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ABSTRACT 

 

 

RASHID MOHAMMAD ZAHID REZA. Forecasting travel time and variations in travel 

time due to vehicle accidents in spatio-temporal context along freeway. (Under the 

direction of DR. SRINIVAS S. PULUGURTHA) 

 

 

The growth in population, technological advancements, increase in average life 

expectancy, and newer and fuel-efficient vehicles has led to a meteoric rise in travel 

demand over the past few decades. However, the road network capacity has not increased 

at the same progressive rate, resulting in congestion and associated traffic problems. 

Traffic incidents are major contributors of non-recurring congestion in most of the urban 

areas in the United States. 

Travel time is an effective parameter to quantify the congestion at segment- or 

corridor-level. Short-term traffic and travel time prediction plays a vital role in advanced 

traveler information systems (ATIS) and assists in proactive management of 

transportation network. However, forecasting travel time is complex under over-saturated 

conditions and in the presence of an incident. Besides, travel time itself cannot explain 

the exact impact of the incident as it varies with respect to time and over space. 

Incorporating all factors that affect traffic and travel time increases the magnitude of the 

complexity. Therefore, this research focuses on an application of Autoregressive 

Integrated Moving Average (ARIMA) model, incorporating travel time information over 

space (from neighboring segments) and time, to forecast travel time and relative 

variations in travel time (RVTT) along a freeway corridor in spatio-temporal context. The 

RVTT was considered instead of variation in travel time to negate the effect of difference 

in segment lengths and other geometric characteristics for a meaningful comparison. Two 



iv 

  

 

types of RVTT were considered: travel time / expected travel time and travel time / 

minimum travel time. 

Travel time data was collected from INRIX and incident data was gathered from 

Traveler Information Management System (TIMS) from 2010 to 2012. Databases were 

developed using data, for 150 “vehicle accident” affected days and 100 sample days of 

data when there were no incidents, along a ~19-mile freeway corridor of I-77 S in the city 

of Charlotte, North Carolina. 

Four categories of Cronbach’s α were computed at 10-minute intervals for each 

segment. The higher value was selected as the corresponding Cronbach’s α to capture the 

expected travel time of that segment. Minimum travel time of the segment was estimated 

as the minimum of all the travel time samples in a 10-min interval for each day-of-the-

week. However, when the minimum travel time was zero then the second minimum 

travel time was taken as it was assumed that no vehicle passed that segment or data was 

recorded during the specific time interval. 

Results obtained indicate that the difference between the observed and the 

expected travel time is less than 10% for almost 85% samples and less than 15% for 90% 

of the samples considered from 2010 to 2012. This indicates the effectiveness of 

Cronbach’s α in capturing the expected travel time for a certain time interval of a 

segment.  

Lagged regression model was then developed using data for 18 segments. Three 

scenarios (1) travel time (TT), (2) travel time/expected travel time (TT/ExpTT), and (3) 

travel time/ minimum travel time (TT/MinTT) were considered for both without incident 

and under “vehicle accident” conditions. Developed models from all three scenarios 
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showed that the travel times and RVTT for consecutive segments are highly correlated, 

and both upstream and downstream segments have an influence on the current state of the 

target segment. Moreover, all the significant predictor variables had a time lag of 10 

minutes. In other words, the prediction horizon is 10 minutes. 

The Mean Absolute Percent Error (MAPE) and Mean Absolute Deviation (MAD) 

of the developed lagged regression model are estimated for every segment, irrespective of 

the incident condition. MAPE and MAD values of all segments of TT are less than 10% 

for all but one segment, for which MAPE value was marginally greater than 10%. For 

both TT/ExpTT and TT/MinTT scenario, MAPE and MAD value for all segments was 

less than 10%, except for one segment. 

For model validation, a total of 80 days of data was considered (45 without 

incident days and 35 “vehicle accident” affected days). Results showed that MAPE and 

MAD values are less than 15% for TT and TT/MinTT scenarios of almost all the 

segments. However, for TT/ExpTT scenario, all of them are less than 15%. Moreover, 

both the calibrated and validated models demonstrated that modeling using TT/ExpTT 

would yield accurate results than TT/MinTT. Except for four segments, forecasting 

accuracy of TT/ExpTT was higher than TT/MinTT for all other segments.  Overall, the 

adopted methodology successfully forecasted travel time and variations in travel time for 

both without incident and under “vehicle accident” condition. 
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CHAPTER 1: INTRODUCTION 

 

 

Travel time is one of the most important link-, segment- or corridor-level 

performance measures. It can provide more meaningful information of a traffic network 

than other traffic variables of the network (Zeng et al. 2009). Travel time is easy to 

comprehend and visualize by everyone. Regular transportation systems users, businesses 

as well as transportation planners and engineers rely on travel time as a measure to make 

appropriate decisions.  Travel time also helps evaluate the performance of transportation 

system and serves as a criterion to determine the optimal route from an origin to a 

destination. 

1.1 Background 

The growth in population, technological advancements, increase in average life 

expectancy, and newer and fuel-efficient vehicles has led to a meteoric rise in travel 

demand over the past few decades. However, the road network capacity has not increased 

at the same progressive rate. Therefore, congestion as well as associated traffic problems 

has been increasing steadily. An increase in congestion means driver has to spend more 

time in traffic on their way to the destination. Traffic congestion affects in many ways. 

The Federal Highway Administration (FHWA) classified congestion into three broad 

categories: traffic influencing events, traffic demand, and physical highway features.  
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Based on these categories, FHWA has identified seven root causes for congestion. They 

are listed as follows (Cambridge Systematics 2005). 

1. Physical bottlenecks (“Capacity”), 

2. Traffic incidents, 

3. Work zones, Weather, 

4. Traffic control devices, 

5. Special events, and, 

6. Fluctuations in normal traffic flow. 

One or more than one source listed above can cause congestion. In general, traffic 

congestion occurs when the volume of traffic is greater than the road capacity. This is 

also termed as over-saturated condition. Due to congestion, transportation system users 

spend extra time in traffic when traveling from their origin to destination. 

The 2012 Urban Mobility Report summarizes the impact of congestion on travel 

time. The report is based on an analysis of data considering over 498 urban areas in the 

United States from 1982 to 2011 (Schrank et al. 2012). A few highlighted from the 

aforementioned report are summarized next. 

1. Total travel delay per year increased from 1.1 billion hours to 5.5 billion hours 

(total percent increase is 400%) in the last 30 years. 

2. Delay on any weekday is higher than weekend and around 63% of the total 

delay occurs during peak hours and the remaining 37% occurs during off-peak 

hours. 
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3. Local roads observe more delay (peak hour delay accounts for 34% and off-

peak hour delay accounts for 26%) than freeway (peak hour delay accounts 

for 29% and off-peak hour delay accounts for 11%). 

4. Passenger vehicles contribute to 73% of the vehicle miles traveled in urban 

areas, which imparted 78% of the congestion cost whereas the remaining 

congestion is imparted by heavy vehicles. 

5. About 13% of vehicle miles traveled occurred at extreme congestion level, 

which caused 64% of travel delay in 2011. 

6. Commuters suffered an average of 6 hours of delay per year during weekdays 

(~52 hours of delay per year in areas over 3 million population) in 2011. 

Throughout the 498 urban areas in the United States, yearly per commuter 

delay had increased to 38 hours from 16 hours (percent increase is 137.5%) in 

between 2011-1982. 

7. Travel Time Index (TTI) has increased from 1.07 to 1.18, which revealed that 

a 20-minute free-flow trip takes 23.6 minutes instead of 21.4 minutes during 

the peak period. 

8. Planning Time Index (PTI) for freeways is 3.09, which indicated that a 

transportation system user should plan for a 46.35-minute trip to ensure on 

time arrival at the destination 95% of the time during congested hours when 

compared to complete a 15-minute trip in light traffic conditions. 

In addition to the increased travel time, congestion has a negative impact on 

environment and economy as it causes excess fuel consumption and gas emissions. The 

Centre for Economics and Business Research (CEBR) forecasted that by 2030, the CO2 
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equivalent emissions in monetary terms would be $538.2 million for the United States 

including both direct and indirect cost of households. Key parameters that have an effect 

on emissions include economic growth, gross domestic product (GDP) per capita, and 

growth of population, total vehicle miles travelled on roads by commuters, business and 

freight transportation users (CEBR 2014). The present condition and trends pertaining to 

fuel consumption and air quality are summarized next based on the 2012 Urban Mobility 

Report (Schrank et al. 2012). 

1. Consumption of extra fuel during congestion or wasted fuel has increased to 

2.9 billion gallons in 2011 (which can fill four New Orleans Superdomes) 

from 0.5 billion gallons in 1982. 

2. Congestion cost, which is a combination of yearly delay time and wasted fuel, 

increased almost 5 times from $24 billion to $121 billion in the last 30 years. 

With this $121 billion, it is possible to cover the lost productivity and direct 

medical expenses of 12 average flu seasons (time span characterized by the 

prevalence of outbreaks of influenza). 

3. 56 billion pounds of additional CO2 greenhouse gas is released into the 

atmosphere (which is same as total liftoff weight of 12,400 full fuel loaded 

Space Shuttles) during urban congested conditions compared to 10 billion 

pounds of additional CO2 in 1982. 

4. Yearly congestion cost per auto commuter was $818 in 2011 compared to an 

inflation-adjusted cost of $342 in 1982. 
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5. $73 billion (78%) of the delay cost was from passenger car and the remaining 

is from truck operation excluding any value for the goods being transported in 

the trucks. 

Overall, the impact of congestion can be summarized as longer travel times i.e., 

loss of productivity and negative impact on economy, excess fuel consumption, and 

increase in emissions (harmful effect on the environment). 

Congestion can be subdivided into two parts: recurring congestion and non-

recurring congestion. Hallenbeck et al. (2003) defined non-recurring congestion as 

unusual congestion caused by an unexpected or transient event compared to other days. It 

can be caused by a variety of factors like lane blocking due to crash, disabled vehicles, 

debris on the roadway; lane closure due to construction; inclement weather; roadside 

distractions due to roadside construction, electronic signs, a fire beside the freeway etc. 

Alike recurring congestion, non-recurring congestion caused by incidents may lead to 

sudden changes in traffic condition resulting in significant delays on urban roads. Along 

with congestion, incidents have many effects such as secondary incidents resulting in 

increased delays, bottlenecking, and rubbernecking (Tennessee Department of Safety 

2003). 

FHWA estimated that 25% of the congestion is caused by traffic incidents 

(Cambridge Systematics 2005). It is one of the major contributors of non-recurring 

congestion in most of the urban areas in the United States. Among the different types of 

traffic incidents, vehicle crash is the most severe one. From 2004 to 2013, a total of 

339,833 fatal crashes and 57,372,000 non-fatal crashes occurred throughout the United 

States. Due to fatal crashes, a total 373,598 people were killed while 24,247,000 were 
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injured due to both fatal and non-fatal crashes within this timeframe. Progress has been 

made to reduce yearly crash rate as well as fatality rate and injury rate nationwide. In 

2013, the fatality rate per 100 million VMT decreased to 1.09, the lowest point 

historically, compared to 1.44 per 100 million VMT in 2004. A similar scenario was 

observed for the fatality rates per population, licensed drivers, and registered vehicles. In 

2004, the injury rate per 100 million VMT was 94 but after 2008 the injury rate per 100 

million VMT did not exceed 80. It was estimated as equal to 77 in 2014 (NHTSA 2015).  

1.2 Problem Statement 

One of the most important parameters to estimate the effect of traffic and 

incidents such as “vehicle accident” on congestion is travel time (Cambridge Systematics 

et al. 2008). Travel time information is an essential part of Advanced Traveler 

Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). 

Travel time provides significant information pertaining to trip assignment. It influences 

start time of the trip, mode of travel, routing decision, or even cancel their trip. To 

planners, all these details are vital to make better and informed decisions on strategies for 

the management and the optimal guidance of traffic. Moreover, it is important to forecast 

how transportation network performance would vary under a given set of conditions in 

the near future. Therefore, short-term prediction is necessary for improved traveler 

information or traffic management (Booz Allen & Hamilton Inc. 1998). 

Under free-flow conditions, travel time can be easily predicted based on the free 

flow speed. Even if the traffic state remains stable over time as well as across space and 

the traffic volume starts increasing, travel time is still very predictable as a function of 

relevant traffic characteristics such as travel time, speed, volume and occupancy. 
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However, the traffic condition becomes complex and is non-linear in nature when traffic 

volume levels are close to the over-saturated condition. Furthermore, incidents induce 

more complexities to the traffic system, which reduces the preciseness of travel time 

prediction. Therefore, the prediction of travel time during incident and immediately after 

an incident is a challenge for planners and engineers (Zeng et al. 2009). 

Appropriate and reliable data collection is another important issue. Various traffic 

sensing technologies have been used to collect traffic data for travel time estimation, 

including point to point travel time collection (e.g., manual probe vehicle, license plate 

recognition systems, automatic vehicle identification systems, Bluetooth detectors, etc.) 

and station based traffic state measuring devices (e.g., loop detector, video camera, and 

remote traffic microwave sensor) (Chen et al. 2013). Private companies such as INRIX, 

Tom Tom and HERE integrate different sources of data to provide section-based traffic 

state data (e.g. speed, average travel time, etc.). 

Short-term traffic prediction plays a vital role in ATIS and proactive management 

of transportation network. It has already been mentioned that as the traffic and congestion 

has been increasing steadily, an accurate prediction of future travel time is becoming 

more important in trip planning for commuters. The core of the short-term forecasting is 

to identify the fundamental pattern in the traffic data and utilize that information to 

forecast future traffic pattern such as its speed, flow, and travel time. In short-term traffic 

forecasting, there are two groups of models: univariate and multivariate. Univariate 

models use past internal patterns of traffic variables at one specific site to forecast future 

values. However, multivariate forecasting methods can capture both temporal and spatial 

evolvement of traffic (Yang et al. 2014). 
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The effectiveness of multivariate method enhances with the incorporation of 

surrounding traffic condition. The accuracy of traffic forecasting is closely related to the 

use of neighboring segments’ traffic information. The spatial-temporal relationships 

between traffic variables of consecutive segments are highly correlated under different 

traffic conditions (Ahmed et al. 1979, Yang et al. 2014). 

However, travel time itself cannot provide the exact impact of the incident as it 

varies with respect to time (peak period compared to off-peak period). Travel pattern 

changes even in the presence of recreational events like game day, festival, long-

weekend. Incidents can add new dimension to those scenarios based on the numbers of 

blocked lanes, damaged vehicles clearance time, arrival pattern of the vehicles, accident 

occurrence time-of-the-day, etc. Variation in travel due to “vehicle accident” will help 

better understanding the effect of the accident and will help the planners to come up with 

an effective alternative route plan. For example, if regular travel time along a freeway 

segment is 4 minutes but increases to 8 minutes due to a “vehicle accident”, expressing 

that the vehicle travel time has increased by 100% or two times will be a more effective 

way to explain the scenario. 

The length of all the segments is not same in the transportation network. Travel 

time variation can eliminate the impact of the difference in lengths. For instance, it is 

assumed that two segments of 3 miles and 5 miles shows regular travel time of 5 minutes 

and 3 minutes, but due to incident, travel time changes to 8 minutes and 7 minutes, 

respectively. Segment 1 still shows higher travel time than segment 2 but travel time 

variation on segment 2 is higher than segment 1. Considering these facts travel time 
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variation simply outperforms travel time as a performance measure. Therefore, the 

variation in travel time also needs attention in addition to travel time.   

The variation in travel time requires identification of incident free travel time. 

Obviously, it is hard to say what could be the travel time if there is no accident occurred 

at that time. Most probable or expected travel time can provide some insights in this 

regard. Therefore, identifying or computing the expected travel time is the first step to 

determine the approximate travel time variation. 

Various methods were devised in the past to forecast different traffic parameters. 

However, very little is done on developing models to forecast travel time and examine 

spatio-temporal variations in travel time due to incidents such as “vehicle accident”. 

This Dissertation, therefore, addresses this need and focuses on adopting 

multivariate time series Autoregressive Integrated Moving Average (ARIMA) model in 

forecasting the effect of incidents on travel time and variations in travel time as well as to 

check the effectiveness Cronbach’s α to estimate the expected travel time. 

1.3 Goal and Objectives  

The goal of the proposed research is to improve operational performance on urban 

transportation networks through dissemination of information, by transportation system 

managers, that can help make transportation system users make better mode, route choice 

and departure time decisions. The following objectives are identified and defined to 

achieve the research goal.  

1. To define the variation in travel time, 

2.  To research and develop a method to estimate the expected travel time for 

segments of a freeway for each time interval, 
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3. To forecast travel time for segments of a freeway when there is no “vehicle 

accident” and when there is a “vehicle accident”,  

4. To research and evaluate the spatial-temporal relationships in travel time and 

travel time variations,   

5. To model and assess the effect of “vehicle accident” on system performance 

so that planners can provide proper route guidance and individuals can make 

informed trip planning, and, 

6.  To calibrate the developed model for enhanced prediction and validate the 

application of the methodology. 

1.4 Research Significance 

The traffic condition of neighboring segments over time play a significant role in 

short-term traffic condition forecasting of the target segment. For instance, it is expected 

that traffic condition on the target segment will be highly correlated with its immediate 

downstream and / or upstream segment traffic condition. This relationship could vary 

over time after a “vehicle accident”. Forecasting and disseminating this information will 

help transportation system users make improved trip planning decisions.  

Different technologies have been adopted to forecast travel time in the past. 

However, not many studies have focused on travel time forecasting under “vehicle 

accident” condition. Moreover, travel time itself cannot precisely assess the effect of 

incident as the length of the segment varies and travel time of a segment is not same 

throughout the whole day. 

Generally, delay is used as a means to estimate the effect of an incident on the 

transportation network. However, it would be very hard to measure delay in the absence 
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of traffic volume data. This dissertation uses variations in travel time and relative 

variation in travel time to capture the effect of an incident. 

1.5 Organization of the Dissertation  

The reminder of this Dissertation is comprised of six chapters. Chapter 2 provides 

a literature review of previous works on forecasting different traffic parameters, both 

under incident and without incident condition and on capturing expected travel time. 

Chapter 3 introduces Cronbach’s α for estimating expected travel time and ARIMA 

model and its different parameters (Auto-correlation function, Partial Auto-correlation 

function, etc.) for time series forecasting. Chapter 4 discusses about the study area and 

data required for this research. Chapter 5 presents the definition of variation in travel 

time, study corridor, and database development. It also covers the systematic approach 

for finding maximum corresponding Cronbach’s α for each segment by time-of-the-day 

as well as day-of-the-week and the systematic method of building ARIMA model from 

travel time data for each segment. Chapter 6 shows the effectiveness of the adopted 

methods in estimating the expected travel time, presents results from ARIMA model to 

forecast travel time and variation in travel time for both with “vehicle accident” and 

without “vehicle accident” incident condition, and model validation. Finally, chapter 7 

presents the conclusions and recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

This chapter presents a review of different methods to capture the expected travel 

time, to forecast travel time and its variation under “vehicle accident” and without vehicle 

accident. It includes a review of literature on the support vector regression, the time series 

model, the neural network, combination of the time series and the neural network, and 

other methods for forecasting of travel time, different empirical methods on expected 

travel time computation, and previous studies on capturing the effect of incidents.  

2.1 Performance Evaluation of Machine Learning Models in Forecasting Traffic 

Parameters 

Machine learning, a subfield of computer science, is a method that uses past 

available data to improve computational performance. This process can deal with 

different types of data varying from digitized human-labeled training sets data to data 

obtained from human environment interaction.  Machine learning algorithms have been 

used in the field of computer science as well as biological science. They have been 

successfully implemented to solve problems that involve or related to classification, 

clustering, regression, anomaly detection, recognition, online learning, and grammar 

induction (Bishop 2006). 

Machine learning tasks are generally classified into three sections depending on 

the nature of the learning system: supervised learning process, unsupervised 
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learning process, and reinforcement learning process. Supervised learning is a type of 

machine learning task that tries to find a function from labeled training data. 

