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ABSTRACT 

 

 

AMY DAVIS.  Impacts of urbanization and landscape change on native plant diversity 

and the distribution of exotic forest invaders. (Under the direction of JEAN-CLAUDE 

THILL) 

 

 

This dissertation addresses three questions focused on enhancing our understanding of 

the impacts of urbanization and land cover change on patterns of native biodiversity, the 

distribution of exotic plant species in forests, and the resistance of forest communities to 

invasion. First, I examine whether human-mediated invasion pressure, quantified using a 

novel variable, the residential force of invasion (rFOI) can be used to improve species 

distribution models (SDMs) of exotic forest understory invaders. My results show that 

human mediated invasion pressure influences the distribution of forest invaders and that 

including rFOI significantly improves model performance. This research also 

demonstrates that high invasion pressure substantially increases the risk of invasion in 

habitats that prior to considering invasion pressure, were identified as unsuitable. Second, 

using a multi-scalar approach, I investigate the influence of multi-temporal trajectories of 

forest cover change on patterns of native plant diversity in forests. Temporal trajectories 

of forest cover change are derived from a longitudinal assessment of forest cover across 

four time intervals (1938-1956, 1956-1975, 1975-1997, 1997-2009) and classified into 

distinct types of forest cover change reflecting the timing, extent and nature of the change 

(deforestation, reforestation or no change). My results show that while measures of forest 

cover change derived using a single time interval (1938-2009) did not influence native 

diversity, the typology of multi-temporal forest cover change is a significant explanatory 

factor of patterns of native diversity, after controlling for other environmental and 
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landscape covariates. Furthermore, from these results, I have identified a specific type of 

trajectory, “rapid reforestation between 1957 and 1975”, that is associated with the 

highest native diversity observed within in the study extent.  Finally, I investigate the 

direct and indirect effects of urbanization, environmental factors, and landscape 

proximity on the ability of forest communities to resist invasions using a structural 

equation modeling framework. My results support the hypothesis that urbanization has 

negative direct and indirect effects on invasion resistance via its interaction with 

propagule pressure and habitat eutrophication, thereby providing a mechanism to explain 

the increased susceptibility of urban forests to invasions. Taken together, the results of 

this work provide much needed empirical evidence linking anthropogenic factors with 

patterns of native biodiversity, the distribution of exotic species and decreased resistance 

to invasions and show that careful consideration of how anthropogenic factors may 

influence specific ecological processes can both advance our knowledge of both invasion 

and urban ecology, as well as result in better predictive models. 
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CHAPTER 1: INTRODUCTION 

 

 

Landscape change and biological invasions are two major consequences of 

urbanization, which in turn have serious ramifications to biodiversity.  Habitat loss and 

fragmentation induced by landscape change, coupled with biological invasions, represent 

the biggest drivers of global and local biodiversity loss (Hooper et al., 2005).  Human 

quality of life and well-being are intrinsically linked to the ecosystem services provided 

by biodiversity, such as food, clean air, water quality protection, and recreational 

opportunities (Diaz et al., 2006; Mace et al., 2012; Cardinale et al., 2012). Since 

biodiversity facilitates ecosystem resilience and the provisioning of ecosystem services, 

the maintenance of biodiversity is of paramount importance within the context of 

landscape sustainability. Currently, about half of the world’s populations resides in cities 

and this number is projected to increase by another 2.5 billion by 2050 (United Nations, 

2014). Given our current and projected state of urbanization and the negative impacts 

urbanization has on biodiversity, how can we manage and protect the biodiversity of 

forests in urban and urbanizing landscapes in order to sustain the provisioning of 

ecosystem services they provide?   This challenge is especially apparent in the 

southeastern United States, where biodiversity is threatened by both of these drivers via 

the transformation of forest and other natural habitats to accommodate the demand for 

housing and related amenities, and widespread exotic species invasions in forests that 

limit the recruitment and establishment of native species.   Small forest remnants 
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embedded in urban landscapes, however altered they may be, are increasingly being 

recognized for their existing and potential roles as providing refuge to several bird and 

wildlife species, and the provisioning of ecosystem services necessary if cities are to be 

sustainable, including flood mitigation, air pollution removal and recreation (Nowak & 

Dwyer, 2007; Escobedo et al., 2011; Pataki et al., 2011). However, urban forests may be 

highly susceptible to biodiversity loss and invasions by exotic species as a result of the 

impacts of urbanization that manifest themselves primarily through landscape change, 

eutrophication and higher invasion pressure.  Although there have been several studies 

demonstrating that exotic species richness is correlated with metrics of urbanization or 

other anthropogenic factors (e.g. housing density, population density, income) it is 

difficult to draw robust inferences from these data/studies due to being encumbered by 

one more of the following qualities making them ill-suited to the task. These are 1) very 

coarse spatial grain which precludes distinguishing habitat types (thus one cannot deduce 

the impacts of urbanization to invasibility of a specific habitat type) 2) lack of sufficient 

landscape scale replication in the sampling design; 3) reliance of secondary data such as 

herbarium records; 4) including heavily altered human dominated habitats such as 

residential yards, gardens and other areas of primarily ornamental landscaping which 

obfuscates the impacts of urbanization/anthropogenic factors to forests or other primarily 

“natural” habitats and  the potential effects of spatial autocorrelation are ignored. This 

dissertation uses a robust, stratified random sampling design in which numerous forests 

(40) are sampled for plant diversity and invasive species along an urban to rural gradient 

across the study extent in order to incorporate landscape scale replication and account for 

the effects of  environmental and landscape heterogeneity, as well as spatial dependence 
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to investigate  the impacts of urbanization and of landscape change that accompanies 

human settlements and shifts in production systems on native diversity and on the 

distribution of exotic species in forests, and how these anthropogenic drivers may 

influence forest vulnerability to invasions. The rapidly growing Charlotte, North Carolina 

metropolitan area serves as a case study.  

The second chapter investigates whether dispersal and anthropogenic factors can 

be used to improve the accuracy of spatially explicit models for predicting the 

distribution of invasive species in forests across the Charlotte metropolitan area. Accurate 

models are important since the detection of understory invaders using remote sensing 

based approaches has not been very effective to date. Since the effects of anthropogenic 

factors on exotic species distributions have yet to be explicitly investigated, the objective 

of this chapter is to investigate the extent to which human-mediated invasion pressure 

measured using a novel metric of anthropogenic influence, the residential force of 

invasion (rFOI), explains invasion patterns in metropolitan forests and whether it notably 

improves the accuracy of species distribution models (SDM). Based on the premise that 

single family residences serve as external sources of invasive propagules, the potential 

rFOI at a given location, i is measured by the cumulative sum of the inverse weighted 

distances from i, to every single family house, weighted by age, within the study extent. 

Although the focus of the research is on the role of human-mediated invasion pressure, 

we also account for endogenous invasion pressure (local-scale invasion pressure arising 

from dispersing invaders from nearby sites) as we expect that an SDM applied in an 

urbanizing landscape is likely to have its predictive accuracy degraded by variations in 

both sources of invasion pressure, if they are not included. This has important 
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implications for conservation management, as models that do not account for invasion 

pressure may fail to identify habitats of special concern as being at risk of invasion. 

The third chapter presents an approach to classify multi-temporal trajectories of 

forest cover change derived from a longitudinal assessment of forest cover into a 

typology of forest cover change; we then propose a multivariate statistical model to test 

the impacts of this typology on forest native plant diversity. Over time, human-

environmental interactions have largely impacted patterns of forest cover resulting in 

both deforestation and reforestation, in the southeastern United States. This history of 

human-environment interactions and the intermediate disturbances they generate are 

unlikely to be represented when measuring forest change using only a single time interval 

as is commonly done (e.g., Albuquerque & Rueda, 2010). Disturbance is any event that 

results in the eradication of biomass and the clearing of habitat space thereby permitting 

new residents to utilize resources (Roxburgh et al., 2004). According to the intermediate 

disturbance hypothesis, intermediate levels of disturbance can promote the coexistence of 

species in a community, resulting in higher species richness (Connell, 1978; Roxburg et 

al., 2004), by providing resources (e.g. light as the result of a canopy gap) and 

maximizing opportunities for colonization through the provision of space and nutrients 

(Davis et al., 2000). Too much disturbance or too little disturbance is detrimental to 

species richness (Connell, 1978; Gardner et al., 2008). However, despite potential 

application of the intermediate disturbance hypothesis to explain patterns of plant 

diversity observed in heterogeneous landscapes, no studies to date have investigated how 

patterns of forest cover change through time can influence native diversity. To address, 

this, we investigate the effects of the typology of multi-temporal forest cover change 
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trajectories, obtained from a longitudinal assessment of forest cover using k-means 

clustering, on native plant diversity. In accordance with the intermediate disturbance 

hypothesis, we expect that trajectories that suggest slight to moderate disturbances to 

have higher diversity; and trajectories that are indicative of severe disturbances to be 

associated with lower diversity as compared to a trajectory of little to no change. K-

means clustering is an unsupervised, data-driven method that can be used to find the 

natural sub-classes of a complex or lengthy data set (Kulik et al., 2011) and can also be 

applied to longitudinal data sets (Genolini & Falissard, 2011).  

To obtain diversity data, we survey 177 random plots located within 40 forest 

fragments located throughout the Charlotte, NC region using a nested sampling design in 

which plots were nested within fragments. We obtain forest cover trajectories by 

assessing the amount of forest cover present at each plot for 5 time periods: 1938, 1956, 

1975, 1997 and 2009, for nested spatial extents (100, 200, 400, 750 and 1000m  diameter) 

surrounding each plot, in order to investigate how the effects of forest cover changes on 

native diversity varies with scale. We also derive a measure of overall forest change 

using just a single time interval, 1938-2009, using the same nested spatial extents. We 

then investigate the effects of forest cover change trajectories assessed at each plot 

location, on native plant diversity, while accounting for other landscape and 

environmental factors that are known to influence diversity patterns metrics such as soil 

fertility, topographical characteristics, and landscape structure, using linear mixed 

models. This research identifies a typology of forest change trajectories spanning five 

decades and the relevant geographic scale at which they influence native diversity, 
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allowing us to understand the impacts of past spatio-temporal patterns of anthropogenic 

disturbance on current levels of diversity.   

The fourth chapter provides an analysis of the direct and indirect effects of 

urbanization (using road density and housing age as metrics) on the ability of forest 

communities to resist invasions, while accounting for environmental factors (slope, 

topographic moisture, canopy closure and soil fertility), and landscape proximity, using a 

structural equation modeling framework.  Several broad-scale studies focused on 

understanding the distribution of exotic and native species along rural-urban gradients 

have documented the increase of exotic species with increasing urbanization (e.g., Burton 

et al., 2005; Bartuszevige et al., 2006; Duguay et al., 2007), but few studies of invasibility 

have so far utilized anthropogenic factors as predictors. Thus, while the existence of links 

between urbanization and exotic species richness is well established, the underlying 

mechanisms driving these relationships have not been investigated. Anthropogenic 

activities associated with urbanization have been linked to eutrophication (nutrient 

enrichment of habitats) and propagule pressure (a composite of the number of releases of 

the invader into the novel environment and the number of propagules (seeds) released 

during each event. In this context, we expect that urbanization directly influences 

community resistance to invasion via the positive relationship between urbanization and 

propagule pressure. Human activities such as transportation and gardening introduce 

exotic species to novel sites both accidentally and intentionally (Lockwood, 2005)  and 

may explain why metrics of urbanization such as housing and road density and exotic 

species richness are positively correlated (Burton et al., 2005; Bartuszevige et al., 2006; 

Duguay et al., 2007; Ranta & Vilijanen, 2011). We also expect urbanization has indirect 
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negative effects via soil fertility on invasion resistance. The links between urbanization 

and the eutrophication to forest ecosystems are well documented and result from 

increased atmospheric deposition of nitrogen and nutrient loading resulting from 

anthropogenic activities such as fertilizers applied to lawns carried by stormwater runoff 

(Stevens et al., 2004; Sutton et al., 2011).  Eutrophication has been linked both to 

increased habitat invasibility as well as biodiversity loss (Davis et al., 2000; Parepa et al., 

2013; Burke & Grime, 1996). We integrate these hypotheses into a framework that also 

considers the roles of landscape habitat proximity, abiotic factors related to light and 

moisture availability, soil fertility, and local habitat disturbance, on invasion resistance. 

To test our system of integrated hypotheses, we use structural equation modeling (SEM), 

which is a multivariate statistical approach that unlike other multivariate methods such as 

ordination can be used for hypothesis testing (Grace, 2010).  The advantages of SEM 

include the ability to distinguish between direct and indirect effects, and to 

simultaneously evaluate a network of hypothesized relationships among variables. This is 

the first study to investigate the potential direct and indirect effects of urbanization on 

invasion resistance. 

Chapter 5 presents the conclusions of this dissertation research and potential 

avenues for future research. Chapters 2-4 have been prepared and organized in such a 

way to resemble as closely as possible a manuscript for submission to a peer-reviewed 

journal. As such, these manuscripts often refer to “we” instead of “I” to reflect the 

contributions of the co-authors of the manuscripts.  
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CHAPTER 2:  BEYOND HABITAT SUITABILITY: THE ROLE OF INVASION 

PRESSURE ON THE DISTRIBUTION OF FOREST INVADERS 

 

 

Introduction 

 

Maintaining and enhancing the ecosystem services provided by urban forests are a 

critical element of management strategies aimed at achieving landscape sustainability. 

Although the ecological value of remnant urban forests is often overlooked, these forests 

are recognized to provide several key ecosystem services, including 1) habitat for a 

variety of birds and wildlife; 2) clean air via carbon sequestration and the removal of 

volatile organic compounds, 3) protection of drinking water by filtering runoff and 

reducing erosion; and 4) health and mental well being by offering a place for humans to 

recreate and experience nature (Nowak & Dwyer, 2007; Escobedo et al., 2011). What 

sets apart urban forests from other forest ecosystems is that the continued provisioning of 

these ecosystem services is unceasingly threatened by invasions of shade-tolerant exotic 

shrubs. When dense thickets of invasive cover form from uncontrolled invasion foci, 

native plant species are displaced (Ens & French, 2008; Merriam & Feil, 2003), which in 

turn results in cascading changes in ecosystem structure and function that ultimately can 

negatively impact ecosystem services (Haddad et al., 2009; Hanula et al., 2009; Hart & 

Holmes, 2013).  

  In order to develop effective management strategies to protect the conservation 

values and ecosystem services provided by urban forests, landscape-scale information on 

the potential distribution of invaders is needed and this can be accomplished via species 
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distribution modeling (Peterson, 2003; Galien et al., 2010). Species distribution models 

(SDMs) utilize ecological niche theory to statistically link species occurrences as 

identified from field surveys with environmental and climatic variables theorized to 

influence the likelihood of invasion. This is commonly done in conjunction with a 

geographic information system (GIS) in order to map habitat suitability (Peterson, 2003; 

Guisan & Thuiller, 2005).  

Although habitat suitability alone is insufficient for an invasion to occur, the 

focus of species distribution modeling has largely been on predicting the risk of invasion 

based on habitat suitability, without explicit consideration for the role of dispersal or 

invasion pressure in influencing invasion success (van Teeffelen & Ovaskaine, 2007).  

However, the organism must actually reach the site in order for an invasion to occur and 

the probability of arrival at any given location is influenced by invasion pressure 

(Tanentzap & Bazely, 2009; Shea & Chesson, 2002).  Invasion pressure refers to the 

number of propagules arriving at a given location from invaded locations over a given 

duration; it has been shown to explain invasion success in experimental invasion studies. 

Thus, investigation in the role of invasion pressure in SDMs is warranted.  

Two sources of invasion pressure can be distinguished: exogenous, where the 

source of the invasive propagules is external to the forest, and endogenous, where the 

source of invasive propagules is mainly from within the forest. The main form of 

exogenous invasion pressure we are concerned with is human-mediated, and arises from 

the intentional import and use of exotic plants for gardening and landscaping (Kowarik, 

2003; Krivanek et al., 2006). For example some of the worst understory forest shrub 

invaders on the eastern seaboard of the United States have been widely planted as 



 

 

10 

 

 

ornamentals or hedges by homeowners, suggesting an abundant source of exotic 

propagules that readily escape from yards and gardens into forests via dispersal by birds 

and deer (Stromayer et al., 1998; Bartuszevige et al., 2006; Gosper et al., 2005, Williams 

et al., 2008).  

