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ABSTRACT 

 
 

DAHLIA MARIE BESMER. Development of novel therapeutics in pancreatic and breast 
cancers: potential role of MUC1. (Under the direction of DR. PINKU MUKHERJEE) 

 
 

Pancreatic ductal adenocarcinoma (PDA) is the 4th leading cause of cancer-related 

deaths in the US, and breast cancer (BC) contributes to ~40,000 deaths annually. The 

development of novel therapeutic agents for improving patient outcome is of paramount 

importance. Importantly, MUC1 is a mucin glycoprotein expressed on the apical surface 

of normal glandular epithelia but is over expressed and aberrantly glycosylated in >80% 

of human PDA and in >90% of BC. In the present study, we first utilize a model of PDA 

that is Muc1-null in order to elucidate the oncogenic role of MUC1. We show that lack of 

Muc1 significantly decreased proliferation, invasion, and mitotic rates both in vivo and in 

vitro. Next, we evaluated the anticancer efficacy of oncolytic virus (OV) therapy that 

utilizes viruses to kill tumor cells. The oncolytic potential of vesicular stomatitis virus 

(VSV) was analyzed in a panel of human PDA cell lines in vitro and in vivo in immune 

compromised mice. Our results demonstrate that VSV has potential as an OV against 

human PDA cells. Next, we tested oncolytic VSV in an immunocompetent mouse model. 

In agreement with our in vitro results, in vivo administration of live VSV resulted in the 

significant growth reduction of PDA tumors, with an enhanced efficacy when used in 

combination with a chemotherapeutic drug, gemcitabine. Finally, we tested a MUC1 

specific tumor vaccine with targeted inhibition of immune suppression in a model of BC. 

Our results indicate that Indomethacin in combination with a MUC1 vaccine resulted in a 

significant reduction in tumor burden. These data, therefore, may have implications in the 

future design of MUC1-targeted therapies for BC and OV therapies for PDA. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Pancreatic Cancer 

Pancreatic Structure and Function 

The pancreas is a glandular organ which has dual functions. It is located deep 

within the abdomen, behind the stomach. It is composed of a head, uncinate process, 

neck, body and tail.  It has both endocrine functions as well as exocrine functions. The 

endocrine, or hormone producing,  portion of the pancreas consists of cell clusters called 

the islet of Langerhans, which is made up of four main types of cells, α cells, β cells, 

delta cells, or PP cells (gamma cells). Each of these cell types performs a distinct 

function.  The α cells are known to secrete glucagon, the β cells secrete insulin, whereas 

the delta cells are known to secrete somatostatin and the PP cells secrete pancreatic 

polypeptide, all of which are important in glucose metabolism as well as regulating blood 

glucose concentration. The exocrine portion of the pancreas, consisting of ductal and 

acinar cells, is responsible for the secretion of digestive juices. Pancreatic ductal cells line 

the ducts of the pancreas, which open into sac-like-structures called acinar cells (Figure 

1). The acinar cells produce the digestive enzymes, which are then transported via the 

ducts of the pancreas to the stomach or duodenum. The digestive enzymes that are 

produced then assist in the breakdown of carbohydrates, proteins, and lipids.  
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Pancreatic Cancer 

 Pancreatic cancer is estimated to be the 4
th

 leading cause of cancer related death 

in the United States. The incidence of pancreatic cancer is rapidly increasing and it is 

projected to become the 2
nd

 leading cause of cancer related deaths by 2015 (published by 

the Pancreatic Cancer Action Network; Figure 2).  Pancreatic cancers can arise from the 

exocrine and endocrine parts of the pancreas. Cancer of the exocrine portion (the portion 

responsible for secretion of digestive enzymes) accounts for >95% of pancreatic cancers. 

This includes cancer of the ductal epithlium, acinar cells, the connective tissue, and 

lymphatic tissue. Tumors may also develop in the endocrine portion (or the hormone 

producing portion), and are thus referred to as pancreatic neuroendocrine tumors; 

however this type of pancreatic cancer is rare. Cystic neoplasms also occur, but account 

for less than 1% of pancreatic cancers. Roughly 75% of all pancreatic cancers arise in the 

head or neck of the pancreas, 15-20% in the body of the pancreas, and 5-10% in the tail.   

Pancreatic Ductal Adenocarcinoma 

In 2010 alone, there were an estimate 43,140 new cases and 36,800 deaths 

attributed to pancreatic cancer in the US [1]. Pancreatic Ductal Adenocarcinoma (PDA) 

is the most common type of pancreatic cancer, accounting for >90% of pancreatic 

cancers. It is the most lethal type of digestive cancer, with a 5 year survival rate of only 

3-5% [2-5]. PDA ranks the 10
th

 most commonly diagnosed cancer, and the 4
th

 among 

cancer-related deaths [1].    

Risk Factors 

Several environmental risk factors and genetic conditions for the development of 

pancreatic cancer have been identified. Age is a primary risk factor, given that pancreatic 
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cancer is rarely diagnosed before the age of 40, with a median age of diagnosis at 73 

years old (http://seer.cancer.gov/). Males are more susceptible than females (12.8 vs. 10 

cases per 100,000 individuals). Race is also a risk factor, with more African Americans 

diagnosed than Caucasians (14.9 vs. 11.1 per 100,000 cases) (http://seer.cancer.gov/). 

Cigarette smoking is the leading preventable cause of pancreatic cancer [6-8] Moreover, 

conditions such as diabetes, obesity, genetic predisposition, and chronic pancreatitis have 

been linked to increased susceptibility to pancreatic cancer [9-12].These causes of organ 

dysfunction have been known to result in the production of reactive oxygen species, and 

result in chronic inflammation, which has been correlated with transformation of the 

ductal cells of the pancreas.  Moreover, several mutations in tumor suppressor genes are 

known to be linked to the development of pancreatic cancer, including: BRCA1, BRCA2, 

INK4A, MLH1, PRSS1, and STK11/LKB1 [13-15]. Activating mutations in the K-RAS 

oncogene are thought to represent an initiating event in the development of PDA. 

Mutations in the 12
th

 codon of the K-RAS gene (from G to D) are detected in 30% of 

early neoplasms and 100% of PDA [16-18].  

Diagnosis and Treatment Options for PDA 

 Early stage diagnosis is very rare for pancreatic cancer, as patients are generally 

asymptomatic until advanced disease is present. The symptoms patients may present with 

include fever, nausea, lower back pain, lack of appetite and the resulting weight loss. 

However, these symptoms are very common to a wide-array of diseases. Moreover, there 

are no specific markers for pancreatic cancer, although CA-19-9, a sialylated mucin 

glycoprotein present on  Lewis
a
 blood group antigen and CA-242, another mucin 

glycoprotein  [19] have been utilized as non-invasive  diagnostic markers for monitoring 
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disease progression. These are not used for screening due to false positive rates 

associated with these markers. Over 75% of pancreatic cancer patients present with 

locally unresectable tumors. These patients have a median survival rate of 3-6 months 

[20-23]. Only 5 –25% of pancreatic cancer cases are eligible for surgery. Post-operative 

patients have a two-year survival rate of 20% – 40% with surgery, however, recurrence or 

metastasis occurs in more than 50% of the patients. Adjuvant therapy including radiation 

and chemotherapy remain largely ineffective as the tumors tend to develop resistance. 

Several of these therapies also produce undesirable side effects. Gemcitabine, with or 

without erlotinib, has been the standard chemotherapeutic adjuvant therapy, however, 

only modest benefits have been identified. The combination of gemcitabine with erlotinib 

is the only combination that has demonstrated a significant increase in survival of 

patients. However, a number of drug combinations have been tested to no avail, including 

gemcitabine in combination with platinum based agents such as topoisomerase inhibitors, 

taxanes, bevacizumab and cetuximab, or gemcitabine in combination with vaccine 

therapy [24-28]. 

Pancreatic Ductal Adenocarcinoma Progression 

Precursor lesions are detectable prior to progression of an invasive PDA. There 

are three main types of precursor lesions that have been identified thus far. These include 

pancreatic intraepithelial neoplasias (PanIN), mucinous cystic neoplasms (MCN) and 

intraductal papillary mucinous neoplasms (IPMN) [29].  MCN precursor lesions as of yet, 

have not been very well characterized, however, it is known that MCN precursors are 

more likely to occur in women, and MCN precursors present with a distinct ovarian type 

stroma [30]. IPMN lesions and PanIN lesions are much more difficult to differentiate. 



5 

IPMN generally arise in the main pancreatic duct, and present with a papillary structure 

[31]. PanIN lesions are the most frequently occurring and thus, most extensively studied 

lesion. PanIN lesions are subclassified into three categories depending on the degree of 

dysplasia and atypia, PanIN-1, PanIN2, and PanIN3, respectively [31, 32].  

 Molecular abnormalities are present at different stages of progression. For instance, 

genomic alterations can be detected in K-ras and telomere length, as early as PanIN-1, 

whereas alterations in p16/CDKN2A are detectable at the PanIN-2 stage, and SMAD-4 

and BRCA-2 alterations are first detected in the PanIN-3 stage [33-35]. The most notable 

of these genetic alterations is the K-ras mutation, known to be an activating and initiating 

event in pancreatic cancer [29].  These genomic alterations are also accompanied by 

phenotypic changes. Normal cells present with a cuboidal phenotype and uniform round 

nuclei; however as they progress to PanIN-1 stage, the cells present with a more 

columnar phenotype, yet the polarity is still maintained with basally located nuclei. Once 

the cells are categorized as PanIN-2, they present with moderate nuclear atypia, and a 

loss of polarity is observed. PanIN-3 lesions are characterized by severe nuclear atypia, 

clusters of cells budding off, and a total loss of polarity (Figure 3, Figure 4). This 

eventually progresses to invasive adenocarcinoma.  

Mucins in Pancreatic Cancer: Highlight on MUC1 

 As can be seen in Figure 3, MUC1 expression is altered as early as PanIN-1A 

lesions. Using an antibody against the cytoplasmic tail of MUC1 (CT-2), we have shown 

that MUC1 expression can be detected in early stages of PDA and low grade PanIN 

lesions (Figure 5). Most pancreatic cancers are known to express a variety of mucins, 

including MUC1, MUC3, MUC4, and MUC5AC [36].  To date, 11 members of the 
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Mucin family have been identified. These include the membrane tethered mucins: 

MUC1, MUC3, MUC4, MUC11, MUC12, and MUC13, as well as the secreted mucins 

MUC2, MUC5AC, MUC5B, MUC6, and MUC7 [37]. MUC1 expression during 

pancreatic cancer progression has long been identified; however its role has yet to be 

fully elucidated due to a lack of appropriate mouse models. MUC1 (CD227) is  

a type I membrane tethered mucin glycoprotein which is normally expressed on the 

apical surface of glandular epithelial cells, including expression in the pancreas, breast, 

stomach, colon, lung, salivary glands, and to a lesser extent on immune cells.  The normal 

function of MUC1 is to play a key role in anti-adhesion and immune protection. It has 

been shown to be important for hydration, lubrication, and protection.  

MUC1 has a unique N-terminal extracellular domain consisting of variable 

number tandem repeats (VNTR) of 20 amino acids (PDTRPAPGSTAPPAHGVTSA) that 

are extensively modified by O-glycosylation (Figure 6). The C-terminal domain of 

MUC1 includes a 53 amino acid (aa) extracellular region, a transmembrane domain (TM) 

and a 72 aa cytoplasmic tail (CT) [38]. The TM and CT domains of MUC1 are highly 

conserved (88% identical), suggesting important functional roles [39]. The 72 amino acid 

tail contains 7 tyrosines, six of which are 100% conserved. MUC1 is encoded by a single 

transcript which gives rise to two separate subunits after post-translational cleavage to 

form a stable, non-covalently bonded heterodimer. It is generally found as a heterodimer, 

however, several MUC1 variants have been discovered due to differential mRNA 

splicing events. MUC1 has been shown to be expressed while lacking either the 

cytoplasmic tail or the tandem repeat portions [40-43]. Additionally, it has been shown 

that the extracellular portion of MUC1 can be cleaved enzymatically and secreted [44, 
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45]. MUC1 is known to be heavily O-glycosylated at the hydroxyl groups of the serine 

and threonine residues found in the extracellular domain. Depending on the extent of O-

glycosylation, the molecular weight (mw) can range anywhere from 100kDa to 500kDa.  

MUC1 Functions as a Biomarker and Target 

MUC1 is overexpressed and aberrantly glycosylated in many human 

adenocarcinomas including pancreas, breast, and ovaries [46-52]. MUC1 is 

overexpressed in >60% of pancreatic cancers and >80% of PDA [51, 53]. MUC1 staining 

of human pancreatic cancer sections has been detected using MUC1 specific antibody, 

TAB004 (Figure 7). Tumor associated MUC1 is hypoglycosylated, and thus, the 

immunogenic protein core is exposed. Tumor associated MUC1 is therefore considered to 

be a promising target , and has recently been designated by the National Cancer Institute 

as the 2
nd

 most targetable tumor antigen [54]. Moreover, a number of studies have 

focused on utilizing MUC1 as a biomarker for cancer detection, as the extracellular 

domain of MUC1 can be shed in the serum of patients. MUC1 has already been detected 

in patients with pancreatic cancer [55] ovarian [56], colon [57], prostate [58] and breast 

cancer. Moreover, in a cancer setting, there is a loss of polarity such that MUC1 is 

expressed around the entire surface of the cell such that it can interact with growth factor 

receptors, normally located on the basolateral surface (Figure 8). 

Signaling of the Cytoplasmic Tail of MUC1 

MUC1 interacts with a number of proteins implicated in carcinogenesis through 

both its tandem repeat and cytoplasmic domains. The cytoplasmic tail of MUC1 contains 

7 tyrosines. Tyrosines in the MUC1 CT have been shown to be phosphorylated, for 

instance by members of the Src family of kinases, such as lyn [59], c-Src [60], and Lck 
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[61]. The phosphorylated CT of MUC1 is known to play a role in a number of signaling 

events. For instance, MUC1 is known to interact with -catenin at the SAGNGGSSL 

sequence in the CT [62]. Recently, it has been shown that MUC1 also complexes with -

catenin [63], and with γ-catenin [64] suggesting a role of MUC1 in stabilizing and 

enhancing nuclear localization of catenins. GSK3β, a serine kinase has been shown to 

binds directly to MUC1 and decrease the ability of β-catenin to bind in vitro and in vivo 

[65]. Recently, MUC1 has been shown to bind Grb2/SOS (Figure 9), which are signaling 

mediators of a number of receptor kinases [66]. Moreover, MUC1 is known to interact 

with the erbB receptors (EGFR or erbB1, erbB2, erbB3, and erbB4) [67]. Activation of 

these receptors results in activation of a variety of effector proteins including Grb2/SOS 

and the downstream activation of MAP kinases [68].  

Metastasis 

Pancreatic cancer is commonly diagnosed in the later stages of the disease, as 

early stage diagnosis remains rare due to a lack of symptoms. Pancreatic cancer can be 

highly invasive; once the disease becomes metastatic it is unlikely to be curable. In fact, 

more than 90% of cancer related deaths are as a result of metastasis [69]. Metastasis is a 

complicated process in which the primary tumor grows such that it is able to invade the 

local environment and intravasate into the vasculature. If the cells are able to survive in 

circulation, they can then extravasate from the vasculature and grow in secondary organ 

sites, known as metastases (Figure 10). There is a lot of cross-talk that occurs between 

the primary tumor cells and the local tumor microenvironment in order for metastatic 

spread to occur [70, 71]. Cancer associated fibroblasts, for instance, are well known to 

secrete chemokines and growth factors known to enhance proliferation and invasion of 
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cancer cells. Moreover, immune cells in the local tumor microenvironment have been 

known to suppress immune responses and enhance invasiveness [70, 71]. 

 Epithelial to mesenchymal transition (EMT) is known to be associated with 

enhanced invasiveness, motility of cancer cells, and metastasis [72, 73]. During EMT, 

epithelial cells acquire a fibroblastic phenotype and hence become more motile.  During 

EMT, Snail expression has been shown to cause a functional loss of E-cadherin [74-76]. 

Our lab recently demonstrated that MUC1 expression in PDA cells increases their 

invasiveness and both in-vitro and in-vivo and that this was associated with an increase in 

EMT [77]. Specifically, MUC1 expression was associated with a decreased expression of 

mesenchymal markers such as vimentin, Snail and Slug and an increased expression of 

epithelial markers such as E-cadherin. However, cells transfected with the MUC1 

plasmid lacking the tyrosines in the cytoplasmic tail did not display epithelial and 

mesenchymal markers and therefore less invasive. We have also demonstrated that 

MUC1-induced invasion and proliferation occurs through the increased exogenous 

production of Platelet-Derived Growth Factor-A, one of the major drivers of tumor 

growth, angiogenesis, and metastasis in PDA [78]. Moreover, we have recently shown 

that MUC1 associates with Hif1-

transcription and facilitates Hif1- [78]. 

Pancreatic Cancer Mouse Models 

Early mouse models of pancreatic cancer utilized tumor grafts in either 

immunodeficient or immunecompetent mice. The first transgenic mice developed utilized 

acinar specific promoters such as elastase, however, this resulted in neoplasia of the 

acinar cells, not the ductal cells [79]. In 2003, Dr. Tuveson’s group described the first 
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mouse model of pre-invasive and invasive ductal pancreatic cancer that recapitulates the 

full spectrum of human PanINs. The PanINs were highly proliferative, showed 

indications of histological progression, and trigger signaling pathways normally inactive 

in normal ductal epithelium [80].  Mice developed ductal lesions very similar to all three 

stages of human PanINs. Tuveson’s model expressed Kras
G12D

 through Cre-mediated 

recombination driven by pancreas specific promoter Pdx1 or p48. Both of which are 

expressed in the progenitor cells of the pancreas. In our studies, we have backcrossed 

these mice onto the blk6 background, and mated them with either MUC1.Tg mice, or 

MUC1 null mice (Figure 11). From these mouse models cell lines were generated that are 

unique to our lab and are critical for the MUC1 scientific community. These models 

provide us with the capability to fully examine the oncogenic role of MUC1 in tumor 

progression.  

Oncolytic Virotherapy 

 

Several cancer therapies proven successful in other tumor types have had little 

effect in treating PDA. Surgical resection complemented by chemotherapy is the primary 

treatment option [81]. The few treatment options available for patients suffering from 

PDA indicate a critical need for the development of novel therapeutics. Oncolytic 

virotherapy is an anti-cancer approach that utilizes replication-competent viruses to target 

and kill tumor cells. Importantly, several tumors are known to be deficient in their 

intracellular defenses such as the loss of Type I IFN induction and signaling [82]. These 

defects can offer the tumor growth advantages; however, it also renders the cells 

susceptible to viral infection. The premise of oncolytic virotherapy then, is to specifically 

target tumor cells using replication-competent viruses (Figure 12). Virus replication 
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within the tumor cell can lead to releasing new infectious viral particles that then go and 

infect neighboring tumor cells. Thus, ultimately leading to tumor cell death [82]. Several 

oncolytic DNA and RNA viruses have already shown to be effective at the clinical level 

including adenoviruses, vaccinia virus, herpesviruses, reovirus and paramyxoviruses [83]. 

Moreover, vesicular stomatitis virus (VSV) has already been tested and shown promise in 

a number of cancers, including prostate [84-86], breast [87-90], melanoma [88, 91], 

colorectal [92-94], liver [95-97], glioblastoma [98-100] and other cancers [101] however 

its potential in pancreatic ductal adenocarcinoma (PDA) has not been studied. 

VSV is the prototypic member of the nonsegmented negative strand RNA viruses 

[102]. VSV is known to exhibit sensitivity to early innate immune responses such as the 

Type I IFN response [102]. This sensitivity allows VSV to specifically replicate in tumor 

cells. Healthy tissues are still able to mount a successful immune response against VSV 

infection. In addition to the sensitivity to type I IFN, VSV has potential as a successful 

oncolytic therapy for a number of reasons: (i) replication occurs in the cytoplasm of host 

cells so there is no risk of host cell transformation, (ii) there is no cell cycle dependency 

for infection and cellular uptake occurs rapidly, (iii) the genome is easily manipulated 

with the possibility for expression of foreign genes, and (iv) VSV is not considered a 

human pathogen [101]. Investigating the ability of VSV to specifically target and kill 

PDA tumor cells, therefore, can provide an alternative strategy for the treatment of PDA. 

Conclusions 

Pancreatic cancer is a devastating disease with very few treatment options. 

Radiation therapies and chemotherapies remain largely ineffective, while incident and 

death rates remain high.  Numerous studies have focused on MUC1 signaling in 
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pancreatic cancer, and therapeutically targeting MUC1. However, the precise role of 

MUC1 had yet to be elucidated due to a lack of appropriate model systems. Therefore, 

we first hypothesized that MUC1 may play an imperative role in the development and 

progression of the disease [36, 103, 104]. We sought to further our understanding of the 

oncogenic role of MUC1 in pancreatic cancer, and its potential impact on design and 

implementation of therapeutic strategies. In Chapter 2, we utilize newly developed mouse 

models and cell lines in order to examine the oncogenic role of MUC1 in pancreatic 

cancer. In Chapter 3, we sought to investigate the potential of VSV as a noncolytic agent 

against pancreatic cancer. We test a panel of human pancreatic cancer cell lines, and 

analyze the ability of VSV to infect and kill tumor cell lines. We also test the oncolytic 

ability of VSV in vivo, in an immunodeficient mouse model.    In Chapter 4, we develop 

a system for testing the efficacy of VSV in an immunocompetent mouse model, as well 

as testing VSV in combination with chemotherapeutic agent, gemcitabine.  

1.2 Breast Cancer  

Breast Cancer: Statistics, Risk Factors, and Pathogenesis 

 Breast cancer is the second most common cancer in the United States and contributes 

to 40,000 deaths a year. It is estimated that 226,870 women will be diagnosed in 2012 alone, 

and that nearly 3 million women in the US have a history of invasive breast cancer. For 

tumors confined within the breast, surgical removal can result in a favorable outcome. 

However, tumors have the ability to metastasize to distant sites, such as lymph nodes, 

lungs, liver or brain. 

A number of risk factors have been identified for breast cancer, including gender 

(more women affected than men), age, and familial history. Other modified risk factors 
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include hormonal changes, obesity (specifically in the postmenopausal range) as well as 

dietary factors including alcohol intake and dietary fat intake [105]. Pathogenesis of 

breast cancer is similar to other epithelial carcinomas (Figure 13). Specifically, there are 

an accumulation of cellular events that result in a dysplastic appearance. This is 

accompanied by a number of genotypic and phenotypic changes including uncontrolled 

cell proliferation, and the eventual progression to carcinoma.  

 As discussed previously, hormonal changes play a large role in the development 

and progression of breast cancer. In fact, hormonal changes play a critical role in 

approximately 70% of all breast cancer cases [106]. Therefore, a large number of studies 

focusing on chemotherapeutics have focused their attention on targeting breast cancers 

that are hormonally responsive [107]. Estrogen-receptor positive breast cancers are 

generally treated with one of two types of drugs, aromatase inhibitors or estrogen 

receptor modulators. Estrogen is a key hormone, in that it has been shown to promote cell 

division and proliferation within the breast in both normal and malignant cells. However, 

estrogen-receptor negative breast cancer accounts for approximately 20-30% of breast 

cancers [108].  Triple negative breast cancers, lacking estrogen receptor(ER), 

progesterone receptor (PR), as well as lacking over-expression of  human epidermal 

growth factor receptor 2 (HER2), have the worst prognosis. Therefore, other treatment 

options are needed for patients, including, agents such as tyrosine kinase inhibitors 

(TKIs), cyclooxygenase-2 (COX-2) inhibitors, vitamin D receptor (VDR), and others.  

Cancer vaccines 

Complications from metastatic disease are the leading causes of cancer-related 

deaths. Therefore, newly developed cancer vaccines are being developed with the hope 
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that they can delay recurrence, prolong survival, and perhaps even be utilized as a 

preventative measure [109, 110].Cancer vaccines are designed to immunize individuals to 

antigens present on tumors, in order to stimulate the patient’s own immune system to 

combat the disease processes. The advantage of this approach is that it can act 

specifically against the tumor cell, without causing damage to normal tissues. In addition 

to providing active immunization, immunotherapy can also generate memory immune 

responses, which should assist in prevention of recurrence. Several immune-based 

strategies have been employed in preclinical and clinical settings already [47, 111-116].  

MUC1 Expression in Cancer: Potential Vaccine Therapy 

In recent years there has been great interest in cancer vaccines, which have the 

potential of controlling disease, prolonging time to recurrence, and ultimately even serving as 

a preventive measure. Novel therapies such as cancer vaccines that target tumor associated 

antigens (TAA) present an attractive alternative therapy with the hopes of preventing 

metastasis and recurrence. Importantly, MUC1 is a transmembrane mucin glycoprotein that 

is overexpressed in >90% of breast carcinomas [48, 50, 117-119].  As in pancreatic 

cancer, the extracellular domain is normally extensively O-glycosylated [48, 50, 117-119]. 

However, in a tumor setting, MUC1 hypoglycosylated and is no longer restricted to the 

apical surface, as polarity is lost. Moreover, tumor associated MUC1 has an abberant 

glycosylation pattern [46] . Interestingly, patients with breast, pancreatic and ovarian tumors 

have exhibited spontaneous immune responses to MUC1. This is evidenced by the presence 

of antibodies and T cells specific for MUC1 [120-124]. These attributes have long made 

MUC1 an interesting target molecule for immunotherapeutic strategies [46, 125]. 
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Importantly, MUC1 was designated by the National Cancer Institute as the second most 

targetable tumor antigen in 2009. 

 Treatments that work by modulating the immune response are amongst the most 

widely used and accepted medical treatments. Several preclinical and clinical trials using 

MUC1 peptide vaccines have elicited anti-MUC1 CTLs [47, 113, 115, 120, 126, 127]. 

The recent description of MUC1 as a target for cytotoxic T lymphocytes (CTLs) has 

raised interest in using this protein as a target for immunotherapy. So far, these approaches 

have generated only modest and infrequent clinical responses [128].  Immunotherapy as an 

approach to cancer has yet to live up to its expectations. However, tumors create an 

abnormal local microenvironment that allows them to escape immune detection and 

destruction. Thus, immune evasion is one major obstacle that has to be addressed prior to 

designing and delivering successful immunotherapy. There are opposing forces that 

control the immune system: immunity and tolerance. Most efforts thus far in cancer 

immunotherapy have focused only on enhancing immunity. These observations indicate 

that in most instances, tumors are still able to utilize immune evasion tactics. Thus, as tumors 

progress, immune evasion dominates over anti-tumor immunity.  

Immune Suppression 

Immunotherapy has been shown to elicit tumor-specific immune responses that 

infiltrate the spontaneously arising breast tumor. However, a number of studies have 

shown that the effector cells become non-functional within the tumor microenvironment 

[129, 130]. Tumor escape is one of the major obstacles that must be addressed prior to 

designing and delivering successful immunotherapy. Interestingly, a set of genes that 

marks and mediates breast cancer metastasis has been identified recently [131]. Eighteen 
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genes were listed as ‘lung metastasis signature genes’. Amongst these were two genes, one in 

the COX-2/PGE2 pathway, and one in the IDO pathway. 

There are two isoforms of COX, COX-1 and COX-2, that have been identified 

[132]. Although they both catalyze the formation of prostaglandins from arachidonic 

acid, they have different biological roles. COX-1 is constitutively expressed in many 

tissues and is thought to be involved in maintaining cellular homeostasis [133]. COX-2 is 

an enzyme that is induced during carcinogenesis and inflammation, over-expressed in 

several human cancers, including breast cancer. COX-2 affects multiple pathways of 

tumorigenesis including angiogenesis, invasion and tumor-induced immune suppression. 

COX-2 induces its immunosuppressive effects through PGE2, which targets both 

cytotoxic (CTL) and T helper lymphocyte (Th) functions [134, 135].  Inhibitors specific 

for COX-2 have shown significant effects in reducing the incidence and progression of 

tumors in animal models and in cancer patients. Cyclooxygenases inhibitors or 

nonsteroidal anti-inflammatory drugs (NSAIDs) are substances that block either the 

cyclooxygenase site of enzyme cyclooxygenase type 1 or 2 (COX 1 and COX 2, 

respectively), or its peroxidase site. Drugs known to inhibit enzymatic activity include 

ibuprofen, indomethacin (further explored in Chapter 5), rofecoxib, celecoxib, among 

others.  Recently, we have discovered a novel mechanism by which COX-2 may regulate 

immunosuppression within the tumor microenvironment. Using a transgenic model of 

spontaneous mammary gland tumors, our lab has found that Cyclooxygenase 2 (COX2) 

over-expression and subsequent Prostaglandin E2 (PGE2) production are 

immunosuppressive, as they reduce T cell and dendritic cell function in patients with 
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breast cancer [136]. Further, COX-2 inhibition, via celecoxib administration reduced 

breast tumor levels of indolamine 2, 3-dioxygenase (IDO; Figure 14) [136].  