Unsupervised learning tries to figure out the hidden structure in unlabeled data, while 

reinforcement learning concerns with how software agents deals with environment to 

maximize cumulative performance. Selected prominent machine learning algorithms are 

listed next (Bishop 2006).  

1. Support vector machine (SVM) 

2. Support vector regression (SVR) 

3. Decision trees 

4. k-NN 

5. Linear regression 

6. Naïve Bayes 

7. Neural networks 

8. Logistic regression 

SVM theory was invented by V. Vapnik in 1995 at the AT&T Bell Laboratories 

(Vapnik 1995). Since then it has been successfully applied for forecasting different traffic 

parameters. SVM can generalize the training data as well as can reach the global minima. 

Wu et al. (2003) applied SVM to forecast travel time along a Taiwan freeway. Results 

showed that SVM outperformed current travel time prediction method and historical 

mean prediction method (average of all historical travel time samples for a specific time-

of-the-day and day-of-the-week). Konkaew et al. (2013) adopted SVM for prediction of 

short-term travel time along an expressway in Bangkok, Thailand. Data was obtained 

from video image processing cameras. Results revealed that SVM approach significantly 



30 

  

 

outperformed historic approach for all prediction horizons from 0 minute to 30 minutes in 

10 minutes increment. Chen et al. (2012) conducted a study on predicting travel time of 

Bus Rapid Transit (BRT) using SVM and Global Positioning System (GPS) data. They 

also applied Kalman filter algorithm to adjust the results of the predicted travel time. 

Results proved that the proposed model could predict BRT vehicle travel time with a high 

prediction accuracy for both off-peak hour and peak hours. 

Not only travel time, SVM can successfully forecast traffic volume (traffic flow). 

Gao et al. (2010) used SVM for forecasting traffic volume using three months traffic 

volume data in China. Relative forecasting error of SVM was less than both Grey 

Predicting (GP) model and individual ANN model. The SVM combined forecasting 

method showed higher accuracy than linear combined forecasting method and ANN 

combined forecasting method. Sun et al. (2012) forecasted traffic flow using SVM. Gao 

et al. (2010) also incorporated feature extraction methods such as Principal Component 

Analysis (PCA), Self-Organization Map (SOM) network, and Multidimensional Scaling 

(MDS). Among these three, MDS increased the computation speed the most. 

Traffic flow varies with respect to time. Therefore, Li (2009) added a time 

dependent reconstruction process to SVM structure. This process outperformed SVM 

without a time-dependent structure. Absolute mean error (AME) and mean squared error 

(MSE) of the prediction model were 5.1 veh/5 min and 6.0 veh/5 min, respectively. 

Casto-Neto et al. (2008) applied Online SVR (OL-SVR) method for forecasting short-

term traffic flow under atypical conditions like vehicular crashes, hazardous weather, 

work zone, holidays, etc. The OL-SVR model was compared with Gaussian maximum 
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likelihood (GML), Holt exponential smoothing, and ANN. Results showed that OL-SVR 

performed better than any other considered model. 

A significant number of studies focused on forecasting speed profile along both 

arterial and freeway. Yildrim et al. (2008) predicted speed using SVM. Data was 

collected from remote traffic microwave sensors. Speed in one sensor was predicted 

either with respect to historical speed data or based on the speed correlations with other 

sensors. Predictor horizon varied from 5 minutes to 60 minutes. Results showed that 

SVM performed very accurately and provided better results than k Nearest Neighbor 

(kNN) method. 

Generally, forecasting is made for a segment or corridor. But Asif et al. (2012) 

used SVR to predict traffic speed in a large and heterogeneous road network, which could 

provide network wide scenario of speed profile. Moreover, k-means clustering, PCA, and 

SOM were adopted to capture the spatial and temporal performance for both network 

level and for individual links for multiple prediction horizons. SVR was also successfully 

implemented for incident duration forecasting and incident detection. 

Besides SVM, KNN was also used to forecast different traffic parameters. The 

basic principle of KNN is that it tries to match current traffic scenario with historic traffic 

pattern. Zhang et al. (2013) used KNN method for forecasting short-term traffic flow 

along expressway. Results showed that the forecasting accuracy of the proposed method 

was more than 90%. Chen et al. (2013) demonstrated the application of KNN for 

prediction of travel time. They used spatio-temporal traffic state as control variable 

instead of travel time. Results showed that this method reduced the prediction error by 

7.5 minutes to 3 minutes on a 50-minute trip. Naїve clustering approach was also used for 
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forecasting travel time in the past. Deb Nath et al. (2011) applied Naїve clustering 

approach for forecasting travel time and found that it provided better results than Rule 

Based method, Naïve Bayesian Classification (NBC) method, Successive Moving 

Average (SMA) and Chain Average (CA).  

Forecasting is generally performed for individual road segments and prediction 

horizons. However, Dauwels et al. (2014) developed a collective prediction for multiple 

road segments and prediction-horizons. They developed different models through partial 

least squares (PLS), higher order partial least squares (HO-PLS) and N-way partial least 

squares (N-PLS). These models successfully forecasted traffic conditions for multiple 

road segments as well as prediction-horizons. 

Overall, different machine learning methods were applied successfully to forecast 

different traffic parameters. ANN, which is a part of machine learning technique and used 

to forecast traffic parameters, is discussed in the next section. 

2.2 Performance Evaluation of Different Types of Artificial Neural Network 

(ANN) Models in Forecasting Traffic parameters  

Artificial Neural Networks (ANN) is a large-scale parallel-linked system, which 

simulates the structure of the human brain with self-adapting modeling and studying 

functions (Angeli 2010). Generally, ANN consists of a number of structural constituents 

that helps in non-linear computations. The objective function of neurons is then 

computed through a two way process: at first, by summing up the product of the input 

signals and synaptic weights, and secondly, by transforming the summation of the inputs 

through a transfer function to produce an output (Hassoun 1996). An example ANN 

model is shown in Figure 1. 
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FIGURE 1: Model of neuron (Zeng 2009) 

 

 

 

The framework of ANN can be applied to a wide range of forecasting problems 

with a high degree of accuracy. However, sometimes ANN yields mixed results in 

solving linear problems, and hence not applicable for any type of data (Zeng 2009). 

ANN has been widely used to solve the travel time forecasting problem. Many 

ANN approaches had resulted in satisfactory prediction performance under certain 

conditions. Lint et al. (2002) applied state-space neural network (SSNN) for travel time 

prediction of freeway. Output travel time showed zero mean normally distributed 

residuals were within a range of 10% of the real expected travel times most of the cases. 

Furthermore, analyses of the internal states and the weight configurations revealed that 

the SSNN based internal models are closely related to the underlying traffic processes. 

Lint et al. (2005) also proposed a framework for travel time prediction along freeway, 

which exhibits capability in dealing with missing or corrupt input data. This neural 

network framework also consisted of SSNN topology. Robustness of missing data was 

tackled by means of simple imputation (data replacement) schemes, such as exponential 

forecasts and spatial interpolation. Results showed that this framework of SSNN travel 
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time prediction yields accurate and robust travel time predictions on both synthetic and 

real data. Liu et al. (2009) applied SSNN to forecast travel time on urban arterial streets. 

Modeling for a long urban arterial street in the Netherlands was done by assembling 

multiple segments. The results indicated that this proposed model is capable of 

forecasting travel time with satisfying accuracy. 

For better training of ANN topology, different methods have been adopted in the 

past. Li et al. (2009) used SSNN with adaptive filters to predict the urban arterial travel 

time. Adaptive filters were proposed to improve the effectiveness through training the 

SSNN instead of conventional approaches. Model performance was tested with urban 

arterial data. The performance of the proposed model was compared with that of 

conventional SSNN and Back Propagation Neural Network (BPNN). Results showed that 

the proposed method successfully forecasted urban arterial travel time.  

Not only SSNN, other ANN techniques have been applied to forecast travel time 

and different other traffic characteristics. For example, Park et al. (1998) applied Modular 

ANN to forecast travel time for every unsupervised cluster based on historical data of 

each segment. This method was then compared with other ANN methods. It was 

observed that the modular ANN (MNN) outperformed the conventional singular ANN, 

Kalman filtering model, exponential smoothing model, historical profile, and real-time 

profile. Cho et al. (2003) used MNN to forecast the arrival times of trains at highway-

railroad grade crossings. Independent variable was train speed profile and the dependent 

variable was arrival time at highway-railroad grade crossing. Four models were 

developed based on the data input and prediction interval. Approximately, 499 trains 

were used for training and 183 trains were used for testing the MNN. It was found that 
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modular architecture gave better results than simple ANN model and standard regression 

techniques. 

Another ANN model is Spectral basis ANN that has been successfully 

implemented to forecast different traffic characteristics. Park et al. (1999) employed a 

spectral basis artificial neural network (SNN) which adopted sinusoidal transformation 

technique to increase the linear separability of the input features to forecast link travel 

time using real-information. SNN outperformed Kalman filtering model, exponential 

smoothing model, historical profile, and real time profile and gave similar results to that 

of modular ANN. However, SNN took less effort than MNN. Rilett et al. (2001) also 

adopted SNN to forecast freeway corridor-level travel time following a two-step 

approach and using link-level travel time. They reported that results were better than that 

of other model based on real-time or historical corridor profile. 

BPNN has also been adopted to forecast different traffic characteristics. Hu et al. 

(2009) worked on a predicting model and data acquisition plan based on BPNN. The 

drawback of BPNN is that it easily falls into the local convergence. Therefore, they 

introduced Genetic Algorithms to improve the traditional BPNN using its global search 

capability. Results showed that GA-BPNN showed better convergence speed and 

predicting accuracy. Lee et al. (2009) developed a novel travel time forecasting model 

using ANN with cluster method. The cluster method was employed to reduce the number 

of input variables. Results showed that the mean absolute percentage error (MAPE) of the 

predicted travel time was less than 22%, indicating a good forecasting performance. 

ANN was also applied to predict travel time in the presence of an incident.  Ran et 

al. (2006) applied neural network model for corridor-level travel time prediction in the 
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presence of traffic incidents. Three different scenarios were considered based on the 

types of the input variables: (1) incident related information only; (2) current traffic 

condition information only, (3) both the incident related information and the current 

traffic condition information. Results demonstrate that third scenario delivered a 

successful model. Zeng et al. (2009) predicted corridor travel time under incident 

conditions by adopting two steps: firstly, predicting of the segment travel time, and, 

secondly, aggregating corridor-level travel time of the predicted segmental results with 

and without incident. To address the dynamic nature of traffic system, Time Delay 

Neural Network (TDNN), SSNN, an Extended SSNN (ExtSSNN), and a traditional 

BPNN were tested alongside the influence of incident to predict corridor-level travel 

time. The empirical results showed that the SSNN and ExtSSNN outperformed other 

models. Likewise, He et al. (2010) implemented BPNN to predict travel time during 

incident to assist with incident management.  

Overall, past research shows that ANN has been applied successfully through 

different network architectures (ANN, SSNN, SNN, TDNN, MNN, etc.), data sources 

(GPS, simulated travel time, etc.), different types of inputs (speed, travel time, real-time 

data, historical data, occupancy, upstream and downstream traffic data, incident 

information, etc.) for both static and dynamic network conditions.  

2.3 Performance Evaluation of Time Series Methods in Forecasting Traffic 

Parameters 

A time series is defined as the sequence of observations or points over time. The 

trend of a time series is easily understood through delineation of a scatter plot. Time 

series can be either continuous or discrete. Observations are available at every instant in 
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case of continuous time series, while discrete time series is the one where there are some 

intervals among the observations (Easton et al. 1997). 

Different time series methods were developed and adopted by researchers in the 

past. Billings et al. (2006) applied ARIMA model to predict arterial travel time using 

GPS probe vehicle data. The Yule-Walker method, the Levison-Durbin algorithm, the 

Burg's algorithm, the Innovations algorithm, and the Hannan-Rissanen procedure were 

used to estimate the ARIMA parameters. Models for each segment were validated using 

both the residual analysis and Portmanteau lack-of-fit test. The findings indicate 

reasonable accuracy in predicting section-level travel time. Hu et al. (2010) also used 

time series model for prediction of travel time for urban network beside of a simulation-

based model. The simulation-based model, DynaTAIWAN was used to estimate travel 

time using traffic flow patterns, O-D flows, network, alternative routes and other traffic 

conditions. ARIMA was integrated with signal delay to predict travel time for the arterial 

street. Numerical results indicated that both proposed simulation-based travel time 

prediction model and the ARIMA model provided reasonable travel time information.  

Yang et al. (2014) used ARIMA model alongside pre-whitening cross-correlation 

function (CCF) and observed spatio-temporal relationships between data of consecutive 

segments. They found that traffic condition is highly correlated over space and time.  

Traffic characteristics other than travel time had been successfully forecasted 

using ARIMA model in the past. Lee et al. (1999) implemented ARIMA model for 

forecasting traffic volume and found that a subset ARIMA model outperformed full 

ARIMA model. Rashidi et al. (2013) conducted study on short-term prediction of bus 

dwell time using ARIMA based on historical automatic vehicle location (AVL) data and 
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found that Wakeby distribution outperformed the lognormal distribution for both peak 

and off-peak periods.  

Time series model was also developed to forecast arrival time of buses. Suwardo 

et al. (2009) applied ARIMA model to predict bus travel time based on historical travel 

time series data. Historical data set was collected from the bus service operated on a 

divided 4-lane 2-way highway in Malaysia. The analysis of both directions was 

performed separately. Their results showed that the developed models clearly fit with the 

observed values for both directions. Like regression model, ARIMA does not require the 

factors affecting bus travel time such as delay at link, bus stop, and intersection for 

forecasting. 

Not only ARIMA, other time series models have been successfully used to 

forecast different traffic characteristics alongside travel time. Guin et al. (2006) presented 

a Seasonal Autoregressive Integrated Moving Average (SARIMA) time series based 

approach for predicting future travel times using historical point detection travel time 

data. Empirical testing of the model was performed using data obtained from video 

detection systems in Atlanta, Georgia. Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) were used for selecting the orders of SARIMA 

models. However, the quality of the predictions for the random walk model degrades 

rapidly for a 4-step ahead forecast. Marković et al (2007) developed a SARIMA model to 

predict the travel time on an urban road in Zagreb, Croatia using GPS data. Khoei et al. 

(2013) used Bluetooth data for short-term travel time prediction. The SARMIA model 

accounted the seasonality coefficient considering previous lags of the same day and the 

values from the same time of previous days. The results successfully validated different 
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prediction horizons (5 min to 90 minutes). However, the random walk model and 

seasonality may not be applicable to all contexts. 

Not only travel time, SARIMA was also applied for traffic flow forecasting in the 

past. Xia et al. (2006) developed a methodology for dynamic travel time prediction based 

on continuous data generated by single-loop detectors (and similar devices) and incident 

reports generated by the traffic monitoring system. Their method involved multiple-step-

ahead prediction for flow rate and occupancy in real time. SARIMA model was 

developed with an embedded adaptive predictor. This predictor adjusted the prediction 

error based on traffic data that became available every five minutes at each station. The 

impact of incidents was evaluated based on estimates of incident duration and the queue 

incurred. Tests and comparative analyses showed that this method was able to capture the 

real-time characteristics of the traffic and provide more accurate travel time estimates 

particularly when incidents occur. 

Williams et al. (2003) compared SARIMA, random walk, historical average, and 

combination of random walk and historical average for traffic flow prediction. Their 

results indicate that one-step SARIMA predictions consistently outperformed other 

heuristic forecast benchmarks. Ghosh et al. (2004) compared three different time-series 

models, viz. random walk model, Holt-Winters’ exponential smoothing technique and 

SARIMA model  for predicting traffic flow at an arterial intersection in a congested 

urban transportation network in the city of Dublin, Ireland. The data used for modeling 

was obtained from loop-detectors at a certain junction in the city center of Dublin. 

SARIMA and Holt-Winters’ exponential smoothing technique gave highly competitive 

forecasts and matched the traffic flow data during rush hours.  
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Other time series model such as Space-Time Autoregressive Integrated Moving 

Average (STARIMA), Autoregressive Integrated Moving Average with Generalized 

Autoregressive Conditional Heteroscedasticity (ARIMA-GARCH), Kohonen-enhanced 

ARIMA (KARIMA), etc. were also used to model traffic parameters in the past. Khan et 

al. (2012) conducted a study on predicting travel time in an urban traffic scenario for 

Sydney region, Australia as well as large section of Sydney’s urban landscape. The 

model was built using Quadstone Paramics simulator. The baseline demand model was 

calibrated based on load shift parameter in the pre-defined demand matrix. Analysis was 

performed for six level of service (LOS) settings and accuracy was reported for 

prediction times of several tens of minutes. Though the model performed well in the 

steady state case, the basic approach is not suitable for modeling the urban traffic setting. 

Chen et al. (2011) proposed ARIMA-GARCH model for short-term traffic flow 

prediction. The model combined linear ARIMA model with non-linear GARCH model, 

to capture both the conditional mean and conditional heteroscedasticity of traffic flow 

series. The model was developed based on PeMS single loop detector data. The 

performance of the hybrid model was compared with that of standard ARIMA model. 

The results showed that the conditional heteroscedasticity could not bring satisfactory 

improvement to prediction accuracy and in some cases; GARCH (1, 1) model even 

showed deteriorated performance. 

Van Der Voort et al. (1995) introduced KARIMA method for short-term traffic 

flow forecasting. The technique used a Kohonen self-organizing map as an initial 

classifier, which was associated with individual ARIMA model. The model successfully 
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demonstrated traffic flow forecasting of French motorway for prediction horizons of half 

an hour and an hour. 

Time series model was also integrated with other models such as ANN and fuzzy 

logic. Through hybridization, the time series was decomposed into linear and non-linear 

components, which can deal with single model as well as multiple models. Therefore, 

novel hybridization of ANN and ARIMA model can overcome limitation of ANN and 

yield a more accurate forecasting model than traditional ARIMA models. Moreover, 

theoretical and empirical findings have indicated that integration of different models can 

be an effective way of improving upon their predictive performance, especially when the 

models in combination are quite different. Ho et al. (2002) investigated a comparative 

study of the Box-Jenkins ARIMA model and the ANN model in time series prediction. 

The ANN architecture comprised of Multi-Layer Feed-Forward Network and the 

Recurrent Neural Network (RNN). Simulation results showed that both the ARIMA and 

the RNN model outperformed the feed-forward model in short-term forecasting. Zeng et 

al. (2008) also developed a hybrid-predicting model for short-term traffic flow that 

combined both ARIMA and multilayer artificial neural network (MLANN). ARIMA is 

suitable for linear prediction and MLFNN is suitable for non-linear prediction. Their 

experimental results with real data sets indicated that the combined model could 

outperform the other models in forecasting accuracy. Tan et al. (2008) proposed an 

aggregation approach for traffic flow prediction that was based on the moving average, 

exponential smoothing, ARIMA, and neural network models. The data source was the 

weekly traffic flow series, a daily traffic flow, and an hourly traffic flow series. The 

predictions that resulted from the moving average, exponential smoothing, and ARIMA 
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models were used as the input for ANN. The output traffic flow of the aggregated model 

then compared with the naïve, ARIMA, non-parametric regression, and ANN model. The 

outcome revealed that the data aggregation model could forecast more accurately than 

any individual model considered in their research. He-Jiuran et al. (2013) proposed a 

method to predict passenger flow using ARIMA model and Radial Basis Function (RBF) 

neural network, which is suitable for processing non-linear problem. The ARIMA - RBF 

model analyzed passenger flow’s temporal characteristics. The proposed model was used 

to forecast passenger flow of rail transit in Beijing, China. Results showed that the 

ARIMA - RBF model’s average daily forecast error was 2%, which was less than 

ARIMA and RBF itself. Overall, past research showed that time series model could 

forecast accurately the traffic parameters when applied alone or along with other models. 

2.4 Performance Evaluation of Different Other Methodologies in Forecasting 

Traffic Parameters 

Besides the methodologies discussed in the previous sections, other 

methodologies were used in forecasting traffic characteristics. For instance, Messer et al. 

