6) and (7). Figure 3.3 provides the conditional standard deviation, σc, conditioned

upon a single data point, D = [ t0 z0 vw(t0, z0) ]T . The trends in the figure repre-

sent earlier qualitative observations that the predictability of wind speed diminishes

as time and altitude are taken farther away from previously-measured data points.

However, the data-based analysis presented in Figure 3.3 provides a quantification of

this phenomenon, which will be incorporated into the subsequent MPC-based altitude

optimization.

To describe the aforementioned conditional mean and standard deviation in a way

that is usable for the subsequent EMPC-based optimization, estimates of these quan-

tities, denoted by µ̂c and σ̂c, are parameterized as follows:

µc , µ(ln(x(t, z))|D) (9)

σ̂c(ln(x(t, z))|D) = m0

n−1∏
i=0

(1− e−m1∆tie−m2∆zi). (10)

Here i is the altitude bin number, t(i) is the time of latest wind speed measurement at

altitude z(i), and ∆ti and ∆zi represent the time that has passed since measurement

i and the difference in altitude between the present altitude and zi, respectively, i.e.:

∆ti = t− ti, (11)

∆zi = |z − zi|. (12)

While heuristic, the approximations of µ̂c and σ̂c in (9) and (10) capture important
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Figure 3.3: Spatial and temporal distribution of conditional standard deviation
σ(ln(x(t, z))|vw(t0, z0)), conditioned upon a single measurement of wind speed
vw(t0, z0), at time t0 (00.00 hour), altitude z0 (546m) [9].

properties that are observed in practice and in the plot of Figure 3.3, namely:

• The conditional mean of wind velocity at each altitude bin is equal to the latest

observation at that altitude (i.e., it is assumed that the most recently observed

wind will persist in the future);

• The conditional standard deviation increases with variation in time and altitude,

and asymptotes to a maximum value (m0), which is observed in the data;

• Availability of additional data points results in reduced conditional standard

deviation, reflecting an increase in prediction certainty with more data.

Available wind shear data was used to identify the values of m0, m1, and m2 in (9)

and (10) that minimize the squared error between actual and estimated conditional
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mean and standard deviation. Figure 3.4 provides the graphical representation of (9)

and (10), conditioned upon the same single measurement point as in Figure 3.3.

Figure 3.4: Modeled spatial and temporal distribution of conditional standard devi-
ation σ̂c(ln(x(t, z))|vw(t0, z0)), conditioned upon a single measurement of wind speed
vw(t0, z0) at time t0 (00.00 hour), altitude z0 (546m). [9]

3.1.3 Calculation of Expected Power as a Function of Expected Wind Velocity

Reference [52] suggests the use of a Taylor expansion to find the moments of a

function P of a random variable x, provided that P is sufficiently differentiable and

that the moments of x are finite:

E[P (x)] ≈ P (µx) +
P ′′(µx)

2
σ2
x (13)

var[P (x)] ≈ (P ′(µx))
2σ2

x (14)

where µx and σx are mean and standard deviation of ln(x), respectively, and x = v
v0
.
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The power generation function, as introduced in (9), is not differentiable at vr. To

overcome this problem, we approximate the power function at vr with a quadratic

function, and the first and second derivatives of P (v) with respect to the random

variable x at the rated wind speed are approximated as:

P ′(vr) ≈ 2avr + b (15)

P ′′(vr) ≈ 2a (16)

where xr = vr
v0
, and a and b are the coefficients of the quadratic fit to P at vr.

Consequently, the mean and standard deviation of available power in the ith altitude

bin are:

E[Pi(x)] =



(k1(v0µ̂i)
3 − (k2 + k3|ż|)(v0µ̂i)

2) + (3k1v
3
0µ̂i − (k2 + k3|ż|)) v2

0σ̂
2
i v < vr

(k1v
3
r − (k2 + k3|ż|)(v0µ̂i)

2)− (k2 + k3|ż|) v2
0σ̂

2
i v > vr

k1v
3
r − (k2 + k3|ż|)(vr)

2 + aσ̂2
i v = vr

(17)

var[Pi(x)] =



(3k1v0µ̂
2
i − 2(k2 + k3|ż|)µ̂i)2

v2
0σ̂

2
i v < vr

(2(k2 + k3|ż|)µ̂i)2 v2
0σ̂

2
i v > vr

(2avr + b)2σ̂2
i v = vr

(18)
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3.2 Load Forecasting

Short-term load forecasting has been extensively addressed in the literature [53].

Within the available load forecasting techniques proposed in the literature, this disser-

tation works with a combined forecast based on three forecasting techniques: (1) mul-

tiple linear regression (MLR), (2) autoregressive integrated moving average (ARIMA)

model, and (3) k-nearest neighbors (KNN) techniques. In other words, we fuse one

set of forecasts based on regression, one set of forecasts based on time-series analy-

sis, and one set of forecasts based on a machine learning technique, which is the K

nearest neighbors. Then, using the electricity demand data for years 2007 to 2012

as the training data, we forecast the load for the year 2013 using each of the indi-

vidual forecasting techniques. Finally, we use a sequential quadratic programming

(SQP) algorithm to assign weights to each individual forecast in the combined model.

These forecasting techniques are briefly described in the following subsections. The

electricity demand data are obtained from PJM [46], as described in Subsection 1.8.2.

3.2.1 Multiple Linear Regression

Multiple linear regression (MLR) forecasting has been extensively used for short-

term load forecasting. In this technique, load forecast is calculated using explanatory

variables such as weather and non-weather variables, which influence the electrical

load [54]. For this purpose, [55] introduced Tao’s Vanilla benchmark model:

ŷt = β0 + β1×11
1 M11×1

t + β1×6
2 D6×1

t + β1×23
3 H23×1

t +

β1×138
4 DtH

138×1
t + f1(Tt)

105×1 (19)

where β is the vector of coefficients,M11×1
t , D6×1

t , and H23×1
t are normalized month of

the year, day of the week, and hour of the day classification variables corresponding
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to the same hour t, respectively. Tt is the temperature at time t. We normalized the

variables before using them in the linear regression forecasting model.

In the model of (19), it is important to distinguish between quantitative and clas-

sification variables. Quantitative variables, like temperature, represent a quantity,

while classification variables are used for categorizing the observations. For example,

the day of the week variable here, categorizes the observations into 7 categories. In

fact, we just need to add 6 elements to the regressor vector representing each day.

Then, we check for each observation if it occurs in Sunday or not (0 or 1), in Monday

or not (0 or 1) and so on, and if all 6 elements are 0, it means that the Day is Sat-

urday. Therefore, Sunday and Saturday correspond to [1 0 0 0 0 0 ]T and

[0 0 0 0 0 0 ]T , respectively. Hence, β2 and Dt have 6 elements. Similarly,

the size of a month of the year and hour of the day are 11 and 23, respectively.

f1(t) is a nonlinear function of T and interaction between temperature and classi-

fication variables:

f1(Tt) = β5Tt + β6T
2
t + β7T

3
t + β8TtMt + β9T

2
t Mt+

β10T
3
t Mt + β11TtHt + β12T

2
t Ht + β13T

3
t Ht (20)

Therefore, the regressor vector to forecast the electricity demand using the Tao’s

Vanilla benchmark model has 284 elements.

Typically, the electric electricity demand at the current hour is affected by the

weather conditions in the recent preceding hours. Accordingly, [55] proposed to ac-

count for the recency effect by adding lagged temperature to the formulation above.

Specifically, this work introduced two sets of lag variables namely lagged temperature

variables (
∑

g f1(Tt−g), g = 0, 1, 2, 3, ...) and lagged daily moving average temperature

variables (
∑

d f1(T̃t,d), d = 0, 1, 2, 3, ...). T̃t,d is the daily moving average temperature
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of the dth day:

T̃t,d =
1

24

24d∑
i=24d−23

Tt−i (21)

Finally, the family of sister forecasting models based on the recency effect are built

by varying g and d:

ŷt = β0 + β1Mt + β2Dt + β3Ht + β4DtHt + f1(Tt)

+
∑
g

f1(Tt−g) +
∑
d

f1(T̃t,d) (22)

For the purpose of this research , we compared 9 MLR sister models by varying

g and d from 0 to 2, termed LinReg00, LinReg01, etc. where the first and second

numbers indicate g and d, respectively.

3.2.2 K Nearest Neighbors

K nearest neighbors (KNN) is a non-parametric method which is used in the ma-

chine learning community. The main idea is to find one or more similar points in the

feature space to classify the desired point according to these nearest neighbors. In

this paper, the feature space consists of the elements of the Tao’s Vanilla benchmark

introduced in 3.2.1. Specifically, we use the norm of the regressor vector ỹ, which is

defined similarly to (19):

ỹt = [1;M11×1
t ;D6×1

t ;H23×1
t ;DtH

138×1
t ; f1(Tt)

105×1] (23)

In this work, it is assumed that the load forecast at a given point in the feature

space is the simple average of the k nearest neighbors:
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Q̂l,kNN =
1

k

k∑
i=1

Q̂l,i (24)

Here, Q̂l,kNN is the load forecast based on the KNN method and Q̂l,i is ith nearest

neighbor of the desired point. We use k = 2 and k = 8 nearest neighbors, denoted

as 2NN and 8NN, respectively, as the members of the sister forecasts of this family.

These two sisters are selected based on the evaluation of error for the individual

forecasts for k = 1 to 10.

3.2.3 Autoregressive Integrated Moving Average Model

Time series approaches to load forecasting have been widely studied in the liter-

ature. The ARIMA model as a time-series technique uses load’s lag value to reflect

the variation of electricity demand. This model is comprised of two parts: autore-

gressive AR and moving average MA models. In the autoregressive model, AR(p),

the current value of the process is expressed as a linear combination of p previous

values of the process and an error term. In the moving average model, MA(q), the

current value of the process is expressed as a linear combination of previous error

terms. Non-stationary processes can be modeled by differencing the original process

to obtain a stationary time-series, which is called autoregressive integrated moving

average. Also, it is advantageous to use a seasonal ARIMA model for load forecasting

due to the periodic nature of the load [56]. Here, we use two ARIMA models, which

have the same values for AR lag of p = 7, MA lag of q = 6, and integrator lag of 1

and vary in the seasonality (s = 6 and s = 10), denoted as ARIMA6 and ARIMA10.