IDO is an enzyme that catabolizes L-tryptophan to L-kynurenine. Its activity is 

increased under pathological conditions including tumor development [137, 138]. IDO was 

first identified in maintaining maternal tolerance towards the antigenically foreign fetus 

during pregnancy [139] and in suppressing T cell responses [140]. Tumor cells are known to 

exploit this mechanism to prevent rejection by tumor-specific T cells [139, 141]. IDO is 

overexpressed in many types of tumors as well as on antigen presenting cells including a 

subset of specialized DCs, known as plasmocytoid dendritic cells [137, 142-144]. These 

dendritic cells induce suppressor T cells leading to immune tolerance. IDO is emerging as 

a key player in suppressing T cell function and in the induction of immune tolerance to 

tumors [137, 144-147]. It has been shown to suppress T-cell responses through depleting the 

local tryptophan levels [148, 149]. Tryptophan is an essential amino acid required for T cell 

survival and proliferation. The effects of tryptophan depletion are mediated in part via a 

stress-activated kinase, GCN2 [150]. Transfection of tumor cells with IDO renders tumor cell 

lines immunosuppressive in vitro [151] and treatment with a competitive inhibitor, 1-methyl-

dl-tyrptophan (1MT) significantly delayed tumor outgrowth in a model of lung carcinoma. 

COX-2 is known to be responsible for the high production of prostaglandins 

[152]. PGE2, one of the major prostaglandins produced in the COX-2 pathway. 

PGE2 exerts its effects via binding to G protein-coupled E prostanoid (EP) receptor.  

There are four EP receptors, each coupled to distinct G proteins. The four EP receptors 

that have been identified, named EP1, EP2, EP3, and EP4 respectively [153]. Activation 

of EPs leads to alterations in intracellular calcium and cAMP concentrations. 
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Specifically, EP1 is coupled to the Gq protein and signals through phospholipase C (PLC) 

and intracellular Ca
2+

 and activation of PKC. EP2 and EP4 are coupled to the Gs protein, 

signaling through elevation of cAMP level and activation of PKA.  Importantly, there are 

specific EP antagonists that can be utilized in studying the effects of PGE2. Specifically, 

there exists a known EP1, EP2, EP3, and DP antagonist, AH6809 as well as an EP4 

antagonist AH23848 which have displayed inhibitory effects on PGE2. This provides us 

with new opportunity to develop novel immunotherapeutic combinations for the 

treatment of metastatic breast and pancreas cancer (Figure 15).  

Conclusions 

 Breast cancer is the 2
nd

 most common cancer and affects 40,000 individuals 

annually. With the advent of breast cancer vaccines, there is promise for better patient 

outcome, however challenges still exist. First and foremost, tumors have the ability to 

undergo immune evasion tactics. These include expression of immunosuppressive 

enzymes. We hypothesize that inhibiting immune suppression and activating anti-tumor 

immunity combined will exert maximal anti-tumor effect in the treatment of breast 

cancer. Therefore, in Chapter 5, we evaluate the efficacy of our MUC1 vaccine that 

consists of two MHC class I-restricted MUC1 peptides, one MHC class II helper peptide 

mouse, CpG ODN, and GM-CSF in the context of combating immune suppression. We test 

the vaccine in combination with COX inhibitors, celecoxib and indomethacin. Moreover, we 

test the vaccine in combination with an EP 1-3 receptor antagonist, AH6809, or an IDO 

inhibitor, 1-MT (1-Methyl Tryptophan). In these studies, we use MUC1.Tg mice that are on a 

C57bl6 background. These mice express human MUC1 under its own promoter and therefore 

express human MUC1 in a tissue specific manner. These mice exhibit T and B cell tolerance 
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when immunized with human MUC1 antigen which makes it a relevant model to study 

MUC1-based vaccines [154]. Of key importance is that the tumors arise in immune 

competent mice and undergo immune evasion tactics similar to humans. It is therefore, a 

particularly challenging and relevant situation in which to study a combinatorial MUC1 

based vaccines. 
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1.3 Figures 

 

 
Figure 1. Pancreatic Structure. Adapted from Bardeesy et al., “Pancreatic cancer biology 

and genetics” Nature Reviews Cancer 2002. Figure displays the pancreas, and the cell 

types of the pancreas.  
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1.3 Figures continued 

 

Figure 2: The incidence of pancreatic cancer is rapidly increasing and it is projected 

to become the 2
nd

 leading cause of cancer related deaths by 2015. Published by the 

Pancreatic Cancer Action Network 
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1.3 Figures continued  

 

 

 

 
Figure 3. Pancreatic cancer progression model.  PanIN lesions are subclassified into 

three categories depending on the degree of dysplasia and atypia, PanIN-1, PanIN2, 

and PanIN3, respectively. Adapted from Maitra et al. “Pancreatic Cancer” Annual 

Review Pathology 2008 
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1.3 Figures continued 

 

Figure 4: Hematoxylin and eosin staining of PanIN lesions in human specimens. Note the 

degree of atypia as PanIN lesions are scored higher. Adapted from Yonezawa et al. 

“Precursor lesions of pancreatic cancer” Gut and Liver. 2008.  
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1.3 Figures continued  

 

 

Figure 5: Detection of MUC1 using a specific MUC1 CT antibody. Our lab has 

demonstrated that over expression of MUC1 is detected in early and late stage human 

pancreatic cancer specimens.  
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1.3 Figures continued 

 

 

 
Figure 6: MUC1 cytoplasmic tail interactions. The cytoplasmic tail is involved in a 

variety of functions including mitogenesis, survival, and migration. Adapted from 

www.functional glyomics.org 
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1.3 Figures continued 

 

 

Figure 7: Detection of MUC1 using MUC1 specific TAB004 antibody. Our lab has 

detected MUC1 overexpression in early and late stage human pancreatic cancer 

specimens.  

 

  



27 

1.3 Figures continued  

 
Figure 8: In a cancer setting there is a loss of polarity. MUC1 is no longer restricted to 

the apical surface, and has an abberant glycosylation pattern.  Adapted from 

www.genusoncology.com 
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1.3 Figures continued 

 

Figure 9: Hypothetical binding sites for cell signaling molecules on the MUC1 

cytoplasmic tail. The MUC1 CT has a number of putative binding sites for a number of 

cell signaling molecules including c-Src, β-catenin, Grb2, EGFR and many others. Figure 

utilized with the permission of Dr. Pinku Mukherjee. 
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1.3 Figures continued 

 

 

Figure 10. Metastasis of cancer cells. The primary tumor grows such that it is able to 

invade the local environment and intravasate into the vasculature. If the cells are able to 

survive in circulation, they can then extravasate from the vasculature and grow in 

secondary organ sites. Adapted from Steeg et al., “Metastasis is a complex, multistep 

process”, Nature Reviews Cancer, 2003.  
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1.3 Figures continued 

 
Figure 11: Mouse models utilized in pancreatic cancer experiments. C57BL/6 mice with 

KRAS
G12D

-driven spontaneous PDAs were crossed with mice expressing human MUC1 

(MUC1.Tg) or null (MUC1 KO) were used to generate the MUC1 positive KCM or 

MUC1 null KCKO cell lines, respectively.   
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1.3 Figures continued 

 

Figure 12: Oncolytic virotherapy is a cancer therapy that uses viruses to specifically 

infect cancer cells. It cause cell lysis and then newly released infectious virus particles 

can go onto infect neighboring tumor cells and this cycle of infection ultimately leading 

to tumor regression. Picture utilized with the permission of Dr. Andrea Murphy. 
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1.3 Figures continued  

 

 

Figure 13: Model of Breast carcinogenesis. Specifically, there are an accumulation of 

cellular events that result in a dysplastic appearance. Adapted from Cazzaniga et al. 

“Breast Cancer Chemoprevention: Old and New approaches” Journal of Biomedicine and 

Biotechnology 2012.  
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1.3 Figures continued 

  

 

Figure 14: Mechanism of action for cyclooxygenase and indoleamine-2,3 dioxygenase 

pathways. Cyclooxygeanse converts arachadonic acid to prostaglandins. IDO is the 

enzyme responsible for converting Trypthophan to Kynurenine. Figure on the left, 

adapted from Seibert et al “COX-2 Inhibitors-Is there a cause for concern?” Nature 

Medicine 1999. Figure on the right, adapted from Mellor et al. “Ido expression: tolerance 

and tryptophan catabolism” Nature Reviews 2004.   
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1.3 Figured continued  

 

 

Figure 15: Signaling pathways activated by the EP receptors for PGE2. Induction of 

COX-2 and its product, PGE2 results in tumor promotion, specifically affecting 

proliferation, survival, angiogenesis, and invasion. PGE2 binds to and activates for G-

protein coupled E receptors. Adapted from Rundhaug et al. “The role of the EP receptors 

for prostaglandin E2 in skin and skin cancer” Cancer Metastasis Review 2011.  

 

 

 

 

 

 



  

CHAPTER 2: PANCREATIC DUCTAL ADENOCARCINOMA (PDA) MICE 

LACKING MUCIN 1 HAVE A PROFOUND DEFECT IN TUMOR GROWTH AND 

METASTASIS 

 

 

2.1 Abstract 

MUC1 is over expressed and aberrantly glycosylated in >60% of pancreatic 

ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be 

fully elucidated due to a dearth of appropriate models. In the present study, we have 

generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma 

(KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show 

that KCKO mice have significantly slower tumor progression and rates of secondary 

metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have 

significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, 

mice with KCKO tumors had a significant survival benefit compared to mice with KCM 

tumors. KCKO cells have reduced proliferation and invasion and failed to respond to 

epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix 

metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M 

phase of the cell cycle compared to the KCM cells. Proteomics and western blotting 

analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as 

well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. 

Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the 

KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary 
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for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null 

PDA mouse in order to fully elucidate the oncogenic role of MUC1. 

2.2 Introduction  

Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-

related deaths in the United States [155]. It is one of the most deadly cancers due to its 

aggressive nature and relatively few treatment options. With a 5-year survival rate of only 

5%, it has the poorest prognosis among all cancers. To date, the only potential curative is 

surgical resection, of which only 20% of patients are eligible. Alternative therapies, such 

as radiotherapy and chemotherapy remain largely ineffective. The development and 

evaluation of novel targeted therapeutic agents for improving the outcome of patients are 

of paramount importance. 

Importantly, MUC1 is a membrane-tethered mucin glycoprotein expressed on the 

apical surfaces of normal glandular epithelia but is over expressed and aberrantly 

glycosylated in >60% of human PDA and in 100% of metastatic lesions [156, 157]. In 

human cancers, MUC1 is commonly detected in high grade but not in low-grade 

pancreatic intraepithelial neoplasia (PanIN) [51, 53]. Recently, the contribution of MUC1 

on invasive and metastatic properties of pancreatic cancer cell line has been shown [158]. 

Thus MUC1 may play an important role in the development and progression of PDA [36, 

103, 104]. Over expression of MUC1 in pancreatic cancer has been known for quite some 

time; however its function has not been clearly elucidated mainly due to the lack of an 

appropriate pancreatic cancer model.  

Activating mutations in the KRAS proto-oncogene are found in over 90% of 

invasive pancreatic ductal adenocarcinoma and are thought to represent an initiating 
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event. Recently a transgenic mouse model has been created that expresses physiological 

levels of oncogenic KRAS with a glycine to aspartate substitution at codon 12, in the 

progenitor cells of mouse pancreas [159]. These mice, designated as KC or Cre-LSL-

KRAS
G12D

, develop the full spectrum of pancreatic ductal adenocarcinoma. We have 

further crossed the KC mice to the human MUC1 transgenic (MUC1.Tg) mice which 

express MUC1 in a pattern and level consistent with that in humans (designated KCM) 

[157].  KC mice were also crossed with the Muc1KO mice (designated KCKO), creating a 

Muc1-null PDA model. These mouse models provide us with a unique opportunity to 

fully evaluate the role of MUC1 in pancreatic cancer development.  

This study is the first to utilize a model of pancreatic cancer that is Muc1-null in 

order to fully elucidate the oncogenic role of MUC1. In this study, we show that lack of 

Muc1 significantly decreased proliferation, invasion, and mitotic rates both  and . 

Importantly, treatment with MEK1/2 inhibitor, U0126, completely abrogated the 

enhanced proliferation of the KCM cells. These data, therefore, may have implications in 

the future design of MUC1-targeted therapies for pancreatic cancer. 
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2.3 Materials and Methods 

Spontaneous Mouse Models and Tissue Culture. 

KC mice were generated in our laboratory on the C57BL/6 background by mating 

the P48-Cre with the LSL-KRAS
G12D

 mice [80, 160]. They were further mated to the 

MUC1.Tg mice to generate KCM mice [157, 161] or to the Muc1KO mice [162] to 

generate KCKO mice. Tumors were excised at predetermined time points and weighed. 

Gross metastasis was evaluated in the lung, liver and peritoneum. Tumors were 

dissociated using collagenase IV (Worthington Biochemical) and cell lines generated in 

our laboratory.  Cell lines are designated KCKO for those cells lacking Muc1 and KCM 

for those cells expressing MUC1. Since we have been unable to generate the KC cell 

lines, we have compared KCM with KCKO. The cells
 
were maintained in complete 

DMEM (Invitrogen) supplemented
 
with 10% FBS (HyClone), 1% glutamax (Invitrogen), 

and 1% penicillin/streptomycin.
  

ELISA. 

PGE2 levels in the tumor lysate were determined using a specific ELISA kit for 

PGE2 metabolite (PGE-M) (Cayman Pharmaceuticals). VEGF levels were also 

determined by specific ELISA (RayBiotech).  

3
H-Thymidine Incorporation. 

KCM and KCKO cells were serum-starved for 24hrs and treated for 30 mins with 

rm-PDGF-CC (Peprotech), rm-EGF (Peprotech), and rm-MMP9 (R&D systems) at a 

concentration of 50ng/mL, or MEK1/2 inhibitor at 10µM concentration. Cell 

proliferation was determined by using 
3
H -thymidine incorporation, in which 1μCi of 

3
H-

thymidine was added per well for 24hrs prior to harvesting. Incorporated thymidine was 
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evaluated using the Topcount micro-scintillation counter. All determinations were 

performed in triplicate. 

CFSE Dilution Assay. 

Cells were stained using the CellTrace CFSE Kit (Molecular Probes). CFSE was 

added to the cells at a final concentration of 2µM, incubated for 15min at 37°C, and 

0.5x10
6
 removed for initial positive staining. The remaining cells were plated in 

triplicate. Cells were harvested at predetermined time-points and CFSE dilution was 

determined by flow cytometry (Beckman Coulter). Analysis was conducted using FlowJo 

(Treestar, Ashland, OR).  

Cell Cycle Analysis. 

Cells were harvested, fixed by resuspending in 10ml
 
of 70% ethanol for 30min, 

and washed in ice-cold PBS. The pellets
 
were resuspended in 0.5ml PBS, and 1mL of 

DNA extraction buffer was added. Cells were incubated, washed and resuspended in 

DNA staining solution containing 20µg/ml propidium
 
iodide (Sigma-Aldrich) and 

100µg/ml
 
RNase (Invitrogen). DNA content was determined by flow cytometry and 

analyzed using FlowJo. 

Invasion Assays. 

Cells (serum starved for 24hrs) were treated with rm-PDGF, rm-EGF, or rm-

MMP-9 for 30min, trypsinized, washed, and resuspended in SFM.  Cells were plated over 

transwell inserts (BD Biosciences) pre-coated with growth-factor reduced Matrigel™ 

(BD Biosciences), and permitted to invade towards serum contained in the bottom 

chamber for 48hrs. Percent invasion was determined as described in [163]. 
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Western Blots and Proteomics. 

Tumor lysates were run on SDS-PAGE gels and western blotting carried out as 

previously published [163]. MUC1 CT antibody CT2, was made in Mayo Clinic 

Immunology Core [163]. MUC1 TR antibody was provided by Dr. Joyce Taylor-

Papadimitriou. ERK1/2antibodies: phospho-p44/42 and p44/42 were purchased from Cell 

Signaling Technologies. All other antibodies (p53, CDKN1A, c-myc, TGFβ-R1, MEK1, 

Cyclin B1, Wee 1, Cdc2-p34, Cdc-25c, and β-actin) were purchased from Santa Cruz 

Biotechnologies and used according to manufacturer's
 
recommendations. Proteomics 

analysis was determined as previously described [163].  

 Tumor Growth. 

Ten week and nine month old mice were injected with 1x10
6 

KCM or KCKO 

cells (in
 
50µl of PBS combined with 50µL of growth factor-reduced Matrigel™) into the 

flank of the mice (n=8). Mice were palpated starting at 6 days post tumor injection. 

Tumor weight was calculated according to the formula: grams=(length in centimeters x 

(width)
2
)/2 [163]. Upon sacrifice, the tumors were weighed, prepared for lysates, and 

fixed for immunohistochemistry.  In accordance with IACUC, for survival studies, 

tumors were allowed to grow until reaching 10% of the body weight.  

Hematoxylin/Eosin (H&E) Staining. 

Tissues were fixed in 10% neutral-buffered formalin. Paraffin-embedded blocks 

were prepared by the Histology Core at The Mayo Clinic and 4-micron thick sections 

were cut for staining. Slides were H&E stained, and examined under light microscopy. 

Images were taken at 100X and 200X-magnification.  
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Statistical Analysis. 

Data were analyzed using GraphPad software. Results are expressed as 

mean±SEM and are representative of greater
 
than or equal to three separate experiments. 

Comparison of groups was performed using one-way or two-way ANOVA followed by 

the post-test for multiple comparisons (*p<0.05, **p<0.01, ***p<0.001). Survival was 

assessed using a Kaplan Meier estimator.  
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2.4 Results 

In the Absence of Muc1, Pancreatic Tumor Burden and Secondary Metastasis are 

Decreased. 

Mice were sacrificed at 6, 16, 26, and 40 weeks of age. The pancreas weight was 

used as the indicator of tumor weight. At 6wks of age, there was no statistical difference 

between KCKO and either KC or KCM. However, by 16wks of age and thereafter, KC 

and KCM mice had significantly higher tumor burden than KCKO mice (Figure 16A). It 

must be noted that the KCM mice had significantly higher tumor burden than KC mice 

confirming our previous results that over expression of MUC1 augments pancreatic 

tumor progression [157]. Most importantly, pancreas weight did not increase from 6 to 

40wks of age in mice lacking Muc1 suggestive of a stable disease (Figure 16A).  

At 36-40wks of age, mice were euthanized and lungs, liver and peritoneum were 

evaluated for macroscopic gross lesions. Interestingly, 61% of KCM mice developed 

lung metastasis, 33% developed liver metastasis and 23% developed peritoneal 

metastasis (n=13). This is in stark contrast to the KCKO mice which had 10% of mice 

develop metastasis in any of the three organs (n=10). Thirty percent of the KC mice 

(n=13) had developed lung metastasis, 20% had developed liver metastasis, and 10% had 

developed peritoneal metastasis. As an example, a representative H&E image of a lung 

showing clear metastatic lesion is provided in Figure 16B. 

We have previously shown that MUC1-expressing PDA have higher levels of 

VEGF and PGE-M [157], leading to higher angiogenesis and metastasis [164].  

Therefore, we evaluated the circulating levels by specific ELISA. Both VEGF and PGE-

M levels were significantly lower in the KCKO mice compared to KC and KCM mice 

and most notably the levels did not increase with age in the KCKO mice as noted in KC 
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and KCM mice (Figure 16C). PGE2 is an end-product of the cyclooxygenase-2 (COX-2) 

pathway and is known to induce tumor cell proliferation and increase motility [165, 166].  

H&E stained pancreas sections were examined from 6, 24, and 40-week old KC, 

KCM and KCKO mice. Clearly, abnormal duct with low grade PanIN lesions were 

visualized in the KCM pancreas as early as 6-weeks of age (Figure 16D). At this time-

point, the pancreas from KC and KCKO mice looked relatively normal. By 24 and 40-

weeks of age, both KC and KCM pancreas showed PanIN lesions of varying grades with 

KCM pancreas showing signs of higher grade PanIN lesions and adenocarcinoma (Figure 

16D). This data confirms our previously published analysis of the PanIN lesions in KC 

and KCM pancreas as a function of age [157]. Most notably, pancreas from KCKO mice 

did not show high-grade PanIN lesions even at 24 and 40-weeks of age (Figure 16D). The 

data from these spontaneous models clearly point toward the critical role of MUC1 in the 

progression of pancreatic cancer. Further, pancreas from KCM and KC mice were highly 

proliferative compared to KCKO pancreas by Proliferating Cell Nuclear Antigen (PCNA) 

staining (data not shown). 

Muc1-null Tumor Cells Have Significantly Lower Tumorigenic Capacity Compared to 

Their MUC1-expressing Counterpart. 

To further decipher the underlying mechanism of enhanced proliferation and 

progression in MUC1-expresssing tumors, we generated several cell lines from the KCM 

and KCKO tumors and first studied their tumor forming ability  in both young and old 

mice. In the 8-10 week old mice (n = 4), both cell lines formed palpable tumors by 6d 

post-injection. By 12d post tumor challenge, KCM tumors grew faster (p<0.001), and 

continued the same trend until sacrifice at 21d post injection (Figure 17A). By 21d, the 
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tumor burden in mice injected with KCM (n=5), as determined by caliper measurement 

had grown to an average of 1017mg whereas; those mice injected with KCKO had a 

tumor burden of 461mg (n=6). During necropsy, tumors were excised and weighed. 

KCM tumors weighed on an average of 700mg whereas KCKO remained at 500mg 

(Figure 17A). 

Because the median age of pancreatic cancer patients is >65 years of age, we 

assessed whether this observation would hold true in aged mice. In nine month old mice 

(Figure 17B, n=5 mice per group), tumor burden was again significantly higher with 

KCM versus KCKO cells starting at 12d post-injection (p<0.05) and continued until 21d 

reaching a tumor weight of 1300mg for KCM versus 300mg for KCKO (Figure 17B). It 

must be noted that in the aged mice, the KCM cells grew more aggressively than in the 

younger mice and reached a much higher tumor burden at 21d (compare Figure 17A and 

B), but that KCKO growth remained consistent.  

Survival is Significantly Higher in Mice Injected with Pancreatic Cancer Cells Lacking 

MUC1. 

In order to assess survival, mice were injected with KCM and KCKO cells and 

tumors were allowed to grow until reaching 10% of the body weight or until ulcerations 

developed, whichever came first (Figure 17C). Survival was significantly increased in 

mice injected with KCKO compared to KCM cells (p<0.001). By 25d post tumor 

challenge, none of the mice injected with KCM cells survived (n=7), while 100% of mice 

injected with KCKO cells (n=6) survived at that age (Figure 17C). Mice injected with 

KCKO survived until ~40d post tumor injection. Tumor weight, derived from caliper 

measurements, shows a steady growth rate of tumors injected with KCM, while the 
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KCKO tumor growth remains stunted and does not exceed ~500mgs (Figure 17D). These 

data recapitulate the data from the spontaneous model of PDA in Figure 16.  

Cell Division and Cell Cycle Progression is Significantly Altered in Pancreatic Cancer 

Cells Lacking Muc1/MUC1.  

To further analyze the effects of MUC1 on the  kinetics of cellular division, 

KCKO and KCM were subjected to the CFSE dye dilution assay, which fluorescently 

labels cells and is depleted as they divide. Initial staining of KCM cells with CFSE 

resulted in a MFI of 2499. By the end of 48hrs, CFSE had already been diluted to a MFI 

of 96. Initial staining of KCKO cells resulted in a MFI of 1500. At the end of 48hrs, 

CFSE had been diluted to a MFI of 73 (Figure 18A). Although the KCM cells initially 

stained with greater intensity than did the KCKO cells, the CFSE was diluted much faster 

as can be seen by the slope of the line displaying MFI dilution over time (Figure 18B).  

Since we observed that MUC1 affects cell division, we next investigated how the 

cell cycle was affected by MUC1 expression. Cells were stained with Propidium iodide 

(PI) and the DNA content was determined by flow cytometry. KCM cells progress 

through the cell cycle at a steady rate. At 12hrs post plating, 26.9% of KCM cells were in 

the G0/G1, 34.3% in S, and 32.5% in G2/M phase of the cell cycle (Figure 18C). In 

contrast, KCKO cells that lack Muc1 had a significantly different distribution at both 

12hr and 24hr time points (p<0.001, Figure 18B bottom panel). At 12hrs post plating, 

KCKO cells had 31.1% of cells in G0/G1, 52.9% in S, and 13.3% of cells in G2/M phase. 

This distribution remained relatively similar, in both cell types by 24hrs post plating 

(Figure 18C). KCKO cells clearly enter and accumulate in the S-phase where the DNA 
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doubling occurs more rapidly than KCM cells but thereafter, KCKO cells do not progress 

to the G2 and mitotic phase as efficiently as KCM cells.  

KCKO cells fail to proliferate or invade in response to EGF, PDGF, and MMP9. 

To assess if KCKO cells would respond to growth factors known to induce cell 

division, proliferation and invasion of cancer cells, KCKO and KCM cells were subjected 

to a proliferation assay, as determined by 
3
H-thymidine uptake. First, KCM cells 

displayed a significantly higher rate of proliferation compared to KCKO cells.  

Stimulation with EGF, PDGF, or MMP9, did not induce proliferation in KCKO cells 

(Figure 19 A-C). With regards to invasion, the basal level invasion index of the KCKO 

cells was found to be significantly lower than KCM cells (Figure 19D, p<0.001). More 

importantly, KCKO cells did not respond to any of the exogenous factors to increase its 

invasion index (Figure 19D). It should be noted that neither did the KCM cells, however 

that may be because of the high basal invasion index. Taken together the data suggests a 

failure of the KCKO cells to respond to exogenous EGF, PDGF or metalloproteinase. 

Complete loss of cdc-25c expression and decreased phosphorylation of MAPK in KCKO 

cells may account for lower mitosis, proliferation, and invasion. 

Once it was confirmed that cell cycle progression and proliferation was altered in 

cells lacking MUC1, we began to investigate what specific proteins and markers were 

altered to cause such drastic differences. KCKO and KCM cells were subjected to both 

western blot analysis and proteomics. We probed for those proteins typically involved in 

cell cycle regulation pathways. Most notable was the complete loss of the tumor 

suppressor proteins, p53 and downstream p21, in the KCM cells but not in the KCKO 

cells. Associated with this was the complete loss of the M phase inducer phosphatase, 
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cdc-25c, in the KCKO cells (Figure 20A). Furthermore, there was a significant down-

regulation of levels of phosphorylated MAPK p44/42 in the KCKO cells compared the 

KCM cells (Figure 20A). Cdc-25c is a tyrosine phosphatase that directs 

dephosphorylation of cyclin B-bound CDC2 and triggers entry into mitosis. Thus, it 

becomes plausible to speculate that KCKO cells do not enter the mitotic phase efficiently 

because of the absence of Cdc-25c expression.  Cdc-25c is also known to suppress p53-

induced growth arrest which possibly explains why cells lacking Cdc25-c and lacking 

Muc1 do not lose p53 and p21 expression, do not phosphorylate MAPK and therefore do 

not divide, proliferate and invade effectively. 

MUC1 Increases Expression of Tubulin α-2 Chain and Nestin Proteins. 

These alterations in cell cycle regulation were coupled with differential 

transcription of genes associated with proliferation and metastasis. Proteomics analyses 

of a total of 2874 cancer progression-associated proteins showed down regulation of 757 

proteins in KCKO versus KCM cells. Genes with a two-fold decrease and below were 

considered to be significant and are shown in Figure 20B and C. It is extremely relevant 

that the most pronounced down regulation was seen in Tubulin α-2 chain and Nestin in 

KCKO cells, and therefore these proteins were highly up regulated in KCM cells (Figure 

20B). Tubulin α-2 is a major constituent of microtubules and is required for mitotic 

spindle organization, mitosis, growth and cell migration. Similarly, Nestin is a marker of 

proliferating and migrating cells and highly expressed in mitotically active cells.  