(1973) developed a method for predicting the travel time required to traverse a freeway 

segment that is experiencing incident congestion. The model was developed based on 

kinematic wave theory of Lighthill and Whitham. In their research, the model was 

deterministic. The study presented speeds of the various shock waves and travel-time. 

This model could also be used to predict queue backups and delays due to lane closures 

caused by scheduled maintenance operations. Hobeika et al. (1994) predicted short-term 

traffic volume based on current traffic, historical average, and upstream traffic. Three 

models were developed for prediction: a combination of historical average and upstream 
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traffic, a combination of current traffic and upstream traffic, and a combination of all 

three variables. The three models were evaluated using 15-minute freeway data from 

induction loop detectors. The third model surpassed other models in producing accurate 

forecasts under congested traffic condition in ranges of 30- to 45-minutes. Roozemond et 

al. (1997) also used historic data and current data to develop a dynamic model for 

forecasting travel times of links. They reported that future forecasting could be done 

using both current data as well as travel times for some time ahead based on current and 

historic data. However, historic data based prediction models give the current and future 

travel time based on historical travel time of an assumed stationary condition. Therefore, 

historical mean based prediction model is more reliable where the traffic pattern in that 

area of interest is relatively stable with not much disruption from congestion. Sun et al. 

(2003) applied local linear regression model for short-term prediction of traffic flow 

using historical and current traffic flow data as input variable. The performance of the 

proposed model was compared with the previous results of non-parametric approaches 

such as KNN and kernel methods and results showed that proposed method outdone both 

KNN and the kernel smoothing methods. Kalman Filtering was also used to forecast 

traffic characteristics. Barcelo et al. (2010) adopted ad hoc procedures based on Kalman 

Filtering and reported that it could predict travel time successfully. Zhang et al. (2011) 

applied adaptive model based on the Kalman Filter Model (AKFM) and Classical 

Kalman Filter Model (CKFM) for short-term traffic flow forecasting. Results obtained 

showed that the stability and prediction capability of AKFM is better than CKFM.  
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2.5 Previous Studies on Quantifying the Effect of Incident 

Researchers in the past have worked on quantifying the effect of incident on the 

transportation system. Koutsopoulos et al. (1991) presented a theoretical link travel-time 

estimation model in which incident delay was estimated using a deterministic model. 

However, in their study the incident and its attributes (reduced capacity and incident 

duration) are randomly generated. Al-Deek et al. (1991) evaluated the benefits of a route 

guidance system specifically in the case of incident congestion. In their model, the 

incident situation also was assumed deterministic, and a deterministic queuing model was 

then used to estimate the queuing delay. 

Fu et al. (1995) developed a model to predict travel time in an urban traffic 

environment considering dynamic and stochastic nature of the traffic during incident 

conditions. In contrast to traditional deterministic delay models of incident, the model 

presented explicitly considered the stochastic attributes of incident duration. This model 

predicted the delay that a vehicle would experience as it traveled through non-recurring 

congestion brought about by an incident. A mixed discrete and continuous vehicle-delay 

model was first derived and estimators of the mean and variance of vehicle delay were 

identified. Results showed that the deterministic model might over-estimate or under-

estimate the expected incident delay, depending on the arrival of the vehicle to the 

incident location, and under certain circumstances the incident delay showed a high 

variance even when the expected delay was low. 

Wang et al. (2008) developed a new algorithm, based on a modified deterministic 

queuing theory, for quantifying incident-induced delays (IID) on freeways. The algorithm 

used incident log data and loop detector data as inputs. The incident log data was 
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obtained from the Washington Incident Tracking System (WITS) database and the 

archived loop data used in their research was downloaded from the Traffic Data 

Acquisition and Distribution (TDAD) website. Identifiable errors in both incident and 

loop data were either eliminated or corrected before the data was transferred to the 

Incident Study (IS) database. The proposed algorithm was implemented in the Advanced 

Roadway Incident Analyzer (ARIA) system. To verify the accuracy and validity of the 

algorithm, a microscopic simulation model for the Evergreen Point Bridge on State Route 

(SR) 520 in Washington State was developed using VISSIM traffic simulation software. 

Corthout et al. (2010) used Marginal Incident Computation (MIC) method to quantify the 

congestion spillback. This model was combined with Dynamic Network Loading (DNL) 

of Dynamic Traffic Assignment (DTA) to capture the variability of capacity and demand 

fluctuations that lead to a variation of travel time. MIC was applied to each node for 

tracing the congestion spillback as well as to reduce computational speed in case of a 

large network. 

2.6 Literature Review on Factors Affecting Traffic Characteristics 

Travel time is the outcome of dynamic and non-linear traffic system, which varies 

with respect to space and time. The complicated relationship between travel time and 

other traffic variables are difficult to quantify mathematically and very much depended 

on the assumptions. Therefore, past researchers worked on defining and examining the 

relationships among various variables affecting travel time. The journey speed along an 

arterial street depends not only on the arterial road geometry but also on the traffic flow 

characteristics and traffic signal coordination (Lum et al. 1998). Likewise, a few other 

factors that have an effect on travel time are listed below. 
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1. Holiday and special incidents (Karl et al., 1999); that contribute to an increase 

in travel time. 

2. Signal delay (Wu, 2001); which affects the flow on arterial and local streets. 

3. Weather conditions (Chien et al. 2003); traffic flow can be severely disrupted 

under inclement weather conditions. 

4. Congestion level (Richardson 2004); which varies by time-of-the-day.  

5. Forecasting period (Kisgyorgy et al. 2002); higher the forecasting horizon, 

higher the prediction error. 

Vythoulkas (1993) mentioned that traffic forecasting accuracy is related to the use 

of neighboring location traffic information. Chandra et al. (2009) assumed that the effect 

of upstream and downstream traffic is symmetrical. However, Yang et al. (2014) showed 

that upstream and downstream segment does not have equal impact on a target segment. 

2.7 Performance Evaluation of Different Empirical Methods to Capture the 

Expected Travel Time 

This part of the literature review focuses on past research to estimate the expected 

travel time. As the expected travel time gives an idea about the probable time to reach the 

destination, it plays a significant role for travelers in planning for their trip. Moreover, 

different studies have defined the expected travel time in different ways. Therefore, this 

definition needs special context to avoid possible misunderstanding. 

Florida’s Reliability Method (FDOT 2000) defined the expected travel time as the 

median of all the travel time samples of a study period rather than the mean. This was 

done to avoid the influence of a major incident. FDOT defined reliability as the 

percentage of trips that does not cross the summation of expected travel time and 



47 

  

 

percentage of the expected travel time (acceptable additional time) of that study period. A 

study was conducted along I-40 in the Orlando, FL area for 6 months and 5-20% was 

considered as acceptable additional time. Results showed that when acceptable additional 

time was accounted as 20%, the expected time reliability is around 85% i.e., for 85% of 

the trips, time travel is within the range. 

The expected travel time was estimated for a given route for various time 

intervals during which the demand is relatively constant for a given route. Van Amelsfort 

et al. (2005) considered the average of minimum and maximum travel time as the 

expected travel time. Yeon et al. (2008) defined the expected travel time for durations 

during which the demand is relatively constant along a corridor. Sun et al. (2010) defined 

ensemble mean travel time over a number of days as expected travel time. Spot speed 

data was collected from point detectors that were used to calculate ensemble mean speed 

and ensemble variance averaging all the spot speed data from a point detector for a 

specific time interval and for multiple days. Ensemble mean speed and moment 

approximation method was then used to plot piecewise constant speed trajectory, from 

which ensemble mean travel time was calculated from a specific departure time.  

The expected travel time was also defined as travel time on a degraded link to be 

lesser than the free flow travel time for the link with a specific tolerance level to estimate 

travel time reliability and capacity reliability (Al-Deek et al. 2006). Puvvala et al. (2015) 

measured the most expected travel time based on Cronbach’s α or Cronbach’s coefficient. 

Their basic objective was to find the most reliable travel time for a time period based on 

the internal consistency of the travel time. Eight different scenarios were considered. 

Factors considered to examine the consistency included day-of-the-week, 
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weekend/weekday, time-of-the-day, 85
th

 percentile of travel time, and average travel 

time. Observations showed that a majority of the trips have a higher value of Cronbach’s 

α when the average travel time was taken into consideration instead of the 85th percentile 

travel time.  

2.8 Summary of Findings from Literature Review 

Different methodologies and their effectiveness in forecasting traffic parameters 

including travel time both for with “vehicle accident” and without incident scenario was 

discussed in the previous sections. Previously, to evaluate the effect of the incident, most 

of the studies used delay as a measure of effectiveness. It was calculated using either 

queuing theory or shock wave theory or simulation software (Al-Deek et al. 1991, Fu et 

al. 1995). Besides, most of these studies were deterministic in nature. Moreover, it 

requires having vehicle arrival information to calculate delay. This study aims to define 

the effect of an incident as a function of travel time instead of number of vehicle arrivals 

and delay. 

This chapter also shows that, not many studies were conducted on forecasting 

traffic characteristics in the presence of accident over time and space and using time 

series model. Moreover, to compute the expected travel time, this study focuses on the 

similarity of time series pattern or consistency in the travel times.   
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CHAPTER 3: BACKGROUND ON CRONBACH’S α AND ARIMA MODELS 

 

 

Developing a process and identifying an effective method is vital to estimate the 

expected travel time and to forecast travel time and travel time variation with or without 

“vehicle accident”. This chapter introduces Cronbach’s α to estimate the expected travel 

time and ARIMA model to forecast travel time and its variation. The background 

discussion related to Cronbach’s α and ARIMA are explained based on content presented 

by Puvvala (2014), Puvvala et al. (2015), Box et al. (2008), and Montgomery et al. 

(2008).  

3.1 Cronbach’s α 

Cronbach’s α is used as a measure of internal consistency or reliability of a test/ 

survey/ questionnaire. It was named after Lee Cronbach in 1951 (Cronbach 1951). The 

principle of Cronbach’s α is defined from the basic classical test theory where the 

reliability of test scores is expressed as the ratio of the true-score variance and the 

observed-score variance. The observed-score variance is the summation of the true-score 

variance and the measurement error (Harvill 1991). For example, if a student scores 86% 

in a test where he knows 80% of the questions of that test, then 86 is the observed score 

and true score is 80. The additional 6% is because of conjecture, which is defined as the 

measurement error or the unreliability of the test. 

For the aforementioned problem, Cronbach’s α is computed using the following 

expression (Cronbach 1951).  
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Here, K is the number of questions, 

   
  is the variance of the observed total test scores of a person, and, 

    
  is the variance of the sums of scores of a question for all the five persons.  

If the reliability score is high, the measurement error would be low as well as it 

would be less correlated with the true score. In other words, the correlation between true 

score and observed score would be high if test reliability is high. Several assumptions are 

made in estimating Cronbach’s α.  

Questionnaire in table 1 can provide an idea about Cronbach’s α. Consider a case 

where one needs to determine the reliability of questionnaire, which consists of three 

questions to measure the analytical ability of five persons with various educational levels. 

The test is prepared to rate the person’s ability to analyze a given dataset and to test the 

validity of the questionnaire. It is assumed that ability correlated with education level. 

The test results are also shown in Table 1, as binary variables (Puvvala, 2014). 
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TABLE 1: Summary of results from test scores 

Students 
Questions 

Total 
Q1 Q2 Q3 

1 1 1 1 3 

2 0 0 1 1 

3 0 0 0 0 

4 1 0 0 1 

5 1 0 0 1 

Item Variances 0.24 0.16 0.24 
 

V2 0.96 

V1 0.64 

 

From Table 1,  

Sum of individual variances (V1) = 0.24 + 0.16 + 0.24 = 0.64 

Variance of the total scores (V2) = 0.96 

Number of questions (items) = 3 

Based on K and computed V1 and V2 from Table 2,  

  
 

    
    

    

    
  

          

A ‘zero’ value of Cronbach’s α indicates that the questions does not measure the 

analytical ability of a person or questionnaire is not capable to capture the ability of a 

person. On the other hand, if Cronbach’s α is ‘one’, it indicates that all the questions 

designed did a perfect job for make questionnaire valid. It only happens when the scores 

of a student remain same for all questions making him score three. The computed 

Cronbach’s α in the above example is 0.5, indicating that the questions are reliable in 

estimating the analytical ability of the person. 

In the above example, the persons are the primary source of variance while 
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questions are the secondary source of variance. In this research, time-of-the-day, day-of-

the-week and week-of-the-year are considered as sources of variance for both primary 

and secondary factor. Considering one factor at a time, multiple Cronbach’s α are 

evaluated once with time-of-the-day as primary factor and next with day-of-the-week or 

week-of-the-year as primary factor (Puvvala et al., 2015). In general, the primary factor 

causes the changes in the observations and correlation is evaluated through the secondary 

factor. 

In summary, Cronbach’s α measures the correlation or similarity of entities from 

various items i.e., the correlation among the columns of dataset. 

3.2 Auto-Correlation Function (ACF) and Partial Auto-Correlation Function 

(PACF) 

The use of ACF and PACF is an imperative part of the Box–Jenkins approach for 

modeling time series through identifying appropriate parameters of ARIMA (p, d, q) 

model. ACF defines the linear dependency between variables with respect to two points 

of time (Box et al. 2008). ACF actually tells how much correlation there is between two 

neighboring data points in a time series or between two time series. Theoretically, the 

ACF of lag k is expressed as follows (Box et al. 2008) 
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For a stationary time series, the variance at time t is the same as the variance at 

time t + k. Therefore, the denominator is just the variance of yt (Box et al. 2008) 
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ACF is very useful as it provides a partial description of the ARIMA (p, d, q) 

model. This function identifies the appropriate moving average (MA) model and its order 

as it cuts off after lag q (Box et al. 2008). 

The PACF also plays an important role in time series data analyses by identifying 

the appropriate lag in an autoregressive (AR) model as it cuts off after lag p (Box et al. 

2008). In general, PACF is a conditional correlation, which defines the correlation 

between one response variable and one of the predictor variables considering other 

predictor variables. For instance, partial auto-correlation between yt and xt-k is defined as 

the conditional correlation between yt and xt-k, accounting other predictor variables in 

between two time points t and t-k (Box et al. 2008). PACF correlates the residuals from 

two regressions: yt is predicted from xt-k+1 to xt-1 in the first regression, while xt-k is 

predicted from xt-k+1 up to xt-1 in the second regression (Box et al. 2008). The k
th

 order 

(lag) PACF is expressed as follows (Box et al. 2008). 
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3.3 Autoregressive (AR) Model 

In an AR model, the variable of interest is a linear combination of past values of 

the variable of the same time series or different time series (Box et al. 2008). The AR 

model of order p, AR (p) is expressed as follows (Box et al. 2008). 

(3.3)          2211 tptpttt eyyyy    
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The above equation is like multiple regressions with yt as response variable and 

lagged values of yt as predictor variables (Box et al. 2008). Here, δ is a constant and εt is 

white noise. Using the backward shift operator, the AR (p) is expressed as follows (Box 

et al. 2008). 

tt
p

pt eyBBBy  )1( 2
21    

Where, B
n
yt = yt-n. B operator shifts the data backward to period n. For example, 

B
2
 operator shifts the data backward two periods. B operator can be replaced by L (lag) 

operator. Using eq
n
. 3.3, the first order AR, AR (1), is expressed as follows (Box et al. 

2008). 

ttt eyy  11  

Likewise, the second order AR model, AR (2), is expressed as follows (Box et al. 

2008). 

tttt eyyy   2211   

3.4 Moving Average (MA) Model 

Alike AR, MA model is also a linear regression model, which uses past errors as 

predictor variables (Box et al. 2008). In this process of order q, each observation (yt) is 

formed by a weighted average of random disturbances going back by a number of periods 

equal to the order q. It is denoted as MA (q) and expressed as follows (Box et al. 2008). 

(3.4)          2211 qtqtttty      

Where, ) N(0, 2

 iidt   implying that εt are identically and independently 

distributed as well as normally distributed with “0” mean and constant variance. All the 

variables are uncorrelated e.g., Cov (εt, εt-1) = 0 and so as with response variable i.e., Cov 
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(εt, yt) = 0. Therefore, εt is defined as white noise. Parameters θ1, θ2… θk can be positive 

or negative. The change in parameters results different patterns of time series. The first 

order MA model, MA (1), is expressed as follows (Box et al. 2008). 

11  ttty   

The second order MA model, MA (2), is expressed as follows (Box et al. 2008). 

2211   tttty   

Using the backward shift operator (B), the MA (q) process is expressed as follows 

(Box et al. 2008). 

t

q

qt BBy  )1( 1    

3.5 Theoretical Auto-correlation Function (ACF) for Autoregressive (AR) Model  

The generalized equation of ACF of AR model for different lag k is presented in 

this section. The p
th

 order AR model, AR (p), is shown in equation 4.3. The covariance 

for lag k is expressed as follows (Box et al. 2008). 
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When k > 0, 
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Adopting eq
n
. 3.1, ACF of lag k for AR (p) is expressed as follows (Montgomery 

et al. 2008). 
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The ACF for the first order AR model, denoted as AR (1), for different lags is 

expressed as follows (Montgomery et al. 2008). 
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For k = 2, 
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Therefore, the generalized equation of ACF for AR (1) for any lag k = 0, 1, 2, 3… 

k is expressed as (Montgomery et al. 2008): 
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From eqn. 3.6, it is evident that the ACF decays exponentially with an increase of 

lag k. To be stationary, the roots of ϕ (B) = (1- ϕ1B) = 0 must lie outside the unit circle 

i.e., |ϕ1| < 1. If 0 <

 

ϕ1 <1, all auto-correlations are positive and if -1 <

 

ϕ1 < 0, the sign of 

auto-correlations will show alternating pattern with a negative value at start (Box et al. 

2008) . AR (1) process is always invertible. 

The ACF for the second order AR model, denoted as AR (2), for different lags is 

expressed as follows (Montgomery et al 2008). 
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Therefore, the generalized equation of ACF of AR (2) is as expressed as follows 

(Montgomery et al. 2008). 
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ACF tail for AR (2) also decays exponentially (when 0 < ϕ1 and 0 < ϕ2 or when 0 

> ϕ1 and 0 < ϕ2) alike AR (1) for the real roots or shows damped sign wave for complex 

roots. For 0 > ϕ1 and 0 < ϕ2,
 
ACF shows exponential decay with alternating sign starting 

with a negative value. AR (2) process is always in the inverted form and to be stationary 

the roots of ϕ (B) = (1- ϕ1B- ϕ2
2
B) = 0 must lie outside the unit circle (Box et al. 2008). 

To be stationary, the conditions of AR (2) are shown as follows (Montgomery et al. 

2008).

 

11

1

1

2

12

21













 



59 

  

 

3.6 Theoretical Auto-correlation Function (ACF) of Moving Average (MA) 

Model 

The generalized equation of ACF of MA model for different lag k is presented in 

this section. The equation of the ACF for q
th

 order MA model, MA (q), is shown in 

section 3.3.  If lag k is less than or equal to order of the MA model (i.e., k ≤ q) then the 

ACF model is expressed as follows based on equation 3.1 (Montgomery et al. 2008). 
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If lag k is greater than the order of the MA model (i.e., k > q) then last weighted 

error or (t-q)
th

 error term of the yt is εt-q, which will not even match with the first weighted 

error of yt-k (Montgomery et al. 2008). Therefore, the numerator of equation is zero 

implying that ACF is zero. For example, ACF for first order MA of different lag is 

expressed as follows.  
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From the values of ρy (1), it is evident that auto-correlation cuts off after lag 1 for 

MA (1). If θ1 is negative then ρy (1) is positive and if θ1 is positive then ρy (1) is negative. 