3.2.4 Combined Load Forecast

The combined load forecast model used in this paper consists of 9 linear regression

models, two KNN models, and two ARIMA models, as described above. Ultimately,

the load forecast Q̂ is the weighted average of the 13 individual forecasts:
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Q̂l =

nf∑
i=1

wiQ̂l,i (25)

where Q̂l is the load forecast, nf is the number of individual forecasts (here 13),

wi is the weight of ith forecast in the model, and Q̂l,i is the ith individual forecast

which is selected from 13 individual forecasts of LinReg00 to LinReg22, ARIMA6 and

ARIMA10, 2NN and 8NN. Since we ultimately use this combined load forecast model

in the upper level controller to estimate the surrogate generator excess energy over

a horizon length, we modified the combined model by varying the weights of each

individual forecast over the horizon:

Q̂l(k + j|k) =

nf∑
i=1

wi,jQ̂i(k + j|k) (26)

Here, Ql(k+ j|k) is the load forecast for j step ahead calculated at the kth time-step,

and wi,j is the weight of ith individual forecast in the jth time-step.

In order to find the optimum set of weights for this paper, we calculated all 13

individual forecast over a 4 time-step horizon for 8760 hours of year 2013 based on

the real load data of 2007 to 2012, as described in 1.8.2. Then we formulated the

following optimization problem to find the optimum weights:

minimize
w

MAPE =
1

n

n∑
i=1

(
|Ql,i − Q̂l,i|

Ql,i

)

subject to
13∑
i=1

wi,j = 1, j = 1, 2, ..., 4

0 � w � 1.

(27)

where MAPE is the mean absolute percentage error, and Ql,i and Q̂l,i are the actual

and foretasted electricity demand at step i, and n is the size of training data. The

optimization problem at hand has a nonlinear cost function and linear constraints.

Therefore, the optimum set of weights for individual forecasts in the combined forecast
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Table 3.1: Comparison of MAPE for Combined and 13 individual Forecast Models

Forecasting Model MAPE
ARIMA10 0.0855
ARIMA6 0.0556
LinReg00 0.0810
LinReg01 0.0731
LinReg02 0.0710
LinReg10 0.0787
LinReg11 0.0718
LinReg12 0.0707
LinReg20 0.0745
LinReg21 0.0697
LinReg22 0.0710
2NN 0.0707
8NN 0.0602
Combined Model 0.0419

model is obtained using sequential quadratic programming (SQP).

Table 3.1 compares the MAPE of the candidate forecast models and the combined

forecast model. This comparison is done by forecasting the electricity demand in 2013

using training data from 2007 to 2012. This table clearly shows that the combined

model is more accurate than each of the individual forecasts.

3.3 Real-Time Performance Assessment via Surrogate Power Deficit and

Generator Excess Metrics

In this section, surrogate power deficit and generator excess metrics are developed

to assess in real-time the performance of standalone and integrated AWE systems,

respectively.
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3.3.1 Surrogate Power Deficit Metric

In optimizing altitude, our goal is to operate the AWE system at an altitude where

the net power generation is maximized. As such, we wish to minimize the difference

between the power output of the system at the altitude set-point and the maximum

available power over all allowable altitudes. We term this quantity the power deficit.

However, calculating the power deficit requires knowledge of the wind velocity over all

allowable altitudes. Because wind speed is only measurable at the system’s operating

altitude, this information is not available. To address this issue of partial observability,

we propose a surrogate metric that correlates closely with the power deficit but does

not require the omniscient knowledge.

To derive a surrogate power deficit metric that can be computed under partial

observability, we quantize the domain of allowable altitudes into finite number of

“bins”, then use the conditional probability model of available power at different

altitude bins to estimate the power deficit. To do so, we derive a 95% confidence

interval band for power output for each altitude bin. Then, we calculate the portion

of this interval that exceeds the power production at the current altitude. Finally, we

sum these portions over all altitude bins. The confidence interval is parameterized as

follows:

Ilb(i) = max (0, E[Pi]− 1.96 ∗ σi) (28)

Iub(i) = min (Pr, E[Pi] + 1.96 ∗ σi) (29)

CFi = [Li, Hi] (30)

where Ilb and Iub are the boundaries of the confidence interval of the ith altitude

bin, CFi is the 95% confidence band, and E[Pi] and σi are conditional probability

characteristics of the available power at altitude bin i.
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Figure 3.5: Sample visualization of 95% confidence intervals for available power at
different altitude bins. Here, it is assumed that the AWE system is flying in bin no.
4. The portions of the confidence band beyond 70 kW (which are bold) are used in
computing Psur.

The surrogate power deficit Psur is calculated using the formula:

Psur =
n∑
i=1

max ((Iub(i)− Pcur), 0) . (31)

Here n is the number of bins, Iub(i) is the upper bound for confidence interval in

the ith altitude bin, and Pcur is the current power output of the system. Fig. 3.5

illustrates how we calculate this surrogate metric.

To evaluate the correlation between this surrogate power deficit and the actual

power deficit, the actual and surrogate power deficits are plotted in Fig. 3.6 over

a period of one day. The actual power deficit Pact is the difference between the

maximum available power at the given time in the available altitude domain:

Pact = max(Pi)− P (z), i = 1, ..., n (32)



47

0 500 1000 1500

Time (min)

0

1

2

3

4

5

In
s
ta

n
ta

n
e
o
u
s
 P

o
w

e
r 

D
e
fi
c
it
 (

W
)

10
4

0

0.5

1

1.5

2

S
u
rr

o
g
a
te

 M
e
tr

ic
 (

W
)

10
5Power deficit evolution vs CI-based metric

Actual Power Deficit

Surrogate Metric

Figure 3.6: Actual vs. surrogate power deficit over a 24 hour simulation.

where Pi is the available power at altitude bin n.

Fig. 3.6 shows that the surrogate power deficit follows the changes in actual power

deficit closely. Because the surrogate power deficit is summed over all altitude bins

in equation (31), its raw magnitude will depend linearly on the number of bins used

for the computation. In this case, where 10 bins are used, the Psur is approximately

one order of magnitude larger than Pact. It is important to note, however, that it

is not the magnitude of the surrogate power deficit that is important but rather its

correlation with the actual power deficit.

The surrogate metric defined here is similar to the idea of the upper confidence

bound (UCB) used in machine learning. Both algorithms are based on the principle

of optimism in the presence of uncertainty. In UCB algorithm, the next action is are

chosen assuming that the environment is as nice as possible. The surrogate metric is

also considers the same condition. However, the difference between the two algorithm

lies in the decision that is made after bound is calculated. The UCB algorithm will go
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to the spatial location with the highest upper confidence bound. In essence, the UCB

algorithm is optimistic in the face of uncertainty; it assumes that the best possible

outcome will arise from its actions, recognizing that even if the result is not as good

as the optimistic prediction, at least the uncertainty will go down. The problem with

using such a strategy in the case of altitude optimization is that one pays a significant

price in terms of energy expenditure and lost opportunity in pursuing such a strategy.

To address this issue, the algorithms described herein merely use the derived bounds

to guide either the perturbation size in ES or the cost function in MPC.

3.3.2 Surrogate Generator Excess Metric

In an integrated AWE-battery-generator system, it is desirable to minimize the

energy that is required from the auxiliary generator rather than just maximizing

the net power production. While this difference may initially appear to be subtle,

focusing on generator energy expenditure enables exploration during times of low

electricity demand, benefiting the system at future time instances (due to increased

certainty regarding the wind shear profile). Therefore, in place of the surrogate power

deficit metric introduced in Section 3.3.1, a new metric is developed in this chapter to

evaluate the performance of the mid-level controller. This metric, termed surrogate

generator excess energy Msur, is based on the calculation of energy required from the

auxiliary generator.

In order to determine Msur, we need to calculate Ẽgen, which is a vector of the

difference between energy expenditure of the auxiliary generator and the minimum

energy that could be expended by the generator by operating at the optimum altitude

Êgen(i, k + j|k):
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Ẽgen(i, k + j|k) = Êgen(i, k + j|k)(i)−min(Cmax−

Cbat(k + j|k), Pw(k + j|k)∆t) (33)

where Êgen(i, k + j|k) is the energy expended by the auxiliary generator, calculated

at current time-step k, under the condition that the AWE system is flying in altitude

bin i at time step k + j.

Then the new confidence intervals are calculated as:

Ilb(i, k + j|k) = Esur(i, k + j|k)− 1.96σ(i) (34)

Iub(i, k + j|k) = Esur(i, k + j|k) + 1.96σ(i) (35)

where Ilb(i, k + j|k) and Ilb(i, k + j|k) are the upper and lower confidence interval

bounds for the surrogate metric for the time-step k+j, calculated at current time-step

k. In order to calculate Êgen(i, k + j|k), it is required to forecast energy production

and electricity demand over the horizon. Here, we assume that the operating altitude

of the AWE system is constant over the horizon, and electricity demand is changing.

Therefore, the statistical properties of the wind velocity are calculated for the same

altitude bin. Consequently, the mean value of the wind velocity will be constant

because new measurements over the future horizon are not yet known. On the other

hand, the uncertainty increases for all altitudes in domain other than the current

altitude as j increases, because the time passed from the latest measurement at those

altitudes increases. The load forecast, denoted as Q̂l, is used in calculation of expected

energy expenditure of the generator as detailed in (11).

The surrogate metric, Msur, is sum of the portions of these confidence intervals
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that are less than the current energy output of the generator Egen:

Msur =
N∑
j=1

n∑
i=1

max(0, Egen − Ilb(i, k + j|k)) (36)

where N is the number of time-steps in the horizon.

This process is illustrated in Fig. 3.7, where the upper and lower plots demonstrate

the calculation procedures of the surrogate power deficit and surrogate generator

excess energy metric, respectively.
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Figure 3.7: Sample visualization of 95% confidence intervals for generator excess
energy for a single time step. Here, it is assumed that the AWE system is flying in
bin no. 4.