Treatment with MEK1/2 Inhibitor, U0126, Completely Abrogates the Enhanced 

Proliferation in KCM cells. 
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Since MEK1 phosphorylation is a critical signaling event for proliferation of 

KCM cells, we treated KCKO and KCM cells with U0126. As a positive control, cells 

were treated with 20% FBS. As was expected, the basal level of activated MEK1 was 

higher in KCM cells than in KCKO cells (Figure 21A). Similar to the cell lines, lysates 

from primary tumors of 26wk old KCKO mice showed reduced phosphorylation of 

MAPK versus tumors from the KCM mice (Figure 21A). This confirmed that activated 

MEK is a function of MUC1 expression and is critical in the progression of pancreatic 

cancer. When cell lines were treated with U0126, activation of MEK1/2 was completely 

abolished (Figure 21A). To assess if MEK1/2 is responsible for MUC1-enhanced cellular 

division and proliferation, KCM and KCKO cells treated with U0126 were subjected to 

CFSE dilution and 
3
H-Thymidine uptake assays. CFSE dilution assay results are 

displayed as change in mean fluorescence intensity (MFI) at 6, 12, and 24hrs (Figure 

21B). Within 6hrs, KCM cells have already undergone rapid cell division as compared to 

KCKO cells (Figure 21B, p<0.001) and treatment with the inhibitor did not significantly 

reduce cell division in either cell lines. However, at 12hrs and 24hrs post treatment, cell 

division was significantly lower in KCM cells with treatment (p<0.001 as compared to 

basal cell division) but there was no significant change in the KCKO cells with U0126 

treatment (Figure 21B). Both sets of cells supplemented with 20% FBS have significantly 

increased cell division albeit KCM always showed significantly rapid cell division 

compared to KCKO cells (p<0.001, Figure 21B). It is noteworthy that addition of the 

MEK1/2 inhibitor reduced cell division of the KCM cells to the level of KCKO cells at 

all time points.  
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Similar results were obtained using the 
3
H-Thymidine uptake assay. At 6 and 

12hrs post treatment with U0126, proliferation of KCM cells was significantly decreased 

from its basal level proliferation (Figure 21C, p <0.001) and reached the level of KCKO 

cells. At 24hrs after treatment, there was no statistical significance between KCKO 

treated with U0126 and KCM treated with U0126. KCKO on the other hand did not 

respond to the inhibitor such that the basal proliferation and inhibitor treated proliferation 

remained similar suggesting that these cells do not require MEK1 activation. As 

expected, KCM cells were significantly more proliferative than KCKO cells (p<0.001) at 

all time points.  
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2.5 Discussion 

MUC1 is aberrantly over expressed in pancreatic cancer [104]. Over expression of 

MUC1 is detectable during the early stages of pancreatic cancer development and is 

further increased in invasive carcinoma in humans and mice [51, 157]. However, it is not 

known if pancreatic cancer cells are dependent on MUC1 for their growth and survival. 

Using appropriate mouse models, we show unequivocally for the first time that 

pancreatic cancer cells depend on MUC1 to grow and survive, by directly suppressing 

p53 and its major transcriptional target p21Cip (Figure 20) while activating MAPK, cdc-

25-c, tubulin-α-2, and Nestin (Figure 20). This in turn stimulates proliferation and mitosis 

(Figure 18 and 19). Further, for survival, MUC1 expression causes the up-regulation of 

several multidrug resistance proteins and pro-survival factors that protect them from 

undergoing apoptosis (Figure 20). This is in stark contrast to what occurs in Muc1-null 

cells, in which the oncogenic signaling is shut down even though the KRas oncogene 

remains active. Muc1 deficiency leads to the failure to form tumors (Figure 17) and 

decreased proliferation and invasion (Figures 16-19).  

The first evidence that MUC1 is required for pancreatic tumor growth came from 

the observation that the pancreas tumor weight remained unchanged between 6 and 

40wks of age in Muc1-null mice, whereas, the tumor weight increased significantly in 

wild type mice (Figure 16A). This lack of tumor growth in the Muc1-null mice was 

further substantiated when cell lines generated from tumors in these mice resulted in 

stable disease when injected (Figure 17A-D) and had low proliferative index even when 

supplemented with exogenous growth factors known to enhance tumor cell proliferation 

(Figure 18 A-C). Further, MUC1 was shown to regulate cell cycle, as Muc1 deficiency 

lead to fewer cells entering the (G2M) phase of the cell cycle (Figure 19B). In addition, 
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MUC1 drove Cdc-25c expression, a tyrosine phosphatase that triggers entry into mitosis. 

Since activated ERK1/2 is known to interact with Cdc-25c during interphase and 

phosphorylate Cdc-25c during mitosis [167], increased levels of ERK activation may be 

partially responsible for the up-regulation of cdc-25c and thereby enhanced mitosis and 

entry into the G2M phase of the cell cycle. To that effect, treatment with U0126, reduced 

proliferation of MUC1-expression cells to that of Muc1-null cells (Figure 21A-B). 

MUC1 regulation of cell cycle checkpoints, proliferation, and invasion could also 

be attributed to strikingly higher levels of Tubulin α-2 chain and Nestin proteins (Figure 

20B-C). Nestin, a marker for proliferating and invading cells, is differentially expressed 

during the cell cycle and promotes cell proliferation [168, 169]. Nestin is also known to 

interact with Cyclin-dependent kinase 5 (CDK5), a kinase which phosphorylates MEK1. 

Thus, we hypothesize that MUC1 regulation of Nestin may activate CDK5 and thereby 

enhance phosphorylation of MEK1. Interestingly, inhibition of the ERK pathway has 

been shown to suppress the expression of nestin [168], once again, making the 

MAPK/ERK pathway an especially attractive target. Tubulin α-2 is a major constituent of 

microtubules and is required for mitotic spindle organization, mitosis, growth, and cell 

migration, thus emphasizing another important role of MUC1 in cell division. Currently, 

small molecule inhibitors of tubulin are clinically used as anti-mitotic drugs [170]. 

Importantly, these anti-mitotic drugs have shown efficacy against multidrug-resistant 

tumors.  

We postulate that the strong oncogenic signaling motifs reside in the cytoplasmic 

tail of MUC1 (MUC1 CT). MUC1 CT is a trans-membrane receptor that is known to 

function as an oncoprotein [46, 171, 172]. The tyrosines in MUC1 CT are essential for 
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the oncogenic signal to occur in pancreatic cancer cells [163] and contains a YTNP site 

that, when phosphorylated, interacts with the proteins of the MAPK pathway. Our data 

and the above findings enable us to postulate that MUC1 contributes to pancreatic cancer 

cell growth and survival by promoting activation of the MAPK pathway, as 

pharmaceutically inhibiting this pathways inhibited proliferation in MUC1-expressing 

cells. 

Finally, we have previously shown that treatment with a MUC1-based vaccine in 

combination with celecoxib was extremely effective in halting tumor progression in the 

KCM mice [161]. Further, we have recently shown that the tyrosines in MUC1 CT was 

essential for epithelial to mesenchymal transition and invasion [173]. Thus, targeting 

MUC1 CT may be an attractive approach, especially since the activation of MAPK 

pathway in pancreatic cancer cells may occur in part via MUC1 CT phosphorylation and 

interaction with β-catenin [173].  
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2.6 Figures 

 

Figure 16: KCKO mice have lower tumor burden, metastasis, and levels of VEGF and 

PGE2 with higher survival compared to KC and KCM mice. A. Pancreas weight and 

survival of KCKO, KC, and KCM mice. (pancreas weight: **p<0.01;***p<0.001 

compared to KCKO; survival: *p<0.01 compared to KCM and KC). B. Circulating levels 

of PGE2M and VEGF in C57Bl/6, KCKO, KC, and KCM mice (**p<0.01;***p<0.001 

compared to KCKO). C. Representative IHC images of pancreas from KCKO, KC, and 

KCM mice as a function of age (200X). Representative H&E of lung metastasis (100 and 

200X) 



54 

2.6 Figures continued 

 

Figure 17: Significantly decreased tumor burden and increased survival in syngeneic 

C57/BL6 mice challenged with KCKO versus KCM cells. A. Tumor growth curve and 

tumor wet weight in 8–10wk and nine month old mice. Significantly higher tumor weight 

in mice injected with KCM versus KCKO cells (*p<0.05, ***p<0.001). B. Tumor growth 

curve and tumor wet weight in 9-month old mice. Significantly higher tumor weight in 

mice injected with KCM versus KCKO cells (**p<0.01, ***p<0.001). C. Survival curve 

of 8–10wk old mice challenged with KCKO and KCM cells (n=7). Significantly higher 

survival in mice injected with KCKO versus KCM tumors (***p<0.001). D. Tumor 

growth curve of KCM versus KCKO cells of mice in the survival study (***p<0.001). 
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2.6 Figures continued 

 
 

Figure 18: Significantly altered rate of cell division and progression through the cell 

cycle in KCKO versus KCM cells. A. Histogram representing CFSE staining in KCM 

and KCKO cells by flow cytometry. At time zero, KCM cells had MFI of 2499, by 48hrs, 

CFSE had been diluted to an MFI of 96. Whereas, in KCKO cells, the initial MFI was 

1500, and by 48hrs, CFSE had been diluted to MFI of 73. B. Graph representing average 

MFI of CFSE staining in KCM and KCKO cells as a function of time in 3 experiments. 

C. Representative histograms of cell cycle analysis of KCM and KCKO cells by flow 

cytometry at 12 and 24hrs. D. Percentage of KCM and KCKO cells in the G0/G1, S, and 

G2M phase of the cell cycle. Average of 3 experiments is shown 
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2.6 Figures continued  

 
Figure 19: Significantly lower proliferation and invasion index in KCKO versus KCM 

cells. A – C. Proliferation as measured by 
3
H-thymidine uptake in response to A. EGF, B. 

PDGF, and C. MMP9. Significantly higher proliferation was observed in KCM versus 

KCKO cells (*p<0.05,***p<0.001). D. Percentage of KCM and KCKO cells that invaded 

in response to PDGF and MMP9 (***p<0.001). 
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2.6 Figures continued  

 
 

Figure 20: Differential protein expression profile in MUC1-expressing vs. Muc1-null 

cells. A. Western blotting analysis of KCM and KCKO cell lysates probed various 

proteins. B. Proteomics data from KCKO and KCM cell lysates (average of n=2 with 

each experiment conducted in triplicate). Data displayed as fold increase in KCM 

compared to KCKO cells. Only proteins that were changed >2-fold are shown. 
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2.6 Figures continued 

 
 

Figure 21: Treatment with MEK1/2 inhibitor, U0126, abrogates proliferation of KCM but 

not KCKO cells. A. Western blotting analysis showing phosphorylation of MAPK was 

completely abrogated with the addition of U0126, the MEK 1/2 inhibitor B and C. 

Proliferation of KCM and KCKO cells 6, 12, and 24hrs post treatment with U0126 using 

the B. CFSE dilution assay and C. 
3
H-thymidine uptake assay. Experiments were 

repeated three times in triplicate.  



  

CHAPTER 3: VESICULAR STOMATITIS VIRUS AS AN ONCOLYTIC AGENT 

AGAINST PANCREATIC DUCTAL ADENOCARCINOMA 

 

 

3.1 Abstract 

Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety 

of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic 

ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic 

cancer. In this study, the oncolytic potential of several VSV variants was analyzed in a 

panel of 13 clinically relevant human PDA cell lines and compared to conditionally 

replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV 

variants showed superior oncolytic abilities compared to other viruses, and some cell 

lines that exhibited resistance to other viruses were successfully killed by VSV. However, 

PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis 

and several cell lines were resistant to all tested viruses. Resistant cells showed low levels 

of very early VSV RNA synthesis, indicating possible defects at initial stages of 

infection.  Unlike permissive PDA cell lines, most of the resistant cell lines were able to 

both produce and respond to interferon, suggesting that intact Type I interferon responses 

contributed to their resistance phenotype. Four cell lines that varied in their 

permissiveness to VSV-∆M51 and CRAd dl1520 were tested in mice, and in vivo results 

closely mimicked those in vitro. While our results demonstrate VSV is a promising 

oncolytic agent against PDA, further studies are needed to better understand the 

molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.  
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3.2 Introduction 

Oncolytic virus (OV) therapy is an anticancer approach that utilizes replication-

competent viruses to specifically kill tumor cells [82, 174, 175]. Such selectivity is 

possible because many tumors are characterized by defective innate immune responses or 

tumor-related abnormalities in regulation of mRNA translation or certain cellular 

signaling pathways, facilitating selective replication of viruses in cancer cells. For 

example, many cancer cells have defective Type I interferon (IFN) responses, which 

provides growth advantages to tumor cells; however, it also makes them more susceptible 

to viral infections [176, 177]. As a result, OV can infect, replicate within and kill tumor 

cells. Successful virus replication in cancer cells leads to the release of newly formed 

infectious virus particles that go on to infect neighboring tumor cells.  

Vesicular stomatitis virus (VSV) is a promising OV and has demonstrated 

preclinical success against a variety of malignancies, including prostate [84-86], breast 

[87-90], melanoma [88, 91], colorectal [92-94], liver [95-97], glioblastoma [98-100] and 

other cancers [101]. As a result, at least two VSV OV have been considered for clinical 

trials by the NIH Recombinant-DNA Advisory Committee [99].  However, VSV 

oncolytic potential has never been studied in any pancreatic cancer models. About 95% 

of pancreatic cancers are pancreatic ductal adenocarcinomas (PDA) which are highly 

invasive with aggressive local growth and rapid metastases to surrounding tissues [178]. 

PDA is considered one of the most lethal abdominal malignancies with annual deaths 

closely matching the annual incidence of the disease [179, 180], resulting in a 5-year 

survival rate of 8-20%. Several cancer therapies proven successful in other tumor types 

have shown little efficacy in treating PDA. Chemotherapy is the primary treatment 

available; however, patients exhibit little improvement or develop chemoresistance [178]. 
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Therefore, development of new treatment strategies for patients suffering from PDA is of 

utmost importance.  

OV therapy with several viruses, including adenoviruses [181-183], herpesviruses 

[184-188] and reoviruses [189-191], has recently shown promise in several PDA tumor 

models. However, there are several advantages of using VSV as an anticancer therapy. 

VSV is the prototypic nonsegmented negative-strand RNA (NNS) virus (order 

Mononegavirales, family Rhabdoviridae), and its basic biology and interactions with host 

immune responses have been extensively studied [102]. This knowledge has led to the 

development of rationally designed VSV vectors for use in vaccines, gene therapy and 

OV therapy [101, 192]. While VSV is very sensitive to IFN-mediated antiviral responses 

(and therefore unable to productively infect healthy cells), it can specifically infect and 

kill tumor cells, majority of which are believed to be defective in Type I IFN production 

and responses [101, 193]. Also, the mechanisms of VSV-mediated killing by apoptosis 

have been established [194]. In addition to tumor specificity, VSV has several important 

advantages as an OV: (i) replication occurs in the cytoplasm of host cells with no risk of 

host cell transformation, (ii) cellular uptake in many mammalian cell types occurs rapidly 

and there is no cell cycle dependency, (iii) the genome is easily manipulated with the 

possibility for strong and adjustable levels of foreign gene expression to enhance 

oncolysis and specificity, and (iv) there is no preexisting immunity against VSV in 

humans [101]. While VSV is not considered a significant human pathogen, it can cause 

neurotoxicity in mice, nonhuman primates and even humans [195]. However, several 

VSV mutants have been generated which are not neurotropic but retain their oncolytic 
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activity [98, 196, 197]. In this study, we focused on two such VSV mutants, VSV-∆M51-

GFP and VSV-p1-GFP [98].  

 In our study, the oncolytic potential of VSV variants was analyzed in a panel of 

13 clinically relevant human PDA cell lines and compared to conditionally replicative 

adenoviruses (CRAds), Sendai virus (SeV) and respiratory syncytial virus (RSV). VSV 

showed superior oncolytic abilities compared to all other viruses tested, and was effective 

in killing the majority of tested PDA cell lines. However, we identified some PDA cell 

lines that showed general resistance to oncolysis by all tested viruses. These results were 

confirmed for several PDA cell lines in vivo in nude mice. We also conducted initial 

analysis of PDA resistance to virus-induced cell death. Our in vitro and in vivo results 

demonstrate that VSV has good potential as an OV against PDA, while further studies are 

needed to better understand the molecular mechanisms of resistance of some PDA cell 

lines to virotherapy. 
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3.3 Materials and Methods 

Cell lines. 

Human PDA cell lines used in this study: CFPAC-1 (ATCC CRL-1918), Hs766T 

(ATCC HTB-134), Capan-2 (ATCC HTB-80), T3M4 [198], AsPC-1 (ATCC CRL-1682), 

HPAF-II (ATCC CRL-1997), Suit2 [199], HPAC (ATCC CRL-2119), BxPC-3 (ATCC 

CRL-1687), MIA PaCa2 (ATCC CRL-1420), SU.86.86 (ATCC CRL-1837), Capan-1 

(ATCC HTB-79), and Panc-1 (ATCC CRL-1469). In addition, the immortal human 

pancreatic duct epithelial cell line (HPDE) [200] was used in this study and maintained in 

Keratinocyte-SFM (Gibco). This cell line, which was generated by introduction of the E6 

and E7 genes of human papillomavirus 16 into normal adult pancreas epithelia, retains a 

genotype similar to pancreatic duct epithelia and is non-tumorigenic in nude mice [200]. 

The mouse breast cancer cell line 4T1 (ATCC CRL-2539), the baby hamster kidney 

fibroblasts BHK-21 (ATCC CCL-10), the human cervix adenocarcinoma cell line HeLa 

(ATCC CCL-2), the African green monkey kidney cells Vero (ATCC CCL-81) and the 

human epidermoid cancer cells Hep-2 (ATCC CCL-23) were used to grow viruses and/or 

as controls for viral replication. CFPAC-1, Suit2, HPAC, MIA PaCa2, Capan-1, Panc-1, 

4T1, and Vero cells were all maintained in Dulbecco’s modified Eagle’s medium 

(DMEM, Cellgro). Capan-2, T3M4, AsPC-1, BxPC-3 and SU.86.86 cells were 

maintained in Roswell Park Institute medium-1640 (RPMI, Hyclone). HPAF-II, Hs766T, 

BHK-21, A549 and HeLa cells were maintained in modified Eagle’s medium (MEM, 

Cellgro). All cell lines were supplemented with 9% fetal bovine serum (Gibco). For all 

experiments, PDA cell lines were passaged no more than 10 times. 
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Viruses. 

 The following viruses were used in this study: recombinant wild-type (wt) VSV 

(Indiana serotype) [201]; VSV-p1-GFP; VSV-∆M51-GFP (p5); CRAd-dl1520 (“ONYX-

015”); CRAd-hTERT (Adv-TERTp-E1A); SeV-GFP; and RSV-GFP. VSV-p1-GFP has 

the green fluorescent protein (GFP) open reading frame (ORF) inserted at position one of 

the viral genome [98]. VSV-∆M51-GFP has a deletion at amino acid position 51 of the 

matrix (M) protein, as well as the GFP ORF inserted in position 5 of the viral genome 

[98]. Both attenuated VSV recombinants have been shown to retain their oncolytic 

activity while lacking neurotoxicity in vivo [98, 197]. CRAd-dl1520 is attenuated by 

deletion of a large part of the coding sequence for the E1b55k viral gene product and 

selectively replicates in and kills cancer cells [202, 203]. CRAd-hTERT is a human 

telomerase reverse transcriptase (hTERT)-promoter-dependent CRAd, which selectively 

replicates in and kill cells with active hTERT (85–90% of tumor cells) [204]. SeV-GFP 

(SeV-GFP-Fmut) has the GFP ORF at position one of the viral genome and a mutation in 

the cleavage site of the fusion (F) protein allowing for F activation and production of 

infectious virus particles in cells without acetylated trypsin in the medium through a 

ubiquitous furin-like protease  [205]. RSV-GFP has the GFP ORF at position one of the 

viral genome [206]. All VSV variants were grown in BHK-21 cells, SeV-GFP was grown 

in Vero, CRAds were grown in HeLa, and RSV-GFP was grown in Hep-2 cells. For 

animal experiments, VSV-∆M51-GFP was dialyzed (Slide-A-Lyzer, Pierce) in 2 L 

chilled dialysis buffer [25 mM Tris pH 7.4, 140 mM NaCl, 5 mM KCl, 0.6 mM 

Na2HPO4, 0.5 mM MgCl2, 0.9 mM CaCl2, and 5% (w/v) sucrose] for 2 hour (h) at 4°C 

and then 4 h at 4°C in fresh dialysis buffer. CRAd-dl1520 was dialyzed in 10 mM Tris 
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pH 8, 135 mM NaCl, 1 mM MgCl2 and 50% (v/v) glycerol three times for 1 h each at 

4°C. Dialyzed viruses were tested for infectivity on A549 cells. 

Cell Viability Assay. 

 Cells were seeded in 96-well plates so that they reached 80% confluency at 24 h, 

and then virus-infected at a multiplicity of infection (MOI) of 1 or 0.01 CIU (cell 

infectious units) per cell (based on VSV titration on 4T1 cells) or mock infected in 

MegaVir HyQSFM4 serum-free media (SFM, Hyclone). One h post infection (p.i.) virus 

was aspirated and cells were incubated in growth media containing 5% FBS. Cell 

viability was analyzed at 5 days (d) p.i. by an MTT cell viability assay (Biotium). To 

determine the kinetics of virus-associated cytopathogenicity, cells were seeded in 96-well 

plates so that they reached 50% confluency at 24 h. Cells were then mock infected or 

infected with VSV-∆M51-GFP at low (0.001 CIU/cell), intermediate (0.1 CIU/cell), or 

high MOI (1 CIU/cell).  At 1 h p.i., virus was aspirated and cells were overlaid with 

growth media containing 5% FBS.  An MTT cell viability assay was performed at 1, 16, 

24, 48, and 72 h p.i. 

Permissiveness of Cells to Virus Infection.  

Cells were incubated with serial dilutions of VSV-wt, VSV-GFP(p1), VSV-

∆M51-GFP, SeV-GFP, CRAd-dl1520, or CRAd-hTERT in SFM for 1 h. At 1 h p.i., virus 

was aspirated and growth media containing 5% FBS was added to each well. The 

infectious foci of VSV-∆M51-GFP, VSV-GFP(p1) and SeV-GFP were analyzed by 

fluorescent microscopy at 24 and 48 h p.i. respectively. The infectious foci of CRAd-

dl1520 and CRAd-hTERT were analyzed by immunocytochemistry (ICC) at 5 d p.i. 

Briefly, cells were washed with phosphate buffered saline (PBS) and fixed in 3% 
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paraformaldehyde (PFA, Sigma) for 10 min followed by permeabilization for 2 min on 

ice with a solution containing 20 mM HEPES (pH 7.5), 300 mM sucrose, 50 mM NaCl, 3 

mM MgCl2, and 0.5% Triton X-100. Cells were then blocked with 5% bovine serum 

albumin (BSA, Sigma) in PBS for 20 min and incubated with anti-adenovirus hexon 

primary antibodies (1:600, US Biologicals, Cat # A0880-14) for 1.5 h. Cells were 

washed, incubated with peroxidase conjugated goat anti-mouse IgG antibodies (1:300, 

Jackson ImmunoResearch) for 1.5 h, and detected by addition of the peroxidase substrate 

3,3’-diaminobenzidine tetrahydrochloride hydrate (DAB, Amresco). The infectious foci 

of VSV-wt were also analyzed by ICC as described above but using 1:100 rabbit 

polyclonal anti-VSV antibodies (raised against VSV virions) and anti-rabbit secondary 

antibodies. Cells were infected with serial dilutions of VSV-wt in triplicate and infectious 

foci were analyzed by ICC at 48 h p.i.  

One-step Virus Growth Kinetics. 

Selected PDA cells were seeded in 96-well plates to reach confluency at 24 h. 

They were infected in duplicate with VSV-wt, VSV-∆M51-GFP, or VSV-p1-GFP at 

MOI 10 CIU/cell based on the reference cell line 4T1. At 1 h p.i. virus was aspirated, 

cells were washed twice with PBS (to prevent carryover of virions) and overlaid with 

growth media containing 5% FBS. At 1, 24, 50 and 72 h p.i. supernatant was collected 

from wells and flash frozen at -80°C. Virus titers were later determined by plaque assay 

analysis. Briefly, BHK-21 cells were incubated with serial dilutions of the samples for 1 

h. Virus was aspirated and cells were overlaid with a SFM / 2% BactoAgar mixture to 

limit virus spread. Infectious foci were counted by light and fluorescence microscopy at 

16 h p.i. 
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Type I Interferon Sensitivity and Production.  

Cells were seeded in 96-well plates so that they reached 80% confluency at 24 h. 

For Type I interferon sensitivity, cells were either treated with 5000 U/ml interferon 

alpha (IFN-α, Calbiochem, Cat # 407294) in SFM or with SFM only. Twenty-four h post 

treatment, cells were infected with serial dilutions of VSV-∆M51-GFP, and infectious 

foci were analyzed 16 h p.i. by fluorescent microscopy. Treatments and infections were 

performed in duplicate. For Type I interferon production, cells were infected with VSV-

∆M51-GFP at MOI 10 CIU/cell or mock-treated with SFM only. One h p.i. virus was 

aspirated and cells were incubated in SFM. Eighteen h p.i. supernatant was harvested and 

analyzed by ELISA for production of human IFN-β (PBL, Cat # 41410-1) or human IFN-

α (multi-subtype, PBL, Cat # 41105-1) per manufacturer’s instructions (PBL 

InterferonSource). Infections were performed in triplicate. 

Western Blot.  

Cellular lysates were prepared by mock infecting cells or infecting them with 

VSV-∆M51-GFP at MOI 1 or 10 CIU/cell.  One h p.i. virus was aspirated, cells were 

extensively washed and incubated in growth media containing 5% FBS. Cells were 

harvested at 16 h p.i. and lysed in lysis buffer containing 1% Triton-X-100, 20mM 

Hepes, 0.15 M NaCl, 2 mM EDTA and supplemented with c-inhibitor (2X, Roche).  

Total protein concentration was determined by Bradford assay.  Three µg (for VSV 

detection) or 30 µg (for GFP detection) of total protein was separated by electrophoresis 

on 10% or 12% SDS-PAGE gels respectively, and electroblotted to polyvinylidene 

difluoride (PVDF) membranes.  Membranes were blocked using 5% non-fat powdered 
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milk in TBS-T [0.5 M NaCl, 20 mM Tris (pH 7.5), 0.1%Tween20], which was also used 

for antibody dilutions.  Membranes were incubated with 1:10000 rabbit polyclonal anti-

VSV antibodies (raised against VSV virions) or 1:3000 mouse anti-GFP clone 9F9.F9 

(Rockland).  Detection was with 1:5000 goat anti-rabbit or 1:5000 goat anti-mouse 

horseradish peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch) 

using the Enhanced Chemiluminescence Plus (ECL+) protein detection system (GE 

Healthcare). Membranes were reprobed with mouse anti-actin clone C4 [207] to verify 

sample loading.  Image capture and densitometry analysis were performed using 

VisionWorksLS v6.8 software (UVP).   

Northern Blot.  

The pVSVFL(+)g.1 plasmid, which encodes a complete cDNA copy of the VSV 

(Indiana strain) antigenome [201], was used as a template for addition of a SP6-promotor 

to the 3’ end of a 279 bp fragment of N by PCR using the following primers: 5’-

ATCCAGTGGAATACCCGGCAGATT-3’ and 5’-

ATTTAGGTGACACTATAGAAGTGCTCGTCAGATTCAAGCTCAGGCTG-3’. A 

probe for detection of N mRNA and VSV anti-genomic RNA was synthesized from the 

PCR product by in vitro transcription in the presence of 
32

P-UTP using the MAXIscript 

T7 kit (Ambion).  Cells were mock treated or treated with 100 µg/ml cycloheximide for 

30 min prior to mock infection or infection with VSV-∆M51-GFP at MOI 10 and 

continuing treatment with cycloheximide.  At 4 h p.i. cells were collected and total RNA 

extracted using the Quick-RNA MiniPrep kit (Zymo Research).  For each sample, 1µg of 

RNA was separated on a 1.2% agarose-formaldehyde gel containing ethidium bromide 

for confirmation of RNA loading by visualization of rRNA.  The RNA was transferred to 
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a nylon membrane and incubated with probe overnight at 58°C.  Bands were detected 

using a phosphoimager and quantitated using Image Quant 5.2 (Molecular Dynamics). 

Animal Experiments. 

Mice were handled and maintained under veterinary supervision in accordance 

with institutional guidelines and under a University of North Carolina at Charlotte 

Animal Care and Use Committee (IACUC) approved protocol.  6-8 week old, male, 

athymic nude mice (Hsd:Athymic Nude-Foxn1
nu

,  Harlan Laboratories, Inc., Fredrick 

MD) were subcutaneously injected with one of 4 human PDA cell lines. All cell lines 

used in animal experiments were tested negative for an extended panel of pathogens 

(MIA PaCa2, SU.86.86, and Panc-1 were tested by Charles River Laboratories and 

HPAF-II was tested by Bioreliance). Based on preceding titration experiments (data not 

shown), mice were injected with: 5x10
6 

 Mia PaCa2, 5x10
6 

Panc-1,  3x10
6 

HPAF-II, 

and  3x10
6  

SU.86.86 cells  (in
 
 100 µl of PBS) into the right flank (n=18 per group). Two 

additional untreated age-matched mice were used in this experiment to compare body 

weights with the treated experimental mice. Mice were palpated starting at 9 d post tumor 

injection. Tumors were established by day 13 and mice were randomly divided into 3 

groups (n=6 per group). One group served as a control and received one intratumoral (IT) 

administration of 50 μl PBS only. The other two groups were administered once with 

VSV-∆M51-GFP or CRAd-dl1520 IT with a dose of 5x10
7
 CIU in 50 μl PBS. Dose was 

determined based on CIU established on A549 cells for both viruses. Tumor size was 

monitored by caliper measurements every other day, and body weight was measured once 

weekly. Tumor weight was calculated according to the formula: grams = [(length in cm) 

x (width in cm)
2
]/2. Upon sacrifice, tumor and brain tissue were harvested and tested for 
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the presence of VSV-∆M51-GFP. Data were analyzed using GraphPad software and are 

expressed as mean ± standard deviation.  
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3.4 Results 

Susceptibility of PDA Cell Lines to Viral Oncolysis.  