In contrast, endogenous invasion pressure is a measure of a (mostly) fine-scale 

contagious process or local spread that reflects the likelihood of invasive propagules 

arriving at a given location from a nearby invaded location, which presumably belongs to 

the same community or habitat (Vaclavik et al., 2012). High endogenous invasion 

pressure can result in invasion success, even when either biotic or abiotic conditions are 

unfavorable to the invader (Von Holle, 2005; Brown & Peet, 2003). In addition, the 

predictive performance of SDMs of invasive species has been shown to be substantially 

enhanced by the explicit inclusion of endogenous invasion pressure (Havel et al., 2002; 

Meentemeyer et al., 2008; Vaclavik and Meentemeyer, 2009). The effects of human-

mediated invasion pressure on the distribution of exotic plants in forests and on the 

performance of SDMs remain to be explicitly considered.   

 The objective of this paper is to investigate the extent to which human-mediated 

invasion pressure explains invasion patterns in metropolitan forests and whether it 

notably improves SDM accuracy. Although the focus of the research is on the role of 

human-mediated invasion pressure, we also account for endogenous invasion pressure as 

we expect that an SDM applied in an urbanizing landscape that relies solely on ecological 

niche modeling is likely to have its predictive accuracy degraded by variations in both 

sources of invasion pressure, if they are not included. We measure human-mediated 

invasion pressure as the residential force of invasion (rFOI). Based on the premise that 
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single family residences serve as external sources of invasive propagules, the potential 

rFOI at a given location, i is measured by the cumulative sum of the inverse weighted 

distances from i, to every single family house, weighted by age, within the study extent. 

We expect that explicitly weighting single family residences by distance and age should 

result in a more realistic and more effective proxy of human-mediated invasion pressure 

in urban landscapes than a simple measure of housing density. We measure endogenous 

pressure using the “force of invasion” method described by Meentemeyer et al. (2008). 

Systematic model errors are anticipated when either source of invasion pressure is 

omitted. Two situations are possible in this respect: 1) an omission error (incorrectly 

predicted absences) occurs when a high invasion pressure results in more actual invaders 

in areas of very low suitability; and 2) commission errors (incorrectly predicted 

presences) are generated when low invasion pressure prevails in areas of high suitability 

(Table 1).  Presences are correctly predicted when areas of high suitability are 

accompanied by high invasion pressure and absences are correctly predicted in areas of 

low suitability overlap with low invasion pressure (Table 1). 

 

 

Table 1: Expected prediction outcome by habitat suitability and unaccounted invasion 

pressure 
Predicted habitat suitability degree of unaccounted invasion pressure expected prediction outcome

high suitability high invasion pressure presence

high suitability low invasion pressure commission

low suitability high invasion pressure omission

low suitability low invasion pressure absence

 

 

We expect that accounting for both sources of invasion pressure would enhance 

model performance beyond what can be achieved with accounting for a single source 

only. To test this hypothesis, we surveyed forests located along an urban to rural gradient 
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in Charlotte, NC for the presence/absence for two of the region’s worst forest invaders 

that are also prevalent in residential yards, namely privet and autumn olive. We then 

evaluate the performance of four models for each species, which in turn include only 

environmental predictors (niche model), niche + human-mediated invasion pressure, 

niche + endogenous invasion pressure, and finally niche + human-mediated invasion 

pressure and endogenous invasion pressure. We also assess the level of spatial 

dependence present in the residuals of each model as a means to detect model 

misspecification as far as invasion pressure is concerned. Indeed, the influence of both 

exogenous and endogenous invasion pressure on the space-time process of diffusion of an 

invasive species and on its resulting spatial distribution is theoretically justified. 

Accordingly, since invasion pressure is by construct a spatial dependence driver, we 

expect to see a reduction in spatial dependence with the addition of human-mediated 

invasion pressure and endogenous invasion pressure as predictors, as compared to the 

niche model. 

The rest of this chapter is organized as follows. First, we describe the study area, 

provide background on the case study species autumn olive and privet; then we describe 

how data were collected in the field for autumn olive and privet, we describe how the 

environmental predictors, residential force of invasion, and forest force of invasion are 

derived, and how the models to compare the effects of residential force of invasion and 

forest force of invasion are developed, assessed, and validated. The next section reports 

on the results. Finally, we discuss our findings and the implications for researchers and 

land managers, and present our conclusions.  
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Methods 

1.1. Study Area 

Charlotte, North Carolina, is one of the ten fastest growing cities in the United 

States, with a 2010 population of over 730, 000 (2010 U.S. Population Census). It is 

located in the Piedmont physiographic province which is characterized by gently rolling 

terrain, erosion prone soils, and forests dominated by mixed hardwood and pine. The city 

boundaries encompass much of Mecklenburg County. Rapid population growth and an 

expanding human footprint that is characteristic of sprawl have consumed much of the 

forests and agricultural land in the area (Meentemeyer et al., 2013). The forests are 

largely mixed deciduous, dominated by oaks and hickories, and are highly fragmented. 

The majority of the larger forest tracts remaining in the area are owned by Mecklenburg 

County. 

1.2. Study Species 

Ligustrum sinense (Chinese privet) was first imported for ornamental use in 1852 

(Dirr, 1990). It was reported as being naturalized in forests throughout the North Carolina 

Piedmont as early as the 1930s (Radford et al., 1965). This semi-evergreen to evergreen 

shrub is widely used as hedge today as it tolerates shade, heat, drought and the clay soils 

that are characteristic of the area. The shrub produces small bluish-black drupes in the 

late Fall that are consumed by birds (Wilcox & Beck, 2007) and deer (Stromayer et al., 

1998). Invasion by Chinese privet is a threat to biodiversity because it is capable of 

forming dense thickets which crowd out native vegetation and prevents forest 

regeneration (Merriam & Feil, 2002). This species has been reported as invasive 

throughout the eastern United States. 
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Elaeagnus umbellata (Autumn olive) is native to Korea, China and Japan 

(Latham, 1963).  It was first imported from Asia in 1830 and was widely available in 

commercial nurseries by 1917 (Latham, 1963). It was extensively planted by the United 

States Soil Conservation Service for erosion control. Like Chinese privet, autumn olive 

has a wide distribution, ranging from Maine to Georgia, and has been reported to be an 

aggressive invader in the southeastern forests of the piedmont and mountains of the states 

of Virginia, North Carolina, South Carolina and Georgia. 

1.3. Field Data Collection 

To examine the effects of residential development and habitat factors on the 

probability of either Ligustrum or Elaeangus presence, we sampled 345 100m
2
 field plots 

in patches of primarily deciduous forests stratified across three classes of building 

density: urban, suburban and rural in Mecklenburg County during 2009-2012 (Figure 1). 

To estimate building density, we extracted the centroids from 2011 countywide parcel 

data containing buildings (Mecklenburg County Geospatial Information Services) and 

used a moving window to map the density for every grid cell based on the number of 

buildings contained within a 1-km neighborhood of the grid cell. We assigned building 

density into 3 classes of development intensity: urban (<0.1 ha per building), suburban (> 

0.1 ha and < 0.68 per building) and rural (> 0.68 ha per building) as described by 

Theobald (2005).   
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Figure 1: Study extent showing the distribution of forest patches sampled for Chinese 

privet and autumn olive. 
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We used a stratified random sampling method to identify forest patches in each 

class to ensure that the number of forest patches sampled reflects their spatial distribution 

by class within the study extent.  Forest patches selected were a minimum of 2 hectares, 

and were delineated by roads, cleared utility right-of-ways, streams and any other non-

forest cover type that separated forests by a minimum of 10 meters. Each forest sampled 

contained a minimum of 3 plots and a maximum of 10 plots, as determined by forest 

patch size to ensure that the spatial heterogeneity within each patch was well represented. 

Most forests contained 5-6 plots. The plots were randomly located in a geospatial 

database prior to conducting field work. Plots were located in situ using a handheld 

global positioning system (GPS). We recorded the presence of each of the two study 

species as “1” and their absence as “0”, and if present, assigned scores of one to five to 

each plot according to the percentage of coverage by each of the two species: 1-20, 21-

40, 41-60, 61-80, or 81-100%.   

Thirty patches embedded in urban areas were sampled (136 plots), 31 suburban 

forests (139) and 11 rural forests (50). To augment our study, an additional 84 plots from 

14 rural forests and 4 suburban forests were obtained as a random subset from the 

Mecklenburg County Department of Natural Resources invasive survey conducted from 

2003 to 2009. A random subset was obtained due to the systematic sampling method 

employed by this survey. As a result, the complete dataset used in this study encompasses 

a total of 429 observations. 

1.4. Independent Variables 

1.4.1. Environmental Predictors 
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Eight environmental variables are selected as potential predictors of autumn olive 

or privet presence as indicated by theory, previous research, or based on the authors’ field 

observations. These environmental predictors are quantified to reflect three broad classes 

of resource availability (light, moisture, and edaphic factors) that influence habitat 

suitability and thus can govern the distribution of invaders. Weather variables were not 

collected as both study species have a geographical range that at minimum spans the 

eastern U.S., and thus it can be assumed that weather would have little effect on more 

localized distributions.  

Light availability is estimated using two different metrics of solar insolation: the 

annual mean potential solar radiation (SI) which measures the average solar insolation 

received at a given location for a whole year based on monthly intervals; and the mean 

potential index solar radiation (ISI), which is an estimate of the solar insolation received 

at a given location, based only on seasonal intervals, namely the winter and summer 

solstices and spring and fall equinoxes. Both are derived from a 10m digital elevation 

model (DEM) using the area solar radiation tool in the ArcGIS 10 software application. 

The percent tree canopy coverage is created by the Multi-Resolution Land Characteristics 

(MRLC) Consortium and is based on the 2001 National Land Cover Database (NLCD). 

Moisture availability is estimated using topographic moisture index, topographic 

curvature, relative slope position and aspect. All of these metrics are derived from a 10m 

resolution DEM.  The topographic moisture index is calculated as the natural log of the 

ratio of the upslope contributing area to the slope (Moore et al., 1991).  Curvature is 

derived using the spatial analyst toolbox in ArcGIS 10 and is a measure of the “slope of 

the slope” and delineates convex, concave and flat areas (Moore et al., 1991). Relative 
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slope position provides a measure of the relative position of each pixel/geographic 

location as compared to its neighbors using a moving window. A moving window of 100 

m is used in this process. Aspect is transformed using the method described in Beers 

(1966). 

Soil wetness capacity and rock type are used to measure variability in edaphic 

factors. Soil wetness capacity is derived from soil data obtained from the Natural 

Resources Conservation Service Soil Survey Geographic Database (SSURGO). To 

capture the potential effects of varying geology, the bedrock classification of the 

lithology geospatial dataset created by the North Carolina Geological Survey is used.  

Distance to forest edge is mapped using a supervised classification of forest cover 

of 2009 satellite imagery of the study extent. This variable captures both disturbance and 

the possibility of higher resource variability and is frequently a factor in invasive 

distributions.  

The dataset includes 429 observations for privet, and due to 3 missing data points, 

the dataset is reduced to 426 records for autumn olive. We recorded 153 presences of 

privet and 132 presences of autumn olive. Descriptive statistics for each species and the 

predictors described above can be found in Table 2. 

Pearson’s correlations among the set of response and predictor variables are 

examined to check for multicollinearity. As expected, single-family housing density and 

residential force of invasion are strongly correlated (r > 0.8); thus these variables are not  
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Table 2: Descriptive statistics of predictors used to model the distribution of autumn olive 

and Chinese privet. 

  

 

 

included together in the same model. A table listing the Pearson’s correlation among the 

final set of environmental factors for each species can be found in Appendix 1. 

1.4.2. Invasion Pressure 

To examine the effects of human mediated invasion pressure on species 

dispersion, a new variable capturing the residential force of invasion is constructed. No 

complete and exhaustive dataset on landscaping use of autumn olive and Chinese privet 

on residential grounds is available. Short of having access to such a fine-grained dataset, 

every single-family residence k is regarded as a potential source of autumn olive and 

Chinese privet seeds.  We exclude other building types from consideration, such as 

commercial buildings and multi-family dwellings, as these structures are often not 

accompanied by landscaped yards, whereas single-family residences almost always have 

these. Thus, residential force of invasion is estimated based on the accumulated presence 

Variable Description Min Max Mean Std. dev

Autumn olive

AO (0/1) Presence/absence of autum olive 0 1 0.33 0.47

SI Annual Mean Solar Radiation (WH/m2 ) 989577 1679760 1489587 131635.8

CC Percent Canopy Closure 0 97 80.94 21.99

SFHD 1000 Single family housing density within 1000 m 0.00 427.81 169.35 131.04

rFOI 1.5 Residential force of invasion with α= 1.5 0.0134 0.0783 0.042 0.016

aoFOI 1.0 Autumn olive force of invasion with α= 1.0 0.0017 0.0609 0.0065 0.0065

SWC Soil wetness capacity (low vs high) na na na na

Chinese privet

Priv(0/1) Presence/absence of privet 0 1 0.36 0.48

TMI Topographic moisture index 7.39 23.73 10.73 2.56

RSP Relative slope position 0.05 100.05 43.33 24.11

ISI Index Mean Solar Radiation (WH/m2 ) 3156.71 3922.57 3654.38 109.93

rFOI1.0 Residential force of invasion with α= 1.0 3.06 8.50 5.84 1.40

SFHD 1500 m Single family housing density within 1500 m 0.00 416.28 174.62 119.36

pFOI Privet force of invasion with α= 1.5 0.00 0.00106 0.00005 0.00012

pFOI*RSP Privet FOI interaction with Rel. slope position 0.00 0.11155 0.00688 0.01501
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of single-family residences (k) weighted by their age (wk) given in the georeferenced 

property records (Mecklenburg County Geospatial Information Services), using an 

inverse distance dispersal kernel (
 

   
 ) with the following form: 

       
 

   
 

 

   
    .      (1) 

 The euclidean distance between each single family residence k and a forest cell i 

is dik. The α parameter modifies the degree to which the likelihood of arrival from 

residential sites to forest sites decreases as the distance between them increases. The 

amount of invasive propagules received by each forest cell is the sum of the output of 

invasive propagules estimated for each residence. Given that these species have been 

present in the area for several decades (Radford et al., 1965) and given that previous 

work has indicated that the number of exotic species present in urban habitats is 

correlated with housing age (Hope et al., 2003; Gavier-Pizarro, 2010), it is postulated that 

the dispersal of Chinese privet and autumn olive is also influenced by housing age. Thus, 

the residential force of invasion (weighted rFOI) incorporates a weight by the housing 

age and we compare it to residential force of invasion that does not account for age 

(unweighted rFOI) using the likelihood profiling technique. The unweighted  rFOI is 

formulated as follows: 

       
 

   
 

 

   
  .        (2) 

In order to parameterize α, we have tested values ranging from 0.5 to 2.5  in 

increments of 0.5 using likelihood profiling for each of the models shown in equations 1 

and 2 (Havel et al., 2002; Meentemeyer et al., 2008) on the training data (see below for a 

description of the training data). The α parameter resulting in the least negative model 
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log-likelihood is selected as the optimal parameter value (Havel et al., 2002). The results 

of the likelihood profiling analysis show that the optimal α value for rFOI is 1.0 for privet 

and 1.5 for autumn olive (Table 3). Weighting rFOI by housing age is preferred as it 

results in the minimal log-likelihood value.  

 

 

Table 3:  Results from likelihood profiling analysis to calibrate the α parameter for 

residential weighted and unweighted force of invasion (rFOI) for Chinese privet and 

autumn olive.  