MA (1) process is always stationary and invertible for |θi| < 1 (Box et al. 2008). For 

second order, MA, denoted as MA (2), for different lags is as expressed as follows. 
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From the values of ρy (2), it can be said that auto-correlation cuts off after lag 

2 for MA (2). Like MA (1), MA (2) is always stationary. If θ1 > 0 and θ2 > 0, the value of 

lag 1 is either positive or negative while the value of lag 2 is negative. If θ1 < 0 and θ2 > 0, 

the value of lag 1 is positive but the value of lag 2 is negative (Box et al. 2008). MA (2) 

process is invertible for the following conditions.
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3.7 Theoretical Partial Auto-correlation Function (PACF) of the Autoregressive 

(AR) Model 

Following eq
n
. 4.3, the new regression equation for yt-k is expressed as follows. 
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(3.9)        2211 kttkkktkktkkt eyyyy      

Multiplying both sides with yt-k+j, the above eq
n
. 3.9 is converted to the following 

equation. 
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Incorporating covariance to both sides in the above equation will lead to the 

following equation (Box et al. 2008)). 
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Dividing both sides with γ0 leads to: 
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The generalized equation from Levinson and Durbin’s recursive formula is then 

defined as follows (Box et al. 2008). 
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Based on the above formula, PACF is obtained for different lags k =1, 2... k for 

AR (1). They are presented as follows.  
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Therefore, generally PACF for AR (1) for different lag is expressed as follows. 
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From the PACF value, it seems that it cuts off after lag 1. Moreover, the value can 

be either positive or negative based on the value of ϕ1. The PACF value would be 

positive for 0 < ϕ1 < 1, while the PACF value would be negative for -1 < ϕ1 < 0.  AR (1) 

is always in the invertible condition.  To be stationary, |ϕ1| needs to be less than 1 (Box et 

al. 2008). Same as AR (1), the PACF for AR (2) for different lags from the eq
n
. 3.9 is 

expressed as follows (Montgomery et al. 2008). 
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When k = 2, 
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When k = 3 
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Therefore, the PACF for AR (2) for different lags is expressed as follows 

(Montgomery et al. 2008). 
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From above equation, it seems that PACF cuts off after lag 2.  Lags are all 

positive for real roots and start with positive for complex roots when 0 < ϕ1 and 0 < ϕ2. 

On the other hand, alternating in sign starts with negative for real roots and all negative 

for complex roots when 0 > ϕ1 and 0 < ϕ2. AR (2) process is always in the inverted form 

and to be stationary the roots of ϕ (B) = (1- ϕ1B- ϕ2
2
B) = 0 must lie outside the unit circle 
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(Box et al. 2008). To be stationary, AR (2) must satisfy the following conditions 

(Montgomery et al. 2008):
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3.8 Theoretical Partial Auto-correlation Function (PACF) of the Moving Average 

(MA) Model 

Following eq
n
. 3.10, the PACF value can be obtained for different lags of MA (1) 

and is expressed as follows (Box et al. 2008). 
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For k = 2, 
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From eqn. 3.11, it is evident that the PACF decays exponentially with an increase 

of lag k. To be invertible, the roots of θ(B) = (1- θ 1B) = 0 must lie outside the unit circle 

i.e., | θ 1| < 1. If 0 <

 

θ 1 <1, all auto-correlations are negative and if -1 < θ 1 < 0, the sign of 

auto-correlations will show alternating pattern with a positive value at start (Box et al. 

2008). MA (1) process is always stationary. 

 

The deduction of the theoretical PACF of MA (2) is very complex but can be 

shown as the sum of two exponentials if the roots are real and as decreasing sine waves if 

the roots are complex.

 
3.9 Stationary Time Series and Differencing 

A stationary time series is one whose properties do not vary with respect to time 

whenever it is observed. Therefore, statistical properties such as mean, variance, and 
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correlation of a stationary time series are all constant over time (Box et al. 2008). In other 

words, the time series without trends or without seasonality can be regarded as stationary 

time series.  

The reason for trying to have a stationary time series is to obtain meaningful 

sample statistics, which might be helpful in providing description of the future 

characteristics. For instance, if the series is consistently increasing or decreasing over 

time, the sample mean and variance will grow up or down with respect to time and with 

the size of the sample. It may under-estimate the mean and variance in future periods. If 

the mean and variance of a series are not well defined, then the correlations among 

variables and errors are also not meaningful. (Box et al. 2008) 

A time series can be made stationary through transformations such as differencing 

and logging. The term differencing is actually the change between consecutive 

observations in the original time series and can be applied consecutively more than once 

to make the time series stationary. It can be named as first difference, second difference, 

third difference, and so on. Differencing removes the change in the level of time series. It 

stabilizes the mean eliminating trends and seasonality (Chase Jr. 2009). 

The first difference
/

ty of time series ty is expressed as follows. 

1

/

 ttt yyy  

The differenced series will have t −1 values for a time series since it is not 

possible to calculate a difference 
/

1y  for the first observation. Occasionally, the first 

order-differenced data 
/

1y  will not appear stationary.  
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Therefore, it may be necessary to difference the data multiple times to obtain a 

stationary series. The degree of differencing determines the d value of AIRMA (p, d, q) 

model. One way to determine more objectively if differencing is required is the use of a 

unit root test. A number of unit root tests are available. Based on the assumptions, the 

tests may lead to conflicting answers. One of the most popular tests is the Augmented 

Dickey-Fuller (ADF) test. The null hypothesis of this test is that the model is not 

stationary. Using the usual 5% threshold, differencing is required if the p-value is greater 

than 0.05. Another popular unit root test is the Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) test. However, the hypotheses are just opposite i.e., the null-hypothesis is that the 

data are stationary. In this case, small p-values (e.g., less than 0.05) suggest that 

differencing is required (Chase Jr. 2009). 

3.10 Cross-Correlation Function (CCF) 

In the relationship between two time series (yt and xt), yt may be related to the past 

lags of the x-series. The CCF can identify the lags of the x-variable that might be useful 

predictors of yt. CCF is defined as the product-moment correlation between two time 

series of different time lags (Box et al. 2008). The same principle was applied in this 

research to identify the correlations of travel time series for different road segments. The 

general form of CCF for upstream and downstream travel times is shown next (Box et al. 

2008). 

      
     

                           

      
 

 

Here, μs and μs-1 are the means of Ts and Ts-1 and  s and  s-1 are the standard 

deviation of Ts and Ts-1 and   is the time lag between two series. In general, the CCF can 
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be described as “lead” and “lag” relationship. When   > 0, Ts-1,t “leads” Ts,t  and when   < 

0, Ts-1,t “lags” Ts,t. For instance, consider   = − h where h is a positive integer, CCF 

measures the relationship between upstream travel time at h minutes before   and the 

downstream travel time at time  . 

3.11 Autoregressive Integrated Moving Average (ARIMA) Model 

ARIMA models were first introduced in the early 1900s and were popularized by 

George Box and Gwilym Jenkins in the early 1970s. They developed a comprehensive 

approach that integrates the relevant information required to understand and use ARIMA 

models. They formalized their theory and methodology by developing a process to select 

the best ARIMA model from a group of candidate models. As a result, ARIMA models 

are often referred to as Box-Jenkins models (Box et al. 2008). 

Although the theoretical notation is quite sophisticated, applying ARIMA models 

is not that difficult, particularly with the advances in automating the Box-Jenkins 

procedure using forecasting software packages (Chase Jr. et al. 2009). The Box-Jenkins 

approach incorporates key elements from both time series and regression methods for 

forecasting. As a result, practitioners must have a solid understanding of regression 

before attempting to apply the Box-Jenkins approach to create an ARIMA model. When 

applying ARIMA models, two basic steps are required: (1) analysis of the data series and 

(2) selection of a forecasting model (from several candidate models) that best fits the data 

series (Montgomery et al 2009). In general, ARIMA is a combination of differencing 

with AR and a MA model. It is, hence, called as ARIMA (p, d, q) model where (Box et 

al. 2008): 

p = order of the AR part 
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d = degree of first differencing involved 

q = order of the MA part 

The generalized equation of ARIMA (p, d, q) model is presented next (Box et al. 

2008). 

(3.12)     22112211 tqtqtttptpttt eyyycy      

Where, c is a constant. Based on equation 3.12, the transfer function-noise model can be 

expressed as follows (Montgomery et al. 2008). 

  )1()1( t

q2

21

2

21  BBBcyBBB qt

p

p    

If the function is transformed and there is white noise then the above formula is 
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In this notation, θy(B)
-1

φy(B)
 
acts as a filter and when applied to yt generates a 

white noise time series. Therefore, it is referred as "pre-whitening" (Montgomery et al. 

2008). 

3.12 Summary  

Overall, in this chapter, background information pertaining to Cronbach’s α and 

ARIMA is provided. The study area and data used in this research is explained in the next 

chapter. 
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CHAPTER 4: STUDY AREA AND DATA COLLECTION 

 

 

Travel time and incident are required to forecast travel time and its variation 

under incident condition and without incident condition. For this research, only “vehicle 

accident” incident type and travel time data were collected for a freeway and considered 

for modeling. Incident data should include its severity, location and date/time of 

occurrence to identity their position along the study corridor.  This chapter consists of 

selection of study area and collection of data. 

4.1 Selection of Study Area 

For this research, Mecklenburg County was selected as the study area. This 

county is located in the state of North Carolina, United States. The population of 

Mecklenburg County was 919,628 in 2012, making it the most populated as well as the 

most densely populated county in North Carolina (49
th

 among 3,143 counties in the 

United States). Its largest city is Charlotte, which is also its county seat. In 2012, the 

estimated population of Charlotte, according to the United States Census Bureau, was 

774,442 making it the 27
th

 largest city in the United States (US Census Bureau 2012).  

Charlotte is the home of the corporate headquarters of Bank of America and the 

east coast operations of Wells Fargo. Some notable attractions of Charlotte are the Bank 

of America Stadium (Home of the Carolina Panthers of the National Football League - 

NFL), the Charlotte Hornets of the National Basketball Association (NBA), NASCAR  
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Sprint Cup race and the NASCAR All-Star Race, the Wells Fargo Championship, the 

NASCAR Hall of Fame, Carowinds amusement park, and the United States National 

Whitewater Center (O’ Daniel 2012). The area is also served by the Charlotte Douglas 

International Airport, a major international hub, which was ranked as the 23rd busiest 

airport in the world in 2013 (anna.aero 2008). 

4.2 Selection of the Study Corridor 

Along southbound direction of I-77 in the Mecklenburg County of North 

Carolina, a 19.13-mile long segment was considered as the study corridor for this 

research. A part of the study corridor is shown in Figure 2. Pink triangles in Figure 2 

define the starting point of each Traffic Message Channel (TMC) code (could simply be 

referred to as a “segment”) that extends in the southbound direction.  
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FIGURE 2: Part of selected study corridor along I-77 S 

 

 

 

The study corridor extends from TMC codes 125-04777 to 125N04792, 

consisting of 28 TMC codes. From downstream to upstream, road segments were 
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designated as X1 to X28 based on the sequence along the selected corridor of I-77 S i.e., 

downstream segment was designated as X1 and upstream segment is designated as X28. 

A description of each study segment along I-77 S is provided in Table 2.  

 

 

 

TABLE 2: Description of the segments along the study corridor 

Segment 

No 
TMC Code 

Length 

(miles) 
Direction Location 

Segment 

Type 

X1 125N04778 0.48 Southbound Nations Ford Rd/Exit 4 Internal 

X2 125-04778 0.56 Southbound Nations Ford Rd/Exit 4 External 

X3 125N04779 0.57 Southbound Tyvola Rd/Exit 5 Internal 

X4 125-04779 0.67 Southbound Tyvola Rd/Exit 5 External 

X5 125N04780 0.28 Southbound Woodlawn Rd/Exit 6 Internal 

X6 125-04780 0.14 Southbound Woodlawn Rd/Exit 6 External 

X7 125N04781 0.21 Southbound NC-49/Tryon St/Exit 6 Internal 

X8 125-04781 0.74 Southbound NC-49/Tryon St/Exit 6 External 

X9 125N04782 0.39 Southbound Clanton Rd/Exit 7 Internal 

X10 125-04782 0.61 Southbound Clanton Rd/Exit 7 External 

X11 125N04783 0.22 Southbound Remount Rd/Exit 8 Internal 

X12 125-04783 0.57 Southbound Remount Rd/Exit 8 External 

X13 125N04784 0.96 Southbound I-277/US-74/Exit 9 Internal 

X14 125-04784 0.11 Southbound I-277/US-74/Exit 9 External 

X15 125N04785 0.19 Southbound Morehead St/Exit 10 Internal 

X16 125-04785 0.09 Southbound Morehead St/Exit 10 External 

X17 125N04786 0.80 Southbound Trade St/5th St/Exit 10 Internal 

X18 125-04786 0.11 Southbound Trade St/5th St/Exit 10 External 

X19 125N04787 0.95 Southbound Brookshire Fwy/Exit 11 Internal 

X20 125-04787 0.49 Southbound Brookshire Fwy/Exit 11 External 

X21 125N04788 0.53 Southbound Lasalle St/Exit 12 Internal 

X22 125-04788 0.11 Southbound Lasalle St/Exit 12 External 

X23 125N04789 0.97 Southbound Statesville Ave/Exit 13 Internal 

X24 125-04789 1.65 Southbound Statesville Ave/Exit 13 External 

X25 125N04790 0.58 Southbound US-21/Exit 16 Internal 

X26 125-04790 2.20 Southbound US-21/Exit 16 External 

X27 125N04791 0.66 Southbound Reames Rd/Exit 18 Internal 

X28 125-04791 3.78 Southbound Reames Rd/Exit 18 External 
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Each segment shown in Table 1 is categorized as either internal (designated by N 

or P) or external path (designated by + or -). An internal path is the segment which starts 

at an off-ramp and ends at an on-ramp, while an external path is the road segment that 

leads up to the point of interchange or intersection. Each segment (TMC code) will have 

a +/-/N/P symbol; “+” sign indicates northbound or westbound direction and “-” sign 

indicates southbound or eastbound direction along the external path. “P” sign indicates 

northbound or westbound direction and “N” sign indicates southbound or eastbound 

direction along the internal path. Moreover, each TMC code is a combination of country 

code, location code, internal/external path and its direction, and TMC code itself. For 

instance, in a TMC code like 125-04791, “1” stands for country code USA, “25” is the 

location code, “-“ defines the external path in southbound or eastbound direction and the 

last four digit is actual TMC code. A schematic diagram of TMC code is shown in Figure 

3 (INRIX 2013). 

 

 

 

FIGURE 3: Schematic diagram of internal and external path (INRIX 2013) 
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4.3 Collection of Travel Time and Incident Data 

The database needs to be developed in a way that it would have both travel time 

and incident information for analysis and modeling. Incident data was obtained from the 

North Carolina Department of Transportation’s (NCDOT) Traveler Information 

Management System (TIMS) website, which was created to provide accurate, timely and 

easy accessible information to the travelling public. TIMS recorded 172,350 incidents for 

North Carolina from 2010 to 2012. This database contained different information about 

incidents such as unique incident ID, incident type, start and end time, location (mile 

marker and coordinates), number of lanes closed, reason of incident, direction of traffic, 

road name, and severity (Table 3). 

 

 

TABLE 3: TIMS incident database 
Incident 

ID 

Road 

Name 
Start Time End Time MM Incident Type 

Closed 

Lanes 
Severity 

344518 I-77 
1/1/2011 

11:13:00 

1/1/2011 

12:13:00 
11 Vehicle Accident 0 2 

344844 I-77 
1/3/2011 

10:43:00 

1/3/2011 

11:00:48 
45 Vehicle Accident 1 3 

344867 I-77 
1/3/2011 

18:11:00 

1/3/2011 

19:11:00 
9 Vehicle Accident 1 2 

344987 I-77 
1/5/2011 

12:16:00 

1/5/2011 

12:40:44 
1 Vehicle Accident 1 3 

344997 I-77 
1/6/2011 

1:00:00 

1/5/2011 

23:27:59 
30 Night Time Maintenance 0 1 

344999 I-77 
1/6/2011 

20:30:00 

1/7/2011 

1:00:00 
10 Night Time Maintenance 2 2 

345000 I-77 
1/7/2011 

0:00:00 

1/7/2011 

3:00:00 
10 Night Time Maintenance 1 2 

345283 I-77 
1/6/2011 

13:38:00 

1/6/2011 

14:12:00 
31 Vehicle Accident 1 3 

345288 I-77 
1/6/2011 

14:22:00 

1/6/2011 

14:29:03 
4 Congestion 0 2 

345348 I-77 
1/8/2011 

6:00:00 

1/8/2011 

8:03:30 
8 Maintenance 1 2 

345509 I-77 
1/10/2011 

16:27:00 

1/10/2011 

17:41:12 
43 Vehicle Accident 1 3 

345542 I-77 
1/10/2011 

19:02:00 

1/10/2011 

20:02:00 
1 Vehicle Accident 1 2 
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The classification of incident severity in the TIMS database is not same as 

KABCO groupings (National Safety Council 1990). Instead, it is classified into three 

simple groups: Type 1, Type 2, and Type 3. According to TIMS, the type “1” severity 

incident includes that the incident caused blockage of lane/lanes. Incidents that caused 

shoulder blockage is defined as type “2” severity, while type “3” severity incidents are 

incidents with no lane blockage but congestion. Total records of incidents in this database 

for I-77 were 3,975. TIMS reported 14 types of incidents along I-77. Incident type and 

number of incidents by incident type are summarized in Table 4. 

 

 

 

TABLE 4: Incident type and number of incidents 

No Incident Type 
No. of 

Incidents 

Cumulative 

Percentage 

1 Night Time Maintenance 1549 38.97 

2 Vehicle Accident 857 21.56 

3 Congestion 611 15.37 

4 Night Time Construction 327 8.23 

5 Maintenance 307 7.72 

6 Disabled Vehicles 115 2.89 

7 Construction 61 1.53 

8 Other 50 1.26 

9 Fire 38 0.96 

10 Road Obstruction 17 0.43 

11 Special Event 17 0.43 

12 Weekend Construction 17 0.43 

13 Fog 4 0.10 

14 Weather Event 4 0.10 

15 Signal Problem 1 0.03 
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Statistics showed that along I-77, 857 “vehicle accident” type incidents occurred 

from 2010 to 2012. This is 21.6% of the total incidents recorded along I-77 corridor in 

the Charlotte region. This is 2
nd

 in the ranking; just behind “Night Time Maintenance” 

which accounts for 39.0% of the total incidents. For this study, only “vehicle accident” 

type incidents were chosen for analysis and modeling. Databases were developed using 

data, for 150 “vehicle accident” affected days and 100 sample days of data when there 

were no incidents, along a ~19-mile freeway corridor. For validation, 45 “vehicle 

accident” affected days and 35 incident free days were selected and set aside. The 

selected incidents (pink dots) along I-77 S are shown in Figure 4. 
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FIGURE 4: Incident locations along I-77 S 

 

 

 

Travel time data was obtained from INRIX from 2010 to 2012. INRIX collects 

real-time (24×7) speed data using numerous probes for more than 260,000 miles of roads, 

including interstates and major roads, all over the United States. In the INRIX database, 



81 

  

 

each segment is defined by a unique nine digit code known as TMC code created by Tele 

Atlas and NAVTEQ. For every TMC code, corresponding average travel times computed 

from the all vehicles observed at one-minute interval is reported. Besides travel time 

information, INRIX also provides speed, average speed, reference speed, and confidence 

score. Speed is the current estimated time to traverse the roadway segment in miles per 

hour; average speed is the historical average mean speed for the roadway segment for that 

hour-of-the-day and day-of-the-week in miles per hour; and reference speed is the mean 

“free flow” speed for the roadway segment in miles per hour. As the data type indicator, 

score has three discrete values: “30” (real time data), “20” (combination of real time and 

historical data), and “10” (historical data). Travel time information for the study corridor 

was obtained from this database. Sample INRIX database is shown in Table 5 (INRIX 

2013). 

