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ABSTRACT

SHWETA JAIN. Memory efficiency implications on sparse matrix operations
(Under the direction of DR. RON SASS)

Sparse Matrices are very large matrices with very few nonzero elements and op-

erations on sparse matrices are central to many numerical and graph algorithms. The

fundamental bottleneck in these operations is the usage of specialized storage formats

which only store the NonZero (NZ) elements and the indirect memory references re-

quired to access those elements. This makes the operations very sensitive to memory

latency and bandwidth. Unfortunately, microprocessor trends are not encouraging

for sparse matrix operations: latency is increasing and bandwidth is becoming more

scarce. This results in many important applications having very poor computation

performance.

This dissertation describes a new sparse matrix format called Variable Dual Com-

pressed Blocks (VDCB) that divides a matrix into a number of smaller, variable-sized

submatrices with a bitmap to indicate the presence of NZ values. When used in

conjunction with customized memory subsystem, this converts the memory reference

pattern from random look-ups to a serial access pattern. To quantify how detrimental

the legacy sparse matrix storage formats are, the proposed system has been imple-

mented on an FPGA device and two common sparse matrix operations, Sparse Matrix

Vector Multiplication (SMVM) and Sparse Matrix Matrix Multiplication (SMMM),

were evaluated. These two operations represent a number of challenges for the mem-

ory and computation subsystems. Results demonstrate gains in bandwidth efficiency,

significant impact on the performance of the SMVM and SMMM operations, and the

scalability of the approach.
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CHAPTER 1: INTRODUCTION

The sustained projection of Moore’s Law has had a significant impact on proces-

sor and memory architectures. Both processor and memory systems have seen an

improvement in terms of speed, but the rates have been dramatically diverging. Pro-

cessors have seen an exponential growth in performance (speed and bandwidth) as a

result of reduced feature size and increased number of transistors giving rise to the

multi-core and many-core architectures. In case of memories the additional transistor

count has provided increased capacities at a cheaper cost. But unlike the processors

the increasing transistor count does not provide a significant speed improvement for

the memories. In fact memory latency in terms of processor clock cycles has increased

(memory cell speeds have remained constant over the past decade) as shown in Fig-

ure 1.1. In context of processor architectures where the main memory is implemented

using the Dynamic Random Access Memory (DRAM) on seperate chips the dormant

nature of memory speeds has resulted in a “Memory Wall”. The “Memory Wall” was

first identified by Wulf and Mckee in [1]. The authors predicted that the disparity

between memory speeds and processor speeds will eventually result in performance

degradation as the processor will be always waiting for the data from the memory.

The “Memory Wall” has seen different manifestations for uniprocessor and mul-

tiprocessor systems. In case of uniprocessor system the critical performance impedi-

ment was the memory access latency which was alleviated using caches and latency

hiding techniques like hardware/software prefetching and Out-of-Order execution of

instructions. But as we moved towards the multi-core and many-core architectures

the increased transistor counts provided the capability of adding larger caches in or-

der to hide the memory latency. Ideally this should have provided a performance
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Figure 1.1: Changes in memory access times

improvement in the order of the increased number of cores, but this was not the case.

As the number of cores and size of caches increased, the memory traffic generated also

grew proportionally proving the off-chip memory bandwidth to be the performance

bottleneck.

An increased bus width can be a viable option to offset the increasing demands

placed on the memory bandwidth providing higher throughput for the off-chip com-

munication in turn increasing the memory bandwidth. The I/O pins available on

the processor chip can be increased to provide wider bus widths. This solution is

fundamentally limited by the fact that with every processor architecture generation

number of cores are going to grow proportional to the area of the chip (C2, where C

is the length of one side of the chip)whereas the number of pins are going to be pro-

portional to the perimeter of the chip (4×C). The significant difference between the

rate at which the core counts and pin counts are going to improve has made memory
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Figure 1.2: Example of CSR and COO format

bandwidth a critical resource on multi-core and many-core processor architectures.

In this thesis we are going to investigate the Sparse Matrix Operations which per-

fectly exemplify the performance ramifications faced due to the memory bandwidth

limitations.

1.1 Sparse Matrix Operations

The Sparse Matrices are matrices with a large number of zero elements. They

arise in a number of scientific applications like Finite Element Method, Economic

Modeling, Page Rank, Graph Algorithms et al. The sparse matrix due to large

number of zero elements employ specialized storage formats which only store the Non

Zero (NZ) elements and associated metadata to indicate the location information

(row column positions) of the NZ elements.

The two most commonly used storage format for sparse matrices are Compressed

Sparse Row (CSR) and COOrdinate (COO) format. An example of these formats

is shown in Figures 1.2. These formats result in 1-D partitioning of sparse matrices

as the matrices are partitioned either by row or columns. We also have block based

storage formats like Block CSR and Block COO. The block based formats rely on

2-D partitioning as the matrix is partitioned both by rows and columns.

An important operation involving sparse matrices is the Sparse Matrix-Vector
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Multiplication (SMVM). The SMVM operation perform y = A × x where A is a

sparse matrix, x and y are dense vectors. The SMVM operation is of considerable

importance due to its low floating point performance (measured in MFLOPS, or

million floating-point operations per second) on modern computing platforms. The

poor performance of the algorithms using the SMVM operation (varies between 10%

to 33% theoretical peak rate of computation [2]) can be attributed to two factors:

the basic matrix-vector multiplication operation and sparse nature of the matrix. If

we consider general matrix-vector multiplication, we are performing O(n2) floating

point operations on O(n2) elements. The ratio of floating-point operations to mem-

ory transactions is O(1). With the widening gap between between processor clocks

(increased computation speeds) and memory speeds this ratio of O(1) cannot hide the

latency of fetching data from slow memory to the fast computational unit, making

matrix-vector multiplication memory bound in nature. The SMVM performance fur-

ther deteriorates due to the sparsity of matrix involved. If we consider a NZ element

represented using a single precision floating point we are performing two mathemati-

cal operations (a multiply and an add) on four bytes of data, resulting in a flop:byte

ratio of 0.5. Now if we consider the specialized storage format we are using for stor-

ing the NZ elements we are also going to have some associated metadata in form of

indexing information (location information) with the NZ element. Assuming we need

two integers (eight bytes) to indicate the row and column to which the NZ element

belongs we are now generating 12 bytes of memory traffic for performing two float-

ing point operations, thereby further driving down the flop:byte ratio. Thus we are

not only having low arithmetic intensity but we also have an increased traffic on the

memory subsystem due to the index information associated with each NZ element.

These two factors make the SMVM problem memory bandwidth bound in nature.

It is also important to consider the issue of memory latency in case of the SMVM

operation. Although not memory latency bound, the memory access latency still has
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a significant impact on the SMVM operation. It has been reported by Buluç in [3]

that the Intel Nehalem processor takes four clock-cycles to perform two mathematical

operations and around 24 clock-cycles to fetch the 12 bytes of the data associated with

the NZ operand, resulting in 20 wasted clock-cycles when processor is idle. The gap is

going to increase further over the next processor generations. In order to resolve the

SMVM performance issues we need a solution which is not only capable of efficient

utilization of memory bandwidth but also is agnostic to the memory latency.

1.2 Thesis Statement

The research efforts for the sparse matrix operations have been focussed on im-

proving data resusability for operands involved other than the sparse matrix. This

is a reliable approach considering sparse matrix does not offer any temporal locality

(due to the usage of sparse matrix storage format) and hence limits the data reusabil-

ity. The modest performance improvements obtained using the data reusability does

warrant us to look at the problem from a different performance. The researchers have

been continuously modifying storage formats to be capable of extracting maximum

performance from the underlying memory subsystem which is intrinsic to a processor

architecture.

We investigate the problem from the point of view of storage formats and how

they have evolved over the decades. If we refer to Figure 1.3 we see that for almost

three decades (1960s to late 1990s) the storage formats have been exclusively based on

1-D decomposition of sparse matrices. This resulted in formats which were essentially

some variation of CSR or COO format based on the NZ distribution present within the

matrix. But in late 1990s we see the first block based storage format in form of Block

CSR [4] almost after three decades of development of the CSR format. The sudden

need of block based storage format has its roots in the widening gap between processor

and memory performance. If we refer to the Figure 1.1 we see that by the late 1980s

the memory access time had significantly increased when compared to processor clock-
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Figure 1.3: Evolution of sparse matrix storage formats

cycles, indicating the memory access latency to be a critical performance impediment.

This resulted in development of processors with on-chip caches in late 1980s and

addition of more level of caches by early 1990s. As the researchers recognized the

performance gains provided by caching the focus shifted towards enhancing data

reusability and hiding the cache miss latency.

In case of the BCSR format the reordering of the NZ elements was used in order

to provide dense blocks which improved the reusability of vectors x and y. The block

based formats only needed to store the location of the block and the relative position

of the NZ elements was deduced from the block location information. This reduced

the memory requirement for the index information of the block based approach which

resulted in reducing the number of load operations. The newer block based formats

developed after BCSR, like BCOO and VBL also continued to focus on memory

latency issue and provided solutions accordingly. These formats were basically de-

veloped to address the performance needs of that time. As discussed before they

predominantly focused on memory access latency and improving reusability of vector

x,y and looked at any improvement in memory bandwidth utilization as an ancillary

benefit, although the SMVM operation is memory bandwidth bound in nature. This

approach essentially created a major disconnect between the needs of today’s proces-

sor architectures and the original requirements for which these storage formats were

designed. All the storage formats shown in Figure 1.3 (except CSB) were designed

keeping memory latency as the key performance impediment. As the paradigm shift
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towards multi-core/many-core architectures provided an every increasing core count

the focus moved towards the memory bandwidth. The increasing complexity of the

memory subsystems and aggressive memory hierarchy designs to hide memory laten-

cies resulted in contention of aggregate memory bandwidth available to the processor,

making memory bandwidth a valuable resource.

This strengthened our hypothesis that the current storage formats are not suit-

able for the current and future architectures and this basically motivates the central

question of this thesis:

As the memory bandwidth remains limiting issue on current and future processor ar-

chitectures, will the usage of legacy sparse matrix storage formats prove detrimental

for sparse matrix operations?

In order to answer this question we have developed a new storage format called

Variable Dual Compressed Blocks [5]. Based on this format we will validate our

hypothesis by considering the following key questions:

• Is it possible to design a new storage format for the sparse matrices which

focuses on memory bandwidth efficiency?

By comparing the different storage formats and their shortcomings we can assess

the requirements of a storage format which will be exclusively based around

memory bandwidth. If this storage format can alleviate the factors that affect

the memory bandwidth negatively then we will consider it to be a successful

design. We will also evaluate if the storage format solely can provide an average

memory bandwidth efficiency of at least 60% for sparse matrix operations.

• Can developing a memory hierarchy for sparse matrix operations which works

in conjunction with new storage format provide high memory bandwidth effi-

ciency and result in performance improvement for sparse matrix operations?

If the storage format on its own cannot provide an average 60% memory band-

width efficiency then if using a customized memory hierarchy result in an aver-
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age memory bandwidth efficiency of at least 60%. If we are able to achieve the

projected target using the customized memory hierarchy we will consider it to

be a successful design.

• Can this storage format be extended to the Sparse Matrix-Matrix Multiplica-

tion (SMMM) Operation?

If this storage format can be extended to design a new technique for the SMMM

without using unordered merge operation then we will consider it to be a success-

ful implementation. We will further discuss this metric in detail in Chapters 2.

• Can this storage format be extended to a scalable implementation of the sparse

matrix operations?

If a parallel implementation of the sparse matrix operations using the new

storage format can achieve at the minimum a 2X improvement in computation

time over a sequential implementation for a parallel system then we will consider

it to be a successful implementation.

The rest of this thesis is organized as follows.Chapter 2 provides the background

knowledge on Field Programmable Gate Arrays (FPGAs), Xilinx Tool Chain, IEEE-

754 floating point format and Unordered merge. We also discuss the performance

impediments faced by the sparse matrix operations due to storage formats and a sur-

vey of the current state of research for the sparse matrix operations. In Chapter 3

we will discuss in detail the VDCB format we have developed and the customized

memory hierarchies for SMVM and SMMM operation. Chapter 4 presents the exper-

imental setup and the evaluation of performance metrics to validate the efficacy of

our solution. Chapter 5 concludes with a brief summary of the research.



CHAPTER 2: BACKGROUND

This chapter provides an overview of the background knowledge used as ground-

work for this research. We discuss the Field Programmable Gate Arrays in detail in

Section 2.1. The capability of designing and implementing different functionalities on

the FPGA is provided by the Xilinx tool chain. A brief overview of the Xilinx tool

chain is provided in Section 2.2. The IEEE 754 floating point format and the mul-

tiplication/addition operations involving the format are used extensively throughout

this work. An overview of the IEEE 754 floating point format and the mathematical

operations is presented in Section 2.3. The problem of unordered merge which is

relevant to the Sparse Matrix-Matrix Multiply operation is presented in Section 2.4.

A custom high speed network which is used to study the scalability of the design

presented in the later chapters is presented in Section 2.5. We discuss the Sparse Ma-

trix Vector Multiplication (SMVM) operation and the various performance issues and

current research efforts related to the SMVM operation in Section 2.6. The Sparse

Matrix-Matrix Multiplication (SMMM) operation and the related performance im-

pediments and a brief survey of the current state of the art for the SMMM operation

are presented in Section 2.7

2.1 Field-Programmable Gate Arrays

In order to design a customized memory hierarchy as part of the this research,

we look at Field Programmable Gate Arrays (FPGAs). A Field Programmable Gate

Array (FPGA) provides an Integrated Circuit (IC) which consists of a hardware fabric

which can be configured for the needed functionality after it has been manufactured.

The FPGAs can be programmed using the Hardware Description Language (HDL)

to describe the functionality. They consist of a large number of logical resources and
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Block RAMs (BRAMs) to implement complex designs. A vendor specific toolchain

is used to synthesize the HDL into a bitstream which can be used to configure the

FPGA. The flexibility and enormous amount of computational capacity offered by

an FPGA device makes it a natural fit for designing custom memory hierarchy that

matches the memory access patterns of the applications for which it is used.

The FPGA consists of arrays of Configurable Logic Blocks (CLB), I/O Blocks,

routing networks and special purpose blocks as shown in Figure 2.1. The CLBs are

composed of LookUp Tables (LUTs) which are used as a function generator, flip-

flops which are used to hold states and special purpose circuitry for interconnection.

The routing network consists of switch boxes which ensures connection between the

various components of a design and the I/O blocks are capable of supporting a large

number of I/O standards including Low Voltage Differential Signaling (LVDC), Low

Voltage CMOS (LVCMOS).

A number of special purpose design blocks are already made available by the
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FPGA vendors which can be used without any modifications. These are generally

known as Intellectual Properties (IPs). There are two type of IPs: Soft IP and Hard

IP. The Soft IPs are implemented using the FPGA logic resources and the user needs

to explicitly instantiate these IPs in the HDL design. The Hard IPs are IPs which

are already implemented within the FPGA fabric They generally consist of Processor

Cores, DSP blocks, High Speed transceivers, Block RAMs. A detailed description of

the inner workings of an FPGA device can be found in [6].

2.2 Xilinx Integrated Software Environment

The Xilinx Integrated Software Environment (ISE) is the front-end GUI of the

Xilinx tools which are used to program the FPGA devices with the user-defined

functionality. The user describes the design in a Hardware Description Language

(HDL) like VHDL or Verilog and using netlists. The netlist is a colloection of logic

units and the intermediate connections between the units. The Xilinx tools use a

set of commands to convert the HDL description of a user design and netlists into a

configuration file for the FPGA. The configuration file for the FPGA is known as a

bitstream and it is used to place the various parts of a user design into the FPGA

design components. We briefly describe the various steps it takes for the Xilinx ISE

to convert an HDL design into a bitstream for the FPGA device. A more detailed

description of the design flow is available in [7].

• Xilinx Synthesis Tool (XST)

The Xilinx Synthesis Tool (XST) is used to convert an HDL design into a netlist.

The XST tool performs HDL code parsing for checking the syntax and reports

errors if present. The XST tool is able to perform FSM extraction and macro

recognition for in-built logical units like Flip-Flops, logic gates and memory. It

applies low level optimizations when available for timing, area and technology.

Some of the optimizations can be selected by the user and some are recognized

by the tool from HDL design description.
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• NGCBuild

The NGCBuild compiles different netlists into one common netlist in the Xilinx

proprietary format of .ngc. The NGCBuild opens the design hierarchy and

traverses it recursively to find the netlists associated with different IPs and also

applying any user constraints specified within the User Constraint File (UCF).

• NGDBuild

The common netlist generated in the previous step of NGCBuild is converted

into a Xilinx Native Generic Database (NGD) by NGDBuild. The NGD file

contains the description of the netlist in terms of Xilinx primitives of LUTs,

OR AND gates, memory and Flip-Flops. The design can now be mapped to a

specific Xilinx device technology.

• Map

The Map program is used for mapping a NGD file to a specific Xilinx device.

The program first performs a Design Rule Check (DRC) on the design presented

within the NGD file and then maps the design to the components of the specific

Xilinx device technology. The output of Map is a Native Circuit Description

(NCD) file which is used for placement and routing. An initial timing informa-

tion for the design is available at this point and Setup checks can be performed.

The Hold checks cannot be performed till the design has been routed by the

tool.

• Place And Route (PAR)

The PAR accepts the NCD generated as output of Map and uses it for placement

on the FPGA device. During placement the physical constraints are applied to

the design using the specification provided in Physical Constraints File (PCF).

The placement of the various design components is followed by the routing

which is used to use the interconnection network present on the FPGA device to
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connect the physically placed design components. The routing step is the most

time consuming step of the entire design flow. The complete timing information

for the design is available at this point and a final NCD file is made available.

• BitGen

The NCD file available after PAR is used for generating the bitstream using

BitGen.

