
DESIGN OF A VISION-BASED CONTROL SYSTEM FOR QUADROTOR
SWARM AUTONOMY

by

Christopher Wesley

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2015

Approved by:

Dr. James M. Conrad

Dr. Bharat Joshi

Dr. Ronald Sass

ii

c©2015
Christopher Wesley

ALL RIGHTS RESERVED

iii

ABSTRACT

CHRISTOPHER WESLEY. Design of a vision-based control system for quadrotor
swarm autonomy. (Under the direction of DR. JAMES M. CONRAD)

Recently, small radio-controllable aircraft known as quadrotors, or quadcopters, have

become very popular. These aircraft have the ability to vertically takeoff and move

in any direction with great stability. They are also capable of carrying small loads,

depending on the size of the quadrotor and strength of its motors. The most common

applications of quadrotors for the average consumers are recreational activities such

as recording video from high altitudes and other angles not accessible by humans.

However, the applications of quadrotors and their usefulness in data acquisition ex-

tend far beyond leisure and simple delivery. The precision with which a quadrotor

can move makes this aircraft a perfect candidate for reconnaissance of dangerous

environments. When several quadrotors are networked together, this forms what is

called a swarm. A quadrotor swarm can be a very effective way of performing tasks.

The research that will be presented shall convey how this type of technology can be

achieved.

iv

ACKNOWLEDGEMENTS

I would like to thank everybody directly and indirectly involved with the production

of this thesis. I would like to thank my family and my friends for giving me support

throughout my college career. I would like to thank my mentor Dr. James Conrad

for providing me with the means to pursue this thesis. I would also like to thank

my friend and colleague, Terrill Massey, who worked on his thesis alongside mine and

made the task of completing much more bearable.

v

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1: Introduction 1

CHAPTER 2: BACKGROUND 3

2.1. What is a Quadrotor? 3

2.2. Why Quadrotors? 4

2.3. Current and Potential Quadrotor Applications 5

2.4. Swarm Functionality 6

2.5. Current Swarm Research and Limitations 7

2.6. Thesis Contribution 7

CHAPTER 3: RESEARCH OVERVIEW 8

3.1. Objective 8

3.2. Equipment and Software Selection 10

3.2.1. Flight Controller 10

3.2.2. Battery and Motors 11

3.2.3. Processor 14

3.2.4. Infrared Beacon 15

3.2.5. Camera 17

3.2.6. Operating System 17

3.2.7. Programming Language 17

3.2.8. Other Software Tools 18

vi

CHAPTER 4: PRELIMINARY QUADROTOR SETUP 19

4.1. Extracting Values from Transmitter 19

4.2. Constructing a Flight Test Environment 19

4.3. Quadrotor Drift 20

4.4. Swarm Algorithm 21

4.4.1. To Lead or to Follow 21

4.4.2. Optimal Quadrotor Positioning 22

CHAPTER 5: VISION SYSTEM 23

5.1. Coordinator Baseline Margin of Error 23

5.1.1. Linear Adjusted Drift 23

5.1.2. Periodic Unadjusted Drift 24

5.1.3. Erratic Drift 24

5.2. Methods of Detecting Quadrotor Position 24

5.2.1. Color-based Detection 24

5.3. Camera Characteristics 27

5.3.1. Camera Exposure Testing 28

5.3.2. Optimizing Other Camera Settings 28

5.3.3. Camera Resolution Properties 29

5.3.4. Camera ISO Speed 32

5.3.5. Beacon Region of Recognition and Angles Limits 33

5.3.6. Experimentation with Beacon Distance to Pixel Spac-
ing Relationship

36

vii

5.4. Trigonometric Calculation of Beacon Position Relative to the
Camera For a Binary Vision System

38

5.4.1. Distance Calculation for Beacon 39

5.4.2. Lateral Offset Calculation for Beacon 45

5.4.3. Angular Offset Calculation 49

CHAPTER 6: CONCLUSION 50

6.1. Performance Limitations 50

6.2. Stationary Beacon Displacement for Enhanced Mobility 51

6.3. Task Shift Capability 51

6.4. Averaging Over a Margin of Error 51

6.5. Long Range Coarse Grain Control 52

6.6. Node Identification through Beacon Pulsing 53

6.7. Future Work 53

REFERENCES 54

APPENDIX A: PROGRAMS 56

A.1. Camera Testing Program 56

A.2. Color-based Vision System 57

A.3. Binary-based Vision System 60

viii

LIST OF FIGURES

FIGURE 2.1: Quadrotor degrees of freedom [16] 4

FIGURE 2.2: University of Pennsylvania swarm [12] 6

FIGURE 3.1: Example of a quadrotor swarm and basic functionality 8

FIGURE 3.2: High-level flow diagram for interaction between coordinator
and follower

9

FIGURE 3.3: Diagram of Crius AIOP v2 [3] 12

FIGURE 3.4: Raspberry Pi general purpose I/O [1] 14

FIGURE 3.5: Prototype infrared beacon 15

FIGURE 3.6: Wii Sensor Bar [2] 16

FIGURE 4.1: Illustration of safe quadrotor flight testing environment 20

FIGURE 5.1: Example formation for color detection based vision system 25

FIGURE 5.2: Example of images captured by differently positioned
quadrotors

25

FIGURE 5.3: Distance measurement between quadrotor and beacon 27

FIGURE 5.4: Low resolution beacon image 30

FIGURE 5.5: Medium resolution beacon image 31

FIGURE 5.6: High resolution beacon image 31

FIGURE 5.7: Ultra-high resolution beacon image 32

FIGURE 5.8: Characteristics of individual infrared LED angle vs. inten-
sity [13]

34

FIGURE 5.9: Pixel spacing to distance relationship 37

FIGURE 5.10: Pixel spacing to distance curve fitting 38

FIGURE 5.11: Case 1a distance scenario 40

ix

FIGURE 5.12: Case 1b distance scenario 41

FIGURE 5.13: Case 1c distance scenario 42

FIGURE 5.14: Case 2a distance scenario 43

FIGURE 5.15: Case 2b distance scenario 44

FIGURE 5.16: Case 1 lateral offset scenario 46

FIGURE 5.17: Case 2a lateral offset scenario 47

FIGURE 5.18: Case 2b lateral offset scenario 48

x

LIST OF TABLES

TABLE 3.1: Flight controller decision matrix 11

TABLE 5.1: Sample images of beacon at varying exposure types 29

TABLE 5.2: Percentages of full beacon recognition with varying exposure
types at varying distances

30

TABLE 5.3: Varying resolution LED detection test 33

TABLE 5.4: Rough trial of angle characteristics of LED beacon in 120◦
range

35

TABLE 5.5: Angle characteristics of LED beacon in a 60◦ range 36

xi

LIST OF ABBREVIATIONS

Ah ampere-hour

AIOP All-in-One-Pro

DC direct current

ESC electronic speed controller

HDMI high-definition multimedia interface

I/O input/output pins

IR infrared

LED light-emitting diode

Li-Po lithium-polymer

nm nanometers

PID proportional-integral-derivative

PWM pulse-width modulation

RPM revolutions per minute

USB universal serial bus

V volt

CHAPTER 1: Introduction

Quadrotor applications broadly fall under two categories: manipulating a payload

and surveillance [15]. Many situations occur in which there is a need of some type of

search, rescue, or exploratory effort required. In some cases, the environment in which

the search takes place may be inaccessible to humans or may include hazardous mate-

rial or unsafe structures, such as a nuclear disaster site where there may be radioactive

material or falling objects. In cases such as these, humans need a way to precisely

maneuver through an area while recording information and possibly retrieving ob-

jects. While manually remote-controlled quadrotors may be able to accomplish these

tasks, it may take longer than necessary and there is the possibility of inefficiencies

because of lack of coordination between pilots. A quadrotor swarm proposes to share

the knowledge of any singular unit with the entire swarm. In terms of surveillance or

surveying. this means that quadrotors in a swarm will not search places that others

have already searched. In terms of moving payloads, this means that a quadrotor

that is about to drop a payload off will know where other quadrotors have drop their

packages. Where it may take a pilot several minutes to fully search a foreign environ-

ment it would take an autonomous swarm a fraction of the time, and in situations in

which time is of the essence this makes a substantial difference. Current research into

quadrotor swarms does not take into account close-quarters or inaccessible environ-

ments. Those networks require the use of an off-board coordination system such as

a camera device that sees all of the quadrotors and issues commands from afar. The

research presented here aims to place the coordinator within the swarm itself, grant-

ing more flexibility to the swarm. In order for a quadrotor swarm to be effective, the

participating quadrotors will need to establish situational awareness with respect to

2

each other. In order to realize a swarm with situational awareness, each quad rotor

is outfitted with a vision system and a communication system. The vision-system

allows the quadrotor to establish its position with respect to other quadrotors within

the swarm, whereas the communication algorithm establishes a method to coordi-

nate the movements within the swarm to prevent collision and promote situational

awareness throughout the entire swarm. The coordinator quadrotor will be using the

vision system to adjust its position relative to a stationary LED beacon. This beacon

ensures that the system has baseline vision data in order to mitigate swarm position

oscillations. The vision-system is established through using a camera and a set of

beacons on each quadrotor. Through careful management of movement commands,

the vision system will be able to maintain the position of the swarm. The commu-

nication algorithm is realized through a wireless transceiver and a decision making

process performed by the coordinator. The swarm algorithm allows the coordinator

to make decisions on the movement of the surrounding quadrotors and the forma-

tion of the swarm overall. There is the possibility of a variety of formations, each of

which the coordinator will reside in the middle of the swarm. The communication

algorithm also establishes a decision routine for variability within the swarm. For ex-

ample, if certain quadrotors of the swarm encounter an obstacle, the information will

be relayed to the coordinator. This will be used by the coordinator in order to issue

commands for the followers to avoid obstacles. With research conducted with the

vision system and communication algorithm, a swarm formation that has on board

movement processing can be realized. This allows for a more autonomous system.