4.4 Summary 

This chapter introduces the two databases, INRIX and TIMS, required for this 

research. INRIX provides travel time information, which is collected at 1-min intervals, 

and TIMS provides information pertaining to incidents. From both the databases, 

information was collected from 2010 to 2012. 
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TABLE 5: INRIX database 

TMC Code Time Stamp 
Speed 

(mph) 

Average 

Speed 

(mph) 

Reference 

Speed 

(mph) 

Travel 

Time 

(min) 

Confidence 

score 

125+04639 
1/3/2011 

12:33:56.56 
63 56 61 0.037 30 

125+04640 
1/3/2011 

12:33:56.56 
57 59 62 0.028 30 

125+04641 
1/3/2011 

12:33:56.56 
63 59 61 1.254 30 

125+04642 
1/3/2011 

12:33:56.56 
56 40 57 0.452 30 

125+04643 
1/3/2011 

12:33:56.56 
66 61 62 0.255 30 

125+04644 
1/3/2011 

12:33:56.56 
66 63 64 0.478 30 

125+04645 
1/3/2011 

12:33:56.56 
73 63 63 0.677 30 

125+04646 
1/3/2011 

12:33:56.56 
74 61 61 0.46 30 

125+04647 
1/3/2011 

12:33:56.56 
70 63 63 0.407 30 

125+04648 
1/3/2011 

12:33:56.56 
61 63 62 0.772 30 

125+04649 
1/3/2011 

12:33:56.56 
56 63 63 0.411 30 

125+04650 
1/3/2011 

12:33:56.56 
60 63 63 0.543 30 

125+04651 
1/3/2011 

12:33:56.56 
64 61 61 0.248 30 

125+04652 
1/3/2011 

12:33:56.56 
62 62 63 0.456 30 
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CHAPTER 5: ESTIMATION OF CRONBACHs’ α AND DEVELOPING ARIMA 

MODEL 

 

 

This chapter describes the overall methodology in a systematic way. It includes 

discussion on 1) the estimation of Cronbach’s α to estimate the expected travel time; 2) 

the database development; 3) the adoption of appropriate ARIMA model; and, 4) how the 

CCF and lagged regression were used to build the prediction model. 

5.1 Estimation of Maximum Corresponding Cronbach’s α and Expected Travel 

Time 

As discussed in Chapter 3, Cronbach’s α captures the similarity among the data 

series. The same principle was adopted to the travel time series. If the similarity is high 

then a similar pattern of travel time series is observed throughout the year for each time 

interval. Similarity in the travel time series of a segment is estimated based on two 

categories (day-of the-week and weekday/ weekend) and two factors (time-of-the-day 

and week-of the-year). The average travel times were considered as the travel time 

measure. All these factors yielded four categories of Cronbach’s α value in total (Table 

6).  
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TABLE 6: Characteristics of each category of Cronbach’s ‘α’ 

No. Category Primary factor Secondary factor 
Travel Time 

Measure Used 

α1 Day-of-the-week Time-of-the-day Week-of-the-year Average 

α2 Weekday/Weekend Time-of-the-day Week-of-the-year Average 

α3 Day-of-the-week 
Week-of-the-

year 
Time-of-the-day Average 

α4 Weekday/Weekend 
Week-of-the-

year 
Time-of-the-day Average 

 

 

 

Among the four values, the higher value was selected to compute the expected 

travel time of a segment for a specific time-period.  The computation of Cronbach’s α is 

explained using a simple example considering data shown in Table 7 for TMC Code 

125N04781(X7). 

 

 

TABLE 7: Sample travel time data of a segment and ‘day-of-the-week’ used for 

computing ‘α1’ 

TOD 

(Primary factor) 

Week-of-the-year (secondary factor) 
Sum of 

travel 

times 
Week 1 Week 2 Week 3 . . . Week 49 

12:00 AM-12:10 AM 0.67 1.94 0.59 . . . . 22.32 

12:10 AM-12:20 AM 0.65 1.94 0.60 . . . . 22.51 

12:20 AM-12:30 AM 0.62 2.46 0.57 . . . . 22.68 

12:30 AM-12:40 AM 0.59 1.39 0.54 . . . . 22.51 

12:40 AM-12:50 AM 0.60 0.68 0.59 . . . . 22.56 

. . . . . . . . . 

. . . . . . . . . 

11:50 PM-12:00 AM 0.65 2.00 0.60 . . . . 25.91 

Item Variance 0.15 0.14 0.0004 . . . . 
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Instead of all the weeks, only 49 weeks are considered as data was missing for the three 

“Mondays”. To calculate α1, variance 1 (V1) is the defined as the variance of summation 

of travel times (rightmost column) of all 144-time intervals.  In this case, V1 is 14.92. 

Variance 2 (V2) is the summation of all the item variances (bottom row). Value of V2 for 

this case is 1.98. Therefore, Cronbach’s α1 is =(49/48*(1-(1.988/14.92))) = 0.88. 

5.2 Development of Databases 

As travel time information, alone does not explicitly explain the sole effect of an 

incident, this study focused on a measure based on variation in travel time (VTT). VTT 

due to an incident is defined as the difference between travel time under incident 

condition and travel time when there is no incident during the same period. However, 

instead of VTT, the Relative Variations in Travel Time (RVTT) was used to capture the 

effect of incident in this research. The purpose of using RVTT is two-fold. Firstly, the 

length and other geometric characteristics of every segment along a corridor are not 

equal. RVTT can eliminate the effect of the difference in lengths and other geometric 

characteristics when assessing the effect. Secondly, VTT can be a positive value, a 

negative value or “0”. On the other hand, RVTT is always positive. For instance, if the 

observed travel time and forecasted travel time were same, then the ratio would be “1”. 

In this research, two different types of RVTT were considered. The first one is 

expressed as the ratio of travel time to the expected travel time of the same time interval 

and same segment, whereas the second one is expressed as the ratio of travel time to the 

minimum travel time. The former captures the sole effect of the incident, while the later 

captures the effect of incident along with possible effect due to fluctuations in traffic 

volume. 
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Databases were developed which consisted of both without incident and “vehicle 

accident” affected days of travel time information. From TIMS, databases were 

developed using data, for 150 “vehicle accident” affected days and 100 sample days of 

data where there were no incidents, along a ~19-mile freeway corridor. The data was 

gathered from 2010 to 2012. The selected “vehicle accident” type crash had different 

severity type and the number of lanes blocked due to the incident. In total, four databases 

were developed for this study. 

1. The first database was named as “Travel Time” database. This had travel time 

information for all 316 days and for all 28 segments. Each day was split into 

10-minute intervals – example, 2011-01-01 10:00:00 AM to 2011-01-01 

10:10:00 AM, 2011-01-01 10:10:00 AM to 2011-01-01 10:20:00 AM, and so 

on. Travel time for each interval was computed by averaging all the travel 

time samples within that specific time interval for that segment. As INRIX 

data was collected and summarized for every 1-minute interval, each time 

interval could have a maximum 10 travel time data samples. Travel time in 

this database was denoted as “TT”. 

2. The second database was named as “Expected Travel Time” database. This had 

average travel time of all 28 segments, for each year from 2010 to 2012, for 

each day-of-the-week (e.g., Sunday, Monday, etc.).  To develop this database, 

all seven days of the week were split into 10-minute intervals - 10:00:00 AM 

to 10:10:00 AM, 10:10:00 AM to 10:20:00 AM, and so on. Unlike “Travel 

Time” database, “”Expected Travel Time” database did not have date part in 

the timestamp. The average travel time of any time interval for a specific 
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segment was computed by averaging all the samples for that specific day-of-

the-week of that TMC code. Travel time in this database was titled as 

“ExpTT”. This database was used to compute the expected travel time for 

each segment during each time interval. 

3. The third database was named as “Minimum Travel Time” database. In this, 

each day-of-the-week (e.g., Sunday, Monday, etc.) was split into 10-minute 

intervals. This database contained the yearly minimum travel time of a TMC 

code for each day-of-the-week and time interval. Instead of daily minimum 

travel time of a segment, yearly minimum travel time of a segment for a 

specific time split was estimated.  Daily minimum travel time can be during 

any 10-min time interval, most probably at night. However, the objective is to 

compare travel time during a specific time interval with minimum travel time 

of the same time interval (account for traffic). For example if an incident 

occurs around 10:00 AM, then comparing travel time at that period with 

minimum travel time of 1:00 AM (assuming that minimum travel time is 

observed between 1:00 AM-1:10 AM ) is seemingly inappropriate considering 

the study objective.  However, when the minimum travel time was zero then 

the second minimum travel time was taken as it was assumed that no vehicle 

passed that segment during the specific time interval. The travel time in this 

database was titled as “MinTT”. 

4. Finally, all the three databases were connected using the segment ID (TMC 

code), day-of-the-week, year, and time interval. Two more columns were 

generated in the final table beside of TT. They were “TT/ExpTT” (which is 
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the ratio of TT to ExpTT) and “TT/MinTT” (which is the ratio of TT to 

MinTT). 

5.3 Development of ARIMA model 

To forecast the travel time, ARIMA model was developed based on TT. To 

forecast variations in travel time, ARIMA models were also developed based on 

TT/ExpTT and TT/MinTT. The process adopted to develop the ARIMA models is 

discussed in this section. It is illustrated using data for segment X7. The same process 

was applied for TT/ExpTT and TT/MinTT for all 28 segments. 

5.3.1 Pattern Recognition to Check the Stationary Condition and Necessity of 

Differencing of a Time series 

Before developing a statistical model, the preliminary task is to observe the data 

trend through simple time series scatter diagram. This can be done by plotting a set of N 

observations with respect to time. This simple time series plot is used to assess and make 

a decision about whether a plot is stationary or not. 

There is no growth or decline in the data in case of stationary data. If there is a 

trend, positive or negative auto-correlations will dominate the ACF or PACF plots, which 

will make impossible to uncover the other pattern in the data series. Therefore, it is 

necessary to remove the trend to allow other correlation structures to be seen before 

choosing the appropriate model (AR, MA, or ARIMA). 

The trend of the plot was observed through visual inspection. Figure 5 shows time 

series plot of travel times along X7. From visual inspection, it is clear that the trend does 

not show the variation of the mean of the time series plot. This indicates that the time 

series plot is stationary. 
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FIGURE 5: Time series plot of travel times along X7 

 

 

 

If a plot is stationary then there is no need for differencing. If the plot is non-

stationary, the time series needs differencing. Sometimes a time series needs differencing 

more than once. The time series plot of n
th

 difference should be considered in this case. 

Normally, the correct amount of differencing is the lowest order of differencing that 

yields a time series which has a well-defined mean and whose ACF plot decays rapidly to 

zero, either from above or below (Chase Jr. 2009). 

Differencing tends to introduce “negative” correlation. Therefore, if the series has 

positive auto-correlations and a high number of lags (e.g., 10 or more), then it probably 

needs a higher order of differencing as differencing reduces the auto-correlation or add 

negative auto-correlation. However, excess differencing can even drive the lag - 1 auto-

correlation to a negative value (Chase Jr. 2009). 

If the lag - 1 auto-correlation is zero or negative, or, the auto-correlations are 

small and pattern less, then the series does not need further differencing (Figure 6). In 
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this case, even if the graph shows any pattern in the auto-correlations, it would be 

recommended not to perform any more differencing. One of the most common errors in 

ARIMA modeling is to “over-difference” the time series, which may lead to adding an 

extra AR or MA term to undo the damage (Chase Jr. 2009). 

 

 

 

FIGURE 6: Data plots with first differencing (Chase Jr. 2009) 

 

 

 

If the lag - 1 auto-correlation is less than - 0.5 (and theoretically a negative lag - 1 

auto-correlation should never be greater than 0.5 in magnitude), the series may be over-

differenced. The time series plot of an over-differenced series may look quite random in 

pattern i.e., a pattern of excessive changes in sign from one observation to the next 

observation or up-down-up-down and beyond from observations to observations. From 
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Figure 6, after the first non-seasonal differencing, there is no need to conduct a second 

differencing as lag - 1 is negative and less than - 0.5 (exactly -0.381) (Chase Jr. 2009). 

However, if the second non-seasonal differencing is done (Figure 7), lag - 1 

comes close to zero. The signs of over-differencing is evident i.e., a pattern of changes of 

sign from one observation to the next which is confirmed from the ACF plot and shows a 

positive spike close to zero (0.1393). In addition, the ACF plot is decaying slowly with 

positive and negative inverse lags. This is a sure sign of over-differencing (Chase Jr. 

2009). 

 

 

 

FIGURE 7: Data plots with second differencing (Chase Jr. 2009)  

 

 

 

To verify the aforementioned discussion, ACF and PACF plot of the travel-time 

data series along X7 is shown in Figure 8. ACF plot does not show positive auto-
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correlations with higher number of lags (exactly 6, which is less than 10. This indicates 

that the plot is not under-differenced. Moreover, the lag - 1 auto-correlation is not even 

negative (close to +0.85). The pattern does not show randomness. Therefore, this series 

need not be over-differenced. 

 

 

 

 

FIGURE 8: ACF and PACF plot of travel time data along X7 without Differencing 

 

 

 

 Moreover, in Figure 9, after applying the second non-seasonal differencing of the 

data, lag-1 comes close 0.25. This is close to zero and shows a change in the sign of the 

pattern, indicating the sign of over-differencing. 

 

 

 



93 

  

 

 

FIGURE 9: ACF and PACF plot of travel time data along X7 with first differencing 

 

 

 

From figures 8 and 9, the travel time series of X7 does not need differencing. 

Performing the unit root test is another way to determine the necessity of differencing. 

Augmented Dickey - Fuller (ADF) test was implemented in R to confirm that 

differencing is not needed. Results obtained indicate that Dickey-Fuller = -15.9553, Lag 

order = 17, and p-value < 0.01. The null hypothesis does not satisfy, as the p-value is less 

than 0.01. Therefore, the unit root test confirmed that differencing is not needed. A model 

with no orders of differencing assumes that the original series is stationary itself. 

When a time series requires first order of differencing, it is assumed that the 

original series is either random walk or exponentially smooth with a constant average 

trend. On the other hand, the series is assumed to follow a random walk model with a 

time varying trend when a time series model requires second order of differencing 

(Montgomery et al. 2008). 
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5.3.2 Identifying the Numbers of AR or MA Terms 

After a time series has been made stationary by differencing, the next step in 

developing an ARIMA model is to determine whether AR or MA terms are needed to 

correct any auto-correlation that remains in the differenced series. By looking at the ACF 

and PACF plots of the differenced series, one can tentatively identify the numbers of AR 

and/or MA terms that are needed.  

The stationary series displays an “AR signature” if the PACF displays a sharp 

cutoff while the ACF decays more slowly (i.e., has significant spikes at higher lags). This 

implies that the auto-correlation pattern can be explained by adding AR terms instead of 

adding MA terms. The number of AR terms added to the ARIMA model is same as the 

lag at which the PACF cuts off. AR signature is commonly associated with positive auto-

correlation at lag - 1 i.e., it tends to arise in series which are slightly under-differenced. 

For example, in an AR (1) model for a series, y is expressed as follows (Chase Jr. 2009). 
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The AR term acts like a first difference if the AR coefficient is equal to 1. It does 

nothing if the AR coefficient is zero and acts like a partial difference if the coefficient is 

between 0 and 1. So, if the series is slightly under-differenced i.e., if the non-stationary 

pattern of positive auto-correlation has not been eliminated, it would require a partial 

difference by displaying an AR signature (Chase Jr. 2009). 

However, this is not always the simplest way to explain a given pattern of auto-

correlation. For example, sometimes it is more efficient to add MA terms instead of AR 

terms. Therefore, when the ACF displays a sharp cutoff while the PACF decays more 



95 

  

 

slowly, the stationary series displays an “MA signature”. This implies that the auto-

correlation pattern can be explained by adding MA terms (lags of the forecast errors) 

instead of adding AR terms. It means the ACF plays the same role for MA terms that the 

PACF plays for AR terms i.e., the ACF tells how many MA terms are likely to be needed 

to remove the remaining auto-correlation from the differenced series. A MA signature is 

commonly associated with negative auto-correlation at lag - 1 i.e., it tends to arise in the 

series and is slightly over-differenced. The reason for this is that an MA term can 

“partially cancel” an order of differencing in the forecasting equation. To observe this, an 

ARIMA (0, 1, 1) model without constant is equivalent to a Simple Exponential 

Smoothing model as shown in the following equation (Chase Jr. 2009).  
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To evaluate the parameters for ARIMA model, the initial model was assumed as 

ARIMA (0, 0, 0). ACF and PACF plots of residuals of ARIMA (0, 0, 0) are shown in 

Figure 4. It is evident that the ACF shows slight tail off but PACF shows a sharper cutoff 

than the ACF. In particular, the PACF has four significant spikes, while the ACF has six. 

Moreover, auto-correlation of lag -1 is positive. Therefore, the differenced series is 

suggestive to an AR signature as it shows of slight under-differenced scenario. Four 

different AR models were considered for analysis: ARIMA (1, 0, 0), ARIMA (2, 0, 0), 

ARIMA (4, 0, 0), and ARIMA (5, 0, 0).  
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FIGURE 10: ACF and PACF plots of the residuals of the ARIMA (0, 0, 0) model 

 

 

 

All four models were fit and AICc values were computed (Table 8). Of these four 

models, the best is the ARIMA (2, 0, 0) as it has the smallest AICc value (equal to -

12673.3). 

 

 

TABLE 8: Comparison of Different ARIMA Model 

Model AICc 

ARIMA (1, 0, 0) -11673.4 

ARIMA (2, 0, 0) -12673.3 

ARIMA (4, 0, 0) -12467.3 

ARIMA (5, 0, 0) -12376.6 

 

 

 

For next trial, residuals of ARIMA (2, 0, 0) model was fit. ACF and PACF plot of 

the residuals of the model is shown in Figure 11. The procedure is similar to the previous 

one with the exception that ACF shows lower number of significant spikes than PACF. 

Therefore, the differenced series is suggestive to an MA signature, as it shows slight 

over-differenced scenario. Two different ARIMA models were considered for analysis: 
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ARIMA (2, 0, 3) and ARIMA (2, 0, 4). ARIMA (2, 0, 3) (AICc = -12740.48) shows lower 

AICc value than ARIMA (2, 0, 4) (AICc = -12739.96). 

The presence of the unit root in the AR part of the model was checked i.e., 

whether the sum of the AR coefficients is close to one or not. If it is close to or equal to 

one, the number of AR terms needs to be reduced by one. Similar condition is applicable 

for MA signature when it is suggestive i.e., the sum of the MA coefficients is close to one 

or not.  

 

 

 

 

FIGURE 11: ACF and PACF plots of the residuals of the ARIMA (2, 0, 0) model 

 

 

 

Following the aforementioned procedure, ACF and PACF of the residuals of 

ARIMA (2, 0, 3) were plotted (Figure 12). All the spikes in PACF are now within the 

significance limits and the residuals appear to be white noise (as explained in Chapter 3). 
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FIGURE 12: ACF and PACF plots of the residuals of the ARIMA (2, 0, 3) model 

 

 

 

A Ljung - Box test was applied to test whether the residuals have any remaining 

auto-correlations or not. The Ljung - Box test is named after Greta M. Ljung and George 

E. P. Box. Instead of testing randomness at each distinct lag, it tests the “overall” 

randomness based on a number of lags instead of randomness at each distinct lag. 

Therefore, it is known as Portmanteau test. The hypothesis of the Ljung–Box test is 

expressed as follows (Box et al. 2008). 

H0: The data are independently distributed (i.e., the correlations in the population 

from which the sample is taken are zero, so that any observed correlations in the data 

result from randomness of the sampling process).  

Ha: The data are not independently distributed.  

A Ljung-Box test of ARIMA (2, 0, 3) is shown in Figure 13. The figure reveals 

that the residuals have no remaining auto-correlations as all the spikes are within the 

significant limit ±1.96/√T (Box et al. 2008, Yang et al. 2014). 
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FIGURE 13: Ljung-Box test results 

 

 

 

5.3.3 Identifying the Seasonal Part of the Model 

The seasonal part of an ARIMA model has the same structure as the non-seasonal 

part. It can have an AR factor, a MA factor, and/or an order of differencing. However, in 

the seasonal part of the model, all of these factors operate across multiple lags (the 

number of periods in a season). A seasonal ARIMA model is classified as an ARIMA (p, 

d, q) (P, D, Q) model, where P = number of seasonal autoregressive (SAR) terms, D = 

number of seasonal differences, and Q = number of seasonal moving average (SMA) 
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terms. Two rules need to be considered for finding appropriate seasonal ARIMA model 

(Chase Jr. 2009). They are listed next. 