A number of tool specific optimizations for area, power, performance and timing are

available at each step of the design flow to cater to specific needs of the user defined

design. The details of these options can be found in [7]

2.3 IEEE 754 Floating Point Format

The IEEE 754 floating point format is a binary representation for floating point

numbers. It is a common standard established for representing floating point numbers

across various architectures and providing portability for scientific code. The format

provides two forms of representation : Single Precision (32-bit) and Double Precision

(64-bit). The format has three components associated with it: Sign (S), Exponent

(E) and Fraction (F). In general the IEEE 754 format can be represented using the

following form:

(−1)S × F × 2E (2.1)

The sign value can be ’0’ to represent a positive floating point number or a ’1’ to

represent the negative floating point number. The IEEE 754 format uses a concept

similar to the normalized scientific binary floating point representation where no

leading zeros are present. In order to use this form of representation the format relies

on exponent and fraction. The exponent part of the format represents the amount

of decimal point shift to the left in order to have only a leading one. The fraction

part of the format represents the trailing part after the decimal point once the left
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SIGN EXPONENT FRACTION

31 30---------------23 22----------------------------------0

Figure 2.2: Single precision floating point representation

SIGN EXPONENT FRACTION

63 62---------------52 51----------------------------------0

Figure 2.3: Double precision floating point representation

shift operation has been performed to have only a leading one. In case of the single

precision representation the exponent part can vary from -128 to 127 for signed values

and 0 to 255 for unsigned values. The exponent for double precision representation

varies from -1024 to 1023 for signed values and 0 to 2047 for unsigned values. An

example of single and double precision representation is shown in Figures 2.2 and

2.3. The format also has reserved bit patterns for representing zero, Not a Number

(NaN), positive and negative infinity.

The selection between single and double precision formats is based on the re-

quirement of the application. The double precision format can be used over single

precision when a better precision is required (increased fraction bits) and the chances

of underflow/overflow have to be reduced. The double precision format increase the

memory requirement and can reduce the speed of operation due to higher number of

bits needed for its representation.

2.3.1 IEEE 754 Floating Point Multiplication

The multiplication operation is heavily used in this research for the different sparse

matrix operations we have performed. In this section we will discuss the floating point

multiplication operation when using the IEEE 754 floating point format.

The floating point multiplication is performed by adding the exponents of the

two operands and multiplying the fractions together. Before the actual operation be-
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gins a check is performed to see if any of the operands is zero. If we consider the two

operands: x represented in IEEE 754 format as −1Sx×Fx×2Ex and y represented us-

ing −1Sy×Fy×2Ey , then the product z = x×y is calculated using the following steps:

• Sz = Sx ⊕ Sy

• Ez = Ex + Ey

• Fz = Fx × Fy

• z = −1Sz × Fz × 2Ez

The final result is checked for overflow which can occur quite frequently in case of

the multiplication due to increased bit requirement (48-bits for the fraction in case

of single precision and 106-bits for the fraction in case of double precision). In case

of no overflow the correct rounding scheme is applied to ensure the result is within

the precision limit. In case of overflow a suitable flag is set along with the result

indicating the overflow.

2.3.2 IEEE 754 Floating Point Addition

The addition operation is used for the implementation of the accumulator (3.2.1.1)

which is part of the hardware design implemented in this research. The addition

operation is more complex than the multiplication operation due to the need of com-

parison operation between the exponents of two operands and aligning the fraction

components accordingly.

If we consider the two operands: a represented in IEEE 754 format as −1Sa ×
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Fa×2Ea and b represented using −1Sb×Fb×2Eb , then the sum c = a+ b is calculated

using the following steps:

• Align the fraction part of the operands based on the exponents

– If Ea > Eb perform right shift on Fb until Fb equals to Fb × 2Eb−Ea

– If Eb > Ea perform right shift on Fa until Fa equals to Fa × 2Ea−Eb

• Compute sum of the aligned fractions

Fc = Fa + Fb

• Ec = Ea

• Sc = Sa

• c = −1Sc × Fc × 2Ec

2.4 Unordered Merge

The merge operation is equivalent of an AND operation. When performing a

merge operation between two lists the resultant list will consist of elements from the

two list if and only if the element belongs to both the operand lists. An example

of the merge operation can be seen in Figure 2.4, where List A and List B are the

input lists for the merge operation and List C is the new resulting from the merge

operation.

List A 1 3 2 14 19 List B 10 3 9 7 8 14 1

List C 3 14 1

Figure 2.4: Example of unordered merge

It can be seen from the example presented in Figure 2.4 that performing the

merge requires a search and compare between the two input lists (List A and List
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B) making it a fairly expensive operation. The merge operation when used with

the sparse matrix storage formats has to parse the list of columns and rows in order

to perform the required sparse matrix mathematical operation. A lot of times the

column indices associated with a row are not in the increasing order in which they

occur within the matrix resulting in an unordered list. This makes the search and

comparison operations more complex. Lets consider an example of two lists : list 1

and list 2 consisting of column indices arranged in an increasing order and used for

merge operation. If list 1 provides an element A larger than element B provided by

list 2, then all the elements preceding B are not used for the search operation as they

are going to be smaller than the element A (due to increasing order of column indices)

and this will reduce the number of elements over which a search and compare has

to be performed. Thus a merge operation over an unordered list (unordered merge)

becomes more expensive as every time a search operation has to be performed over

all the elements of the two lists, making unordered merge an expensive operation.

2.5 Architecture Independent REconfigurable Network

The Architecture Independent REconfigurable Network (AIREN) is an integrated

on-chip/off-chip network that supports node-to-node communication. The AIREN

interface has enabled us to implement and study the scalability of our design pre-

sented in Sections 3.2.2.1, 3.5.4. The AIREN interface consists of an AIREN Router

supporting the Xilinx LocalLink Interface [8]. The router provides the ability to con-

nect compute cores to a network including both on-chip and off-chip compute cores.

The routing module present within the router is used to make the routing decisions

based on the interconnection network used. The router uses the dimensional order

routing for the routing decision.The router can be configured to support various net-

work topologies. In order to support node-to-node communication AIREN interface

uses the high speed transceivers present on the FPGA. The AIREN interface also

uses the locallink interface to assemble the packets for the router. A packet consists
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of a Start of Frame (SOF) and End of Frame (EOF) along with the payload. The

locallink interface enables flow control to be incorporated for the transaction made

on the AIREN network. The locallink interface uses Source ReaDY (SRDY) and

Destination ReaDY (DRDY) to implement flow control. The locallink interface is a

light weight protocol and incurs a very small amount of overhead. A more detailed

description for AIREN can be found in [9, 10].

2.6 Sparse Matrix Vector Multiplication

The Sparse Matrix Vector Multiplication is used in a number of scientific and

engineering problems (e.g. Finite Element Method, Conjugate Gradient, Page Rank).

The operation performs ~y = A×~x where, A is a sparse matrix and ~x is a dense vector.

2.6.1 Performance Issues of Sparse Matrix Vector Multiplication

In order to develop a Sparse Matrix Storage format which is centered around

memory bandwidth we need to understand the shortcomings of the pre-existing stor-

age formats. We use the CSR format which is the oldest and most commonly used

sparse matrix storage format to highlight the performance limitations incurred by the

memory subsystem when performing the SMVM operation. We look at an example

presented in Algorithm 1 for performing the SMVM operation using the CSR format.

10 0 0 0

3 9 0 0

0 0 7 8

3 0 8 0




0

1

2

3

0 1 2 3

val 10 3 9 7 8 3 8
col ind 0 0 1 2 3 0 2
row ptr 0 1 3 5 7

Figure 2.5: Example of CSR format

We list the memory subsystem impediments that will arise using this particular

implementation (Algorithm 1) of the SMVM operation as follows:
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Input: Number of rows, row ptr, col ind, val, x
Output: y = A× x
for i→ 0 to rows do

for j → row ptr[i] to row ptr[i+ 1]− 1 do
y[i] += val[j]× x[col ind[j]];

end

end
Algorithm 1: SMVM using CSR storage format

• Additional load operations are incurred for the index information of the NZ

element in form of row ptr and col ind. These particular operations do not

contribute towards the actual SMVM computation

• The indirect memory access takes place via row ptr for col ind and NZ values

• Indirect and irregular memory access on x

We can see all the three performance impediments are related to the storage format

and are going to affect the available memory bandwidth negatively. If we look at the

first two impediments they are directly related to the storage format. The problem

here is two-fold: firstly we have additional load operations in form of the indirect

memory access that takes place for the row ptr and col ind. Secondly, these load

operations are going to be used only for the purpose of correct indexing of val array

and not for any useful computation, driving down the flop:byte ratio.

The third impediment is due to the sparsity pattern of the matrix involved and

not so much related to the storage format. If we have matrix in which a large number

of NZ elements are present in the same column then all of them will access the same

value of x and result in improving reusability of x. This might require reordering

of the NZ elements of the matrix and inclusion of zero-padding in order to improve

temporal locality on x. As the performance gains using this particular approach will

be highly dependent on the NZ element distribution within the matrix and up to

what extent can these elements can be rearranged, we will not address this particular

aspect when developing our storage format.
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Based on this discussion we can summarize the two main issues that need to be

addressed by a new storage format as follows:

• Can we minimize the number of additional load operations that take place for

the index information of the NZ elements ?

• Can we minimize or possibly eliminate the indirect memory access that are

present within the storage formats ?

2.6.2 Related Work for the SMVM Operation

There has been a significant interest in implementing the SMVM operation on

an FPGA and other compute accelerators (such as IBM Cell Broadband Engine,

GPGPUs, and others). Below we explain how this work fits within the context of

prior efforts.

2.6.2.1 FPGA Implementations

The FPGAs have been actively pursued over the past decade for SMVM kernel.

The main premise in a lot of these research advances have been essentially to increase

the computation speed to compensate for the poor memory utilization.

The work done by Zhou et al. in [11] is one of the first research efforts on per-

forming floating point SMVM on FPGAs. The sparse matrices used are stored in

traditional CSR format and the FLOPS are improved by parallelizing the multipli-

cation and addition of non-zero elements of a row. The paper proposes a tree-based

architecture comprising of floating point adders and multipliers to achieve this. Al-

though innovative, the splitting of rows requires padding of zeros or merging of rows

together to provide the required number of operands to the multiplier nodes of tree.

The zero-padding is a wasteful operation and degrades the total floating point per-

formance by increasing the number of idle cycles and merging sub-rows from two

different rows subsequently increases the complexity of the accumulation circuit.

A seminal work presented in [12] discusses the need of using off-chip memory
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for storage of matrices and addresses the issue of increased latency due to off-chip

memory requirements of larger matrices. The design presented, focuses on matrix

reordering and providing a cache based memory structure for improving the overall

performance of SMVM kernel.

2.6.2.2 Impact on Multi-Core Platforms

A comprehensive and detailed study on latest multi-core platforms has been per-

formed in [13] for SMVM kernel. An exhaustive set of optimizations based on ma-

trices and underlying architecture are used for improving performance. The results

presented show Cell Blade (one of the platforms studied) provides a consistently high

floating-point performance when compared to other state of the art architectures

used. This seems contrary to popular approach for speedup, as Cell Blade has a rel-

atively slower floating-point unit. But an essential factor on achieving speedup is the

fact that Cell Blade due to its memory organization effectively utilizes the available

memory bandwidth.

A number of GPU implementations of SMVM are also available. The work pre-

sented in [14] provides optimization strategies to efficiently map tasks to the GPU

threads. Also, a thorough implementation of SMVM using different storage formats

on a GPU is presented in [15].

2.6.2.3 Algorithmic Advances

An active area in terms of algorithms regarding SMVM has been the storage

format used for sparse matrices. A blocked representation of sparse matrix using

CSR called BCSR format was proposed by Pinar et al. in [4]. One of the most

recent developments in storage format has been Compressed Sparse Block (CSB). It

has shown promising performance for multi-core platforms. The researchers involved

in developing CSB have also proposed a bitmasked implementation of CSB in [3].

Although, the premise is similar to our storage format, there are some significant

differences. The bitmasked implementation of CSB does not have a concept of Block
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Header, which necessitates an offline analysis of the entire matrix to determine the

number of zeros within a block and the parallelization decisions are made based on

this analysis. Also, VDCB tries to represent matrix as a group of variable-sized dense

blocks unlike CSB, which envisions matrix as a group of constant sized sparse blocks.

2.7 Sparse Matrix Matrix Multiplication

The Sparse Matrix-Matrix Multiplication (SMMM) operation is used to compute

C = A×B where both A and B are sparse matrices. The SMMM operation is used

frequently in graph algorithms such as Breadth First Search, Cycle Detection, Peer-

Pressure Clustering etc. A significant amount of research effort has been invested

towards the Dense Matrix-Matrix Multiplication (DMMM) and has resulted in a

number of cache friendly optimizations like software-prefetching, register-blocking etc.

These performance optimizations have been implemented to hide memory latency and

to increase the data reuse. Although applicable towards the SMMM operation to a

certain extent, the performance gains using these techniques are not significant when

compared to the DMMM operation.

2.7.1 Performance Issues of SMMM Operation

The näıve approach for matrix-matrix multiplications usesO(n3) operations, where

n×n is the size of matrix . To reduce the number of operations, fast matrix multipli-

cation algorithms such as Strassen and Coppersmith-Winograd are widely used. The

complexity for these algorithms varies from O(n2.78) to O(n2.375). This indicates the

number of multiplication operations are dependent on the size of the matrix and not

on the Number of Non-Zero (NNZ) elements present within the matrix. This is a de-

sirable feature in case of dense matrices where the NNZ is O(n2). It indicates that the

NNZ elements will grow proportionally with the size of the matrix and hence having

an algorithm where complexity is a function of the size of matrix (n × n) instead of

NNZ elements is more suitable. But in case of sparse matrices these algorithms pro-

vide an over-estimation of the number of multiplication operations that are actually
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10 0 0 0

3 9 0 0

0 0 7 8

3 0 8 0




×

0 2 0 0

0 0 0 0

1 0 0 0

0 0 4 0




=

0 20 0 0

0 6 0 0

7 0 32 0

8 6 0 0




Figure 2.6: Basic matrix multiplication

val 10 3 9 7 8 3 8
col ind 0 0 1 2 3 0 2
row ptr 0 1 3 5 7

val 2 1 4
col ind 1 0 2
row ptr 0 1 1 2 3

Figure 2.7: CSR Multiplication Example

needed. For sparse matrices NNZ is o(n2) and the general trend is that as the size of

matrix increases the NNZ elements reduce. If we have two sparse matrices with a and

b NNZ elements respectively, then the number of multiplications operation required

are around O(ab). Hence the available fast matrix multiplication algorithms do not

utilize the sparse nature of matrices involved and end up performing more number

of multiplication operations than are actually needed. It can be seen from Figure 2.6

that only six multiplications are needed (due to large number of zero elements) for

the resultant matrix C. But if a näıve implementation is used we are still performing

64 multiplications in order to calculate the final result.

Another layer of complexity is added to this problem due to the usage of sparse

matrix storage formats. In order to determine the NZ elements from the matrices

which are going to multiply an unordered merge has to be performed between the

indexing elements of the two matrices. If we assume both matrix A and B are

represented in the CSR format then the multiplication will take place as shown in

Figure 2.7.

In order to perform multiplication using the CSR format the row ptr of matrix

B has to be decoded in order to find out the row positions of its NZ value. Then

each decoded row positions have to be compared with each col ind of matrix A.
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This process has to be repeated with every row position of matrix B. This essentially

results in performing an unordered merge (Section 2.4) between rows of matrix B and

columns of matrix A. Although this method provides a means of avoiding unnecessary

multiplication which take place in the näıve implementation; the unordered merge

that needs to be performed is a very expensive operation and results in performance

deterioration.

Hence another requirement that the new storage needs to address is:

Can the new storage format perform the SMMM operation without the unordered

merge and unnecessary multiplications with the zero elements?

2.7.2 Related Work for the SMMM Operation

The classic SMMM algorithm developed in [16] is one of the seminal works for this

problem. The algorithm uses the traditional CSR format for computing the product

of two sparse matrices. The MATLAB CSparse operation is based on this particular

algorithm. A fast sparse matrix multiplication has been proposed by Yuster and

Zwick in [17]. The proposed algorithm is not specifically used in conjunction with

a format. It uses fast rectangular dense matrix multiplication for performing the

multiplication for permutation matrix. The complexity of this algorithm is around

O(m0.7n1.2 + n(2+o(1))) where m and n represent the number of rows and columns

of the resultant matrix. The work done by Sulatycke and Ghose in [18] discusses

the impact of indirect memory accesses on the performance of the SMMM operation.

They also propose a loop-interchange technique for improving the performance of the

SMMM operation and demonstrate a multi-threaded implementation of the proposed

technique. The work done by Buluç and Gilbert in [19] discusses the scalability

issues of the SMMM operation. They also use a new storage format called Doubly

Compressed Sparse Columns (DCSC) which is a modification of the CSC format for

the implementation of the SMMM operation.

The research efforts for SMMM operation on the FGPAs is still in nascent state.
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One of the initial work on the SMMM is done by Lin et al. in [20]. The work deals with

the energy efficiency of implementing the SMMM operation on FGPAs and uses the

CSR format for the matrices. This work is further extended to design an analytical

model for matrix-multiplication on FPGAs focusing on the SMVM and the SMMM

operation are suggested in [21].



CHAPTER 3: DESIGN

The premise of this research is that the currently available storage formats are not

memory bandwidth friendly and in turn result in performance deterioration for sparse

matrix operations. In order to validate this argument we looked at the shortcomings

of the currently available sparse matrix formats and develop a new storage format

known as the Variable Dual Compressed Blocks (VDCB). Our work focuses not only

on the development of the storage format but also on the feasibility of this format to

perform the sparse matrix operations in a computationally efficient manner. We have

hypothesized in Chapter 1 that the inefficient utilization of the memory bandwidth

when performing sparse matrix operations is not solely due to the shortcomings of

the storage formats but also the inherent processor memory hierarchy.