 α weighted unweighted weighted unweighted

0.5 -203.49 -203.77 -179.90 -178.88

1 -200.63 -203.67 -176.89 -178.28

1.5 -202.02 -203.02 -173.93 -178.10

2 -206.13 -206.27 -176.12 -179.28

2.5 -208.30 -208.29 -184.92 -184.19

 Chinese privet autumn olive

 
 

 

 

Furthermore, we have compared the residential force of invasion with a simpler 

metric of human invasion pressure that is computationally faster to derive, namely single 

family housing density. In order to determine the scale at which housing density is most 

relevant ecologically, we have mapped housing density using circular neighborhoods of 

200, 500, 750, 1000 and 1500 meter extents. The optimal spatial extents for the effects of 

single family housing density on the invaders is 1500 meters for privet and 1000 meters 

for autumn olive, as revealed by likelihood profiling analysis (Table 4).    
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Table 4: Results from likelihood profiling analysis to examine how the influence of 

single-family housing density (sfhd) on the probability of invasion by Chinese privet or 

autumn olive varies with spatial extent. 

spatial extent  Chinese privet autumn olive

200 -207.31 -183.79

500 -207.66 -177.01

750 -201.54 -173.51

1000 -200.12 -172.34

1500 -198.94 -173.08

 
 

 

 

In order to examine the influence of fine-scale dispersal primarily arising from  

nearby invaded sites within forests, on the likelihood of invader presence, we have 

derived the forest force of invasion (Havel et al., 2002; Meentemeyer et al., 2008) for 

both target species. Similarly to the derivation of the rFOI, the forest force of invasion 

(fFOI) is estimated as the distance (dik) from every known invaded cell present in the 

training data, k, to every other cell (i) excluding itself in the study extent using an inverse 

distance dispersal kernel modified by the β parameter, weighted by the invasive cover 

(Wick) with the following form: 

       
 

 
  
 

 

   

     ..       (3) 

The β parameter modifies the degree to which the likelihood of arrival from 

invaded sites to uninvaded sites decreases as the distance between the sites increases. The 

best-fit β value is obtained again using likelihood profiling on the training data as 

described above. The inclusion of the forest force of invasion parameter should account 

for the spatial dependence that would be expected to occur as a result of dispersal of the 

invader. The invasive cover is transformed from percentage categories to an ordinal 

variable, with values ranging from 1-5, with 1 representing the lowest cover category of 
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1-20% and 5 representing the highest cover of 81-100%. The model for the non-weighted 

fFOI is: 

       
 

 
  
 

 

   

 .        (4) 

We use a neighborhood of 1500 meters to account for the scope of spatial 

dispersion around each site, as 99% of fleshy fruited seeds released from shrubs have 

been shown to be dispersed within this radius (Vittoz & Engler, 2007). Forest force of 

invasion weighted by cover is superior to its unweighted counterpart for both species 

(Table 5). The optimal β value for the force of invasion is 1.5 for privet and 1.0 for 

autumn olive. 

 

 

Table 5: Results from likelihood profiling analysis to calibrate the β parameter for forest 

force of invasion (fFOI) for Chinese privet and autumn olive. 

β weighted unweighted weighted unweighted

0.5 -184.51 -199.71 -154.32 -147.22

1 -178.39 -195.65 -131.95 -136.47

1.5 -176.43 -194.53 -136.91 -146.35

2 -178.52 -194.5 -147.81 -155.31

2.5 -180.39 -194.8 -155.91 -160.29

Chinese privet autumn olive

 
 

 

 

 

2.5  Model Development 

 

The training models are constructed using a random subset of 70% of the 

complete dataset. The remaining 30% of the data, the “testing set”, is used to validate the 

models developed in the training phase. Generalized linear modeling using the probit-link 
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function is used to develop our models. Parametric estimation is completed using the 

“stats” package of R, version 2.15.3 (R Core Team, 2012). The probit specification is 

widely used in spatial econometrics and other applied fields in the estimation of spatial 

models with binary dependent variables. In probit models, the probability that a location 

will be invaded is calculated as: 

Prob (Y= 1|X) = Ф Xβ + ε       (5) 

The link function is indicated by Ф, the cumulative standard normal distribution, X 

represents a vector of predictors and β are the parameters to be estimated. Probit models 

differ from logit in that the true value of the dependent variable is a latent variable with a 

Gaussian distribution between 0 and 1. The probit specification is theoretically more 

appropriate for models predicting the distribution of invasive species since the risk of 

invasion is not directly observed, and is instead a latent variable with continuous values 

between 0 and 1 (LeSage & Pace, 2009).  

The observed values are the binary outcomes of the latent variable, in which the 

outcome is 1 when the value meets or exceeds a given threshold and is 0 when it is less 

than the threshold: 

    
           
          

          (6) 

 

where yi represents a binary outcome, in our case, presence or absence of the invader, zi  is 

the hidden Gaussian variable, and t is the threshold at which if zi meets or exceeds, then yi 

= 1. Traditionally, values above 0.5 are scored as “1” or present, and values below 0.5 are 

scored as “0” or absent. Using a threshold of 0.5 has been shown to be insufficient for 

predicting the distribution of species whose prevalence is substantially lower than 0.5 as 

is privet and autumn olive. The optimal threshold to score plots as being invaded (1) or 



 

 

25 

 

 

not invaded (0) is derived for each model from receiver operating characteristic (ROC) 

plots using the ROCR package in R (Sing et al., 2005). 
  
Probit and logit specifications 

usually generate nearly identical results in terms of AIC and log-likelihood in the absence 

of predictors with extreme-values (Hahn & Soyer, 2005). In order, to check this 

assumption, we compare the predictive accuracy of probit models to their logit model 

counterparts and find that the results are nearly identical (not shown).  

The base model is the niche model, which consists only of environmental 

predictors as is the standard practice with ecological niche modeling (Jimenez-Valverde 

et al., 2011). A parsimonious model is constructed using the Akaike information criterion 

(AIC) to select the best set of environmental predictors, with significance at p ≤ 0.05. To 

avoid overfitting, we use likelihood ratio tests, so as to compare the fit of the full model 

(k, number of parameters) with simpler nested models (with fewer than k parameters). 

To isolate the relative contribution of human-mediated invasion pressure (rFOI or 

single family housing density) and forest force of invasion to improving model 

performance, two additional models that expand on the niche model are constructed: 1) 

niche + residential force of invasion or single family housing density; and  2) niche + 

forest force of invasion. The final model adds forest force of invasion and either 

residential force of invasion or single family housing density to the niche model to 

account for both fine and broad scale sources of propagule pressure (Tables 6a and 6b). 
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Table 6a: Names and specifications of models developed to isolate the relative 

contributions of environmental factors, residential force of invasion and forest force of 

invasion for autumn olive distribution modeling. 

Model Name Model Specification

autumn olive niche SI * CC + SWC 

niche + residential FOI SI * CC + SWC + rFOI 1.5+ rFOI 1.52

niche + aoFOI SI * CC + SWC + aoFOI 1.0

niche + aoFOI + residential FOI SI * CC + SWC + aoFOI 1.0 + rFOI 1.5 + rFOI 1.52

niche + SFHD 1000 SI * CC + SWC + SFHD 1000 + SFHD 10002

niche + SFHD 1000 + aoFOI SI * CC + SWC + SFHD 1000 + SFHD 10002 + aoFOI  
 

 

 

 

Table 6b:  Names and specifications of models developed to isolate the relative 

contributions of environmental factors, residential force of invasion, and forest force of 

invasion for Chinese privet distribution modeling. 

Model Name Model Specification

privet niche RSP + TMI + ISI + ISI2

niche + residential FOI RSP + TMI + ISI + ISI2+ rFOI 1.0+ rFOI 1.02  

niche + privetFOI RSP + TMI + ISI + ISI2 + pFOI 1.5 + ( RSP * pFOI 1.5)

niche +  resIdentialFOI + privetFOI RSP + TMI + ISI + ISI2+ rFOI 1.0+ rFOI 1.02 + pFOI 1.5 

+ ( RSP * pFOI 1.5)  

niche + SFHD 1500 RSP + TMI + ISI + ISI2 + SFHD 1500 + SFHD 15002

niche  +  SFHD 1500 + privetFOI RSP + TMI + ISI + ISI2 + SFHD 1500 + SFHD 15002 + 

pFOI 1.5 + ( RSP * pFOI 1.5)  

 

 

 

2.6. Model Validation  

Models are evaluated on the basis of omission error and commission error, overall 

predictive accuracy, and area under the curve (AUC) (Manel et al., 2001).  In order to 

verify that the models are working as hypothesized, following Sargent (2013), we 

examine the predictive outcomes of niche, niche + residential force of invasion and niche 

+ forest force of invasion. If the model performs according to the hypothesis, niche model 

omission errors that convert to presence after accounting for either residential or forest 
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FOI should have higher force of invasion than the ones that remain as omission errors. 

Niche model commission errors that convert to absence after accounting for either 

residential or privet force of invasion should have lower force of invasion than the ones 

that remain as commission errors. To test whether the difference in means is statistically 

significant, we use Welch’s t-test, which is a robust test allowing for unequal variances 

(Ruxton, 2006). 

2.7. Assessment of Spatial Dependence 

It is common for the residuals of SDM models to exhibit spatial autocorrelation 

(Dormann et al., 2007; Vaclavik & Meentemeyer, 2012). Spatial lag models regard 

spatial autocorrelation as the result of a meaningful process that results in some spatial 

clustering of the data values. The spatial dependence present in model residuals is 

estimated and included in the model as additional predictor which operates according to 

proximity like a spillover process, the spatial lag effect, in order to obtain well-behaved 

parameter estimates (Anselin, 2002). The forest FOI is similar to a spatial lag effect in 

that we expect our data to exhibit spatial autocorrelation as the result of unaccounted 

endogenous invasion pressure in which the presence of privet or autumn olive influences 

the probability of presence in neighboring locations. The difference is that we are using 

ecological information a priori to guide the specification of the forest FOI and testing 

whether the forest FOI as a measure of invasion pressure can explain spatial dependence 

rather than deriving it from the data a posteriori as is the case with the spatial lag 

parameter. If our hypothesis is correct, we expect SDMs developed for autumn olive and 

privet that do not include measures of endogenous invasion pressure to have significant 

spatial autocorrelation, as a result of unaccounted invasion pressure. We also expect that 
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accounting for human-mediated invasion pressure should result in a decrease of spatial 

dependence since these variables are hypothesized to also influence dispersal patterns. In 

order to assess the degree of spatial autocorrelation (SAC) that may be present, we 

calculate the Moran’s I statistic for the generalized residuals of each of the SDM models 

(Gourieroux, 1987): 

       

                     
                                                                                                (7) 

where φ is the probability distribution function and Ф is the cumulative distribution 

function for the standard normal distribution. The distribution under the null hypothesis 

of the Moran’s I test statistic based on the generalized residuals of the probit model is 

asymptotically standard normal and can be used for hypothesis testing (Amaral et al., 

2013; Bille, 2013; Kelejian & Prucha, 2001; Gourieroux, 1987). We use a spatial weight 

matrix based on inverse distance weighted neighbors that are no further than 5,000 meters 

apart, which is the minimum distance required to ensure all observations have at least one 

neighbor. 

 

Modeling Results 

3.1. Niche Models 

The results of the statistical analysis with the niche models (Tables 7a and 7b) 

indicate that the best set of environmental predictors for privet presence are relative slope 

position (RSP), topographic moisture index (TMI) and potential index mean solar 

radiation (ISI). Privet prefers lower topographic positions that receive less solar radiation 

(Table 7b). Although preliminary tests show that the topographic moisture index is not 

significant, it is kept in the model because privet is known to prefer moist locations 
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(Radford, 1965; Merriam, 2002) and this is supported by bivariate analysis with privet 

and TMI. The niche model for privet performs poorly overall, exhibiting the highest 

omission rates and lowest commission error rates for both training and testing sets as 

compared to the other models (Table 7b).  

 

 

Table 7a: Probit regression coefficients for all the models estimated for autumn olive. 

 

Predictors Niche rFOI aoFOI sfhd rFOI + aoFOI sfhd +aoFOI

(Intercept) -0.669*** -0.826*** -0.533* -0.936*** -0.459 -0.536*

SI -0.342*** -0.242** -0.250* -0.231* -0.227* -0.217*

CC 0.450*** 0.385** 0.306* 0.360** 0.289* 0.273*

SI * CC 0.218* 0.214* 0.185 0.213* 0.186 0.19

SWC(low) -0.184 -0.415 -0.39 -0.460 -0.416 -0.483

SWC(med) 0.345 0.239 0.084 0.256 0.001 0.005

 rFOI 1.5 na -0.404*** na na -0.060 na

 rFOI 1.52 na 0.254*** na na 0.075 na

SFHD 1000 na na na -0.495*** na -0.117

SFHD 10002 na na na 0.361** na 0.174

log aoFOI 1.0 na na 1.343*** na 1.537*** 1.487***

rFOI 1.5 * aoFOI 1.0 na na na na 0.428* na

SFHD 1000 * aoFOI 1.0 na na na na na 0.462*

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

Model
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Table 7b: Probit regression coefficients for all the models estimated for Chinese privet.

Predictors Niche rFOI pFOI sfhd rFOI + pFOI sfhd + pFOI

(Intercept) -0.210* -0.385** -0.138 -0.418** -0.332* -0.323*

RSP -0.420*** -0.385*** -0.282** -0.406*** -0.253* -0.276**

TMI -0.051 -0.014 -0.011 -0.054 0.029 -0.011

ISI 0.075 0.045 0.043 0.061 0.008 0.043

ISI2 -0.251** -0.226** -0.254** -0.233** -0.234** -0.244**

rFOI 1.0 na 0.155* na na 0.104 na

rFOI 1.02 na 0.148 na na 0.171 na

pFOI 1.5 na na 0.868*** na 0.861*** 0.819***

pFOI 1.5 *  RSP na na 0.418** na 0.426** 0.429**

sfhd 1500 na na na 0.244** na 0.128

sfhd 15002 na na na 0.178 na 0.167

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

Model

  
 

 

The best set of environmental predictors for autumn olive presence are canopy 

closure (CC), annual potential mean solar radiation (SI), and soil wetness capacity 

(SWC). Autumn olive prefers cool, shady sites that have less solar radiation and higher 

canopy closure and is discouraged from invading areas with low soil wetness capacity. 

Like for privet, the niche model for autumn olive has the lowest accuracy and the highest 

omission and commission error rates as compared to the models that include either/or 

residential FOI or forest FOI. 

3.2. Models with Human-Mediated Invasion Pressure 

An examination of the individual contribution of residential force of invasion to 

model performance reveals a substantial reduction in omission error  (Tables 8a and 8b) 

for both privet (testing omission error from 0.44 to 0.26) and autumn olive (testing 

omission error from 0.50 to 0.34), suggesting that residential force of invasion influences 

the distribution of these invaders significantly. An even greater reduction in omission 
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error for privet invasion is achieved with single family housing density as a predictor 

instead of residential FOI (omission = 0.20).  

The addition of either residential FOI or single family housing density generates 

an increase in commission errors for privet, which is often the trade-off for lower 

omission rates (Pearce & Ferrier, 2000). The inclusion of residential FOI to autumn olive 

niche models results in a decrease of omission and increase of commission errors 

whereas single family housing density results in no change of omission and decrease of 

commission errors (Table 8a). This suggests that residential FOI and single family 

housing density are not analogous. These two variables measure distinct drivers of 

dispersion, at least as far as autumn olive is concerned. 