In the future, quadrotor swarm functionality may become even more useful for other

applications. The complex coordination that swarms can provide may be used for

construction projects or autonomous surveillance. The purpose of this thesis is to

thoroughly examine the methods that have been constructed in order to successfully

create a quadrotor swarm system.

CHAPTER 2: BACKGROUND

2.1 What is a Quadrotor?

A quadrotor is multi-rotor helicopter capable of producing lift using four vertically

oriented rotors. Quadrotors utilize two sets of propellers, in this case fixed-pitch: two

rotate clockwise, and the other two counter-clockwise. Each propeller is rotated via a

brushless DC motor. By varying the RPM of each rotor individually, the quadrotor’s

thrust and lift characteristics can be changed in order to adjust its roll, pitch, and yaw;

thus giving the ability to perform a full range of aerial movement, including roll/pitch

motion, altitude adjustment, and yaw rotation as shown in Figure 2.1 below. For a

quadrotor, a change in roll causes movement to the left or right with respect to

the forward direction of the quadrotor, while pitch causes movement forwards or

backwards. By varying the speed each propeller rotates, quadrotors can fly agilely

[10]. By using a radio frequency transmitter, PWM commands are sent to the flight

controller, which as explained above will vary the RPM of each motor. A transmitter

is required to have at least 4 channels, each supporting one degree of freedom for the

quadrotor: throttle, yaw, pitch, and roll. Radio channels allow for multiple types of

commands to be sent to the controller for simultaneous command issuing. Channels

and firmware can be configured to other movement types for the quadrotor. For this

application it is necessary to have a transmitter and receiver that support at least 5

channels. The fifth channel will be used to activate the quadrotor’s altitude hover

capability, one of the vital functions of a quadrotor swarm.

4

Figure 2.1: Quadrotor degrees of freedom [16]

2.2 Why Quadrotors?

Quadrotors have become a popular platform for hobbyists and professionals alike

for good reason. Because of their design quadrotors are a very stable aircraft, making

them capable of performing the same functions of helicopters such as vertical takeoff,

lateral movement, precision control, the capacity to carry loads, and the ability of

maintain a single position. In addition to this, quadrotors have the advantage of

being fully symmetrical along two axes, which means it will easily maintain stability

as long as its load is equally distributed across itself. As opposed to helicopters that

have two rotors, one large main rotor and a smaller rotor, with a large torque on the

main rotor, quadrotors have four rotors to distribute the torque. This means that

each propeller is spinning with less kinetic energy and reduces the amount of damage

the rotors can do should there be a crash. Quadrotors also have a more compact

and modular form factor than helicopters, making assembly and maintenance simple,

as well as providing a platform on which electronics, sensors, and other equipment

can be easily mounted. Depending on the size of the quadrotor and the torque of its

motors, it is capable of carrying a variety of loads. Recently, quadrotors have been

constructed that carry upwards of 50 kg [6]. The variance of the size and strength

5

of quadrotors and their unique applications makes swarm control even more useful.

Current quadrotor technology encompasses many aspects of quadrotors, including

hardware, sensors, autonomy, software tools, customizability. A multitude of quadro-

tor flight controls exists, which when used in conjunction with on-board sensors,

provide great stability and foundation for autonomy. The sensor types included on a

quadrotor flight controller can consist of gyroscopes, accelerometers, barometers, ul-

trasonic, and global positioning systems (GPS). Flight controller configuration tools,

such as Mission Planner, allow quadrotor-configuration and settings to easily imple-

mented into the flight controller’s memory. The controller can have these settings

configured: PID controller constants for flight control, ranges for the radio-controller

PWM commands, way-point navigation settings, advanced flight modes, and various

sensor calibration.

2.3 Current and Potential Quadrotor Applications

The current applications for autonomous quadrotors include reconnaissance, search

and rescue, surveillance, inspection, goods transportation, construction, security, and

even personal entertainment. As opposed to robotics ground vehicles or ambulatory

robots, quadrotors have the obvious advantage of changing position on a vertical axis.

By having the capability of moving in three dimensions and the ability to carry loads,

quadrotors have a myriad of possible uses. Professional photographers use them to

take aerial images of landscapes and high-altitude areas of interest. The military uses

UAVs for aerial reconnaissance, search and rescue missions in urban environments.

Potential applications include: surveillance of privately property and war zones [11]

[7], creating a deployable wireless communication network [17] [5], and in disaster

relief [10]. Quadrotors have found surveillance application, including: riotous political

movements, noninvasive inspection of buildings and public structures [8], and unsafe

natural events such as mudslides and volcanoes [19]. Other applications currently

being explored are delivery services, i.e. Amazon drones or Matternet [18] [9].

6

Figure 2.2: University of Pennsylvania swarm [12]

2.4 Swarm Functionality

It is said that there is power in unity and there is power in numbers. For robotics

applications, this is no exception. Using many quadrotors simultaneously for single

large task is where quadrotor swarm potential lies. Where it may take one a person

a few hours to survey an area of land, a swarm of quadrotors would take a fraction

of the time; where a single quadrotor may not be able to lift a certain load, multiple

quadrotors could lift it. A quadrotor swarm proposes to share the knowledge between

all of the quadrotors. This means that quadrotors in a swarm will not search places

that other quadrotors have already searched. Where it may take a pilot several

minutes to comprehensively search a foreign environment it would take an autonomous

swarm a fraction of the time, and in situations in which time is of the essence this

makes a substantial difference. Current research into quadrotor swarms does not take

into account close-quarters or inaccessible environments. Those networks require the

use of and off-board coordination system such as a camera device that sees all of

the quadrotors and issues commands from afar. The research presented here aims to

place the coordinator within the swarm itself, granting more flexibility to the swarm.

7

2.5 Current Swarm Research and Limitations

Current research into quadrotor swarm formations consist of very agile and well

coordinated groups of quadrotors. They are controlled by an external system with a

series of stationary cameras looking down at the swarm, such as the system shown in

Figure 2.2. Limitations of this type of system stem from the fact that the cameras

are a stationary system that are required to be placed above the quadrotors in order

to issue commands to them. The most current work done on a vision system before

the start of this thesis was the use of a Wiimote camera to detect IR LEDs [14].

2.6 Thesis Contribution

This research placed the control of the swarm into itself. By removing the limita-

tions of an externally-operated system, the swarm has the capability to move without

restriction. It will have more flexibility in ability to navigate through closed-off re-

gions or areas that are otherwise incapable of having an off-board control scheme

setup. Through use of a vision system implemented onto each quadrotor, the mem-

bers of the swarm are given the ability to determine each other’s location, even in

dark, remote, and otherwise visually inaccessible locations. The vision system will

be robust enough to work in environments that may not be suitable for use of GPS,

or color-based object detection. This vision data will be held by a coordinator. The

coordinator quadrotor will issue movement commands to follower quadrotors through

a swarm communication algorithm.

CHAPTER 3: RESEARCH OVERVIEW

3.1 Objective

The main objective of this research is to examine the best method of creating an

embedded processing platform that can be used by a set of quadrotors greater than

two in order to maintain and establish a quadrotor swarm formation. The formation

will consist of a coordinator quadrotor that will be situated in the middle of the node,

or follower, quadrotors, as shown in Figure 3.1. The coordinator will have a set of

beacons equipped to each of its four sides as well as a camera and will have initial

visibility of a stationary beacon. Each follower quadrotor will be outfitted with a

camera and is planned to initially have vision of the coordinator.

Figure 3.1: Example of a quadrotor swarm and basic functionality

9

A vision system will allow for the localization of the quadrotors and this will adjust

for small variations in the positioning of the end devices with respect to the coor-

dinator. The coordinator will continuously process position data of the stationary

beacon, and adjust its own position in order to stay aligned with the stationary bea-

con. The follower will transmit its position with respect to the coordinator and it will

record their position in space. After recording all of the position information of the

followers, the coordinator will issue movement commands. To make communication

simple, avoid collisions, and reduce other complexities, each quadrotor with be sent

movement commands and execute them one at a time in round robin format. Each

movement scenario proposed by a follower will be handled separately according to a

hierarchy. This method prevents the system from becoming out of sync if there should

be an error with a movement command. Another dimension of simplicity will be in

the form of constant altitude positioning of all the quadrotors. The high-level flow

diagram for the system is shown in Figure 3.2 below. All quadrotors in a formation

will need to maintain the same altitude for the purpose of this design.

Figure 3.2: High-level flow diagram for interaction between coordinator and follower

10

This research focuses on developing swarm control on quadrotors, not designing a

flight system for them. For this reason, a pre-existing flight controller is used in this

design. The quadrotors platform used utilizes the Crius AIOP flight controller and

the MegaPirateNG flight control firmware. This flight controller normally receives

movement commands from a radio transmitter in the form of pulse-width modulated

values whenever the controller joysticks are moved. These commands consists of the

following: throttle for vertical movement, and yaw, roll, and pitch adjustment as well

as trim adjustment controls for each of the movement joysticks. The flight controller

receives the commands sent from the transmitter and converts this information into

usable data. These data are run through the flight control algorithm and sent to the

electronic speed control for the propeller motors. The receiver on the flight controller

can be bypassed in order to send commands directly into the flight controller, in this

case through the Raspberry Pi’s general purpose input/output pins.