One key difference between the two surrogate metrics lies in the fact that the surro-

gate power metric is only calculated for one step ahead, while effective implementation

of surrogate generator excess energy metric requires this metric to be calculated over

a receding horizon. The necessity of the receding horizon calculation arises mainly

because the one step calculation does not incentivize exploration when the wind and
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battery resources alone can address the full electricity demand.

Calculation of generator energy over a receding horizon requires a forecast of the

electricity demand for future time steps. In this research, we use short-term load

forecasting techniques. The short-term load forecasting used in this work is detailed

in section 3.2. There, a combined load forecast model is built based on 13 individual

forecasts. The first set of load forecasting models is based on a linear regression model

with Tao’s Vanilla benchmark model. These 9 sister forecasts are created by choosing

the number of hourly and daily averaged lags from 0, 1, and 2, termed LinReg00 to

LinReg22, where the first number denotes the number of hourly lag and the second

is the number of daily averaged lags. The second forecast set consists of two sisters

from the k-nearest neighbor forecasts family, termed 2NN and 8NN. Finally, two

sister forecasts from the ARIMA model family, termed ARIMA6 and ARIMA10 are

used, where the degrees of autoregressive and moving average models are 7 and 6,

respectively, the integrator lag is one, and the seasonality is chosen between 6 and 10.

Since we ultimately use this combined load forecast model in the upper level con-

troller to estimate the surrogate generator excess energy over a horizon length, we

modified the combined model by varying the weights of each individual forecast over

the horizon:

Q̂l(k + j|k) =

nf∑
i=1

wi,jQ̂i(k + j|k) (37)

Here, Ql(k+ j|k) is the load forecast for j step ahead calculated at the kth time-step,

and wi,j is the weight of ith individual forecast in the jth time-step.

In order to find the optimum set of weights for this paper, we calculated all 13

individual forecast over a 4 time-step horizon for 8760 hours of year 2013 based on

the real load data of 2007 to 2012 as described in 1.8.2. Then we formulated the

following optimization problem to find the optimum weights:
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minimize
w

MAPE =
1

n

n∑
i=1

(
|Ql,i − Q̂l,i|

Ql,i

)

subject to
13∑
i=1

wi,j = 1, j = 1, 2, ..., 4

0 � w � 1.

(38)

where MAPE is the mean absolute percentage error, and Ql,i and Q̂l,i are the actual

and foretasted electricity demand at step i, and n is the size of training data. The

optimization problem was solved by sequential quadratic method.



CHAPTER 4: Candidate Control Tools

In this chapter, the candidate control tools upon which the proposed hierarchical

control structure is built are described. The first candidate tool is a Lyapunov-based

switched extremum seeking (LSES) controller, which is detailed in Section 4.1. The

second controller used in this research is model predictive control (MPC), which

is described in Section 4.3. In order to assess the real-time performance of theses

controllers, the surrogate power deficit metric is used. This metric is detailed in

Section 3.3.1.

One of the most prevalent methods for optimization of unknown systems is ex-

tremum seeking (ES). ES is a (typically) non-model-based control scheme that is

used to find the optimal operating point of an unknown system in real time [45]. ES

has been applied to both static plants ([57, 58, 59]) and dynamic ones ([60, 61, 62]).

ES strategies typically employ a periodic perturbation signal to hunt for an optimal

operating condition. A well-documented challenge of perturbation-based extremum

seeking occurs when the controller has identified the optimum setpoint. At this point,

the system will enter a limit cycle around the optimal point rather than converging

to the optimal value. Because of this, optimality is sacrificed because the controller

operates around, but not at, the optimal point. Furthermore, substantial control

effort is expended in applying continual perturbations around the optimal operating

point.

In response to the aforementioned challenges surrounding conventional ES, [63] and

[64] have developed a Lyapunov-based switched extremum Seeking (LSES) strategy

that decreases the amplitude of the perturbation when convergence upon the optimal

operating point has been detected. This consequently diminishes the size of the limit
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cycle around the optimal point. The aforementioned LSES strategy, which has been

applied to maximum power point tracking (MPPT) for photo-voltaic (PV) arrays in

[63], [64], [65], [66], and [67], represents an ideal formulation for the present altitude

optimization problem. This is because it is essential to optimize net power output,

which requires a balance between hunting for the optimal altitude and curtailment of

the control energy that is expended in hunting once the optimal altitude has been con-

verged upon. Section 4.1 details an initial LSES scheme that has been implemented

and validated in isolation within this research.

On the other hand, MPC is capable of employing global optimization tools for

minimizing its underlying cost function, which makes it a seemingly strong candidate

control tool for the altitude optimization problem. However, the global nature of the

solution is limited to the finite horizon length of the MPC optimization and the grid

resolution used by the underlying optimization scheme. This becomes particularly

important when the optimization is performed over a partially-observable randomly-

varying environment, where uncertainty (modeled through a standard deviation of

variance of an estimated state) must be included as a part of the system state in

order to use deterministic optimization tools. An MPC formulation for the altitude

optimization problem at hand is described in details in Section 4.3.

4.1 Extremum Seeking Control

The first attempt to solve the altitude optimization problem in this work was to

implement extremum seeking (ES) controller in isolation to optimize the net energy

production of the AWE system. This controller is also implemented as a part of the

final hierarchical structures, as described in Chapters 5 and 6. In this chapter, after

a brief introduction of conventional ES and Lyapunov-based ES (LSES), the control

strategy used to optimize the energy production without having a prior knowledge of

the wind shear profile is described.
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4.1.1 Mathematical Formulation

Extremum seeking control is a (typically) non-model-based real-time optimization

approach for systems where the knowledge of the optimal operating point is limited

or unknown. A conventional ES scheme, which is described in [45], is illustrated in

the context of the present altitude optimization problem in Fig. 4.1. Variables of the

block diagram are introduced in Table 4.1.

4.1.2 Conventional Extremum Seeking Control

In the conventional configuration of ES and in order to find the optimal control

input of z∗, the signal z is formed by adding a sinusoidal perturbation a0 sin(ωt) to

ẑ, where ẑ is the estimated value of the optimal operating altitude. Upon driving

the physical system to the altitude, z, the AWE system produces a net power output

approximated by P , which is a function of the wind speed at altitude z:

P = k1 min(vw(z), vr)
3 − k2v

2
w − k̄3v

2
w|ż| (1)

The calculated output then passes through a washout filter and is multiplied by

the same perturbation signal, sin(ωt). The resulting signal passes through a low-pass

filter and then an integrator, and a new estimate of ẑ is produced in the direction of

increasing P .

4.1.3 Lyapunov-Based Switched Extremum Seeking Control

While ES converges to a local minimum or maximum (in an average sense) of an

unknown nonlinearity in real-time, conventional ES enters a limit cycle around this

point instead of asymptotically converging. In order to mitigate losses in optimality

that result from this continual sinusoidal perturbation around the optimum, [63]

proposes a switched control scheme that reduces the size of perturbation by decreasing

the amplitude a0 after converging within the interior of a neighborhood around the

optimal point. The switch proposed in [63] is determined by leveraging a Lyapunov
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Figure 4.1: Conventional extremum seeking control scheme, as applied to AWE sys-
tem altitude control.

function designed from an averaged model of the original ES feedback system to

estimate the proximity to the optimal point.

In the context of the altitude optimization application at hand, a block diagram for

the LSES strategy is shown in Fig. 4.2. When the output of the Lyapunov function is

greater than the switch threshold, it means that the signal z is not close enough to z∗,

and the amplitude of the perturbation remains equal to a0. ES in this mode continues

to apply a full-sized perturbation (of amplitude a0) until converging closely enough

to z∗. The switch state changes once z is within a sufficiently small region around z∗.
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Table 4.1: Parameters in ES Block Diagram

Variable Description Unit
z Altitude m
P Objective function (1) kW
zsp Setpoint altitude m
η Low-level noise kW
ẑ Estimated altitude m
ξ Filtered control input m/s
z∗ Optimal altitude set-point m
xa Average state variable -
K Integrator gain -
ω Perturbation frequency rad/s
ωH High-pass filter frequency rad/s
ωL Low-pass filter frequency rad/s
θ Pitch angle deg
φ Roll angle deg
um Control command m/s
a0 Perturbation amplitude m

In this region, the amplitude of perturbation decays. The full-sized perturbation will

be reinstated once z∗ changes and z becomes sufficiently different than the optimum

altitude.

The Lyapunov function used in LSES is a function of an averaged (over one oscil-

lation period) state variable, given by:

xa =
ω

2π

∫ t

t− 2π
ω

x(τ)dτ, (2)

where:

x = [z̃ ξ η̃]T . (3)

In defining the state variable in (3), a new coordinate system is used, which shifts the

equilibrium/optimal operating point to the origin:
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z̃ = ẑ − z∗ (4)

η̃ = η − P (z∗) (5)

The switch shown in the Fig. 4.2 operates based on the value of a quadratic Lyapunov

function, V (xa), where V (xa) provides a measure for the proximity of the averaged

values (over one extremum seeking period) of ẑ and η to their estimated optimal

values:

V (x) =
1

2
xT P̄ x, (6)

In this work, V is constructed by solving the following Lyapunov equation for P̄ under

the conditions Q = QT � 0:

P̄ Ja + JTa P̄ = −Q (7)

where Ja is the Jacobian that approximates the system dynamics near the equilibrium

and has been introduced by [64] as follows:

Ja =


0 K ′ 0

ω′
L

2
h′′(0)a0 −ω′L 0

ω′Hh
′(0) 0 −ω′H


Here, K ′, ω′L , and ω′H are positive constants:
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K ′ =
k

ω
, (8)

ω′L =
ωL
ω
, (9)

ω′H =
ωH
ω
, (10)

and the function h(Θ) = P (z∗ + Θ)− P (z∗) satisfies the following properties:

h(0) = 0 (11)

h′(0) = P ′(z∗) (12)

h′′(0) = P ′′(z∗) < 0 (13)

h′′′(0) = P ′′′(z∗) < 0 (14)

Ultimately, the size of the perturbation signal, a(t), decays when V (xa) is suffi-

ciently small but remains full-sized otherwise, according to the following relationship:

a(t) =


a0 if V (xa) > ε

max{amin,−γ
∫ t
tsw
a(τ)dτ}, if V (xa) ≤ ε

(15)

where a(tsw) = a0, xa is the state variable which is defined in (2), V (xa) is the value

of Lyapunov function at the point xa as defined in (6), γ is the rate of shrinking for

perturbation amplitude, tsw is switching time, and amin is the minimum allowable

perturbation size.