3.3. Models with Forest FOI 

Accounting for forest force of invasion more strongly reduces omission error than 

with either residential FOI or single family housing density for both autumn olive and 

privet (Tables 8a, 8b). As with residential FOI, the addition of privet FOI to the niche 

model for privet presence also results in higher commission error than in the niche model 

alone (Table 8b). Conversely, the addition of autumn olive FOI greatly reduces 

commission error as compared to the niche model for autumn olive presence (Table 8a). 
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Table 8a: Evaluation of probit regression models predicting the distribution of autumn 

olive. 
model AIC threshold omission commission accuracy AUC Morans I

niche (SI + SWC * CC) 354.82 0.38 0.33 (0.5) 0.34 (0.41) 0.67 (0.57) 0.71 (0.6) 0.155***

niche + residentialFOI 327.55 0.29 0.22 (0.34) 0.35 (0.44) 0.69 (0.58) 0.78 (0.67) 0.112***

niche + aoFOI 254.29 0.29 0.19 (0.22) 0.19 (0.29) 0.81 (0.72) 0.88 (0.8) -0.015

niche + aoFOI + residentialFOI 255.00 0.34 0.2 (0.22) 0.17 (0.26) 0.82 (0.75) 0.89 (0.83) -0.021

niche + SFHD 1000 321.70 0.37 0.38 (0.5) 0.2 (0.2) 0.74 (0.72) 0.78 (0.66) 0.091***

niche + SFHD 1000 + aoFOI 253.73 0.34 0.21 (0.22) 0.17 (0.24) 0.82 (0.76) 0.89 (0.82) -0.020

* numbers in parentheses refer to testing data withheld from the original training set. 

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

 

 

Table 8b: Evaluation of probit regression models predicting the distribution of Chinese 

privet. 
model AIC threshold omission commission accuracy AUC Morans I

niche (RSP + TMI + SI +SI^2) 378.47 0.39 0.35 (0.44) 0.25 (0.19) 0.72 (0.72) 0.73 (0.77) 0.158***

niche + residentialFOI 374.34 0.34 0.24 (0.26) 0.30 (0.27) 0.73 (0.73) 0.75 (0.84) 0.146***

niche + privetFOI 329.34 0.31 0.17 (0.13) 0.28 (0.24) 0.76 (0.80) 0.83 (0.89) -0.028

niche +  residentialFOI + privetFOI 327.18 0.32 0.17 (0.10) 0.26 (0.26) 0.77 (0.80) 0.84 (0.91) -0.036

niche + SFHD 1500 369.05 0.35 0.25 (0.20) 0.29 (0.26) 0.72 (0.76) 0.76 (0.86) 0.115***

niche  +  SFHD 1500 + privetFOI 328.73 0.3 0.16 (0.13) 0.30 (0.29) 0.70 (0.77) 0.83 (0.88) -0.034

* numbers in parentheses refer to testing data withheld from the original training set. 

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

 

3.4. Models with Human-Mediated Invasion Pressure and Forest FOI  

As evidenced in Table 8b, the best predictive model for privet presence accounts 

for both residential and forest force of invasion, possessing the highest AUC (training = 

0.84, testing =  0.91), accuracy (training = 0.77, testing = 0.80), and the lowest omission 

rate (training = 0.17, testing = 0.10). Including both residential and forest force of 

invasion also results in the best predictive model for autumn olive, with the highest AUC 

(training = 0.89, testing = 0.83). This model includes an interaction term between forest 

force of invasion and residential force of invasion which has a positive effect on the 

presence of autumn olive (Table 8a).   

3.5. Spatial Dependence 

  Significant spatial autocorrelation is observed in the niche model residuals for 

autumn olive (Table 8a) and for privet (Table 8b). The addition of privet FOI 
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substantially reduces spatial autocorrelation present in model residuals to a level where it 

is not statistically significant. Autumn olive FOI is also associated with a substantial 

reduction in spatial dependence, but a small (0.09) value of statistically significant 

Moran’s I remains, indicating a possible misspecification of the model. This is alleviated 

by log-transforming autumn olive FOI, which improves model fit, and like privet FOI, 

generates residuals free of statistically significant spatial autocorrelation. This suggests 

that unaccounted endogenous invasion pressure is the source of the spatial dependence in 

the niche model residuals for both species.   

The addition of residential FOI also serves to reduce the spatial autocorrelation 

present in privet and autumn olive niche model residuals, with a 27.7% reduction for 

autumn olive and an 8.0% reduction for privet, although spatial autocorrelation remains 

statistically significant at the 0.001 level for both models. The addition of residential FOI 

to models that include forest FOI does not further reduce residual spatial dependence.  

Model Validation  

3.6. Residential Force of Invasion 

We investigate how the omission and commission generated by the niche models 

for privet and autumn olive are resolved after accounting for residential FOI. In line with 

our expectations, the niche omission errors  that converted to presences after accounting 

for residential FOI have significantly higher levels of residential FOI as compared to 

omission errors that did not convert in the privet rFOI models (Welch’s t-test for training 

(32.91) = 8.01, p ≤ 0.001, testing(10.04) = 3.27, p = 0.0084).  Relatively few privet niche 

commission errors are explained by residential FOI (4 out of 20 (8%), in training; 1 out 

of 13 (7.6% in testing). This is not surprising as the mean residential force of invasion is 
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not appreciably different between absences (mean = 0.038, sd = 0.013) and commission 

(0.049, sd = 0.018) in the test set (Table 9a), suggesting that unaccounted residential FOI 

is not the cause of commission errors in this case. Unaccounted residential FOI also 

explains some of the omission errors generated by the autumn olive niche model. 

However, unlike our results for privet, the autumn olive niche model  omission errors that 

were converted to presence after accounting for residential FOI, experience significantly 

lower residential FOI as compared to  omission errors that did not convert (Welch’s t-test 

for training (18.45) = 8.46, p ≤ 0.001, testing(5.24) = 3.94, p = 0.01; Table 9a). This 

phenomenon is observed with commission errors, as those that are converted to absences 

after accounting for residential FOI unexpectedly have higher mean residential FOI as 

compared to those remaining as commission errors (Welch’s t-test for training (61.98) = 

2.84, p ≤ 0.006, testing (24.04) = 3.29, p = 0.003. This suggests that contrary to our 

expectations, autumn olive invasion is more likely in areas with low residential FOI. 
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Table 9a: Results of Welch’s t-tests comparing the mean residential FOI of 

omission/commission  errors from the niche models that are converted to 

presences/absences after including rFOI in the models, with those that remain as 

omission or commission for both training and testing data sets. 

   
 

 

 

3.7. Forest Force of Invasion 

 

Similarly, we investigate how the omission and commission generated by the 

niche models for each of the two invasive species are resolved after accounting for privet 

FOI and autumn olive FOI, respectively.  If the pFOI and aoFOI models perform as 

intended, than the privet/autumn olive omission errors associated with high levels of their 

respective forest force of invasion should be identified as presence in the pFOI and aoFOI 

models. Similar to what we have seen with unaccounted residential FOI, several of the 

locations predicted by the privet niche model as omission errors are associated with high 

unaccounted privet FOI. These locations become correctly identified as presences in the 

pFOI model. On the contrary, those with low privet FOI remain counted as omission 

N Mean rFOI SD DF Dfdens T p

Privet training omission 27 5.61736 1.28137 1 32.90887 8.0147 <.0001

presence 13 7.73993 0.34818

absence 4 4.56982 0.29568 1 19.89923 5.9182 <.0001

commission 46 6.0484 1.36598

Privet testing omission 10 6.17871 1.50976 1 10.04093 3.2686 0.0084

presence 7 7.7846 0.30682

absence 1 NA NA NA NA NA

commission 12 5.5726025 1.098562 NA NA NA

AO training omission 17 0.049495 0.013477 1 18.45378 8.4573 <.0001

presence 11 0.020774 0.003054

absence 16 0.049552 0.00691 1 61.98099 2.8416 0.0061

commission 55 0.041327 0.017223

AO testing omission 6 0.047971 0.017851 1 5.237131 3.935 0.01

presence 6 0.018956 0.00275

absence 7 0.0557 0.00571 1 24.03786 3.2907 0.0031

commission 36 0.045033 0.014512
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errors (Table 9b).  The difference in means between the newly identified presences and 

the remaining omission errors is statistically significant for both training and testing sets 

(Welch’s t-test for training (21.58) = 6.46, p ≤ 0.001, testing (12.0) = 3.46, p = 0.004) 

(Table 9b). Accounting for privet FOI also results in a reduction of niche commission 

errors. As expected, the errors that are converted to absences have a much lower privet 

FOI as compared to those that remain commission cases (Welch’s t-test (43.72) = 4.09, p 

≤ 0.001) (Table 9b). No commission errors are converted to absence in the test set, 

however the mean privet FOI is not significantly different between absences and 

commission (p = 0.23) (Table 9b). This suggests that the commission errors in the testing 

set cannot be explained by privet FOI.  

 As with privet, the autumn olive niche omission errors that converted to presences 

after accounting for autumn olive FOI had higher mean autumn olive FOI than those 

errors that did not convert, although this difference was only significant for the training 

set (Welch’s t-test for training (19.27) = 5.7, p ≤ 0.001, testing (7.86) = 1.85, p = 0.1) 

(Table 9b). In contrast to privet, the inclusion of autumn olive FOI results in a substantial 

reduction of commission error. The commission errors that are converted to absences are 

linked to significantly lower autumn olive FOI than those that did not convert (Welch’s t-

test for training (34.05) = 6.18, p ≤ 0.001, testing (21.54) = 3.93, p ≤ 0.001) (Table 9b). 

This indicates that some niche commission errors (falsely predicted absences) can be 

explained by very low forest FOI, as we hypothesized in Table 1.  
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Table 9b: Results comparing the mean forest FOI for Chinese privet and autumn olive 

using the same testing approach as described for Table 9a.  

 
 

 

 

Discussion and Conclusions 

We investigated whether the addition of human-mediated invasion pressure and 

endogenous invasion pressure to SDMs developed for autumn olive and Chinese privet 

better explains invasion patterns in metropolitan forests and improves model accuracy. 

Our results show that 1) human-mediated invasion pressure does influence the likelihood 

of invasion by either autumn olive or Chinese privet and its inclusion generated a 

significant decrease in omission errors as compared to niche only models; and 2) the 

highest predictive accuracy and lowest omission error rates are obtained for both species 

when both human-mediated and endogenous sources of invasion pressure are included in 

the models. We discuss each of these results in more detail below.  

N Mean fFOI SD DF Dfdens T p

Privet training omission 18 0.000055 0.000044 1 21.59 6.46 <.001

presence 22 0.000627 0.000412

absence 7 0.000012 0.000014 1 43.72 4.09 <.001

commission 43 0.000161 0.000238

Privet testing omission 5 0.000163 0.000253 1 12.85 3.46 0.004

presence 12 0.001501 0.00128

absence 0 NA NA NA NA NA

commission 13 0.000097 0.000116 NA NA NA

AO training omission 10 0.003643 0.001299 1 19.27 5.70 <.001

presence 18 0.012829 0.006606

absence 39 0.002904 0.000646 1 34.05 6.18 <.001

commission 32 0.005856 0.002639

AO testing omission 5 0.005507 0.002403 1 7.86 1.85 0.1

presence 7 0.010729 0.006926

 absence 24 0.002894 0.000782 1 21.54 3.93 <.001

commission 19 0.004992 0.002222



 

 

38 

 

 

A comparison of models with and without residential FOI revealed that the 

addition of residential FOI substantially boosted the performance of niche models for 

Chinese privet (Table 8b) and to a lesser degree, autumn olive (Table 8a) by lowering 

omission errors. However, the role of residential FOI on the distribution of these invaders 

differed by species. Our results show that although residential FOI increases the risk of 

invasion by Chinese privet, it decreases the risk of invasion by autumn olive (Table 9a). 

This trend is likely explained by the predominance of autumn olive in rural (N = 211) as 

opposed to urban forests (N = 28). The niche models developed in this study significantly 

underpredict the distribution of the invaders, and residential FOI corrects for this at the 

expense of commission error. Including residential FOI in SDMs applied to metropolitan 

landscapes is useful for increasing the detection of an invader when niche models are 

performing poorly, as they likely will with species with wide environmental tolerances 

(Evangelista et al., 2008). To the best of our knowledge, this is the first study to explicitly 

investigate the role of anthropogenic variables on the performance of spatially explicit 

predictive models such as SDMs. 

The explanatory power of residential FOI was surpassed by estimates of 

endogenous invasion pressure for both species. Our results link high and low estimated 

endogenous invasion pressure as measured by forest FOI to omission and commission 

errors, respectively, for autumn olive and privet. Thus, not surprisingly, the addition of 

forest FOI to models that also accounted for residential FOI resulted in the best predictive 

models overall, thus supporting the hypothesis that accounting for both sources of 

invasion pressure will provide the best predictive accuracy. This was significantly better 

than previous results reported for autumn olive (AUC = 0.75, omission = 0.20) and 



 

 

39 

 

 

Chinese privet (AUC = 0.72, omission = 0.38) (Lemke et al., 2012).   Accounting for 

forest FOI has previously been shown to improve the performance of SDMs of invasions 

by Daphnia lumholtzi (Havel et al., 2002) and Phytopthora ramorum (Meentemeyer et 

al., 2008). Although forest FOI is a stronger predictor of invasion success than residential 

FOI, a practical advantage to residential FOI is that all the values of residential FOI can 

readily be determined for the entire study extent, i.e. all of the cells belonging to 

residences are known, whereas the forest FOI has some uncertainty as our knowledge of 

invader presence is limited to the locations that were sampled. Non-sampled locations 

may harbor presences that were not included in the forest FOI. The predictive accuracy of 

non-sampled locations that are far from known presences (i.e. greater than 1500m) is less 

certain. The 1500 m distance reflects the maximum distance that 99% of fleshy fruited 

seeds like those of privet of autumn olive will disperse (Vittoz & Engler, 2007).  

 The niche models developed in this study significantly underpredict the 

distribution of the invaders and the residuals of these models exhibit significant spatial 

autocorrelation. Spatial autocorrelation can be the result of an omitted abiotic or biotic 

variable, or poor model specification (Austin, 2007).  Although dispersal and other biotic 

processes have been acknowledged as a potential source of autocorrelation (Legendre, 

1993; Bahn et al., 2008), the residual spatial autocorrelation is often handled with an 

autocovariate or filtered out, without explicit inquiry/investigation as to the origins of the 

spatial dependence (Miller and Franklin, 2010; De Knegt et al., 2010; van Teeffelen & 

Ovaskaine, 2007). The use of autocovariates has garnered recent controversy, as although 

they may improve prediction (Augustin et al., 1996; Betts et al., 2009) their impacts on 

inference of the other parameters in the models are unclear (Dormann et al., 2007). 
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However, ignoring spatial dependence can also lead to false conclusions (Legendre, 

1993). Although our approach for accounting for endogenous invasion pressure via the 

forest FOI is essentially an autologistic method (Augustin et al., 1996), it differs from the 

traditional use of autocovariates in the sense that we have incorporated invasive cover as 

an additional attribute of the response variable, as we expect that it positively influences 

invasive pressure. Spatial autocorrelation is often attributed to the tendency of the species 

to cluster in similar environmental conditions, or in other words because the 

environmental conditions are clustered, so are the distribution patterns of the organism. If 

this was true in our case, we would expect to see high commission errors in our niche 

models rather than the high rate of omission errors observed. The addition of forest FOI 

to niche models not only resulted in a vast improvement of predictive accuracy, but 

greatly reduced the level of spatial autocorrelation present in the residuals, suggesting 

that the failure to account for endogenous invasion pressure is the cause of both the high 

omission error and spatial dependence present in the niche models. Our finding that 

endogenous invasion pressure is a major predictor of invasion success is in line with 

previous findings and theory (Eschtruth & Battles, 2011; Simberloff, 2009) and suggests 

that the theoretically motivated use of autologistic methods is appropriate for predictive 

models. Our results indicate that forest FOI explains invader presence in sites identified 

by the simpler niche model as unsuitable. This implies that high numbers of immigrants 

from invaded habitats are arriving and successfully establishing in marginal habitats. This 

has been observed with plant invasions in grasslands (Thomson, 2007), and forests 

(Brown & Peet, 2003; Von Holle & Simberloff, 2005). Marginal habitats that receive 

high amounts of seed rain from known invaded locations or from residences likely to 
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harbor the invader, are more susceptible to invasions than what otherwise would be 

predicted by models that do not estimate propagule pressure. However, forest FOI does 

not explain commission errors as well suggesting that despite the elimination of spatial 

dependence via the inclusion of forest FOI, the possibility of an omitted variable that 

make these locations more resistant to invasions exists, or that these locations simply 

haven’t been successfully invaded yet (Lobo et al., 2010). 