The susceptibility of human PDA cells to virus-mediated oncolysis was tested in a 

panel of 13 clinically relevant PDA cell lines derived from primary PDA tumors or PDA 

metastases to the liver and lymph nodes. In addition to PDA cell line, the immortal 

human pancreatic duct epithelial cell line (HPDE), which retains a genotype similar to 

pancreatic duct epithelia and is non-tumorigenic in nude mice [200], was employed as a 

“benign” control cell line to determine virus specificity towards PDA cells. In addition to 

VSV-wt, we tested two additional VSV variants: VSV-∆M51-GFP and VSV-p1-GFP 

(Figure 22), with a particular focus was on VSV-∆M51-GFP [98]. Several previous 

studies showed that VSV mutants with the deletion of methionine at position 51 (∆M51) 

of the matrix (M) protein exhibited good oncolytic potential but lack undesirable 

neurotoxicity [95, 98, 197, 208-210]. A similar phenotype was recently demonstrated for 

VSV-p1-GFP [98]. To evaluate the relative efficacy of VSV as an OV, we compared 

VSV variants to four other viruses: SeV-GFP, RSV-GFP, CRAd-dl1520, and CRAd-

hTERT (Figure 22). SeV-GFP and RSV-GFP are also NNS RNA viruses shown to have 

oncolytic potential [211-216], while CRAds have shown some success in several PDA 

cell lines in vitro and in vivo [181-183], although they have not been tested in most of the 

PDA cell lines used in this study. The inclusion of additional viruses would also help to 

discriminate between a virus-specific and general resistance phenotype if any PDA cell 

lines were identified as non-permissive to VSV. 

To analyze the ability of viruses to kill cancer cells, PDA cell lines were infected 

at either a low MOI (0.01 CIU/cell) or a higher MOI (1.0 CIU/cell) and at 5 d p.i. an 
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MTT cell viability assay was performed. The MOI values for each virus/cell line 

combination are relative and calculated based on titration of all VSV variants and SeV on 

4T1 cells, and RSV and CRAds on HeLa cells.  These two reference cell lines (4T1 and 

HeLa) were selected based on their abilities to support robust replication of viruses used 

in this study. Therefore, for each MOI, the same amount of virus stock was added to each 

cell line. VSV-wt, VSV-∆M51-GFP, and VSV-p1-GFP all caused significant death in the 

majority of cell lines at both high (Figure 23A) and low (Figure 23B) MOI compared to 

mock infected cells. In general, at the higher MOI, VSVs and CRAds caused more 

significant cell death than to SeV-GFP and RSV-GFP (Figure 23A). At the lower MOI 

VSVs caused more significant cell death compared to all other viruses including CRAds 

(Figure 23B).  

Several PDA cell lines showed various degrees of resistance to oncolysis by 

VSVs, with HPAF-II, Hs766T, and BxPC-3 displaying the strongest resistance. 

Interestingly, we observed a substantial difference in the susceptibilities of HPAF-II, 

Hs766T, and benign HPDE cells to oncolysis with different VSV variants. These cell 

lines were effectively killed by VSV-wt (both MOIs) and VSVp1-GFP (HPAF-II at the 

high MOI only) at 5 days p.i. but were resistant to VSV-ΔM51-GFP, even at an MOI of 

1. Importantly, all three PDA cell lines were also among the most resistant to other tested 

viruses, suggesting that general antiviral mechanisms may contribute to their phenotype 

(see below). 

To analyze the kinetics of PDA cell death following VSV-∆M51-GFP (Figure 24) 

or VSV-wt (data not shown) infection, cells were infected at MOI 0.001, 0.1 or 1 

CIU/cell (Figure 24) and cell viability was analyzed at different time points. The majority 
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of cell lines had significantly decreased viability after infection with VSV-∆M51-GFP at 

any tested MOI. Consistent with the data presented in Figure 23, HPAF-II, Hs766T, and 

BxPC-3 cells were most resistant to VSV-mediated cell death in the presence of any 

amount of VSV-ΔM51-GFP. CFPAC-1, HPAC, and benign HPDE cells were resistant to 

VSV-ΔM51-GFP only when infected at the lowest MOI (0.001) 

Permissiveness of PDA Cell Lines to Viral Infection 

The failure of OVs to kill cancer cells can be explained by their inability to infect 

and/or replicate in these cells, although cellular defects in apoptosis may also be 

responsible for the defect in virus-mediated oncolysis. To determine whether variations in 

viral oncolysis observed between different PDA cell lines were due to different levels of 

permissiveness of these cell lines to virus infection, monolayer cultures of PDA cells 

were infected with serial virus dilutions. To test whether the differences between cell line 

levels of permissiveness to virus infection were specific for VSVs or general (e.g., if they 

have intact antiviral responses), we examined all viruses (Figure 22) except RSV. The 

infectious foci of VSV-ΔM51-GFP, VSV-p1- GFP, and SeV-GFP were analyzed by 

fluorescence microscopy at 24 (VSV) or 48 (SeV) h p.i. The number and size of viral 

plaques produced by VSV-wt, CRAd-dl1520, and CRAd-hTERT were analyzed by ICC 

as described in Materials and Methods. The virus permissiveness shown in Figure 25 is 

expressed as the ratio of the virus titer on the pancreatic cell line under study to the titer 

on a reference cell line (4T1 or HeLa), and higher numbers indicate greater 

permissiveness. 

The degree of curvature in Figure 25 indicates that that the adenoviruses have less 

variability among PDA cells than VSV and SeV. Interestingly, while BxPC-3 and 
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Hs766T were resistant to all tested viruses, HPAF-II showed an intermediate 

permissiveness to infection by both adenoviruses (Figure 25; Figure 26 for CRAd-

dl1520), although this PDA cell line was resistant to virus-mediated oncolysis by either 

CRAd (Figure 23). As shown in Figure 25, the majority of cell lines were highly 

permissive to VSV-ΔM51-GFP infection, with a relative ratio greater than or close to 1 

(log10=0) (AsPC-1, SU.86.86, Capan-1, Panc-1, MIA PaCa2, Suit2, and Capan-2). In 

these cell lines, we observed rapid spread of VSV-ΔM51-GFP forming large infectious 

foci (filled circles in Figure 25; large GFP foci in Figure 26). Cell lines that were less 

permissive to VSV-ΔM51-GFP infection include benign HPDE cells (6.6 times less, with 

very small foci), as well as T3M4 (2.2 times less than 4T1), CFPAC-1 (3.8 times less), 

and HPAC (10 times less), all of which also formed smaller infectious foci at 16 h p.i. 

BxPC-3, HPAF-II, and Hs766T cells appeared highly resistant to VSV-ΔM51-GFP 

infection, with relative susceptibilities much less than that of 4T1 (62, 971, and 25,385 

times less, respectively), and infectious foci were much smaller than those of all the other 

cell lines tested (Figure 26). VSV- ΔM51-GFP was also analyzed at 5 days p.i., when the 

majority of cell lines highly permissive to VSV-ΔM51-GFP infection was no longer 

viable and had detached from the culture plastic. However, HPAF-II, BxPC-3, and 

Hs766T cells remained attached to the plastic with decreased GFP intensity, again 

indicating that VSV- ΔM51-GFP infection is restricted in these cell lines (data not 

shown). 

SU.86.86 showed a very intriguing phenotype by being highly permissive to 

VSVs and SeV, but resistant to both CRAd-dl1520 and CRAd-hTERT. To test whether 

this cell line may lack Coxsackievirus and adenovirus receptor (CAR) required for 
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adenovirus attachment (which would explain this phenotype) [181-183], we analyzed all 

PDA cell lines for CAR expression by flow cytometry and found that SU86.86 was the 

only cell line completely lacking CAR (Figure 27), while all other cell lines (including 

HPAF-II, Hs766T and BXPC-3 displaying general resistance phenotype) had varying but 

detectable levels of CAR (data not shown) which is in agreement with our data (Figure 

25 and 26), indicating that these cell lines (unlike SU86.86) have reasonably good 

susceptibility to both adenoviruses and also suggesting that they are not defective in CAR 

expression. Although other factors may also contribute to the resistance of SU86.86 to 

CRAds, the lack of CAR expression alone might be sufficient to cause the phenotype. 

To examine if reduced permissiveness to VSV-ΔM51-GFP also resulted in a 

decrease in new viral protein synthesis, lysates were prepared from uninfected cells and 

from cells infected with VSV- ΔM51-GFP at MOIs of 1 and 10 CIU/cell and harvested at 

16 h p.i. Equal amounts of total protein were then examined by Western blotting for both 

VSV proteins and GFP expression. The expression levels of viral proteins within the 

different cell lines were in agreement with GFP expression (Figure 28). Protein 

expression (GFP level measurements are shown in Figure 28) was also generally 

consistent with cell line permissiveness and oncolysis, especially when protein 

accumulation levels were compared after lower-MOI infection. Viral protein expression 

was strongly reduced in BxPC-3, HPAF-II, Hs766T, and benign HPDE cells, which are 

the most “nonpermissive,” and all demonstrated small focus sizes when infected with 

VSV-ΔM51-GFP (Figure 25). Viral protein expression was also reduced in CFPAC-1 

and HPAC cells, which had reduced permissiveness and medium focus sizes. 
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To directly examine the growth potential of VSVs in resistant cell lines, we tested 

all 3 VSVs in the majority of PDA cell lines (and in benign HPDE cells) using a standard 

one-step growth kinetics assay (Figure 29). In general, our data show that, while all tested 

cell lines were able to support productive replication of VSVs, the lowest production was 

observed in benign HPDE cells and in most PDA cell lines displaying a resistant 

phenotype. Also, most cells showed very similar growth kinetics for all 3 viruses, while 

HPAF-II supported a significantly lower level of VSV-M51-GFP production than other 

VSVs. This result may explain, at least partially, why HPAF-II cells were particularly 

resistant to VSV- ΔM51-GFP (Figure 23A). BxPC-3 cells showed a surprisingly high 

level of new particle production when infected at an MOI of 10. However, it is important 

to note that an MOI of 10, used for one-step growth kinetics, is never attainable during 

oncolytic treatment . The experiments on virus-mediated cell death shown in Figure 23 

and 24 were conducted at more realistic MOIs of 0.001 to 1 (maximum). 

Timing and Cellular Factors of Resistance of PDA Cell Lines to VSV-∆M51-GFP 

To analyze why PDA cells differ in their permissiveness to VSV-∆M51-GFP, we 

looked at the early stages of virus replication and at cellular characteristics that could 

explain the observed differences. 

Antigenome and VSV N mRNA synthesis was determined by northern blot of 

total RNA isolated at 4 h p.i. from cells untreated or treated with cycloheximide and 

infected with VSV-∆M51-GFP at MOI 10 (Figure 28B and Table 1).  Cycloheximide 

blocks new protein synthesis and thereby viral genome synthesis and secondary 

transcription. Expression of both VSV N mRNA and anti-genomic RNA were strongly 

reduced in BxPC-3, HPAC, HPAF-II, Hs766T and somewhat reduced in CFPAC-1 cells, 
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consistent with the reduced viral protein synthesis and permissiveness to VSV-∆M51-

GFP infection seen in these cells lines. Interestingly, RNA synthesis in “benign” HPDE 

cells was quite robust despite low protein synthesis 16 h p.i. (Figure 28A) and reduced 

permissiveness in this cell line, suggesting a block at a later stage of viral replication. In 

all cases where secondary transcription was reduced, primary transcription was reduced 

proportionately (Table 1). This suggests that in cell lines with lower mRNA synthesis, 

viral genome release into the cytoplasm was inhibited, and that for genomes that were 

released, early replication proceeded normally.   

VSV is sensitive to Type I IFN responses. However, many different tumor types 

are known to lack these responses, allowing VSV to productively infect cancer cells 

while sparing healthy cells [193, 217]. Here, we wanted to test the hypothesis that the 

resistance of some PDA cell lines to VSV (and other viruses) was a result of their intact 

IFN responses. To determine if PDA cell lines were sensitive to Type I IFN, all cells 

were mock treated or treated with 5000 U/ml IFN-α for 24 h prior to infection with serial 

dilutions of VSV-∆M51-GFP. A titer ratio for mock treated to IFN-α treated cells was 

determined for each PDA cell line (Figure 29). We observed that certain cell lines did not 

significantly suppress VSV-∆M51-GFP replication in response to IFN-α. VSV-∆M51-

GFP titers were no more than 26-fold reduced following IFN treatment in Panc-1, 

SU.86.86, MIA PaCa2, and HPAC cells, while Capan-2, Hs766T, T3M4 and benign 

HPDE cells showed an intermediate sensitivity to IFN-α (Figure 31). HPAC displayed an 

interesting phenotype with comparable titers with or without IFN treatment; however, 

IFN treated HPAC cells required an additional day for visible foci to appear.  

Surprisingly, several PDA cancer cell lines were highly responsive to IFN-α (Capan-1, 
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AsPC-1, HPAF-II, BxPC-3, Suit2 and CFPAC-1). Among these IFN-sensitive cells are 

AsPC-1, Capan-1 and Suit2, which support robust replication of VSV-∆M51-GFP in the 

absence of IFN-α pre-treatment.  

To further study the role of IFN in the resistance of PDA cells to VSV, we 

examined the abilities of PDA cell lines to produce IFN alpha and/or beta in response to 

VSV-∆M51-GFP infection (MOI of 10 CIU per cell) at 18 h p. i. As expected, significant 

amounts of IFN-beta were produced by benign HPDE cells, which are expected to retain 

normal antiviral responses (Figure 30). Importantly, all three cell lines (HPAF-II, HPAC 

and Hs766T) producing significant amount of IFN-beta at 18 h p.i. were among the most 

resistant cell lines (Figure 30). As illustrated in Table 2, except for BxPC-3, all PDA cell 

lines highly resistant to VSV show an HPDE-like phenotype characterized by both the 

production of IFN-beta and sensitivity to IFN treatment. In addition, our data 

experimentally explain the phenotypes AsPC-1, Suit2, and Capan-1 which are sensitive 

to IFN but support robust virus replication without added IFN, as they all are defective in 

IFN production. Interestingly, we were unable to detect any significant production of 

IFN-alpha in response to virus infection by any tested cell line at 18 h p.i. (data not 

shown), however it is produced later than IFN-beta. Future experiments will analyze 

PDA cells for production of various IFNs at different time points after infection. 

Together, our data show surprising diversity among PDA cells in regards to their 

ability to produce and respond to Type I IFN. Moreover, we demonstrate that a 

combination of IFN sensitivity and IFN-beta production may be used to predict 

responsiveness of most PDA cells to oncolytic treatment. 
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Efficacy of VSV-∆M51-GFP and CRAd-dl1520 in Nude Mice Bearing Human PDA 

Tumors. 

To test the efficacy of VSV-∆M51-GFP in vivo and to determine the relevance of 

our in vitro results to an in vivo situation, we chose four cell lines for in vivo testing 

based on our in vitro virus permissiveness and oncolysis experiments. MIA PaCa2 and 

Panc-1 are highly permissive to both VSV-∆M51-GFP and CRAd-dl1520, SU.86.86 is 

highly permissive to VSV-∆M51-GFP but not CRAd-dl1520, and HPAF-II has limited 

permissiveness to both VSV-∆M51-GFP and CRAd-dl1520 (Figure 23-26). These human 

pancreatic cancer cell lines were injected subcutaneously into the right flank of male 

nude mice (n=18 per cell line). Once the mice developed palpable tumors (5-7 mm) they 

were divided equally into three groups (n=6). A control group received an IT injection of 

PBS, one group received an IT injection of 5x10
7
 CIU VSV-∆M51-GFP, and one group 

received an IT injection of 5x10
7
 CIU CRAd-dl1520. The mice were monitored daily for 

signs of distress and tumor size was measured every other day for 14 days. VSV-∆M51-

GFP and CRAd-dl1520 had the greatest therapeutic effect in mice bearing Panc-1 and 

MIA PaCa2 tumors (Figure 33). VSV-∆M51-GFP seemed to stabilize SU.86.86 tumor 

growth compared to treatment of SU.86.86 tumors with CRAd-dl1520 and PBS, which 

had no effect on tumor growth (Figure 33). SU.86.86 grew more rapidly than all other 

cell lines in vivo and several tumors became ulcerated over the course of the experiment 

(Figure 33). While mice bearing SU.86.86 tumors showed no signs of distress at any 

point during the experiment, several were euthanized at an earlier time point due to large 

tumor size (day 21 instead of day 25). Tumor growth continued in the presence or 

absence of VSV-∆M51-GFP and CRAd-dl1520 for mice bearing HPAF-II tumors (Figure 
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33). In general, our in vivo experiments closely mimicked our in vitro results. Fourteen 

days post injection with VSV-∆M51-GFP, CRAd-dl1520 or PBS, all mice were 

euthanized and tumors were harvested and wet weight and presence of virus was 

determined.  

It has been demonstrated that VSV-wt can cause encephalitis in mice; however, 

VSV-∆M51-GFP is a non-neurotropic OV [98]. In agreement with this, animals infected 

with VSV-∆M51-GFP showed no signs of encephalitis or distress over the course of the 

experiment. Nevertheless, brain tissues of VSV-∆M51-GFP-infected animals were 

analyzed for the presence of virus by standard plaque assay on BHK-21 cells with no  

VSV-∆M51-GFP being detected.  Interestingly, despite the robust oncolytic effect 

achieved for animals bearing Panc-1 and MIA PaCa2 following IT infection with VSV-

∆M51-GFP, when a similar analysis was conducted on tumor samples, only two samples 

(one SU.86.86 and one MIA PaCa2 sample) had detectable VSV-∆M51-GFP present at 

14 d p.i. (data not shown).  
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3.5 Discussion 

In this study, we have evaluated for the first time VSV as an OV against 

pancreatic cancer cells. VSV variants showed superior oncolytic abilities compared to 

other viruses and were effective against the majority of the 13 tested human PDA cell 

lines. We also identified several cell lines highly resistant to oncolytic virotherapy by 

VSV and/or other tested viruses. 

Among VSV variants, we focused primarily on VSV-∆M51-GFP because several 

previous studies showed that VSV variants with ∆M51 mutation were effective OVs with 

no neurotoxicity in animals [95, 98, 197, 208-210]. To evaluate the relative efficacy of 

VSV as an OV, we initially compared VSV variants to four other viruses. We chose 

CRAd-dl1520 (also known as “ONYX-15”) as a relevant control for further in vitro and 

in vivo experiments, as this DNA virus is unrelated to VSV, has been tested in several 

clinical trials, and has shown some success in previous PDA studies [203, 218]. 

Our in vitro experiments indicated a great variability in permissiveness of PDA 

cell lines to all viruses. Overall, VSV variants were the most effective, but even for 

VSVs, some cell lines, including HPAF-II, Hs766T and CFPAC-1, were less effectively 

killed by VSV-∆M51-GFP than by VSV-wt and VSV-p1-GFP. There are two major 

hypotheses explaining varying susceptibility of PDA cell lines to oncolysis by a 

particular virus in vitro. First, PDA cells may differ in their susceptibility to virus 

infection and their ability to support virus replication. This may happen because PDA 

cells may lack key cellular factors (e.g., receptors) required for successful virus infection 

and replication or because resistant cells have intact antiviral responses preventing 

successful virus replication. Alternatively, some PDA cells may have defective apoptotic 
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pathways, so that even if a virus can successfully infect and replicate in these cells, they 

are not efficiently killed by apoptosis.  

The oncolytic potential of viruses is generally contingent on their ability to infect 

and replicate in these cells. In our study, PDA cell permissiveness to all viruses closely 

mirrored our cell death analysis, with several cell lines (HPAF-II, Hs766T and BxPC-3) 

showing varying degrees of resistance to all tested viruses. The six least permissive cell 

lines were all defective in cell killing for at least some of the MOIs tested.  Five of these 

cell lines, BxPC-3, HPAF-II, HPAC, Hs766T and CFPAC showed low levels of early (4 

h p.i.) viral RNA synthesis (including primary transcription of viral genome) when 

infected with VSV-ΔM51-GFP compared to the more permissive cell lines, indicating a 

possible defect at very early stage in replication, such as attachment, entry or endosomal 

escape.  Experiments are underway in these PDA cell lines to further define the affected 

steps in viral replication and the responsible cellular mechanisms. In contrast to VSV-

resistant PDA cell lines, in “benign” HPDE cells (also resistant to VSV), early viral 

mRNA and genome synthesis equaled that found in many permissive cell lines, but viral 

protein synthesis at 16 h p.i and virion production were sharply reduced, suggesting a 

defect at later stages of viral replication. This phenotype is expected for “benign” cells 

with intact innate antiviral responses.  

To address differences in permissiveness to VSV in PDA cell lines, we also 

looked at their abilities to produce and respond to Type I IFN. . In general, many tumor 

cells are defective in producing Type I IFNs but may remain sensitive to Type I IFN, 

which could be produced by infected benign cells that surround the tumor. Still other 

tumor cells may retain the ability to produce their own IFN [176, 177]. Responsiveness of 
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cancer cells to IFN could be an important factor in predicting their behavior in vivo, 

where VSV infection would induce IFN production in surrounding healthy tissues, thus 

limiting oncolytic potential towards cancer cells sensitive to IFN.  Our data showed 

surprising diversity among PDA cells in regard to their ability to produce and respond to 

Type I IFN (Table 2). With the exception of BxPC-3, all other VSV-resistant PDA cell 

lines were characterized by both the production of IFN-beta and sensitivity to IFN 

treatment. The same phenotype was shown by “benign” HPDE cells, which are expected 

to retain normal antiviral responses. The VSV-resistant phenotype of BxPC-3 in vitro 

(sensitive to IFN but does not produce IFN-beta) could be due to an IFN-independent 

block of virus replication. Interestingly, we identified some PDA cell lines (AsPC-1, 

Suit2, and Capan-1) that are responsive to IFN, but highly susceptible to infection in vitro 

(without added IFN) as they all are defective in IFN production. High heterogeneity in 

response to type I IFN has been reported in several other cancer types, including 

mesothelioma [219], melanomas [220, 221], lymphomas [222], bladder cancers [223], 

renal cancers [224], and likely in other types [209]. Our data suggest that a combination 

of IFN sensitivity and IFN-beta production may be used to predict responsiveness of 

most PDA cells to oncolytic treatment.  

Together, our data suggest that VSV-resistant cell lines have more than one 

“defect” responsible for their virus-resistant phenotype. If their resistance was solely 

dependent on their intact IFN pathways, we would expect them to have a phenotype 

similar to that of benign HPDE cells. HPDE cells do not have any defects in early steps 

of VSV infection (demonstrated by “normal” RNA synthesis, including primary 

transcription of the viral genome at 4 h p.i.), but robust type I IFN responses inhibit 
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subsequent virus replication, resulting in very low protein accumulation at 16 h p.i. 

However, unlike HPDE cells, all PDA cell lines highly resistant to VSV also showed 

defective early viral RNA synthesis, suggesting that they have some defects inhibiting 

early steps of VSV infection (e.g., attachment or entry). 

Most of our data show a correlation between the permissibility of PDA cells to 

VSV infection and its oncolytic potential. However, if cells are successfully infected at a 

high MOI (one-step infection), they are able to successfully produce new viral particles. 

BxPC-3 cells showed surprisingly high production of new particles when infected at an 

MOI of 10. Interestingly, it is also the only one of the most resistant cell lines that did not 

produce significant amounts of IFN-β (Figure 32 and Table 2). At the same time, BxPC-3 

cells were characterized by deficient RNA synthesis at 4 h p.i., suggesting that BxPC-3 

cells have some defects in virus attachment/ internalization or another early step in VSV 

infection. It also showed a low level of viral (and GFP) protein synthesis when BxPC-3 

cells were infected at a lower MOI of 1 (Figure 28; compare AsPC1 and BxPC-3 at MOIs 

of 1 and 10). It is important to note that infection at an MOI of 10, used in Figure 29 for 

one-step growth kinetics, is never attainable during oncolytic treatment . The experiments 

on virus-mediated cell death shown in Figure 23 and 24 were conducted at more realistic 

MOIs between 0.001 and 1.  

Previous studies have shown that many cancer cells are able to inhibit apoptosis 

to allow for prolonged proliferation [225]. As VSV has been shown to cause cell death by 

apoptosis via either the intrinsic or extrinsic pathway or both [99, 194, 226, 227], cell 

lines with decreased expression or activation of certain apoptotic proteins have the 

potential of limiting/delaying cell death following VSV infection. Furthermore, 
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differences in permissiveness to the VSV variants could be due to differences in their 

mechanisms of cell death induction. It has been demonstrated that VSV-wt induces 

apoptosis via the mitochondrial pathway due to wt M protein inhibiting gene expression, 

while VSV-∆M51-GFP, with a mutant M protein, induces apoptosis primarily via the 

death receptor pathway [226]. While we cannot fully address these possibilities at this 

point, our preliminary experiments show significant increases in caspase-3 cleavage 

following VSV-∆M51-GFP infection in all cell lines except Hs766T and HPAC at 17 h 

p.i. (data not shown). More studies are needed to determine whether reduced level of 

apoptotic response or the delayed induction of apoptosis in some of these cell lines plays 

a role in restricting VSV oncolysis. These defects could also (in addition to intact IFN 

pathways) explain why cell lines resistant to VSV are also resistant to other, unrelated, 

viruses. 

Based on our in vitro studies we chose 4 cell lines with varying permissiveness to 

VSV-∆M51-GFP and CRAd-dl1520 to determine if our in vitro studies are relevant in 

vivo. We observed in vitro that MIA PaCa2 and Panc-1 are highly permissive to both 

VSV-∆M51-GFP and CRAd-dl1520, SU.86.86 is highly permissive to VSV-∆M51-GFP 

but not CRAd-dl1520, and HPAF-II has limited permissiveness to both. The induced 

tumors in nude mice showed the same permissiveness pattern as observed in vitro 

indicating in vitro testing can be used to identify cancers resistant to a particular virus. It 

is important to emphasize that the ability of a virus to kill cancer cells in vitro or even in 

vivo (in nude mice) would not guarantee its efficacy in cancer patients due to complex 

tumor microenvironments and compromised immune responses [175]. However, our data 

clearly show that if cells are resistant to viral oncolysis in vitro, it is highly unlikely that 
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they could be effectively eliminated in vivo, suggesting the importance of in vitro 

pretesting (when possible) in identifying virus-resistant cancers.  

There are several important characteristics of VSV that in combination make it a 

more attractive candidate for PDA treatment than other tested viruses: (i) there are few, if 

any, restrictions to VSV attachment and entry, as it is believed not to be dependent on 

any host receptor in target cells; (ii) there is no preexisting immunity against VSV in 

humans; (iii) VSV is not considered a significant human pathogen, and several VSV 

mutants, including VSV- ΔM51-GFP and VSV-p1-GFP, are not neurotropic but retain 

their oncolytic activity; (iv) cellular uptake in many mammalian cell types occurs very 

rapidly, and there is no cell cycle dependency; (vi) our comparative analysis here 

demonstrated that VSV variants showed oncolytic abilities superior to those of other 

viruses, and some cell lines that exhibited resistance to other viruses were successfully 

killed by VSV. 

There are several potential options for virus-resistant cancer cells. Prescreening 

cells against an array of different OVs could identify the best option for treating a 

particular tumor. For example, VSV-∆M51-GFP is more suitable than CRAds for treating 

PDAs similar to SU.86.86 cells which showed a complete lack of CAR expression 

required for adenovirus attachment (data not shown). In the cases where cells are less 

permissive to VSV-∆M51-GFP than VSV-wt or VSV-p1-GFP (HPAF-II and Hs766T), 

the use of VSV-p1-GFP might be a better option, especially because this virus is also 

non-neurotoxic in vivo. Combination therapies have also demonstrated some success. 

Virotherapy in combination with chemotherapy can enhance the oncolytic effect 

compared to either treatment alone [228]. Treating tumors with more than one OV 
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(combined virotherapy) could also potentially lead to enhanced oncolysis [229]. 

Importantly, understanding the mechanisms and identifying potential biomarkers of 

resistance is critical for the development of prescreening approaches and individualized 

oncolytic virotherapy against PDA. 
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3.6 Figures 

 
 

Figure 22: Viruses used in this study. VSV-p1-GFP has the GFP ORF inserted in position 

one of the viral genome resulting in attenuation of the virus. VSV-∆M51-GFP has a 

deletion at amino acid position 51 of the matrix (M) protein reducing its ability to 

suppress host immunity. In addition, VSV-∆M51-GFP has the GFP ORF inserted in 

position 5 of the viral genome. SeV-GFP has the GFP ORF inserted at position one of the 

viral genome and a mutation in the cleavage site of the fusion (F) protein allowing for F 

activation and production of infectious virus particles in cell without trypsin addition. 