Remark 1 (Estimation of z∗). Given that the optimum altitude (z∗) and correspond-

ing power output (P (z∗)) are unknown a priori, an estimation procedure is used to
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Table 4.2: Parameters in LSES Block Diagram

Variable Description Unit
z Altitude m
P Objective function (1) kW
zsp Setpoint altitude m
η Low-level noise kW
ẑ Estimated altitude m
ξ Filtered control input m/s
z∗ Optimal altitude set-point m
xa Average state variable -
K Integrator gain -
ω Perturbation frequency rad/s
ωH High-pass filter frequency rad/s
ωL Low-pass filter frequency rad/s
θ Pitch angle deg
φ Roll angle deg
uw Control command m/s
a0 Perturbation amplitude m
tsw Switching time s
ε Switching threshold -
γ Amplitude shrink factor -

calculate approximate values of z∗, P (z∗), h′, and h′′ to be used in (4), (5) and (7).

To do this, h′ and h′′ at the current altitude are estimated using numerical differenti-

ation based on the current and previous values of P and P ′. Having the values for P ′

and P ′′ at the current altitude, z∗ is estimated via extrapolation, approximating the

power output to be locally quadratic in z. Previous works ([63] and [64]) have found

the algorithm to be robust to estimation errors.

4.2 Stability Analysis and Implementation of LSES

This section includes the design and implementation of an LSES controller in isola-

tion for the altitude optimization problem. Subsection 4.2.1 begins with the stability

and convergence analysis of LSES control schemes for this application. Then, the

altitude control results using an isolated LSES controller show how this approach
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improves the net energy generation.

4.2.1 Stability of LSES

In this subsection, sufficient conditions for stability of the proposed LSES scheme

are presented based upon results from [60] and [63]. Then, it is shown that these as-

sumptions hold for the altitude optimization application at hand. In order to conduct

a rigorous stability analysis, a simplified model for the altitude adjustment dynamics

is utilized and is depicted in Fig. 4.3. Because it is well-established through both sim-

ulation and experimental results (see [44]) that altitude tracks the specified set-point,

zsp, subject to rate limitations, the simplified altitude adjustment dynamics include

only a rate limiter and first-order dynamics that characterize the approximate me-

chanical system time constant. It is the wind shear profile that adds the complexity

to the optimization problem and motivates the use of LSES.

As a first step to assessing the general stability conditions for LSES, we consider

the following general nonlinear system:

χ̇ = f(χ, u), (16)

y = h(χ)

where χ ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output, and f : Rn → R

and h : Rn → R are smooth. [60] proves stability of conventional ES for the general

system structure described above in (16). [63] shows that applying a Lyapunov-based

switch to the ES using an averaging operator does not affect the stability of the

system. The stability criteria presented by [60] will be reviewed first, and then the

validity of these criteria for our problem will be checked.

Suppose one uses a smooth control law that is parameterized as follows:

u = α(χ, θ), (17)
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χ̇ = f(χ, α(χ, θ)), (18)

where θ is a control parameter. [60], [63], and [64] show that the stability of ES for

the general nonlinear dynamic system of (16) is achieved under the following assump-

tions, which will be shown to hold for our particular altitude optimization problem:

Assumption 1: There exists a smooth function l : R→ Rn such that:

f(χ, α(χ, θ)) = 0 if and only if χ = l(θ) (19)

Assumption 2: For each θ ∈ R, the equilibrium x = l(θ) of the system (18) is

locally exponentially stable with decay and overshoot constants uniform in θ.

Assumption 3: There exists θ∗ such that:

(h ◦ l)′(θ∗) = 0 (20)

(h ◦ l)′′(θ∗) < 0 (21)

Under the aforementioned assumptions, it is shown in [60] that the control parameter

and states converge to their optimal values and corresponding steady states, under a

general ES algorithm. It is shown in [63] that this same result extends to the LSES

algorithm, as long as Assumptions 1-3 are satisfied.

The altitude optimization problem at hand represents an analog to the general

LSES framework, where the general LSES variables and corresponding altitude optimization-

specific variables are summarized in Table 4.3. The following proposition establishes

the local exponential stability of the AWE system around the optimal altitude, de-
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noted as z∗, under the specific strategy that is depicted in Fig. 4.3:

Proposition 4.2.1. Consider the altitude optimization system of Fig. 4.3, under As-

sumptions 1-3, with variable equivalences summarized in Table 4.3. There exists a

ball of initial conditions around the point (z, ẑ, ξ, η) = (z∗, z∗, 0, P (z∗)) and constant

ω̄, δ̄, and ā such that for all ω ∈ (0, ω̄), δ ∈ (0, δ̄), and a ∈ (0, ā), the solution

(z(t), ẑ(t), ξ(t), η(t)) exponentially converges to an O(ω + δ + a)-neighborhood of that

point. Furthermore, P (t) converges to an O(ω + δ + a)-neighborhood of P (z∗).

Proof 4.2.1. The proof of proposition 4.2.1 requires verification of the validity of

Assumptions 1-3 on the specific altitude optimization problem. To verify Assumption

1, note that the system of Fig. 4.3 can be described by:

ż =


1
τ
(zsp − z), rmin ≤ 1

τ
(zsp − z) ≤ rmax,

rmax,
1
τ
(zsp − z) > rmax,

rmin,
1
τ
(zsp − z) < rmin.

(22)

where rmax is the maximum achievable rate of altitude variation. Clearly, ż = 0 if

and only if z = zsp, thereby satisfying Assumption 1. For initial altitudes sufficiently

close to zsp, the dynamics are linear with a single eigenvalue at λ = − 1
τ
, from which

it follows immediately that the dynamics are uniformly (locally) exponentially stable,

thereby satisfying the conditions of Assumption 2. Noting that P (vw, ż) is a function

only of vw at equilibrium, it immediately follows from examination of the wind shear

profile at optimal altitude that P ′
(z∗) = 0 and P ′′

(z∗) < 0. Therefore, Assumption 3

is satisfied, which completes the proof. �
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Table 4.3: Analogy Between Theorem 3.1 and Altitude Optimization Problem

Generic Variable Altitude Optimization Variable
θ zsp
χ z
y(χ) P (z)
α(χ, θ) zsp
l(θ) z

4.2.2 Results of Implementing LSES Control Scheme

Results of the LSES control strategy shown in Fig. 4.3 have been obtained for the

wind data provided in [7] and described in Section 1.8.1. Relevant parameters for

calculating instantaneous power production (9), as well as LSES-specific parameters,

are summarized in Tables 4.4 and 4.5:

Table 4.4: Cost Function Parameters

Parameter Description Value

vr Rated wind speed of the turbine 12 m/s

k1
Coefficient of power (related to the power
curve of the turbine) 0.0579

k2
Coefficient of penalty for power required in
winches motors 0.09

k3
Coefficient of power required to maintain the
altitude 1.08

In order to demonstrate the advantages of the LSES algorithm proposed in this

paper, the system performance under four different control configurations, termed

“scenarios” are compared.

Scenario 1: Minimum Constant Altitude (146m): The first scenario is intended to

be representative of conventional towered wind turbines. For this comparison, data

from the lowest available altitude of 146m is used. This altitude is approximately
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Table 4.5: Extremum Seeking Parameters

Parameter Description Value Unit
k Integrator gain 3e− 5 kW/m
a Perturbation magnitude 10 m
ω Perturbation frequency 0.0262 rad/sec
ωH High-pass filter (washout filter) frequency 0.0236 rad/sec
ωL Low-pass filter frequency 0.0024 rad/sec
ε Switching threshold 1e− 9 -

equal to the hub height of the highest towered systems.

Scenario 2: Offline Optimum Constant Altitude: The second scenario involves fly-

ing the AWE system at an optimum constant altitude. This optimal constant altitude

was determined by off-line calculation of energy generation at different altitudes using

given wind data. It is worth noting that this calculation requires knowledge of the

future wind conditions and is therefore not practically implementable; however, this

scenario represents an upper bound on the potential of any constant altitude algo-

rithm. For the time period of interest in this work, the optimum constant altitude

was calculated to be equal to 1236m.

Scenario 3: Conventional Extremum Seeking Control: The third control algorithm

employs an ES controller to find the optimum altitude. The conventional ES control

strategy used in this algorithm addresses the unknown nature of the wind shear profile

and applies a sinusoidal perturbation to track the optimal altitude.

Scenario 4: Lyapunov-Based Switched Extremum Seeking Control: The fourth sce-

nario is LSES-based altitude optimization, which curtails the size of the ES perturba-

tion signal to minimize energy consumption once an optimal power generation point

has been reached.

Cost function parameters are given in Table 4.4, and Table 4.5 shows the parame-

ters used in conventional and Lyapunov-based switched ES. The maximum allowable
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altitude was set to be 1600m, and the run-time was set to 15 days.

Fig. 4.4 and Fig. 4.5 show the resulting altitude path for the four different sce-

narios. Fig. 4.5 shows a zoomed-in version of Fig. 4.4, which shows how the size

of perturbation shrinks in the LSES control strategy as the AWE system approaches

the optimal altitude.

Remark 2 (Convergence to Optimal Altitude). As described in Proof 4.2.1, LSES is

locally, not globally convergent. Consequently, the altitude path of conventional ES

and LSES shown in Fig. 4.4 do exhibit differences, especially when the wind shear

profile and corresponding optimal altitude change significantly.