We evaluate our hypothesis by examining if the VDCB format independently can

serve the performance deficits suffered by the sparse matrix operations or the memory

hierarchy present in the processor architectures is also responsible for performance

degradation. In order to examine our argument we must have a two-fold approach

when developing the experimental setup. Firstly we need to use the VDCB format

by itself to perform the sparse matrix operations in software. This will help in un-

derstanding if the performance shortcomings are only due to the storage format and

independent of the conventional memory subsystem. Secondly we need to develop a

memory hierarchy to work in conjunction with the VDCB format to perform specific

sparse matrix operations. The comparison of the performance from these two ap-

proaches will help us to answer our hypothesis. We have selected two sparse matrix

operations for the purpose of design development: Sparse Matrix Vector Multipli-

cation (SMVM) and Sparse Matrix Matrix Multiplication (SMMM). Based on the
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discussion above we classify the high level design into two categories:

• Hardware/Software Co-Design Solution

In this solution a memory hierarchy is developed using the FPGAs to work in

conjunction with the VDCB format to perform the SMVM and SMMM opera-

tions

• Software Only Solution

In this solution a software code is developed to use a VDCB encoded sparse

matrix to perform the SMVM and SMMM operation on a conventional processor

3.1 Variable Dual Compressed Blocks

Based on our discussion presented in Sections 2.6.1 and 2.7.1 we list out our

expectations from an ideal storage format.

• Limits the number of indirect memory accesses

• Provides a low overhead for adding the location information of non-zero element

• Agnostic to the sparsity structure

The various formats available for sparse matrix storage differ from each other in

how the index information for a NZ element is stored. The indirect memory access

happening in CSR, is also present for all the currently available storage formats. An

optimization proposed for reducing indirect memory access is to minimize the amount

of index information needed to determine the NZ element position. This reduction in

index overhead is used in block based storage formats like BCSR[4] and Compressed

Sparse Blocks (CSB)[22]. Relevant information required for determining block posi-

tion within a matrix is only stored for these formats. Also, blocking improves the

cache reusability of the vector for SMVM[23].

An ideal storage format should limit the number of indirect memory accesses and

have a low memory overhead for adding the location information of NZ element. To
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BLOCK0 BLOCK1 . . . . . . BLOCKn

BLOCK HEADER BITMAP NZ ELEMENTS

Block Size Row Start Col Start Total NZ Elements

Matrix

Block

Block Header

Figure 3.1: VDCB format

achieve this we have developed a storage format called Variable Dual Compressed

Blocks (VDCB). The VDCB format works by dividing a matrix into a number of

smaller variable sized sub-matrices. These sub-matrices are referred to as BLOCKS.

Each block has three components associated with it as shown in Figure 3.1. The first

component is a Block Header; it consists of all the parameters needed to define the

location of a block within a matrix. The second component is a Bitmap and it is

used to store relevant index (location) information of NZ elements associated with

a block. The bitmap sets a one to indicate the presence of a NZ element within a

block and zero otherwise. The last component of the format is the double precision

NZ elements present in a block.

3.1.1 VDCB Encoder Software Design

The sparse matrices are only available in the commonly used storage formats like

CSR and COO. This makes it essential to develop an encoding software which is

able to accept a sparse matrix encoded in CSR/COO format and generate the corre-

sponding VDCB encoded sparse matrix. We use a simple heuristic for generating the

VDCB storage format from a COO encoded sparse matrix, as shown in Algorithm 2.

The heuristic selects blocks based on their densities. Currently we are only using

multiples of eight for block sizes and the largest block size we can support is 64x64.

We have developed the search code using C++ Standard Template Library (STL).
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Input: Number of block rows, block row count
Output: Generate VDCB format for each block row
while block row 6= empty do

set vector x = block row begin;
set vector y = block row end;
ldim = set vector y - set vector x + 1;
for j → set vector x to set vector y + ldim do

Push all row, column elements of block row in temporary block →
temp block;
Push all non-zero elements of a block row in temporary block →
nnz search block ;

end
while temp block 6= empty do

Determine the starting search coordinates of temp block;
for i→ 1 to 8 do

Search blocks of sizes in multiple of 8 using starting search
coordinates;
Choose the block with highest density → final block;
Select larger block if multiple blocks have same density;
Remove row, col from temp block that correspond to final block;
Generate block header for final block;
Generate bitmap for final block;
Remove non-zero elements corresponding to final block from nnz
search block;

end

end

end
Algorithm 2: Search heuristic
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The STL provides a rich set of generic algorithmic solutions for search, sort and

insertion that can be applied to user-defined data structures easily. We have used

matrices from University of Florida Matrix Market Place[24], for testing our software

and hardware design.

3.1.2 Definitions

Definition 1. If the blocks or NZ elements are arranged in order of increasing rows,

the storage scheme is referred as Row Major Ordering.

Definition 2. If the blocks or NZ elements are arranged in order of increasing columns,

the storage scheme is referred as Column Major Ordering.

Definition 3. A Block Row is used to represent a collection of consecutive rows of a

matrix when constant block sizes are used. The number of block rows for a matrix is

given by equation:

β =
n

b
(3.1)

where n × n is the size of the matrix, b × b is the constant block size and β is the

total number of block rows. Similarly, a set of consecutive columns of a matrix when

constant block size is used for a Block Column. The number of block columns of a

matrix is given by Equation 3.1.

Definition 4. The collection of consecutive block rows is referred as Super Block. The

number of super blocks present within a matrix is given by equation

SB =
β

S
(3.2)

where SB is the number of Super Blocks present within a matrix, β represents the

total number of block rows present within a matrix and S is the size of each Super

block.
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3.1.3 Notations Used

Table 3.1: Notations used

Symbol Description

V Total Number of Blocks encoded in the VDCB format for matrix A

γ Size of a block encoded in the VDCB format

AV Represents the array of all the V blocks encoded in the VDCB format

of matrix A

AV [i] Represents the ith block from array AV of matrix A

when encoded in the VDCB format

AV [i]XY Represents the block-header of ith block

of matrix A, where X, Y are Row-Start and Col-Start fields

AV [i]BMP Represents the bitmap associated with the ith block of matrix A

AV [i]NZ Represents the NZ-array associated with the ith block of matrix A

AXY Block of matrix-A encoded in the VDCB format with X,Y

denoting the Row-Start, Col-Start field of the block header

BUV Block of matrix-B encoded in the VDCB format with U,V

denoting the Row-Start, Col-Start field of the block header

BMPXY Row-Major bitmap of AXY

BMPUV Column-Major bitmap of BUV

NZA
XY NZ elements present in AXY

NZB
UV NZ elements present in BUV

bmpAm Bitmap associated with the m-th row of AXY

bmpBn Bitmap associated with the n-th column of BUV

nzAm NZ-element array associated with bmp− Am

nzBn NZ-element array associated with bmp−Bn
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PLB

Figure 3.2: High level architecture for SMVM operation

3.2 Hardware Design for Sparse Matrix Vector Multiplication

In this section we will discuss the customized memory subsystem and the com-

putation core design used to perform the SMVM operation on a matrix encoded in

the VDCB format. This hardware design will provide us the evaluation platform for

the SMVM operation when Hardware/Software Co-Design approach is used with the

VDCB format to perform the operation.

3.2.1 Sequential Hardware Design

The top level sequential hardware design consists of three subsystems: Customized

Memory Interface (CMI), Row Column Generator (RCG) and Block Processing Unit

(BPU) as shown in Figure 3.2.

3.2.1.1 Block Processing Unit

When performing SMVM operation using VDCB format, matrix vector multiply

operation takes place for each block. This generates a partial result vector for each

block. The final resultant vector ~y is a sum of all the partial results computed.
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In our previous work we identified the high latency of accumulation operation to be

a major performance deterrent [5]. We alleviate this problem by implementing single

cycle accumulation loop floating point accumulator (based on the work presented

in [25]) for the purpose of calculating partial results for each block. The single cycle

accumulation loop ensures, that every time a row within a block is switched, we have

to wait only for a clock-cycle before applying new sets of inputs. The BPU trigger

is controlled by a Finite State Machine (FSM) which starts all the computation

operations only when the ~x has been read into the BRAM. The results generated

by the accumulation loop need to be normalized to the standard IEEE-754 floating

point format. We have modified the partial result accumulator to function as a

simple loop back adder for the final stage of accumulation. In the final stage of

accumulation we perform the normalization operation which is skipped in the partial

result accumulation. The normalization operation takes about four clock cycles and

is not implemented in the partial result accumulator, as it will be a redundant step.

The blocks are interleaved in software in such a way that two consecutive blocks do

not have any common rows. This avoids race conditions when the results have to be

written to ~y. The BPU operates at 100 MHz. The Computation Unit (CU) supports

two BPUs (Figure 3.3) enabling us to perform matrix vector multiplication on two

blocks in parallel. The vectors ~x and ~y are shared between the two BPUs. Both the

vectors are stored in true dual-port Block-RAMs (BRAM) providing us the capability

of issuing two read requests in parallel for ~x and ~y.

The inclusion of normalization step for final result accumulator provides a total

latency of six clock cycles for the final stage adder. This latency might cause a data

hazard if the operand from result BRAM (~y) is needed before it has been written to

it. This happens if partial results corresponding to the same row are applied to final

stage accumulator in an interval smaller than the final stage adder latency. To avoid

this we interleave the blocks in software in such a way that no two consecutive blocks
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Figure 3.3: Block processing unit

have any common rows. This satisfies the latency constraint placed on partial results

corresponding to the same rows.

3.2.1.2 Customized Memory Interface

The memory interface is designed to manage data coming from main memory.

The key component of our Memory Interface is a Data Management Unit (DMU).

The DMU controls a 1:4 De-Multiplexer managed by the DMU FSM. The input is

connected to Native Port Interface (NPI) channel of memory controller as shown in

Figure 3.4. The NPI channel provides the VDCB encoded matrix A stored in the

main memory to the CMI. The four outputs are connected to FIFOs (Figure 3.4),

these FIFOs are referred as VDCB component FIFOs. To prevent overflow of data

from VDCB component FIFOs in case of larger matrices we incorporate a flow control

strategy in the DMU. If any one of the VDCB component FIFOs is about to get full,

we pause the NPI memory channel connected to De-Multiplexer. This prevents new

data being written to the VDCB component FIFOs. Once sufficient amount of data

has been read out we resume the transaction on the memory channel. The DMU

operates at 200 MHz.

The DMU is responsible for providing necessary data to other two subsystems
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Figure 3.4: Customized memory interface

(Row Column Generator and Block Processing Unit). The FSM (shown in Fig-

ure 3.5)controlling DMU is aware of how the VDCB format is arranged in the mem-

ory. The FSM knows that the blocks are arranged in memory sequentially and the

very first component present within a block is a block header. As soon as the VDCB

format is started to be read out from the memory the FSM present within the DMU

interprets the very first datum it receives as a block header. The FSM decodes the

block header in the “decode block header” state and stores it in the block header

FIFO by asserting the relevant select lines for the 1:4 De-Multiplexer. The block

header is decoded to determine the size of the block, based on which it determines

the number of bitmaps that will be needed to represent the complete index informa-

tion of a block (Section 4.1.1, Equation 4.1). It also stores the subsequent fields of

block header (i.e., row start, col start, number of NZ elements) in registers for future

use.

After the “decode block header” state the FSM moves to the “write bitmap” state.
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Figure 3.5: DMU control FSM

If it was determined in the “decode block header” state that k number of bitmaps

would be needed for representing the index information of the NZ elements within a

block, then k number of words which follow the block header (read in the previous

“decode block header” state which was used to determine the number of bitmaps) are

consider to be bitmaps and are stored in the bitmap FIFO. The reading of bitmaps

coming in from the memory and writing the bitmaps to the bitmap FIFO (selecting

the bitmap FIFO through 1:4 De-Multiplexer) takes place in the “write bitmap” state.

After writing the bitmaps to the bitmap FIFO the FSM moves to the “write NZ”

state. This state is similar to the “write bitmap” state and instead of writing bitmaps

the NZ elements that follow the bitmaps are written into the NZ FIFO. The number of

NZ elements that will be following the bitmaps is determined by the element stored in

the NNZ register in the “decode block header” state. After the “write NZ” state the

FSM moves again to the “decode block header” state as the decoding operation for

the next block header (indicating the beginning of a new block) which follows the NZ
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elements ( written to the NZ FIFO in “write NZ”) begins. The FSM remains active

till the NPI channel on the memory controller asserts a NPI done signal indicating

the entire VDCB encoded matrix A has been read from the memory.

We can see from Figure 3.4 that there are two NZ FIFOs present for supporting

two BPUs. The FSM pushes the NZ elements from all even numbered blocks (block

0, block 2 and so on) in NZ FIFO 0 and the NZ elements from all odd number blocks

(block 1, block 3 and so on) in NZ FIFO 1. The FSM is capable of doing so by

maintaining a block counter register in the “decode block header” state which counts

the incoming blocks. In the “write NZ” state the block counter is referred and if the

block counter is even then the select line for NZ FIFO 0 is asserted, otherwise NZ

FIFO 1 is selected. The even or odd count is determined by performing a modulo-2

operation in the “write NZ” state.

3.2.1.3 Row Column Generator

We wanted to provide a hardware design which could efficiently decode bitmaps for

necessary index information. In our design we wanted to avoid introducing decoding

latency which might be substantial if not greater than the cost of indirect memory

access. To achieve this we have implemented a Row Column Generator (RCG). The

main component of RCG is a Decoder Unit, which is a modified implementation of

priority encoder.

The FSM which implements the Decoder Unit is shown in Figure 3.6. The main

job of this FSM is to work in conjunction with DMU to detect all the bits which

are set to “one” within a byte of bitmap and provide the corresponding row-column

positions. The RCG FSM controls the read operation from the Block Header and

Bitmap FIFOs which are present within the DMU. The RCG operates at 100MHz.

• Read Bitmaps

In the “read bitmaps” state the FSM reads a block header and the corresponding

bitmap from the Block Header and Bitmap FIFO present within the DMU. The
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Figure 3.6: Row-Column generator FSM

“read bitmaps” state determines if more than one bitmap is needed to represent

the index information of the block (Section 4.1.1, Equation 4.1). This is done by

examining the block header. Once the number of bitmaps required for a given

block header are determined, the block header read from the FIFO is stored in

a register to be used by the subsequent states of the RCG FSM for providing

row-column positions.

• Detect Set Bit

The “detect set bit” state provides the position of the bits set within a bitmap.

It operates on a byte of a bitmap at a given time. The “detect set bit” state

consists of modified priority encoder which determines the position of bits set

to “one” within a byte. If we take for example 00100001 representing a byte of

a bitmap. Then the “detect set bit” will provide a position value of two and

seven indicating the presence of a NZ element at these location within a block.
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• Reset Bit

The “detect set bit” does not generate all the positions values together, instead

after generating a position value it transitions to “reset bit” state which resets

the bit for which position value has been generated. So if we consider the

example discussed earlier for a byte value of 00100001 then the “detect set bit”

state will generate a position two indicating the presence of the NZ element at

that particular position. Then it will transition to the “reset bit” state which

will set the “one” present at position two to “zero” and provide a new byte

value of 00000001 before transitioning back to “detect set bit” state. Now the

“detect bit state” will generate a position value of seven and transition to “reset

bit”. The “reset bit” state ensures that a position value for the same bit is not

generated twice by the “detect bit state”.

• All Zero

If the positions for all the bits set to “one” have been determined by the “detect

set bit” state then the “reset bit” state will generate a byte value of 00000000. In

the example discussed previously for a byte value of 00100001 once the “detect

bit state” receives a byte value for 00000001 it will generate a position value of

seven. After which it will transition to “reset bit” state. In this state “reset bit”

state will change the bit value from “one” to “zero” for the position seven in

the byte. This will result in a byte value of 00000000, then the FSM transitions

from “reset bit” state to “all zero” state. In this state it is determined if all the

bytes representing a bitmap have been read out. In case there are more bytes

remaining for the bitmap the “all zero” state transitions to the “detect set bit”

state and decoding of the next byte of the bitmap begins. Otherwise, the “all

zero” transitions to “read bitmaps” state to read the block header and bitmap

values for the next block.
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• Generating Index Information

As discussed before the “detect bit state” generates the position values for the

bits set to one within a bitmap. These position values are used to generate the

relevant index information for the NZ elements present within a block. If we

consider a block of size 8× 8 then we need 64 bits to completely represent the

position of all the NZ elements present within the block. An 8 × 8 block will

consist of eight rows and eight columns. We will require a byte (eight bits) for

each row, where each bit represents the column present within a row. If a bit is

set to one within a byte it will indicate the presence of the NZ element at that

column position. In the “detect set bit” state we are generating the positions

at which a “one” is set within a byte, that means we are generating a column

position. We can add this column position value to the col start field present

within the block header to provide exact column position. Also every time a

new byte is read we increment the row start field of the block header as each

byte represents a row in case of an 8 × 8 block. In case of blocks larger than

8× 8 we will have to determine how many bytes are needed to represent a row

and modify the increment operation for row and column positions accordingly.

For example in case of a 16 × 16 block we will require 256 bits to completely

represent the index information. This will result in incrementing the row start

field after reading every two bytes and decoding two bytes for determining the

column positions where a NZ element is present.The number of bytes need for

incrementing the row start field and decoding/incrementing the col start field

is determined in the “read bitmaps” state when the number of bitmaps needed

for a block is calculated using the block header.

As the RCG provides the row-column information to two BPUs (Figure 3.2)

and in turn to the two Row-Column FIFO present within the BPU (Figure 3.3),

it should be capable of determining which BPU should be provided with the
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decoded row-column positions. In order to do so the RCG FSM employes a

strategy identical to the one used by the DMU FSM for writing the NZ elements

to the two BPUs. In the “read bitmaps” state a block counter is used and if the

count is even then BPU 0 is selected, otherwise BPU 1 is selected. The block

counter is examined in the “detect set bit” state and a modulo-2 operation is

performed to select the BPU to which the decoded row-column positions will

be provided.

3.2.2 Performing Parallel Sparse Matrix Vector Multiplication using VDCB Format

When performing matrix-vector multiplication operation each row of matrix A is

multiplying with the vector ~x to produce a row of resultant vector y (Equation 3.3).