1. If the series has a strong and consistent seasonal pattern, then one single order 

of seasonal differencing needs to be used instead of multiple order of seasonal 

differencing or more than 2 orders of total differencing (seasonal + non-

seasonal). 

2. If the auto-correlation at the seasonal period is positive, SAR term could be 

added to the model. If the auto-correlation at the seasonal period is negative, 

SMA term could be added to the model. It would be better not to mix SAR 

and SMA terms in the same model, and to avoid using more than one of either 

kind. 

5.4 Implementation of the Pre-whitening Cross-Correlation Function (CCF) and 

Lagged Regression for Forecasting 

The CCF can be used to help identify the form of the transfer function appropriate 

for an input series. Cross-correlations are the correlations across time between pre-

whitened values of Y and X. Pre-whitening is the process of making a series into white 

noise before in putting it into the model. This is required as the correlation structure of 

the X variable could hamper the estimates of the cross-correlation between X and Y. The 

pre-whitening technique assumes that the input variables do not depend on past values of 

the response variable. If there is feedback from the response variable to an input variable, 

as evidenced by significant cross-correlation at negative lags, both the input and the 

response variables need to be pre-whitened before meaningful cross-correlations can be 

computed. However, a few CCFs reveal so many significant spikes, which make it very 
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difficult to find the most significant one to predict the variable. Therefore, to simplify this 

complicated auto-correlation process and to identify accurate patterns, the series must be 

pre-whitened first. The pre-whitening process involves following steps (Box et al. 2009). 

1. An AR model with minimum AIC is fitted to xt. 

2. The p and q are used to pre-whiten xt and yt by multiplying with θx
-

1
(B)Φx(B)(1-B)

d 
and generate two pre-whitened series  t and  t. 

3. CCF is computed for the pre-whitened series  t and  t. 

Figure 14 shows the difference between regular CCF with many significant spikes 

and pre-whitened CCF with few significant number of spikes such as k = 0, 1, -1 which 

can be used to predict yt. 

 

 

 

FIGURE 14: CCF and pre-whitened CCF 

 

 

 

In forecasting, the leading factors for one segment should be identified first from 

pre-whitening cross-correlation factors. From these leading factors, lagged regression 

identifies which variables are statistically significant to predict the models. To assess 
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spatial affects, different numbers of upstream and downstream segments were fitted and 

evaluated as predictor variables. The lagged regression model for segment X7 can be 

expressed as follows. 

kktskstX VV    ,,,7  

Where, k is the time lag, s is the segment ID, and ɛt is zero-mean uncorrelated 

error term. Since R-squared for the regression model always increases, as variables are 

added, R-squared is not an effective measurement for model comparison. Therefore, 

MAPE and mean absolute deviation (MAD) for holdout performance was used to 

compare different models (Yang et al. 2014). 

5.5 Overall Methodology for ARIMA Model Building 

The methodology discussed in this chapter is summarized using Figure 15. 
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FIGURE 15: Overall methodology for ARIMA model building 
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CHAPTER 6: ANALYSIS AND RESULTS 

 

 

The first part of this chapter evaluates the effectiveness of Cronbach’s α in 

estimating the expected travel time. This includes the reliability of the Cronbach’s α 

value and comparison of expected travel time and observed travel time using real-world 

data. The second part of this chapter presents the results and analysis of the ARIMA 

model in forecasting travel time and relative variations in travel time. Besides, a 

comparative analysis was performed to assess if expected travel time or minimum travel 

time would better forecast the outputs. At the end, results for both with ‘vehicle accident’ 

and without incident condition are shown in a graphical format. 

6.1 Identifying Corresponding Cronbach’s α of a TMC Code 

Four categories of Cronbach’s α (from Table 9) were considered to compute the 

expected travel time of each segment. It was computed for each year as well as each day-

of-the-week (i.e., Monday, Tuesday, etc.) separately. Sample output from analysis is 

shown in Table 8 for segment, X6 i.e., TMC code 125-04780. Cronbach’s coefficient, α1 

and α3, for each day-of-the-week from Saturday to Friday were computed for 49, 50, 50, 

49, 51, 50, and 52 days, respectively. For weekday, α2 and α4, were computed for total 

252 (=50+ 49+ 51+ 50+ 52) days and, for weekend, α2 and α4 were computed for total 

99 (=49+50) days.
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TABLE 9: Cronbach’s α associated with varying categories, primary, and secondary 

factors for TMC code 125-04780 

TMC Code DOW WD α1 α2 α3 α4 Max(α) 

125-04780 1 0 0.081 0.136 0.702 0.844 0.844 

125-04780 2 1 0.895 0.982 0.847 0.922 0.982 

125-04780 3 1 0.968 0.982 0.838 0.922 0.982 

125-04780 4 1 0.863 0.982 0.887 0.922 0.982 

125-04780 5 1 0.973 0.982 0.847 0.922 0.982 

125-04780 6 1 0.938 0.982 0.874 0.922 0.982 

125-04780 7 0 0.167 0.136 0.902 0.844 0.902 

 

 

 

The Cronbach’s α value selected for a TMC code is the maximum value. The 

corresponding travel time for this maximum value is selected as the expected travel time. 

For example, α2 (in bold font) for Monday is higher than any other computed Cronbach’s 

α for the TMC code. Therefore, the travel time corresponding to this Cronbach’s α is 

considered as the expected travel time on Monday for segment X6.   

The corresponding Cronbach’s α values of different segments based on 2010 data 

for different days of the week is shown in Table 10. The coefficients α1, α2, α3, and α4 

are highlighted in green, red, yellow, and blue color, respectively. For most of the 

segments, α2 is higher than other coefficients on weekdays. This implies that it is 

beneficial to categorize by week-of-the year for the majority of the weekday trips rather 

than considering single day of different weeks. In other words, travel time of a specific 

time interval shows more similarity in a week rather than specific day-of-the-week of 

different weeks. Besides, time-of-the-day plays a vital role in planning a trip for 

weekdays as it varies throughout the day. It is comprehensible that morning and evening 

peak-hour traffic characteristics are different on a weekday when compared to the off-

peak period. Travel time during weekends showed different trends than the weekday trips 
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for all the segments. As α3 and α4 are higher during weekends, time-of-the-day does not 

play a significant role during weekends. Travel time patterns are consistent throughout 

the day on weekends.  

 

 

 

TABLE 10: Cronbach’s ‘α for different segments - 2010 data 

Segment 
Corresponding Cronbach's α in 2010 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 α3 α4 α2 α2 α2 α2 α2 

X2 α3 α4 α2 α2 α2 α2 α2 

X3 α3 α4 α2 α2 α2 α2 α2 

X4 α3 α4 α2 α2 α2 α2 α2 

X5 α3 α4 α2 α2 α2 α2 α2 

X6 α3 α4 α2 α2 α2 α2 α2 

X7 α3 α4 α2 α2 α2 α2 α2 

X8 α3 α4 α2 α2 α2 α2 α2 

X9 α3 α4 α2 α2 α2 α2 α2 

X10 α3 α4 α2 α2 α2 α2 α2 

X11 α3 α4 α2 α2 α2 α2 α2 

X12 α3 α4 α2 α2 α2 α2 α2 

X13 α3 α4 α2 α2 α2 α2 α2 

X14 α3 α4 α2 α2 α2 α2 α2 

X15 α3 α4 α2 α2 α2 α2 α2 

X16 α3 α4 α4 α4 α4 α4 α4 

X17 α3 α4 α4 α4 α4 α4 α4 

X18 α3 α4 α4 α4 α4 α4 α4 

X19 α3 α4 α2 α2 α2 α2 α2 

X20 α3 α4 α2 α2 α2 α2 α2 

X21 α3 α4 α2 α2 α2 α2 α2 

X22 α3 α4 α2 α2 α2 α2 α2 

X23 α3 α4 α2 α2 α2 α2 α2 

X24 α3 α4 α4 α4 α3 α4 α4 

X25 α3 α4 α4 α3 α4 α4 α4 

X26 α3 α4 α4 α3 α4 α4 α4 

X27 α3 α4 α2 α2 α2 α2 α2 

X28 α3 α4 α2 α2 α2 α2 α2 

 

Table 11 summarizes computed Cronbach’s ‘α’s based on 2011 data. 

Observations indicate that trends in travel time on weekdays are different from weekends. 
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Time-of-the-day plays a major role in trip planning. During weekends, travel times vary 

and can be categorized as day-of-the-week or week-of-the-year dependent. 

 

 

TABLE 11: Corresponding Cronbach’s ‘α for different segments in 2011 

Segment 
Corresponding Cronbach's α in 2011 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 α4 α3 α3 α4 α4 α4 α4 

X2 α4 α3 α2 α2 α2 α2 α2 

X3 α3 α4 α2 α2 α2 α2 α2 

X4 α3 α4 α2 α2 α2 α2 α2 

X5 α3 α4 α2 α2 α2 α2 α2 

X6 α4 α4 α2 α2 α2 α2 α2 

X7 α4 α4 α2 α2 α2 α2 α2 

X8 α4 α3 α2 α2 α2 α2 α2 

X9 α4 α3 α2 α2 α2 α2 α2 

X10 α4 α3 α2 α2 α2 α2 α2 

X11 α4 α4 α2 α2 α2 α2 α2 

X12 α4 α3 α2 α2 α2 α2 α2 

X13 α4 α3 α2 α2 α2 α2 α2 

X14 α4 α4 α2 α2 α2 α2 α2 

X15 α4 α4 α3 α2 α3 α3 α3 

X16 α3 α4 α2 α3 α2 α2 α2 

X17 α4 α4 α3 α3 α3 α3 α4 

X18 α4 α4 α3 α3 α3 α3 α4 

X19 α4 α4 α3 α3 α3 α4 α4 

X20 α4 α4 α2 α2 α2 α2 α2 

X21 α4 α3 α2 α2 α2 α2 α2 

X22 α4 α3 α2 α2 α2 α2 α2 

X23 α4 α4 α2 α2 α2 α2 α2 

X24 α4 α4 α3 α3 α4 α4 α4 

X25 α4 α3 α3 α4 α4 α4 α3 

X26 α4 α3 α3 α4 α4 α4 α4 

X27 α4 α3 α3 α4 α4 α4 α4 

X28 α3 α4 α2 α2 α2 α2 α2 

 

 

 

Results from Table 12, also bolster the claim from the results of tables 10 and 11 

that the fundamental difference between weekday and weekend trip planning is time-of-
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the-day. However, a striking observation from Table 12 is that several segments show a 

higher α2 value during weekends. This could imply that weekend travel patterns are 

mimicking weekday travel patterns over time. 

 

 

TABLE 12: Corresponding Cronbach’s ‘α for different segments in 2012 

Segment 
Corresponding Cronbach's α in 2012 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 α3 α4 α2 α2 α2 α2 α2 

X2 α2 α2 α2 α2 α2 α2 α2 
X3 α2 α2 α2 α2 α2 α2 α2 

X4 α2 α2 α2 α2 α2 α2 α2 

X5 α3 α4 α2 α2 α2 α2 α2 

X6 α3 α4 α2 α2 α2 α2 α2 

X7 α4 α3 α2 α2 α2 α2 α2 

X8 α3 α3 α2 α2 α2 α2 α2 

X9 α4 α3 α2 α2 α2 α2 α2 

X10 α4 α3 α2 α2 α2 α2 α2 

X11 α4 α3 α2 α2 α2 α2 α2 

X12 α4 α3 α2 α2 α2 α2 α2 

X13 α4 α4 α2 α2 α2 α2 α2 

X14 α4 α4 α2 α2 α2 α2 α2 

X15 α2 α2 α2 α2 α2 α2 α2 

X16 α2 α2 α2 α2 α2 α2 α2 

X17 α2 α2 α2 α2 α2 α2 α2 

X18 α2 α2 α2 α2 α2 α2 α3 

X19 α2 α2 α2 α2 α2 α2 α2 

X20 α3 α4 α2 α2 α2 α2 α2 

X21 α3 α4 α2 α2 α2 α2 α2 

X22 α3 α4 α2 α2 α2 α2 α2 

X23 α3 α4 α2 α2 α2 α2 α2 

X24 α2 α2 α4 α3 α4 α4 α4 

X25 α1 α2 α4 α3 α4 α1 α1 

X26 α2 α2 α1 α2 α1 α1 α1 

X27 α2 α2 α2 α2 α2 α2 α2 

X28 α2 α3 α2 α2 α2 α2 α2 
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6.2 Level of Reliability of Cronbach’s α 

The Cronbach’s coefficient indicates the primary and secondary factors for 

similarity or consistency in travel time. However, it does not indicate the level of 

reliability. Corresponding Cronbach’s α provides information about which coefficient to 

select but the level of reliability provides the extent of similarity among the travel-time 

series pattern. If the level of reliability is high, similarity among the travel time series are 

also high. In this case, the expected travel time would be close to the observed travel 

time. When the Cronbach’s α value is greater than or equal to 0.9, then the level of 

reliability is “A”, Cronbach’s α value is between 0.7 to 0.9, then the level of reliability is 

“B”; Cronbach’s α value is between 0.5 to 0.7, then the level of reliability is “C”;  

Cronbach’s α value is between 0.4 to 0.5, then the level of reliability is “D”; and for 

value of less than 0.4, the level of reliability is “E”. Generally, the level of reliability A is 

denoted as “Excellently Reliable”, B as “Highly Reliable”, C as “Reliable”, D as “Poorly 

Reliable”, and E as “Unreliable”. The computed level of reliability categories A, B, C, D, 

and E are colored as red, blue, yellow, green, and orange and presented in tables 13-15 

for years 2010, 2011 and 2012.   

From visual inspection, it is clear that red is dominant in Table 13 for year 2010. 

Out of 196 values presented in Table 13, 136 samples (69.38%) values are greater than or 

equal to 0.9 ( “Excellently Reliable”). About 25% of the values are categorized as 

“Highly Reliable”. None of the values indicates poor or unreliable. The level of reliability 

on Sunday is relatively lower than other day-of-the-week. 

Similar to Table 13, Table 14 shows that  126 (64.28%) of the values are greater 

than or equal to 0.9 and classified as “Excellently Reliable”, while 68 samples (34.69%) 
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are classified as “Highly Reliable”. None of the values indicates poor or unreliable. 

Unlike in 2010, weekend indicates a “Highly Reliable” condition. 

 

 

 

TABLE 13:  Maximum Cronbach’s α associated with different TMC codes and day-of-

the-week in 2010 

Segment 
Maximum Cronbach's α in 2010 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 0.93 0.81 0.88 0.88 0.88 0.88 0.88 

X2 0.94 0.82 0.98 0.98 0.98 0.98 0.98 

X3 0.79 0.75 0.97 0.97 0.97 0.97 0.97 

X4 0.90 0.79 0.98 0.98 0.98 0.98 0.98 

X5 0.84 0.76 0.98 0.98 0.98 0.98 0.98 

X6 0.90 0.84 0.98 0.98 0.98 0.98 0.98 

X7 0.94 0.89 0.98 0.98 0.98 0.98 0.98 

X8 0.89 0.81 0.96 0.96 0.96 0.96 0.96 

X9 0.85 0.82 0.96 0.96 0.96 0.96 0.96 

X10 0.96 0.77 0.98 0.98 0.98 0.98 0.98 

X11 0.94 0.78 0.99 0.99 0.99 0.99 0.99 

X12 0.94 0.78 0.99 0.99 0.99 0.99 0.99 

X13 0.97 0.76 0.98 0.98 0.98 0.98 0.98 

X14 0.97 0.79 0.94 0.94 0.94 0.94 0.94 

X15 0.96 0.78 0.93 0.93 0.93 0.93 0.93 

X16 0.96 0.75 0.90 0.90 0.90 0.90 0.90 

X17 0.93 0.77 0.87 0.87 0.87 0.87 0.87 

X18 0.93 0.84 0.90 0.90 0.90 0.90 0.90 

X19 0.95 0.82 0.88 0.88 0.88 0.88 0.88 

X20 0.95 0.73 0.98 0.98 0.98 0.98 0.98 

X21 0.94 0.64 0.98 0.98 0.98 0.98 0.98 

X22 0.93 0.76 0.97 0.97 0.97 0.97 0.97 

X23 0.89 0.84 0.97 0.97 0.97 0.97 0.97 

X24 0.93 0.91 0.84 0.84 0.86 0.84 0.84 

X25 0.94 0.93 0.90 0.92 0.90 0.90 0.90 

X26 0.84 0.78 0.87 0.89 0.87 0.87 0.87 

X27 0.92 0.91 0.96 0.96 0.96 0.96 0.96 

X28 0.92 0.91 0.96 0.96 0.96 0.96 0.96 
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TABLE 14: Maximum Cronbach’s α associated with different TMC codes and day-of-

the-week in 2011 

Segment 
Maximum Cronbach's α in 2011 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 0.86 0.90 0.96 0.92 0.92 0.92 0.92 

X2 0.89 0.93 0.98 0.98 0.98 0.98 0.98 

X3 0.77 0.68 0.98 0.98 0.98 0.98 0.98 

X4 0.85 0.79 0.98 0.98 0.98 0.98 0.98 

X5 0.87 0.83 0.98 0.98 0.98 0.98 0.98 

X6 0.90 0.90 0.98 0.98 0.98 0.98 0.98 

X7 0.80 0.80 0.98 0.98 0.98 0.98 0.98 

X8 0.78 0.80 0.97 0.97 0.97 0.97 0.97 

X9 0.72 0.93 0.97 0.97 0.97 0.97 0.97 

X10 0.78 0.86 0.97 0.97 0.97 0.97 0.97 

X11 0.84 0.84 0.96 0.96 0.96 0.96 0.96 

X12 0.85 0.88 0.98 0.98 0.98 0.98 0.98 

X13 0.87 0.92 0.97 0.97 0.97 0.97 0.97 

X14 0.89 0.89 0.90 0.90 0.90 0.90 0.90 

X15 0.91 0.91 0.82 0.70 0.88 0.80 0.89 

X16 0.88 0.88 0.87 0.87 0.87 0.87 0.87 

X17 0.92 0.92 0.96 0.85 0.87 0.85 0.84 

X18 0.92 0.92 0.96 0.85 0.87 0.85 0.84 

X19 0.93 0.93 0.97 0.85 0.86 0.85 0.85 

X20 0.92 0.92 0.97 0.97 0.97 0.97 0.97 

X21 0.84 0.87 0.97 0.97 0.97 0.97 0.97 

X22 0.89 0.90 0.96 0.96 0.96 0.96 0.96 

X23 0.92 0.92 0.93 0.93 0.93 0.93 0.93 

X24 0.89 0.89 0.88 0.88 0.87 0.87 0.87 

X25 0.92 0.92 0.87 0.86 0.86 0.86 0.89 

X26 0.77 0.88 0.97 0.94 0.94 0.94 0.94 

X27 0.73 0.82 0.95 0.92 0.92 0.92 0.92 

X28 0.87 0.85 0.97 0.97 0.97 0.97 0.97 

 

 

 

Table 15 reveals that 57.14% of the values are greater than or equal to 0.9, 

indicating “Excellent Reliability”. About 38.78% of the values indicate “Highly Reliable” 

condition. The number of values between 0.5 to 0.7 is 4.59%), highest compared to other 

study years. Saturday and Sunday either are with level of reliability B or lower.  
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TABLE 15: Maximum Cronbach’s α associated with different TMC codes and day-of-

the-week in 2012 

Segment 
Maximum Cronbach's α in 2012 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday 

X1 0.72 0.68 0.85 0.85 0.85 0.85 0.85 

X2 0.79 0.79 0.98 0.98 0.98 0.98 0.98 

X3 0.82 0.82 0.98 0.98 0.98 0.98 0.98 

X4 0.72 0.72 0.98 0.98 0.98 0.98 0.98 

X5 0.81 0.61 0.98 0.98 0.98 0.98 0.98 

X6 0.83 0.82 0.98 0.98 0.98 0.98 0.98 

X7 0.78 0.79 0.98 0.98 0.98 0.98 0.98 

X8 0.85 0.84 0.97 0.97 0.97 0.97 0.97 

X9 0.81 0.82 0.97 0.97 0.97 0.97 0.97 

X10 0.87 0.88 0.97 0.97 0.97 0.97 0.97 

X11 0.80 0.81 0.97 0.97 0.97 0.97 0.97 

X12 0.86 0.87 0.99 0.99 0.99 0.99 0.99 

X13 0.69 0.69 0.94 0.94 0.94 0.94 0.94 

X14 0.69 0.69 0.94 0.94 0.94 0.94 0.94 

X15 0.74 0.74 0.94 0.94 0.94 0.94 0.94 

X16 0.68 0.68 0.93 0.93 0.93 0.93 0.93 

X17 0.92 0.92 0.90 0.90 0.90 0.90 0.90 

X18 0.85 0.85 0.83 0.83 0.83 0.83 0.84 

X19 0.89 0.89 0.86 0.86 0.86 0.86 0.86 

X20 0.89 0.86 0.97 0.97 0.97 0.97 0.97 

X21 0.90 0.89 0.97 0.97 0.97 0.97 0.97 

X22 0.89 0.89 0.96 0.96 0.96 0.96 0.96 

X23 0.84 0.82 0.92 0.92 0.92 0.92 0.92 

X24 0.92 0.92 0.88 0.89 0.88 0.88 0.88 

X25 0.90 0.88 0.86 0.88 0.86 0.91 0.87 

X26 0.94 0.94 0.93 0.88 0.92 0.93 0.92 

X27 0.89 0.89 0.96 0.96 0.96 0.96 0.96 

X28 0.83 0.87 0.96 0.96 0.96 0.96 0.96 

 

 

From Table 13 to Table 15, it is observed that Cronbach’s α value is gradually 

decreasing for weekend and so is the level of reliability. The characteristics of weekend 

travel time pattern is shifing towards time-of-the-day dependent pattern, indicating the 

fact that Charlotte is growing with increasing weekend activity. However, weekend trip 

has yet not become totally time-of-the-day dependent like weekday. Therefore similarity 
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is revelaing mixed vibe of both weekday and weekend and similarity in travel-time series 

pattern has been decreased. 