3.2 Equipment and Software Selection

3.2.1 Flight Controller

One of the major factors in the decision to use the equipment that has been chosen

for this research is cost-effectiveness. The flight controller was chosen out of four

possible candidates: the Crius AIOP v2, the Pixhawk, the APM2, and the PX4.

These choices were dictated by the pre-existing components recommend by Ardupilot,

an open source UAV platform for controlling quadrotors. As it can be seen in the

Table ?? below, the Crius AIOP, shown in Figure 3.3 was the choice controller. The

majority of the reason was because the swarm system need to be of low cost; the cost

component of each controller held 50 percent of the weight. The Crius, priced at 40

dollars, was nearly 7 times cheaper than the most expensive flight controller.

11

Table 3.1: Flight controller decision matrix

Crius AIOP Pixhawk APM 2.6 PX4
Cost 10 1 1 2
Performance 8 10 8 10
Support 7 10 10 10
Interfacing 10 10 10 10
Weighted Sum 93 55 51 50
Rank 1 2 3 4

3.2.2 Battery and Motors

Choosing a proper set of motors for the quadrotor was imperative for complete

testing. The amount of battery power necessary to produce the torque to lift the

quadrotor and maintain flight for a reasonable amount of time were the major con-

cerns. In order to choose the most efficient motor given the criteria, a few battery

calculations must be made. First, a running time can be determined for the quadro-

tor. In order to obtain useful flight information, e.g. drift magnitude, maximum

altitude, swarm efficacy, a baseline of 10 minutes of flight was used. Also, a lithium-

polymer battery with a 2.2 Ah capacity, 3 cells, and a nominal voltage of 11.1V be

used, since Li-Po batteries are the standard for most medium sized quadrotors and

most ESCs will work only on 2 or 3 cell batteries. From this, a safe operating current

draw can be determined using this equation,

Iop =
Bcap

tr
(3.1)

Iop =
2200mAh

1h
6

= 13200mA (3.2)

where Iop is the battery’s operating current, Bcap is the battery capacity in mAh, and

tr is the running time that has been chosen. With the values predetermined above,

the operating current will be 13200 mA, or 13.2 A. The operation current will allow

us to choose motors that are suitable for the quadrotor. The static thrust of the

12

Figure 3.3: Diagram of Crius AIOP v2 [3]

quadrotor’s propellers must also be determined. Because the quadrotors’ purpose

in this research is to move very precisely, but not necessarily quickly, static thrust

calculation will apply to most situations at low ground speed. For this quadrotor,

the propellers used will be 8045 slow fly propellers. In order to determine the static

thrust, the power transmitted to the motor must be determined. Power can be found

using the equation

P = KpRPM
powerfactor (3.3)

where P is the power delivered to the motors, Kp is the propeller constant, and power

factor is characteristic of the propeller. Now the thrust of the motor and propeller

will be determined. Based on momentum theory, the equation below can be used

T =
π

4
D2ρv∆v (3.4)

13

where T is thrust, D is the diameter of the propeller, ρ is the density of air, v is

the velocity of the air at the propeller and ∆v is the velocity of the air accelerated

by the propeller. Commonly, the velocity of the air at the propeller will be half the

value of the velocity of the air being accelerated by the propeller. Thus, the equation

can be simplified to

T =
π

8
D2ρ∆v (3.5)

The next equation will allow the power absorbed by the propeller from the motor

to be calculated. Using this, the velocity of the air being accelerated by the propeller

can be determined.

∆v =
2P

T
(3.6)

Inserting into the thrust equation gives

T = [
π

2
D2ρP 2]

1
3 (3.7)

Finally, using Newton’s law, the static thrust in terms of mass can be calculated by

the determined static thrust and the force of gravity, g.

m =
T

g
(3.8)

T =
[π
2
82 ∗ 1.225 ∗ 242]

1
3

9.81
(3.9)

m = 364.53grams (3.10)

It is known that the static thrust of each propeller is enough to lift 364.53 grams

at a propeller speed of 10000 RPM. With this knowledge an appropriate motor can

be chosen. The motor chosen will be the ST2210 brushless motor. It will produce

1050 RPM/V, 600 grams of thrust and will be able to operate on currents up to 10.2

14

A. Used with the batter chosen, the rotors will be expected to have the capability

of operating at 115500 RPM. Theoretically, the quadrotor will have the ability to

provide 1458.12 grams of static thrust, which will be the approximate weight limit of

the quadrotor’s frame, equipment, and any payloads.

3.2.3 Processor

Because of its high level of support and documentation, as well as its size, form

factor, and low price , the Raspberry Pi was the optimal computer platform to have

on the quadrotor. The functions of the Raspberry Pi would differ whether or not

the quadrotor it was on was a follower or a coordinator. The Raspberry Pi Model B

provides two USB ports, an Ethernet adapter, several general purpose I/O, HDMI, a

maximum current draw of 500 mA at 5V, and the ability to interface with a camera,

the Pi Camera. Shown in Figure 3.4, the Raspberry Pi’s myriad of I/O pins will allow

for even more versatility.

Figure 3.4: Raspberry Pi general purpose I/O [1]

15

3.2.4 Infrared Beacon

The initial design involved a small breadboard and three equally spaced infrared

LEDs shown in Figure 3.5. The LEDs have a 940 nm wavelength and 20◦ beam-

width. Each LED was spaced 3 inches apart, making the total length of the beacon

approximately 6 inches, not including the unused breadboard space. In order to

power the LEDs, three 1.5 V AA batteries were used in series with a small current

limiting resistor. Creating a beacon with a consistent distance between each LED

was paramount for the accuracy of measurements. It was also important to make

sure that each LED was powered with the same amount of voltage in order to have

consistent brightness across all LED. A bright LED allows the vision system to more

easily calculate the contours of the image and determine the positions of the LEDs.

Figure 3.5: Prototype infrared beacon

After initial testing with the prototype beacon, focus was placed on finding an

alternative beacon. Although the prototype beacon was sufficient for testing the

16

camera and processor’s image processing capabilities, the prototype beacon could not

be easily replicated. To solve this, it was decided that a Wii Sensor Bar would be used

as the infrared beacon, shown in Figure 3.6. Since this item is mass manufactured,

their dimensions would not differ very much. However, there are slight differences

between the prototype beacon and the Wii Sensor Bar. Instead of having three LEDs

arranged with equal spacing, this Wii Sensor Bar has six LEDs that are not all equally

spaced. Instead, the LEDs are arranged into two groups of three, with a large gap

in between the two groups. Changes would need to be made to the image processing

code in order to accommodate for this difference. To easily deliver power to the

infrared LEDs on the sensor bar from the Raspberry Pi, the default power connector

can be replaced with a USB connector.

Figure 3.6: Wii Sensor Bar [2]

17

3.2.5 Camera

The camera used for the vision system was the Raspberry Pi’s camera standard -

the Pi Camera. The camera will easily be interfaced with the Raspberry Pi, with its

own specific library. The camera is situated on a board that is 1 inch x 1 inch meaning

that it has a low weight and compact form factor that can easily be mounted onto

the quadrotor. It is a 5 mega-pixel camera with the possibility to take 2592 x 1944

pixel static images and can support up to 1080p video recording. Attached to the

camera will be an infrared (IR) pass filter. This allows for the camera to see only the

infrared beacon equipped to the coordinator. The idea behind using infrared lights

for a vision system stem from the idea of all purpose environment utility. Having an

infrared beacon means that there will be no interference from visible light spectrum,

as well as being able to have detection in completely dark environments. Limitations

of the camera come with the introduction of obstructions blocking the path of the

camera, including solid opaque objects and possibly water in the form of a mist or

rain.

3.2.6 Operating System

The operating system used with the Raspberry Pi was Raspbian, a Debian variant

specifically made for the Raspberry Pi. This was chosen because it is the most

typically used operating system for the Raspberry Pi and has the most documentation

associated with it.

3.2.7 Programming Language

The programming language chosen was heavily dictated by the types of image pro-

cessing libraries that are available for it. OpenCV is an open source image-processing

library made to be used with Python and C/C++. Because of the simplicity with

which code can be prototyped, and the pre-existing support for OpenCV, Python was

the best candidate.

18

3.2.8 Other Software Tools

The firmware used for the AIOP was the MegaPirateNG open source firmware.

In order to apply this firmware to the hardware Arduino software was used. After

this, MissionPlanner was used to adjust the flight settings of the Crius AIOP. Finally

MATLAB was used to analyze some of the data recorded from the vision system.

CHAPTER 4: PRELIMINARY QUADROTOR SETUP

This chapter will cover the basic steps required to properly interface with the

quadrotor flight controller, transmitter and receiver, and the swarm communication

algorithm.

4.1 Extracting Values from Transmitter

It may be that not all radio transmitters do not have the same joystick position to

PWM correspondence. A method of determining the exact values that the receiver is

output is necessary in order to completely and accurately recreate the PWM values

that the transmitter is sending. In order to accomplish this, we must simply measure

the output pins on the receiver while varying the controller’s joystick positioning.