We can see from Equation 3.3 that each row of the resultant vector ~y can be calculated

independently and this provides an ample amount of row-level parallelism for the

SMVM problem.

yi =
n∑

i=0

Aij × xj (3.3)

The CSR format presented in Section 1.1 represents the NZ elements present in

a matrix on a per-row basis; this makes the format well suited for utilizing row-level

parallelism and is widely used for the same. The VDCB format due to its block-based

structure and the usage of variable sized blocks cannot be easily be used to implement

the row-level parallelism strategy. Thus we need to investigate alternate techniques

to introduce parallelism.

If we refer to Section 3.2.1.1 we can see that the Computation Unit is capable of

supporting up to two Block Processing Units and this allows computation of prod-

uct of two blocks simultaneously. Thus we are able to introduce parallelism at a

low level in form of block-level parallelism. We can try to extend this further to

row-level parallelism within a block to increase performance gains. In case of the

VDCB format row-level parallelism is more complicated when compared to the CSR
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format. This is due to the decoding of the bitmaps to provide row-column values of

a block on-the-fly by the Row-Column Generator (Section 3.2.1.3). Hence an initial

knowledge of the row position of a particular NZ element which is inherently present

within the CSR format is unavailable for the VDCB format. Instead of focusing on

introducing parallelism at the individual row-level we try to increase the potential

of block-level parallelism. In order to increase block-level parallelism we will need

to increase the number of BPUs that area available for computation and the data

providing resources (DMU, CMI and RCG) for the BPUs to avoid under utilization

due to lack of data. With the current design set up we are already reaching almost

the maximum utilization (about 85%) of the BRAMs available (Table 4.5). Hence

in order to accommodate an increased number of design components (BPU, CMI,

RCG) which are heavily reliant on FIFOs (internally implemented using BRAMs)

and BRAMs we need to move from a single FPGA node to multiple FPGA nodes.

We first need to decide how the blocks of matrix A and vector ~x can be provided

to the additional nodes for computation. Based on this choice we will be able to

partition the design functionality when we move to multiple nodes. If we consider a

system with “n” memory channels where each channel is connected to a node which

stores the entire vector ~x within its main memory, then we can provide the blocks of

matrix A to these nodes via the memory channel for computation. This will make

the nodes capable of computing the part of resultant vector ~y in parallel. The main

issue with this strategy is the feasibility of providing individual blocks to each node;

as each node will be only calculating a partial result for vector ~y . This will make it

difficult to update the vector ~y across all the nodes if a change has been made by one

node and it will result in race conditions to write the final resultant vector ~y.

In order to overcome this issue we introduce a new technique for increasing block-

level parallelism called Block Row Level Parallelism. Before we continue this dis-

cussion further we will introduce definitions and modifications made to the VDCB
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format which are relevant for the understanding of this new technique.

Modifications made to the V DCB Format In order to implement the Block Row

level parallelism technique we need to introduce some modifications to the VDCB

format as listed below:

• For sparse matrix A use a fixed block-size of b× b

• Arrange blocks rows of matrix A in Row-Major Order

The modifications made to the VDCB format results in a block arrangement as

shown in Figure 3.7. The gray highlighted area shown in Figure 3.7 represents a block

row. Each block row consists of a series of blocks of matrix A encoded in the VDCB

format. With this block arrangement (Figure 3.7) we can see that each block row

(consisting of the VDCB encoded blocks of matrix A) can multiply with the vector ~x

independently in order to provide a part of resultant vector ~y as shown in Figure 3.7.

As each node is operating on an entire block row where the blocks are arranged in a

row major order the possibility of a race condition on vector ~y is avoided. Also each

node is going to calculate a portion of vector ~y without requiring an update from

another nodes.

Based on this discussion we can modify the initial system proposed to accommo-

date Block Row Level Parallelism. We will now consider a system with “n” memory

channels where each channel is connected to a node which store vector ~x and each

node is provided with a Block Row of matrix A via the memory channels, enabling

the nodes to compute the part of resultant vector ~y in parallel.

Implementation of the Block Row Level Parallelism In order to incorporate

the block row level parallelism for the SMVM operation, we develop a star network

topology as shown in Figure 3.8. In this setup each node is an FPGA node and the

head node consists of the entire matrix A encoded in the VDCB format. The head

node provides the block rows of matrix A to the worker nodes via the networking
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Figure 3.7: Parallel implementation of SMVM operation using Block Rows

channels. The worker nodes store vector ~x within their main-memory and can start

the computation of resultant vector ~y once they start receiving the block rows of

matrix A.

In the system considered in Figure 3.8 the number of worker nodes will have to

be increased as the number of block rows for matrix A increase in order to obtain

maximum block row level parallelism. This would not only be an expensive but

also an impractical solution. The number of block rows depends upon the constant

block-size “b” that has been chosen during encoding. This implies we can use large

block sizes and have fewer number of block rows (Equation 3.1) to reduce the number

of worker-nodes. This solution is not very effective as the selection of block size

will rely on a number of parameters specific not only to the matrix but also to the

underlying hardware design. Thus we need to re-evaluate our strategy to create a

system which still provides the benefits of block row level parallelism without being

extremely expensive.

In order to overcome the high resource requirements (in terms of FPGA worker
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Figure 3.8: Network topology for parallel SMVM

nodes)for block row level parallelism strategy, we constrain our parallel system to

have only fixed number of worker-nodes represented by w. As the system is now

limited to a fixed number of worker-nodes w, we need to modify the block row level

parallelization scheme. There are two approaches we can use to provide block rows

to the w number of worker-nodes:

• The head-node can provide individual block rows to each worker-node and keep

doing so till all the block rows have been exhausted. We will refer to this as

Round-Robin Approach

• The head-node can provide a Super-Block to each worker-node. In this case we

can modify the Equation 3.1 as follows:

SB =
β

w
(3.4)

Thus we can now have a matrix with the number of Super blocks of given by Equa-

tion 3.4 and we can provide one super-block to each worker-node.
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3.2.2.1 Parallel Hardware Design

Based on the earlier discussion of using block row level parallelism to perform the

SMVM operation we are able to identify the high level functionality of head node

and worker node. A head node will be storing the VDCB encoded matrix A within

its main memory and will provide the block row of matrix A the worker nodes via

networking channels. The worker nodes will be receiving the block rows of matrix A

through the networking channels; they will perform a decode operation on the VDCB

encoded blocks present within the block row and perform the SMVM operation using

the vector ~x stored in their main-memory. Thus the parallel hardware design can

be broadly classified into two components: Networking Core and Computation Core.

The Networking Core is used for the purpose of communication between the Head

Node and Worker Nodes. The Computation Core is responsible for decoding the

VDCB encoded blocks, fetching the vector ~x from the main memory of the worker

node and performing the SMVM operation, thereby providing the portion of resultant

vector ~y.

At the heart of the Networking Core is the Architecture Independent REconfig-

urable Network card which is an integrated on-chip/ off-chip network that support

node-to-node communication. The AIREN card uses the high speed FPGA Multi-

Gigabit Transceivers (MGT) for communication between the FPGA nodes. A detailed

description of the AIREN interface can be found in [26]. The AIREN interface used

for networking in our design is identical to the implementation presented in [26]; for

brevity we are not presenting the AIREN functionality details here.

Worker Node The parallel system as discussed in Section 3.2.2 has the matrix A

stored on the Head Node and it is provided via networking channels to the Worker

Nodes. Thus from the design perspective we can see that the SMVM operation is

only performed on the Worker Nodes and hence the Computation-Core should be

only needed on the Worker Nodes. As the communication will be needed between the



47

Head Node and the Worker Node the Networking Core has to be present on both of

them.

The Worker Nodes will still need to use the CMI (Section 3.2.1.2) in order to

provide the block row data coming in via the Networking Core to the Computation-

Core. The only difference in this case is the CMI instead of being connected to an NPI-

channel (Figure 3.4) is connected to the Local-Link (LL)Interface core as shown in

Figure 3.9. The AIREN interface present within the Networking Core uses the Xilinx

Local-Link standard for communication purpose and inserts an associated header-

footer information [26]; also the Local-Link standard has a different data-width than

the one used by the CMI. To overcome these differences the LL Interface is used. It

removes the header/footer from the data coming in from the Networking Core and

uses a differential width FIFO to provide the CMI the data-width it expects. The

LL-Interface is also used to provide the resultant vector ~y once it has been calculated

to the networking core which in turn transmits it back to the Head Node.

It can be also seen from the Figure 3.9 that a single NPI-Channel is used for vector

~x on the Worker Node. As soon as the the LL-Interface starts providing the data

(block row) to the CMI the request for vector ~x is placed on the NPI channel and it

is written to vector ~x BRAM. It might be considered suitable to store the vector ~x on

the BRAM and not in the main-memory as it is being reused for the multiplication

operation. The size of the matrix A and in turn the size of vector ~x will change for

different matrices. This means we have to allocate very large amount of BRAM for

vector ~x in order to accommodate different problem sizes. This will cause a problem

to fit other components of our design and is not a practical solution. Thus we use a

fixed size of BRAM for vector ~x and store it within the main-memory.

Head Node The Head Node stores the block rows of matrix A within its main-

memory. It uses a Block Row Req Core to read the block rows from the main-memory

via the NPI-Channel (Figure 3.10). The LL-Interface core on Head Node is used to
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PLB

Figure 3.9: High level architecture of worker node

convert the block rows to the Local-Link data standard expected by the AIREN

Interface. The Head Node provides the block row to each Worker Node sequentially

(similar to an MPI Send), so the Head Node will first provide block rows to Worker

Node 0, then Worker Node 1 and so on. The Head Node also uses the Networking

Core to read-back the individual components of the resultant vector calculated by

each Worker Node and writes back these results to the main-memory (via NPI-Ch 2,

Figure 3.10).

3.3 Software Design for Sparse Matrix Vector Multiplication

As described earlier our design approach consists of designing a custom memory

hierarchy that works in conjunction with the VDCB format to perform sparse matrix

operations and also providing a solution which is purely software based using the

underlying processor memory subsystem to perform the sparse matrix operations. In

this section we describe the design for performing the Software Only SMVM operation

for a VDCB encoded matrix.
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Figure 3.10: High level architecture of Head Node

Sequential Software Implementation We describe the sequential algorithm to im-

plement the SMVM operation using the VDCB format in Algorithm 3, the various

notations used to describe the algorithm are presented in Table 3.1. We can see from

Algorithm 3 that although we are using the VDCB format to perform the SMVM

operation we are still using array based lookups to retrieve relevant block informa-

tions from the memory and the decoding of the bitmaps is not happening “on the

fly” unlike the hardware design. Thus in the Software Only approach the desired

characteristic of the VDCB format to eliminate the indirect memory access is absent

due to the lack of customized memory hierarchy provided by the Hardware/Software

Co-Design approach.

Parallel Software Implementation In order to implement the parallelized software

we use the Message Passing Interface (MPI) library. The parallelization strategy for

the software design is identical to the hardware implementation presented in Sec-

tion 3.2.2. The algorithm implementing the parallelized SMVM operation using the

VDCB format is presented in Algorithm 4.
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Input: AV , V , ~x, γ
Output: ~y
for i→ 0 to V − 1 do

Read Row-Start, Col-Start fields from AV [i]XY ;
Assign block-size γ from AV [i]XY ;
Assign the NNZ values present in AV [i] from AV [i]XY ;
Read locations x[Y ] to x[Y + γ] ;
Decode AV [i]BMP ;
Push the decoded Row-Column values to temporary array temp row and
temp col ;
for j → 0 to NNZ − 1 do

y[temp row[j]]+ = AV [i]NZ × x[temp col[j]];
end
Update the resultant vector ~y;

end
Algorithm 3: SMVM operation using the VDCB format

Input: SB, RR, β, w
Output: ~y
if SB == 1 then

if Head Node then
MPI Send → Super Blocks to worker nodes;

end

end
if RR == 1 then

if Head Node then
for i→ to β do

MPI Send → block row to worker nodes;
end

end

end
if Worker Node then

MPI Recv ← Super Blocks from head node;
Read vector ~x from memory;
Perform matrix vector multiplication using Algorithm 3;
Update vector ~y;

end
Algorithm 4: Parallel SMVM operation using the VDCB format
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3.4 Performing Sparse Matrix-Matrix Multiplication using VDCB Format

If we consider two square sparse matrices A and B of size n × n we can use a

näıve approach to compute their product using Algorithm 5 (a[i][k],b[k][j] and c[i][j]

represents the elements of the matrix A, B, C respectively).

Input: A, B, n
Output: C
for i→ 0 to n− 1 do

for j → 0 to n− 1 do
c[i][j] = 0
for k → 0 to n− 1 do

c[i][j]+=a[i][k]× b[k][j]
end

end

end
Algorithm 5: Basic matrix multiplication

The algorithm presented in Algorithm 5 performs multiplication even when aik or

bkj are equal to zero. In case of sparse matrices if we symbolically associate a “0”

with each zero element and a “?” with each NZ element then we can have four cases

for multiplication as follows:

0× 0, 0× ?, ?× 0, ?× ?. We can see that for the first three cases the multiplication

will result in a zero and due to identity property of addition these cases will not

contribute towards the calculation of cij. In order to avoid these redundant multipli-

cation operations due to presence of zero elements the SMMM algorithm should only

perform computation when aik = bkj = ?. We refer to this particular computation

as Required-Multiplication (RM). We implement the SMMM operation by modifying

the VDCB storage format described earlier in Section 3.1.The modifications made to

the format in order to perform the SMMM operation are as follows:

• Only used fixed block sizes of b× b for sparse matrices A and B

• Generate row major bitmaps for all blocks of A and column major bitmaps for
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all blocks of B

• Arrange blocks of matrix A in row major order and blocks of matrix B in column

major order

• Arrange NZ elements of blocks of matrix A in row major order and NZ elements

of blocks of matrix B in column major order
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Figure 3.11: Block arrangement for the SMMM operation

3.4.1 Block Selection and Multiplication

If we refer to Figure 3.11 we can see the arrangement of blocks for matrix A and

matrix B. We can thus represent the SMMM operation using Algorithm 6 (m =

(n − 1) × b in Algorithm 6). The computation of C when A and B are encoded in

Input: A, B, m
Output: C
for i→ 0 to m do

for j → 0 to m do
for k → 0 to m do

Cij += Aik ×Bkj

end

end

end
Algorithm 6: Matrix multiplication using the VDCB format

the VDCB format is almost identical to naive approach. The only difference is that
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instead of multiplying individual elements we are multiplying blocks of matrix A and

matrix B. This particular distinguishing factor is actually useful in identifying the

possible RMs.

Property 1. The condition of multiplication for two elements present at locations axy

and buv belonging to A and B is that multiplication can only take place if y = u.

Instead of checking for the column and row value of every element in order to

satisfy Property 1, we can check the block-header fields of the two blocks. Based on

this comparison we can deduct if elements present in these blocks can be multiplied

or not.

Lemma 1. When two blocks AXY and BUV are encoded in the VDCB format then

AXY can only multiply with BUV if Y = U .

Proof. Consider two matrices A and B of size n× n divided into fixed block sizes of

b× b. The block AXY can have maximum of b2 elements with a set of possible indices

xi ∪ yi such that:

xi = {X + 0, X + 1, X + 2, ......X + b− 1}

yi = {Y + 0, Y + 1, Y + 2, ......Y + b− 1}

Similarly for BUV we will have elements with a set of indices ui ∪ vi given by:

ui = {U + 0, U + 1, U + 2......U + b− 1}

vi = {V + 0, V + 1, V + 2......V + b− 1}

Now if ui ∩ yi = ∅ we can deduct that Y 6= U . This means that block BUV covers

a different range of rows than the once expected by columns of AXY and hence

Property 1 is not satisfied.
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Another possibility is when ui ⊆ yi or vice-versa. In both cases ui ∩ yi 6= ∅.

This means multiplication is possible between the two blocks and only checking for

inequality between the first element of ui and first element of yi is insufficient. This

basically implies, only checking for the row-start field and col-start field (that is only

comparing Y and U) will result in skipping the RMs that would have taken place for

the two blocks.

A subset between ui and yi can arise if Y = U+l or vice-versa where 0 ≤ l ≤ b−1.

If l = 0 then ui ≡ yi and it satisfies the condition of coverage of rows and columns

for the blocks stated before (Property 1). But we will still have to consider the case

where 1 ≤ l ≤ b− 1.

We know that the number of block-rows and block-columns for A and B is given

by n/b. So the possible values of row-start field of block header; in our case U , can

be given m× b where 0 ≤ m ≤ (n−1) as shown in Figure 3.11. Similarly the possible

values for col-start field of block header Y can be given by k×b where 0 ≤ k ≤ (n−1).

So the values of U and Y (row-start and col-start fields) for blocks of matrices B and

A is going to increment by a constant amount “b”. Thus the possibility of having a

row-start field U = Y + l or col-start field of Y = U + l where, 1 ≤ l ≤ b − 1 is not

going to exist. Thus comparing the row-start field U of BUV with col-start field Y of

AXY will be sufficient to conclude if the two blocks can be multiplied or not.

The selection of blocks based on Lemma 1 is the first step in identifying potential

RMs. The second step is to isolate the RMs that are present when multiplying the

two selected blocks. If we refer to Algorithm 5 we know that every row of block

AXY will multiply with every column of block BUV . We can represent the problem

of finding RMs for the two blocks using the code presented in Algorithm 7. The

example of block multiplication shown in Algorithm 7 indicates that a dot-product

has to be computed between each row of AXY with each column of BUV .

As the blocks AXY and BUV are encoded in the VDCB format we will need to
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Input: AXY , BUV ,b
Output: CXV

if Y == U then
for i→ 0 to b− 1 do

for j → 0 to b− 1 do
c[X + i][V + j] = 0
for k → 0 to b do

if a[X + i][Y + k] and b[U + k][V + j] 6= 0 then
c[X + i][V + j]+=a[X + i][Y + k]× b[U + k][V + j]

end

end

end

end

end
Algorithm 7: Example of block multiplication

decode the corresponding bitmaps BMPXY and BMPUV to find the NZ elements

associated with a[X + i][Y + k] and b[U + k][V + j]. This is an inefficient approach

and more optimized method can be employed by using the bitmaps of AXY and BUV .