RSV-GFP has GFP ORF inserted at position one of the viral genome. CRAd-dl1520 is 

attenuated by deletion of a large part of the coding sequence for the E1b55k viral gene 

product. CRAd-hTERT is a human telomerase reverse transcriptase (hTERT)-dependent 

CRAd. 
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3.6 Figures continued 

 
 

Figure 23: PDA cell viability following infection with viruses. PDA cell lines and HPDE 

were seeded in 96-well plates so that they reached 80% confluency at 24 h. The cells 

were infected with the indicated viruses at MOI of 1 (A) or 0.01 (B) CIU/cell or mock 

infected. Cell viability was analyzed at 5 d p.i. by an MTT cell viability assay and 

expressed as a ratio of virus-treated to mock-treated cells for each time point. All MTT 

assays were done in triplicate and the data represent the mean ± standard deviation. Cell 

lines are grouped arbitrarily based on their susceptibility to virus-induced oncolysis.   
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3.6 Figures continued 

 

Figure 24: Kinetics of cytopathogenicity of VSV-ΔM51-GFP in PDA cells. Cells were 

seeded in 96-well plates so that they reached 50% confluence at 24 h. The cells were then 

mock infected or virus infected at low (0.001 CIU/cell), intermediate (0.1 CIU/cell), or 

high (1 CIU/cell) MOI.MTTcell viability assays were performed at 1, 16, 24, 48, and 72 

h p.i. Cell viability is expressed as the percentage of mock-infected cells at 1 h p.i. All 

MTT assays were done in triplicate, and the data represent means and standard 

deviations. 
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3.6 Figures continued 

 
 

Figure 25: Permissiveness of PDA cell lines to different viruses. PDA cell lines and 

HPDE cells were incubated with serial dilutions of viruses. The infectious foci of 

VSV-ΔM51-GFP, VSV-p1-GFP (24 h p.i.), and SeV-GFP (48 h p.i.) were analyzed by 

fluorescence microscopy. The infectious foci of VSV-wt, CRAd-dl1520, and 

CRAd-hTERT were analyzed by ICC as described in Materials and Methods. Virus 

permissiveness (relative yield) is expressed as the log10 of the ratio of the virus 

titer on the pancreatic cell line under study to the titer on a reference cell line (4T1 for 

VSV and SeV; HeLa for CRAds). The following titers were observed on reference cell 

lines: VSV-wt, 1.6x10
9
 CIU/ml on 4T1; VSV-ΔM51-GFP, 3.3x10

8
 CIU/ml on 4T1; 

VSV-p1-GFP, 3x10
7
 CIU/ml on 4T1; SeV-GFP, 1.5x10

7
 CIU/ml on 4T1; CRAd-hTERT, 

1.5x10
7
 CIU/ml on HeLa; and CRAd-dl1520, 4x10

8
 CIU/ml on HeLa. A relative yield of 

0 indicates that the PDA cell line and a reference cell line are equally permissive to the 

virus, while higher numbers indicate greater permissiveness for the PDA cell line. The 

area of infectious foci was analyzed using Image J software (NIH): small, area of <10 

(surface area units); medium, area of 10 to 30; large, area of >30; nd, not done. 
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3.6 Figures continued 

 

 

Figure 26: Permissiveness of selected PDA cell lines to virus infection. Representative 

PDA cell lines (not all shown) were incubated with serial dilutions of VSV-∆M51-GFP 

and CRAd-dl1520. The infectious foci of VSV-∆M51-GFP were analyzed by fluorescent 

microscopy at 24 h p.i. The infectious foci of CRAd-dl1520 were analyzed by ICC at 5 d 

p.i as described in Materials and Methods.  
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3.6 Figures continued 

 

Figure 27: Surface expression of CAR. Single-cell suspensions of HeLa (positive control) 

or SU.86.86 (obtained without trypsin) cells were analyzed for adenovirus CAR using 

anti-CAR antibody and secondary IgG-FITC antibody (solid lines) or secondary IgG-

FITC antibody only (gray areas). Expression of CAR was determined by flow cytometry 

(Beckman Coulter) and analyzed using FlowJo (Treestar, Ashland, OR) as described in 

Materials and Methods. 
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3.6 Figures continued 

 
 

Figure 28: Analysis of viral protein accumulation in cells at 16 h p.i. Cells were mock 

infected or infected with VSV-M51-GFP at an MOI of 1 or 10 CIU/cell. The cells were 

harvested at 16 h p.i., and the cell lysates were analyzed by Western blotting for VSV 

proteins, GFP, or actin. 
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3.6 Figures continued 

 
 

Figure 29: One-step growth kinetics of VSVs in PDA cell lines. PDA cells were infected 

with VSV-wt, VSV-_M51-GFP, or VSV-p1-GFP at an MOI of 10 CIU/cell, which was 

calculated based on the reference cell line 4T1. At 1 h p.i., the virus was aspirated and the 

cells were washed and overlaid with 5% growth medium. At 1, 24, 50, and 72 h p.i., the 

supernatant was collected, and virus titers were determined by plaque assay on BHK-21 

cells. All infections were done in duplicate, and the data represent means + standard 

deviations.  
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3.6 Figures continued 

 
 

Figure 30: Early viral RNA levels in infected cells. Cells were mock treated or treated 

with 100 µg/ml cycloheximide (CHX) for 30 min prior to mock infection or infection 

with VSV-ΔM51-GFP at an MOI of 10, and treatment was continued with CHX. At 4 h 

p.i., cells were collected, and total RNA was extracted and analyzed by Northern blotting 

for VSV antigenome RNA (top) or N mRNA (bottom).  
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3.6 Figures continued 

 

Figure 31: Type I interferon sensitivities of PDA cell lines. PDA cell lines and HPDE 

cells were either treated with 5,000 U/ml IFN-α in SFM or mock treated with SFM only. 

Twenty-four hours posttreatment, the cells were infected with serial dilutions of VSV-

ΔM51-GFP, and infectious foci were analyzed 16 h p.i. by fluorescence microscopy to 

calculate the virus titer under these conditions. Treatments and infections were performed 

in duplicate, and average values are shown. For HPAC cells pretreated with IFN-α, virus-

driven GFP signal was delayed by 24 h p.i.  
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3.6 Figures continued 

 
 

Figure 32: Type I interferon production by PDA cell lines. Cells were infected with 

VSV-ΔM51-GFP at an MOI of 10 CIU/cell or mock treated with SFM only. One hour 

p.i., the virus was aspirated and the supernatant was harvested and analyzed by ELISA 

for production of human IFN-β. Infections were performed in triplicate, and the data 

represent the means and standard deviations. Comparison of groups was done by using 2-

way analysis of variance (ANOVA), followed by posttest for multiple comparisons (***, 

P<0.001). 
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3.6 Figures continued 

 
 

Figure 33: Efficacy of VSV-ΔM51-GFP and CRAd-dl1520 in nude mice bearing human 

PDA tumors. Six- to 8-week-old male athymic nude mice were subcutaneously injected 

with MIA PaCa2, Panc-1, HPAF-II, or Su.86.86 cells in the right flank (n=18 per group). 

Tumors were established by day 13, and the mice were randomly divided into 3 groups (n 

= 6 per group). One group served as a control and received one i.t. administration of 50 _l 

PBS only. The other two groups were treated i.t. once with VSV-ΔM51-GFP or CRAd-

dl1520 at a dose of 5x10
7
 CIU in 50 µl PBS. Tumor size was monitored by caliper 

measurements, and tumor weight was calculated according to the following formula: 

grams _ (length in centimeters _ width2)/2. Comparison of groups was done by using 2-

way ANOVA, followed by the Bonferroni posttest for multiple comparisons (*, P < 0.05; 

**, P <0.01; ***, P <0.001). 
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3.6 Tables 

 

Table 1: Early viral RNA synthesis in cells infected with VSV-∆M51-GFP. 
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3.6 Tables continued 

 

Table 2: Correlation between IFN sensitivity, production, and resistance of PDA cells to 

VSV 

 

 

 



  

CHAPTER 4: EFFICACY OF ONCOLYTIC VESICULAR STOMATITIS VIRUS IN 

AN IMMUNOCOMPETENT MODEL OF PANCREATIC DUCTAL 

ADENOCARCINOMA 

 

 

4.1 Abstract 

Development of new treatment strategies against pancreatic ductal 

adenocarcinoma (PDA) is necessary, as present therapies show little efficacy. Vesicular 

stomatitis virus (VSV) is a promising oncolytic virus (OV) with inherent anticancer 

abilities. Previously, we showed the abilities of VSV recombinants to kill a majority of 

tested human PDA cell lines in vitro and in vivo in athymic mice. However, VSV has 

never been studied in any immunocompetent PDA model where virus meets the 

challenge of host adaptive antiviral responses. Here we tested an oncolytic VSV 

recombinant VSV-ΔM51-GFP in an immunocompetent mouse system using xenografts 

of mouse PDA cell lines originated from mice with KRAS
G12D

-driven PDAs either 

expressing human mucin 1 (MUC1, KCM cells) or null for Muc1* (KCKO cells). This 

system allows us to study oncolytic virotherapy in the context of MUC1 overexpression 

(approximately 80% PDA patients) or no expression. Our results demonstrate significant 

oncolytic abilities of VSV in vitro against both KCM and KCKO cells, although KCKO 

cells were more permissive to VSV-ΔM51-GFP. In vitro experiments with isogenic 

mouse PDA cells expressing human MUC1 or not demonstrates that MUC1 expression 

itself does not interfere with VSV-ΔM51-GFP infection or oncolysis. In agreement with 

our in vitro results, in vivo administration of live (but not killed) VSV-ΔM51-GFP 



103 

resulted in the significant growth reduction of KCKO or KCM tumors. However, tumor 

size reduction was transient and adaptive immunity may be responsible for the lack of a 

sustained anticancer effect as animals developed antibodies against VSV-ΔM51-GFP but 

not against the tumor cells.VSV-ΔM51-GFP efficacy was improved when animals were 

treated with the virus in combination with gemcitabine. The developed PDA system can 

be used to study combinational therapies involving other OVs, chemotherapeutics, and 

explore different routes of administration, with the goal of inducing tumor-specific 

immunity while preventing premature virus clearance. 

*Human mucin 1 designated as MUC1 and mouse mucin 1 designated as Muc1 
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4.2 Introduction 

Pancreatic cancer has the worst prognosis of all cancers and is estimated to be the 

fourth leading cause of cancer-related deaths in the United States [230]. According to the 

Pancreatic Cancer Action Network, It is projected that by 2015, pancreatic cancer will be 

the second leading cause of cancer related deaths. About 95% of pancreatic cancers are 

pancreatic ductal adenocarcinomas (PDAs), which are highly invasive with aggressive 

local growth and rapid metastases [178]. PDA is primarily driven by activating mutations 

in the KRAS proto-oncogene (most commonly a G12D point mutation), and is 

characterized by deregulation of several genes, including mucins [231, 232]. Mucin 1 

(MUC1) is a membrane-tethered glycoprotein that is normally expressed on the apical 

surface of glandular epithelial cells. However, MUC1 is deregulated in a tumor setting 

such that it becomes overexpressed and aberrantly glycosylated in more than 80% of 

human PDAs and in 100% of metastatic lesions  [231]. In human cancers, MUC1 has 

been shown to play an important role in development and progression of PDA [233].  

Due to its typically late diagnosis, aggressive nature, and relatively few treatment 

options, PDA is designated as one of the most lethal abdominal malignancies [179, 180]. 

This is evidenced by an estimated 5-year survival rate of only 3 to 5%, and a median 

survival of only 5 to 6 months after initial diagnosis [230, 234]. To date, surgery remains 

the only potential cure for PDA, of which only 20% of patients are eligible due to 

presenting with advanced disease at time of diagnosis. Alternative therapies, such as 

radiation therapy and chemotherapy have shown little efficacy, as pancreatic cancer has 

been shown to exhibit an unusual resistance to these current treatment options. Thus, the 

development of new treatment strategies against PDA is of utmost importance.  
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Oncolytic virus (OV) therapy is an emerging therapeutic approach largely based 

on defects in the innate immunity of cancer cells or other abnormalities that increase 

cancer cell susceptibility to infection and death compared to healthy cells. Vesicular 

stomatitis virus (VSV), a prototypic non-segmented, negative-strand (NNS) RNA virus, 

has been tested against an array of cancers and is currently in a phase I clinical trial 

against hepatocellular carcinoma [235]. Undesirable natural neurotoxicity of wild-type 

(wt) VSV has been addressed by the generation of various VSV-based recombinants 

retaining their oncolytic activites but lacking neurotoxicity [235]. One of such oncolytic 

recombinants, VSV-ΔM51-GFP, has a deletion of the methionine at amino acid position 

51 of the VSV matrix (M) protein, as well as the GFP ORF inserted in position 5 of the 

viral genome [236]. This ΔM51 mutation prevents VSV M protein’s ability to shut down 

cellular gene expression allowing virus to evade host anti-viral response. Therefore, 

VSV-ΔM51-GFP is unable to successfully replicate in healthy cells with an intact type I 

interferon (IFN) response. However, as most cancer cells are believed to have defective 

type I IFN signaling, they are more susceptible to VSV infection.  

Previous research from our lab analyzed several VSV recombinants in an array of 

human PDA cell in vitro [237, 238] and in xenografts in athymic mice [237]. While these 

studies provide important information regarding the abilities of OVs to infect and kill 

various human PDAs, the complex nature of the PDA microenvironment in 

immunocompetent animals is known to generate additional challenges for viruses, mainly 

the premature elimination of viruses before they complete their task. Here, VSV was 

evaluated for the first time in an immunocompetent mouse PDA model that use 

xenografts of murine PDA cells originated from KC mice with spontaneous KRAS
G12D

-
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driven PDAs either expressing human MUC1 (KCM cells) or MUC1 null (KCKO cells). 

This system allows for study of VSV and other OVs in the context of MUC1 

overexpression (approximately 80% PDA patients) or no expression. Moreover, we 

examined VSV-ΔM51-GFP in combination with gemcitabine, the standard drug for 

pancreatic cancer. 

  



107 

4.3 Materials and Methods   

 Cell Lines and Culture. 

KCM and KCKO cell lines were previously generated [239] from spontaneous 

PDA tumors from KCM and KCKO mice, correspondingly (Figure 34). Both cell lines 

were characterized previously [239]. To generate these mice, KC mice were first 

generated on the C57BL/6 background by mating the P48-Cre with the LSL-KRAS
G12D

 

mice [159]. They were further mated to the MUC1.Tg mice to generate KCM mice or to 

the MUC1KO mice to generate KCKO mice. Cell lines are designated KCKO for those 

cells completely lacking Muc1 and KCM for those cells expressing mouse Muc1 and 

human MUC1. Panc02-Neo (transfected with neomycin empty vector) and Panc02-

MUC1 (expressing full length human MUC1) murine pancreatic cancer cells were a gift 

from Dr. Tony Hollingsworth [240]. Panc02 was transfected with pHβAPr-1-neo 

expression vector containing a human MUC1 cDNA. Cloned cells with constitutive 

MUC1 expression were selected for use [241]. In addition, the following cell lines were 

used to grow viruses and/or as controls for viral replication: CFPAC-1 (human PDA, 

ATCC CRL-1918), 4T1 (murine mammary carcinoma, ATCC CRL-2539), BHK-21 

(Syrian golden hamster kidney fibroblasts, ATCC CCL-10) and Vero (African green 

monkey kidney cells, ATCC CCL-81). KCM, KCKO, Panc02-MUC1, Panc02-Neo, 

CFPAC-1, and 4T1 were maintained in Dulbecco's modified Eagle's medium (DMEM, 

Cellgro). BHK-21 and Vero were maintained in modified Eagle's medium (MEM, 

Cellgro). All cell growth media were supplemented with 9% fetal bovine serum (FBS, 

Gibco), 3.4 mM L-glutamine, 900 units (U) per ml penicillin and 900 µg/ml streptomycin 

(Cellgro). MEM was further supplemented with 0.3% glucose (w/v). Cells were kept in a 
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5% CO2 atmosphere at 37°C. For all experiments, cell lines were passaged no more than 

10 times.  

Flow Cytometry. 

Single-cell suspensions were obtained by detaching cells using cell scrapers 

without trypsin to avoid any potential proteolytic effect of trypsin on surface proteins. 

The cells were then incubated with Fc block (BD Biosciences) at a concentration of 

0.5μg/ml at room temperature (RT) for 10 min. The cells were stained for the 

extracellular domain of human MUC1 using HMFG2, for 15 minutes (min) at 4°C, 

washed, and subsequently stained with goat anti-mouse IgG-phycoerythrin (PE) or 

isotype control (Santa Cruz; 0.5 μg/ml) for 15 min at 4°C. Expression of MUC1 was 

determined by flow cytometry (Beckman Coulter) using FlowJo (Treestar, Ashland, OR). 

Western Blot. 

Cellular lysates were prepared by scraping cells followed by centrifugation at 

1,000 rpm for 10 min at 4°C. Cells were re-suspended in phosphate-buffered saline (PBS, 

Mediatech, Inc.) followed by centrifugation at 1,200 rpm for 5 min at RT. Cell pellets 

were lysed in buffer (pH 7.5) containing 1% Triton-X-100, 20 mM Hepes, 0.15 M NaCl, 

2 mM EDTA and supplemented with 8% Complete Mini Protease Inhibitor Cocktail 

Tablets (Roche, Cat. No. 11836153001) and 1% Phosphatase Inhibitor Cocktail 2 

(Sigma-Aldrich, Cat. No. P5726). Samples were sonicated then spun down in a centrifuge 

at 13K rpm for 10 min at 4°C. Supernatants were transferred to new tubes and total 

protein concentration was determined by Bradford assay (BIO-RAD). Twenty-five µg of 

total protein was separated by electrophoresis on 12% or 7.5% SDS-PAGE, then 

transferred to polyvinylidene difluoride (PVDF) membranes. Membranes were blocked 
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using 5% non-fat powdered milk in TBS-T [0.5 M NaCl, 20 mM Tris (pH 7.5), 0.1% 

Tween 20]. Membranes were incubated with 1:2000 Armenian hamster monoclonal anti-

human or mouse MUC1 cytoplasmic tail (CT2) [242], or 1:2000 mouse HMFG2 

monoclonal anti-human MUC1 [243] antibodies in 1% of 2% sodium azide. Detection 

was with 1:4000 goat antibody against Armenian hamster (Santa Cruz, Cat. No. SC-

2443) or 1:4000 goat anti-mouse (Jackson-ImmunoResearch, Cat. No. 115-035-003) 

horseradish peroxidase-conjugated secondary antibodies using the Enhanced 

Chemiluminescence Plus (ECL+) protein detection system (GE Healthcare). Membranes 

were re-probed with mouse anti-actin antibody (clone C4) to verify sample loading 

{Moyer, 1986/8 #1269}.  

Immunofluorescence. 

Cells were seeded in borosilicate glass chamber slides (Labtek, Cat. No. 155411) 

as to be approximately 30% confluent in 24 h. Cells were washed with PBS then fixed 

with 3% paraformaldehyde (PFA) (Sigma) for 15 min. Cells were permeabilized with a 

solution containing 20mM HEPES (pH 7.5), 300mM sucrose, 50mM NaCl, 3mM MgCl2, 

and 0.5% Triton X-100 on ice for 15 min. Cells were washed with PBS then incubated 

with 5% bovine serum albumin (BSA, Sigma) blocking solution in PBS for 30 min. 

Blocking solution was removed and cells were incubated with primary 1:100 HMFG2 

antibody in BSA at 4°C overnight, rocking. Cells were washed with PBS then incubated 

with secondary 1:100 anti-mouse-fluorescin isothiocyanate (FITC) antibody (Santa Cruz, 

Cat. No. 2010) in BSA wrapped in foil for 2 h at RT. In the dark, cells were washed with 

PBS then stained with 1 μM Hoescht for 5 min at RT. Cells were washed with PBS then 

stored in PBS at 4°C or used for confocal imaging. 
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Viruses. 

VSV-ΔM51-GFP recombinant is a gift from Jack Rose[98] (Yale University).  

VSV-ΔM51-GFP is a derivative of VSV (Indiana serotype) and has a deletion at amino 

acid position 51 of the M protein, as well as the GFP ORF inserted in position 5 of the 

viral genome [98]. VSV-ΔM51-GFP has been shown to retain its oncolytic activities 

while lacking neurotoxicity in vivo [98]. VSV-ΔM51-GFP stocks were prepared using 

BHK-21 cells infected at a multiplicity of infection (MOI) of 0.005 and incubated at 

37°C in MEM media containing 5% FBS, 3.4 mM L-glutamine, 900 U/ml penicillin and 

900 µg/ml streptomycin (Cellgro). Virus containing media was collected at 24 h post 

infection (p.i.) and centrifuged at 3000 x g for 10 min at RT to remove large cellular 

debris. Virus was purified by the method of Kalvodova et al (2009), with slight 

modifications[244]. In brief, clarified supernatants were underlayed with 5 ml 20% (w/v) 

sucrose in HEN buffer (10 mM HEPES pH 7.4, 1 mM EDTA, 100 mM NaCl) and 

centrifuged at 28K rpm for 3.5 h at 4°C in a Beckman SW32 Ti rotor. The resulting viral 

pellet was resuspended in HEPES buffered saline (HBS), pH 7.5 [21 mM HEPES, 140 

mM NaCl, 45 mM KCl, 0.75 mM Na2HPO4, 0.1% (w/v) dextrose] and left at 4°C 

overnight then centrifuged in a 7.5 - 27.5% continuous gradient of Optiprep (Axis Shield) 

in HBS at 26.5k rpm for 30 min at 4°C using a Beckman SW40 Ti rotor. The virus 

containing band was collected from the gradient, diluted with ET buffer (1 mM Tris-HCl 

pH 7.5, 1 mM EDTA), pelleted by centrifugation at 27K rpm for 1.5 h at 4°C using a 

Beckman SW40 Ti rotor then resuspended in PBS.   

VVT7 was created by integration of the bacteriophage T7 RNA polymerase gene 

into the vaccinia virus (strain Western Reserve) thymidine kinase gene [245] . VVT7 and 
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herpes simplex virus type 1 (HSV-1) (MacIntyre strain; ATCC,VR-539) were grown on 

Vero cells. HSV-1 viral stocks and infections were prepared and performed as described 

in [246]. VVT7 viral stocks were prepared using Vero cells infected at MOI 0.05. At 3 

days p.i., cells were collected by gentle scraping, pelleted by centrifugation, resuspended 

in PBS, disrupted by 2 freeze/thaw cycles followed by brief sonication, and centrifuged at 

1100 x g for 10 min at 4°C. The resulting supernatant was layered onto a cushion of 36% 

sucrose in 10 mM Tris (pH 8.0) and centrifuged at 18K rpm for 80 min at 4ºC using a 

Beckman SW40 Ti rotor. The resulting viral pellet was resuspended in 1mM Tris (pH 

8.0), homogenized using a Duall homogenizer, then centrifuged in a 25-40% continuous 

sucrose gradient in 10 mM Tris (pH 8.0) at 13.5K rpm for 40 min at 4°C using a 

Beckman SW40 Ti rotor. The virus containing band was collected by insertion of a 

syringe needle through the side of the tube, diluted with 1 mM Tris (pH 8.0), pelleted by 

centrifugation at 13.5K rpm for 40 min at 4ºC using a Beckman SW40 Ti rotor then 

resuspended in 1 mM Tris (pH 8.0).  

Cell Viability Following Infection with Different Viruses. 

Cells were seeded in 96-well plates so that they reached approximately 80% 

confluence at 24 h then infected with VSV-ΔM51-GFP at a multiplicity of infection 

(MOI) of 0.001, 0.1, or 1 CIU (cell infectious units) per cell (based on their titration on 

4T1 cells) or mock infected in serum free media (Hyclone, SFM4MegaVir). For HSV-1 

or VVT7, cells were infected at MOI of .001, 0.1, or 1 CIU per cell (based on their 

titration on Vero cells) or mock infected in SFM. One h p.i., the virus containing media 

was aspirated and replaced with growth medium containing 5% FBS. Cell viability was 

analyzed every 24 h for 5 days p.i. by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
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tetrazolium bromide (MTT) cell viability assay (Biotium) in accordance with 

manufacturer instructions. Virus replication was measured by GFP fluorescence readings 

every 24 h p.i. for 5 days (CytoFluor Series 4000, filter 450/50nm, Perseptive 

Biosystems). 

Type I Interferon Sensitivity and Production. 

Cells were seeded in 24-well plates so that they reached approximately 80% 

confluence at 24 h. For type I interferon sensitivity, the cells were mock treated or treated 

with 5,000, 15,000, or 30,000 U/ml human alpha interferon (IFN-α) (Calbiochem, Cat. 

No. 407294) contained in growth media. Twenty-four hours post treatment, the cells were 

infected with serial dilutions of VSV-ΔM51-GFP, and infectious foci were analyzed 16 h 

p.i. by fluorescence microscopy. Treatments and infections were performed in duplicate.  

One-step Virus Growth Kinetics. 

Cells were seeded in 96-well plates to reach confluence at 24 h. Cells were 

infected for 1 h at 37°C with VSV-ΔM51-GFP at an MOI of 10 CIU/cell based on the 

cell line specific MOIs (KCM: 6.25x10
6
, KCKO: 1.57x10

8
, Panc02.MUC1: 6.7x10

7
, and 

Panc02.Neo: 1.51x10
8
) (tested in duplicate). At 1 h p.i., virus was aspirated and cells 

were washed twice with PBS (to prevent carryover of virions) then overlaid with growth 

medium containing 5% FBS. At 1, 24, 50, and 72 h p.i., supernatant was collected from 

the wells and flash frozen at −80°C. Virus titers were later determined by plaque assay 

analysis. BHK-21 cells were incubated with serial dilutions of the samples for 1 h. The 

virus was aspirated, and a growth media with 5% FBS-1% Bacto Agar overlay was 

applied to limit virus spread. Infectious foci were counted by fluorescence microscopy at 

16 h p.i.  
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Plaque Reduction Neutralization Test. 

BHK-21 cells were seeded in 96-well plates to reach confluence in 24 h. Mouse 

sera was first diluted 1:5 then serially 1:2 to make dilutions ranging from 1:20 to 1:40960 

for analysis. VSV-ΔM51-GFP stock diluted 1:32,000 (a dilution determined to produce 

approximately 50 infectious foci per well) was incubated with the sera dilutions for 1 h at 

37°C, with rocking. Sera/virus dilutions were then used to infect cells, with rocking every 

10 min for 1 h at 37
0
C. Sera/virus dilutions were removed and a growth media with 5% 

FBS and 1% Bacto Agar was overlaid to limit virus spread. Infectious foci were counted 

by fluorescence microscopy at 16 h p.i. Antibody dilution titers were calculated as the 

inverse of the sera dilution resulting in half the number of plaques when compared to 

VSV-ΔM51-GFP alone. All sera samples were tested in triplicate. 

Detecting Antibodies Generated Against KCM cells. 

KCM cells were seeded in 96-well plates to reach confluence in 24 h. Cells were 

washed with PBS and fixed in 3% PFA for 15 min, followed by permeabilization for 15 

min on ice with a solution containing 20 mM HEPES (pH 7.5), 300 mM sucrose, 50 mM 

NaCl, 3mM MgCl2, and 0.5% Triton X-100. The cells were washed then blocked with 

5% BSA in PBS for 20 min at RT then incubated with mouse sera dilution as prepared in 

section 2.9, without incubating with virus, overnight at 4°C. Cells were washed twice 

with PBS, incubated with peroxidase-conjugated goat anti-mouse IgG antibodies (1:300; 

Jackson ImmunoResearch) for 1 h. For detection, cells were washed three times with 

PBS then incubated with o-Phenylenediamine (OPD, Thermo Scientific) for 15 minutes. 

OPD was inactivated with the addition of 2.5 M sulfuric acid. Optical density was read at 

490 nm. All sera samples were tested in triplicate.  
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In Vivo Treatment of Tumors with VSV-ΔM51-GFP. 

 Mice were handled and maintained under veterinary supervision in accordance 

with guidelines of the University of North Carolina at Charlotte Institutional Animal Care 

and Use Committee (IACUC) approved protocol. All cell lines used in animal 

experiments tested negative for an extended panel of pathogens by Charles River 

Laboratories. To treat animals containing KCM tumors with VSV-ΔM51-GFP and with 

or without gemcitabine, 16 to 18-week-old MUC1.Tg male mice were subcutaneously 

injected with the KCM cell line.  MUC1.Tg mice express human MUC1 under its own 

promoter and display T and B cell tolerance to MUC1. These mice express MUC1 in a 

tissue specific manner and are not a model of overexpression [247].  MUC1.Tg mice tail 

clipped were collected when mice were approximately 11 days old. Genomic DNA was 

isolated and used to genotype the mice by polymerase chain reaction. For MUC1.Tg the 

primers were 5′-CTTGCCAGCCATAGCACCAAG-3′ and 5′-

CTCCACGTCGTGGACATTGATG-3′ with a 341bp amplification product that was 

confirmed on 1% agarose gels [157]. The MUC1.Tg mice were originally developed by 

Dr. Sandra Gendler (Mayo Clinic Arizona) but are now bred and maintained in Dr. 