Fig. 4.6 demonstrates that the conventional extremum seeking control strategy

results in less net energy generation at the end of the day than even the offline-

optimized constant altitude control strategy. However, the LSES results in superior

energy production performance when compared to either of the competing scenarios.

This is accomplished by combining altitude optimization with consideration of the

energy that is used to adjust the altitude.

Fig. 4.7 compares the wind velocities at the operating altitude for the candidate

control scenarios.

4.3 Economic Model Predictive Control

Another candidate control strategy for control of altitude and the integrated sys-

tem is model predictive control (MPC). This section addresses implementation of an

economic MPC strategy. This control strategy will also be included as the upper level

controller of the final integrated controller design as introduced in Chapters 5 and 6.

MPC is a control approach that attempts to find the optimal operating point by

minimizing a cost/objective function subject to constraints, over a receding horizon.

Unlike extremum seeking, MPC is well-suited to make use of a statistical model for

the wind/weather profile based on available historical data. Section 3.1 addresses the

statistical characterization of the wind shear profile. This statistical characterization
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method has been developed in collaboration with Mr. Shamir Bin Karim in the

UNCC CORE lab.

4.3.1 Economic MPC Basics

The basic idea of MPC is to exploit a model of a process to predict the future

evolution of the system and to compute control actions by minimizing a cost function

that depends on these predictions. In performing this optimization, MPC is one of a

select few control strategies that can explicitly consider hard constraints on both the

control signal and the system states.

Economic Model Predictive Control has been used in many industrial problems

where the control objective involves maximizing profitability rather than tracking

setpoints. Application of this control technique in process industry have been reviewed

in [68] and [69]. To appreciate the differences between traditional (tracking) MPC

and economic MPC, we briefly review both mathematical formulations here. The

formulation for tracking MPC is as follows:

minimize
u∈S(∆)

N∑
i=0

(|x̃(ti)|2Qc + |u(ti)|2Rc)

subject to ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(0) = x(τk)

f(x̃(τN), us) = 0, us ∈ U

g(x̃(t), u(t)) ≤ 0,∀t ∈ [0, τN)

(23)

where x ∈ X ⊆ Rnx is the state vector, x̃ is the tracking error, u ∈ U ⊂ Rnu is the

manipulated input vector, positive definite matrices Qc � 0 and Rc � 0 are tuning

matrices that manage the trade-off between the speed of response and the cost of

control action, τk is the time sequence where τk = τ0 + k∆, g : Rnx ×Rnu denotes the

process constraints which may include input and state constraints as well as mixed

input and state constraints, and N is the prediction horizon.
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Meanwhile, EMPC can be characterized by the following optimization problem:

minimize
u∈S(∆)

N∑
i=0

le(x̃(ti), us)

subject to ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(0) = x(τk)

f(x̃(τN), us) = 0, us ∈ U

g(x̃(t), u(t)) ≤ 0,∀t ∈ [0, τN)

(24)

where le : Rnx×Rnu → R is used as a measure of the instantaneous process operating

cost (or profit), ∆ is the sampling period.

The main difference between MPC and EMPC is that the traditional MPC tries to

track a prescribed setpoint, whereas EMPC attempts to maximize some profitability

metric. In other words, the objective function of EMPC is an explicit or implicit

function of price or cost of the product. In the application at hand, the profitability

is the total renewable energy production of the system, which translates directly into

profitability.

EMPC has been implemented in many applications, including chemical process

systems ([68, 70, 69, 71, 72, 73]), power systems ([74, 75, 76, 77, 78, 79]), and HVAC

([80, 81, 82]).

4.3.2 EMPC for Altitude Optimization Problem

For the spatiotemporal optimization problem at hand, the EMPC optimization

aims to maximize the net power production with respect to the following simple

dynamics:

z(k) = zsp(k) (25)

It dosed this, while incetivizing exploration, by maximizing a cost function, J ,
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subject to the constraints, as follows:

minimize
z(k)

J(z(k)) =
k+T−1∑
i=k

[Jexploit(z(i|k)) + wJexplore(z(i|k))]

subject to z(i|k) ∈ Ω, i = k ... k + T − 1

(26)

where T is the EMPC prediction horizon and z(k) is the altitude trajectory vector to

be optimized, given by:

z(k) = [ z(k|k) . . . z(k + T − 1|k) ]T . (27)

The notation z(i|k) denotes the value of z(i) for the optimization taking place at step

k. Ω represents constraint set within which each instantaneous altitude set-point

z(i|k) must belong. w1 and w2 are scalar weighting parameters that set the balance

between exploration and exploitation in cost function. As is typical with MPC, the

first term in the optimized control input trajectory represents the commanded control

input. In this case, the commanded control input is the altitude setpoint, given by:

zsp = z∗(k|k), (28)

where

z∗ = arg min
z(k)

J(z(k)). (29)

It is assumed in this work that an underlying lower-level flight control system regulates

the system’s operating altitude (z) to the set-point (zsp). The efficacy of such an

altitude control algorithm has been validated both numerically and experimentally

in [83] and [44]; therefore, the assumption of this lower-level flight controller is well-

founded.

The exploitation term in the cost function (Jexploit(z(i|k))), is equal to the cal-

culated surrogate power deficit Psur, which is detailed in Section 3.3.1. In order to
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prohibit excessive exploration, the amount of energy required to change the altitude

is added to the exploitation cost function:

Jexploit(z(i|k)) = Psur(i|k)− w1k3E[(vw(t(i), z))]2
|∆z|
∆t

(30)

Here, w1 is the energy consumption weight. The exploration term is given by:

Jexplore(z(i|k)) =
z′=zmax∑
z′=zmin

σ̂c (vw(t(i), z′)|D,D′) (31)

where zmax and zmin are the upper and lower bound of explorable altitudes. D′ is

given by:

D′ =

 t(k) . . . t(i)

z(k|k) . . . z(i|k)

 . (32)

Thus, at each time step, the exploration term penalizes the 1-norm over altitude

of the conditional standard deviation of the wind speed at each step in the EMPC

horizon, conditioned upon all measurements taken up to step i. D′ is included in

the calculation of the exploitation term expressly for the purpose of considering the

contribution of measurements taken during the EMPC prediction horizon on the

conditional standard deviation of the wind speed prediction. Thus, the 1-norm that

is penalized in (31) is kept small by continually exploring the available altitudes

domain throughout the EMPC horizon. The results of altitude optimization using

MPC are published in [9] and [84].
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CHAPTER 5: Hierarchical Control Structures for Altitude Optimization of

Standalone AWE Systems

The aforementioned MPC and Lyapunov-based switched ES (LSES) control strate-

gies have their own pros and cons. While LSES is computationally inexpensive, it

only guarantees local convergence to the optimum. Moreover, LSES as introduced

in Section 4.1 does not utilize the available wind velocity data, measured prior to

or during the course of operation. On the other hand, MPC, which is introduced

in Section 4.3, is capable of employing global optimization tools for minimizing its

underlying cost function. However, the global nature of the solution is limited to the

finite horizon length of the MPC optimization and the grid resolution used by the

underlying dynamic programming or exhaustive search. This becomes particularly

important when the optimization is performed over a partially-observable, randomly-

varying environment, where uncertainty (modeled through a standard deviation or

variance of an estimated state) must be included as a part of the system state in

order to use deterministic optimization tools. The MPC controller proposed in Sec-

tion 4.3 relies on sequential quadratic programming (SQP) for the minimization or

the underlying cost function, thereby leading to computational efficiency, but only

guaranteeing convergence to local optima.

A critical evaluation of the aforementioned previous results reveals a trade-off be-

tween coarse, global optimization techniques and fine, local ones. In this work, we

propose three novel mechanisms for fusing coarse, global techniques with fine, local

ones in a hierarchical framework. Specifically, we address the following questions:

• What data should be exchanged between different control levels?
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• What is the best hierarchical configuration based on MPC and LSES for the

partially observable spatiotemporally varying problem at hand?

In fact, the answer to the first question depends on the choice of the controller for

the different layers of the hierarchy. Fig. 5.1 provides a generic block diagram of the

basic hierarchical control structure under consideration. In this block diagram, the

variable χ, which is passed from the upper-level controller to the mid-level controller,

represents a distinguishing feature between the three candidate control strategies.

For the hierarchical architectures considered in this work, Table 5.1 shows the con-

troller options for upper and middle levels. In the first candidate control strategy, an

upper-level coarse, global MPC selects an altitude set-point that dictates the local

domain of altitudes that can be explored by a mid-level LSES controller. In the sec-

ond candidate strategy, an upper-level coarse, global MPC, selects an altitude that

dictates the local domain of altitudes that can be explored by a fine mid-level MPC

optimization. In these two controllers, the upper level MPC finds the global opti-

mum up to the grid resolution and finite horizon length, and the mid-level controller

explores within the optimal altitude “bin.” Finally, in the third candidate strategy,

the upper-level controller estimates the difference between the optimal power out-

put of the system and the output at the present altitude; this estimated difference,

termed the surrogate power deficit, is used to adjust the perturbation amplitude for

a mid-level LSES controller.

The hierarchical control structure of Fig. 5.1 also includes a lower-level flight con-

troller that regulates altitude to its set-point, along with a turbine torque controller.

The turbine torque controller is similar to the system described in [43], and the flight

control system for the Altaeros BAT is discussed in [44]. Because these lower-level

controllers have been validated through simulations and experiments in legacy work,

they are not the focal point of this work.

We show through simulations, with actual wind shear data, that fused local-global
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Table 5.1: Controller Choice for Each Level of Candidate Hierarchical Structures

Candidate Structure Upper level Mid-level
MPC – LSES Coarse MPC LSES
MPC – MPC Coarse MPC Fine MPC
Globalized LSES Calculation of LSES perturbation LSES

based on surrogate power deficit

controllers dramatically outperform corresponding standalone controllers. This is

mainly because the hierarchical controllers are able to consider much finer altitude

grids, within reasonable computational limitations, than their standalone, centralized

counterparts [85].