Consider that the row-m of block AXY and column-n of BUV have to be used for

a dot-product computation. As bmpAm is a row-major bitmap the bits set to one

indicates the positions of NZ elements present in row m. Similarly bmpBn is a column

major bitmap and indicates the NZ elements present in the column n. If we perform

an AND operation between the two bitmaps we can basically find out if there are any

NZ elements for RMs.

mult bmp = bmpAm AND bmpBn (3.5)

If the mult bmp is zero then no RMs are present for the dot-product. In case

mult bmp is not equal to zero, then we know that row-m and column-n have a point

of overlap where they both have a NZ element which has to be utilized for the RM

and which contributes towards the dot-product. An example of the dot-product

operation using the the bitmaps associated with the row and column, along with the

corresponding NZ arrays is shown in Figure 3.12. A block of size b× b will require a
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Figure 3.12: Dot product using bmps

bitmap which is b2 bits wide to completely represent its index information . In other

words, for a row-major bitmap for a block of size b× b, each row’s index information

is represented by “b” number of bits. Similarly for a column-major bitmap each

column’s information is represented by “b” number of bits.

In the example shown in Figure 3.12 we have used a block size of 8×8 so the size of

bmpAm and bmpBn is eight bits. We can also see from the example in Figure 3.12 that the

size of NZ array is equal to the number of bits that are set to one in the corresponding

bitmap. It also implies that we cannot simply multiply the two NZ arrays to obtain

the dot-product. If we look at the example of dot-product (Figure 3.12); if we multiply

the two NZ arrays we will be performing the following operation:

dot prod = (2 ∗ 4) + (8 ∗ 6) + (7 ∗ 9) + (5∗?)

Firstly we see that we are performing more number of RMs than actually needed and

secondly we don’t know what the last value of nzBn is going to be multiplied with.

This means we need to determine the elements belonging to arrays nzAm and nzBn

which are going to participate in the dot-product computation.

The number of bits which are set in mult bmp indicates the number of RMs that

need to take place. In our case the mult bmp (Figure 3.12) has two bits set to “one”

and thus two RMs need to take place. Now we have to find out which two elements

from nzAm and nzBn have to be used. This can be done by decoding the bitmaps of a
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block and determining the location information of the elements present in their NZ

array. The location information basically provides the row-column position of each

element in NZ array. Thus the decoding operation on bmpAm will give us the location

of each NZ element in nzAm as follows: (m, 0), (m, 3), (m, 6). This basically indicates

that NZ values are present within the mth-row at column positions 0, 3, 6 Similarly

the decoding operation of bmpBn which is a column major bitmap will give us locations

(0, n), (1, n), (6, n), (7, n), which tells us the row positions within nth-column which

have NZ elements. Once the decoding operation has taken place we can easily identify

the elements from the NZ arrays that will be used for RMs by using the Property 1.

3.4.2 Count Ones Technique

The decoding of bitmaps requires that the multiplication operation cannot start

till the location information for all NZ elements represented by bmpAm and bmpBn is

generated. This additional latency introduced for the multiplication operation by

decoding of bitmaps can be eliminated by using the Count Ones Technique.

In this method instead of decoding the bmpAm and bmpBn we directly calculate the

offsets for the NZ arrays to find the NZ elements which are going to be used for

performing RM. If we revisit the example shown in Figure 3.12 we can see that for

nzAm array, elements nzAm[0] and nzAm[2] are used for the RMs.

To start calculating the offsets of nzAm array we have to account for the NZ elements

present in the array which are not contributing towards RM, but which are needed

for correct indexing of the NZ array. We first look at the mult bmp and determine

the positions of bits that are set to one. The first bit that is set to one in our

case is mult bmp(0). Now for calculation of the offset; as we know that bit-position

zero is set to one, we can conclude that nzAm[0] = 2 is used for RM. After we have

performed specified lookup from the NZ array we set mult bmp(0) = 0 and the new

value of mult bmp = 00000010. The next bit which is set to one is at mult bmp(6).

To determine the next offset for NZ array we count the number of “ones” that are
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present in bmpAm before the bit position bmpAm(6). These “ones” account for the

previous NZ elements which have to be skipped in order to obtain the next NZ

element from the array which is going to contribute towards the RM. We can see that

before bmpAm(6) two more bits have been set to one which indicate NZ elements at

nzAm[0] and nzAm[1]. Thus the next NZ element from the NZ array which is going to

be used for RM is nzAm[2] = 7. Once the required value has been provided for RM

we set the mult bmp(6) = 0. There are no longer any bits set to one in mult bmp

thus all the look-ups for RMs have been performed on nzAm. This same technique is

used for the bmpB and nzBn to determine the NZ elements for the RM. Once all the

lookups for the RMs have been performed for both the arrays a new set of dot-product

computation can begin. An example demonstrating this particular approach is shown

in Algorithm 8 (the variable b indicates the block-size).

Input: b, bmpAm, nzAm,mult bmp
Output: RM operand
for i→ 0 to b− 1 do

if mult bmp(i) == 1 then
j = i;
count ones = 0;

end
for k → 0 to j − 1 do

if bmpAm(i) == 1 then
count ones = count ones + 1;

end

end
RM operand = nzAm[count ones] ;
mult bmp(i) = 0;
count ones = 0;

end
Algorithm 8: Count Ones technique

3.5 Hardware Design for the SMMM Operation

In this section we present the hardware design to perform the SMMM operation

when using the Hardware/Software Co-Design approach to use the VDCB format

to implement the SMMM operation. We have divided our high level architecture
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Figure 3.13: High level architecture for SMMM operation

(Figure 3.13) into three subsystems: Computation Unit (CU), Block Selection Unit

(BSU) and Block Fill Unit (BFU).

3.5.1 Block Selection Unit

The Block Selection Unit (BSU) is used to identify the blocks which are going

to be used for RMs. The BSU also has a Data Fetch Unit (DFU) which is used for

fetching data from the memory using Native-Port Interface (NPI) channel of Multi-

Port Memory Controller (MPMC). The DFU is aware of the block arrangement of

matrix A and matrix B in the memory and based on that it fetches the block rows

of A and block columns of B. To obtain a block row of C a block row of A has to

be multiplied with each block column of B (entire matrix B encoded in the VDCB

format). Thus the DFU stores a block row of A on the on-chip memory called Block

RAM (BRAM) and stores all the block columns of B in FIFO. After finishing the

calculation of one block row of C the DFU fetches the next block row of A and all

the block columns of B.

The BSU has a Finite State Machine (FSM) which uses Lemma 1 to make the

selection of the blocks which can be used for RMs. The BSU FSM uses the Table 3.2
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Table 3.2: BSU FSM action
Comparison Pop Block of A Pop Block of B Perform Multiplication

col startA = row startB 3 3 3

col startA < row startB 3

col startA > row startB 3

to determine the actions that it needs to perform based on the comparison of the col

start field of matrix A and row start field of matrix B.

It can be seen from the Table 3.2 that the inequality between the col start and

row start field results in a pop operation either from matrix A or matrix B. This is

an important step in order to provide a solution which is free of unordered merge. As

the blocks of matrix A are stored within a BRAM and blocks of matrix B are stored

within a FIFO the comparison operation can be done in two ways.

A simple solution is every time a block of matrix B is popped from the FIFO

compare it against all the blocks of matrix A present within the BRAM to find a

possible match for multiplication. This is a highly inefficient method and forces us to

perform a merge operation at block level. Instead if we look at the way the blocks are

arranged in Figure 3.11 we know that if col startA of block A is less than the row

startB of block B then all the blocks present before block A will not be multiplying

with block B as there col start field is going to be lesser than the col startA. Hence

the address for the BRAM storing blocks of matrix A should be kept incrementing till

the col startA < row startB condition becomes false. Similarly when the col startA

is greater than row startB then the blocks from the FIFO need to be kept popping

till the col startA > row startB condition becomes false.

The popping of blocks of matrix A from the BRAM is easy as it only requires an

address increment based on the block headers. The FSM reads the number of NZ field

from the block header and it already knows the number of bitmaps that are present

for a block (based on the block size) and it increments the address by an amount

given by:
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Figure 3.14: Block selection unit

New Block Addr = Current Block Addr + # of bitmaps + # of NZ

This increment operation keeps taking place till the condition for popping blocks of

matrix A becomes false.

In case of popping the blocks of matrix B a FIFO is used and this makes the

popping blocks of matrix B more time consuming. Unlike the case of matrix A where

the address increment was made to move to next block header (beginning of a new

block) and all the intermediate bitmaps and NZ elements were skipped; the FIFO

storage does not provide us the option of skipping the read operation on bitmaps and

NZ elements. The FIFO is a queue based operation and the concept of address is

absent for it. This makes the FSM state of popping blocks of matrix B the most

time consuming state of the BSU FSM. As soon as the first element of B is fetched

from the memory and written into the FIFO the FSM starts comparison and it does

not wait for the entire matrix to be written into the FIFO before it starts selection.

This is because as the VDCB format is a streaming based storage format and the

blocks of matrix B are arranged in column-major order, thus the blocks are fetched

from the memory in order in which they are needed for multiplication. Hence the

comparison can start as soon as the first element (the block header of the very first

block of matrix B) gets written into the FIFO.

3.5.2 Block Fill Unit

The Block Fill Unit (BFU) is provided by the blocks from the BSU as shown in

Figure 3.13. The BFU is responsible for providing the row and column information



62

Figure 3.15: Block fill unit

to the PEs.

As discussed earlier one row of block of matrix A will multiply with an entire block

of matrix B to provide a row of block of resultant matrix C. Thus it is important

to consider the potential of reusability the block of matrix B provides. The BFU

provides each PE with the block of matrix B to be stored within the BRAM. The

BFU then provides individual rows of block of matrix A to the PE. Based on the

constant block size b in which the matrices have been divided the BFU determines

the size of bmp which will represent each row of matrix A.

The BFU accepts BMPA
XY and NZA

XY from the BSU and parses the BMPA
XY

which is b2 bits wide. The BSU divides the BMPA
XY into b individual bitmaps rep-

resenting each row of the block of matrix A. The BFU is thus able to provide bmpA0 ,

bmpA1 and so on till bmpAb . Once the BMPA
XY has been divided into the individual

bitmaps representing the rows, the next part is to determine the NZ elements from

the NZA
XY array that belong to each row. The BFU evaluates each bmp sequentially

in an ascending order starting from bmpA0 and counts the number of bits that are set

to “one” within the bmp. It removes the corresponding number of NZ elements from
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the NZA
XY and provides it to nzA0 array associated with bmpA0 . The NZ elements for

the block of matrix A are arranged in row major order and the first element of the

array NZA
XY will represent the first element present within the first row in which a

NZ element is present. The BFU also maintains a tag register which is “b” bits wide

and is used to indicate when a valid row information is available for the PE. Every

time the BFU generates a pair of bmp and nz array associated with a row it sets the

tag register bit to one. Thus for example if tag register(1) (tag register’s second bit)

is set to one, indicating bmpA1 and nzA1 are available for computation. The BFU sets

a one for tag register even if bmp is equal to zero and is not going to result in any

computation. This is done in order to keep the BFU tag functionality simple and

making the PE responsible for discarding the bmp value if it is set to zero.

In the current design we support up to two Processing Elements (PE) which are

used to perform the multiplication operation. We use a modulo-2 operation in the

BFU and provide the even numbered rows to PE(0) and odd numbered rows to

PE(1). The BFU also provides the PEs with the block headers of the blocks selected

for multiplication.

3.5.3 Computation Unit

The Computation Unit (CU) (Figure 3.16) is responsible for multiplying the two

blocks and assembling the resultant block in the VDCB format. The CU consists of

two Processing Elements (PE) as shown in Figure 3.16. The PEs present within the

CU consist of a Multiply and Accumulate unit which are implemented using floating

point adder and multiplier to calculate dot products.

The CU stores the block headers of the two blocks that were selected for multipli-

cation within a register for later use. The CU stores the bmpAn in a register and the

corresponding NZ elements nzA0 in a BRAM. The CU receives the block of matrix B

from the BFU and it stores the bitmap of the block BMPB
UV in a register and the

corresponding NZ elements NZB
UV in a BRAM.
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Figure 3.16: Computation unit

The CU FSM shown in Figure 3.17 waits for the row information to be provided by

the BFU before it starts the operation. Once the row information has been provided

by the BFU the FSM moves out of the “idle” state. The CU FSM does not wait

for the Col BRAM to be populated completely by the block of matrix B before it

starts the operation. This is because once the BMPB
UV has been received by the

CU it calculates the NZ elements that are going to follow the bitmap based on the

number of bits which are set to one within BMPB
UV . Thus the CU FSM knows exactly

how many locations are going to be populated by the NZ elements and if a BRAM

location where an NZ element is expected is set to zero (the initialization value for

the BRAM) the FSM knows it has to wait till the NZ element has been written into

the Col BRAM as the FSM is expecting a NZ element there.

The CU reads the bmpAn from Row BRAM and BMPB
UV from the Col BRAM and

parses the BMPB
UV to provide the individual bitmaps associated with a column. This

is similar to how the BFU parses BMPA
XY for the bitmaps associated with a row.
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Figure 3.17: Control unit FSM

The “parse col bmp” state parses the BMPB
UV to provide the bitmap associated with

one column at a time. The “parse col bmp” state starts from the very first column

and determines the NZ elements associated with the column by looking at the column

bitmap. The number of bits set in the column bitmaps are used to increment the

address of the Col BRAM and provide the corresponding NZ elements. The first

element within the Col BRAM at address 0x00 will be corresponding to the first

element present within the block (column major ordering for NZ elements).

After the column bitmap and the corresponding NZ elements are obtained the

FSM moves to the “calc prod” state. In this state the dot product is calculated by

the PE. To compute the RMs between a row and column the PE uses the count-

ones technique described in Section 3.4.2. The count-ones unit provides a new RM-

operand to the MAcc unit every clock cycle, till all the RMs have been calculated.

The FSM transitions from “calc prod” state back to “parse col bmp” state to provide

the bitmap and NZ information for the next column. The FSM toggles between these

two states till all the columns have been exhausted.

Generating the resultant in the V DCB Format The CU also ensures that the

result block CXV is encoded in the VDCB format. The PE maintains a prod bmp reg

which is b bits wide, as the resultant block CXV will be b× b in size and each bitmap

corresponding to a row will be b bits wide. When the count ones technique calculates
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Figure 3.18: Processing element

mult bmp in the “parse col bmp” state the bit is set to one if a mult bmp 6= 0 is

calculated otherwise the bit is set to zero. As the row and column multiplication

takes place sequentially in ascending order the bits are also set in the register prod

bmp reg starting from bit position zero. The dot product computation resulting in

the NZ elements belonging to the row of resultant block CXV are stored in a result

BRAM in the CU. The result BRAM is b2 deep as this will be the maximum number

of NZ elements that can be present within the resultant block. Each PE maintains a

FIFO to store the resultant NZ elements from the computation and then writes these

NZ elements to the result BRAM. In writing the NZ elements the FIFO present in

PE(0) is used first and then the FIFO present in PE(1); this ensures that the resultant

NZ elements are written in a row major order. This is because PE(0) will receive all

the even numbered rows, i.e. row-0, row-2 and so on and PE(1) will receive all the

odd numbered rows (modulo-2 operation performed by the BFU). Thus alternating

the writing from the two FIFOs starting from the one present in PE(0) will ensure

that all the NZ elements

The block header for the resultant block is calculated using the block headers

provided to the CU by the BFU. Once the computation of one row of CXV is finished

the Result Block Unit (RBU) present in CU reads the prod bmp reg of all the PEs.

It combines the one-bit values of all prod bmp reg to form the bitmap corresponding
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to that particular row of CXV . It also reads all the dot-products computed by the

PEs and stores them within its nz-array. The block header for block CXV is also

formed by the RBU. It fills the row-start and col-start field of block header with X

and V which it reads from the block headers of the incoming blocks provided for

multiplication. It fills the block size to a constant b2 and continuously keeps track

of the number of NZ elements written in the nz-array to determine the value for the

Total-NZ elements field of block header. Once it generates the VDCB encoded result

block CXV it writes it back to memory using the Native-Port Interface (NPI) channel

of Multi-Port Memory Controller (MPMC).

3.5.4 Parallel Hardware Design for SMMM Operation

In order to calculate the block row of resultant matrix C we need a block row

of matrix A and entire matrix B. Hence we can use a strategy similar to the one

described for the parallelization of the SMVM operation in Section 3.2.2 where we

proposed a simple star topology with one head node and multiple worker nodes (Fig-

ure 3.8). The only difference in the case of the SMMM operation will be that each

worker node will be storing the entire matrix B, instead of the vector ~x which was

used in the SMVM operation. We also use the Round-Robin and Super Block com-

munication strategies described in Section 3.2.2 for the head node to worker node

communication of block rows. The head node implementation is identical to the one

presented in Section 3.2.2.1.

The parallel hardware design can be divided into two major components: The

Computation Core which implements the SMMM operation and the Networking Core

which enables communication between the nodes within the FPGA cluster. As the

SMMM operation is only performed by the worker node, the computation core is only

present within the worker node. The head node is used for the distribution of block

rows of matrix A to all the worker-nodes and is used to read resultant block rows

of matrix C from the worker nodes. The head node and worker node both have the
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Figure 3.19: High level architecture for parallel SMMM operation

networking core which is used for communication. The high level architecture for

performing the parallel SMMM operation is shown in Figure 3.19.

3.6 Software Design for Sparse Matrix-Matrix Multiplication

The software design for the SMMM operation using the VDCB operation is pre-

sented in Algorithm 9. The algorithm uses Lemma 1 and Count ones technique to

perform the VDCB operation.