This is the first study that explicitly investigates the potential links between 

invasion pressure and the performance of SDMs in urban landscapes. We have shown 

that high invasion pressure arising from either endogenous or anthropogenic sources 

increases the risk of invasion in habitats that would otherwise be identified as unsuitable 

for invasion. We have also demonstrated that omission and commission errors of the 

niche model are associated with unaccounted human-mediated invasion pressure and 

endogenous invasion pressure.  Thus, it is imperative that predictive models, especially 

when applied to metropolitan landscapes, incorporate a spatially explicit understanding of 

the contribution of both sources of invasion pressure to the risk of invasion to increase 

the chances that these habitats at risk of invasion are not left unidentified. This 

conclusion is strengthened by the fact that these results were achieved with two different 

invasive shrub species across a heterogeneous metropolitan area. This approach could be 

used to assist land managers in prioritizing forest remnants for detection and control of 

invaders in order to protect biodiversity and has the potential to improve the accuracy of 

SDMs developed for other widespread sub-canopy generalist invaders of metropolitan 

forests (e.g. Lonicera maacki, Rhamnus cathartica).  However, our results point to the 

daunting task that land managers may face in the sense that even if they successfully 
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eradicated invasives from their properties, forests in urbanizing landscapes are 

continuously subjected to external invasion pressure from residences, which is outside 

their realm of control. This suggests that forests that are experiencing high human-

mediated invasion pressure will require frequent monitoring in order to keep invasions in 

check.  
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CHAPTER 3: INFLUENCE OF MULTI-TEMPORAL FOREST COVER CHANGE 

TRAJECTORIES ON FOREST PLANT DIVERSITY 

 

 

Introduction  

 

Human activities such as the construction of roads, the conversion of forest to 

intense agricultural uses or impervious surface, are major drivers of forest loss, which 

have negative consequences on biodiversity worldwide (Foley et al., 2005). These human 

induced changes result in decreased habitat area, the creation of new edges that 

encourage an influx of weedy and invasive species, increased dispersal distances and 

isolated populations (Fahrig, 2003; Gibson et al., 2011; Didham et al., 2007; With, 2002). 

Understanding and quantifying the effects of land cover change on native biodiversity is 

one of the main goals of landscape ecology (Turner, 2005). 

Small forest remnants embedded in urban landscapes, however altered they may 

be, offer refuge to various bird and wildlife species and still have an important role in the 

provisioning of ecosystem services, including wildlife habitat, flood mitigation, air 

pollution removal and recreation (Nowak & Dwyer, 2007; Escobedo et al., 2011; Pataki 

et al., 2011).  Since biodiversity facilitates ecosystem resilience and the provisioning of 

ecosystem services, the maintenance of biodiversity is of paramount importance within 

the context of landscape sustainability (Folke et al., 2004; Hooper et al., 2005).  As a first 

step towards developing forest management strategies to enhance and protect diversity, it 

is vital to understand how forest biodiversity has responded to forest cover change 

dynamics that have occurred over time. Although previous studies have investigated the 
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effects of historical patterns of landscape forest  structure on plant biodiversity (e.g., 

Bellemare, 2002; Von Holle & Motzkin, 2007; D’Orangeville et al., 2008), and studies 

have linked cross-sectional measures of forest loss and forest fragmentation  to declines 

in biodiversity  (Arroyo-Rodriguez et al., 2013; Aguiliar-Santelises & del Castillo, 2013; 

Lung et al., 2012), no studies to date have investigated how patterns of forest cover 

change through time can influence native diversity.  In this context, the goal of this paper 

is to analyze the relationship between temporal trajectories of forest cover change and 

patterns of forest plant diversity. The Charlotte, North Carolina, region provides the 

geographic setting for this research. 

Over time, human-environmental interactions have deeply impacted patterns of 

forest cover and change in the southeastern region of the United States. This pattern can 

be summarized in three phases: 1) widespread deforestation occurred during the 18th and 

19th centuries to accommodate agriculture, 2) subsequent agricultural abandonment 

beginning in the late 19th and early 20th centuries as a result of poor agricultural 

practices in which forest regenerated on fallow fields, and 3) deforestation as a result of 

expanding urbanization after World War II (Peet & Christensen, 1984; Wear & Greis, 

2002). Disturbance is generated when an event (such as forest clearing, windthrow, etc.) 

results in the eradication of biomass and the clearing of habitat space, thereby permitting 

new residents to utilize resources (Roxburgh et al., 2004). Intermediate fluxes in forest 

cover are a type of disturbance, generated as result of human-environment interactions. 

According to the intermediate disturbance hypothesis, the timing and spatial extent of 

disturbances can influence levels of biodiversity (Mallik et al., 2013).  Intermediate levels 

of disturbance can promote the coexistence of species in a community, resulting in higher 
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species richness (Connell, 1978; Roxburg et al., 2004), by providing resources (e.g. light 

as the result of a canopy gap) and maximizing opportunities for colonization through the 

provision of space and nutrients (Davis et al., 2000). Too much disturbance or too little 

disturbance is detrimental to species richness (Connell, 1978; Gardner & Engelhardt, 

2008). These intermediate fluctuations in forest cover are unlikely to be apprehended 

when land cover change is measured using a single time interval as is commonly done 

(e.g. de Albuquerque & Rueda, 2010), especially when this interval is large. Thus, the 

main drawback to assessing the impacts of land cover change on biodiversity using a 

single interval spanning a long time period, is the inability to evaluate the impacts of 

intermediate anthropogenic disturbances that characterize human-dominated landscapes 

on biodiversity. 

Several statistical methods have been used successfully to predict and explain 

land cover change, including linear regression (e.g.,  Meyfroidt et al., 2010; de Espindola 

et al., 2012), logistic regression (e.g. Verburg et al., 2002; Huang et al., 2009; Schneider 

& Pontius, 2001), spatial Markov chain models (e.g. Lambin, 1997; Guan et al., 2011) 

and others. The latter two methods use transition matrices and can handle sequences of 

land use/land cover data at multiple discrete time steps to predict the probability of land 

use change (Muller & Middleton, 1994). The availability of remotely sensed data has 

enabled the investigation of spatial phenomena via the acquisition of a time series of 

aerial and/or satellite imagery covering the same geographic extent at fine temporal and 

spatial resolutions. The causal agents of land use/land cover change have been studied 

extensively (e.g. Agrawal et al., 2002; Lambin et al., 2001), but the study of impacts of 
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land cover change trajectories on ecological processes or natural phenomena is just 

beginning to gain traction.  

For the purpose of this research, we define a trajectory as a sequence of changes, 

or lack thereof, assessed for more than one time interval.  Progress in this area of research 

may have been hindered by methodological challenges to the representation of spatially 

explicit change over time. Peuquet (2005) pointed out that the only data model available 

within a geographic information system (GIS) for spatiotemporal data is a “temporal 

series of spatially registered snapshots”, in which spatial phenomena are assessed over a 

series of discrete time periods, thus corresponding to a longitudinal survey or repeated 

measures approach. These time series are processed using an overlay analysis to obtain a 

single layer that reflects the accumulation of the sequences of change that have taken 

place for a given location. This method utilizes an object-oriented approach where the 

spatial object is defined by the change or accumulation of changes that have occurred, 

and has been referred to as space-time composites (Langran & Chrisman, 1988). Each 

spatial unit whether represented using grid cells or a polygon, represents a succession of 

the changes that occurred.  For example if land use change is assessed for 4 time periods, 

and  the possible land use states for each time period are “forest”, “agriculture” or  

“urban”,  then  a potential change accumulation object is “agriculture-forest-forest-

urban”. In this way, the trajectory defines the object.  

Although predictive models that employ Markov chains and transition matrices 

can easily handle a time series of land cover data, it is much more difficult to distill time 

series of land cover data into meaningful typologies or categories of spatio-temporal 

change that can then be utilized in other modeling approaches. For example, Guns & 
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Vanacker (2013) summarized land cover changes examined across 4 time intervals on the 

basis of a conversion from a natural cover type to a degraded or non-natural cover type. 

Although they have recorded the interval at which the change occurred, the trajectories 

are grouped according to the type of change that occurred, consequently ignoring the time 

it occurred. This in effect, obscures the temporal component of this dataset. The 

advantage of this approach is that they had distilled their spatially explicit time series 

dataset into a relative small number of possible trajectories (5), which could then be used 

as predictors in logistic regression models to understand the role of land use change 

trajectories on landslide risk. On the other hand, the work of Feng et al. (2014) 

demonstrates the potential enormity of the number of possible trajectories that can be 

obtained from a time series of land cover assessments. They tracked the land use types 

present in satellite imagery using 5 time periods, and assigned each pixel a numeric value 

representing the trajectory it experienced, following the change accumulation approach 

described above. They derived a total of 2,218 trajectories and were only interested in 

those trajectories in which urbanization occurred (only 530 relevant trajectories met this 

condition). Only 21 of these trajectories occupied an area greater than 0.5% of the study 

extent. Instead of incorporating these trajectories in a single model, they calculated the 

individual contribution of each one of these trajectories to the urban heat island effect in 

the Xiamen City, China metropolitan area. This approach demonstrates that the number 

of unique trajectories describing the succession of land use types or states of the system 

that occurred can be quite numerous if the trajectories are not collapsed into broader 

groups. However, the ad-hoc grouping of trajectory data into categories, a process that is 

frequently based on the nature of the change, regardless of the magnitude or timing of the 
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change, may obscure the very reason a longitudinal land cover assessment was conducted 

in the first place. It may also result in the data being organized in ways that do not 

adequately represent meaningful similarity within groups. In addition, the classification 

of such large numbers of trajectories may prove cognitively challenging.  

 As an alternative to ad-hoc or supervised classification approaches, k-means 

clustering is an unsupervised, data-driven method that can be used to find the natural sub-

classes of a complex or lengthy data set (Kulik et al., 2011) and can also be applied to 

longitudinal data sets (Genolini & Falissard, 2011), although this has not yet been not 

applied to the clustering of longitudinal land cover data. The advantages of using an 

unsupervised method such as k-means clustering include the ability to group data not just 

based on the type and rate of the change, but also according to the timing and sequencing.    

 In this research, we investigate the effects of a typology of forest cover change 

trajectories on native plant diversity. A typology is obtained by k-means clustering of a 

longitudinal assessment of forest cover.  To obtain data on native plant diversity, we 

surveyed 177 random plots located within 40 forest fragments located throughout the 

Charlotte, NC region using a nested sampling design in which plots were nested within 

fragments. We obtained forest cover trajectories by assessing the amount of forest cover 

present at each plot for each of the following 5 time periods: 1938, 1956, 1975, 1997 and 

2009. This is also done for nested spatial extents (100, 200, 400, 750 and 1000m 

diameter) surrounding each plot in order to investigate how the effects of forest cover 

changes on native diversity varies with scale. In addition, we derive a more commonly 

used metric of forest cover change: forest cover change measured using 2 time steps 

(1938-2009 Forest Change), with the same nested spatial extents. We then investigate the 
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effects of forest cover change trajectories or 1938-2009 Forest Change, assessed at each 

plot location, on native plant diversity, while accounting for other landscape and 

environmental factors that are known to influence diversity pattern metrics such as soil 

fertility, topographical characteristics, and landscape structure, using linear mixed 

models. In accordance with the intermediate disturbance hypothesis, we expect 

trajectories that suggest slight to moderate disturbances to have higher diversity; and 

trajectories that are indicative of severe disturbances to be associated with lower diversity 

as compared to a trajectory marked by little to no change. This research has the potential 

to identify forest change trajectories and the relevant geographical scale that are 

associated with the lowest or highest diversity. Its significance stems from the ability to 

understand the impacts of past spatio-temporal patterns of anthropogenic disturbance on 

current levels of diversity.  

The remainder of this paper is organized as follows. First, we present an overview 

of the modeling framework to obtain a meaningful typology of forest cover change 

trajectories. We then provide background information on the kml algorithm, and describe 

the study system, the sampling design used to collect data on native diversity and soil 

fertility, and the derivation of soil moisture and solar irradiation in a GIS. We also 

describe our land cover mapping procedure and the derivation of metrics of landscape 

structure and forest change trajectories using these data. We conclude our methods 

section with a description of how linear mixed models were implemented, along with 

likelihood ratio tests in order to assess the contribution of forest cover change trajectories 

to explaining native plant diversity.  Finally, we provide our results and a discussion of 

their implications for land cover change research. 
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Methods  

2.1  Modeling Framework 

In order to understand how the diversity of native forest plants responds to 

distinct forest cover change trajectories, we calculate from field data our response 

variable, the Shannon Index of native diversity (StdH). This index takes into account both 

the number of unique species present and their abundance (Shannon, 1948).  

                 
           (1) 

Where H’ is the diversity index, S is species richness (the total number of unique 

species present) and pi is the proportion of the total sample belonging to the ith species. 

The minimum H’ that can be obtained is 0, in which case there is a single species  in the 

whole sample. When the sample is dominated by the abundance of one species, in the 

presence of additional species, the index approaches 0. The maximum H’ value that can 

be obtained is bounded by the species richness of the sample and is obtained when the 

species present have identical abundance. 

In this study, we use a nested sampling design (described below) to collect data 

on native plant diversity, in which several plots were sampled within forest patches.  

Since our sample plots are clustered within forest patches, the data are not truly 

independent, as sample plots within patches are likely to be correlated due to being 

exposed to a similar environmental and landscape context.  

Grouped data are common in experimental or observational ecological studies and 

result from collecting multiple data samples within sites, experimental blocks or 

individuals. These types of data are referred to as “multilevel”, as the lower level 

observations or measurements are nested within higher level groups. Data collected from 
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blocks or groups violate assumptions of independence and can lead to Type I errors, 

when the grouping structure is ignored.  Linear mixed models (also known as multilevel 

models or hierarchical linear models) provide a statistically robust way to analyze 

multilevel/grouped data (Pinheiro & Bates, 2000; Zuur et al., 2009). 

The general model structure for a two-level model, where Yij is the response 

variable vector of responses for the ith level-1 unit nested within the jth level-2 unit is 

(Pinheiro & Bates, 2000): 

Level-1: Yij = β0j  + B1jX1ij + εij; 

Level-2: β0j  = β0 + uij                                                                                                                             (2)  

Where β0j is the mean for the jth group, B is a vector of linear coefficients 

corresponding to a vector of predictors X and εij represents the within-group errors which 

are assumed to be normally distributed with a mean of 0 and constant variance; β0 is the 

intercept for the jth group and uij represents the between-group errors, also assumed 

normally distributed with a mean of 0 and constant variance. Fixed effects refer to the 

experimental treatment or explanatory variables of interest (Zuur et al., 2009). Random 

effects refer to the variation among groups. Here, we use linear mixed models to quantify 

the effects of distinct forest cover change trajectories on the Shannon index of native 

plant diversity, while also accounting for environmental and landscape covariates. Using 

this approach, the independent variable (typologies of forest cover change trajectories) 

and environmental and landscape covariates are fixed effects, and the grouping factor, 

which is the forest patch in which plots were samples is a random effect. In this way the 

correlation of native diversity measured within forest patches is accounted for when 

assessing the effects of explanatory variables and mitigates the risk of Type I errors 
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expected from using a statistical procedure that ignores the grouped/clustered structure of 

the data (Pinheiro & Bates, 2000). We repeat this approach using 1938-2009 Forest 

Change instead of the typologies of forest cover change trajectories as the independent 

variable, to explain native diversity. All the models are estimated using a maximum 

likelihood procedure. Maximum likelihood is preferred over restricted maximum 

likelihood when comparing fixed effects terms in mixed models (Bates, 2010). 

In order to identify the spatial extent under which the trajectories or 1938-2009 

Forest Change have the most influence on native diversity, we first construct the base 

linear mixed model containing only environmental and landscape covariates. Then we 

compare the base model to a model that also contains either the forest cover trajectories 

variable derived at one of the five nested spatial extents or 1938-2009 Forest Change 

derived at one of the five nested spatial extents, using likelihood ratio tests.  