4.2 Constructing a Flight Test Environment

Testing the quadrotors for autonomous flight can be a challenging prospect. By

having the inability to directly control what the aircraft is doing, the quadrotor

or anything around it is susceptible to being damaged. This makes creating a safe

testing environment for the quadrotor a vital component of solving autonomous flight.

Although the quadrotor’s destructive capability is not as great as a single rotor of

equivalent lift, should the quadrotor hit a surface, the propellers may easily unscrew

themselves from their motors and send the propeller cap as well as the propellers

themselves flying. In order to avoid the potential self-destruction of a quadrotor

in the event of crash, a means of providing a soft crash zone is required. This is

accomplished by laying down a series of foam cushions along the area of the test

environment.

A major component of flight testing is making efficient use of the batteries. This

20

Figure 4.1: Illustration of safe quadrotor flight testing environment

means maximizing the lifespan of the battery through proper maintenance. Since

the batteries used were standard for quadrotor flight, finding a battery recharger was

trivial. In order to properly charge the batteries the battery cannot be charged at a

current higher than the current capacity of the battery. This means for the battery

used, the charging current must be at most 2.2Ah. However, charging at a rate less

than the capacity, such as 70 - 80 percent or 1.54A - 1.76A and 4.2V per cell will

extend the battery’s lifespan and maximize capacity at full charge. Also, properly

storing the batteries in a cool environment and at a 40 percent capacity will increase

the battery’s lifespan. Finally, partially discharging the battery will reduce stress on

the battery and prolong the battery’s life.

4.3 Quadrotor Drift

Initial tests with the quadrotor yielded problematic results. After loading the

firmware onto the quadrotor we observed the barometer’s output readings. For the

21

most part all altitude maintained by the quadrotor seemed to be stable, with a rea-

sonable margin of error. However, when it came to the test flight we found that while

the quadrotor would keep its altitude constant for the most part, it would begin to

drift from its initial position even without input from the operator. Several tests were

performed at varying altitudes in order to ascertain the extent of quadrotor drift. It

was determined that the constants for the flight controller’s PID control system would

have to be adjusted. Fortunately, the PID values are easily changeable from the flight

controller’s interfacing software.

4.4 Swarm Algorithm

4.4.1 To Lead or to Follow

As mentioned before the processor for the quadrotor would behave differently

whether or not it was a follower or a coordinator. As a follower, the responsibili-

ties of the Raspberry Pi would as follows:

• to draw in images of the coordinator’s beacon using the Pi Camera

• perform image processing on the images to determine the locations of the LEDs

on the beacon

• calculate position information from the LED location data

• handling interrupt service routines for ultrasonic sensor data in the case of

potential collision

• send position and potential collision and receive movement command informa-

tion to and from the coordinator wirelessly

• issue pulse-width modulation commands to the flight controller. . .

As a coordinator, the responsibilities become the management of the followers and

coordination of movement commands. These responsibilities include:

22

• measure position relative to the stationary beacon and perform self-adjustment

• receiving position information from followers and sending movement commands

to followers

• routinely checking the position of all follower nodes in the swarm

• handling interrupt service routines for ultrasonic sensor data in the case of

potential collision

• issuing movement commands if a follower leaves the marginal drift zone

• calculating and sending pathing commands to followers if the coordinator wishes

to perform formation changes

• issue pulse-width modulation commands to the flight controller. . .

4.4.2 Optimal Quadrotor Positioning

A very important aspect of the quadrotor formation is the selection of the distances

the quadrotors must keep from each other. Each quadrotor must have a sufficient

amount of space around itself that will provide a margin of error for hovering.

CHAPTER 5: VISION SYSTEM

OpenCV contains a myriad of functions that are useful for this type of application.

However, there are really only two that are vital to the system’s ability to determine

beacon information. The first major tool is the contour finding function. The second

is the moment calculator.

5.1 Coordinator Baseline Margin of Error

Although the coordinator will be adjusting itself with respect to the stationary

beacon, there will most likely be a margin of error associated with its position. Since

drift characteristics of quadrotors tend to remain the constant, the coordinator must

calculate its margin of error characteristics. In order to do this, the coordinator’s

vision system must sample images of the beacon over the course of a period and find

in what vectors it has moved. Then, patterns must be found in the sample position

data over the course of the period. The position data collected will then be able to be

classified into one of three drift characteristics: linear drift, periodic drift, and erratic

drift.

5.1.1 Linear Adjusted Drift

The case of linear drift in the position of the coordinator is the most simple to

characterize. In this circumstance, the coordinator will have samples of the stationary

beacon that have a linear change in position over the course of time. Once the system

determines that the quadrotor has a constant linear drift, meaning that the period

of sampling produces evidence of linear drift, the coordinator can characterize the

information and provide the followers with adjusted movement commands.

24

5.1.2 Periodic Unadjusted Drift

In the case of periodic drift, the quadrotor will have an constant oscillation between

positions, and will keep within the baseline angle of operation without the need of

the vision system’s compensation. This could occur in the form of linear drift from

one position to the next, circular drift, or any specific periodic pattern of movement.

This type of drift is simple to characterize as well, since the coordinator’s position

in time will be able to be determined based on previous data, as long as the system

remains linear and time-invariant.

5.1.3 Erratic Drift

Erratic drift describes coordinator movement as being neither linear or periodic.

In this case the vision system does not recognize the movement type as either.

5.2 Methods of Detecting Quadrotor Position

Two different methods for the detection of the presence of a quadrotor by camera

were considered. The first was using a normal camera connected to a Raspberry Pi

to record real time images of two different colored beacons while the quadrotor was

in flight.

5.2.1 Color-based Detection

The images taken by the camera were be processed by a color detection algorithm.

The algorithm consisted of masking the images two times on the beacon comprised

of two colors. The position between the colors on the image would translate to iden-

tification information of a follower and the number of pixels of each beacon provided

distance and angular information. This information would be used to suggest move-

ment commands for the quadrotor to perform.

25

Figure 5.1: Example formation for color detection based vision system

Figure 5.2: Example of images captured by differently positioned quadrotors

As it can be seen in Figures 5.1 and 5.2, the follower quadrotor would be able to

know its own unique position in the virtual coordinate system after seeing the ar-

rangement of the differently colored beacons on the coordinator. Unfortunately, this

avenue was not a very viable scheme for the current system, because of processing

time. Intervals between picture taken and data outputs would take 5 seconds. Even

after reducing pixel operation time by decreasing the image resolution drastically to

200x150, increasing the trade-off between distance accuracy and runtime processing,

26

execution time would still take several seconds before providing the position infor-

mation. Another drawback of this method was the inability to completely adjust

for specific color ranges that are produced by the environmental ambient light. A

dynamic color shifting algorithm would require to run periodically in order to com-

pensate for different lighting situations. This algorithm was created, but the runtime

of the program was even greater than that of the color detection algorithm. The

solution was to reduce the amount of time processing pixels. This would be accom-

plished by two things. The first was to reduce time differentiating the beacons from

the background. This was accomplished by using three infrared light-emitting diodes

as a beacon and introducing an infrared filter to the camera. This method produces

images that solely consist of a black background and three "blobs" on the image. In

order to recognize the pixels of the LEDs on the image. Through use of the open

source image processing library, OpenCV, determining the location of the LEDs be-

comes very simple. With the locations of the LEDs on the image, the actual distance

the camera is from the beacon. By arranging the three LEDs in a row, all of the

quadrotor’s position information can be determined. Firstly, the lateral position of

the quadrotor is found by simply detecting whether or not the middle LED of the

beacon is centered on the image. If this LED is not in the center of the image, move-

ment commands are sent from the camera quadrotor to the coordinator and will move

such that the middle LED will be in the middle of the image. Next, The angle of

the camera quadrotor to the beacon is checked. This is accomplished by calculating

the difference between the distance between the right and middle LED to the dis-

tance between the left and middle LED. If the angle the camera is facing is not the

same as the beacon, then these two distances will not be equal. Again, the quadrotor

will send movement commands and adjust its position. Finally, the quadrotor will

validate the distance between the camera and the beacon. Calculating the distance

between either the left and middle or right and middle LEDs will yield a number

27

Figure 5.3: Distance measurement between quadrotor and beacon

that can be translated to distance information. Since this data was solved for in a

previous step, it can be used again for this one. If the distance is above or below a

certain threshold, the quadrotor will send movement commands and compensated for

the discrepancies.

5.3 Camera Characteristics

With any camera, it is important to determine what types of settings to use for

the application at hand. The Pi camera has a myriad of settings that can be used

for a variety of lighting situations. In order to maximize the appearance of the IR

LEDs on the image, a few of the default settings on the camera needed to be changed.

Immediately, several of these settings can be eliminated as candidates for exposure

options.

28

5.3.1 Camera Exposure Testing

Out of the many settings that the Pi camera can be configured, it was decided

that 12 test pictures would be taken using the most appropriate camera settings.

These settings were taken with automatic white-balancing off or on and consisted of

6 different exposure modes: off, auto, night, night preview, back-light, and fireworks.

Each entry in the Table 5.1 below is a picture taken with a different exposure types.

As can be seen from the sample images, auto-white balancing wa a necessary setting

to have enabled in order to properly see the LEDs. The best candidates for camera

settings consisted only of pictures that were taken using automatic white balancing.