6.3 Comparison of Expected Travel Time and Observed Travel Time 

The average of all the samples in a year for each time interval at segment-level 

was used to estimate the expected travel time based on the category of the corresponding 

Cronbach’s α. To check the validity, the expected travel time was then compared with the 

observed travel time for each time interval. The percent difference in the estimated and 

observed value is computed using the following equation. 

Time Travel Observed

Time Travel Expected -Time Travel Observed
Difference %   

 Moreover, the number of samples by percent difference between the expected 

travel time and observed travel time was computed for each segment. The maximum 

number of 10-minute intervals during a year is = 6 / hour × 24 hours × 365 days = 

52,560. This was used to compute the percent of samples based on the percent difference 

in expected travel time and observed travel time. 

Table 16 shows the percent of samples by percent difference between the 

estimated expected travel time and the observed travel time for each selected segment 

during 2010. The percent difference is less than or equal to 10% for most of the segments 

except X6, X20, and X21 in 2010. From segment length perspective, it is hard to explain 

as length is both below and above 0.5 miles. Therefore, this needs to be researched to 

find out the exact reason of this difference. More than 30% difference is observed for less 

than 5% of the samples for almost all the segments (except X20 and X21).  
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Table 17 shows the percent of samples by percent difference between the 

estimated expected travel time and the observed travel time for each selected segment 

during 2011. The percent difference is less than or equal to 10% for all the segments 

except X12 and X13 in 2011. More than 30% difference is observed for segment X12 and 

X13. For all other segments, the percent difference is below 5%. 

Table 18 shows the percent of samples by percent difference between the 

estimated expected travel time and the observed travel time for each selected segment 

during 2012. Except X11, X12, X13, X14, and X15, the percent difference is less than or 

equal to 10% for all other segments in 2012. 

Overall, the comparison shows that travel time estimated based on Cronbach’s α 

can be an effective means to measure the expected travel time.  
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TABLE 16: Percentage of sample with percentage difference between expected and 

observed travel time in 2010 

Segment 
% Difference Between Expected and Observed Travel Time in 

2010 
≤5 5<x≤10 10<x≤15 15<x≤20 20<x≤25 25<x≤30 >30 

X1 70.3 18.6 5.1 2.4 1.2 0.8 1.6 
X2 68.4 20.4 5.1 2.1 1.2 0.9 2.3 
X3 62.6 22.5 6.8 2.6 1.3 1.0 3.4 
X4 70.2 18.3 5.0 2.1 1.1 0.8 2.6 
X5 70.5 17.8 5.0 2.1 1.2 0.9 2.5 
X6 61.2 18.5 6.2 3.1 1.9 1.7 7.4 
X7 65.3 20.9 5.5 2.4 1.6 1.0 3.3 
X8 60.4 23.0 10.2 3.2 1.2 0.6 1.4 
X9 64.3 27.3 5.9 1.5 0.3 0.1 0.5 
X10 71.3 18.4 4.9 1.9 0.9 0.6 2.0 
X11 68.6 20.1 5.5 1.6 1.1 0.5 2.6 
X12 80.8 15.3 2.5 0.6 0.2 0.2 0.4 
X13 81.0 15.3 2.5 0.5 0.2 0.2 0.4 
X14 77.0 15.6 3.7 1.7 0.8 0.5 0.7 
X15 77.6 16.8 4.1 0.9 0.3 0.1 0.3 
X16 68.0 19.2 5.5 2.3 1.5 0.9 2.7 
X17 65.3 20.2 6.0 2.4 1.3 0.9 3.6 
X18 67.8 18.7 5.7 2.2 1.3 0.9 3.4 
X19 68.7 17.9 5.5 2.5 1.4 1.0 3.0 
X20 61.2 18.5 6.2 3.1 1.9 1.7 7.4 
X21 66.1 16.3 5.0 2.4 1.9 1.6 6.7 
X22 65.4 19.5 6.1 2.8 1.8 1.2 3.2 
X23 68.2 23.1 6.2 1.3 0.3 0.2 0.6 
X24 79.4 15.8 3.5 0.7 0.2 0.1 0.4 
X25 71.3 18.3 4.4 1.6 0.9 0.6 2.9 
X26 72.0 17.9 5.5 2.0 1.2 0.6 0.8 
X27 77.2 18.1 3.5 0.7 0.2 0.1 0.3 
X28 77.0 15.6 3.7 1.7 0.8 0.5 0.7 
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TABLE 17: Percentage of sample with percentage difference between expected and 

observed travel time in 2011 

Segment 
% Difference Between Expected and Observed Travel Time in 2011 

≤5 5<x≤10 10<x≤15 15<x≤20 20<x≤25 25<x≤30 >30 

X1 82.4 13.6 2.6 0.7 0.2 0.2 0.3 

X2 77.3 13.9 3.6 1.8 1.1 0.7 1.2 

X3 76.8 13.1 3.9 2.0 1.3 0.9 2.5 

X4 73.8 15.3 4.1 2.0 1.3 0.9 2.5 

X5 68.6 18.9 4.5 2.0 1.4 1.1 4.0 

X6 63.6 23.9 5.0 2.4 1.3 0.9 3.4 

X7 70.8 17.8 4.3 1.8 1.3 1.0 3.4 

X8 70.8 16.5 4.9 2.3 1.4 0.9 3.1 

X9 71.4 17.0 4.4 2.1 1.4 1.0 3.4 

X10 70.1 19.0 4.6 1.8 1.1 0.7 2.6 

X11 66.8 18.8 6.1 2.6 1.3 0.9 3.9 

X12 57.6 20.4 7.5 3.6 2.1 1.7 7.4 

X13 65.7 16.1 5.5 2.6 1.8 1.5 7.3 

X14 67.6 20.7 4.3 2.6 1.5 1.2 2.6 

X15 62.4 21.2 6.4 3.0 1.8 1.6 4.2 

X16 66.3 21.8 5.9 2.1 1.5 0.8 2.1 

X17 76.3 16.6 3.8 1.3 0.8 0.4 1.4 

X18 76.4 16.5 3.8 1.3 0.8 0.4 1.4 

X19 82.1 14.0 2.6 0.6 0.3 0.2 0.7 

X20 73.1 18.1 4.1 1.6 0.8 0.6 2.2 

X21 76.1 14.9 3.6 1.4 0.8 0.5 3.3 

X22 72.7 19.7 2.7 1.0 0.9 0.5 3.0 

X23 71.3 20.0 4.1 1.8 1.4 1.0 1.0 

X24 81.9 14.3 3.0 0.5 0.3 0.2 0.3 

X25 82.6 14.4 3.0 0.3 0.1 0.0 0.2 

X26 86.7 11.3 2.3 0.2 0.0 0.0 0.1 

X27 81.8 15.0 3.2 0.3 0.1 0.0 0.1 

X28 81.3 12.8 3.6 1.5 0.7 0.3 0.4 
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TABLE 18: Percentage of sample with percentage difference between expected and 

observed travel time in 2012 

Segment 
% Difference Between Expected and Observed Travel Time in 2012 

≤5 5<x≤10 10<x≤15 15<x≤20 20<x≤25 25<x≤30 >30 

X1 85.3 11.9 1.9 0.4 0.1 0.1 0.3 

X2 77.1 14.1 3.8 1.7 1.1 0.8 1.5 

X3 76.5 12.8 3.8 1.9 1.1 0.9 3.0 

X4 73.7 14.3 4.5 2.1 1.2 1.0 3.0 

X5 71.3 15.3 4.3 2.0 1.3 1.1 4.6 

X6 66.5 19.3 5.7 2.2 1.4 1.0 3.8 

X7 72.5 14.8 4.1 2.1 1.4 1.1 4.0 

X8 72.9 15.1 4.0 2.2 1.5 1.0 3.4 

X9 70.6 16.2 4.3 2.3 1.6 1.1 3.9 

X10 68.9 16.9 5.8 2.6 1.5 0.9 3.4 

X11 65.3 16.9 7.2 3.5 1.7 1.1 4.3 

X12 59.2 16.7 6.8 3.8 3.3 2.1 8.2 

X13 66.6 17.4 5.0 3.0 1.1 1.4 5.5 

X14 66.6 17.4 5.0 3.0 1.1 1.4 5.5 

X15 66.6 17.0 5.4 2.7 1.3 1.1 5.9 

X16 64.1 21.9 5.2 2.0 1.8 0.9 4.1 

X17 75.9 14.0 3.4 1.9 1.2 0.9 2.6 

X18 76.6 15.1 4.2 1.9 0.8 0.4 1.0 

X19 81.6 12.0 3.4 1.3 0.7 0.3 0.7 

X20 74.4 15.7 4.1 1.7 1.1 0.7 2.4 

X21 79.7 11.9 2.3 1.2 0.8 0.5 3.5 

X22 73.3 19.0 2.3 1.1 0.7 0.7 2.9 

X23 78.4 14.0 3.1 1.4 1.0 0.8 1.2 

X24 82.4 14.4 2.2 0.4 0.2 0.1 0.5 

X25 84.5 13.5 1.1 0.2 0.2 0.1 0.4 

X26 89.2 10.0 0.6 0.1 0.0 0.0 0.1 

X27 82.5 14.7 2.1 0.4 0.1 0.1 0.1 

X28 83.0 11.9 2.9 1.2 0.5 0.2 0.3 

 

 

 

6.4 Model Building for Travel Time Forecasting 

For model building, a total 250 days of data was considered. These include 100 

days without incident and 150 days with “vehicle accident” data. Pre-whitened CCF 

narrowed down the search horizon for predictor variables, and lagged regression model 

helped to identity the significant predictor variables for building the model for each 
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segment. To develop the lagged regression model, different leading and lagging time 

periods such as t+10, t+20, t+ 30… and t-10, t-20, t-30…, respectively were considered. 

Symbol t ± n defines the n minutes before or after time t. To evaluate the model for each 

segment, MAPE and MAD were used instead of R
2
 as the value of R

2
 value increases 

with the addition of new or dummy variables. The target segment and its lagged 

regression model with its appropriate predictor variables to forecast travel time is shown 

in Table 19. Each fitted model consisted of both upstream and downstream segments 

travel time. However, a few segments along this study corridor does not have sufficient 

upstream or downstream segments for lagged regression analysis. For example, X1 does 

not have any downstream segment and X28 does not have upstream segment. Therefore, 

for analysis, only segments X6 to X24 were considered.  

MAPE is less than 10% for almost all the segments except segment X19. 

However, MAD values are less than 10% for all the segments. Therefore, the overall 

prediction errors are reasonable and the forecasted value is close to the observed value. 

From Table 19, it is evident that the time lag for all significant predictor variables is 10 

minutes.  Moreover, each target segment has predictor variables representing both 

upstream and downstream segments.  
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TABLE 19: Performance comparison of fitted models for travel time forecasting 

Target 

Segment 
Lagged Regression Model with Predictor Variables 

Holdout 

Performance 

MAPE 

(%) 
MAD 

X6t 
0.01+0.02X4t-10+0.22X5t-10+0.18X7t-10+0.02X8t-10+0.06X14t-10-

0.56X15t-10+0.25X16t-10 
8.82 0.14 

X7t 
0.02+0.19X5t-10+0.37X6t-10+0.09X8t-10+0.02X10t-10+0.01X11t-10-

0.01X13t-10+0.06X14t-10 
8.63 0.14 

X8t 
-0.12+0.19X1t-10-0.08X4t-10+0.39X5t-10+0.77X6t-10+1.41X7t-

10+0.25X9t-10+0.31X10t-10+0.05X11t-10-0.03X12t-10-0.02X13t-10 
9.55 0.15 

x9t 
0.03+0.11X1t-10-0.08X2t-10+0.04X3t-10+0.17X7t-10+0.3X8t-

10+0.29X10t-10-0.05X11t-10-0.06X18t-10 
9.83 0.16 

X10t 
0.09+0.18X1t-10+0.13X2t-10-0.09X3t-10+0.11X4t-10+0.21X8t-

10+0.15X9t-10+0.13X11t-10+0.05X12t-10+0.09X13t-10 
9.93 0.16 

X11t 
-0.02-0.18X1t-10+0.14X4t-10-0.24X5t-10+0.09X8t-10-0.07X9t-

10+0.15X10t-10+0.27X12t-10+0.21X13t-10+0.14X17t-10-0.45X18t-10 
9.87 0.16 

X12t 

0.02+0.2X3t-10-0.22X4t-10+0.28X5t-10-0.09X8t-10+0.27X10t-

10+1.03X11t-10 

-0.09X17t-10+0.17X18t-10+0.51X19t-10-0.13X20t-10 

8.76 0.15 

X13t 
-0.2-0.29X2t-10+0.48X5t-10-0.21X8t-10+0.53X10t-10+1.05X11t-10-

0.11X12t-10+12.4X15t-10-0.35X17t-10+1.05X18t-10-0.33X19t-10 
6.11 0.11 

X14t 
0.01+0.03X1t-10+0.01X2t-10-0.01X3t-10+0.01X4t-10+ 

0.02X6t-10+0X13t-10+2.58X15t-10-0.03X17t-10+0.02X18t-10+0.01X19t-10 
9.15 0.14 

X15t 
0-0.01X1t-10+0X4t-10+0X13t-10+0.26X14t-10+0.08X16t-10+ 

0.01X17t-10-0.01X18t-10+0X20t-10 
8.45 0.18 

X16t 
0-0.06X5t-10+0.17X6t-10+0X13t-10-0.07X14t-10+1.39X15t-10+0.05X17t-

10-0.01X19t-10+0.01X20t-10-0.01X21t-10 
9.04 0.17 

X17t 

0.08-0.13X6t-10+0.19X11t-10-0.05X12t-10-0.1X13t-10-2.47X14t-

10+9.97X15t-10+2.46X16t-10+0.39X18t-10+0.15X19t-10+0.22X20t-10-

0.08X21t-10+0.08X26t-10 

9.96 0.20 

X18t 

-0.13-0.22X6t-10+0.06X8t-10-0.09X9t-10-0.58X11t-10+0.07X12t-

10+0.31X13t-10+1.78X14t-10-7X15t-10+0.44X17t-10+0.18X19t-

10+0.04X23t-10 

9.11 0.16 

X19t 
0.06-0.12X11t-10+0.22X12t-10-0.13X13t-10+0.5X14t-10-0.53X16t-

10+0.17X17t-10+0.27X18t-10+0.24X20t-10+0.18X25t-10+0.05X27t-10 
14.68 0.25 

X20t 
0.01-0.44X15t-10+0.24X16t-10+0.12X17t-10+0.09X19t-10+0.2X21t-

10+1.39X22t-10+0.06X23t-10 
9.28 0.18 

X21t 
-0.01+1.1X15t-10-0.46X16t-10-0.09X17t-10+0.03X18t-10+0.5X20t-

10+0.99X22t-10+0.37X23t-10-0.04X24t-10 
7.47 0.15 

X22t 
0-0.01X19t-10+0.08X20t-10+0.02X21t-10+0.07X23t-10+0.01X24t-10-

0.01X26t-10+0X27t-10 
8.46 0.13 

X23t 
0.08+0.06X19t-10+0.09X20t-10+0.28X21t-10+2.06X22t-10+0.29X24t-10-

0.01X27t-10 
9.34 0.13 

X24t 
0.17-0.02X19t-10-0.03X21t-10+0.64X22t-10+0.5X23t-10+0.83X25t-

10+0.11X26t-10+0.05X28t-10 
6.40 0.13 
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6.5 Model Building for Forecasting Travel Time / Expected Travel Time and 

Travel Time / Minimum Travel Time 

The computed MAPE and MAD from the observed and forecasted travel time / 

expected travel time (TT/ExpTT) for each segment are shown in Table 20. Alike travel 

time model, MAPE values are less than 10% for almost all the segments except X11 (but 

less than 15%). The MAD values are also low. This indicates that the difference between 

the forecasted and the observed travel time estimates is also very low. The predictor 

variables are from both upstream and downstream of the target segment. Moreover, for 

all the models to forecast TT/ExpTT, all significant predictor variables are in time lag of 

10 minutes. 

The computed MAPE and MAD from the observed and forecasted travel time / 

minimum travel time (TT/MinTT) for each segment is shown in Table 21. MAPE value 

is less than 10% for all the segments except X11 and X13 (but less than 15%). The MAD 

values are also low. Like in the case of travel time and TT/ExpTT, all significant 

predictor variables are in time lag of 10 minutes for TT/MinTT models.  