5.1 Implementing MPC Over a Global, Quantized Grid

The MPC formulation for the altitude optimization problem is initially introduced

in Section 4.3. Here, we focus on globally minimizing the MPC objective function of

equation (26). We propose two candidate tools for performing this optimization in

real time, namely an exhaustive grid search and dynamic programming. Both tools

are restricted to a relatively coarse grid in order to ensure computational tractability.

5.1.1 Exhaustive grid search

The first candidate optimization tool is an exhaustive search algorithm over a pre-

determined altitude-time grid. This algorithm evaluates the value of cost function

for all admissible altitude trajectories over the horizon to search for the lowest cost.

Thus, this exhaustive search algorithm is as follows:

where Z is a set of all possible trajectories z(k).

This optimization algorithm guarantees global convergence to the optimum altitude

trajectory, subject to the grid resolution and horizon length. However, the number of
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Algorithm 1 Exhaustive grid search algorithm
1: for all z(k) ∈ Z do

2: J(z(k)) =
k+r−1∑
i=k

Jexploit(z(i|k))+wJexplore(z(i|k))

3: end for
4: z∗(k) = arg min(J(z(k)))

required function evaluations increases exponentially with altitude quantization level

and horizon length. Denoting n as the number of allowable altitudes and r as the

horizon length, the required number of full cost function evaluations at each time

step for an exhaustive search algorithm, assuming that all altitudes are accessible, is

given by:

Nexh = nr. (1)

5.1.2 Dynamic programming

As an alternative to an exhaustive grid search, dynamic programming (DP) is a

very useful optimization tool that leverages Bellman’s principle of optimality (see

[86]). In particular, it can be easily applied to non-linear systems with or without

constraints on the control and state variables.

In standard (deterministic) DP, only the present state and control decision are

required to determine the next state and associated stage cost (i.e., the incremental

cost of going from step i to step i + 1). If either the stage cost or successor state

are probabilistic functions of the control input, then the appropriate tool to solve

the problem is stochastic dynamic programming (SDP) (see [87]). In order to use

standard DP, the stage cost of making a particular control decision (i.e., selecting a

particular altitude set-point) at step i must depend only on the control decision and

the state at step i, not sequence of control decisions leading up to step i. To satisfy

this requirement, we include both the altitude (z) and conditional standard deviation

of our estimated wind shear profile (σ̂c) as states for the DP formulation. Specifically,
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we take:

xDP = [z σ̂c(vw(z1)) ... σ̂c(vw(zn))]T , (2)

where n is the number of allowable altitudes. As a result, the next value of xDP and

the corresponding stage cost are deterministic functions of the control decision.

Because the DP problem must be solved at each time step, and because the initial

state (xDP (k)) is known, the most computationally efficient mechanism for DP for the

altitude optimization problem at hand is forward recursion. By Bellman’s principle

of optimality, the optimal cost (and corresponding optimal path) from initial state

xDP (k), to state xDP (i+ 1), through intermediate state xDP (i), is given by:

J∗xDP (k)→xDP (i+1) = J∗xDP (k)→xDP (i) + Jexploit(xDP (i)) + wJexplore(xDP (i)) (3)

To evaluate the required number of function evaluations (computational complex-

ity) versus grid coarseness for DP, we assume that altitude and conditional standard

deviation (a characterization of uncertainty) values are discretized into n and p val-

ues, respectively. To be consistent with MPC formulation (23), r represents the MPC

horizon length. The maximum required number of function evaluations for each DP

optimization step, Nmax
DP , assuming that all altitudes are accessible, is equal to:

Nmax
DP = (r − 1)× n× (n× pn) + n. (4)

This expression forNmax
DP can be interpreted as follows. Since the initial state is known,

only n function evaluations are required at step k. At each of the r − 1 successive

steps, n control actions can be taken, and at most n × pn states can be reached.

Because some uncertainty states are not reachable, and are therefore inadmissible,

these can be discarded in the DP implementation. Discarding inadmissible states at

each step, the number of function evaluations from DP will never exceed those of an
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exhaustive search. Thus, the required number of function evaluations with DP can

be bounded by:

NDP ≤ min{Nexh, N
max
DP } (5)

Fig. 5.2 compares the required number of function evaluations for an exhaustive

grid search (Nexh) and upper limit on function evaluations for DP (min{Nexh, N
max
DP }),

considering horizon lengths of r = 6 and r = 10, altitude quantization levels n ∈

[1, 10], and uncertainty quantization levels p ∈ [1, 10]. Because of the computational

expense associated with including uncertainty as part of the state for DP, the exhaus-

tive search is just as efficient as DP for large values of p and short horizon lengths

(small r).

5.2 Candidate Hierarchical Structures

The MPC controller described in Section 4.3 guarantees global optimality over the

prediction horizon, but only up to the grid resolution. On the other hand, LSES is

computationally inexpensive relative to MPC, but it is a local optimization tool and

does not use the available historical wind data that is logged prior to or during the

course of operation of the AWE system [88].

In this work, we propose and critically assess three candidate hierarchical control

structures that leverage the desired features of the aforementioned control strategies

while circumventing their deficiencies. The first strategy, which we term the “MPC-

LSES hierarchical controller”, fuses a coarse, global MPC optimization at the upper

level with LSES at the level below it. The second strategy, termed “MPC-MPC”, fuses

a coarse, global MPC optimization at the upper level with a fine MPC optimization

over a smaller altitude domain and shorter horizon at the level below it. Finally, the

third strategy, termed “Globalized LSES”, uses the surrogate power deficit estimate

from the upper level to adjust the size of the perturbation that is used by the LSES
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controller at the level below it.

5.2.1 MPC-LSES Hierarchical Controller

In the MPC-LSES hierarchical structure, a discrete-time optimization is performed

at the upper level, while the middle level is a continuous controller. At the upper

level, MPC, as described in Section 4.3, optimizes the altitude trajectory over the

horizon length, using the cost formulation of (23).

At the middle level, LSES searches for the optimal altitude within the altitude

bin determined by MPC before the upper level updates again. The wind velocity is

measured at all visited altitudes, and this information is communicated back to the

upper-level MPC for use at the next optimization step.

Fig. 5.3 shows the basic block diagram for the MPC-LSES hierarchical control

structure, along with a demonstration of a sample output profile at each level. Note

that the MPC optimization determines which bin to explore, whereas LSES explores

locally within the chosen bin. The initial condition of the LSES integrator (see Fig.

4.2) is reset to zMPC at the beginning of each upper-level sampling interval. Upper

and lower saturation limits on ẑ are set based on the bin width, ∆bin, as follows:

ẑmax = zMPC +
∆bin

2
(6)

ẑmin = zMPC −
∆bin

2
(7)

In this work, the altitude domain is divided into 6 bins (nup = 6). MPC using an

exhaustive grid search finds the optimized altitude trajectory as shown in Fig. 5.3

(b). The first element of this trajectory is bin no. 3. LSES as the mid-level controller

searches within the third bin continuously to find the optimum.
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5.2.2 MPC-MPC Hierarchical Controller

Another option for the mid-level controller is to use MPC with a short horizon

length and a localized search domain of allowable altitudes. The mid-level MPC

quantizes the altitude bin prescribed by the upper level into a number of more finely

quantized bins and uses a short-horizon exhaustive search to search for the optimal

altitude. This reduces the computational complexity significantly, allowing for rapid

updates to take place. Unlike MPC-LSES, the controller at both levels are imple-

mented in discrete time. However, the quantization levels of altitude and horizon

lengths at the two control levels are different.

The accessible altitude domain of the mid-level MPC is limited to the size of altitude

bin quantized by the upper level MPC. The total time horizon of the mid-level is also

equal to the time step of the upper level MPC. In the example shown in Fig. 5.4, the

altitude quantization level for both control levels is 6 (nup = nmid = 6).

5.2.3 Globalized LSES

For general objective functions, extremum seeking only guarantees convergence to

local optima. The possibility of modifying extremum seeking to be global in the

presence of local extrema is studied in [89]. In particular, [89] proposes a method by

which the perturbation amplitude can be adjusted to converge to a global optimum. In

this third candidate hierarchical controller, this concept is used to globalize the mid-

level extremum seeking. For this purpose, the mid-level controller uses a calculation of

the surrogate power deficit from the upper level to adjust the level of perturbation used

by LSES at the middle level. Specifically, the upper control level uses the conditional

probability model of available power described in Subsection 3.1.2 to calculate the

surrogate power deficit metric. The mid-level LSES uses this information to adjust

the perturbation size, a0, in order to avoid getting stuck in local optima. Therefore,

the third controller is termed Globalized LSES.
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The surrogate power deficit metric introduced in Section 3.3.1 gives an estimate

of how well the altitude controller is working. Large values of Psur suggest that the

controller is likely not operating near its globally optimal altitude, whereas smaller

values suggest that it is. Therefore, the LSES perturbation amplitude (a0 in Fig. 4.2

and Fig. 5.5) is chosen to be proportional to the surrogate power deficit metric. The

perturbation frequency is modified based on the value of a0. Fig. 5.5 shows the block

diagram of the proposed globalized LSES controller, as well as a demonstration of

how these two control levels are related. Specifically, perturbation amplitude a0 is

given by:

a0 =
Psur

Psur,max

(waabase − amin) + amin (8)

where wa is the maximum magnifying coefficient of the perturbation amplitude, abase

and amin are the base and minimum perturbation amplitudes, respectively. psur,max

is the maximum value of the surrogate metric, which occurs when the current power

production is zero and the power at all other altitude bins is equal to the rated power:

psur,max = (nf − 1)prated (9)

5.3 Results

Wind data obtained from [7] were used to simulate the AWE system under the

aforementioned control structures. Simulations using the available real wind data

provide a fair comparison of the performance of the proposed altitude optimization

tools. Simulations were performed over 15 days in March 2014. Time steps for upper

and mid-control levels in the MPC-MPC hierarchical structures were taken to be 30

min and 6 min, respectively. A time step of 30 minutes was used for standalone MPC

controller, as well as the upper level MPC in MPC-LSES control structure. LSES as

a standalone or mid-level controller is continuous. Tables 5.2, 5.3, 5.4,and 5.5 give
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Table 5.2: AWE System Parameters

Parameter Description Value

vr
Rated wind speed of
the turbine 12 m/s

zh
Maximum allowable
altitude 1.04 km

zl
Minimum allowable
altitude 0.146 km

rz

Rate of altitude
change (in winch
speed)

0.5 m/s

k1

Coefficient of power
production related to
the power curve of the
turbine

0.0579 kWs3

m3

k2

Coefficient of power
required to maintain
altitude

0.09 kWs2

m2

k3

Coefficient of power
required to change al-
titude

1.08 kWs3

m3

the parameter values considered in simulations for AWE system, and LSES, MPC,

and hierarchical controllers, respectively.