Mukherjee’s laboratory. Based on preceding titration experiments (data not shown), mice 

were injected with 1x10
6 
KCM (in 100µL of PBS) into the right flank of mice (n=29). 

Mice were palpated starting on day 5 post tumor injection (p.t.i.) then were randomly 

divided into 5 groups: PBS, VSV-ΔM51-GFP, killed VSV-ΔM51-GFP, VSV-ΔM51-GFP 

+ gemcitabine, and gemcitabine alone (n=6 per group, n=5 for killed VSV-∆M51-GFP). 

All mice were treated 5 days p.t.i. with either 50µL PBS or a single intraperitoneal (IP) 

injection of gemcitabine (50 mg/kg dissolved in 50 µL PBS). On days 7, 9, and 11 p.t.i., 
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the PBS and gemcitabine groups received intratumoral (IT) administration of 50 μl PBS. 

The other groups received intratumoral (IT) administration of either VSV-∆M51-GFP or 

UV killed VSV-∆M51-GFP on days 7, 9, and 11 p.t.i. with a dose of 1x10
8
 CIU in 50 μl 

PBS (based on BHK-21 titer). Tumor size was monitored by caliper measurements every 

day until day 12 and every other day thereafter. Body weight was measured once weekly. 

Tumor weight was calculated according to the formula: grams = [(length in cm) x (width 

in cm)
2
]/2. Mice were sacrificed 18 days p.t.i, at which time, mice were not yet 

presenting with clinical signs indicating severe morbidity. To conduct survival study 

using VSV-ΔM51-GFP against KCKO and KCM tumors, 8 to 11-week-old MUC1.Tg 

male mice were subcutaneously injected with either KCM or KCKO cell lines. Mice were 

subcutaneously injected with 1x10
6 

KCM or KCKO cells (in 100 µL of PBS) into the 

flank (n=8 each). Mice were palpated starting at 5 days p.t.i. then were randomly divided 

into 2 groups per cell line (n=4 per group). One group per cell line served as a control and 

received IT administration of 50 μl PBS only on days 8, 10 and 12 p.t.i. The other group 

received IT administration of VSV-∆M51-GFP on days 8, 10 and 12 p.t.i with an initial 

dose of 5x10
7
 CIU in 50 μl PBS (based on A549 titer) followed by two doses of 3 x 10

7
 

CIU in 50 μl PBS. Tumor size was monitored by caliper measurements every other day, 

and body weight was measured once weekly. Tumor weight was calculated according to 

the formula: grams = [(length in cm) x (width in cm)
2
]/2. Mice were sacrificed when 

length or width of the tumor reached 1.5 cm, or tumors became ulcerated, or mice were 

presenting with clinical signs indicating severe morbidity. Data were analyzed using 

GraphPad software and are expressed as mean ± standard error mean. Comparison of 
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groups was done by two-way ANOVA only when the groups had the same number of 

animals (*p<0.05, **p<0.01, ***p<0.001).  

Statistical Analysis Software. 

All statistical analyses were performed using GraphPad Prism, version 5.0c for 

Mac OS X (GraphPad Software, San Diego, California). 
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4.4 Results 

Susceptibility of KCM and KCKO to Viral Oncolysis. 

A successful virotherapy is dependent first of all on the ability of the OV to infect 

and kill cancer cells. Therefore, we tested the susceptibility of murine PDA cell lines 

KCM and KCKO to VSV in vitro. The tractable in vitro system allowed us to address the 

permissibility of cancer cells to VSV-mediated cell death in a controlled manner. As 

described in Materials and Methods and illustrated in Figure 34, KCM and KCKO cell 

lines were originated from spontaneous mouse PDAs expressing or lacking human 

MUC1, correspondingly[248].  Using both KCM and KCKO cells allows for testing of 

VSV oncolytic virotherapy in the more clinically relevant context of MUC1 

overexpression (approximately 80% PDA patients) or no expression. Previous 

comparative studies of KCM and KCKO cell lines demonstrated that KCM cells display 

a much more aggressive phenotype [233]. This was evidenced by an increase in 

invasiveness of KCM cells, an increase in proliferation, with a deregulation of the MAPK 

pathway[233], and increased drug resistance (unpublished data).  

KCM cells express both murine and human MUC1 while KCKO cells lack MUC1 

expression from either species. Expression phenotypes of the KCM and KCKO cell lines 

were analyzed using the HMFG2 antibody which targets sparsely glycosylated VNTR 

repeats of the human MUC1 extracellular domain. Using HMFG2 antibodies in flow 

cytometry (Figure 35A), immunofluorescence (Figure 35B), and Western blot (Figure 

35C) analyses, we confirmed that KCM cells are positive and KCKO are null for MUC1 

(Figure 35).  
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For our studies, a VSV-ΔM51-GFP recombinant was chosen based on previous 

experiments that demonstrate that mutation or deletion of methionine at position 51 

(ΔM51) of the VSV M protein allows the virus to retain oncolytic ability without the 

neurotoxicity associated with wild type (wt) VSV [237, 249, 250] . In addition, the 

insertion of a GFP gene at position 5 of the VSV-ΔM51-GFP genome allows for 

monitoring of virus replication and spread based on VSV-driven GFP expression 

expression [98].  

To analyze the ability of VSV-ΔM51-GFP to infect and kill KCM and KCKO in 

vitro, the cells were mock infected or infected at increasing MOIs
BHK

: low (0.001 

CIU/cell), medium (0.1 CIU/cell), or high (10 CIU/cell). The values for MOIs
BHK 

were 

calculated based on the titration of VSV-ΔM51-GFP on BHK-21 cells, which are 

exceptionally susceptible to VSV infection and replication[251]. Cell viability following 

virus infection was calculated using an MTT cell viability assay performed at 1, 24, 48, 

72, and 96 h p.i. GFP fluorescence readings were taken at the same time points as MTT 

analysis (Figure 36A). For VSV at medium and high MOIs there was increased infection 

and killing of KCM and KCKO starting at 48 hours when compared to mock. A 

noticeable difference between KCM and KCKO was at the lowest MOI (0.001 CIU/cell), 

where KCM were resistant to virus-mediated cell death, while KCKO susceptibility was 

comparable to medium and high MOIs (Figure 36A). The MTT results were mirrored by 

GFP expression as robust fluorescence readings occur at all tested MOIs in KCKO cells, 

but only at medium and high MOIs in KCM cells.  

To determine if early stages of infection are a potential rate-limiting step of the 

OV treatment, kinetic testing of virus replication was done to evaluate the production of 
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VSV-ΔM51-GFP progeny at different MOIs.  In KCM and KCKO an MOI (0.001 

CIU/cell) was chosen based on the difference seen in the MTT data.  MOI (5 CIU/cell) 

was chosen as a median between the medium and high MOIs where similar patterns of 

cell viability and VSV-ΔM51-GFP GFP fluorescence were shown for both cell lines. 

After analysis of collected supernatant by plaque assay on BHK cells, similar VSV-

ΔM51-GFP replication titers were seen in both cell lines at all time points (Figure 37B). 

These results highlight that the differences of susceptibility to VSV-ΔM51-GFP-mediated 

killing between KCM and KCKO occur at an unknown step in the virus life cycle. 

In addition, to determine if the results showing the ability of VSV-ΔM51-GFP to cause 

increased levels of cell killing in KCKO when compared to KCM were virus-specific, we 

tested the cells with two DNA viruses unrelated to VSV-ΔM51-GFP: human herpes 

simplex virus 1 (HSV-1) and vaccinia virus (a poxvirus, VVT7). The strains of HSV-1 

and VVT7 used in these experiments are not OVs, however recombinant versions are 

used for OV research (Figure 36A and 36B). KCM and KCKO were infected with either 

HSV-1 or VVT7 at MOI of .001, 0.1, or 1 CIU/cell (based on their titration on Vero cells. 

MTT assays were done for both viruses at the same time points as VSV-ΔM51-GFP and 

used for comparison of cell killing effect. HSV-1 and VVT7 displayed similar cell killing 

ability at most time points and MOIs for both KCM and KCKO. VVT7 appears to have a 

stronger oncolytic effect than HSV-1 on KCM and KCKO at medium and high MOIs at 

120 hours.  When compared to VSV-ΔM51-GFP, however neither HSV-1 or VVT7 show 

as strong of an oncolytic effect. There is a more pronounced oncolytic effect with VSV-

ΔM51-GFP at all MOIs in KCM and KCKO from 48 h and afterward. This pronounced 

oncolytic effect of VSV-ΔM51-GFP justifies further exploration. 
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Our data show that at the lowest VSV-ΔM51-GFP MOI KCM cells are more 

resistant to VSV-ΔM51-GFP infection and killing than KCKO. Based on the known 

difference of MUC1 expression between the two cell lines, as well as known functions of 

MUC1 within the cell, it was important to address a potential role for MUC1 in resistance 

to VSV-ΔM51-GFP. However, it must be noted that while KCM and KCKO are MUC1 

positive or null, respectively, there is no indication that the two cell lines are isogenic. 

Additional mutations that may have arisen during the cell line selection process could 

factor into the VSV-ΔM51-GFP resistant phenotype. To analyze the ability of VSV-

ΔM51-GFP to infect and kill isogenic MUC1 positive, where the human MUC1 gene was 

inserted into an established cell line that express low levels of Muc1, testing was done 

with Panc02-MUC1 and Panc02-Neo, respectively[252, 253]. Immunofluorescence and 

Western blot analysis using HMFG2 antibody confirmed the presence or absence of 

human MUC1 in these cell lines (Figure 38 A and B). Additionally, MTT cell viability 

showed no differences in VSV-ΔM51-GFP cell killing ability between the two cell lines 

at all MOIs (Figure 38C). GFP fluorescence also showed similar patterns of expression at 

all time points regardless of MUC1 status (data not shown). Like KCM and KCKO, virus 

kinetics to evaluate the production of VSV-ΔM51-GFP progeny showed similar VSV-

ΔM51-GFP replication titers in both cell lines at all time points (Figure 38D). These 

results do not definitively eliminate a potential role for MUC1 in VSV-ΔM51-GFP. As 

mentioned above, the KCM and KCKO cell lines may have additional mutations that 

contribute to the difference in susceptibility, as different glycosylation patterns may exist 

between the proteins. However, analysis of MUC1 glycosylation patterns and the effect 

they may have on virus replication is beyond the scope of this project. In addition, 
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Panc02 cells endogenpously express low levels of MUC1 and are not null for the MUC1. 

Further experiments using MUC1 specific siRNA must be performed to conclusively 

suggest the role of MUC1 in OV susceptibility.  

Efficacy of VSV-ΔM51-GFP in Vivo in Immunocompentent Muc1.Tg Mice. 

Our in vitro experiments demonstrate that VSV-∆M51-GFP is able to infect and 

kill both KCM and KCKO cells, although KCKO cells were more susceptible than KCM 

at the lowest MOI. Next, we wanted to test the efficacy of VSV-∆M51-GFP in an 

immunocompetent animal model. We conducted a pilot experiment in mice bearing KCM 

tumors, given that the MUC1 expressing tumors are a more clinically relevant and 

challenging model system. Further, the human MUC1.Tg mice used to propogate the 

KCM tumors are tolerant to human MUC1-expressing tumors making the model relevant 

for the study.  In this experiment, we wanted to compare the efficacy of OV therapy to 

the chemotherapy using gemcitabine (the most common chemotherapeutic used to treat 

pancreatic cancer) [254]as well as to the combined chemovirotherapy using VSV-∆M51-

GFP and gemcitabine. 

VSV has never been studied in any immunocompetent PDA model. To test the 

oncolytic efficacy of VSV-∆M51-GFP in an immunocompetent mouse model of PDA, 

subcutaneous injections of KCM cells were used to establish tumors in the right flanks of 

human MUC1.Tg mice. When tumors were palpable (5 – 7 mm), mice were treated IT 

with VSV-∆M51-GFP alone, VSV-∆M51-GFP plus gemcitabine, gemcitabine alone, 

UV-killed VSV-∆M51-GFP, or PBS (Figure 39A). UV-inactivated virus was used as a 

control to determine if the presence of viral proteins without virus replication would 

effect tumor progression. Palpable KCM tumors were treated every other day for a total 
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of three treatments: days 7, 9, and 11. Mice were monitored for signs of distress, and 

tumor size was measured every other day. Mice were sacrificed on day 18, at which time 

the animals were not yet presenting clinical signs indicative of morbidity. Results show 

KCM tumors injected with PBS as a control continue to grow at a steady rate (Figure 39). 

Interestingly, KCM tumors injected with killed virus appear more aggressive and 

grow larger than the PBS control, with significantly increased tumor burden on days 16 

and 18. Tumor growth with gemcitabine alone was comparable to that of PBS treatment. 

Treatment with VSV-∆M51-GFP alone and VSV-∆M51-GFP plus gemcitabine showed 

significant reduction in tumor burden beginning on day 12 when compared to PBS 

treatment (Figure 39A). This significance was maintained until day 18 at which point the 

mice were sacrificed. The greatest therapeutic effect, however, was seen in the 

combinational therapy of VSV plus gemcitabine, which showed significant reduction in 

tumor burden when compared to VSV-∆M51-GFP alone at day 18 (Figure 39A).  

Survival of Mice Treated with VSV-∆M51-GFP 

The above experiment demonstrated that live VSV-∆M51-GFP significantly 

reduced KCM tumor burden up to 18 days following subcutaneous injections of cancer 

cells. However, as shown in Figure 39A, OV therapy did not abolish tumor growth. 

Therefore, we conducted a longevity study to determine whether VSV-∆M51-GFP 

treatment could result in a sustained antitumor effect. In this experiment, in addition to a 

more aggressive KCM-based model, we included KCKO-based tumors. First, 

subcutaneous injections of KCM or KCKO cells were used to establish tumors in the 

right flanks of human MUC1.Tg mice. When tumors were palpable (5 – 7 mm), mice 

were treated IT with PBS as a control or with VSV-∆M51-GFP every other day for three 
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treatments: days 8, 10, and 12 (Figure 40A). Mice were monitored for signs of distress, 

and tumor size was measured every other day. When tumor length reached 1.5 cm, or 

tumors became ulcerated, or animals presented clinical signs indicative of morbidity then 

mice were sacrificed. Results show that the KCM and KCKO cell lines do establish 

tumors and that KCM is a more aggressive form of PDA, with tumor size exceeding that 

of KCKO. Even more, VSV treatment of both cell lines demonstrates delayed tumor 

growth when compared to the control mice (Figure 40B). Specifically, for KCM tumors, 

delayed tumor progression was seen with virus treatment, though, only half of the VSV-

treated mice outlived the control animals. For KCKO there was a significant decrease in 

tumor burden starting at day 12 that lasted through day 32 when significance could no 

longer be determined due to the need to sacrifice control animals needed for comparison 

(Figure 40B). A delay in tumor progression in treated animals was visible, but not 

sustained through the course of the experiments. In fact, by day 34 control tumors and 

those treated with VSV-∆M51-GFP reached similar sizes. Regardless of treatment, most 

KCKO tumors never grew as large as the KCM tumors. This observation is in agreement 

with the previous studies where mice bearing KCKO tumors represent a less challenging, 

stable form of PDA disease as the cells grow at a slower rate than the more aggressive 

KCM cells [233].  

Potential Mechanisms for Lack of a Sustained Anti-cancer Effect.  

While our in vitro and short-term in vivo results show promising oncolytic 

abilities of VSV-∆M51-GFP in vivo against both KCM and KCKO cells, there is clear 

indication that this treatment is not having a long-term sustained anticancer effect with 

the 3 OV injections. Several mechanisms (not mutually exclusive) may explain these 
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conflicting results: limited penetration of virus into the tumor, premature clearance of 

virus by adaptive immune responses, virus administration protocol (including virus titer, 

timing and portal of administration, etc.).  

Because of an active adaptive immune system, clearance of OV treatment in an 

immunocompetent subject would be expected after a time. This potential adaptive 

immune response against virus treatment must be addressed. Samples were examined 

from the KCM experiments where all mice were sacrificed at the same time on day 18 

post KCM cell injection.  

To determine potential clearance of VSV-∆M51-GFP, via an adaptive immune 

response aimed at viral proteins, it was important to look for antibodies generated against 

VSV-∆M51-GFP proteins. Serial dilutions of mouse sera was incubated with a known 

amount of VSV-∆M51-GFP plaque forming units and was then used to infect BHK cells 

for plaque assay analysis 16 h p.i.. In the VSV alone and VSV plus gemcitabine groups it 

is evident that a strong adaptive immune response was mounted against the virus as viral 

infections were almost eliminated in some samples (Figure 39B). Whether complete 

clearance of virus occurred within the tumor is not known.  

In looking for an adaptive immune response to KCM cells, there was no 

indication of a T-cell response against KCM antigen in an ELISPOT assay (data not 

shown). To further investigate a potential adaptive immune response to KCM cells, 

mouse sera was analyzed for antibodies directed against KCM cells. KCM cells were 

fixed and permeabilized then incubated with serial dilution of mouse sera. Detection was 

done using an HRP-conjugated secondary and OPD read at 490nm. Results indicate that 

there was no significant difference in adaptive immune generation of antibodies against 
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KCM in any of the treatments when compared to sera from mice that were never injected 

with KCM (Figure 39C).  
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4.5 Discussion  

 In the present study, for the first time, VSV has been tested in an 

immunocompetent animal model of pancreatic cancer (specifically PDA). Importantly, 

we have developed a system that allows us to study oncolytic virotherapy (VSV or any 

other OV) in the context of MUC1 overexpression (approximately 80% PDA patients) or 

no expression [231, 255]. Our data show that VSV-ΔM51-GFP can infect and kill all 

tested mouse PDA cell lines in vitro and cause transient reduction in tumor (-MUC1 or 

+MUC1 tumors) growth in vivo.  

Our in vitro studies demonstrate that, although VSV was able to infect and kill all 

tested murine PDA cells in vitro, there were clear variations in the susceptibility of 

different cell lines to VSV infection and VSV-induced oncolysis. This is consistent with 

our recent studies with an array of human PDA cell lines demonstrating that PDA cells 

are highly heterogeneous in their susceptibility to oncolytic virus treatment [237, 238]. 

Here, our particular focus was on mouse PDA cell lines, KCM and KCKO, which could 

be used in the immunocompetent model of PDA illustrated in Figure 34.We found that, 

although the cell lines were susceptible to VSV-ΔM51-GFP at both low and high MOI, 

KCM overexpressing human MUC1 were clearly more resistant than KCKO at a low 

MOI. We hypothesized that the physical presence of MUC1 might be responsible for this 

resistance of KCM cells to VSV at low MOI. Previous studies with other viruses showed 

that O-linked carbohydrates of MUC1 purified from human breast milk can inhibit 

poxvirus, HIV, and rotavirus and that MUC1 expression can block adeno-associated virus 

attachment [256-261]. Multiple attempts to remove or truncate the O-linked 

glycosylations of the MUC1 protein using neuraminidase, Endo-α-N-
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Acetylgalactosaminidase, Exo-α-N-Acetylgalactosaminidase, or sialidase, showed no 

change in the infectivity of VSV (data not shown). Even more, our experiments showed 

no significant difference in attachment of VSV to any of the murine cell lines regardless 

of MUC1 expression. Together, these results suggest that even if MUC1 overexpression 

interferes with viral replication, the mechanism of this interference is not due to the 

physical prevention of virion attachment as it was shown for other viruses. 

In many cancer types, including PDA, MUC1 overexpression is linked to tumor 

development, aggressive growth and metastasis.  Beyond the physical presence of 

MUC1, signaling pathways are responsible for these tumorigenic results [262]. Whether 

MUC1 signaling can alter cellular antiviral response is unclear. Generation of the murine 

PDA cell lines from spontaneous murine PDA tumors allows us to study virotherapy in 

the presence or absence of MUC1. However, because accumulation of additional 

mutations cannot be ruled out during the creation of the KCM and KCKO cell lines 

[233], we were unable to determine if the presence of MUC1 was solely responsible for 

the resistance of KCM at the low MOI. Moreover, a complete knockdown of MUC1 in 

KCM is very challenging as this cell line also expresses murine Muc1 (Figure 34). 

Instead, to examine a possible role of human MUC1 overexpression on VSV infection, 

two isogenic PDA murine cell lines, Panc02-MUC1 and Panc02-Neo, were evaluated. 

The presence of MUC1 has no obvious affect on the oncolytic ability of VSV. Both 

Panc02-MUC1 and Panc02-Neo were similarly susceptible to VSV infection and killing 

at low and high MOIs. This result suggests that MUC1 expression alone may not be 

responsible for higher resistance of KCM cells to VSV.  
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Because of the involvement of MUC1 in numerous signaling pathways, we also 

considered a possibility that MUC1 plays an indirect antiviral role in KCM cells. We 

were particularly interested in a possibility that MUC1 expression could activate type I 

IFN antiviral responses in KCM cells. Recently, our analysis of 12 human PDA cell lines 

showed that resistant cell lines had active Type I IFN signaling [238]. Previous studies 

have demonstrated a potential link between cellular response to IFN-α and IFN-γ and 

upregulation of MUC1 expression [263]. Additionally, MUC1 has been shown to interact 

with proteins that result in activation of NF-κB, a regulatory factor of IFN expression 

[264, 265].  While this potential link between MUC1 activation of an antiviral response 

requires more study, our data experiments show that all tested mouse PDA cell lines have 

defective Type I IFN pathway regardless of their MUC1 expression status (data not 

shown). In summary, another elusive mechanism is responsible for the difference seen 

between KCM and KCKO cells. Additional studies, beyond the scope of this project, will 

be needed to provide a detailed account of what may be responsible for the different 

susceptibility of KCKO and KCM cells to VSV.  

We focused on KCM cells for our in vivo experiments as xenografts of KCM lead 

to more aggressive tumors than KCKO or KC and because most of the PDA patients 

exhibit MUC1 overexpression [233]. Our in vivo data demonstrated that VSV-ΔM51-

GFP significantly reduced tumor burden in mice with subcutaneous KCM xenografts for 

18 days. However, this effect was not sustainable when mice were monitored for 

survival, with all mice required to be sacrificed after 26 days. Even more, a similar result 

was shown in KCKO-derived tumors which exhibit much slower tumor growth when 

compared to KCM [233]. The transient reduction of tumor growth seen in both cell types 
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suggests that MUC1 may not play a role in the limitation of VSV oncolytic ability. In 

mice with KCM xenografts, analysis of mouse sera determined that adaptive immunity 

generates a robust antibody response directed at VSV. At the same time, when KCM cells 

were fixed and permeabilized then incubated with mouse sera from mice with KCM 

tumors, a modified ELISA assay, no adaptive immune responses against tumor cells 

could be detected in any treatment groups. Together, these data suggest that VSV-ΔM51-

GFP-based monotherapy does not have a sustained antitumor response in the tested 

immunocompetent mice, possibly due to the strong antiviral response and absence of an 

effective adaptive immune response against the tumor. 

Several options exist to increase the efficacy of VSV in vivo. First, VSV 

expressing a tumor (PDA) associate antigen (TAA) like MUC1 can be used. Several 

studies utilized recombinant VSV encoding TAAs and demonstrated the ability to 

generate increased numbers TAA-specific T cells when compared to control virus [266-

268]. Otherwise, other recombinant VSV expressing immune system modulating 

cytokines, microRNA targets, tumor specific attachment proteins, or even cancer 

suppressors proteins [268] could be tested and compared to VSV-ΔM51-GFP. Moreover, 

considering future OV monotherapy may benefit from chemotherapeutic co-therapy, we 

utilized a commonly used PDA chemotherapeutic, gemcitabine, to test a potential co-

treatment. While this therapeutic effect with a suboptimal concentration of gemcitabine 

showed significantly more tumor reduction when compared to VSV-ΔM51-GFP alone, 

ongoing experiments will study potential of other gemcitabine (or other drugs) 

concentrations as well as treatment schedules. Finally, the possibility remains that VSV is 

not an optimal virotherapy against murine PDA. Our in vitro experiments with herpes 
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simplex virus and vaccinia virus did not show improved efficacy compared to VSV-

ΔM51-GFP. However, these viruses could be more effective in vivo. Overall, the 

described here immunocompetent murine system is a clinically relevant PDA model to 

study oncolytic virotherapy against PDA tumors (MUC1 positive or null) using oncolytic 

viruses as a monotherapy or in combination with other treatments. 
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4.6 Figures 

 

Figure 34: Generation of KCM and KCKO cell lines. C57BL/6 mice with KRAS
G12D

-

driven spontaneous PDAs were crossed with mice expressing human MUC1 (MUC1.Tg) 

or null (MUC1 KO) were used to generate the MUC1 positive KCM or MUC1 null 

KCKO cell lines, respectively.   
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4.6 Figures continued 

 
 

Figure 35: Characterization of human MUC1 expression of KCM and KCKO. (A) KCM 

and KCKO cells were collected and resuspended in PBS then incubated with Fc block 

and primary HMFG2 antibodies to detect surface expression of extracellular human 

MUC1 on KCM and KCKO cells via FACs analysis. (B) Cells were fixed and 

permeabilized then incubated with HMFG2 antibodies directed against the extracellular 

domain of human MUC1 with a FITC-conjugated secondary antibody used for 

immunofluorescence detection. Hoescht dye was used to stain for the nucleus while 

wheat germ agglutinin (WGA) was used to stain membranes. (C) KCM and KCKO total 

cell lysates were separated by 7.5% or 12 % SDS-PAGE, respectively, then analyzed by 

Western blot with antibodies against extracellular human MUC1 (HMFG2 HRP-

conjugated antibody) and human and murine transmembrane (CT2 HRP-conjugated 

antibody) MUC1 domains, respectively. β-actin antibodies were used as a marker for 

loading control. 
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4.6 Figures continued 

 

Figure 36: KCM and KCKO viability following infection with viruses. KCM and KCKO 

were seeded in 96-well plates so they reached approximately 80% confluence at 24 h. 

Cells were mock infected or infected with VSV-ΔM51-GFP (A), HSV-1 (B), or VV (C) 

at low (.001 CIU/cell), intermediate (0.1 CIU/cell), or high (1 CIU/cell) MOI. Cell 

viability was analyzed at the indicated times by an MTT cell viability assay and is 

expressed as a ratio of virus-infected to mock-treated cells. All MTT assays were done in 

triplicate and the data represent the mean and standard deviations. VSV-ΔM51-GFP 

replication detection as an expression of GFP in KCM and KCKO cells. (A) Cells were 

seeded in 96-well plates so they reached approximately 80% confluence at 24 h. Cells 

were mock infected or virus infected at .001, 0.1, or 10 MOI. Virus replication was 

measured by CytoFluor GFP fluorescence readings (485/20nm) at indicated times. 
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4.6 Figures continued 

 

 

 
 

 

 

Figure 37: Cells were infected with VSV-ΔM51-GFP at cell line specific .001 or 5 MOIs. 

At 1 h p.i. the virus was aspirated and cells were washed and growth media with 5% FBS. 

was applied. At the times indicated, supernatant was collected, and virus titers were 

determined by plaque assay on BHK-21 cells. All infections were done in triplicate, and 

the data represent means ± standard deviations. 
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4.6 Figures continued 

 

Figure 38: Panc02.MUC1 and Panc02.Neo expression of human MUC1. (A) Cells were 

fixed, permeabilized, and blocked with BSA before incubation with HMFG2 antibody. 

FITC-conjugated secondary antibody was used for immunofluorescence detection using 

confocal microscopy. Hoescht dye was used to stain for the nucleus and WGA was used 

to stain membranes. (B) Panc02.MUC1 and Panc02.Neo total cell lysates were separated 

by 7.5% or 12 % SDS-PAGE, respectively, then analyzed by Western blot with HMFG2 

antibody to detect the extracellular domain of human MUC1 or CT2 antibody to detect 

the transmembrane domain of human MUC1. β-actin antibodies were used as a marker 

for loading control. Cell viability of Panc02.MUC1 and Panc02.Neo. (C) Panc02.MUC1 

and Panc02.Neo were mock infected or infected with VSV-ΔM51-GFP at .001, 0.1, or 10 

MOI. Cell viability was analyzed at the indicated time points by a MTT cell viability 

assay and is expressed as a ratio of virus-infected to mock-treated cells. All MTT assays 

were done in triplicate, and the data represent the mean and standard deviations. One-step 

growth kinetics of VSV-ΔM51-GFP in Panc02.MUC1 and Panc02.Neo cells. (D) Cells 

were infected with VSV-ΔM51-GFP at cell line specific .001 or 5 MOIs. At 1 h p.i. the 

virus was aspirated and cells were washed and growth media with 5% FBS. was applied. 