Out of the 6 pictures, a series of tests were constructed to determine the exposure

type’s ability to produce images that could best be processed by the contour finding

algorithm. Each test consisted of an exposure type for the camera. Also, the camera

took a 50 pictures of the beacon situated at a constant distance away. Each one of

the pictures had the contour algorithm performed on it. The percent of times the

algorithm was able to successfully detect the full beacon was be the measure of effec-

tiveness. Next, the distance between the camera and the beacon was be changed and

the same tests previously mentioned were performed. Ultimately, the camera setting

that achieved the highest percentage of full beacon detection was the most effective

option. As can be seen in the Table ?? above, the camera set to automatic white-

balancing and an ’off’ exposure type if by far the most effective. After determining

the optimal exposure settings, the next task is to determine the other camera settings

in order to produce the most reliable possible image processing system.

5.3.2 Optimizing Other Camera Settings

Other camera settings that the Raspberry Pi and OpenCV allow for that are perti-

nent to this specific arrangement include: resolution, ISO, and our image processor’s

thresholding limit. In order to thoroughly determine the optimal setting for each of

29

Table 5.1: Sample images of beacon at varying exposure types

AWB On AWB Off

Off Off

Auto Auto

Night Night

Night Preview Night Preview

Back-light Back-light

Fireworks Fireworks

the parameters, trials were done on each of the setting’s ranges.

5.3.3 Camera Resolution Properties

The first setting that was be tested was the resolution of the image. For this ap-

plication, resolution will affect the distance ranges of the image processing algorithm.

The hypothesis is that the higher the resolution of the image taken, the more pix-

30

Table 5.2: Percentages of full beacon recognition with varying exposure types at
varying distances

Expoure Type 10 in. 12 in. 14 in. 16 in. 18 in. 20 in. 22 in. 24 in.
Off 100% 100% 100% 100% 100% 100% 100% 100%
Auto 60% 28% 36% 42% 32% 28% 32% 28%
Night 36% 44% 54% 40% 48% 44% 30% 30%
Night Preview 59% 40% 36% 70% 36% 46% 30% 40%
Backlight 51% 50% 78% 63% 42% 35% 44% 44%
Fireworks 49% 70% 76% 37% 30% 46% 28% 39%

els the camera will theoretically capture and be able to work with to determine the

contours of the LEDs in the beacon. However, the trade-off would be the amount of

processing time of each image would be increased as the resolution increases. Several

test images of the beacon were taken with varying resolutions at a distance of 12

inches. These test shots are shown in Figures 5.4, 5.5, 5.6, and 5.7.

Figure 5.4: Low resolution beacon image

31

Figure 5.5: Medium resolution beacon image

Figure 5.6: High resolution beacon image

32

Figure 5.7: Ultra-high resolution beacon image

Testing on the maximum range using the optimal camera settings yields a maximum

detection range of 48 inches. In order to test the efficacy of each resolution, 10

trials were conducted on each resolution with the beacon at 4 incrementally greater

distances starting at 48 inches, for a total of 40 trials per resolution. The percentage

of the time that the LED was detected and the average execution time of the program

were the measures of the efficacy of the resolution. The processes performed during

runtime were: taking the picture, determining the existence of the LED, finding the

positions of each led, and printing test values. Values included were: LED detection

rate, total number of trials run, and average runtime of the program.

5.3.4 Camera ISO Speed

Camera ISO speed describes the camera’s sensitivity to light. Increasing a camera’s

ISO increases its sensitivity to light. The Pi Camera’s ISO ranges from 100 to 800.

The utility of this camera setting lies in its ability to increase the light that can be

captured from the LEDs on the beacon. Using the camera’s middle range resolution,

33

Table 5.3: Varying resolution LED detection test

Low Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 1.457s 1.458s 1.459s 1.461s

Mid Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 1.772s 1.779s 1.79s 1.788s

High Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 2.312s 2.33s 2.302s 2.311s

Ultra Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 3.707s 3.742s 3.664s

a test was constructed that would compare the beacon’s apparent brightness on the

image as the beacon’s distance increases.

5.3.5 Beacon Region of Recognition and Angles Limits

Using the optimal camera setting determined, the LEDs used for the beacon have a

limited angle of visibility, thus the beacon itself will have a limited angle of visibility.

Test were constructed that would determine the maximum angle the beacon could face

from the camera. As can bee seen in Figure 5.8, the individual angle characteristic

of the infrared LED used specifies a viewing angle of 120◦.

A rough trial of 50 images of the beacon was taken at values ranging from 60◦ to -60◦

on the yaw axis relative to the camera. Also, The distance was varied from 36 inches

to 72 inches at each angle. The idea of this test was to examine the functional ranges

purported by the maximum angles found in the LED datasheet. Results confirm the

accuracy of the datasheet, finding that full beacon detection occurs 100 percent of

the time when the LED is not angled. Figure 5.8 also shows that the LED’s intensity

is reduced to 75 percent when the viewing angle is increased above 30◦. We can see

in Table 5.4 below that the maximum angle at which the LED beacon is visible is at

34

Figure 5.8: Characteristics of individual infrared LED angle vs. intensity [13]

30◦ at a distance of 18 inches.

35

Table 5.4: Rough trial of angle characteristics of LED beacon in 120◦ range

Low Res 36 in 48 in 60 in 72 in

Detect Rate 100% 100% 100% 100%

Runtime 1.457s 1.458s 1.459s 1.461s

Mid Res 36 in 48 in 60 in 72 in

Detect Rate 100% 100% 100% 100%

Runtime 1.772s 1.779s 1.79s 1.788s

High Res 36 in 48 in 60 in 72 in

Detect Rate 100% 100% 100% 100%

Runtime 2.312s 2.33s 2.302s 2.311s

Ultra Res 36 in 48 in 60 in 72 in

Detect Rate 100% 100% 100% 100%

Runtime 3.707s 3.742s 3.664s

With the rough trials providing a range boundary, a second trial with an adjusted

was required in order to accurately determine the angle characteristics of the beacon.

The range was adjusted to 30◦ to -30◦ with step increases of 10◦ in between and the

same distances being measured. As can be seen in the table below, the majority of

angular displacement that the beacon can make while still being able to be recog-

nized was at a 20◦ range. This result means that the follower quadrotor will have

a maximum yaw displacement of up to 10◦ from the coordinator in order to provide

position data to the coordinator.

36

Table 5.5: Angle characteristics of LED beacon in a 60◦ range

Low Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 1.457s 1.458s 1.459s 1.461s

Mid Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 1.772s 1.779s 1.79s 1.788s

High Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 2.312s 2.33s 2.302s 2.311s

Ultra Res 36 in 48 in 60 in 72 in
Detect Rate 100% 100% 100% 100%
Runtime 3.707s 3.742s 3.664s

5.3.6 Experimentation with Beacon Distance to Pixel Spacing Relationship

Due to the nature of determining distance information from a 2-dimensional image,

the relationship between true distance and the pixel spacing between each beacon

requires sample data at various distances. In order to do this, pixel data calculated

from a medium resolution image (1280x720) was recorded at distances measuring from

12 inches to 24 inches. Pixel data consisted of the average pixel difference between

the left and middle LEDs, dleft, and the right and middle LEDs, dright. The idea

behind taking the average is that when the beacon is angled relative to the camera,

dleft and dright will be different, but the sum of the two will remain the same as if the

beacon was not angled. The data points were then able to be plotted and examined.

In Figure 5.9 below, the initial plot for the data was generated using MATLAB.

37

Figure 5.9: Pixel spacing to distance relationship

Figure 5.9 show the distance in inches versus the average number of pixels in

between all of the LEDs in the image, davg. Through use of the MATLAB Curve

Fitting Tool, finding a continuous relationship between 12 inches and 24 inches is

made very simple. By performing a 2nd degree polynomial curve fitting, relationship

can be approximated to a function:

f(x) = p1x
2 + p2x+ p3 (5.1)

where f(x) is the distance between the beacon and the camera, x is the average

pixel distance between the two halves of the beacon. Using the curve fitting tool, the

constants can be determined, producing the approximation with 95 percent confidence

bounds,

f(x) = 0.0003357x2 − 0.2321x+ 51.86 (5.2)

38

The plot of the curve can be seen Figure 5.10 below.

Figure 5.10: Pixel spacing to distance curve fitting

5.4 Trigonometric Calculation of Beacon Position Relative to the Camera For a

Binary Vision System

The true distance of the beacon from the camera can be calculated through simple

trigonometry. Being given the physical length of the beacon and the Pi Camera’s

field of vision characteristics, distance from the beacon to the camera can be easily

determined. There several constants that need to be taken into consideration: the

resolution of the image will be 400x300 pixels, making the middle of the image at

200 pixels, the ratio of pixels (pixratio) to the camera’s view angle is 7.407 pixels per

degree, and the physical length of the beacon is 7.5 inches. These two constants will

differ depending on the type of camera used and the type of beacon used.

39

5.4.1 Distance Calculation for Beacon

When measuring the distance the camera is from a beacon, three sets of cases

must be considered. In the first case set, the average pixel location of the beacon

is near the center of the image. In the second case set, both sides of the beacon

are either both on the left half or both on the right half of the image. The last

case involves the lack of a full beacon image, meaning the image captured either

has only one visible side of the beacon or no visibility of the beacon whatsoever.

Relationships between the physical distances and the distances represented by the

pixels of the image can be formed in order to accurately measure the location of the

follower to the coordinator. Unlike the quadratic approximation determined through

the use of test samples, these distance calculations are purely mathematical, and thus

more accurate than the approximations. Each case will have its own dedicated set of

equations.