A comparison of results between the fitted models from Table 22 shows that 

TT/ExpTT performs better and leads to relatively accurate estimates than TT/MinTT, 

except for segments X12, X19, and X24. 
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TABLE 20: Fitted model for forecasting travel time / expected travel time 

Target 

Segment 
Lagged Regression Model with Predictor Variables 

Holdout 

Performance 

MAPE 

(%) 
MAD 

X6t 
0.09+0.52X5t-10+0.29X7t-10+0.07X8t-10+0.03X13t-10-0.1X15t-

10+0.14X16t-10-0.04X17t-10 
9.21 0.15 

X7t 
0.08+0.24X5t-10+0.28X6t-10+0.32X8t-10+0.02X9t-10+0.07X10t-10-

0.03X13t-10+0.05X14t-10-0.03X16t-10 
9.05 0.14 

X8t 0+0X1t-10+0X6t-10+0X7t-10+0X9t-10+0X10t-10+0X17t-10+0X18t-10 9.56 0.16 

X9t 
0+0.05X5t-10+0.12X7t-10+0.48X8t-10+0.41X10t-10-0.04X12t-

10+0.05X13t-10 
9.03 0.17 

X10t 

0.15+0.13X2t-10-0.09X3t-10+0.15X4t-10-0.07X5t-10+0.1X7t-10+0.24X8t-

10+0.09X9t-10+0.17X11t-10-0.05X12t-10+0.3X13t-10-0.08X14t-10-

0.08X15t-10+0.05X16t-10 

8.25 0.16 

X11t 
-0.02+0.15X1t-10-0.08X2t-10+0.06X3t-10+0.19X10t-10+0.81X12t-10-

0.08X13t-10+0.08X17t-10-0.12X18t-10 
11.27 0.21 

X12 
-0.03-0.14X1t-10+0.04X2t-10-0.07X10t-10+0.95X11t-10+0.18X13t-

10+0.09X19t-10 
9.95 0.19 

X13t 
-0.13-0.09X2t-10+0.1X5t-10-0.11X8t-10+0.43X10t-10-0.1X11t-

10+0.24X12t-10+0.25X14t-10+0.63X15t-10-0.11X16t-10-0.11X18t-10 
8.02 0.15 

X14t 
0.08+0.03X7t-10+0.07X13t-10+0.79X15t-10-0.31X17t-10+0.25X18t-

10+0.04X19t-10+0.05X23t-10 
8.57 0.16 

X15t 
-0.05-0.05X6t-10-0.03X12t-10+0.17X13t-10+0.64X14t-10+0.21X16t-

10+0.23X17t-10-0.13X18t-10 
9.26 0.19 

X16t 
-0.02-0.19X5t-10+0.23X6t-10+0.05X10t-10+0.03X12t-10-0.12X13t-

10+0.63X15t-10+0.46X17t-10-0.07X19t-10 
8.55 0.13 

X17t 
0.05-0.04X8t-10+0.02X11t-10-0.33X14t-10+0.34X15t-10+0.17X16t-

10+0.74X18t-10+0.03X19t-10+0.03X20t-10 
8.38 0.12 

X18t 
0.02+0.04X8t-10-0.02X11t-10-0.04X13t-10+0.27X14t-10-0.13X15t-

10+0.72X17t-10+0.07X19t-10+0.07X20t-10 
9.69 0.13 

X19t 
0.12+0.15X12t-10-0.12X13t-10+0.12X14t-10-0.18X16t-10+0.15X17t-

10+0.35X18t-10+0.21X20t-10-0.07X22t-10+0.12X23t-10+0.17X25t-10 
9.19 0.14 

X20t 
-0.01+0.04X10t-10-0.04X15t-10+0.08X17t-10+0.19X18t-10+0.09X19t-

10+0.25X21t-10+0.29X22t-10+0.11X24t-10 
8.21 0.18 

X21t 
0.03-0.15X18t-10+0.49X20t-10+0.18X22t-10+0.62X23t-10-0.11X24t-10-

0.05X25t-10 
8.86 0.16 

X22t 
-0.02-0.04X19t-10+0.33X20t-10+0.11X21t-10+0.6X23t-10+0.1X24t-10-

0.05X25t-10 
8.92 0.11 

X23t 
0.03+0.04X20t-10+0.15X21t-10+0.24X22t-10+0.39X24t-10+0.07X25t-

10+0.07X28t-10 
9.19 0.21 

X24t 
0.09-0.01X21t-10+0.04X22t-10+0.33X23t-10+0.33X25t- 

10+0.5X27t-10+0.06X28t-10 
6.95 0.18 
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TABLE 21: Fitted model for forecasting travel time / minimum travel time 

Target 

Segment 
Lagged Regression Model with Predictor Variables 

Holdout 

Performance 

MAPE 

(%) 
MAD 

X6t 
0.07-0.04y2+0.05X3t-10+0.44X5t-10+0.28X7t-10+0.15X8t-10+0.03X11t-

10-0.04X12t-10+0.03X13t-10+0.05X14t-10-0.23X15t-10+0.24X16t-10 
9.76 0.23 

X7t 
0.14-0.05X4t-10+0.27X5t-10+0.23X6t-10+0.35X8t-10+0.01X9t-

10+0.1X10t-10-0.04X13t-10+0.03X14t-10+0.05X15t-10-0.05X16t-10 
9.61 0.22 

X8t 
-0.19+0.11X1t-10-0.11X4t-10+0.16X5t-10+0.14X6t-10+0.4X7t-

10+0.13X9t-10+0.31X10t-10-0.09X13t-10+0.09X14t-10 
9.71 0.19 

X9t 
0.12-0.1X2t-10+0.08X3t-10+0.08X7t-10+0.57X8t-10+0.36X10t-

10+0.03X13t-10 
9.85 0.19 

X10t 
0.22+0.14X2t-10-0.1X3t-10+0.14X4t-10-0.06X5t-10+0.09X7t-10+0.26X8t-

10+0.07X9t-10+0.2X11t-10-0.08X12t-10+0.26X13t-10-0.14X14t-10 
8.89 0.16 

X11t 

0.08+0.07X4t-10-0.06X5t-10+0.04X6t-10+0.28X10t-10+0.75X12t-10-

0.08X13t-10+0.05X15t-10-0.04X16t-10+0.12X17t-10-0.12X18t-10-

0.11X19t-10 

13.76 0.39 

X12 
-0.1+0.04X5t-10-0.06X6t-10-0.16X10t-10+1.05X11t-10+0.19X13t-10-

0.07X15t-10+0.08X16t-10-0.08X17t-10+0.25X19t-10-0.06X20t-10 
8.97 0.18 

X13t 

-0.3+0.09X6t-10-0.04X7t-10-0.13X8t-10+0.03X9t-10+0.47X10t-10-

0.12X11t-10+0.21X12t-10+0.51X14t-10+0.47X15t-10-0.07X16t-

10+0.11X17t-10-0.17X18t-10-0.1X19t-10 

10.02 0.21 

X14t 
0.23+0.06X8t-10-0.11X10t-10-0.02X12t-10+0.21X13t-10+0.67X15t-10-

0.04X16t-10-0.27X17t-10+0.25X18t-10+0.06X19t-10 
9.18 0.16 

X15t 
-0.06-0.02X7t-10+0.01X11t-10+0.15X13t-10+0.55X14t-10+0.26X16t-

10+0.2X17t-10-0.04X19t-10-0.03X20t-10+0.02X21t-10-0.04X23t-10 
9.83 0.19 

X16t 
0.05+0.02X7t-10-0.03X11t-10+0.05X12t-10-0.03X13t-10-0.07X14t-

10+0.61X15t-10+0.33X17t-10+0.13X18t-10-0.07X19t-10+0.03X20t-10 
8.83 0.13 

X17t 
0.04+0.03X11t-10-0.03X12t-10+0.02X13t-10-0.22X14t-10+0.22X15t-

10+0.14X16t-10+0.77X18t-10+0.04X19t-10+0.01X20t-10 
9.78 0.12 

X18t 
0.07-0.02X11t-10-0.04X13t-10+0.14X14t-10+0.04X16t-10+0.63X17t-

10+0.09X19t-10+0.1X20t-10-0.02X21t-10 
9.98 0.13 

X19t 

0.04-0.23X11t-10+0.31X12t-10-0.11X13t-10+0.13X14t-10-0.09X15t-10-

0.11X16t-10+0.14X17t-10+0.37X18t-10+0.18X20t-10-0.06X22t-

10+0.1X23t-10+0.12X25t-10+0.2X27t-10 

8.67 0.14 

X20t 
0.01+0.03X13t-10-0.05X14t-10-0.04X15t-10+0.04X16t-10+0.26X18t-

10+0.08X19t-10+0.22X21t-10+0.29X22t-10+0.09X23t-10+0.08X24t-10 
9.75 0.18 

X21t 
-0.01-0.06X7t-10+0.07X8t-10-0.07X10t-10+0.1X15t-10-0.08X16t-10-

0.14X18t-10+0.48X20t-10+0.2X22t-10+0.69X23t-10-0.12X24t-10 
9.96 0.16 

X22t 
0+0X7t-10+0X8t-10+0X19t-10+0X20t-10+0X21t-10+0X23t-10+0X24t-

10+0y26 
9.12 0.11 

X23t 
0.02+0.03X19t-10+0.04X20t-10+0.15X21t-10+0.22X22t-10+0.43X24t-

10+0.07y26+0.04X28t-10 
9.35 0.14 

X24t 

0.1-0.01X13t-10+0.02X14t-10-0.01X19t-10+0.02X20t-10-0.01X21t-

10+0.04X22t-10+0.33X23t-10+0.24X25t-10+0.14y26+0.12X27t-

10+0.03X28t-10 

6.75 0.11 

 

 

 



123 

  

 

6.6 Model Validation for Travel Time and Variations in Travel Time Forecasting 

For model validation, a total of 80 days of data was considered from 2010 to 

2012. Among these, 45 days are “vehicle accident” affected days with different severity 

types, different number of lanes blocked and crashes during different time-periods. The 

remaining 35 days had no reported incidents along the study corridor. MAPE and MAD 

were computed for all the segments using the fitted lagged regression model. The results 

from model validation of travel time, TT/ExpTT and TT/MinTT are shown in Table 22. 

The model validation results using the fitted model based on TT/ExpTT led to MAPE 

values less than 15% for all segments. For fitted models for travel time and TT/ MinTT, 

the computed MAPE is less than 15% for almost all the segments. X19 in travel time and 

X22 in TT/MinTT have MAPE values higher than 15%. However, the model validation 

results using the fitted model based on TT/MinTT showed comparatively higher MAPE 

values than TT/ExpTT for most of the segments. Therefore, forecasting RVTT might be 

more accurate considering ExpTT than MinTT. 

6.7 Sample Spatio-temporal Variation of Travel Time without Incident Condition 

A graphical representation of spatio-temporal variation of travel time, when there 

is no incident, using the fitted lagged regression model of each segment is shown in 

Figure 16. The study period is selected from 2012-06-1817:00:00 to 2012-06-18 

17:30:00. During this period, there was no incident along I-77 S. In Figure 16, the 

observed and forecasted travel times are very close to each other for all three 10 minute 

intervals, which demonstrates that the model successfully replicates the real-world 

scenario without incident condition. 
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TABLE 22: Model validation of travel time, travel time / expected travel time and travel 

time/ minimum travel time 

Target 

Segment 

Model Validation 

Travel Time 

Travel Time/ 

Expected Travel 

Time 

Travel Time/ 

Minimum Travel 

Time 

MAPE (%) MAD MAPE (%) MAD MAPE (%) MAD 

X6t 11.84 0.31 10.42 0.18 13.03 0.25 

X7t 10.63 0.19 10.35 0.18 12.61 0.22 

X8t 12.66 0.15 10.66 0.19 12.77 0.23 

x9t 13.51 0.27 10.09 0.20 15.77 0.40 

X10t 13.57 0.30 11.25 0.28 11.79 0.21 

X11t 9.89 0.21 13.33 0.21 13.76 0.39 

X12t 9.86 0.18 10.78 0.19 11.57 0.25 

X13t 9.32 0.15 12.22 0.18 13.02 0.31 

X14t 9.15 0.18 10.67 0.21 11.75 0.22 

X15t 10.11 0.18 10.16 0.26 11.21 0.21 

X16t 12.31 0.22 9.85 0.19 11.54 0.22 

X17t 10.36 0.25 10.01 0.14 9.96 0.17 

X18t 13.21 0.41 11.69 0.20 9.98 0.13 

X19t 18.32 0.56 9.33 0.17 10.13 0.17 

X20t 9.82 0.18 9.29 0.18 13.50 0.22 

X21t 9.41 0.15 12.67 0.19 10.43 0.19 

X22t 10.61 0.16 11.21 0.18 15.42 0.33 

X23t 10.35 0.18 10.41 0.27 10.32 0.18 

X24t 7.03 0.14 7.32 0.19 8.81 0.12 
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(a) 

 
(b) 

 
 (c) 

FIGURE 16: Sample spatio-temporal variation of travel time without incident condition 

for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 minute intervals 
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6.8 Sample Spatio-temporal Variation of Travel Time/ Expected Travel Time and 

Travel Time/ Minimum Travel Time without Incident Condition  

A graphical representation of RVTT using the fitted lagged regression model of 

each segment is shown in figures 17 and 18. The time period is same the one mentioned 

in the previous section. The results for the three time intervals based on TT/ExpTT are 

shown in Figure 17. The figure shows that the model successfully forecasts the 

TT/ExpTT. In most of the cases, the ratio is close to “1”. This implies that the expected 

travel time is marginally higher or lower than the observed travel time of the segment 

during the corresponding time interval.  

Figure 18 shows RVTT based on TT/MinTT. The forecasted TT/MinTT model is 

close to the observed TT/MinTT. However, from X6 to x16, this ratio is mostly greater 

than “1”. This is because the minimum observed travel time is supposed to be less than 

the observed travel time of the segment during the corresponding time interval. 
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(a) 

 
(b) 

 
 (c) 

FIGURE 17: Sample spatio-temporal variation of travel time/ expected travel time for 

without incident condition for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 minute 

intervals 
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(a) 

 
(b) 

 
(c) 

FIGURE 18: Sample spatio-temporal variation of travel time/ minimum travel time for 

without incident condition for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 minute 

intervals 
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6.9 Sample Spatio-temporal Variation of Travel Time with “Vehicle Accident” 

Condition 

This part focuses on the comparison of forecasted and observed travel time due to 

a “vehicle accident” occurred at 2010-06-22 15:00:00 and the crash injury type were “B”. 

The number of lanes blocked was only one. Figure 19 shows that the forecasted and 

observed travel time is very close to each other for almost all the segments. The queue 

kept building on and propagating in the upstream direction up to 30 minutes after the 

incident occurrence (Figure 19). 

6.10 Sample Spatio-temporal Variation of Travel Time/ Expected Travel Time 

and Travel Time/ Minimum Travel Time with “Vehicle Accident” Condition 

This part focuses on the implementation of the lagged regression model in 

capturing RVTT due to a “vehicle accident”. The selected “vehicle accident” of crash 

injury type “B” occurred at 2010-06-22 15:00:00 and the. The number of lanes blocked 

was only one. Figure 20 shows the RVTT based on TT/ExpTT. The model successfully 

forecasted the RVTT for most of the segments as the observed and forecasted TT/ExpTT 

are very close to each other. The ratios also reveal that the effect of the incident starts at 

X8, 10 minutes after the incident occurrence. The effect starts building and propagating 

in the upstream direction. An observation of performance on surrounding segments 

shows that the “vehicle accident” had an effect at least up to 5:20:00 PM. 
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(a) 

 
(b) 

 
 (c) 

FIGURE 19: Sample spatio-temporal variation of travel time with “vehicle accident” 

condition for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 minute intervals 
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(a) 

 
(b) 

 
 (c) 

FIGURE 20: Sample spatio-temporal variation of travel time/expected travel time in 

“vehicle accident” condition for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 

minute intervals 
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Figure 21 depicts the RVTT due to the same “vehicle accident” mentioned 

previously based on TT/MinTT. It shows that the model successfully forecasted the 

RVTT. The estimates are close to the observed values. Comparing figures 20 and 21, it 

can be said that the propagation nature of the effect of incident over time and space is 

same for both TT/ExpTT and TT/MinTT. Both figures 20 and 21 show a fine distinction 

between travel time and TT/ExpTT or TT/MinTT. As the length of X14, X15, and X16 is 

low, the travel time is very low for all three 10-min time intervals (Figure 19). However, 

from figure 20 and figure 21, it seems that the “vehicle accident” also had an effect on 

other segments and reaches a ratio equal to 4.0. This implies that the travel time observed 

is 3 times more than the expected travel time or minimum travel time. 

6.11 Summary 

Overall, the results obtained show that the ARIMA model alongside pre-

whitening CCF could be an effective method to forecast both travel time and relative 

variations in travel time. Travel time forecasting cannot exactly mimic the sole effect of a 

“vehicle accident”, which can be overcome by estimating or modeling Travel Time / 

Expected Travel Time and Travel Time / Minimum Travel Time. Both the fitted model 

and validated model shows that MAPE and MAD value less than 15% for 99% of 

estimations. 
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(a) 

 
(b) 

 
 (c) 

FIGURE 21: sample spatio-temporal variation of travel time/expected travel time in 

“vehicle accident” condition for (a) 1st 10 minute, (b) 2nd 10 minute, and (c) 3rd 10 

minute intervals 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

 

 

Travel time and variations in travel time was forecasted in this study. In the first 

step, Cronbach’s α was used to obtain the expected travel time. ARIMA model with pre-

whitening CCF was adopted for forecasting as the second step. A summary of findings 

from this study and potential scope for future research is discussed next. 

7.1 Summary of Findings 

When a non-recurring incident such as “vehicle accident” occurs, traffic condition 

changes over time and space. Travel time of the segment or corridor is affected due to the 

incident. Accurately forecasting conditions without incident is also equally important to 

assess the effect of incident. To solve this problem, the “expected travel time” or most 

probable travel time based on the similarity in travel-time series pattern needs to be 

analyzed. For this purpose, Cronbach’s α by time-of-the-day and week-of-the-year was 

computed. Findings from Cronbach’s α computation are summarized next. 

1. Four different categories of Cronbach’s α: α1, α2, α3, and α4 were estimated 

based on two categories and two factors: day-of the-week, weekday/ weekend, 

time-of-the-day, and week-of the-year. The average travel was used as the 

travel time measure. 

2. Corresponding Cronbach’s α of a TMC code was estimated separately for 

each day-of-the-week (i.e., Monday, Tuesday etc.) and each year for 2010 to 

2012. 
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3. Level of reliability shows 63.6% (374 out of 588 samples) of the segments are 

in “Excellently Reliable” condition. Moreover, reliability does not go below 

“C” or “Reliable” condition. 

4. Results show that the expected travel time is very close to the observed travel 

time. In 2010, more than 85% of samples show that the percentage difference 

between observed and expected travel is equal or less than 10% for 23 

segments out of 28 segments. Results are observed to be fairly consistent and 

similar during 2011 and 2012.  

5. From 2010 to 2012, more than 75% of the segments have shown less than or 

equal to 10% difference between observed and expected travel time. 

6. Thirty percent (30%) difference is observed no more than for 5% of the 

segments. 

ARIMA model alongside pre-whitened CCF was applied to model travel time and 

relative variations in travel time due to a “vehicle accident” as well as when there is no 

incident. Results showed that the adopted methodology could be successfully 

implemented to forecast travel time as well as relative variations in travel time, 

irrespective of the incident condition. Major findings are mentioned below.  

1. Two types of relative variations in travel time were considered: travel 

time/expected travel time and travel time/minimum travel time.  

2. Fitted models were developed not only based on the past travel time of target 

segment but also with respect to the travel time of different lags of the 

surrounding segments. 
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3. All the fitted models consisted of the predictor variables from both upstream 

and downstream segments; all the significant variables were in time lag of 10 

minutes. 

4. MAPE and MAD values of the developed lagged regression model are 

estimated for every segment, irrespective of the incident condition. MAPE and 

MAD values for all segments based on travel time model are less than 10% 

except for one segment, which has a MAPE value greater than 10% but less 

than 15%.  

5. In TT/ExpTT, MAPE and MAD value for all segments was less than 10%, 

except for one segment for which the value was marginally greater than 10%. 

6. Alike TT and TT/ExpTT scenario, MAPE and MAD value of TT/MinTT for 

all segments was less than 10%, except for one segment for which the value 

was between 10-15%. 

7. Validation, based on a total of 80 days of data (45 incident free days and 35 

“vehicle accident” affected days), showed that MAPE and MAD values are 

less than 15% for all segments in travel time model scenario except for one 

segment for which MAPE value was around 18%. 

8.  For TT/ExpTT and TT/MinTT scenario, all the segments had MAPE value 

less than 15%.  

9. Both the calibrated and validated models demonstrate that forecasting 

accuracy is relatively higher for TT/ExpTT than TT/MinTT.  

7.2 Recommendations for Future Research 

ARIMA models were developed for only ‘vehicle accident’ type incidents. 
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However, there are several other incident types. Models similar to those developed in this 

research could be generated to estimate their effect on travel time. 

The effect of one vehicle accident was modeled in this research. Congestion and 

driver behavior following a vehicle accident could lead to secondary vehicle accidents. 

These secondary vehicle accidents further aggravate congestion and travel time variation. 

Modeling the effect of secondary vehicle accidents warrants research. 

In this study, 85th percentile travel time was disregarded to forecast the relative 

variation in travel time. This as well as other travel time percentiles could be considered 

for investigation and for better understanding of the effect of an incident. Time 

aggregation of this study is 10 minutes. The applicability of 5 minutes and 15 minutes for 

time aggregation could be explored and compared to aggregation at 10-minute intervals. 

These merit an investigation. 
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