The Algorithm 10 presents the implementation of parallel SMMM operation. It

can be seen from Algorithm 10 that an approach similar to parallel SMVM operation

is used for the parallel SMMM operation. In case of both the operations we use block

row level parallelism to perform the matrix computation along with the MPI libraries.
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Input: A, B, m,n
Output: C
for i→ 0 to m do

for j → 0 to n do
Read Block Headers of block A[i] and B[j] ;
Perform comparison using Lemma 1;
if row startB == col startA then

Perform Count One’s Technique;
Generate the VDCB encoded block of matrix C;

end
else if row startB ¿ col startA then

Keep reading blocks of matrix B;
end
else if row startB ¡ col startA then

Keep reading blocks of matrix A;
end
Update matrix C;

end

end
Algorithm 9: Sequential software implementation of SMMM operation

Input: SB, RR, β, w
Output: ~y
if SB == 1 then

if Head Node then
MPI Send → Super Blocks to worker nodes;

end

end
if RR == 1 then

if Head Node then
for i→ to β do

MPI Send → block row to worker nodes;
end

end

end
if Worker Node then

MPI Recv ← block rows from head node;
Read matrix B from memory;
Perform matrix multiplication using Count Ones Technique;
Update vector blocks of matrix X;

end
Algorithm 10: Parallel SMMM operation using the VDCB format



CHAPTER 4: EVALUATION

The efficacy of the VDCB format will be evaluated for two Sparse Matrix Op-

erations: Sparse Matrix Vector Multiplication (SMVM) and Sparse Matrix Matrix

Multiplication (SMMM). As discussed earlier in Chapter 1 the low memory band-

width utilization of the sparse matrix operations is not just the function of the stor-

age format but also the underlying architecture. In order to test this hypothesis

we proposed two different design approaches in Chapter 3 namely: Hardware/Soft-

ware Co-Design and Software Only Design. These two design approaches are used in

order to provide a comparison between a conventional processor based memory hier-

archy and customized memory hierarchy implemented using the FPGA when using

the VDCB storage format to perform sparse matrix operations. The usage of these

two design implementations helps us to evaluate the efficacy in terms of performance

gain achieved for sparse matrix operations when using the VDCB storage format ex-

clusively (Software Only) and performance gain achieved when customized memory

subsystem working in conjunction with the VDCB format (Hardware/Software Co-

Design) is used. The performance metrics which we are going to use to evaluate the

two design approaches are presented in Table 4.1.
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Table 4.1: Performance metrics for evaluation

Performance Metric Software Only Solution Hardware/Software

Co-Design Solution

SMVM SMMM SMVM SMMM

Index Overhead 3 3

Bandwidth Efficiency 3 3 3 3

Floating-Point Performance 3 3

Computation Time 3 3

Communication time

for head node 3 3

Speedup 3 3 3 3

Resource Utilization 3 3

Sparsity of matrix B 3 3

4.1 Performance Analysis of Hardware/Software Co-Design Approach

The hardware design was implemented using Xilinx ML410 board and developed in

VHDL. The Xilinx ML-410 board has a Virtex-4 XC4VFX60 FPGA (with a PowerPC

processor) and 512MB of DDR2 SDRAM. The Xilinx Embedded Development Kit

(EDK) version 13.2 was used to develop and synthesize the design. The preprocessing

for generating VDCB format is done off-line on a conventional server. We have used

matrices from University of Florida Matrix Market Place[24] for testing our software

and hardware design. The input applied to the Search Heuristic (Algorithm 2) is a

matrix in Coordinate format (.coo).

4.1.1 Results and Analysis for Sparse Matrix Vector Multiplication

The structural and domain specific information regarding all the matrices used

for testing the SMVM operation are presented in Table 4.2.

The practical implementation of the VDCB format when performing the SMVM
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Table 4.2: Test matrices characteristics
Serial Number Matrix Name Dimension NNZ Domain

1 c-38 8127× 8127 42908 Optimization
2 fd12 7500× 7500 28262 Material problem
3 rajat03 7602× 7602 32653 Circuit simulation
4 poli 4004× 4004 8188 Economic problem
5 t2dal 4257× 4257 20861 Model Reduction
6 rw5151 4008× 4008 20199 Statistical Mathematical problem
7 bcssmt26 1922× 1922 1922 Structural problem

operation uses double-words (64-bits) to represent the block header and bitmaps. In

case of block sizes greater than 8×8 more than one bitmap is used to represent index

information of a block, thus the number of bitmaps associated with a block is given

by Equation 4.1

Number of Bitmaps =
BlockSize

64
. (4.1)

The peak floating point performance available for the design is calculated using

the number of floating point operations and the frequency at which they are being

carried out. In our case the floating point computation is being carried out by the

BPU and it performs a floating point multiplication and a floating point addition

(in the form of accumulation operation) every clock cycle. Both these operations are

being carried out at 100MHz frequency and provide a peak floating point performance

of 200MFLOPS (2FLOP × 100MHz, where FLOP is FLoating point OPeration).

Thus each BPU is capable of providing 200MFLOPs performance. The sequential

implementation consists of a Computation Unit with two BPUs (Figure 3.2) resulting

in a peak floating point performance of 400 MFLOPS (2 × 200MFLOPs). Also in

case of parallel implementation the computation is being carried out by the worker

node and the worker node consists of two BPUs providing a peak performance of 400

MFLOPS per worker node.

4.1.1.1 Index Overhead

It is imperative to have index information (location) of NZ elements when perform-

ing SMVM, but this information does not contribute towards the actual computation.
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Thus from a memory subsystem perspective additional load operations are incurred.

If we minimize the number of load operations we effectively maximizes bandwidth

utilization as majority of data (NZ elements in this case) being fetched is going to be

used for useful computation. To quantify the stress placed on memory subsystem by

these additional load operations we introduce a term called Index Overhead denoted

by α. We define α = MSind

MStot
, where MSind is the memory needed for storing index and

MStot the total memory needed for storage format. The index components in the

VDCB format are Block Headers and Bitmaps. The number of bitmaps associated

with a matrix are dependent on the various block sizes a matrix gets decomposed

into. We wanted to see the effect of varying block size on α. We generate VDCB

format using software code discussed in Section 3.1.1. We refer to this particular

VDCB generation scheme as greedy. Next we generate fixed block sizes of 8× 8 and

64 × 64; the Smallest and the Largest blocks supported by the RCG respectively.

We will refer these two strategies as smallest and largest. We also generate VDCB

using block sizes picked randomly by the software and remove the density constraint.

We refer to this strategy as random. We also compare the index overhead from the

commonly used CSR and COO formats.

The x-axis in Figure 4.1 indicate the serial number of matrices shown in Table 4.2.

In the greedy approach, the majority of the blocks were 8×8, thus the index overhead

for these two strategies is pretty close. The index overhead for random and largest is

quite high as seen in Figure 4.1. In case of random most blocks were of sizes 64× 64

or 56 × 56, resulting in index-overheads close to largest strategy. As the block sizes

start becoming bigger the number of bitmaps associated with them also increases,

thereby increasing the index overhead. Also for larger blocks there is an increase in

number of empty rows. In bitmap representation this results in a bitmap with all

its bits set to zero. We call such bitmaps as AllZero and how much they contribute

to the index overhead is shown in Figure 4.1. It can be seen for smallest, AllZero
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Figure 4.1: Index Overhead

bitmaps are completely absent. An 8× 8 block will need only one bitmap and for it

to be an AllZero the block has to be completely empty. If a block is empty it will

not be picked by the search software. When compared to CSR and COO formats

the index overhead added by VDCB format in greedy and smallest is significantly

less. This is a major advantage of the VDCB format over CSR and COO, not only

VDCB format maximizes bandwidth utilization by adding lower index overhead; it

also has no indirect memory access. The indirect memory accesses hampers the

performance of CSR and COO formats. The index-overhead is largely dependent

upon the distribution of NZ elements within a matrix and the efficacy of software

code to search for dense blocks. Thus t2dal which has a number of dense sub-blocks

has lower index-overhead than rajat03 which comprises of small sparse blocks with

one or two NZ elements.
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4.1.1.2 Sequential Hardware Design Performance Evaluation

The sequential design consists of a single FPGA node. The FPGA node communi-

cates with the off-chip DDR2-SDRAM via two Native Port Interface (NPI) channels

of Xilinx’s Multi-Port Memory Controller (MPMC). The two memory channels are

used to read the VDCB format and the ~x respectively. The theoretical peak floating

point performance for our design is 200MFLOPS with one BPU and 400MFLOPS

with two BPUs. The maximum memory bandwidth available is 1GB/sec. Our focus

is on the speed of the operation. When timing the operation we do not consider the

time it takes to convert sparse matrix to VDCB format nor the time it takes for a stan-

dalone C-program running on PowerPC to set up and control the experiments. We do

consider the time it takes for the format to be read from the main memory. We have

evaluated our design in terms of bandwidth efficiency and floating point performance.

Bandwidth Efficiency In case of sequential design matrix A is stored off-chip

within the main-memory of the FPGA node. The speed at which matrix A can be

read from the main-memory is going to affect the overall speed of the operation.

As the speed at which matrix A can be read from the main-memory depends upon

the utilization of available memory-bandwidth, we study the factors that affect the

bandwidth-efficiency. We investigate the effect of block-sizes and increased number

of BPUs on the bandwidth efficiency. The results are shown in Figure 4.2 and 4.3.

The maximum memory bandwidth available for our design is 1GB/sec (based on the

measurements made on the NPI channel connected to the main memory).

Our design provides an average bandwidth efficiency of 58% for one BPU when

using greedy and smallest. In case of two BPUs the efficiency increases to 70% for these

two strategies. The memory channel has to go through flow control (Section 3.2.1.2)

once the VDCB component FIFOs start getting full. The pausing of memory channel

prevents us from utilizing the bandwidth to its fullest. We have observed that in the
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Figure 4.2: Bandwidth efficiency for one BPU

case of greedy and smallest the NZ-FIFOs start getting full. This means the BPUs are

not consuming the data fast enough. It can also be seen for the first three matrices

presented in Table 4.2 the bandwidth efficiency does not vary much when the number

of BPUs are increased. The main issue here is the number of NZ elements is quite

large when compared to the size of the NZ-FIFO and even though we increase the

number of BPUs to increase the rate of computation, flow control is still very much

needed. A dramatic increase in bandwidth efficiency for poli and t2dal is seen for two

BPUs, providing close to peak performance. The increase in performance in these

two cases is due to the fact that increasing the number of BPUs and smaller number

of NZ elements help these matrices to completely avoid flow control.

In case of largest and random we obtain average bandwidth efficiency of 17% when

using one BPU and about 19% when using two BPUs. The reduction in bandwidth

efficiency is due to the increase in index overhead and high percentage of AllZero

bitmaps (shown in Figure 4.1). The RCG when decoding AllZero bitmaps is not
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Figure 4.3: Bandwidth efficiency for two BPUs

producing any valid row-column positions, but it still has to read and decode these

bitmaps for maintaining correct indexing for a block. The slower, wasteful decoding

operation for AllZero bitmaps, along with the large index information ends up filling

up the Bitmap and Block-Header FIFOs more frequently. This causes the flow-control

operation to take place more often and deteriorates the bandwidth efficiency. Even

when the number of BPUs are increased the bandwidth efficiency does not improve

as the performance bottleneck is from the memory-subsystem side. We can increase

the bandwidth efficiency for all the four cases by having deeper VDCB FIFOs which

helps us minimize the need of flow control. The size of FIFOs is a trade-off we have to

make to fit other components of our design and the resources available on our device.

Floating Point Performance The floating point performance for sequential design

is presented in Figure 4.4 for one and two BPUs when using the greedy strategy. The

floating point performance is closely related to the index overhead. It can be observed

that the t2dal which has reported the highest performance for our design also has the
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lowest index overhead. However we can see that bcssmt26 matrix performs poorly for

one BPU even though it has a low index overhead. This means that index overhead is

not the only factor that affects the performance of our design. The bcssmt26 matrix is

a diagonal matrix and when represented in the VDCB format all the blocks associated

with the matrix are also diagonal. Although we have implemented an accumulator

capable of handling new set of accumulation operation every other clock cycle, in case

of diagonal blocks it is still not sufficient. The one clock cycle bubble in partial result

accumulator introduced when the rows are switched impacts the performance nega-

tively. It can be seen from the Figure 4.4 that the performance improves significantly

for all the matrices when two BPUs are used, effectively masking the compulsory la-

tency of accumulation operation. The floating point performance for the other three

strategies follows the same trend of being related to the index-overhead. For brevity

we have reported results with the greedy strategy only.
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Table 4.3: Sustained performance for sequential SMVM operation

Platform Matrix Storage % of Peak % of Peak
Structure Format Computation Bandwidth

Virtex-4 Sparse VDCB (Greedy 1-BPU) 47% 58%
Sparse VDCB (Greedy 2-BPU) 47% 70%

Virtex-4 Dense VDCB (Greedy 1-BPU) 53% 68%
Dense VDCB (Greedy 2-BPU) 53% 93%

Santa Rosa Dense BCSR 30.2% 49.9%
Barcelona Dense BCSR 14.7% 50.6%
Clovertown Dense BCSR 6.3% 22.1%
Victoria Dense BCSR 4.3% 0.9%
Falls
Cell Blade Dense BCOO 18.6% 62.9%

Overall Performance Evaluation of Sequential Design The discussion we have

presented till this point has emphasized the importance of maximum utilization of

memory subsystem for SMVM. In terms of memory subsystem an ideal case would be

a dense matrix represented in sparse format. In case of general purpose processors it

will help in utilizing the memory hierarchies and for the VDCB format it will result in

blocks which are completely dense. This will ensure no wasteful decoding operations

and maximum throughput from our memory subsystem. Thus the performance of

dense matrix in sparse format is an upper threshold for the SMVM operation. In

Table 4.3 we compare our implementation with single core performance on various

multicore processors reported in [13]. The performance reported in [13] is for SMVM

kernel highly tuned for exploiting the underlying architecture characteristics. The

dense matrix used for testing in Table 4.3 is an 8Kx8K dense matrix represented in

the VDCB format.

4.1.1.3 Block Sizes

It might be suitable to assume at this point to only use fixed block sizes of 8× 8

and not even use greedy approach. However this strategy will not be beneficial if we

use Finite Element Method (FEM) matrices which have dense chunks of NZ elements.

Consider a dense block of 64× 64 present in a FEM matrix. This block if expressed



80

simply as 64 × 64 block will have an index requirement of 65 double-words. If this

block was divided into 8×8 dense blocks it will result in 128 double-words for indexing.

This increase in index requirement will impact performance negatively as seen before.

4.1.1.4 Parallel Hardware Design Performance Evaluation

The parallel design also uses the Xilinx-ML410 boards for implementing the

Head Node and Worker Node and the design components are developed in VHDL.

Each worker node consists of two BPUs where each BPU is capable of providing

200MFLOPs each and a worker node in all will be able to provide a total floating

point performance of 400MFLOPS. The design is evaluated for the following metrics:

• Communication time for the block rows from the head node to the worker node

• Floating point performance

• Speedup

• Scalability

Block Row Communication The block rows can be provided to the worker node via

Round-Robin approach or a Super Block approach. We measure the time taken by the

head node to provide all the block rows of matrix A to a system consisting of two and

four worker nodes respectively when the two approaches are used. The measurements

are shown in Figure 4.5 and indicate the total time it takes to communicate all the

block rows from the head node to worker nodes. In the Figure 4.5 RR is used to

abbreviate Round-Robin and SB is used for Super Block respectively.

It can be seen that the communication time for Round-Robin approach is signif-

icantly higher in all cases when compared to the Super Block approach. The main

reason for this is the setup latency of the AIREN router. A latency of 0.8µs is added

by the AIREN route to the total communication time when performing a transaction

between the two FPGA nodes. This latency although small has a significant im-

pact on overall communication time in Round-Robin approach. In the Round-Robin
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Figure 4.5: Communication time for Block Rows

approach as individual block row is only provided to each node making the size of

transaction is significantly small. The total latency added by the router to the total

communication time is dependent on the number of transactions carried out by the

router. In the case of Round-Robin approach the number of transactions are equal

to the number of block rows present within the matrix. The total setup latency for

Round-Robin approach can be given by Equation 4.2:

Setup latencyRR = β × setup latency (4.2)

where setup latency is the setup latency for AIREN Interface (0.8µs), beta is the

total number of block rows that are present and Setup latencyRR represents the total

setup latency for Round-Robin approach.

The Super Block approach also requires a setup latency but in case of Super Block

approach the number of transactions is equal to the number of worker nodes that are
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present (as a collection of block rows is sent to each worker node, Equation 3.4). Thus

the total setup latency that will be added to the communication time is given by:

Setup latencySB = w × setup latency (4.3)

where w is the total number of worker nodes and Setup latencySB represents the total

setup latency for Super Block Approach. It can be seen from Equation 4.2 and 4.3 that

setup latency is going to be considerably less in case of Super Block approach. Thus

reducing communication time for Super Block Approach even though a significantly

larger amount of data is transmitted in case of Super Block approach when compared

to the Round-Robin approach.

We can see from the Figure 4.5 that varying the number of worker node does not

impact the communication time significantly in both the block row communication

strategies. This is an expected outcome because in case of Round-Robin approach

where the communication time is dependent on the number of block rows and it is

not impacted by the number of worker nodes. In case of Super Block approach where

the number of super blocks are dependent on the number of worker nodes selected

(Equation 3.2), there is still not a lot of change to the overall communication time.

This is due to the fact that the aggregate transaction size (the total request size for

all the Super Blocks) remains almost constant. If we change the number of worker

nodes from two to four the size of a Super Block required by each worker node will

decrease proportionally, as each Super Block will now comprise of lesser number of

block rows. This in turn reduces the transaction size when the number of worker

nodes are increased. The inverse relationship between the transaction size (size of a

Super Block) and the number of worker nodes helps in keeping the communication

time fairly constant. We are also not indicating the communication time for a system

with one worker node as it is very close to the timing measurements of two and four
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worker nodes.

It can be seen from the Figure 4.5 that the matrices with higher communication

time also had a higher index overhead (Figure 4.1). The higher index overhead

increased the overall transaction size (due to more index information present) and

resulted in higher communication time.

Floating Point Performance

Impact of Reading V ector ~x The head node provides the block rows to the worker

nodes for the computation; but it cannot start immediately as vector ~x is stored in the

main-memory and it has to be read into the vector BRAM to begin the computation.

It is imperative to consider the time it takes to read the vector~x from main memory

into the BRAM as the performance is going to be dependent on how fast the vector~x

can be read from the main memory. This gives us two options for reading vector~x.