Six different control configurations, termed “scenarios” are compared in this section.

Scenario 1: Off-line Optimized Constant Altitude: This scenario involves flying

the AWE system at a constant altitude that is determined by off-line calculation of

available power at different altitudes using given wind data. It is worth noting that

this calculation requires omniscient knowledge of wind velocity over all altitudes and

times. It is therefore not practically implementable; we use this scenario to provide

an upper bound on the potential of any constant altitude algorithm.

Scenario 2: Standalone MPC: The second controller employs MPC alone to find
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Table 5.3: LSES Parameters

Parameter Description Value Unit
k Integrator gain 3e− 5 kW/m
a Perturbation magnitude 10 m
amin Minimum perturbation magnitude 1 m
ω Perturbation frequency 0.0262 rad/sec
ωH High-pass filter (washout filter) frequency 0.0236 rad/sec
ωL Low-pass filter frequency 0.0024 rad/sec
ε Switching threshold 1e− 9 -

Table 5.4: MPC Parameters

Parameter Description Value
w Exploration weight 1

w1
Energy consumption
weight 10 m

m0

Constant 1 in condi-
tional standard devi-
ation model

1

m1

Constant 2 in condi-
tional standard devi-
ation model

0.0052

m2

Constant 3 in condi-
tional standard devi-
ation model

0.5102

the optimum altitude. The altitude of the AWE system is adjusted when the MPC

updates and is constant for the upper-level time step specified in Table 5.5. As dis-

cussed in Section 4.3, the exploitation term in the cost function includes the surrogate

power deficit metric introduced in Section 3.3.1. The parameters used in the simula-

tion are shown in Table 5.4. The altitude is quantized into 10 bins (nup = 10), and

the time step is 30 minutes (tup = 30 mins).

Scenario 3: Lyapunov-Based Switched Extremum Seeking Control: The third sce-

nario is LSES-based altitude optimization alone as introduced in Section 4.1, which
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Table 5.5: Hierarchical Control Architecture Parameters

Parameter Description Value
tup Upper level time step 30 min
tmid Mid-level time step 6 min

nup
Upper level altitude
quantization level 10

nmid
Mid-level altitude
quantization level 9

curtails the size of the ES perturbation signal to minimize energy consumption once

an optimal power generation point has been reached. Table 5.3 gives the values for

LSES parameters.

Scenario 4: MPC-LSES Hierarchical Controller: This control structure employs

MPC and LSES controllers as higher and mid-level controls, respectively, in a hi-

erarchical structure conforming to Fig. 5.3. MPC at the upper level provides the

mid-level with an estimate of the neighborhood of the optimal altitude. LSES then

searches for the optimal altitude within that neighborhood. The parameters for the

upper-level MPC and mid-level LSES are shown in Table 5.4 and 5.3, respectively.

As shown in Table 5.5, the time step for the upper-level MPC is 30 minutes (tup = 30

mins) and the altitude quantization level for MPC is 10 minutes (nup = 10).

Scenario 5: MPC-MPC Hierarchical Controller: In this scenario, a global coarse

MPC is used in the upper level, while the mid-control uses a short-horizon fine-grid

MPC, as depicted in Fig. 5.4. As with scenario 4, the upper-level MPC uses a

global optimization over a coarse grid to find the optimal altitude bin. The mid-

level MPC searches within the prescribed bin for the optimum. Table 5.4 gives the

common parameters for MPC in both levels, and Table 5.5 shows the values of specific

parameters for each control level.

Scenario 6: Globalized LSES: The globalized LSES control scheme as shown in Fig.
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5.5, uses the conditional probability model of power to modify the size of the LSES

perturbation when it detects that the LSES controller is likely to be stuck in a local

optimum.

Key Results and Interpretations: The cumulative energy yield of the six control

scenarios are compared in Fig. 5.6 and summarized in Table 5.6. This figure and the

table clearly show that globalized LSES outperforms the other scenarios in terms of

net energy generation. In light of the results obtained, several explanations for the

superior performance of globalized LSES exist:

1. Extremum seeking is a continuous optimal control technique. Therefore, the

hierarchical structures based on LSES are capable of faster response to changes

in the wind shear profile.

2. The MPC-LSES control architecture requires the extremum seeking integrator

to be reset every time that a new altitude bin is commanded by the upper level

MPC algorithm. Because the convergence of extremum seeking is limited by

its corresponding perturbation frequencies and filter time constants (which are

limited by the dynamics of the system), the convergence of LSES will, in many

cases, be slow, relative to the upper level time step. In these cases, it will not

be possible for LSES to converge to the optimal altitude before its integrator is

reset.

3. The MPC-MPC control architecture places limitations on what the mid-level

controller is allowed to do. In particular, the mid-level MPC may only explore

within the altitude bin prescribed by the upper level MPC.

Table 5.6 shows that the hierarchical strategies, which fuse local and global tools,

outperform their coarse-global only and fine-local only counterparts. In particular,

this table shows that globalized LSES is superior in energy production compared

to other scenarios. This is mainly because historical wind data is introduced to an
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Table 5.6: Total Energy Production of a 100 kWAWE System Under Different Control
Scenarios

No. Controller Energy Production

1 Off-line Optimized
Constant Altitude 39.68 MWh

2 Standalone LSES 37.66 MWh
3 Standalone MPC 39.15 MWh
4 MPC-LSES 40.04 MWh
5 MPC-MPC 38.69 MWh
6 Globalized LSES 43.27 MWh

originally model-free, gradient based algorithm. This helps the LSES to find the

global optimum. The second best performing algorithm is MPC-LSES. Putting LSES

as the mid-level control results in greater energy production than using MPC for the

mid-level controller.

The altitude trajectory and wind velocity at the operating altitude of the AWE

system under different control scenarios are shown in Figs. 5.7 and 5.8, respectively.

These plots show that the wind velocity of the AWE system with globalized LSES

aligns more closely with the rated wind speed of the turbine. Moreover, the globalized

LSES controller results in a significantly lower power deficit, compared to other control

scenarios, most of the time.



93

Higher Level: Surrogate Power Deficit Metric 
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Figure 5.5: Globalized LSES hierarchical control structure. (a) shows the block dia-
gram and (b) illustrates how the top level calculation and LSES are correlated. The
top level performs a statistical characterization of available power to calculate the
surrogate power deficit metric. The mid-level controller is LSES, whose maximum
perturbation size is adjusted using information from the upper level. Specifically,
when the value of the surrogate metric increases, the perturbation amplitude is in-
creased.
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Figure 5.6: Comparison of cumulative net energy generation for simulating AWE
system operation with 6 proposed control scenarios.

Figure 5.7: Altitude trajectory of the AWE system with 6 proposed control scenarios.
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Figure 5.8: Wind velocity at operating altitude of AWE system with 6 proposed
control scenarios.



CHAPTER 6: Hierarchical Control Structures for Altitude Optimization of

Integrated AWE Systems

The candidate controllers developed in previous chapters have been validated only

on a stand-alone AWE system (without an integrated dispatchable power source and

energy storage system). Even [90] merely evaluates the economic performance of an

idealized AWE-battery-generator system but still bases its optimization solely on the

power output of the turbine alone.

The integrated AWE system considered in this dissertation consists of a 100kW

wind turbine and a 80kW − hr battery storage system. According to the energy

generation model introduced in Section 2.1, a part of power generated by the wind

turbine is consumed in rejecting the disturbances under typical levels of turbulence

in order to maintain the operating altitude at its altitude setpoint. Consequently, the

maximum output power of AWE system is 87kW . The battery was sized such that

it can address the average load for two hours.

An integrated AWE-generator-battery system is studied in [8] and is illustrated in

Fig. 6.1. Because the results of Chapter 5 identified GLSES as the leading candi-

date hierarchical strategy, this chapter will focus on several formulations of GLSES

for the purpose of minimizing generator energy consumption in the integrated sys-

tem. Specifically, several candidate hierarchical GLSES control formulations, each

conforming to the general structure of Fig. 6.2, will be described and evaluated.

These candidate structures consist of :

1. An upper-level controller that calculates auxiliary generator and battery set-

points, as well as the amplitude of perturbation signal to be used in the mid-

level extremum seeking for altitude control, based on the surrogate generator
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excess metric.

2. A mid-level controller that uses LSES scheme for adjusting the operating alti-

tude set-point of the AWE system;

3. A lower-level flight controller that tracks the altitude set point dictated by the

middle level. Because lower-level flight controllers have already been developed

and validated in the literature (see [44]), this work focuses on the upper- and

mid- level controllers.

Regulation 
and 

Conversion 
unit

AWE system

Battery

Generator

Load

Figure 6.1: Schematic of an integrated AWE system, including the airborne turbine
(here Altaeros BAT [6]), battery, and auxiliary generator ([8]).

6.1 Requirements for Designing a Controller for an Integrated AWE System

This section reviews the requirements for designing the hierarchical control struc-

ture for integrated AWE-battery-generator system. first, adjustment of the pertur-
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Figure 6.2: Basic block diagram of GLSES controller for altitude optimization of an
integrated AWE system ([8]).

bation amplitude of the LSES in middle level controller, using the surrogate metric

information from the upper level, is described. Then, the calculation of battery and

generator setpoints are reviewed.