40

Case 1a: the average of the pixel locations of the two sides of the beacon is the

center of the image.

bavg = mid (5.3)

θ =
bright − bavg
pixratio

(5.4)

θr = 90 − θ (5.5)

d =
sin(θr
sin(θ)

blen (5.6)

Where d is the distance between the beacon and the camera,

Figure 5.11: Case 1a distance scenario

41

Case 1b: the average of the pixel locations of the two sides of the beacon is to the

right of the center of the image.

baverage > mid (5.7)

θ =
bavg − bleft
pixratio

(5.8)

θ =
bavg −mid

pixratio
(5.9)

¯̄θ = 90 − θ̄ (5.10)

θr = ¯̄θ − θ (5.11)

d =
sin(θr
sin(θ)

blen
2

(5.12)

Figure 5.12: Case 1b distance scenario

42

Case 1c: the average of the pixel locations of the two sides of the beacon is to the

left of the center of the image.

baverage < mid (5.13)

θ =
bavg − bleft
pixratio

(5.14)

θ =
mid− bavg
pixratio

(5.15)

¯̄θ = 90 − θ̄ (5.16)

θl = ¯̄θ − θ (5.17)

d =
sin(θl
sin(θ)

blen
2

(5.18)

Figure 5.13: Case 1c distance scenario

43

Case 2a: both sides of the beacon are determined to be on the left half of the image.

bleft < mid, bright < mid (5.19)

θ =
bavg − bleft
pixratio

(5.20)

θ̄ =
mid− bavg
pixratio

(5.21)

¯̄θ = 90 − θ (5.22)

θl = 90 − θ̄ (5.23)

d =
sin(θl
sin(θ)

blen
2

(5.24)

Figure 5.14: Case 2a distance scenario

44

Case 2b: both sides of the beacon are determined to be on the right half of the

image.

bleft > mid, bright > mid (5.25)

θ =
bright − bavg
pixratio

(5.26)

θ̄ =
bavg −mid

pixratio
(5.27)

¯̄θ = 90 − θ̄ (5.28)

θr = 90 − θ (5.29)

d =
sin(θr
sin(θ)

blen
2

(5.30)

Figure 5.15: Case 2b distance scenario

45

Case 3: either only one side of the beacon is visible or the beacon is not visible at

all.

5.4.2 Lateral Offset Calculation for Beacon

Lateral Offset can be described as the distance a follower quadrotor must move in

order to be completely aligned with the coordinator. Much like the distance calcula-

tions, the lateral offset can be examined in terms of several cases. Also, values used

in the distance calculations can be used also for the lateral offset calculations. The

are other measurements that need to be made as well. Namely, the number of pixels

that offset the middle of the beacon and the middle of the image.

46

Case 1: the average of the pixel locations of the two sides of the beacon is the

center of the image. In this case, no calculation needs to be performed, since the

beacon is already in the optimal lateral position.

bavg = mid (5.31)

xoff = 0 (5.32)

Figure 5.16: Case 1 lateral offset scenario

47

Case 2a: the average of the pixel location of the two sides of the beacon is on the

left half of the image.

bavg < mid (5.33)

bpix = bavg − bleft (5.34)

xpix = mid− bavg (5.35)

xoff =
xpix
bpix

blen (5.36)

Figure 5.17: Case 2a lateral offset scenario

48

Case 2b: the average of the pixel location of the two sides of the beacon is on the

right half of the image.

bavg > mid (5.37)

bpix = bright − bavg (5.38)

xpix = bavg −mid (5.39)

xoff =
xpix
bpix

blen (5.40)

Figure 5.18: Case 2b lateral offset scenario

49

5.4.3 Angular Offset Calculation

Determining the angular offset of the beacon to the quadrotor can be delicate and is

difficult to do through the means described previously. It was determined that using

a rough method of angular offset calculation was the optimal route. The objective

of this system is to determine if the quadrotor is at any offset at all, and in what

direction. If the quadrotor were to be facing to the right of the coordinator, the

coordinator would simply pass a command to the follower to turn left. The amount

the follower would turn to the left would be a constant, meaning that it would take

multiple steps to become optimally positioned if the follower is turned too far in either

direction.

CHAPTER 6: CONCLUSION

6.1 Performance Limitations

The performance of the system can be defined as the rate at which the camera

and processor can capture images, analyze the images for information about quadro-

tor positioning, use the data to generate movement commands for quadrotors and

subsequently successfully transmitting the aforementioned movement command to a

following quadrotor. Therefore, the performance of the system can be limited by mul-

tiple sectors of the quadrotor system. First by the camera’s resolution and the speed

at which it can capture image. Next, by the swiftness with which image data can be

analyzed by the processor’s quadrotor detection algorithm. Higher resolution images,

which are necessary for formations required larger distances between quadrotors, will

take longer times to process. The communication algorithm’s efficacy determines

the last factor of the system’s overall performance. There is also a bottleneck that

can occur when transmitting and receiving data. The longer it takes for a movement

command to be successfully transmitted from a coordinator, the less fluidly the whole

swarm will change state. As the size of the swarm increases and more clusters are

added, the accuracy of the vision system information will decrease. With all of the

slight variations of quadrotor drift, the position error will start to accumulate across

the entirety of the swarm, increasing with every cluster added. Also, the coordinator

must be able to move the stationary beacon in order to provide extensive mobility to

the swarm. Should the coordinator lose sight or control over the stationary beacon

the swarm will be more prone to unstable movement oscillations.

51

6.2 Stationary Beacon Displacement for Enhanced Mobility

One of the major functions of this swarm research is the ability of the swarm to

minimize its position error due to unobserved drift. In order to accomplish this, the

coordinator must maintain sight of a beacon that has constant physical position for

reference. This, however, would limit the mobility if the swarm. Granting the ability

for the coordinator to pick up the stationary beacon and place it into a new position

in order to set a reference point for the swarm would be vital for the versatility of the

swarm. As the coordinator has the capable of seeing the stationary beacon, it can

simply fly to the beacon and lift it, keeping track of the direction it was facing. At

this point, the quadrotor should issue coarse grain flight commands to the followers.

Once the swarm meets at a location, the coordinator will drop the beacon and will

resume the fine grain swarm maintenance algorithm.

6.3 Task Shift Capability

In order to have a truly robust system, it is imperative that the quadrotors have

the ability to change roles in order to be a truly effective swarm unit. In order to

realize this, each quadrotor must be equipped as both a coordinator and follower.

Consequentially, each quadrotor will be equipped with a camera and a beacon. The

utility in roll shifting lies in redundancy of a system. For example, that a quadrotor

swarm with a hierarchy of follower nodes. In the case that the coordinator recognizes

that all followers have lost sight of the it, the coordinator should broadcast a message

telling the followers that it is in a non-operational state, and the follower at the top

of the node hierarchy will take the position of the swarm.

6.4 Averaging Over a Margin of Error

The method of obtaining position data from calculations from successive images

can be precise for a beacon that is stationary. However, using the same method

on a beacon that is moving will not produce results that are truly representative

52

of the quadrotor’s real-time position. In a practical situation, the quadrotors will

never be completely stationary as long as they are in flight. This is because both

the follower and coordinator may have drift, or the inability to maintain an exact

position throughout time. Though the quadrotor’s drift has been minimized and

the quadrotor will stay in the same general position, slight variations between error

margins of quadrotor drift in the current position will produce movement commands

that are unnecessary and inaccurate. In order to correct for these slight variances, an

averaging system was used on sets of successive images taken by the follower’s camera

in between communication events with the coordinator. For the entire duration of

time between communication with the coordinator, the quadrotor will continuously

record images of the coordinator’s beacon and average the position one on top of

another, producing a running average of the positions of the quadrotor. Assuming

that the drift is occurring equally on each side of the follower’s margin of error, the

result should prove sufficient. The algorithm would resemble the following: record

an image, determine the position data of the LEDs and sort positions, take a second

image, determine the position data of that image, average the beacon locations of the

two images, save the result as an average variable take another image, repeat process.

6.5 Long Range Coarse Grain Control

By integrating GPS into the swarm system, the swarm may be able to perform

long range coordination. The coordinator would issue general commands and end

position coordinate information for each follower, and the follower would operate

accordingly. After performing whatever routines assigned, each follower would make

its way to the rendezvous position, and the fine grain tuning algorithm performed by

the coordinator would bring the followers back into maintenance position.

53

6.6 Node Identification through Beacon Pulsing

A drawback of using a binary vision system such as this infrared beacon is the

inability to easily distinguish unique quadrotors. With a multicolor-based system,

each quadrotor can have its identity linked with a color. In order to give uniqueness

to a quadrotor in a binary system, one must be more creative. One method is to

periodically pulse the LEDs on the beacon of a quadrotor. This way, images taken

from one side of the coordinator will produce different results than images taken

from other sides of the coordinator. However, it is imperative to have an image

sampling system that can sample twice as fast as the frequency of the LED pulsing to

avoid aliasing, as per Nyquist’s Theorem. This however, requires an image processing

system that can run fast enough to provide the most recent position data to the

coordinator as well as capture images quickly enough to detect changes in the LED

lighting pattern of the beacon.

6.7 Future Work

Though work in this field is still at its infancy, advancements in aerial swarm

robotics are bound to happen at a fast pace. Already, multiple research groups are

working on different forms of this research. It will not be long before this type of

robotics will be publicly acknowledged and the social and ethical issues of using such

technologies must be pondered. For productivity and efficiency of task completion,

this type of technology would do wonders. As advancements in flight control systems

and quadrotor hardware occur, the ability to create stronger and larger swarms will

be more easily achieved.