In addition to collecting data on native plant diversity, we also collected data on 

one of the environmental covariates, soil fertility in the field. The remaining 

environmental covariates (soil moisture and solar irradiation) as well as the landscape 

covariates (1938 mean landscape proximity, 1938 total forest area, 1938 number of forest 

patches,  2009 mean landscape proximity, 2009 total forest area, 2009 number of forest 

patches, and matrix change) were derived through GIS analysis using relatively 

straightforward methods described  in more detail below. However, the derivation of the 

main independent variable of interest, typologies of forest cover change trajectories, 

involves numerous steps. These are outlined as follows 1) obtain and georectify historical 

aerial photos corresponding to plot locations, 2) create land cover maps by digitizing the 

land cover types present in each aerial photo 3) delineate nested spatial buffers in a GIS 
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around each plot, 4) summarize the area of the smallest buffer covered by forest for each 

time period, and repeat for each increasing buffer size in order to examine the effects of 

the spatial scale at which forest cover trajectories are assessed on native diversity, 5) 

classify the longitudinal forest cover data into groups representing the major types of 

forest cover change trajectories that were present for each spatial extent using the kml 

algorithm.  This provides the distinct typologies of forest cover change trajectories that 

are used as a predictor in linear mixed models.   

The kml algorithm is a non-parametric k-means clustering algorithm that 

accommodates longitudinal data; it is available in the kml software package for the R 

language (Genolini & Falissard, 2011). The principle of a k-means clustering algorithm is 

to repeatedly cluster data until the within-cluster variance is minimized and the between-

cluster variance is maximized.  One disadvantage of k-means is that the number of 

clusters must be specified a priori.  However, the kml software package offers multiple 

cluster validation methods that can be used to choose the optimal number of clusters for 

each spatial extent. These methods each utilize a criterion that assesses how well a given 

number of clusters has partitioned the data broadly operating on their ability to minimize 

within-group variation and maximize between-group variation (e.g. Calinski-Harabatz 

(1974), Davies-Bouldin (1979), Ray-Turi (1999)), or the lowest deviance as measured 

using information theoretic methods: Akaike  information criterion (AIC), Akaike 

corrected information criterion (AICc) and the Bayesian information criterion (BIC). We 

describe our study system and these steps in more detail below.  

 

2.2.  Study System 
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The greater Charlotte, NC metropolitan area is rapidly growing, having 

experienced a 35% increase in population over the last decade (2010 U.S. Population 

Census). It is located in the piedmont physiographic province which is characterized by 

gently rolling terrain, erosion prone soils, and forests dominated by mixed hardwood and 

pine (Christensen & Peet, 1984). The region has experienced a trajectory of deforestation, 

reforestation and deforestation due to intense human-environmental interactions over the 

past three centuries. Broad scale clearing of forests for agricultural use began in the 18th 

century, and by the mid-19th century, nearly all of the arable land in the Piedmont was 

being tilled. Huge amounts of topsoil were lost due to poor agricultural practices, with 

estimates of erosion for cotton fields approximating 9 tons per acre per year (Trimble, 

1974). Due to widespread erosion, declining fertility, and the collapse of the cotton 

market in the 1930s, cultivation was largely abandoned, resulting in widespread 

reforestation either by natural processes or the planting of loblolly pine (Pinus taeda) 

(Trimble, 1974; Hart, 1980).  Virtually no old-growth forest remains, as almost the entire 

region has at one time been under cultivation. The second wave of deforestation is the 

result of urban growth, which is consuming the remaining open space in the area 

(Meentemeyer et al., 2013). The forests that remain in the region potentially harbor 

significant biological diversity and serve as refuges for bird and wildlife.  

2.3.  Sampling Design & Field Data Collection 

In order to ensure that the full spectrum of urbanization and associated land use 

changes within the study extent are represented, we sampled 177 plots across 40 forest 

patches located across a rural-urban gradient to obtain data on native plant diversity. The 

rural-urban gradient spans the county seat of Charlotte, NC and the adjacent county of 
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Cabarrus (Figure 1). To map building density, we extracted the centroids from 2011 

countywide parcel data containing commercial or residential buildings (Mecklenburg 

County Geospatial Information Services, Cabarrus County Land Records Information 

System) and used a moving window approach to map the density for every 100m
2
 grid 

cell based on the number of buildings contained within a 1-km neighborhood of each grid 

cell. We assigned building density into 3 classes of land-use intensity: urban (<0.1 ha per 

building), suburban (> 0.1 ha and < 0.68 per building) and rural (> 0.68 ha per building) 

as described by Theobald (2005).   Next, 40 forest fragments were selected across the 

land-use strata using a stratified random sampling strategy (Figure 1). Prior to field work, 

3-5 10m x 10m plot locations were randomly selected within each forest, a minimum of 

100 m apart, and were located in situ using a Trimble GeoXT GPS receiver.  The 

diameter at breast height (DBH) and species were recorded for all woody stems that were 

a minimum of 1cm DBH (Burton and Samuelson, 2005). We used these data to calculate 

the response variable, the Shannon diversity index based on native species for each plot 

(Shannon, 1948).  Three soil cores were taken at a depth of 0-10 cm and were pooled.  A 

total of 177 100m
2 

plots were sampled. 
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 Figure 1: Study extent showing the location of forests that were sampled within the 

greater Charlotte metropolitan area.  
 

 

2.4  Predictor Variables 

2.4.1.  Land cover mapping 

Digital aerial photographs from 5 different time periods (1938, 1957, 1975, 1997 

and 2009) corresponding to sampled plot locations were obtained from Mecklenburg and 

Cabarrus county GIS departments. We georectified aerial photos for the plots located in 

Mecklenburg County to 2009 satellite imagery. The Cabarrus county aerial photos had 

been georectified previously by Cabarrus County GIS personnel.  We mapped the land 

cover types present within a 1,000m diameter buffer of each plot for each of the 5 time 
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Suburban
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steps using “heads up” digitizing in a GIS. Land cover within each buffer was coded into 

4 broad classes, namely agriculture, development, forest, or water, so as to keep 

classification errors to a minimum (Table 2).  Various measures (the landscape 

covariates) designed to capture the change of land-cover and landscape over the study 

period were derived from these basic statistics; these measures are introduced in the next 

section. Also, in order to examine how the effects of forest cover change on native 

diversity varies with spatial extent, four smaller nested buffers (100, 200, 400 and 750 

meters) were derived as a subset from the 1,000m buffer, for a total of 5 spatial extents.  

To create a spatiotemporal dataset of forest cover for each sampled plot, the area 

of forest in hectares contained within each 1,000m plot buffer at each of the 5 time steps 

was extracted through GIS processing. This was repeated for the remaining 4 spatial 

extents embedded within the 1,000m buffers (100m, 200m, 400m, and 750m).  The 

coverage for the 1957 aerial photos for Mecklenburg County was incomplete for 10 

forest fragments. Rather than omit them from the dataset, the missing forest cover values 

were derived using a robust multiple imputation method described by Honaker et al. 

(2011). In order to summarize the amount of deforestation, reforestation and persistent 

forest for each time interval (1938-1956, 1956-1975, 1975-1997, 1997-2009, and 1938-

2009) we used overlay analysis of our 1,000 m buffer land cover maps to detect changes 

in forest cover between 2 successive time periods. For example areas that were mapped 

as forest in 1938 were classified as “deforestation” if they were no longer forest in 1956. 

2.4.2 Landscape Covariates 

We derived three metrics summarizing historical forest landscape structure using 

Fragstats version 4.1 on the basis of the 1938 forest cover data obtained in the previous 
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step: total area forested in 1938 within 1 km of each plot, number of forest patches within 

1 km of each plot in 1938, and landscape proximity for 1938 (McGarigal et al., 2012). 

Using 2009 forest cover data, we obtained the same metrics to also summarize 

contemporary landscape structure. The proximity index is a dimensionless number that 

provides a relative measure of forest connectivity within a landscape, where lower 

numbers designate more isolated patches, and higher numbers designate less isolated 

patches.  

 We also measured the area of agricultural land that converted to development 

from 1938 to 2009 as a metric of matrix change. The matrix is defined as the largest most 

interconnected patch in the landscape in which smaller patches appear to be embedded 

(Forman, 1995). In this study, the matrix is agriculture in 1938, as that was the dominant 

land use type. We know that the matrix transitions to development, as developed/urban 

land is the dominant land use type by 2009. With this variable, we will be able to test 

whether conversion of agriculture to development measured at a landscape scale has a 

negative effect on native diversity, independently from forest loss (Table 1). 
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Table 1: Descriptive statistics for all the variables examined. 

 

 

2.4.3  Forest Change Trajectories 

The input of the kml clustering algorithm is a matrix of n rows, where n is the number of 

sample plots (177), by m columns, where m is the number of time steps (5). Each column 

corresponds to a vector of the area of forest cover measured at each of the 177 plots for a 

certain time step, and each row contains five cross-sectional measures of forest cover 

between 1938 and 2009.  When these trajectories are processed, we repeatedly apply the 

kml algorithm to obtain unique partitions of the forest cover trajectories, with each 

partition corresponding to a specific number of clusters (i.e. from 2 to 10) derived by 

kml. A total of 9 different partitions are obtained for each spatial extent. We assess the 

Variable Description Min Max Mean Std. dev

StdH Shannon diversity index calculated for native species at the stand level 

for each plot

0.010 0.067 0.038 0.009

TrH Shannon diversity index calculated for native species at the 

transgressive level for each plot

0.000 1.463 0.547 0.240

pH Soil pH 3.800 6.300 5.029 0.517

N Soil nitrogen (ppm) 36.000 128.000 90.026 15.174

P Soil potassium (ppm) 5.000 59.000 17.058 9.340

Ca Soil calcium (ppm) 127.000 2913.000 767.410 544.506

K Soil phosphorus (ppm) 18.000 337.000 77.173 41.246

TMI Topographic moisture index 7.050 23.720 10.525 2.502

SI Potential mean solar radiation 3252.000 3840.190 3641.918 119.269

1938ForArea Total area (ha) forested in 1938 within 1 km of each plot 0.000 47.316 17.731 11.719

1938NP Number of forest patches in 1938 within 1 km of each plot 0.000 10.000 3.853 1.893

1938Prox Mean landscape proximity in 1938 0.000 448.700 28.343 51.167

2009ForArea Total area (ha) forested in 2009 within 1 km of each plot 5.427 74.972 31.392 15.382

2009NP Number of forest patches in 2009 within 1 km of each plot 1.000 11.000 4.404 1.914

2009Prox Mean landscape proximity in 2009 0.000 742.972 106.388 152.017

MatChange Area within 1 km  of each plot that converted from agriculture to 

development from 1938 to 2009 

0.000 58.020 18.701 14.401

traj100 Major forest change trajectories derived within 100 m of each plot 

(categorical variable)

na na na na

traj200 Major forest change trajectories derived within 200 m of each plot 

(categorical variable)

na na na na

traj400 Major forest change trajectories derived within 400 m of each plot 

(categorical variable)

na na na na

traj750 Major forest change trajectories derived within 750 m of each plot 

(categorical variable)

na na na na

100_FC Overall change in forest area from 1938 to 2009 within 100 m of each plot -0.250 0.780 0.226 0.293

200_FC Overall change in forest area from 1938 to 2009 within 200 m of each plot -1.080 3.140 0.785 1.048

400_FC Overall change in forest area from 1938 to 2009 within 400 m of each plot -5.090 9.950 2.205 3.422

750_FC Overall change in forest area from 1938 to 2009 within 750 m of each plot -14.170 25.660 4.910 9.293

1000_FC Overall change in forest area from 1938 to 2009 within 1 km of each plot -21.480 38.580 6.616 14.466
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quality of each partition according to 11 individual criteria or cluster validation methods, 

using a graphical interface provided by the kml package, for each spatial extent. We 

report the results of the 11 cluster quality indexes, as a single criterion may be unreliable, 

and agreement among multiple criteria can be helpful in choosing the optimal number of 

clusters (Genolini & Falissard, 2011). All the criteria are standardized on a scale of 0 and 

1, so that the optimal clustering is identified by the largest criterion. The optimal number 

of clusters was seven for both the 100 and 200 m spatial extents, eight for 400 m, nine for 

750 m, and six for 1000 m (Figure 2). 

Once the optimal number of clusters for each extent is identified, each trajectory 

class can be described qualitatively in terms of the nature of the change (reforestation, 

deforestation, or no change) and the timing of the change, e.g. reforestation between 1938 

and 1957 (Table 2). The trajectory class is a predictor in the multivariate model of native 

plant biodiversity. A total of 13 trajectory classes are derived across the 100, 200, 400, 

750, and 1000 m spatial extents and are listed in Table 2. Of these, 6 trajectory classes 

appear in 3 or more spatial extents; these are the most common trajectory classes derived. 

The mean trajectory (forest cover plotted over time) representative of each of the 6 most 

common trajectory classes are shown in Figure 3.  Four mean trajectories are identified 

for a single spatial extent only, with two of these associated with the 750 m extent. 

Trajectories that explain less than 5% of the data are assumed to be miscellaneous as they 

describe less than 8 plots in our dataset.  Comparing the same trajectories across scales is 

revealing: the percentage of trajectories classified as little to no change in forestation 

decreases as spatial extent increases, indicating that the probability of forest change 

increases with scale. Deforestation is more evident at larger spatial extents given that 3 
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mean deforestation trajectories are only identified at the 750 m extent. The percentage of 

plots classified as rapid reforestation between 1957 and 1975, or rapid reforestation 

between 1975 and 1997 trajectories are relatively stable across the 100-400 meter spatial 

extents, suggesting that these trajectories are scale invariant to at least 400 meters.  
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Figure 2: Graphical output from the Kml package showing the cluster quality values of 

11 criteria, standardized on scale of 0 to 1 (y axis) for each number of clusters derived (x 

axis) for choosing the optimal number of clusters for each spatial extent. For each 

criterion the optimal number of clusters is the one that has the highest cluster quality 

value as indicated by the first maxima. We select the optimal number of clusters based on 

those that have the highest number of criteria indicating the highest cluster quality values.  

The criteria are: “1” Calinski-Harabatz 1, “2” Calinski-Harabatz 2, “3” Calinski-Harabatz 

3, “4” Ray uri, “5” Davies Bouldin, “6” Bayesian Information Criterion (BIC) 1, “7” BIC 

2, “8” Akaike Information Criterion (AIC) 1, “9” Corrected Akaike Information Criterion 

(AICc) 1, “a” AICc2, “b” Posterior probability. 
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Table 2: Mean forest change trajectories derived for each spatial extent and relative 

distribution (%) across the study area. 

 
 

 

 
Figure 3: Schematic diagram showing how each of the six most common trajectory 

classes of longitudinal forest cover change derived using k-means clustering differs in the 

amount of forest cover measured for each time step, and the rate of change (slope) 

between time steps. 

 

2.4.4.   Environmental Covariates 

 Trajectory Class 100 200 400 750 1000

little to no change 53.70 34.50 26.00 7.91 na

rapid reforestation between 1938 and 1975 16.40 14.70 11.90 13.60 15.30

reforestation until 1957, deforestation after 8.47 20.30 13.60 13.60 22.00

rapid reforestation between 1975 and 1997 7.91 7.91 6.21 na na

rapid reforestation between 1957 and 1975 7.34 7.91 6.78 11.90 19.20

reforestation after 1938 4.52 7.34 6.21 19.20 22.00

rapid deforestation until 1975, reforestation after 1.69 na na na na

slight deforestation between 1938 and 1975, reforestation after na 7.34 11.90 na na

reforestation-deforestation after19 57 (but less than above) na na 17.50 14.70 na

reforestation to 1957,  rapid deforestation after na na na 3.39 na

rapid reforestation from 1938 to  1975, rapid deforestation after na na na 2.82 na

reforestation to 1975,deforestation after na na na 13.00 12.4

reforestation from 1938-1975, deforestation 1975-1997, stable after na na na na 9.04

Description

A   little to no change

B   reforestation-deforestation 1957

C   rapid reforestation between 1938 and 1975

D  reforestation after 1938

E   rapid reforestation between 1957 and 1975

F   rapid reforestation between 1975 and 1997  
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To account for the effects of environmental heterogeneity on patterns on native 

diversity, soil fertility, soil moisture and solar irradiation are used as environmental 

covariates in our linear mixed models and their derivation is described below. 