6.1.1 The Adjustment of LSES Perturbation Using Surrogate Metric from the

Upper Level

The surrogate generator excess metric introduced in Section 3.3.2 gives an estimate

of how much better the altitude controller can work if another altitude setpoint were

chosen. Large values of Msur suggest that the controller is likely not operating near

its globally optimal altitude, whereas smaller values suggest that it is. Therefore,

the LSES perturbation amplitude (a0 in Fig. 4.2 and Fig. 6.2) is chosen to be

proportional to the surrogate generator excess metric. The perturbation frequency is

modified based on the value of a0. Fig. 6.2 shows the block diagram of the proposed

globalized LSES controller, as well as a demonstration of how these two control levels

are related. Specifically, perturbation amplitude a0 is given by:
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a0 =
Msur

Msur,max

(waabase − amin) + amin (1)

where wa is the maximum magnifying coefficient of the perturbation amplitude, abase

and amin are the base and minimum perturbation amplitudes, respectively. Msur,max is

the maximum value of the surrogate metric, which occurs when the current generator

excess is equal to the maximum electricity demand, and the generator excess energy

at all other altitude bins is zero:

Msur,max = (nf − 1)Ql,max∆t (2)

6.1.2 Battery and Generator Setpoints

The battery state of charge at the next time step, as detailed in Section 2.2, is

given by:

Cb(k + 1) =


Cb(k)− 1

ηbat
Ebat(k), Ebat(k) > 0

Cb(k)− ηbatEbat(k), otherwise.

(3)

where ηbat is the charging/discharging efficiency of the battery, and Ebat(k) is the

amount of energy discharged from the battery:

Ebat(k) =


ηbatCb(k), Ed(k) > ηbatCb(k)

1
ηbat

(Cb(k)− Cmax), Ed(k) < 1
ηbat

(Cb(k)− Cmax)

Ed(k), otherwise

(4)

and the generator energy setpoint is given by:

Egen(k) = max{0, Ed(k)− Ebat(k)} (5)
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6.2 Results

We simulated the integrated AWE system controller for different combinations of

objective functions at top and mid-level controllers. These controllers are based on a

GLSES hierarchical control structure. In one candidate, the calculation of surrogate

generator excess metric in upper level is performed for a receding horizon using load

forecast. The real wind and electricity demand data used in simulations are obtained

from [7] and PJM, respectively. The simulations have been performed for the period

of March 2014 (31 days). The values of parameters used in simulations are given in

Tables 6.1 and 6.2.

Table 6.1: AWE System Parameters

Parameter Description Value Unit
total time Individual simulation period 31 days
vr Turbine rated wind speed 12 m/s
zh Max. allowable altitude 1040 m
zl Min. allowable altitude 146 m
rz Max. rate of altitude change 0.3 m/s
k1 Coefficient of power production of the turbine 0.0579 kWs3

m3

k2 Coefficient of power required to change altitude 0.09 kWs2

m2

k3 Coefficient of power required to maintain altitude 1.08 kWs3

m3

Table 6.3 shows the optimum weights for individual forecasts in the combined load

forecast model at each time step. The MAPE of the 13 individual candidate forecasts

in addition to the combined forecast model, are given in Table 6.4

To assess the performance of the GLSES and compare it to several benchmarks,

eight different control scenarios are simulated in this work. Five controllers are based

on the GLSES structure, two scenarios are based on stand-alone LSES, and one

omniscient scenario assumes that the wind velocity data is available for all altitudes

over the simulation time.

Scenario 1: Globalized LSES with Generator Set-point at Upper and Wind Power
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Table 6.2: LSES Parameters

Parameter Description Value Unit

kwind
Integrator gain when the objective is to
maximize the net power 3e− 5 kW/m

kgen
Integrator gain when the objective is to
minimize the generator power −5e− 7 kW/m

a Perturbation magnitude 10 m
amin Minimum perturbation magnitude 5 m
ω Perturbation frequency 0.0262 rad/sec
ωH High-pass filter (washout filter) frequency 0.0236 rad/sec
ωL Low-pass filter frequency 0.0024 rad/sec
ε Switching threshold 1e− 9 -
N Horizon length for forecast-based GLSES 4 -

Table 6.3: Optimum Weights in Combined Forecast Model

Forecasting model Step 1 Step 2 Step 3 Step 4
ARIMA10 0.1267 0.0758 0.0599 0.0560
ARIMA6 0.5514 0.4495 0.3324 0.2371
LinReg00 0.0297 0.0422 0.0498 0.0632
LinReg01 0.0288 0.0435 0.0517 0.0652
LinReg02 0.0289 0.0412 0.0651 0.0600
LinReg10 0.0270 0.0316 0.0413 0.0539
LinReg11 0.0279 0.0435 0.0475 0.0625
LinReg12 0.0285 0.0443 0.0658 0.0735
LinReg20 0.0274 0.0400 0.0479 0.0636
LinReg21 0.0335 0.0454 0.0661 0.0789
LinReg22 0.0313 0.0508 0.0592 0.0617
2NN 0.0319 0.0508 0.0638 0.0701
8NN 0.0270 0.0413 0.0494 0.0543

at Lower Control Level (GLSES Gen - Wind): This is a hierarchical GLSES controller

where the objective function at the upper level is the instantaneous generator power

(to be minimized), whereas the lower level objective function is the instantaneous

wind power output (to be maximized).

Scenario 2: Globalized LSES with Generator Set-point at Upper and Wind Power
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Table 6.4: Comparison of MAPE for Combined and 13 individual Forecasting Models

Forecasting Model MAPE
ARIMA10 0.0855
ARIMA6 0.0556
LinReg00 0.0810
LinReg01 0.0731
LinReg02 0.0710
LinReg10 0.0787
LinReg11 0.0718
LinReg12 0.0707
LinReg20 0.0745
LinReg21 0.0697
LinReg22 0.0710
2NN 0.0707
8NN 0.0602
Combined Model 0.0419

at Lower Control Level (GLSES Gen - Wind with forecast): This is a hierarchical

GLSES controller where the objective function at the upper level is the instantaneous

generator power (to be minimized), whereas the lower level objective function is the

instantaneous wind power output (to be maximized). In this scenario, load forecasting

is used to calculate the surrogate generator excess metric over a horizon.

Scenario 3: Globalized LSES with Wind Power at Both Levels (GLSES Wind -

Wind): This controller is a hierarchical GLSES controller wherein the objective func-

tion at both levels is the instantaneous wind power output of the system.

Scenario 4: Globalized LSES with Wind Power at Upper and Generator Set-point at

Lower Control Level (GLSES Wind - Gen): This is a hierarchical GLSES controller

where the objective function at the upper level is the instantaneous power output

of the AWE system, whereas the lower level objective function is the instantaneous

generator power.

Scenario 5: Globalized LSES with Generator Set-point at Both Levels (GLSES Gen

- Gen): This is a hierarchical GLSES controller where the objective function at both
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levels is the instantaneous generator power (to be minimized).

Scenario 6: LSES Standalone with Wind Power (LSES Standalone Wind): This

controller is a single level LSES (with no upper-level controller to adjust the extremum

seeking perturbation size), where the objective function (to be maximized) is equal

to the instantaneous power output of the AWE system.

Scenario 7: LSES Standalone with Generator Set-point (LSES Standalone Gen):

This controller is a single level LSES (with no upper-level controller to adjust the

extremum seeking perturbation size), where the objective function (to be minimized)

is the instantaneous generator power set-point of the AWE system.

Scenario 8: Upper Bound: In this scenario, it is assumed that we have access to

omniscient knowledge of wind velocity over all altitudes at all times, including the

future, which is not available during the operation of a real AWE system. However,

this scenario gives an upper bound to compare other results against.

For the control scenarios considered in this work, Table 6.5 shows the controller

options for the upper and middle levels.

Simulation results under the 8 control scenarios are shown in Figs. 6.3, 6.4, 6.5,

and 6.6. The actual generator excess energy is plotted in Fig. 6.3. This figure shows

that incorporating load forecasting to the GLSES Gen-Wind controller significantly

reduces the energy required by the generator. This arises mainly because the AWE

system is encouraged to explore more than other scenarios when there is no need to

use generator to address the electricity demand, as inferred from Figs. 3.7 and 6.5.

In other words, the predicted future trend of the electricity demand is considered in

balancing exploration and exploitation. Therefore, exploration is incentivized when

the electricity demand is expected to increase in the coming time steps.
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Table 6.5: Controller Choice for Each Level of Candidate Hierarchical Structures

Scenario Candidate Structure Upper level Mid-level

1 GLSES Gen-Wind Calculation ofMsur for
a single step LSES to maximize power

2 GLSES Gen-Wind
with Forecast

Calculation ofMsur for
multi-step with load
forecasting

LSES to maximize power

3 GLSES Wind-Wind Calculation of Psur LSES to maximize power

4 GLSES Wind-Gen Calculation of Psur
LSES to minimize gener-
ator expenditure

5 GLSES Gen-Gen Calculation of Msur
LSES to minimize gener-
ator expenditure

6 LSES Standalone
Wind - LSES to maximize power

7 LSES Standalone
Gen - LSES to minimize gener-

ator expenditure
8 Upper Bound - Omniscient optimization

Table 6.6: Generator Energy Expenditure and Net Energy Generation for 8 Control
Scenarios

Scenario Number Candidate Struc-
ture

Generator
Expenditure
Energy (MWh)

Net Energy Out-
put (MWh)

1 GLSES Gen - Wind 5.355 46.85

2 GLSES Gen - Wind
with Forecast 4.731 48.53

3 GLSES Wind -
Wind 6.695 43.27

4 GLSES Wind - Gen 7.705 41.48
5 GLSES Gen - Gen 7.413 40.44

6 LSES Standalone
Wind 7.607 40.48

7 LSES Standalone
Gen 6.871 40.27

8 Upper Bound 3.634 51.78
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Figure 6.3: Generator excess energy set-point for 8 control scenarios. Note that it is
preferred to minimize the generator excess energy.

Figure 6.4: Net energy generation for 8 control scenarios.
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Figure 6.5: Altitude set-point trajectory for 8 control scenarios.

Figure 6.6: Wind velocity at the operating altitude for 8 control scenarios.
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