54

REFERENCES

[2] Wii sensor bar. http://www.amazon.com/Wireless-Infrared-Motion-Nintendo-
Wii-Consoles/dp/B00BI43APY.

[3] All in one pro board setup with megapirates code.
http://www.unmannedtech.co.uk/manualsguides/all-in-one-pro-board-setup-
with-megapirates-code, 2013.

[4] Testing multiple pi camera options with python. http://www.raspberrypi-
spy.co.uk/2013/06/testing-multiple-pi-camera-options-with-python, 2013.

[5] M.S. Alvissalim, B. Zaman, Z.A. Hafizh, M.A. Ma’sum, G. Jati, W. Jatmiko,
and P. Mursanto. Swarm quadrotor robots for telecommunication network cov-
erage area expansion in disaster area. In SICE Annual Conference (SICE), 2012
Proceedings of, pages 2256–2261, Aug 2012.

[6] B. Benchoff. Heavy lifting copters can apparently lift people.
http://hackaday.com/2013/09/20/heavy-lifting-copters-can-apparently-lift-
people, 2013.

[7] K. B. Culver. From battlefield to newsroom: Ethical implications of drone tech-
nology in journalism. Journal of Mass Media Ethics, pages 52–64, 2014.

[8] C. B. Eschmann, C. Kuo. Unmanned aircraft systems for remote building in-
spection and monitoring. pages 1–8, 2014.

[9] A. George. Forget roads, drones are the future of goods transport. New Scientist,
219(2933), page 27, 2013.

[10] S. Gupte, P.I.T. Mohandas, and J.M. Conrad. A survey of quadrotor unmanned
aerial vehicles. In Southeastcon, 2012 Proceedings of IEEE, pages 1–6, March
2012.

[11] A. Jaimes, S. Kota, and J. Gomez. An approach to surveillance an area using
swarm of fixed wing and quad-rotor unmanned aerial vehicles uav (s). In System
of Systems Engineering, IEEE International Conference, pages 1–6, 2008.

[13] CHINA YOUNG SUN LED TECHNOLOGY SO. LTD. Infrared light-emitting
diode. YSL-R531FR2C-F1, 2010.

[12] R. Jonsson. Upenn’s grasp lab unleashes a swarm of nano quadrotors.
http://www .gizmag .com/grasp- nano-quadrotor-robots-swarm/21302/, 2012.

[1] Using the raspberry pi gpio with python.
 maxembedded .com/2014/07/using-raspberry-pi-gpio-using-python/.

55

[14] A.J. Nash, C.M. Engel, and J.M. Conrad. Establishing and maintaining forma-
tions of mini quadrotors. In SOUTHEASTCON 2014, IEEE, pages 1–7, March
2014.

[15] A.J. Nash, T.E. Massey, C.J. Wesley, S.S Kosanam, and J.M. Conrad. Towards
establishing and maintaining autonomous quadrotor formations. In Informatics
in Control, Automation and Robotics (ICINCO), 2014 11th International Con-
ference on, volume 02, pages 635–639, Sept 2014.

[16] S. A. Raza and W. Gueaieb. Intelligent flight control of an autonomous quadro-
tor. In Federico Casolo, editor, Motion Control. 2010.

[19] M. Waite. Journalism with flying robots. XRDS: Crossroads, The ACM Maga-
zine for Students, 20(3):28–31, 2014.

Smedley. Drones new mission: saving lives in developing countries.
http:// theguardian .com/sustainable-business/2015/, 2015.

[18] T.
www.

[17] L. Reynaud and T. Rasheed. Deployable aerial communication networks: chal-
lenges for futuristic applications. ACM MSWIM (International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems), pages 9–16,
2008.

56

APPENDIX A: PROGRAMS

A.1 Camera Testing Program

The code shown below is the code used to cycle through the Pi Camera’s settings.

This was used to determine the settings at which the camera should use in order to

have the clearest image of the beacon as possible. Parts of the code are based on an

article for testing the Pi Camera [4].

#!/usr/bin/env python

import os

import time

import subprocess

list_ex = [’off’,’auto’,’night ’,’nightpreview ’,’backlight ’,’fireworks ’]

list_awb = [’auto’]

photo_ev = 0

photo_width = 640

photo_height = 480

photo_rotate = 0

photo_interval = 0.25

photo_counter = 0

total_photos = len(list_ex)*len(list_awb)

camera_distance = 12

try:

os.remove("photo_ *.jpg")

except OSError:

pass

try:

for ex in list_ex:

for awb in list_awb:

photo_counter = photo_counter + 1

filename = ’photo_ ’ + ex + ’_’ + str(camera_distance) + ’inches ’+’.jpg’

cmd = ’raspistill␣-o␣’ + filename + ’␣-t␣1000␣-ex␣’ + ex + ’␣-awb␣’ + awb

+ ’␣-ev␣’ + str(photo_ev)+ ’␣-w␣’ + str(photo_width) + ’␣-h␣’ + str(

photo_height) + ’␣-rot␣’ + str(photo_rotate)

pid = subprocess.call(cmd , shell=True)

print ’␣[’ + str(photo_counter) + ’␣of␣’+ str(total_photos) + ’]␣’ +

filename

57

time.sleep(photo_interval)

print "Finished␣photo␣sequence!"

except KeyboardInterrupt:

print "\nGoodbye!"

A.2 Color-based Vision System

import cv2 as cv

import numpy as np

import picamera

import math

import io

#Constants

lower_blue = np.array ([85 ,40 ,40])

upper_blue = np.array ([100 ,255 ,255])

#lower_yellow = np.array ([20 ,110 ,110])

#upper_yellow = np.array ([30 ,255 ,255])

lower_pink = np.array ([0 ,110 ,110])

upper_pink = np.array ([20 ,255 ,255])

res = [640 ,480]

#NEED TO ADD :

bg subraction pic needs to update whenever qr changes position

with picamera.PiCamera () as camera:

camera.resolution = (res)

camera.capture(’bg.jpg’)

bg = cv.imread(’/home/pi/bg.jpg’)

while (1):

stream = io.BytesIO ()

with picamera.PiCamera () as camera:

camera.resolution = (res)

camera.capture(stream , format = ’jpeg’)

data = np.fromstring(stream.getvalue (), dtype=np.uint8)

image = cv.imdecode(data ,1)

image = image - bg

hsv = cv.cvtColor(image , cv.COLOR_BGR2HSV)

58

kernel = np.ones ((5 ,5),np.float32)/25

#mask for possible blue values

blue_mask = cv.inRange(hsv , lower_blue , upper_blue)

blue_mask = cv.filter2D(blue_mask ,-1,kernel)

ret , blue_mask = cv.threshold(blue_mask ,200,255 ,cv.THRESH_BINARY)

blue_res = cv.bitwise_and(image ,image ,mask= blue_mask)

pink_mask = cv.inRange(hsv , lower_pink , upper_pink)

pink_mask = cv.filter2D(pink_mask ,-1,kernel)

ret , pink_mask = cv.threshold(pink_mask ,200,255 ,cv.THRESH_BINARY)

pink_res = cv.bitwise_and(image ,image ,mask= pink_mask)

#yellow_mask = cv.inRange(hsv , lower_yellow , upper_yellow)

#yellow_res = cv.bitwise_and(image ,image ,mask= yellow_mask)

#find center of blue object

blueM = cv.moments(blue_mask)

try:

bx = int(blueM[’m10’]/blueM[’m00’])

by = int(blueM[’m01’]/blueM[’m00’])

except ZeroDivisionError:

bx = 0

by = 0

#find center of pink object

pinkM = cv.moments(pink_mask)

try:

px = int(pinkM[’m10’]/pinkM[’m00’])

py = int(pinkM[’m01’]/pinkM[’m00’])

except ZeroDivisionError:

py = 0

px = 0

#count the number of pixels for each beacon to determine size

bpixcount = cv.countNonZero(blue_mask)

ppixcount = cv.countNonZero(pink_mask)

#Calculate angle camera is facing away from beacon

#for instances where the cam only sees one beacon

59

if bpixcount > 2* ppixcount:

print "The␣camera␣sees␣only␣the␣blue␣beacon.␣QR␣needs␣to␣turn␣90␣degrees."

if ppixcount > 2* bpixcount:

print "The␣camera␣sees␣only␣the␣yellow␣beacon.␣QR␣needs␣to␣turn␣90␣degrees."

#for slightly more precise turning

if bpixcount > ppixcount +100:

print "The␣QR␣needs␣to␣rotate␣left."

angle_set = 0

elif ppixcount > bpixcount +100:

print "The␣QR␣needs␣to␣rotate␣right."

angle_set = 0

else:

print "QR␣is␣at␣the␣correct␣angle."

angle_set = 1

#Calculate distance each object is from camera

#radius = -distance + 75

bradius = math.sqrt(bpixcount/math.pi)

pradius = math.sqrt(ppixcount/math.pi)

D1 = 75 - bradius

D2 = 75 - pradius

if angle_set:

DN = (D1+D2)/2

if DN > 50:

print "QR␣needs␣to␣move␣forward."

elif DN < 30:

print "QR␣needs␣to␣move␣backward."

else:

print "QR␣is␣at␣the␣correst␣distance."