• The worker node can only start reading the vector ~x once the head node starts

providing the block row of matrix A. The worker node can examine the block-

headers of the block rows and then based on that fetch a portion of vector ~x

which is going to be used for computation. This is know as Vect-PostRead.

• As soon as the head node starts providing the block row to the first worker

node, all the worker nodes can start reading the entire vector ~x from its main-

memory. Basically in this setup as soon as the head node starts the block

row communication all the worker nodes will know that eventually the SMVM

operation is going to take place and hence will already prefetch the entire vector

~x. This is known as Vect-SimRead.

The Vect-PostRead is beneficial in case of matrices where the blocks within the

block rows are concentrated only in one region and hence only a portion of vector ~x

is required for multiplication. In this case a small-sized read request can be made to

the main-memory and the computation can start as soon as that portion of vector
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Figure 4.6: Floating point performance

has been read in.

The Vect-SimRead is effective in terms of overall speed of operation as all the

worker nodes start fetching the vector ~x from their main-memory simultaneously as

soon as the communication by the head node begins. This means by the time the

block rows reaches a particular worker node the vector ~x is already present and the

computation can start immediately.

Based on these two methods of reading the vector ~x we have measured the floating-

point performance of a system consisting of four worker nodes which is presented in

Figure 4.6. The measurements presented in Figure 4.6 use the Super Block approach

due to the lower communication time when compared to the Round Robin approach.

It can be seen from the Figure 4.6 that the floating-point performance is better

for Vect-SimRead when compared to Vect-PostRead in all the cases other than bc-

ssmt26 ; where it is almost comparable. The main reason is the distribution of the

blocks amongst the block rows of the matrices and also the usage of the Super Block
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approach. Although in an individual block row the blocks might be concentrated

in one region when we have a collection of block rows (Super Block Approach) the

distribution of the blocks varies widely. This results in a larger portion of vector

~x which is needed for multiplication and this in turn increases the request size and

hence the time it takes to the read the portion from the main-memory. In case of

bcssmt26 the matrix is a diagonal matrix and the VDCB encoding results in blocks

which are diagonal as well. When used with the Super Block approach these diagonal

blocks only multiply with a very small portion of the vector ~x resulting in a smaller

read request sizes and hence faster read times.

Increasing the Number of Worker Nodes We also wanted to see the impact of

varying the number of worker nodes on the overall floating point performance. Ideally,

the performance should increase with increased number of worker nodes because of

the increased BPUs available for computation and in turn an increased amount of

block-level parallelism. We performed the measurements provided in Figure 4.7 using

one, two and four worker nodes. The experimental setup also employed Super Block

Approach (lower communication time) and Vect-SimRead for providing higher speed

of operation.

The floating point performance is measured when different number of worker nodes

are used. It can be seen that the performance when one worker node is used is very

close to the sequential design performance. When the worker node is only one the

entire matrix A will be equivalent to one super block and all of that is provided to

the worker node. The difference between a parallel design with one worker node and

sequential design is how the matrix A is made available. The worker node receives

matrix A from the LL Interface from the head node and in case of the sequential

design the matrix A is provided by the main-memory via the NPI Channel. The

number of blocks over which the single worker node has to operate is the same as

the sequential design and in turn the floating point performance remains close to the
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Figure 4.7: Floating point performance on increasing worker nodes

sequential performance.

If we refer to the floating point performance in case of two and four worker nodes

we can see the performance is very closely related to the communication time of the

block rows in Super Block approach (Figure 4.5). If we refer to the hardware design

presented in Section 3.2.2.1 we know that the DMU,RCG and BPUs present on a

worker node are operating together and as soon as the very first block is received

via the LL Interface the decoding and computation operation begins. Thus a longer

communication time translates into a longer computation time to provide the final

resultant vector ~y, resulting in a lower floating point performance. The communica-

tion time is largely dependent upon the transaction size and the transaction size is

based on the amount of data present within a block row. The size of a block row

depends upon the distribution of the NZ elements within a matrix and the block-size

selection.
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Speedup We measure the speedup as improvement in floating-point performance as

the number of worker nodes are increased when compared to the sequential imple-

mentation. The system uses Super Block approach for block row communication and

Vect-SimRead for reading vector ~x.

The results are presented in Figure 4.8. Ideally with a system consisting of w

worker nodes should provide w× speedup. But this is not the case as seen from

Figure 4.8. In case of a single worker node the performance is very close to the

sequential implementation as discussed earlier in Section 4.1.1.4. In case of two worker

nodes an average speed up of 1.4x is obtained and in case of four worker nodes a

speedup of 2.72x is obtained. We are not indicating the speedup for a one worker node

system as the performance is very closely related to the sequential implementation.

The main reason is the communication time needed for providing the block rows of

matrix A to the worker nodes and the fact that the block rows cannot be provided

to all the worker nodes in parallel. The AIREN Send interface is similar to an MPI

Send interface and at any given time only one woke node can be provided with the

block rows. Only after finishing the transaction with the first worker node the second

worker node can be provided with the block rows. If the speed of communication

operation can be improved then we will be able to obtain higher speedups.

An interesting observation is the high speedup for c-38 and rajat03 when in-

creasing the number of worker nodes. Both the matrices performed poorly on the

sequential implementation. The higher speedup is obtained due to the fact that only

block rows of matrix A are provided to the worker nodes. As the amount of data

being provided to the worker node (in terms of matrix A) is substantially less than

the sequential implementation, the associated flow-control operations do not take

place for these two matrices which were happening before for the sequential imple-

mentation. This results in improving the performance of the parallel implementation

substantially over the sequential implementation.
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Figure 4.8: Speedup

Scalability We can see from Figure 4.8 as the number of worker nodes increase the

speedup also improves for our design. This is because as more worker nodes are

added the amount of block-level parallelism also improves. Another important aspect

to be considered here is as the number of worker nodes increased the blocking time

for a worker node reduces. The blocking time for a node can be considered as the

amount of time a node has to wait to receive a block row from a head node while

the head node is communicating the block row to another worker node. As discussed

earlier in Section 4.1.1.4; as the number of worker nodes increase the transaction size

decreases for the Super Block approach. This means a worker node can receive the

block rows quicker and the number of blocks it has to compute over is also lesser,

thereby decreasing the chances of flow control and increasing the performance. Hence

increasing the number of worker nodes will increase the floating point performance.

Overall Performance Evaluation of Parallel Design We compare the perfor-

mance of our parallel design against the one socket, all cores, all threads performance
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Table 4.4: Sustained performance for parallel SMVM implementation

Platform Matrix Storage % of Peak % of Peak
Structure Format Computation Bandwidth

Virtex-4 Sparse VDCB 35.64% 52%
Virtex-4 Dense VDCB 38.2% 57%
Santa Rosa Dense BCSR 21.2% 69.8%
Barcelona Dense BCSR 6.3% 87.4%
Clovertown Dense BCSR 3.5% 56.3%
Victoria Dense BCSR 42.3% 74.1%
Falls
Cell Blade Dense BCOO 40.7% 96.6%

of multicore platforms presented in [13]. We consider the head node and worker node

combination of the parallel implementation loosely analogous to the one socket all

core implementation for multicore platform. We also consider the BPUs as equiv-

alent of threads which are used in the multicore platforms to perform computation

in parallel. We can see from Table 4.4 that the FPGA floating point performance is

comparatively better than some platforms (Santa Rose, Barcelona, Clovertown) but

is still not close to the performance offered by the Victoria Falls and Cell Blade. This

is quite different that the sequential performance presented in Table 4.3 where the

FPGA implementation out performed the single core, single thread multicore imple-

mentations. The main reason for this is the number of BPUs supported by the FPGA

device are quite low when compared to the number of threads that can be spawned

in parallel by the multicore platforms. Another issue is the utilization of the peak

bandwidth. We have calculated the bandwidth in the Super Block approach using

the time it takes to provide all the block rows to all the worker nodes by the head

node. The NPI Interface used in the sequential approach for providing the matrix A

is a 64-bit interface when compared to the 32-bit LL Interface used in the parallel

approach. This reduces the bandwidth significantly in parallel implementation and

impacts the floating point performance negatively.
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Table 4.5: Hardware resource utilization for SMVM operation
Implementation BRAM Slice 4 Input LUT

Sequential 84% 47% 50%
Worker Node 89% 53% 52%
Head Node 12% 8% 17%

4.1.1.5 Resource Utilization for SMVM Operation

We report the FPGA resource utilization for the sequential and parallel imple-

mentation of SMVM operation in Table 4.5. The FPGA device used is a Virtex-4

XC4VFX60 consisting of a PowerPC processor. As the parallel design consists of a

Head Node and Worker Node we have reported the individual resource utilization for

the two nodes. The resource utilization reported in Table 4.5 consists of the BRAM

utilization, total slice utilization and 4 input LUT utilization. It can be seen from

the Table 4.5 that the BRAM utilization is extremely high in sequential and worker

node implementation. This is due to the presence of larger number of FIFOs (imple-

mented using the BRAMs) and BRAMs needed for implementing the various design

components like the CMI, RCG and BPUs. The high BRAM utilization for sequen-

tial and worker node implementation also limits the number of BPUs which can be

made available on these implementations and hence limits the amount of block-level

parallelism. In case of the head node as it is only providing the matrices from its

main memory and not implementing the various functionalities of the worker node

the BRAM utilization results fairly low.

4.1.2 Results and Analysis for Sparse Matrix Matrix Multiplication

We selected sparse matrices which represented graphs (both directed and undi-

rected) from University of Florida Matrix Market place, we used these matrices as

matrix A. The information of test matrices is provided in Table 4.2. We generated

matrix B synthetically in software and considered four cases for its sparsity as shown

in Table 4.2.
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Table 4.6: Characteristics of test matrices
Matrix Name Matrix A Matrix B

Dimension NNZA NNZB Strategy
gre 512 512× 512 2192 1×NNZA Similar-NZ
delaunay n10 1024× 1024 3056 0.75×NNZA Reduce-NZ-25
delaunay n11 2048× 2048 6127 0.5×NNZA Reduce-NZ-50
delaunay n12 4096× 4096 12264 0.25×NNZA Reduce-NZ-75

Table 4.7: Frequency of operation for BFU and PE
Block Size Operating Frequency (BFU) Operating Frequency (PE)

(MHz) (MHz)
8× 8 200 100

16× 16 75 50

4.1.2.1 Block Sizes

The selection of constant block size b×b is a critical component for the performance

of our design. We measure the frequency at which these units can operate for various

block sizes. It can be seen from the Table 4.7 that the operating frequencies of BFU

and PE deteriorates as the block size increases. The design with block size greater

than 16× 16 was not synthesized successfully by the tools due to resource limitation.

Based on the observations made from the results reported in Table 4.7 we can see

that block sizes of 8× 8 gave the best operating frequency for BFU and PEs. We ran

all our subsequent tests using the block size of 8× 8.

4.1.2.2 Effect of Sparsity

As discussed earlier in Section 3.5.1, the FIFO holding matrix B will read all of

its entries to determine blocks needed for multiplication. If we assume a case where a

block-row of matrix A is completely dense then all of the blocks present within that

block row will multiply with all the blocks present within the FIFO holding matrix B

(Property 1). This represents the best case scenario in terms of the SMMM operation

as all the elements present within the FIFO get used.

Now if we assume that blocks present in block-row of matrix A do not multiply

with any of the blocks present within the matrix B; then this will represent the worst
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case. This means the entire matrix B has to be read out from the FIFO for the

purpose of comparison to see if any of the blocks present in matrix A and B satisfy

Property 1. Thus no useful operation will take place and it will delay the beginning

of computation of new block row. The sparser the matrix B is going to be, lesser

number of blocks are going to be associated with it. This is because the VDCB

format only stores NZ elements within the blocks (along with one block header and

the corresponding bitmaps) and if the number of NZ elements is less the number of

blocks needed for them is also going to be lower. This will result in quicker comparison

as lesser number of blocks have to be examined. Also the FIFO can be read out much

faster as it will be storing less number of elements due to reduction in the number

of blocks and its corresponding elements. This particular hypothesis is validated by

our test measurements shown in Figure 4.9. It can be seen that the performance for

Reduce-NZ-75 is best in all the four cases. This is because the Reduce-NZ-75 is the

most sparse of the four synthetically generated matrix B and thus results in lowest

number of blocks.

We use execution time as a metric to evaluate the computation performance. The

main reason for choosing the total computation time and not MFLOPS (the metric

used for the SMVM Operation) is the fact that it is difficult to estimate the number of

floating point operations that take place for the SMMM operation; unlike the SMVM

operation, where 2×NZ number of floating point operations are going to take place

for a matrix. The estimation of number of floating point operations in case of the

SMMM operation requires an extensive offline analysis of both matrices A and B

to determine the NZ distribution and then a second analysis once the matrices are

encoded in the VDCB format due to this reason we avoided the FLOP measurement

and used the overall execution time for performance evaluation.
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Figure 4.9: Effect of sparsity on computation time

4.1.2.3 Bandwidth Efficiency

In case of the SMMM operation we have implemented; we store the matrix B

in FIFO (Section 3.5.1) and for every block row calculation of result matrix C we

fetch the entire matrix B from the memory. This becomes the dominant memory

transaction because when compared to matrix A where only a block-row has to be

fetched, in case of matrix B the entire matrix has to be fetched again (because one

complete block row computation of C causes all elements of matrix B to be read out

from the FIFO).

We can store the entire matrix B also on the BRAMs (on-chip memory) and avoid

this repetitive transaction. But the problem is the lack of available on-chip resources

(BRAMs). In case of matrix A we are only fetching a block-row so it is useful to

store it in BRAM as it is comparatively smaller and is needed for computation with

all the block-columns of matrix B. As the size of matrix B can vary depending upon

the number of NZ elements and their distribution it is better to store matrix B in the
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Figure 4.10: Bandwidth efficiency of matrix B

off-chip memory and stream it into the on-chip FIFOs. The bandwidth-efficiency for

matrix B over all the transactions needed to finish the SMMM operation is shown in

Figure 4.10.

It is interesting to note that as the number of NZ elements are reduced the band-

width efficiency decreases as can be seen from the Figure 4.10. This particular issue

is most pronounced in case of matrix gre 512 which has dimension of 512× 512. As

the matrix size reduces the corresponding matrix in the VDCB encoded format also

reduces in size. This results in smaller request size for matrix B. This should ideally

give us higher bandwidth efficiency, but the the problem is we are performing these

requests multiple times. It takes around 20 clock-cycles (in 200MHz clock domain)

to setup the request and start the transaction. In case of smaller requests which are

made multiple times the set-up time overhead starts affecting the overall bandwidth

efficiency. As the size of the matrix encoded in the VDCB format depends on the

number of NZ elements; it can be seen that for gre 512 the bandwidth efficiency de-
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creases with the reduction in the number of NZ elements (Figure 4.10). In case of

delaunay n12 the bandwidth efficiency reduces slightly as the number of NZ elements

is reduced (Figure 4.10). This is because even after the reduction in number of NZ

elements the request sizes are still large enough to amortize the set-up time overhead.

We can see from Figure 4.10 that the bandwidth efficiency is on an average is

above 63%. This is fairly a good number given the fact that generally sparse ma-

trix operations have bandwidth efficiency less than 30% [2]. The improvement in

bandwidth efficiency in our case is due to complete elimination of indirect memory

accesses because of using the VDCB format with the customized memory hierarchy.

The indirect memory accesses create additional memory subsystem traffic in form of

load operations and reduce the memory bandwidth-efficiency.

4.1.2.4 Scalability

The parallel hardware design used to implement the SMMM operation has been

presented in Section 3.5.4. We use the results from the SMVM operation block row

communication to select the communication method for block rows of matrix A. As

can be seen from Figure 4.5 the Super Block approach provides lower communica-

tion time and hence improves the overall performance. In the scalability study we

do not vary the sparsity of matrix B and only use the Similar-NZ strategy for our

measurements. We are doing this to keep our results concise and focus solely on the

scalability of our hardware design. We also use the strategy similar to Vect-SimRead

to read matrix B due to the performance gains provided. As soon as the block rows

of matrix A are started to be provided all the worker nodes start reading matrix B.

The results are shown in Figure 4.11, we vary the number of worker nodes from

one to four to measure the computation time. We can see from Figure 4.11 that the

performance for a single node is very close to the sequential performance. In case

of a single node we are providing the block rows of matrix A via the AIREN router

network instead of the NPI channel. As the computation of the SMMM operation
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Figure 4.11: Computation time measurement for parallel hardware design

on the worker nodes is completely pipelined the moment very first datum is received

the computation begins and the computation core remains oblivious to the mode of

delivering the block rows of matrix A. In case of a single worker node the number of

block rows on which the node is going to perform the SMMM operation is same as

that of the sequential design thus the execution time remains almost identical between

the two.

We also evaluate the speedup of our parallel hardware design by comparing the

computation time improvement when the number of worker nodes are increased. The

speedup measurements are shown in Figure 4.12.

On an average with two worker nodes we achieve a 1.3X performance improvement

over sequential design and about 2.2X improvement with four nodes. We are not

close to the ideal speedup due to the communication time of block rows of matrix

A which dominates the overall computation time. If we are able to minimize the

communication time of block rows of matrix A we will able to achieve close to ideal
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Figure 4.12: Speedup for parallel hardware design

speedup.

4.1.2.5 Resource Utilization for SMMM Operation

We report the FPGA resource utilization for the sequential and parallel imple-

mentation of SMMM operation in Table 4.8. The FPGA device used is a Virtex-4

XC4VFX60 consisting of a PowerPC processor. As the parallel design consists of a

Head Node and Worker Node we have reported the individual resource utilization for

the two nodes. The resource utilization reported in Table 4.8 consists of the BRAM

utilization, total slice utilization and 4 input LUT utilization. It can be seen that the

slice utilization in case of sequential implementation and worker node implementation

is quite high. This is because the SMMM operation is performed on the sequential

and worker nodes only. The block selection units and block fill units used for the

purpose of the SMMM operation introduce a large amount of logic complexity in the

form of FSMs and lookup tables used to perform the block selection and generation

of the index information to perform multiplication. On the FPGA device these FSMs
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Table 4.8: Hardware resource utilization for SMMM operation
Implementation BRAM Slice 4 Input LUT

Sequential 60% 77% 46%
Worker Node 67% 78% 55%
Head Node 12% 10% 19%

and lookup tables get implemented on the logic slices thereby increasing the slice

utilization.