At the times indicated, supernatant was collected, and virus titers were determined by 

plaque assay on BHK-21 cells. All infections were done in triplicate, and the data 

represent means ± standard deviations.  
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4.6 Figures continued 

 

Figure 39: Efficiency of VSV-ΔM51-GFP in human MUC1 transgenic immuncompetent 

mice bearing KCM tumors. (A) 16 to 18 week old MUC1.Tg male mice were 

subcutaneously injected with KCM cells in the right flank (n=30). Tumors were 

established by day 5, and the mice were randomly divided into 2 groups (n=6 per group). 

One group served as a control and was administered 50μl PBS i.t on days 7, 9, and 11. 

The other group was treated with three doses of VSV-ΔM51-GFP at a 

concentration  1x10
8
 CIU in 50μl PBS on days 7, 9, and 11. Tumor size was monitored 

by caliper measurements, and tumor weight was calculated according to the standard 

ellipsoid formula: grams = (length in cm X width
2
)/2. Mice were sacrificed at day 18 post 

tumor injection. Comparison of treatments to the PBS only control was done using a 2-

way ANOVA, followed by the Bonferroni posttest to compare VSV to VSV + 

Gemcitabine (*, P<.05; **P<0.01; ***P<0.001; ##P<0.01). Virus neutralizing antibody 

detection in serum. (B) BHK-21 were seeded in 96-well plates so they reached 

approximately 80% confluence at 24 h. Growth media was removed from cells and 

sera/virus dilutions were added to cells. After 1 h, virus was aspirated from cells and a 

growth media with 5% FBS-1% Bacto Agar overlay was applied. Infectious foci were 

counted by fluorescence microscopy at 16 h p.i. Antibody dilution titers were determined 

to be the inverse of the dilution with half the number of plaques when compared to VSV-

ΔM51-GFP alone. All sera samples were tested in triplicate. KCM cell-specific antibody 

detection in serum. (C) BHK-21 were seeded in 96-well plates so they reached 

approximately 80% confluence at 24 h. Cells were fixed and permeabilized then blocked 

in BSA. BSA was removed and sera dilutions were added to cells. Sera was removed and 

cells were washed with PBS. Cells were then incubated with HRP-conjugated secondary 

antibodies. Cells were washed and OPD substrate was added as per manufacturer 

instructions. The reaction was stopped and OD was read at 490nm. All sera samples were 

repeated in triplicate and the data represent the mean and standard deviation. 
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4.6 Figures continued 

 

Figure 40: Treatment Schedule for human MUC1 transgenic immuncompetent mice 

bearing KCM or KCKO tumors (A) Efficiency of VSV-ΔM51-GFP in human MUC1 

transgenic immuncompetent mice bearing KCM or KCKO tumors. (B) 8-11 week old 

male MUC1Tg mice were subcutaneously injected with KCM or KCKO cells in the right 

flank (n=8 per group). KCKO tumors are shown on the left in panel B, KCM tumors on 

the right. Tumors were established by day 8, then mice were randomly divided into 2 

groups (n=4 per group) per cell line. One group served as a control and was administered 

50μl PBS i.t on days 8, 10, and 12. The other group was treated with three doses of VSV-

ΔM51-GFP at a concentration of 5x10
7
 CIU in 50 μl PBS, on days 8, 10, and 12. Tumor 

size was monitored by caliper measurements, and tumor weight was calculated according 

to the standard ellipsoid formula: grams = (length in cm X width
2
)/2. Mice were 

sacrificed when length of the tumor reached 1.5cm, tumors became ulcerated, or mice 

were presenting with clinical signs indicating morbidity. Comparison of groups was done 

using a 2-way ANOVA only at the time points when the groups had the same population 

(*, P<.05; **P<0.01; ***P<0.001). 



  

CHAPTER 5: ENHANCING THE EFFICACY OF A MUC1 TARGETED BREAST 

CANCER VACCINE 

 

 

5.1 Abstract 

 While much advancement has been made in breast cancer treatment, metastatic 

breast cancer remains an incurable disease. MUC1 is a glycoprotein expressed on normal 

glandular epithelial cells but is over-expressed and underglycosylated in over 90% of 

human breast tumors and 100% of metastatic lesions, which lead to its ranking by NCI as 

the second most targetable antigen. Vaccines against tumor antigens have several 

benefits, including the chance to eliminate metastatic lesions that express the vaccinating 

tumor antigen. To this end, we have proposed vaccinating with peptides from the MUC1 

protein core, which is only visible to the immune system on the tumor-associated form of 

the protein. Previous work from our lab has demonstrated that this vaccine does elicit a 

MUC1-specific immune response that can only be functional if the immunosuppressive 

tumor microenvironment is altered to allow efficient killing of tumor cells. Thus, we 

investigated the effectiveness of MUC1 vaccination in combination with drugs known to 

inhibit immunosuppression to determine which drug is the most effective. Methods: Mice 

that are transgenic for human MUC1 (MUC1.Tg) mice were orthotopically injected with 

a syngeneic breast cancer cell line expressing human MUC1 (Mtag.MUC1). Mice were 

vaccinated after palpable tumor formation with the vaccine cocktail, consisting of two 

MHC class I-restricted MUC1 tandem repeat peptides and a class II pan helper peptide 

mixed with GM-CSF and CpG ODN, in incomplete Freund’s adjuvant. Previous work in 
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our lab has shown that blocking the cyclooxygenase pathway (COX) resulted in an 

inhibition of immunosuppression. Thus we used the following drugs in combination with 

the MUC1-vaccine therapy: Indomethacin (COX1 and COX2 inhibitor), Celecoxib 

(COX2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inihibitor), and 

AH6809 (EP2 receptor antagonist). Mice were euthanized and tissue was collected post 

the final vaccination. MUC1 vaccine therapy alone caused a slight reduction in tumor 

burden, although not significant. The combinational therapy of Vaccine+Indomethacin 

resulted in a significant reduction in tumor burden, whereas all other treatments resulted 

in no significant reduction in tumor burden, as measured by caliper measurements. The 

combination treatment of Vaccine +Indomethacin and Vaccine+Celecoxib both reduced 

PGE2 levels compared to vaccine alone. In a repeat experiment, we found that the 

combination of Vaccine+Indomethacin caused a significant reduction in tumor wet 

weight compared to vaccine alone as well as compared to control. However, 

Indomethacin alone did not significantly reduce tumor wet weight compared to control, 

indicating a synergistic effect of vaccine and indomethacin. Since Indomethacin but not 

Celecoxib reduced tumor burden when given in combination with the MUC1 vaccine, we 

are further investigated COX-independent pathways which are unique to Indomethacin 

involved in this mechanism. 
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5.2 Introduction 

Breast Cancer is diagnosed in 200,000 individuals in the United States each year 

and contributes to approximately 40,000 deaths annually. For tumors confined within the 

breast, surgical removal can result in a favorable outcome. However, tumors have the 

ability to metastasize to distant sites, such as lymph nodes, lungs, liver or brain. 

Complications from metastatic disease are the leading causes of cancer-related deaths. It 

is for this reason that research now focuses on the development of novel breast cancer-

specific vaccines. Cancer vaccines are designed to immunize individuals to antigens 

present on tumors, in order to stimulate the patient’s own immune system to fight 

metastasis. Vaccines are non-toxic therapies that have the potential to control disease and 

prolong survival, often with a long delay before tumor recurrence [109, 110].  

MUC1 is a transmembrane mucin glycoprotein that is overexpressed in >90% of 

breast carcinomas [48, 50, 117-119].  MUC1 contains an extracellular domain (comprised 

of tandem repeats (TR) of twenty amino acids) that is extensively O-glycosylated, a 

transmembrane domain, and a cytoplasmic tail. MUC1 is normally expressed on the 

apical surface of glandular epithelial cells. However, in the case of a tumor, MUC1 is 

overexpressed and is no longer restricted to the apical surface, but is found across the cell 

membrane and in the cytoplasm with an aberrant glycosylation pattern. These attributes 

have long made MUC1 an interesting target molecule for immunotherapeutic strategies. 

Recently, MUC1 was listed as the second most targetable tumor antigen by the National 

Cancer Institute [269]. Our lab has demonstrated the effectiveness of MUC1-directed 

tumor vaccines in colorectal, pancreatic, and breast cancer models; however 
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immunosuppression was observed at the tumor site, hindering the immune response to 

the vaccine [136, 161, 270].  

There are two major limitations associated with the use of cancer vaccines. The 

first obstacle is the existence of tumor antigen-specific immune tolerance.  Most of 

tumor-specific antigens are non-mutated, aberrant and/or over-expressed forms of self-

antigens. Thus, high avidity T cells directed against that antigen are deleted; however, 

low avidity T cells do exist and can be activated with the appropriate therapy [271-278]. 

Despite the existence of tolerance, several groups, including ours, have shown that it is 

possible to elicit a strong tumor-antigen targeted immune response to overcome the 

tolerance [47, 111, 112, 279-281]. The second obstacle is the large tumor burden itself. 

Most studies, to date, utilizing tumor vaccines, have been given to patients with large 

tumor burden. Patients with large tumor burden are well known to have defective 

functioning of the immune system and the tumors of these patients have many immune 

escape mechanisms [282]. These include down regulation of MHC expression on tumor 

cells, functional impairment of T cells, and secretion of immunosuppressive cytokines by 

tumor cells as well as immune regulatory cells [283-289]. Breast tumors also produce 

high levels of immunosuppressive enzymes during cancer progression. In recent clinical 

trials, testing of tumor vaccines strongly indicated that although immune responses were 

generated, these approaches failed to generate significant clinical responses [111, 114, 

271, 290, 291]. Thus, tumor vaccines alone have a limited potential for the treatment of 

patients with large tumor burdens.  

Immunotherapy by itself can elicit tumor-specific immune responses that infiltrate 

the spontaneously arising breast tumor. However, the effector cells become non-
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functional within the tumor microenvironment. Thus, combining immunotherapy with 

available adjuvant treatments may sufficiently alter the tumor microenvironment such 

that the effector cells can function properly. Immunosuppression within the tumor 

microenvironment is a barrier to targeted immunotherapy because it can inhibit direct 

cellular cytotoxicity and prohibit the development of immunological memory. 

COX-2 is an enzyme that converts arachidonic acid to prostaglandins. COX-2 is 

induced in breast cancer during various pathologic conditions. COX-2 affects multiple 

pathways of tumorigenesis including angiogenesis, invasion and tumor-induced immune 

suppression. It has been recognized that COX-2 induces its immunosuppressive effects 

through prostaglandin2 (PGE2), which targets both cytotoxic (CTL) and T helper lymphocyte 

(Th) functions [134, 135]. Celecoxib, a specific COX-2 inhibitor, has been extensively 

exploited as a chemoprevention strategy for colon and other cancers [292-296].  

Our lab previously found that Cyclooxygenase 2 (COX2) over-expression and 

subsequent Prostaglandin E2 (PGE2) production, in response to vaccination, are 

immunosuppressive [136, 297]. They have been shown to reduce T cell and dendritic cell 

function in patients with breast cancer. As a result of the immunosuppression observed in 

response to the MUC1 vaccine, our lab previously combined vaccine therapy with COX-

2 inhibitor treatment in a spontaneous mouse model of breast cancer. This combination 

did indeed increase the clinical efficacy of the vaccine [136]. Further, COX-2 inhibition, 

via the use of Celecoxib, reduced breast tumor levels of indolamine 2, 3-dioxygenase 

(IDO).  

The enzyme IDO is an enzyme that catabolizes L-tryptophan to L-kynurenine and its 

activity is increased during tumor development [137, 138]. IDO was first identified in 
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maintaining maternal tolerance towards the antigenically foreign fetus during pregnancy 

[139]. IDO is over expressed in many types of tumors including breast cancer, as well as in 

tumor-associated antigen presenting cells (APCs) [137, 142-144].  Tumor cells exploit this 

unusual system to prevent rejection by tumor-specific T cells [298]. Depletion of tryptophan 

within the tumor microenvironment can lead to T-cell anergy and apoptosis, thus IDO 

expression inhibits T cell functions [299-301].  The Inhibitor of IDO, 1-methyl-tryptophan 

(1MT) has shown strong anti-tumor effects in vitro and in in vivo models of cancer [145]. 

Moreover, PGE2 has been shown to regulate IDO function. 

COX-2, PGE2, and IDO have been linked with the presence of T regulator (T-

regs) and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment 

[136]. Therefore, we sought to determine whether a newly developed, orthotopic breast 

cancer model could achieve enhanced clinical efficacy when treated with a MUC1 

specific vaccine in combination with COX2 inhibitors or inhibitors of molecules 

downstream of COX2. In the present study, we tested the MUC1 specific tumor vaccine 

with targeted inhibition of immune suppression in an effort to achieve a maximum 

clinical response. We tested the MUC1 vaccine in combination with a COX1 and COX2 

inhibitor (Indomethacin), a COX2 inhibitor (Celecoxib), an indoleamine 2,3 dioxygenase 

(IDO) inihibitor (1-MT; 1-methyl tryptophan) as well as in combination with a PGE2 

antagonist (AH6809).  AH-6809 is a relatively nonselective PGE2 antagonist, which can 

bind with EP1, EP2, EP3 and DP receptors.  Both 1MT and EP1/EP2 receptor antagonists 

have previously shown clinical efficacy in reducing tumor metastases. Our results 

indicate that Indomethacin in combination with the MUC1 vaccine resulted in a 

significant reduction in tumor burden. All other drug combinations tested were unable to 
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significantly reduce tumor burden at the dosages tested. While further studies are needed 

to better understand the molecular mechanisms of this reduction in tumor burden, this 

data clearly indicate that an enhanced clinical response can be achieved when the MUC1 

vaccine is combined with the COX1 and COX2 inhibitor, Indomethacin. [302] 
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5.3 Materials and Methods 

Cell Lines and Culture. 

MTAG cell lines were previously generated in our lab from PyVMT (Polyoma 

virus middle T antigen) spontaneous breast cancer mouse model [303]. In the PyV MT 

mice, mammary gland tumors are induced by the action of tyrosine kinase activity 

associated with the polyoma virus middle T Ag driven by the mouse mammary tumor 

virus long terminal repeat (MMTV).  Briefly, PyVMT male mice were mated to C57BL/6 

mice to maintain the MTag mice as heterozygous. PCR was used to routinely identify the 

MTag oncogene. PCR was carried out as described previously [304]. Primer pairs for 

MTag transgene are 5′-AGTCACTGCTACTGCACCCAG-3′ (282-302 bp) and 5′-

CTCTCCTCAGTTCCTCGCTCC-3′ (817-837 bp). The PCR product was analyzed by 

size fractionation through a 1% agarose gel. Heterozygous female PyVMT mice 

developed tumors, and tumors were dissected at pre-determined time points.  Tumors 

were dissociated using collagenase IV (Worthington Biochemical) and the cell line was 

generated in our laboratory and designated as MTAG cells. The cells
 
were maintained in 

complete DMEM (Invitrogen) supplemented
 
with 10% FBS (HyClone), 1% glutamax 

(Invitrogen), and 1% penicillin/streptomycin. 

Retroviral Infection. 

 For retroviral infection, GP2–293 packaging cells (stably expressing 

the gag and pol proteins) were co-transfected with the full-length MUC1 construct 

expressing the VSV-G envelope protein as previously described [305]. Cells were 

selected with 300 ug/mL G418, beginning 48 hours post infection. Expression of the 

constructs was stable throughout the span of experiments. MUC1 positive cells were 
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sorted using the FACSAria to achieve 88% purity. MTAG cells retrovirally infected with 

full length MUC1 plasmid are referred to as MTAG.MUC1 cells.  

Flow ytometry. 

Single-cell suspensions were obtained by detaching cells using cell scrapers 

without trypsin to avoid any potential proteolytic effect of trypsin on surface proteins. 

The cells were then incubated with Fc block (BD Biosciences) at a concentration of 

0.5μg/ml at room temperature (RT) for 10 min. The cells were stained for the 

extracellular domain of human MUC1 using human milk fat globule antigen (HMFG2) 

antibody [243], for 15 minutes (min) at 4°C, washed, and subsequently stained with goat 

anti-mouse IgG-phycoerythrin (PE) or isotype control (Santa Cruz; 0.5 μg/ml) for 15 min 

at 4°C. Expression of MUC1 was determined by flow cytometry (Beckman Coulter) 

using FlowJo (Treestar, Ashland, OR). 

3
H-Thymidine Incorporation. 

MTAG.MUC1 cells were serum-starved for 24hrs and treated for 24 or 48 hours 

with 0uM, 12.5uM, 25 uM, 50uM, 100uM, 200uM, and 400uM of Celecoxib, 1-MT, 

AH6809, Indomethacin or corresponding vehicle controls. Cell proliferation was 

determined by using [
3
H]-thymidine incorporation, in which 1μCi of [

3
H]-thymidine was 

added per well for 24hrs prior to harvesting. Incorporated thymidine was evaluated using 

the Topcount micro-scintillation counter. All determinations were performed in triplicate. 

Vaccine Formulation. 

The vaccine consists of 100 g each of two MHC class I-restricted MUC1 

peptides, APGSTAPPA and SAPDTRPAP, 140 g of one MHC class II helper peptide 

TPPAYRPPNAPIL (Hepatitis B virus core antigen sequence 128-140); 100 g of mouse 
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unmethylated CpG oligodeoxynucleotide constructs (CpG ODN); and 10,000 Units (2 g) 

GM-CSF, all emulsified in IFA.  

Drug Preparations.  

 To prepare 1-MT for oral gavage, 1 g of 1-dl-MT (Sigma) was added to a 15 ml 

conical tube with 7.8 ml Methocel/Tween [0.5% Tween/0.5% Methylcellulose (v/v in 

water; Sigma)].  The following day, the 1-MT concentration was adjusted to 85mg/ml by 

adding an additional 4 ml Methocel/Tween and mixing again briefly. The 1MT was 

administered by oral gavage at 400 mg/kg/dose (0.1 cc/20 g mouse) using a curved 

feeding needle (20 G x 1 1/2 in; Fisher). 1-MT was administered once in the morning and 

once in the evening. For in vitro use, 1-MT was prepared as a 20 mmol/L stock in 0.1 N 

NaOH, adjusted to pH 7.4 and stored at -20°C protected from light. To prepare 

Indomethacin, a stock of Indomethacin was made at a concentration of 50mg/mL in 

100% ethanol (heating to dissolve). Afterwards, indomethacin was diluted 1:10 in 25% 

Solutol. Indomethacin was administered by oral gavage at a dose of 3mg/kg/dose (0.1 

cc/20 g mouse). Celecoxib was prepared by dissolving 100mg in 0.5mL of DMSO for 2-

3hours at 37°C, creating a stock solution of 200ug/uL. Stock celecoxib was diluted 1:100 

in water. Celecoxib was administered by oral gavage at 10mg/kg/dose. AH6809 was 

prepared by dissolving 1mg into 500uL of solutol (heating at 60°C in order to get into 

solution). Mice were then injected intraperitoneally with 100uL of AH6809 solution 

(200µg per day).  

In Vivo Treatment of Tumors. 

 Mice were handled and maintained under veterinary supervision in accordance 

with guidelines of the University of North Carolina at Charlotte Institutional Animal Care 
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and Use Committee (IACUC) approved protocol. The MTAG.MUC1 cell line used in 

animal experiments tested negative for an extended panel of pathogens by Charles River 

Laboratories. Female MUC1.Tg mice aged 8-12weeks old were orthotopically injected 

with
 
MTAG.MUC1 tumor cells. MUC1.Tg mice tail clips were collected when mice were 

approximately 11 days old. Genomic DNA was isolated and used to genotype the mice 

by polymerase chain reaction. For MUC1.Tg the primers were 5′-

CTTGCCAGCCATAGCACCAAG-3′ and 5′-CTCCACGTCGTGGACATTGATG-3′ 

with a 341bp amplification product that was confirmed on 1% agarose gels [157]. 

Based on preceding titration experiments (data not shown), mice were injected 

with 1x10
6 

MTAG.MUC1 cells (in 100uL of PBS/Matrigel) into the mammary fat pad 

(n=24). Mice were palpated starting on day 8 post tumor injection (p.t.i.) then were 

randomly divided into 5 groups: vaccine only, vaccine + celecoxib, vaccine + 

indomethacin, vaccine + AH6809, vaccine + 1-MT (n=5 per group, n=4 for vaccine). All 

mice were vaccinated on days 8, 19, 34, and 35 p.t.i. and treated with Celecoxib, 

AH6809, Indomethacin once daily, and 1-MT twice daily, five days a week. Tumor size 

was monitored by caliper measurements every other day until sacrifice. Body weight was 

measured every other day. Tumor weight was calculated according to the formula: grams 

= [(length in cm) x (width in cm)
2
]/2. Mice were sacrificed 34 and 35 days p.t.i, at which 

time, mice were not yet presenting with clinical signs indicating severe morbidity. To 

conduct experiments with Indomethacin, 8 to 12-week-old MUC1.Tg female mice were 

orthotopically injected with the MTAG.MUC1cell line. Mice were injected with 

1x10
6 

MTAG.MUC1 cells (in 100 uL of PBS/Matrigel) into the mammary fat pad (n= 

23).  Mice were palpated starting at 6 days p.t.i. then were randomly divided into 4 
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groups per cell line (n=6 per group, n=5 for Indomethacin alone). One group  served as a 

control, the indomethacin group was gavaged three times weekly with 3mg/kg, all 

vaccine groups were vaccinated on days 6, 15, 24, 27, and 28 p.t.i, whereas the vaccine + 

indomethacin in addition to vaccination, received three times weekly gavage treatment of 

indomethacin at 3mg/kg. Tumor size was monitored by caliper measurements three times 

per week and body weight was measured twice weekly. Tumor weight was calculated 

according to the formula: grams = [(length in cm) x (width in cm)
2
]/2. Mice were 

sacrificed on day 27 and 28 p.t.i. Data were analyzed using GraphPad software and are 

expressed as mean ± standard error mean. Comparison of groups was done by two-way 

ANOVA (*p<0.05, **p<0.01, ***p<0.001).  

PGEM ELISA. 

PGE2 levels in the tumor lysate were determined using a specific ELISA kit for 

PGE2 metabolite (PGE-M) (Cayman Chemical Co., Ann Arbor, MI for PGE2 and 

Oncogene Research Products, La Jolla, CA for VEGF) from treated and control mice.  

All tumor lysates were made in tissue lysis buffer containing 20 mmol/L HEPES, 0.15 

mol/L NaCl, and 1% Triton X-100 supplemented with 80 μL/mL phosphatase inhibitor 

cocktail II (Sigma P-5726, St. Louis, MO) and 10 μL/mL complete protease inhibitor 

cocktail (Boehringer Mannheim GmbH, Indianapolis, IN). The PGE2 assays were done 

according to the manufacturer's recommendation. Lysates were diluted appropriately to 

ensure that readings were within the limits of accurate detection. Results are expressed as 

picogram of PGE2 per mL.  
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Flow Cytometry. 

Single cell suspensions of splenocytes in PBS were harvested in 15mL conicles. 

Cells were centrifuged at 2000 rpm for 2 min to obtain a cell pellet. The cell pellet was 

re-suspended in 1mL of RBC lysis buffer for 1 min, and then diluted with 5mL of 

cDMEM. Cells were washed in staining buffer (1 X PBS with 1% FBS and 0.1% sodium 

azide), filtered and counted and plated for staining. Cells were centrifuged at 2000 rpm 

for 2 min to obtain a cell pellet. The cell pellet was re-suspended in staining buffer and Fc 

block (anti-CD16/CD32 anti-body) for 10 min on ice. Cells were washed once with 

staining buffer. Cells were then labeled with an 1)  MDSC panel: anti-CD11b-PECy7, 

anti-Gr1-APC, 2) a T-Regulatory cell panel: anti-CD25-V450, anti-CD4-FITC, anti-

FoxP3-APC, anti-CD62L-V450, and 3) a T cell panel:  anti-CD8-FITC, anti-CD11b-

PECy7 and anti-CD44-APC, or their corresponding isotype controls and incubated on ice 

for 15 min. Cells were then washed twice, and the MDSC panel, as well as the T cell 

panel were fixed with 2% paraformaldehyde and stored at 4ºC till further use. For 

intracellular staining, in the T-Regulatory panel, the cells were fixed and simultaneously 

permeabilized with BD Cytofix/Cytoperm for 20 min on ice. The cells were then washed 

with staining buffer twice and stained with anti-FoxP3-APC, and washed with staining 

buffer twice. Cells were then fixed with 2% paraformaldehyde and stored at 4ºC till 

further use. For the T cell panel, Naïve T cells were defined as CD8+CD62L+CD11b-

CD44-, Effector T cells were defined as CD8+CD62L-CD11b+CD44+ and Memory T 

cells were defined as CD8+CD62L-CD11b-CD44+. 
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Statistical Analysis. 

Data were analyzed using GraphPad software. Results are expressed as 

mean±SEM. Comparison of groups was performed using one-way or two-way ANOVA 

followed by post-test for multiple comparisons (*p<0.05, **p<0.01, ***p<0.001).   
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5.4 Results   

Generation and Characterization of the MTAG.MUC1 Cell Line. 

PyVMT mice were dissected and dissociated using collagenase IV. The cell line 

generated from these tumors was designated as MTAG cells. In order to test the human 

MUC1 vaccine in vivo, we transfected the MTAG cells with the full length human 

MUC1 plasmid. In order to insure a high purity of MUC1 expressing MTAG.MUC1 

cells, the transfected cell line was sorted for MUC1 expression using FacsAria. 

Expression of the MUC1 was analyzed using the TAB004 antibody which targets 

sparsely glycosylated VNTR repeats of the human MUC1 extracellular domain. Using 

TAB004 antibodies for flow cytometry, we confirmed that MTAG.MUC1 cells are 

highly positive for MUC1 (Figure 41). Cox-1 and Cox-2 expression was confirmed in 

both the cell lysate and tumor lysate, using β-actin as a loading control (Figure 41). 

Efficacy of Vaccine Therapy in Combination with Inhibitors of Immune 

Suppression. 

In order to test the efficacy of the vaccine in combination with a variety of COX 

inhibitors, and inhibitors of downstream molecules, 24 female MUC1.Tg mice were 

orthotopically injected with MTAG.MUC1 cells in the mammary fat pad. When tumors 

were palpable, approximately day 8 post tumor cell injection (p.t.i.), mice were randomly 

assigned to five different treatment groups: vaccine alone, vaccine + indomethacin, 

vaccine + 1-MT, vaccine + celecoxib, vaccine + AH6809. Unfortunately, in this pilot 

experiment, we did not have MUC1.Tg female mice available to include all appropriate 

controls. Therefore, in this pilot experiment, we merely included the five treatment 

groups above in order to determine which drug would enhance the efficacy of the 
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vaccine. As the appropriate controls were not included in this experiment, any 

interpretation of the data must be made with this fact in mind. In future experiments, this 

pilot experiment will be repeated with the appropriate controls included.  

All treatment groups were administered the MUC1 vaccine subcutaneously on 

day 8 p.t.i. In addition to vaccine administration, mice were treated with either 

indomethacin (3mg/kg), 1-MT (400mg/kg), Celecoxib (10mg/kg), or AH6809 (200ug) on 

a five day on, two day off, schedule. All drugs were administered once per day with the 

exception of 1-MT which was administered twice per day. Mice were again administered 

the MUC1 vaccine on days 19, 34 and 35 p.t.i. Mice were monitored for signs of distress, 

and tumor burden was measured three times per week. Mice were euthanizedon day 35 

p.t.i. Results demonstrate that MTAG.MUC1 tumors treated with a combination of 

vaccine + indomethacin significantly reduced tumor burden beginning on day 30 p.t.i. as 

compared to vaccine alone. This significance was maintained until mice were euthanized 

on day 35 (Figure 42). All other treatment combinations did not display a significant 

reduction in tumor burden compared to vaccine alone. Upon euthanasia, the tumors were 

weighed, prepared for lysates, and fixed for immunohistochemistry.  Analysis of the 

tumor wet weight displayed similar trends, suggesting that the only group in which there 

was a reduced tumor wet weight was the vaccine + indomethacin group; however, this 

reduction was not significant (Figure 43).  

COX-2 derived PGE-2 is the major prostaglandin produced by breast cancer cells. 

Production of PGE2 in the tumor lysate is an appropriate measure of COX-2 activity in 

this orthotopic mouse model of breast cancer; however, PGE2 is unstable in vivo. 

Therefore, we measured PGEM, the PGE2 metabolite (namely, 13,14-dihydro-15-keto-
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PGA2) in order to provide a reliable estimate of PGE2 production. PGEM levels were 

measured in the tumor lysates of all treatment groups by ELISA. A significant reduction 

in tumor PGEM was observed in mice treated with vaccine + celecoxib, as well as 

vaccine + indomethacin, as compared to vaccine alone (p<0.05, Figure 44).  

Immune Status of Treated Mice. 