2.4.4.1. Soil Fertility 

The soil samples collected in the field were sent to Brookside Laboratory for 

analysis to quantify the pH and the levels of available nitrogen, potassium, phosphorus, 

and calcium (Table 1). These five soil factors have been shown to influence species 

richness and vegetation composition in Piedmont forests (Peet and Christensen, 1980; 

Taverna et al., 2005). In order to reduce the collinearity among these variables, we 

reduced these 5 measurements into 2 predictors reflecting overall soil fertility using 

principal components analysis (Ye & Wright, 2010) in the JMP Pro 10 statistical analysis 

package (SAS, 2012) . The 2 retained principal components explain 42.1% and 22.7% of 

the data variance, respectively. Variables with significant loadings (p < 0.05) on the 1
st
 

principal component are pH (R
2
 = 0.41), N (R

2 
= 0.36), Ca (R

2 
= 0.67), K (R

2 
= 0.62); and 

on the 2
nd

 principal component, they are pH (R
2
 = 0.25), N (R

2
= 0.28), and P (R

2
= 0.59). 

These principal components are labeled SFv1 and SFv2, respectively. 

2.4.4.2. Soil Moisture and Solar Irradiation 

Soil moisture has also been shown to influence species richness in this region 

(Peet and Christensen, 1980). We derived the topographic moisture index from a 10m 

resolution digital elevation model (DEM) as the natural log of the ratio of the upslope 

contributing area and slope (Moore et al., 1991). In addition, the annual potential mean 

solar radiation, which can influence tree species diversity (e.g., Leathwick et al., 1998; 

Currie, 1991), was calculated using the method described by Dubayah (1994). 
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2.5.   Linear Mixed Modeling 

All the models of native plant diversity are estimated with the lme4 package for R 

(Bates, 2013). We construct a null model containing only environmental predictors 

(topographic moisture index, potential mean solar radiation and soil factor vectors SFv1 

and SFv2) and random effects. Since our landscape structure metrics are moderately 

correlated (Table 3), we use likelihood ratio tests to assess the ability of each of our 

landscape covariates to further improve the fit of our null model for StdH. We include 

only significant predictors as identified from the likelihood ratio tests to construct a base 

model that accounts for environmental factors as well as landscape structure.  We then 

assess the ability of either the forest cover change trajectory clusters or 1938-2009 forest 

change, at each spatial extent, to explain native diversity as compared to the base model, 

using likelihood ratio tests.   We use the method described by Nakagawa & Schielzeth 

(2012) to estimate the R
2 

of the significant models. This method reports both the marginal 

R
2
 which is the percent variance explained by the fixed effects and the conditional R

2
, 

which is the percent variance explained by both fixed and random effects, to determine at 

which spatial extent forest change trajectories explain the most variation in Shannon 

native diversity. 

In order to identify the effect of individual trajectories on StdH, we obtain 

coefficient estimates and their  probability values for each parameter using Markov-

Chain Monte Carlo simulations (n = 100,000) using the language R package (Baayen, 

2011) with the “little to no change” trajectory type as the reference level. We plot the 

estimated partial effects of trajectory  
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type on StdH with their estimated highest probability density (HPD) interval to assess the 

significance of trajectory type on StdH.  We estimate the HPD interval of each parameter 

using Markov-chain Monte Carlo (MCMC) sampling of their respective posterior 

distribution. The HPD is formed from 95% of the parameter values with the highest 

posterior probability. This Bayesian approach to a confidence interval has a more 

intuitive interpretation than a confidence interval estimated using a classical statistical 

approach, in that the interval represents the boundaries of which we believe the true 

parameter estimate is contained with 95% confidence (Hosmer et al., 2013). 

Results  

3.1  Longitudinal Land Cover Changes 

 We summarize the area in hectares covered by agriculture, development, forest 

and water within a 1km buffer of each plot, for each of the 5 time steps (Table 4). For this 

descriptive assessment, we do not impute the missing land cover values for 1956; thus the 

approximately 3300 hectares corresponding to missing aerial photos are not classified. 

However, regardless of how these missing 3300 hectares would be allocated to specific 

land cover types, general land cover trends can be inferred from these data. Namely, the 

area devoted to agriculture steadily declines from 1938 to 2009, while during the same 

time developed area increases, and forest cover appears to increase from 1938 and until 

1975, after which it decreases. Fluctuations in water are probably due to periodic 

variations in water levels and the draining/refilling of ponds.  
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Table 4: Summary of cumulative land cover area for a 1 km spatial extent of each plot, in 

hectares by year. 
Landcover 1938 1956 1975 1997 2009

Agriculture 11454.26 6890.86 4287.7 2018.4 1186.63

Development 57.81 1168.79 4438.92 7893.29 9729.16

Forest 5200.41 5326.79 7945.45 6780.74 5753.07

Water 226.25 235.48 266.68 245.62 268.65

missing na 3316.83 na na na

 

 

3.2  Changes in Forest Cover 

We further investigate the nature of the forest cover changes observed in Table4, 

by examining the amount of reforestation, deforestation and persistent forest present 

within 1 km of each plot for each time interval (1938-1956, 1956-1975, 1975-1997, 

1997-2009). The greatest amount of reforestation occurred between 1956-1975, but 

sharply decreases to less than half that amount during 1975 to 1997, and declines even 

further between 1997-2009 (Figure 4). 1975 to 1997 has the greatest amount of net 

deforestation observed as well as the highest amount of persistent forest. The area of 

persistent forest declined slightly during 1997-2009, but remains higher than the amount 

observed for the period covering 1938-1975. Reforestation is higher than deforestation 

until 1956-1975, when deforestation starts to exceed reforestation. This trend in 

deforestation continues to 2009.  However, these trends are not evident when using the 

1938-2009 time interval to assess patterns of forest change, in which reforestation is 

shown to exceed deforestation (Figure 4).  
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Figure 4: Total area of deforestation, reforestation and persistent forest by time interval 

within a 1 km spatial extent of each plot location. 

 

 

 

3.3  Linear Mixed Modeling Analysis 

Seven variables reflecting landscape structure are examined for their potential as 

significant predictors of StdH while accounting for environmental heterogeneity, namely 

1938 mean landscape proximity, 1938 total forest area, 1938 number of forest patches,  

2009 mean landscape proximity, 2009 total forest area, 2009 number of forest patches, 

and matrix change (Table 5).  Only matrix change, 1938 number of forest patches and 

2009 mean landscape proximity are identified as significant using likelihood ratio tests.  

However, matrix change and 2009 mean landscape proximity exhibit moderate 

correlation (-0.50) (Table 3) and including both parameters does not yield a better fit as 

compared to including one of these only, as indicated by likelihood ratio tests (data not 

shown). Given that matrix change is substantially more correlated with the environmental 

predictors in the model, as well as the forest change trajectories as compared to 2009 

mean landscape proximity (Table 3), we use only 1938 number of forest patches and 
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2009 mean landscape proximity to represent landscape structure in our modeling work. 

This specification serves as base model against which other specifications are compared. 

 

Table 5: Results of likelihood ratio tests to examine individual significance of landscape 

covariates as compared to the null model of only environmental predictors. 

 
 

 

The results of the likelihood ratio tests comparing the effects of adding a 

categorical fixed effects term describing forest change trajectories to the base model 

described above (environmental predictors + landscape structure) illustrate that the 

addition of forest change trajectories derived at either the 100 or 200 m spatial extent 

results in a better predictive model of Shannon native diversity than the base model alone 

(Table 6). Forest change trajectories derived at the 200m spatial extent are slightly better 

than trajectories at the 100 m spatial extent at explaining native diversity, having the 

overall lowest AIC (-1042.5) and the highest marginal R
2
 (0.18). The 400 m spatial extent 

is found to only be marginally statistically significant (p = 0.08). Trajectories derived at 

the 750 m and 1000 m spatial extents did not result in a statistically significant 

improvement of the base model.  Forest change measured using only 2 time steps (1938-

2009 Forest Change) does not significantly influence StdH at any of the spatial extents as 

indicated by likelihood ratio tests at p < 0.05, but the 100 m spatial extent is marginally 

significant at p < 0.1 (p = 0.098) (Table 7). 

predictors Df AIC BIC log lik Chisq Chi Df Pr(>Chisq)

SFv1 + SFv2 + TMI + SI +  (1|site) 7 -1034.1 -1013 524.03

SFv1 + SFv2 + TMI + SI + 1938ForAr + (1|site) 8 -1032.2 -1008 524.09 0.1126 1 0.737

SFv1 + SFv2 + TMI + SI + 1938NP + (1|site) 8 -1034.9 -1010 525.43 2.803 1 0.094

SFv1 + SFv2 + TMI + SI + 01938Prox + (1|site) 8 -1032.6 -1008 524.32 0.576 1 0.448

SFv1 + SFv2 + TMI + SI +  2009ForAr + (1|site) 8 -1033.1 -1009 524.55 1.0426 1 0.307

SFv1 + SFv2 + TMI + SI + 2009NP + (1|site) 8 -1032.1 -1008 524.04 0.0127 1 0.910

SFv1 + SFv2 + TMI + SI + 2009Prox + (1|site) 8 -1036.6 -1012 526.3 4.5303 1 0.033

SFv1 + SFv2 + TMI + SI + MatChange + (1|site) 8 -1036.5 -1012 526.26 4.4629 1 0.035
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We obtain parameter values for the base model of StdH and for the models augmented by 

trajectory information derived at the 100 m and 200 m spatial extents, respectively, that 

are identified in the previous step as being significantly better than the base model (Table 

8).  SFv1 negatively affects StdH and is the only statistically significant environmental 

predictor in the base model for stand level native diversity. No environmental predictors 

are statistically significant in models of StdH that include forest change trajectories. 2009 

Prox is positively associated with StdH.  We assess the significance of trajectory class on 

StdH using the “little to no change” trajectory as the reference level (Figure 5), and only 

the “rapid reforestation between 1957 and 1975” trajectory is associated with a 

statistically significant increase in StdH. No trajectory classes are associated with a 

statistically significant decrease in diversity.  These findings are visualized in Figure 5, 

which provides a plot the estimated partial effects of trajectory type derived at the 100 m 

and 200 m spatial extents on StdH ,with their estimated highest probability density (HPD) 

interval.  
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Table 8: Coefficients for  linear mixed models with forest cover change trajectories 

clusters derived at 100 m and 200 m spatial extents, the only significant spatial extents 

for StdH.  

 
 

 

  

Parameter base model 100 200

(Intercept) 0.019119 0.022003 0.011693

SFv1 -0.001201* -0.001002* -0.000968*

SFv2 -0.000974 -0.000926 -0.00138*

TMI 0.000035 0.000029 0.000135

SI 0.000392 0.00029 0.000538

1938 NP 0.000663 0.000582 0.000608

2009 Prox 0.000010* 0.000011* 0.000011*

rapid reforestation between 1938 and 1975 na 0.000984 0.000741

rapid reforestation between 1957 and 1975 na 0.009443*** 0.009659***

rapid reforestation between 1975 and 1997 na 0.001511 0.002412

reforestation after 1938 na -0.001151 -0.003324

reforestation-deforestation 1957 (1) na 0.001044 0.002626

 slight deforestation /stable between 38 and 75 na na 0.000119

 rapid deforestation until 1975, than reforestation na 0.005309 na

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
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Figure 5: Partial effects of individual forest change trajectory type derived at the 100 m 

and 200 m spatial extents on mean Shannon native diversity. MCMC-based 95% highest 

posterior density intervals are indicated by tick marks trajectory type. *Trajectories with 

MCMC-based p values <0.05. 

 

 

 

 

 

Discussion & Conclusions  

 

We assessed the relationship of forest cover change trajectories derived using 5 

time steps on forest native plant diversity across nested spatial extents. Our results show 

that only forest cover change trajectories derived at 100 m and 200 m spatial extents are 

statistically significant at p < 0.05, suggesting that native diversity is more sensitive to 

forest change at local rather than landscape scales. Until now, the effects of forest cover 
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change trajectories  derived using multiple time intervals on biodiversity has not been 

investigated. Thus we compared forest cover change trajectories to a more commonly 

used metric of forest cover change, namely forest change derived using only one time 

interval (1938-2009), across multiple spatial extents in their ability to explain stand level 

diversity. It is noteworthy that this metric of forest change measured over a single time 

interval, was not identified as a significant predictor of stand level diversity at any spatial 

extent, but trajectories of forest change derived at the 100 m and 200 m spatial extents 

had statistically significant impacts on stand level diversity. This highlights the 

importance of quantifying and representing intermediate patterns of forest cover change 

when evaluating the potential impacts of forest change on ecological phenomena. Our 

results show that the timing and rate of the change may have important implications for 

diversity patterns, but these elements may be lost when collapsing the change dynamics 

across time, as is commonly done.    

We also investigated whether specific trajectory classes of forest cover change are 

associated with the lowest or highest diversity. Although we did identify one trajectory, 

the “rapid reforestation between 1975 and 1975”, to be associated with the highest 

observed mean of native diversity, no trajectories had a statistically significant 

relationship with the lowest mean of native diversity. This is probably due to the fact that 

relatively few of the trajectory classes were characterized by deforestation. In addition, 

the amount of deforestation, and hence disturbance that occurred may have not been 

severe enough to negatively impact diversity. However, it is possible that the negative 

effects associated with trajectories characterized by deforestation such as the 

“reforestation until 1957, deforestation after” trajectory, may have still yet to be realized 
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(Hahs et al., 2009; Hylander & Ehrlén, 2013; Vellend et al., 2006), due to extinction debt.  

Extinction debt refers to the phenomenon of a delayed negative response of a species or 

community of species to habitat change. Thus, the results our research are inconclusive as 

to the effects of deforestation on native biodiversity, and further study that includes more 

sites that have experienced moderate to severe deforestation is warranted.  

 We summarized the amount of deforestation, reforestation and persistent forest 

for each time interval used in this study (1938-1956, 1956-1975, 1975-1997, 1997-2009) 

and compared these trends to the amount of deforestation, reforestation and persistent 

forest observed using a time interval capturing only the first and last time period used in 

this study (1938-2009), in order to provide a description of the overall changes that 

occurred across the study extent and to compare how these changes differ when assessed 

using four smaller time intervals as compared to one large time interval. When assessing 

patterns of forest change using the 1938-2009 interval, reforestation is shown as the 

dominant trend, exceeding deforestation. This finding is supported by the notion of a 

“forest transition” in which the trend of deforestation in a given region is replaced by net 

reforestation, often due to agricultural abandonment and a shift from an agrarian to an 

industrial based economy (Mather & Needle, 1998; Drummond & Loveland, 2010). 

However, the assessment of forest cover using this time interval overlooks the 

spatiotemporal fluxes in forest cover. In our analysis, these fluxes were observed using 4 

smaller time intervals covering the same time period overall (1938-1956, 1956-1975, 

1975-1997, 1997-2009). As evidenced in Figure 4, our results have shown that 

reforestation has peaked during 1956-1975, and since then deforestation has outpaced 

reforestation.  Thus the trend of net reforestation observed for the 1938-2009 interval 
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does not actually reflect recent trends, and is a legacy of the abundance of reforestation 

that occurred in 1956-1975. This suggests that important land use trends are more likely 

to be revealed if they are assessed using a sequence of finer temporal intervals as 

compared to a single and undifferentiated interval.  Deforestation is likely to continue in 

the study system, given that agricultural and forest lands are the two types of open space 

available to accommodate urban growth and development, and that the vast majority of 

agricultural holdings have already been converted to development, which will likely 

preclude reforestation. However, the few working farms that remain are likely on highly 

productive soils and are capable of harboring significant diversity if forests were allowed 

to regenerate, as agricultural lands with soils of low productivity were likely to have been 

the first to be abandoned (Kleipeis et al., 2013; Pimentel et al., 1992). 

In this study, we were able to identify the forest cover change trajectory 

associated with the highest levels of plant diversity and the spatial extents at which forest 

cover change best explained variation in plant diversity. In addition, we described a 

method to identify and describe the major types of forest cover trajectories using a k-

means clustering method for longitudinal data. Our method also has the potential to 

identify land cover changes which are associated with the most severe impacts to 

diversity, though none were identified in this study, which we attribute to lack of 

dramatic deforestation evident in the trajectories obtained for our study system. 