4.2 Performance Analysis of Software Only Approach

The software design was implemented on a conventional server consisting of Intel

Xeon Phi processor and developed in “C”programming language. The parallel imple-

mentation has been developed using the Message Passing Interface (MPI) APIs. The

floating point operations have been performed by using the SoftFloat library [27]

which has performance tuned implementation of IEEE 754 floating point operations

(both for single and double precision).

A particularly difficult challenge is presented in the form of implementing per-

formance instrumentation of the software code without impacting the overall perfor-

mance of the design. We want to measure the performance of the software design

without interfering with the matrix operations. In order to do so we use simple

counters along with the clock frequency of the processor to calculate the execution

time. This provides a non-intrusive instrumentation for the purpose of performance

evaluation.

4.2.1 Performance Evaluation of Software Only SMVM Operation

We evaluate the performance of the SMVM operation for the set of matrices

presented in Table 4.2. The vector ~x is a dense vector generated in software. The IEEE

754 double precision floating point operations are implemented using the SoftFloat

library which has processor compatible implementations for floating point operations

with specific architecture optimizations. The software implementation of the code

uses the Greedy strategy for the encoded VDCB format and uses the algorithms
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presented in 3 and 4 for sequential and parallel implementation of the operation. The

floating point operations are performed using the SoftFloat library [27].

4.2.1.1 Floating Point Performance

Sequential Software Design The floating point performance result for sequential

implementation are shown in Figure 4.13. It can be seen from Figure 4.13 that the

performance trends are similar to the corresponding implementation sequential im-

plementation in the Hardware/Software Co-Design Approach. This further validates

our analysis discussed in Section 4.1.1.2 that the matrices with lower index overhead

will have a better floating point performance due to reduction in unnecessary load

operations. We had also discussed in Section 4.1.1.2 that although bcssmt26 had low

index overhead the floating point performance was low due to the one cycle bubble

incurred in the accumulation operation during a row change. But in case of soft-

ware only implementation bcssmt26 matrix still had a low performance even though

the accumulation operation performed using SoftFloat library does not introduce a

one cycle bubble. The main reason behind the low floating point operation of the

bcssmt26 matrix is due to its diagonal NZ distribution. The bcssmt26 matrix uses

each element of vector ~x only once due to its diagonal nature and hence no temporal

locality on vector ~x or ~y can be utilized. Thus resulting in lower memory bandwidth

utilization even though bcssmt26 matrix has a low index overhead.

Parallel Software Design The floating point performance results in case of paral-

lel design was measured for four MPI workers nodes. The floating point performance

for all the test matrices for parallel design is presented in Figure 4.14. The per-

formance trends between the sequential and parallel designs are quite similar. The

performance improvement can be seen for all matrices in case of parallel implementa-

tion, but matrices like t2dal, rw5151 and poli which reported highest performance for

sequential implement ion only have performance improvement ranging from 1.3X to

1.7X. An interesting case to note is the performance improvement for matrices c-38
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Figure 4.13: Floating point performance of sequential software design

and fd12. Both the matrices had a low sequential performance but in case of parallel

implementation the performance improves quite substantially. These two matrices

have a performance improvement of about 2.4X. This variation in performance can

be attributed to the distribution of the NZ elements across the block rows. In case of

matrices c-38 and fd12 the block rows consists of blocks that span across the same

set of columns resulting in reusability of the elements of vector ~x and ~y. This results

in a higher memory bandwidth utilization for these two matrices in parallel software

implementation. Another factor to take into account is that once a matrix has been

divided into block rows the distribution of the blocks changes and index overhead for

the Super Block received by each worker node will change. In case of c-38 and fd12

the index overhead for each worker node reduces significantly due to the clustered

distribution of the NZ when decomposition into block rows takes place. This helps

in improving the floating point performance in parallel implementation significantly.
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Figure 4.14: Floating point performance for parallel software Design

4.2.2 Performance Evaluation of Software Only SMMM Operation

We evaluate the performance of the SMMM operation using the Software Only

approach for matrices presented in Table 4.6. The floating point operations are per-

formed using the SoftFloat library. The software uses Algorithms 9 and 10 for

sequential and parallel implementations respectively.

4.2.2.1 Computation Performance

The computation performance of the software only approach is calculated by in-

troducing counters and using the processor frequency to estimate the total execution

time. We discuss the reason of using the execution time as a metric for computation

performance in Section 4.1.2.2.

Sequential Software Only Design The execution time for sequential software de-

sign for SMMM operation is presented in Figure 4.15. The computation performance

trends for sequential software implementation are identical to the Hardware/Soft-

ware Co-Design Approach in the sense that as the matrix B becomes sparser the
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Figure 4.15: Execution time for sequential software design

computation time reduces. Also the computation time for smaller matrices like gre

512 is significantly less than the bigger matrices like delaunay n12. This is mainly

because smaller the matrices lesser will be the number of comparisons that need to

be performed (Lemma 1) and lower will be the overall execution time.

Parallel Software Only Design The execution time for parallel software design

for SMMM operation is presented in Figure 4.16. We are reporting the execution

time for a parallel implementation with four MPI worker nodes and when Similar-NZ

strategy for matrix B is used. We can see that the performance trend is similar to

the sequential software only design (Figure 4.15). As the matrix A becomes larger

the matrix B generated using the Similar-NZ strategy and hence longer it takes to

perform the comparisons, affecting the overall execution time. The distribution of the

NZ elements across the test matrices is uniform, resulting in block rows which have

a distribution of NZ elements close to the original matrices. This results in Super

Blocks which have index overheads close to the original matrix. This results in an
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Figure 4.16: Execution time for parallel software design

execution time pattern identical between sequential and parallel implementation of

the software only SMMM operation.

4.3 Co-Design Approach versus Software-Only Approach

We compare the performance metrics relevant for the two Sparse Matrix opera-

tions when implemented in the two design approaches we have proposed to evaluate

their efficacy. The performance metrics that we are using for the purpose of our eval-

uation are listed in Table 4.9. We use sequential implementation measurements to

determine the floating point efficiency, bandwidth efficiency and computation time.

This is done to provide a more accurate comparison as the parallel implementation

used for the hardware design and software design are significantly different and pro-

viding a one-to-one comparison becomes difficult. The software design incurs a lot

more overhead due to usage of the MPI APIs for the purpose of communication when

compared to the hardware design where the only overhead is the AIREN Router setup

latency. We evaluate the parallel implementation using the speedup metric to analyze
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Table 4.9: Performance metrics used for comparison
Performance Metric Sparse Matrix Operation

SMVM SMMM
Floating Point Efficiency 3

Bandwidth Efficiency 3 3

Computation Time 3

Speedup 3 3

the scalability provided by the two approaches in order to determine the performance

improvements.

4.3.1 Floating Point Efficiency

We propose the use of floating point efficiency instead of absolute FLOPS mea-

surement when comparing the floating point performance of the two approaches. The

main reason for this is the difference in the operating frequency of the two approaches.

The Hardware/Software Co-Design approach is implemented on an FPGA device con-

sisting of a floating point computation core operating at 100MHz. This is a significant

difference when compared against the Software Only Design approach which is run-

ning on a conventional server consisting of an Intel Xeon Phi processor with a peak

operating frequency of 1.6GHz. We calculate floating point efficiency using Equa-

tion 4.4 and it estimates the fraction of peak floating point performance available

that gets utilized in performing the SMVM operation. In Equation 4.4 Floateff rep-

resents the floating point efficiency, Floatabs is the absolute floating point performance

measured and Floatpeak is the peak floating point performance available.

Floateff =
Floatactual
Floatpeak

× 100 (4.4)

The peak floating point performance available for the computation unit in Hard-

ware/Software Co-Design approach to perform the matrix vector multiplication is 400

MFLOPS as discussed in Section 4.1.1. As seen from our discussion in Section 4.1.1

the peak floating point performance is based on the operating frequency of the BPUs.
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The calculation of peak floating point performance in case of Software Only Design

approach is more complicated. We have used SoftFloat library [27] to perform the

floating point operation for the software implementation and the peak floating point

performance can be estimated in two ways:

• An estimated FLOP rating for the double precision multiply and add operation

is available from the SoftFloat library. These measurements indicates the ideal

performance of the floating point operations if performed using the SoftFloat

library in isolation. The SoftFloat library provides 2.7MFLOPS for double

precision multiplication and 2.77 MFLOPS for double precision addition. These

measurements were obtained by running a performance test program provided

with the SoftFloat library. The peak floating point performance in this case can

be estimated using Equation 4.5:

Peaksf = (FLOPmult + FLOPadd)×NZ (4.5)

In Equation 4.5 Peaksf represents the peak floating point performance avail-

able if we use the rated FLOP performance listed by the SoftFloat library,

FLOPmult and FLOPadd is the double precision FLOP performance rated by

the SoftFloat library. We will call this approach of estimating the peak floating

point performance as SF peak.

• We can also estimate the peak floating point performance by using the pro-

cessor frequency of Intel Xeon Phi processor on which the software program is

implemented. We will call this approach FPpeak. We calculate the FPpeak using

Equation 4.6, where Pfreq is the rated processor frequency.

FPpeak = 2×NZ × Pfreq (4.6)
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Figure 4.17: Floating point efficiency comparison

We can see from Figure 4.17 that the Hardware/Software Co-Design approach out-

performs the Software Only approach. One main reason is the Hardware/Software

Co-Design approach presents a completely pipelined design which results in the mem-

ory operations and the floating point operations happening simultaneously. In case of

the Software Only approach this is not the case; the floating point operations have to

wait till the array lookup for the block information has taken place and the relevant

decoding operations have been executed. The floating point operations can only start

after the memory transactions and decode operations.

4.3.2 Bandwidth Efficiency

Unlike the hardware design where the peak memory bandwidth of the NPI channel

could be measured using a read DMA request and hardware counters, in case of soft-

ware design estimating the peak memory bandwidth is more complex. We have used

the STREAM benchmark [28] to estimate the peak memory bandwidth for a single

Xeon Phi processor and used it to calculate the bandwidth efficiency. The bandwidth
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efficiency percentage is calculated using Equation 4.7, where BWactual represents the

actual throughput for the memory request and BWpeak represents peak memory band-

width obtained using the STREAM benchmark and is around 160GB/sec.

BWeff =
BWactual

BWpeak

× 100 (4.7)

In order to measure the BWactual in a non-intrusive manner we rely on a simple

assumption that the sequential software implementation performs two types of oper-

ations: mathematical (floating point operations to perform matrix-vector multiply)

and memory transactions to fetch blocks of the matrix encoded in the VDCB format

and to perform look ups on vector ~x, ~y. Based on this assumption we calculate the

time for memory transactions by calculating the difference between the total exe-

cution time and time taken to perform the floating point operations. We use this

measurement to calculate the BWactual as shown in Equation 4.8, where R represents

the size of memory request and tmem indicates the time for memory transaction which

is calculated as discussed earlier.

BWactual =
R

tmem

(4.8)

The bandwidth efficiency comparison between the two approaches is presented in

Figure 4.18 when VDCB format is used to perform the SMVM operation.

It can be seen that the Hardware/Software Co-Design approach outperforms the

Software Only approach by a significant amount although it is running on a much

slower FPGA device. The main reason for the significant deterioration in the band-

width efficiency in Software-Only approach is due to the array based lookups for the

block information as well as for the decoding operation of the bitmaps. In case of

the Software Only operation the decoding is not happening “on the fly” and simul-

taneously with other operations. Instead all the operations happen sequentially and
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Figure 4.18: Bandwidth efficiency comparison for SMVM operation

require a memory access to fetch relevant information. These factors negatively im-

pact the memory bandwidth efficiency in case of Software Only SMVM Operation as

can be seen from Figure 4.18. The bandwidth efficiency comparison for the SMMM

operation when using the two approaches is shown in Figure 4.19. It can be seen that

the Hardware/Software Co-Design approach in case of the SMMM operation also

performs significantly better than the Software Only approach. The Software Only

approach again in case of the SMMM operation relies on the array based lookups to

obtain relevant block information and introduce memory indirections which reduce

the bandwidth efficiency significantly.

4.3.3 Computation Time

As discussed earlier in Section 4.1.2.2 we use execution time to determine the

computation efficiency of the SMMM operation. In order to perform a fair execution

time comparison between the Hardware/Software Co-Design Approach and Software

Only Design Approach we will have to normalize the execution time over a common
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Figure 4.19: Bandwidth efficiency comparison for SMMM operation

frequency as both the implementations are running at different frequencies. The

Hardware/Software Co-Design implementation of the SMMM operation uses 200 MHz

for memory transactions and 100 MHz for performing the comparisons. In case of

the Software Only approach the memory transactions and comparison operations are

running at a common processor frequency. We normalize the Software Only approach

execution time as we do not need to differentiate between the memory transaction

time and computation time as both the operations are taking place at a common

frequency. We scale down the execution time of Software Only Design approach with

a clock frequency of 200 MHz as that is the highest frequency of operation available

on the Hardware/Software Co-Design approach.

We can see from Figure 4.20 that the Hardware/Software Co-Design implementa-

tion provides a much lower execution time. This is due to the complete elimination

of memory indirection by the customized memory hierarchy in case of Hardware/-

Software Co-Design approach. In case of the Software Only approach the memory
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Figure 4.20: Computation time comparison

Table 4.10: Speedup comparison
Matrix Operation Hardware/Software Co-Design Software Only

SMVM 2.72X 1.8X
SMMM 2.2X 2.7X

indirections creates long stalls for the software comparison unit resulting in higher

execution time.

4.3.4 Speedup

We present a brief comparison of the speedup obtained over sequential perfor-

mance when four worker nodes are used in case of Hardware/Software Co-Design and

Software Only approaches. In case of the SMMM operation Similar NZ technique is

used for the generation of matrix B for the test matrices. The speedup results are

presented in Table 4.10.

It can be seen in case of the SMVM operation the Hardware/Software Co-design

approach provides a higher speedup in comparison to Software Only approach, thereby

proving to be a more efficient and scalable solution. In case of the SMMM operation
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it is seen that the speedup for the Software Only design is higher. The main reason

in this case is the way the matrix B is stored in both the approaches. In case of

Hardware/Software Co-Design approach matrix B is stored in the FIFOs and when

the blocks of matrix B have to be popped each element of the FIFO has to be read till

the inequality condition is negated, as seen in Algorithm 9. The Software Only design

stores the matrix B in an array and the popping the blocks of matrix B requires an

address increment of the array to the next block based on the block header resulting

in a much more quicker negation of the inequality. This particular issue is more

pronounced in case of the parallel design as each worker node is using a part of the

matrix A to perform the operation and hence the number of memory indirections (in

case of Software Only) are lesser and hence better execution times are achieved for

parallel design, resulting in higher speedup.



CHAPTER 5: CONCLUSION

The currently available sparse matrix storage formats have shown consistently

poor performance on various processor architectures and this issue is going to be ex-

acerbated with the future processor architecture. In order to answer the thesis ques-

tion As the memory bandwidth remains limiting issue on current and future processor

architectures, will the usage of legacy sparse matrix storage formats prove detrimental

for sparse matrix operations?, a new sparse matrix storage format known as Vari-

able Dual Compressed Blocks (VDCB) was designed and was used to implement the

Sparse Matrix Vector Multiplication (SMVM) and Sparse Matrix-Matrix Multiplica-

tion (SMMM) operation.

We have conjectured in our thesis question that the incompatibility between the

legacy storage formats and the memory subsystems available on conventional many-

core and multi-core architectures result in performance deterioration for the Sparse

Matrix Operations. In order to validate our conjecture we examine if the VDCB

format can solely address the performance impediments of the Sparse Matrix Op-

erations or a customized memory hierarchy working in conjunction with the VDCB

format will alleviate the performance deterrents of the Sparse Matrix Operations.

In order to evaluate this we proposed two design approaches: Hardware/Software

Co-Design Approach and Software Only Design Approach. The Hardware/Software

Co-Design approach used FPGAs to design customized memory hierarchy to perform

the SMVM and SMMM operation using the VDCB format. In case of Software Only

Design approach a C code was developed and executed on a conventional Intel Xeon

Phi processor to perform the SMVM and SMMM operation using the VDCB format.

We have evaluated the two approaches for bandwidth efficiency, floating point
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efficiency (only for SMVM operation), computation time (only for SMMM operation)

and speedup obtained between parallel implementation with four nodes and sequen-

tial implementation. The average bandwidth efficiency for the Hardware/Software

Co-Design approach is 70% for the SMVM operation and 63% for the SMMM op-

eration. In case of the Software Only approach the average bandwidth efficiency is

0.2% for the SMVM operation and around 0.25% for the SMMM operation. The

average floating point efficiency in case of Hardware/Software Co-Design approach

is around 45%. The floating point efficiency for the Software Only approach is eval-

uated in two ways: performance based on SoftFloat library and performance based

on the processor frequency. In case of the Softfloat library the average floating point

efficiency is 0.221% and in case of the processor frequency the average floating point

efficiency is 0.001%. We have used the computation time as the performance metric

to evaluate the SMMM operation is 4.5ms for the Hardware/Software Co-Design ap-

proach and 6.2ms for the Software Only approach. We achieve a speedup of 2.72X

for the SMVM operation and 2.2X for the SMMM operation in Hardware/Software

Co-Design approach when four worker nodes are used. In case of the Software Only

approach a speedup of 1.8X for the SMVM operation and a speedup of 2.7X for the

SMMM operation is obtained from four worker nodes.

Based on the comparison performed between the two approaches it can be clearly

seen that the Hardware/Software Co-Design approach outperforms the Software Only

approach for overall computation and memory bandwidth performance for the Sparse

Matrix Operations. In short, the Variable Dual Compressed Block storage format

working in conjunction with a customized memory hierarchy resolves the performance

deterrents associated with the Sparse Matrix Operations and provides a high compu-

tation performance.
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