 As stated previously, COX-2, PGE2, and IDO have been linked with T regulator 

(T-regs) and myeloid-derived suppressor cells (MDSCs) presence in the tumor 

microenvironment. Tregs play a key role in the maintenance
 
of immune tolerance to both 

self-and foreign antigens and are reviewed in [306]. Upon antigen stimulation, Tregs
 
potently 

suppresses the activation/proliferation
 
of CD4

+
 or CD8

+
 cells in vitro.

 
It is well established 

that Tregs are present in the tumor microenvironment and hamper efficient anti-tumor 

immune responses
. 
 Several reports have documented the potential role of Treg removal 

for the induction of tumor rejection. Although Tregs are well known as suppressor cells 

there are other types of suppressor cells like MDSCs, also known as immature myeloid 

cells [307-309]. MDSCs can suppress the activation of CD4+ and CD8+ T cells, 

inhibiting the generation of an antitumor response [310-314]. MDSCs are thought to be 

induced by a variety of cytokines and growth factors (TGF-β, VEGF) which are produced 

within the tumor microenvironment [315, 316]. MDSCs have poor antigen-presenting
 

capability, and produce factors that suppress T cell proliferation
 
and activity, and promote 

angiogenesis [317]. This phenotype contrasts markedly with
 
the phenotype of classically 

activated type I or M1 macrophages
 
that are efficient immune effector cells able to kill 

microorganisms
 
and tumor cells, present antigens, and produce high levels of

 
T cell 

stimulatory cytokines. 
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Therefore, in order to determine the underlying mechanism of enhanced vaccine 

efficacy in combination with indomethacin, we isolated splenocytes from MTAG.MUC1 

tumors bearing mice, pooled the splenocytes, stained, and assessed a number of immune 

parameters. Levels of myeloid-derived suppressor cells were assessed, characterized by 

the co-expression of Gr1 and CD11b. There was no significant difference observed in 

MDSC levels in mice treated with any of the combinational treatments tested (Figure 

45A). Helper T cells were defined as CD4+, whereas T regulatory cells (Tregs) were 

characterized by the coexpression of CD4 and FoxP3. No significant difference was 

observed in the percentage of helper T cells or Tregs in any of the combinational 

treatments tested (Figure 45 B, C). However, there was a slight increase in the percentage 

of Tregs in the mice treated with the combination of vaccine +AH6809, although this 

increase was not significant.  

Functionally distinct phenotypes of CD8+ T cells spanning from naïve 

(CD8+CD62L+CD11b-CD44-) to an effector and/or memory stage of differentiation 

have been described [318] . Effector CD8
+
 T cells (CD8+CD62L-CD11b+CD44+ ), are 

terminally differentiated and are known to release an array of cytokines upon stimulation 

(IFN-γ and TNF-α), as well as display strong cytolytic activity with high expression of 

perforin and granzyme. Memory T cells were defined as CD8+CD62L-CD11b-

CD44+.Therefore, in order to determine the nature of the cells induced by this treatment, 

we assessed levels of naive, memory and effector T cells, as well as CD8+ T cells. No 

significant differences were observed among the different treatment groups in overall 

CD8+ T cells (Figure 46A). The Naïve T cell population was significantly reduced in the 

vaccine + celecoxib treatment group (Figure 46B). The combinational treatment of 
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vaccine + AH6809 significantly reduced effector T cell populations (Figure 46 C), while 

there was no significant difference observed among any of the combinational treatment 

groups with respect to memory T cells (Figure 46 D).  

Efficacy of Combinational Treatment of MUC1 Vaccine + Indomethacin. 

In order to further examine the enhanced efficacy of  vaccine + indomethacin 

combination, female MUC1.Tg mice were orthotopically injected with MTAG.MUC1 

cells in the mammary fat pad. By day 6 p.t.i. tumors were palpable, and mice were 

divided into four different treatment groups. One group served as a control, whereas the 

other three groups were treated with indomethacin alone, vaccine alone, or vaccine + 

indomethacin. The treatment groups receiving the MUC1 vaccine were vaccinated on 

days 6, 15, 24, 27, and 28 p.t.i. Mice receiving indomethacin treatment were gavaged 

three days per week (3mg/kg). Tumor burden was monitored three times per week, while 

body weight was measured twice weekly. Mice were sacrificed on days 27 and 28 p.t.i. 

Results demonstrate that MTAG.MUC1 tumors treated with the combination of vaccine 

+ indomethacin resulted in a significantly reduced tumor burden beginning at day 17. 

This significant reduction in tumor burden was maintained until mice were sacrificed 

(Figure 47 A). Indomethacin alone, as well as vaccine alone, resulted in a significant 

reduction in tumor burden, as compared to control, beginning at 24 days p.t.i (Figure 47 

B). Results also demonstrated that tumor burden of mice treated with vaccine + 

indomethacin was significantly lower than either indomethacin alone or vaccine alone. 

This significance was noted at day 20 p.t.i and remained until mice were sacrificed 

(Figure 47B). This is suggestive of a synergistic effect between vaccine and 

indomethacin treatment. 
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 Upon euthanasia, the tumors were weighed, prepared for lysates, and fixed for 

immunohistochemistry.  Analysis of the tumor wet weight displayed similar trends, 

specifically, mice receiving the combination treatment of vaccine + indomethacin had 

significantly decreased tumor wet weight as compared to control (p<0.01). Moreover, the 

combination treatment also resulted in a significantly reduced tumor burden compared to 

vaccine alone (p<0.05, Figure 48). However, no significant difference was observed 

between mice treated with indomethacin alone and control mice (Figure 48). In order to 

insure that the treatment was indeed effective in reducing PGE2 levels, Prostaglandin E2 

Metabolite (PGEM) was again measured in the tumor lysate of treated mice as a read out 

for PGE2 levels. The combination of vaccine + indomethacin as well as indomethacin 

alone, significantly decreased levels of PGEM in the tumor lysate of treated mice as 

compared to control mice (Figure 49). Additionally, the mice treated with the 

combination treatment of vaccine + indomethacin resulted in significantly decreased 

PGEM levels as compared to vaccine alone (p<0.05, Figure 49). Thus, we suggest that 

this combinational treatment is immunologically relevant and warrants further 

investigation. 
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5.5 Discussion 

Previously, our lab has made use of the oncogenic mice that carry the polyoma 

virus middle T antigen driven by the MMTV promoter (PyV MT mice). These mice 

developed spontaneous tumors of the breast, which metastasize to the lungs and bone 

marrow. We have previously shown that celecoxib, a specific cyclooxygenase-2 (COX-2) 

inhibitor when administered in combination with a dendritic cell (DC)-based breast 

cancer vaccine (DCs pulsed with PyV MT tumor lysate) significantly augments the 

effectiveness of the vaccine in reducing primary tumor burden, preventing metastasis, 

and increasing survival. In that study, it was found that tumor-associated COX-2 activity 

in vivo can regulate IDO expression within the tumor microenvironment [136].   

In this study, we generated a breast cancer cell line from the tumors of PyVMT 

mice and retrovirally infected the cells with the full length MUC1 plasmid (Figure 

41).Using these cell lines, tumors were generated in MUC1.Tg mice and  we tested the 

MUC1 specific tumor vaccine in combination with four different drugs, each with 

targeted inhibition of immune suppression in an effort to achieve maximal vaccine 

efficacy. The four drugs used in this study targeted different aspects of the COX pathway. 

In an effort to compare what had previously shown efficacy in combination with a 

dendritic cell vaccine in the spontaneous model, we included the use of celecoxib, a 

specific COX-2 inhibitor, in our studies. In the current study, we utilized a different 

vaccine, a MUC1 peptide vaccine that consists of two MHC class-I restricted peptides, an 

MHC class-II restricted helper peptide, as well as CpG-ODN and GM-CSF. This peptide 

vaccine was tested in combination with not only celecoxib, but also in combination with 
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a non-selective, COX-1 and COX-2 inhibitor, indomethacin, as well as the IDO inhibitor 

1-MT, and the EP2 receptor antagonist, AH6809 (Figure 42).  

The results clearly indicated that, compared to vaccine alone, the only 

combinational therapy that significantly reduced tumor burden, was the combination of 

indomethacin + vaccine (Figure 42). In future experiments, this will be conducted again 

with all proper controls included in the study. We observed very little change in immune 

cell levels measured in the spleen of combinational treated mice (Figure 45, Figure 46). 

When this experiment is repeated in the future, we plan to analyze immune cell status in 

the tumor draining lymph nodes, as well as in the tumor itself, via immunohistochemistry 

(IHC) as those parameters would be a more relevant assessment of the immunological 

changes that our occurring within and around the tumor. 

 Interestingly, the previously effective COX-2 inhibitor, celecoxib, did not 

significantly reduce tumor burden in combination with the vaccine, as seen in the 

spontaneous model. There are a number of reasons that the celecoxib + vaccine 

combination may be less efficacious than expected: 1) Although the cells we are using in 

this orthopic injection model originally arose from the spontaneous model referred to 

above, it is important to note that tumors are a heterogenous population of cells. 

Therefore, the cells that were isolated from the tumor, and used to generate the MTAG 

cell line may in fact be more aggressive than the spontaneous tumors in which they arose 

from. 2) The two models, orthotopic vs. spontaneous, are inherently different tumor 

models, and as such, may display differential results. 3) the dose used for celecoxib is a 

very low dose (10mg/kg). Perhaps the cells we are using are not as sensitive to this low 

dose, as their spontaneous model counterparts. In future experiments we will increase the 
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dose of celexoxib to determine if we can achieve enhanced efficacy with a more potent 

dose. However, it seems as though celecoxib is effective and functional, as evidenced by 

the significant reduction in PGEM levels in the tumor lysate of mice treated with vaccine 

+ celecoxib (Figure 44).  

Interestingly, IDO inhibition as well as mediating the actions of PGE2 with the 

use of the PGE2 antagonist, AH6809, seemed to be ineffective treatment options in 

combination with the vaccine regimen. It has been shown previously that administration 

of 1-MT in tumor bearing mice enhanced the potency of a DC-based vaccine [319]. 

Although the same dosage of 1-MT was administered to those mice, the mice were given 

the 1-MT treatment prior to tumor implantation. Given that the mice used in our study 

had a large tumor burden before any drugs were administered, it is not surprising that a 

similar effect could not be seen. Moreover, it has been shown by a number of groups that 

the PGE2 antagonist, AH6809 is able to reduce tumor cell proliferation [320]. However, 

we did not demonstrate a similar effect with this drug possibly due to a different tumor 

model. In fact, the only treatment that seemed to be efficacious was the vaccine + 

indomethacin treatment.  

The results clearly suggest that combining indomethacin with a MUC1 based 

tumor vaccine increased the efficacy of the vaccine treatment compared with either 

treatment alone. Mice treated with the combinational therapy of vaccine + indomethacin 

displayed a significant clinical response with significant reduction in tumor burden and 

tumor wet weight (Figure 47, Figure 48). This reduction in tumor burden was associated 

with a decrease in PGEM levels (Figure 49), indicating that indomethacin was indeed 

functional. Preliminary data suggests that MAPK and β-catenin pathways may be 
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involved in the enhanced efficacy of the vaccine in combination with Indomethacin 

(Figure 50). In future experiments, we will continue to investigate these and other 

pathways.  

While further studies are necessary to identify the molecular mechanisms 

underlying the reduced tumor burden associated with treatment, the data clearly indicate 

that an enhanced vaccine efficacy can be achieved with a combination of MUC1 peptide 

vaccine + non-selective, COX-1 and COX-2 inhibitor, indomethacin. Our preclinical 

studies offer us an opportunity to assess the feasibility of inhibition of COX pathway in 

combination with immunotherapy for the treatment of breast cancer. This is especially 

relevant at a time when clinical trials with COX-2 inhibitors are under debate and safer 

alternative agents are desired. 
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5.6 Figures 

 

Figure 41: Characterization of the MTAG.MUC1 cell line. MUC1 expression was 

confirmed by flow cytometry. The gray histogram represents isotype control stained, and 

the red dashed line represents MUC1 staining. Cox-1 and Cox-2 expression was 

confirmed by western blot analysis. β-actin was used as a loading control  
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5.6 Figures continued 

 

Figure 42: Indomethacin treatment with vaccination is the only combination that reduces 

tumor burden. Female MUC1.Tg mice, aged 8-12 weeks old were orthotopically injected 

with MTAG.MUC1 cells in the mammary fat pad (n=24). Tumors were palpable by day 

8, and mice were randomly divided into 5 groups (n=5 per group, n=4 for vaccine). All 

mice were vaccinated on days 8, 19, 34, and 35 p.t.i.(as indicated by arrows) and treated 

with Celecoxib (10mg/kg), AH6809 (200ug), Indomethacin (3mg/kg) once daily, and 1-

MT (400mg/kg) twice daily, five days a week. Tumor size was monitored by caliper 

measurements every other day until sacrifice. Body weight was measured every other 

day. Tumor weight was calculated according to the formula: grams = [(length in cm) x 

(width in cm)
2
]/2. Mice were sacrificed 35 days p.t.i, at which time, mice were not yet 

presenting with clinical signs indicating severe morbidity. Comparison of groups was 

done using a two-way ANOVA with a bonferoni post-hoc test (*, p<.05; **p<0.01; 

***p<0.001 compared to control). 
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5.6 Figures continued 
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Figure 43: Indomethacin treatment with vaccination is the only combination that has a 

trend indicating reduced tumor burden.  Female MUC1.Tg mice, aged 8-12 weeks old 

were orthotopically injected with MTAG.MUC1 cells in the mammary fat pad (n=24). 

Tumors were palpable by day 8, and mice were randomly divided into 5 groups (n=5 per 

group, n=4 for vaccine). All mice were vaccinated on days 8, 19, 34, and 35p.t.i. and 

treated with Celecoxib (10mg/kg), AH6809 (200ug), Indomethacin once daily (3mg/kg), 

and 1-MT (400mg/kg) twice daily, five days a week. Mice were sacrificed 35 days p.t.i, 

at which time tumors were excised and weighed. Comparison of groups was done using a 

one-way ANOVA with a Dunnetts multiple comparisons post hoc test. Although 

significance was not reached, there was a trend toward reduced tumor burden in the 

vaccine + indomethacin treatment group.  
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5.6 Figures continued 

 

Figure 44: Celecoxib and Indomethacin both reduce PGE2 metabolite levels in 

combination with vaccination. Prostaglandin E2 Metabolite (PGEM) was measured in 

tumor lysate as a read out for PGE2 levels. Combinational treatment of vaccine + 

Indomethacin as well as vaccine + celecoxib significantly reduced tumor PGEM levels 

compared to vaccine treatment alone. Comparison of groups was done using a one-way 

ANOVA with a Dunnetts multiple comparisons post hoc test (*, p<0.05 vs.vaccine 

alone). 
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5.6 Figures continued 

 

Figure 45: Immune analysis (MDSCs and Tregs) of combinational MUC1 vaccine 

therapy. Splenocytes from mice bearing MTAG.MUC1 tumors treated with vaccine 

therapy were assessed.  A) Myeloid-derived suppressor cells (MDSCs) were 

characterized as Gr1+CD11b+ splenocytes. There was no significant difference in MDSC 

levels in mice treated with any of the combinational treatments. Vaccine in combination 

with 1-MT was the only group that seemed to increase MDSC levels, although the 

increase was not significant. B) Helper T cells were defined as CD4+ splenocytes. No 

significant difference was observed in the levels of T helper cells in any of the 

combinational treatment groups. C) Levels of T regulatory cells were measured in 

splenocytes, as defined by the co-expression of CD4 and FoxP3. No significant 

difference was observed in the levels of T regulatory cells in any of the treatment groups; 

however, the combination of Vaccine+AH6809 seems to increase percentage of T 

regulatory cells, although this increase was not significant.  Comparison of groups was 

done using a one-way ANOVA with a Dunnetts multiple comparisons post hoc test (*, 

p<0.05 vs.vaccine alone). 
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5.6 Figures continued 

 

Figure 46: Immune analysis (T cells) of combinational MUC1 vaccine therapy.  

Splenocytes from MTAG.MUC1 tumor bearing mice treated with MUC1 vaccine therapy 

were analyzed for T cell flow panels. For the T cell panel, Naïve T cells were defined as 

CD8+CD62L+CD11b-CD44-, Effector T cells were defined as CD8+CD62L-

CD11b+CD44+ and Memory T cells were defined as CD8+CD62L-CD11b-CD44+.A) 

No significant changes were observed among the different treatment groups in overall 

CD8+ T cells. B) The combinational treatment of Vaccine+Celecoxib significantly 

reduced levels of Naïve T cell populations. C) The combinational treatment of 

Vaccine+AH6809 significantly decreased the percentage of effector T cells. D) No 

significant changes were observed among the different treatment groups in reference to 

memory T cells. Comparison of groups was done using a one-way ANOVA with a 

Dunnetts multiple comparisons post hoc test (*, p<0.05, **, p>0.01 vs.vaccine alone). 
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5.6 Figures continued 

 

Figure 47: Combinational treatment of Vaccine + Indomethacin significantly reduces 

tumor burden. Female MUC1.Tg mice, aged 8-12 weeks old were orthotopically injected 

with MTAG.MUC1 cells in the mammary fat pad (n=23). Tumors were palpable by day 

6, and mice were randomly divided into 4 groups (n=6 per group, n=5 for indomethacin 

alone). One group served as a control, the indomethacin group was gavaged daily with 

3mg/kg. The vaccine groups were vaccinated on days 6, 15, 24, 27, and 28 (as indicated 

by arrows). The combinational treatment group received both vaccination as well as three 

times a week treatment of indomethacin (3mg/kg) by gavage. Tumor size was monitored 

by caliper measurements three times a week, and body weight was measured twice 

weekly. Tumor weight was calculated according to the formula: grams = [(length in cm) 

x (width in cm)
2
]/2. Mice were sacrificed on day 27 and 28 days p.t.i. A) Treatment with 

vaccine + indomethacin resulted in a significant decrease in tumor burden vs. control 

beginning at day 17. B) Table displaying significant decreases in tumor burden. Data 

were analyzed using GraphPad software and are expressed as mean ± standard error 

mean. Comparison of groups was done by two-way ANOVA (*p<0.05, **p<0.01, 

***p<0.001).  
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5.6 Figures continued 

 

Figure 48: Combinational treatment of Vaccine + Indomethacin significantly reduces 

tumor wet weight. Female MUC1.Tg mice, aged 8-12 weeks old were orthotopically 

injected with MTAG.MUC1 cells in the mammary fat pad (n=23). Tumors were palpable 

by day 6, and mice were randomly divided into 4 groups (n=6 per group, n=5 for 

indomethacin alone). One group served as a control, the indomethacin group was 

gavaged daily with 3mg/kg. The vaccine groups were vaccinated on days 6, 15, 24, 27, 

and 28. The combinational treatment group received both vaccination as well as three 

times a week treatment of indomethacin (3mg/kg) by gavage. Mice were sacrificed on 

day 27 and 28 days p.t.i. Tumors were excised and weighed. Mice receiving the 

combinational treatment vaccine+indomethacin had significantly reduced tumor wet 

weight as compared to vaccine alone as well as control.  Data were analyzed using 

GraphPad software and are expressed as mean ± standard error mean. Comparison of 

groups was done by one-way ANOVA with Tukey’s post hoc test (*p<0.05, **p<0.01, 

***p<0.001).  
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5.6 Figures continued 

 

Figure 49: Indomethacin reduces PGE2 metabolite levels alone and in combination with 

vaccination. Prostaglandin E2 Metabolite (PGEM) was measured in tumor lysate as a 

read out for PGE2 levels. Indomethacine alone as well as the combinational treatment of 

vaccine + Indomethacin significantly reduced tumor PGEM levels compared to control. 

Additionally, the combinational treatment resulted in significantly reduced tumor PGEM 

levels as compared to vaccine alone. Comparison of groups was done using a one-way 

ANOVA with a Tukey’s multiple comparisons post hoc test (*, p<0.05 vs.vaccine alone) 
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5.6 Figures continued 

 
 

Figure 50: Potential pathways involved in the enhanced efficacy of Vaccine + 

Indomethacin. β-catenin and MAPK pathway status was assessed using western blot 

analysis. β-actin was used as a loading control.  

 

 

 

 

  



  

CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

The aim of this dissertation was to evaluate the role of MUC1 in the progression 

of pancreatic cancer, as well as to develop, enhance and evaluate novel therapeutic 

treatment options for pancreatic and breast cancers. In the first section, we evaluated the 

role of MUC1 in the progression of pancreatic cancer, utilizing a number of in vitro 

techniques as well as two different mouse models of pancreatic cancer: a subcutaneous 

xenograft model and a spontaneous model. We determined that spontaneous mice that are 

null for Muc1 (designated as KCKO), have significantly slower tumor progression and 

rates of secondary metastasis, as compared to PDA mice (designated as KC) or mice that 

express both human and mouse MUC1 (designated as KCM). This was evidenced by a 

significant increase in survival benefit and decreased levels of PGE2M and VEGF levels 

(Figure 1).  

Cells were extracted from the tumors of these spontaneous mouse models, and 

subsequently cultured in vitro, and utilized in xenograft mouse models. Mice challenged 

with KCKO cells displayed significantly lower tumor burden with a much more stable 

disease process, correlating with increased survival rates, as compared to their MUC1 

expressing counterparts (Figure 2).   In vitro analysis of KCKO and KCM cell lines 

indicated that Muc1 null cells have reduced rates of proliferation as well as alterations in 

the cell cycle (Figure 3-6). KCKO cells treated with MEK1/2 inhibitor displayed minimal 

decreases in proliferative rates; whereas the enhanced proliferative rate of KCM cells was 
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completely abrogated with the same treatment. This indicated that MUC1 expression is 

necessary for enhanced MAPK activity and oncogenic signaling. 

 Preliminary data from our lab, and others, has indicated that the oncogenic 

signaling associated with MUC1 is attributed to the cytoplasmic tail of MUC1 [54].  The 

MUC1 cytoplasmic tail (CT) contains 7 tyrosines that have been implicated in the 

oncogenic signaling of MUC1. Specifically, phosphorylated YNTP leads to activation of 

the MAPK pathway. Moreover, we have previously shown that the MUC1 CT is essential 

for epithelial to mesenchymal transition (a process associated with metastatic spread of 

cancer cells) [173]. Therefore, MUC1 CT appears to be a valid target. Our lab, and 

others, have found MUC1 to be a likely druggable target for small molecule inhibitors 

[321]. This also creates the possibility of utilizing a MUC1 CT inhibitor in combination 

with other chemotherapeutic options as an effective treatment against pancreatic cancer. 

Some researchers have already begun testing MUC1 peptide inhibitors in preclinical 

models, and have found that it can be efficiently targeted with limited toxicity of the 

treatment [322, 323]. A MUC1 peptide inhibitor could then be used to assess cell 

proliferation and tumor cell viability both in vitro and in vivo.  

In the second study, in an effort to develop and test a novel therapeutic option for 

pancreatic cancer, we tested the potential of vesicular stomatitis virus (VSV) as an 

oncolytic agent. VSV has already been tested in a variety of pre-clinical models including 

prostate [84-86], breast [87-90], melanoma [88, 91], colorectal [92-94], liver [95-97], 

glioblastoma [98-100] and other cancers [101]; however, it had never been tested as an 

oncolytic agent against pancreatic cancer. In this study, we analyzed the oncolytic ability 

of VSV in a panel of 13 human PDA cell lines. We compared the oncolytic ability of 
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VSV to conditionally replicative adenoviruses (CRAds), Sendai virus, and respiratory 

syncytial virus. Among the viruses tested, VSV demonstrated superior oncolytic ability. 

In vitro data suggested that there was great variability in PDA cell lines susceptibility to 

viral oncolysis. Suggesting that there are key cellular factors present, making certain cell 

types more resistant to viral oncolysis. We also assessed the PDA cells abilities to 

produce and respond to Type I IFN. Responsiveness of cancer cells to IFN could be an 

important factor in vivo, where VSV infection would induce IFN production in 

surrounding healthy tissues, thus limiting oncolytic potential towards cancer cells 

sensitive to IFN. Results indicated that IFN sensitivity and production may be used to 

predict responsiveness of PDA cells to oncolytic virotherapy. VSV has been shown to 

cause cell death via apoptosis [99, 194, 226, 227]. The variability in susceptibility of 

cancer cells to viral oncolysis, could very well be attributed to differences in their 

mechanisms of cell death induction. While our preliminary studies indicate increases in 

caspase-3 activation, additional studies are needed to determine whether there is a delay 

in induction of apoptosis or a reduced level of apoptotic response.  

Moreover, we tested the oncolytic ability of VSV in an immunodeficient 

xenograft mouse model. We selected four cell lines that displayed varying permissiveness 

to VSV in our in vitro studies. The induced tumors in the nude mice showed similar 

permissiveness as was observed in vitro. Future studies could focus on understanding the 

underlying mechanisms and identifying potential biomarkers of resistance. Follow-up 

studies have already identified MxA and OAS as potential biomarkers for PDA resistance 

to VSV and other OVs sensitive to type I IFN responses [324]. This study also allows for 

potential pre-screening of cancer cells, in order to assess which OV would be the best 
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treatment options for that specific tumor. Furthermore, future studies could focus on 

using VSV virotherapy in a combinational treatment in order to obtain a maximal anti-

tumor effect.  

In the third section, we evaluate VSV as an oncolytic agent, in an 

immunocompetent mouse model. In this study, we utilized the cell lines generated from 

the spontaneous PDA mouse models either expressing human MUC1 (KCM) or null for 

Muc1 (KCKO). We included another mouse cell line that was retrovirally infected with 

empty vector (Panc02.NEO) or full length MUC1 (Panc02.MUC1). With the use of these 

cell lines, we were able to study the application of VSV as an oncolytic virotherapy 

within the context of MUC1 expression. We first compared the oncolytic potential of 

VSV with herpes simplex virus (HSV-1) and vaccinis virus (VVT7) on these cell lines in 

vitro.  Our results indicated that HSV-1 and VVT7 displayed a similar cell killing effect, 

but neither had as pronounced an effect as VSV. VSV had a significant oncolytic effect 

on both KCM and KCKO cells; however, KCKO cells were more permissive to VSV 

mediated viral oncolysis than KCM cells. However, the same was not true when in 

Panc02.NEO and Panc02.MUC1 cells were used, VSV showed similar oncolysis in 

Panc02 NEO and Panc02 MUC1 cells. These results indicate that MUC1 may not be the 

only factor contributing to the differential effect of VSV oncolysis observed in KCM and 

KCKO cells.  

VSV was then tested for the first time in an immunocompetent MUC1 immune 

tolerant mouse model. Xenografts of KCM and KCKO tumors were used to test the 

ability of VSV in vivo. Administration of live VSV resulted in a significant reduction in 

tumor burden in both cell lines tested. However, the tumor burden reduction was not 
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sustained. Moreover, in agreement with our in vitro data, KCKO tumors seemed to be 

more susceptible to viral oncolysis. The lack of sustained tumor reduction once VSV 

treatment was terminated was attributed to an antibody response against VSV.  There was 

no antibody or cell mediated immune response against the tumor itself. Moreover, VSV 

efficacy was improved when combined with a chemotherapeutic option, gemcitabine. 

Future studies will focus on using VSV as an oncolytic therapy in combination with other 

traditional therapies including vaccination and chemotherapeutic administration. 

Furthermore, future studies would need to optimize the treatment schema, titer of virus, 

as well as route of administration in order to achieve a maximal, sustained response, 

while preventing premature clearance of the virus.  

 In the fourth section, we focused on enhancing the efficacy of a breast cancer 

vaccine. Previous work from our lab indicated that the MUC1 vaccine can elicit a MUC1 

specific immune response, but can only be functional and efficacious if the immune 

suppression within the tumor microenvironment is altered [136, 297]. Our lab previously 

found that administration of a COX-2 inhibitor, celecoxib, enhanced the efficacy of the 

MUC1 vaccine by reducing overall tumor burden in a spontaneous mouse model of 

breast cancer [136]. In this study, we isolated cells from the spontaneous tumors, and 

generated a cell line (designated MTAG) and retrovirally infected with full length MUC1 

plasmid (then designated as MTAG.MUC1). This cell line was orthotopically injected 

into the mammary fat pad of MUC1.Tg mice. These mice were then treated with vaccine 

alone or a combination of vaccine with COX1/2 inhibitors or inhibitors of molecules 

downstream of COX2. Our results indicate that the combination of vaccine and 

indomethacin is the only drug combination that was able to significantly reduce tumor 
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burden. Moreover, this reduction in tumor burden was associated with a decrease in 

PGEM levels. Interestingly, the combination that was effective in the spontaneous model, 

vaccine and celecoxib, did not seem to have the same affect when tested in an orthotopic 

model, highlighting the heterogeneity of breast tumors themselves.  Since Indomethacin 

but not Celecoxib reduced tumor burden when given in combination with the MUC1 

vaccine, we are further investigating pathways that may be unique to Indomethacin 

involved in this mechanism. Therefore, future studies will focus on reconfirming some of 

the data shown here, as well as identifying the molecular mechanisms underlying the 

reduced tumor burden associated with the combinational treatment of vaccine and 

indomethacin.  
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