#These are only for debugging/user interface

#blend the images

dst = cv.add(blue_res ,pink_res)

#draw dot on middle of objects

bradius = int(bradius)

pradius = int(pradius)

60

cv.circle(dst , (bx,by), bradius , (0,0 ,255), 3, 8)

cv.circle(dst , (px,py), pradius , (255 ,0,0), 3, 8)

font = cv.FONT_HERSHEY_SIMPLEX

cv.putText(dst ,’BACON_1 ’,(bx+10,by+10), font , 1 ,(255 ,255 ,255) ,2,cv.LINE_AA)

cv.putText(dst ,’BACON_2 ’,(px+10,py+10), font , 1 ,(255 ,255 ,255) ,2,cv.LINE_AA)

#Outputs

#print "The beacons are %s" % Db + " cm apart.

print "The␣number␣of␣blue␣pixels␣is␣%s" % bpixcount + "."

print "The␣number␣of␣pink␣pixels␣is␣%s" % ppixcount + "."

print "The␣blue␣beacon␣is␣%s" % D1 + "␣cm␣away."

print "The␣pink␣beacon␣is␣%s" % D2 + "␣cm␣away."

cv.imshow(’Captured ’, dst)

cv.waitKey (30)

A.3 Binary-based Vision System

import numpy as np

import cv2 as cv

import operator

import io

import picamera

import picamera.array

import time

import math

tiny_res = [200 ,150]

low_res = [400 ,300]

mid_res = [1280 ,780]

high_res = [1920 ,1080]

ultra_res = [2592 ,1944]

font = cv.FONT_HERSHEY_SIMPLEX

res = low_res

beacInfo = [0]*4

white = [255 ,255 ,255]

green = [0,255 ,0]

class LED:

ledCount = 0

def __init__(self ,name ,loc ,vis ,group):

self.name = name

self.loc = loc

61

self.vis = vis

self.group = group

LED.ledCount += 1

def displayCount(self):

print "Total␣LEDs:␣%d" % LED.ledCount

def displayLED(self):

print "Name:␣", self.name , ",␣Location:␣", self.loc , "Visibility:␣", self.vis

def contourSearch(im):

imgray = cv.cvtColor(im,cv.COLOR_BGR2GRAY)

ret ,thresh = cv.threshold(imgray ,5,255 ,0)

dilation = np.ones ((5 ,5), "uint8")

imgray = cv.dilate(imgray ,dilation)

,contours , = cv.findContours(thresh ,cv.RETR_EXTERNAL ,cv.CHAIN_APPROX_SIMPLE)

return(contours ,imgray)

def findLeds(contours):

cx = [0]* len(contours)

cy = [0]* len(contours)

M = [0]* len(contours)

ledDict ={’0’: 0,}

contourlist = [0]* len(contours)

for c in range (0,len(contours)):

M[c] = cv.moments(contours[c])

try:

cx[c] = int(M[c][’m10’]/M[c][’m00’])

cy[c] = int(M[c][’m01’]/M[c][’m00’])

except ZeroDivisionError:

contourlist[c] = contours[c]. tolist ()

cx[c] = contourlist[c][0][0][0]

cy[c] = contourlist[c][0][0][1]

for j in range (0,len(contours)):

while cx[j] in ledDict:

cx[j] += 1

ledDict[cx[j]] = cy[j]

del ledDict[’0’]

return(ledDict)

62

def sortLeds(ledDict ,contours):

sortedLeds = sorted(ledDict.items (),key=operator.itemgetter (0))

ledList = [0]* len(contours)

LED.ledCount = 0

for b in range (0,len(ledList)):

ledList[b] = LED(str(b),sortedLeds[b],len(contours[b]),’none’)

return(ledList)

def ledGroup(ledList):

leftCount = 0

rightCount = 0

leftList = []

rightList = []

ledSpacing = [0]*(len(ledList) -1)

leftY ,rightY ,leftMean ,rightMean ,innerLeft ,innerRight = 0,0,0,0,0,0

oldDif = 0

dif = 0

for x in range (1,len(ledList)):

dif = ledList[x].loc[0] - ledList[x-1]. loc [0]

ledSpacing[x-1] = dif

if dif > oldDif:

innerRight = ledList[x].loc[0]

innerLeft = ledList[x-1]. loc[0]

oldDif = dif

for x in range (0,len(ledList) -1):

if ledList[x].loc[0] < (innerRight + innerLeft)/2:

leftList.append(ledList[x].loc [0])

leftY = ledList[x].loc [1]

ledList[x].group = ’left’

leftCount += 1

else:

rightList.append(ledList[x].loc [0])

rightY = ledList[x].loc[1]

ledList[x].group = ’right’

rightCount +=1

try:

leftMean = np.convolve(np.array(leftList),np.ones((leftCount ,))/leftCount)[(

leftCount -1) :][0]

except ValueError:

leftMean = 0

try:

63

rightMean = np.convolve(np.array(rightList),np.ones((rightCount ,))/rightCount

)[(rightCount -1) :][0]

except ValueError:

rightMean = 0

beacInfo = [leftMean ,leftY ,rightMean ,rightY ,leftCount ,rightCount ,ledSpacing]

return(beacInfo)

def calcPosition(beacInfo):

b_len = 7.5

mid = res [0]/2

b_left = beacInfo [0]

b_right = beacInfo [2]

b_avg = (b_left+b_right)/2

pixratio = res [0]/54

ledSpacing = beacInfo [6]

angle = 0

#distance

if b_left < mid and b_right > mid:

if b_avg == mid:

b_pix = 1

x_pix = 0

elif b_avg > mid:

b_pix = b_right - b_avg

x_pix = b_avg - mid

elif b_avg < mid:

b_pix = b_avg - b_left

x_pix = -(mid - b_avg)

elif b_left < mid and b_right < mid:

b_pix = b_avg - b_left

x_pix = -(mid - b_avg)

elif b_left > mid and b_right > mid:

b_pix = b_avg - b_left

x_pix = mid - b_avg

else:

x_pix = 0

b_pix = 0

theta = b_pix/pixratio

theta_bar = x_pix/pixratio

64

theta_bar2 = 90 - theta_bar

theta_dot = theta_bar2 - theta

#offset

try:

x_off = b_len *(x_pix/b_pix)

except ZeroDivisionError:

x_off = 0

try:

distance = ((b_len)/2)*(math.degrees(math.sin(math.radians(theta_dot))))/(

math.degrees(math.sin(math.radians(theta))))

except ZeroDivisionError:

distance = 0

#angle

if len(ledSpacing) >3:

leftSpace = ledSpacing [1]

rightSpace = ledSpacing [3]

spaceDiff = rightSpace -leftSpace

if distance >= 12:

angle = 7.14* spaceDiff -20.7

elif distance >= 14:

angle = 4.35* spaceDiff -4.78

return(distance ,x_off ,angle)

with picamera.PiCamera () as camera:

camera.resolution = (res)

camera.contrast = 100

camera.exposure_mode = ’off’

camera.awb_mode = ’auto’

camera.vflip = True

camera.iso = 800

with picamera.array.PiRGBArray(camera) as stream:

while (1):

startTime = time.time()

camera.capture(stream , format = ’bgr’)

im = stream.array

65

print "capture time: " + str(time.time()-startTime)

contours ,imgray = contourSearch(im)

ledDict = findLeds(contours)

ledList = sortLeds(ledDict ,contours)

print "detect time: " + str(time.time()-startTime)

#beacInfo:

#[0]-> mean x-coordinate of left -side LEDs (float)

#[1]-> mean y-coordinate of left -side LEDs (float)

#[2]-> mean x-coordinate of right -side LEDs (float)

#[3]-> mean y-coordinate of right -side LEDs (float)

#[4]-> number of leds in left group (int)

#[5]-> number of leds in right group (int)

#[6]-> spacing between consecutive leds

beacInfo = ledGroup(ledList)

distance ,offset ,angle= calcPosition(beacInfo)

print "Distance␣(cm):␣" + str(distance)

print "Offset:" + str(offset)

print "Angle:" + str(angle)

#displayThings(contours ,beacInfo ,im)

cv.putText(im ,’Runtime: ’+str(time.time()-startTime)+ ’ s.’,(10,40),font

,0.25,white ,1,cv.LINE_AA)

cv.line(im ,(int(beacInfo [0]),int(beacInfo [1])) ,(int(beacInfo [2]),int(

beacInfo [3])),green ,1)

cv.putText(im ,’Distance: ’+str(distance)+’ in.’,(10,10),font ,0.25,white

,1,cv.LINE_AA)

cv.line(im ,(res [0]/2 ,0) ,(res [0]/2 ,res[1] -1),white ,1)

cv.line(im ,(res[0]/2,res [1]/2 -10) ,(int((beacInfo [0]+ beacInfo [2]) /2),res

[1]/2 -10),white ,1)

cv.putText(im ,’Offset: ’+str(offset)+’ in.’,(10,20),font ,0.25,white ,1,cv

.LINE_AA)

cv.putText(im,’Angle: ’+str(angle)+’ deg.’,(10,30),font ,0.25 ,white ,1,cv.

LINE_AA)

for x in range (0,len(ledList)):

cv.putText(im,str(x+1) ,(ledList[x].loc), font , 0.25,white ,1,cv.

LINE_AA)

cv.imshow(’Display ’,im)

if res == low_res:

cv.imshow(’Visibility ’,imgray)

66

cv.waitKey (30)

print "display time: " + str(time.time()-startTime)

contours [:]=[]

ledList [:]=[]

stream.seek (0)

stream.truncate ()