Assessments of deforestation and forest fragmentation often cite the potential for 

biodiversity loss as a motivation for the study (e.g., Nagendra et al., 2009; Sanchez-

Chero, 2013; Trisurat et al., 2013), but relatively few studies have so far directly 

investigated the links between forest change (usually assessed as deforestation or 
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fragmentation) and field assessments of biodiversity. Our research has addressed this gap. 

We have presented a method that can be used to analyze the effects of land cover change 

assessed over multiple temporal datasets on biodiversity or on other metrics of ecosystem 

function and structure in order to understand the cumulative impacts of past 

anthropogenic induced landscape change and inform decision making with regard to 

biodiversity management. 
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CHAPTER 4:  A STRUCTURAL EQUATION MODELING APPROACH TO 

UNDERSTANDING RESISTANCE TO INVASIONS IN URBAN FORESTS. 

 

 

Introduction 

 

Exotic plant invasions appear to be everywhere. Some notable examples are 

cheatgrass invasions of the grasslands of the western United States. (Bagchi et al., 2013), 

purple loosestrife in the wetlands across North America (Welk, 2004), and fields and 

trees draped with kudzu in the southeastern United States (Hickman & Lerdau, 2013). 

However, they are not present quite everywhere, with some locations remaining non-

invaded. Hence the question that has long troubled researchers is to know what makes 

these communities resistant to invasions while others are afflicted by invasive species. 

Three main theories have been proposed to explain the observed variation in 

habitat resistance to invasions: the diversity invasibility hypothesis (Elton, 1958), and 

more recently resource availability (Davis et al, 2000) and propagule pressure (Lockwood 

et al., 2005). Much of the research addressing resistance to invasions has focused on 

characterizing native-exotic richness relationships with the expectation that communities 

with high levels of resident native diversity have fewer available niches and thus should 

be more resistant to invasions.  This theory is commonly referred to as biotic resistance or 

the diversity-invasibility hypothesis (Elton, 1958). It has been validated empirically by a 

number of small scale studies (e.g., Kennedy et al., 2002; Brown & Peet, 2003; van 

Ruijven, et al., 2003), but has been rejected in larger scale studies, where the trend has 

been to find a positive correlation between diversity and invasibility instead (e.g., 
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Tanentzap et al., 2010; Brown & Peet, 2003; Zeiter & Stampfli, 2012; Stohlgren et al., 

1999).  

To address the lack of consistency of findings with regard to the external validity 

of the diversity-invasibility hypothesis, two “unifying” theories have been advanced, 

fluctuating resource availability (Davis et al., 2000) and propagule pressure (Lockwood 

et al., 2005;  Simberloff, 2009), which are now discussed in some detail. The fluctuating 

resource availability hypothesis proposes that an increase in the availability of necessary 

resources in a community will make that community less resistant to invasions since 

there are resources available for a newly arriving invader to utilize (Davis et al., 2000).  

The availability of excess resources can be attributed either of two causes. A first cause 

may be the decreased uptake/utilization of resources by the resident community 

stemming from a disturbance that reduced the resident vegetation (e.g. herbivory, 

disease). Also, it may follow from a disturbance that increases the availability of one or 

more nutrients or resources. For instance, overabundant rainfall results in increased soil 

moisture, along the same line, newly created canopy gaps resulting from a windthrow or 

timber harvest result in increased light, and high atmospheric deposition as a 

consequence of anthropogenic activities results in increased soil nitrogen in urban 

environments. According to this theory, a community’s resistance to invasion is not only 

dependent on resident species richness, but also on the resource supply which is likely 

not consistent across time or space, particularly in communities that experience frequent 

disturbance. Soil macronutrients and pH, to which we broadly refer to as “soil fertility”, 

have long been regarded as limiting factors of plant growth, influencing both plant 

diversity as well as invasibility (Tilman, 1984; Burke & Grime, 1996; Dukes & Mooney, 
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1999). Other environmental resources, such as light availability and moisture, can also 

influence invasion resistance, having either positive or negative effects on natives and 

exotics, depending on the traits of the invader and the recipient community. For example 

light limitation can promote invasions by shade tolerant species while negatively 

affecting shade intolerant natives (Cole & Weltzin, 2005; Reinhart et al., 2006; Martin et 

al., 2009).  The dynamics of resource availability are not feasible to measure in large 

scale observation studies, and thus resource availability is measured cross-sectionally, 

instead of longitudinally. However, disturbance is closely linked to the idea of fluctuating 

resources, as the sudden increase in resource availability, as discussed above, is often tied 

to a disturbance of some kind. Based on this assumption, it is possible to ascertain 

whether a forest community has experienced deforestation, a specific type of disturbance, 

using a time series of aerial photos of the community. Local habitat disturbance, such as 

deforestation can promote invasions of shade tolerant shrubs that take advantage of the 

newly available resources such as light and space, becoming established while light 

availability is plentiful, and then persist under the canopy after subsequent reforestation.  

Historical land use disturbances that result in a canopy gap have been shown to foster 

invasions by woody plant species; on the other hand,  forest habitat that has remained 

intact seems to discourage invasions (DeGasperis & Motzkin, 2007; Mosher et al., 2009).   

The diversity-invasibility hypothesis and the fluctuating resources hypothesis are 

both focused on the intrinsic qualities of communities, both biotic and abiotic, that make 

them more susceptible or more resistant to invasions. However, habitat suitability alone is 

insufficient for an invasion to occur: the invader must actually arrive at the site in 

question (Tanentzap & Bazely, 2009; Shea & Chesson, 2002). This likelihood of arrival 
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is dependent on propagule pressure. Propagule pressure is a composite of the number of 

releases of the invader into the novel environment and of the number of propagules 

(seeds) released during each event (Lockwood et al., 2005).  Strong propagule pressure 

can overcome biotic resistance and marginal environmental conditions, as high seed 

volumes are linked to establishment success.  Propagule pressure has been demonstrated 

to be a consistent predictor of invasion success (Simberloff, 2009). 

Other factors that influence the distribution of exotic species such as landscape 

proximity and past landscape disturbance may also affect invasion resistance. The 

proximity of forest patches in the landscape can foster landscape-scale exchange of both 

native and exotic species (With, 2002; Kumar et al., 2006; Hanski, 1998; Verheyen et al., 

2003). Landscape scale patterns of habitat connectivity are linked to the dispersal 

of native species while fragmented patchy landscapes are thought to facilitate dispersal 

by invasive species. Reduced connectivity is a consequence of habitat loss that typically 

accompanies urbanization and may be a path through which urbanization can indirectly 

exert a negative influence on the resistance to invasions by simultaneously promoting 

invasions and discouraging the persistence of natives that are poor dispersers. 

However, as it is currently applied, the diversity-invasibility framework, even 

when expanded to include consideration of resource availability and propagule pressure, 

presents at least two shortcomings. First, native-exotic richness relationships are flawed 

measures of invasibility because, while the number of exotic species does in part reflect a 

community’s predisposition to be invaded, it only reflects the presence of a species and 

not its abundance. This can be misleading as a community might have a single exotic 

species that happens to be dominant, or conversely, exhibit very low abundance of any of 
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a number of exotic species. The second issue is that, although several broad-scale studies 

focused on understanding the distribution of exotic and native species along rural-urban 

gradients have documented the increase of exotic species with increasing urbanization 

(e.g., Burton et al., 2005; Bartuszevige et al., 2006; Duguay et al., 2007), few studies of 

invasibility have so far utilized anthropogenic factors as predictors. While the existence 

of links between urbanization and exotic species richness is now well established, the 

underlying mechanisms driving this relationship remain to be investigated however. In 

this regard, the processes of propagule pressure and eutrophication have particularly been 

linked to anthropogenic activities that accompany urbanization. These two processes 

have strong theoretical and empirical links to invasibility of urban communities and have 

been found to lower the resistance to invasions by providing resources to invaders and by 

increasing the number of arriving invaders, respectively (Tanentzap & Bazely, 2009; 

Shea & Chesson, 2002; Pysek et al., 2010). We expect that urbanization directly 

influences community resistance to invasion via the positive relationship between 

urbanization and propagule pressure. Human activities such as transportation and 

gardening introduce exotic species to novel sites, both accidentally and intentionally 

(Pysek et al., 2010), and may explain why anthropogenic factors and exotic species 

richness are positively correlated (Burton et al., 2005; Bartuszevige et al., 2006; Duguay 

et al., 2007; Ranta & Vilijanen, 2011). For example, metrics reflecting the intensity of 

human activity such as housing density (Gavier-Pizarro et al., 2010) and road density 

(Lilley & Villend, 2009), have all been shown to be positively correlated with exotic 

plant richness. This in turn suggests that the likelihood of invasive dispersal to forests and 

other habitats increases with the concentration of human activity. Although it is not 
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feasible to directly measure propagule pressure, it can be estimated via proxy variables 

that reflect the spatial concentration of anthropogenic activity (Pysek et al., 2010). We 

also expect that urbanization has indirect negative effects via resource availability 

(measured as soil fertility) on invasion resistance. The links between urbanization and the 

eutrophication to forest ecosystems are well documented and result from increased 

atmospheric deposition of nitrogen and nutrient loading resulting from anthropogenic 

activities such as fertilizers applied to lawns carried by stormwater runoff (Stevens et al., 

2004; Sutton et al., 2011). Atmospheric deposition is higher near busy roads and 

highways as well as in urban forests. Eutrophication of habitats is linked to increased 

susceptibility to invasions by altering the spatial and temporal patterns of resource 

availability (Davis et al., 2000; Grimm et al., 2008). In addition, while a surplus of 

nutrients can facilitate invasions by exotic species, they are also associated with declines 

in native species richness (Parepa et al., 2013; Burke & Grime, 1996). 

 Furthermore, a truly integrated approach to understanding and modeling invasion 

resistance must address the issue of spatial dependence, which is pervasive in 

environmental and ecological data (Legendre, 1993; Dormann, 2007).  In the case of 

unaccounted spatial dependence, the correlation between two variables can be inflated if 

their values are also correlated with space, thus potentially resulting in a Type I error. We 

expect spatial dependence to be present in our system as the result of the contagious 

process of invasive spread, coupled with the likelihood of habitat conditions being 

correlated with space. In other words, communities located next to highly invaded 

communities are more likely to be invaded either by dispersal of the invader from 

invaded sites to adjacent sites and/or increased habitat susceptibility to invasions; 
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likewise, highly resistant communities are likely situated near communities with a low 

degree of invasion (Dark, 2004). We account for spatial dependence in our system by 

using the spatial lag model to estimate the spatial dependence among neighboring 

observations and explicitly incorporate spatially lagged invasion resistance as predictor in 

order to distinguish the effects of spatial dependence from the other predictors.   

In this research, we investigate the hypothesis that urbanization has both direct 

effects on community resistance to invasions via propagule pressure, and indirect on 

effects via resource availability. The analysis uses a structural equation modeling 

framework that integrates other factors known to influence invasibility, namely abiotic 

factors related to light and moisture availability, topographic slope, history of habitat 

disturbance, landscape proximity and spatial dependence of neighboring observations. 

This series of structural hypotheses, forming a network of causal pathways, is shown in 

Figure 1.  Each path is labeled with the theorized mechanism underlying the relationship 

between the associated pair of predictors. To test our hypothesized system of invasion 

resistance, we collected data on native and exotic species diversity from 177 plots located 

within 40 forest fragments located throughout the Charlotte, NC region. We measured 

resistance to invasions using a metric that represents both the richness and abundance of 

exotic species as compared to the total richness and abundance of all species present in a 

plot. Thus instead of using native species richness as a predictor in the model as is 

commonly done in invasibility studies, we incorporate native species richness into the 

response variable, where we assume that the ratio of exotic to all species present is the 

outcome of biotic resistance (Guo and Symtad, 2008).  First, we investigate whether 

invasion resistance, as we define it, is significantly different among urban, suburban and 
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rural forests. Then, we evaluate the fit of our hypothesized model with real data using 

structural equation modeling (SEM), a multivariate method that can be used to test 

hypotheses about systems, not just one response variable (Grace et al., 2010). To our 

knowledge, no studies have evaluated the role of urbanization, and its relationship with 

other factors influencing invasibility in resistance to invasions. 

The remainder of this paper is organized as follows. First we present our 

modeling framework which includes background on structural equation modeling, our 

model building process, and the process used to investigate and account for spatial 

dependence in our model of invasion resistance. We then describe our study system and 

sampling design, and the methods used to derive invasion resistance, and the 

environmental and landscape covariates. The next section presents the results, including 

the estimated indirect and direct coefficients for all the predictors in the model within the 

context of spatial dependence, and model fit statistics.  Finally, we discuss our findings 

within the larger context of urban ecology and resistance to invasions and present our 

conclusions.  

  



 

 

87 

 

 

 

 

 

 

Figure 1: Model showing the hypothesized relationships linking different predictors to 

influence resistance to invasions. Dashed, double-headed arrows indicate expected 

covariances (unanalyzed correlations). 
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 Methods 

2.1. Modeling Framework 

2.1.1.  Structural Equation Modeling 

To test our system of integrated hypotheses, we use SEM which unlike other 

multivariate methods such as ordination, can be used for hypothesis testing (Grace, 

2010).  The causal processes under investigation are represented by a series of linear 

regression equations. The predicted structural relationships among exogenous (predictors 

whose values are independent of the values of other predictors in the model) and 

endogenous variables (variables whose values are dependent on the values of other 

predictors in the model), can be represented graphically, promoting a clear 

conceptualization and communication of theorized relationships (Shipley, 2002; Grace et 

al., 2010).  SEM can be used to evaluate how well the hypothesized path model fits with 

observed data. Path analysis is a type of structural equation model that does not use latent 

variables and only uses observed variables. This approach is appropriate in cases such as 

ours, where there is relatively low correlation among predictors (Table 1) which is 

necessary for the construct of latent variables (Bollen, 1989).  The coefficients estimated 

using multiple linear regression correspond to the coefficients estimated for the direct 

effects by SEM. The difference between SEM and linear multiple regression is that only 

the direct effects are estimated using linear multiple regression and the indirect effects 

“which are simply the unresolved causal relationships between the predictors, are 

ignored” (Shipley, 2002).  The advantage of SEM over multiple linear regression is that 

with SEM we can decompose the variation among the predictors to simultaneously 

evaluate a network of hypothesized relationships among variables, which are represented 
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by a series of linear regression equations, into direct and indirect effects. For a model in 

which x affects y, and y affects z, the indirect effects of x on z via y is the product of the 

coefficients (these would be considered direct effects) estimated for x->y and y->z. The 

technique of SEM allows us to represent and estimate “unanalyzed associations” between 

predictors, which are typically represented with curved, double-headed arrows. These 

covariances are expected to occur, but are not surmised to be the result of a causal 

relationship, or it is unknown which predictor is actually the endogenous variable.  

Specifically, the technique of SEM allows us to investigate the direct and indirect effects 

of urbanization on invasion resistance and to test theories about how urbanization 

influences invasion resistance, not just test the statistical significance of urbanization as a 

predictor of invasion resistance. 

2.1.2. Model Building   

Each endogenous variable (soil fertility, invasion resistance, spatially lagged 

invasion resistance, persistent forest area, and proximity) in the model shown in Figure 1, 

along with their respective predictor variables corresponds to a specific linear regression 

sub-model. The endogenous and associated exogenous variables associated with each 

sub-model can be found in Table 2. 

In order to build the hypothesized model shown in Figure 1, we collected data on 

invasion resistance and soil fertility in the field, and derived the remaining predictors 

(metrics of urbanization, landscape proximity, light and moisture availability, and area of 

persistent forest) in a geographic information system (GIS). We use Pearson’s correlation 

as an initial test of statistical significance to determine whether a predictor should be 

included in the final model. We  use the Moran’s I statistic to assess whether the residuals 
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from each linear regression sub-model, demonstrate statistically significant spatial 

dependence. This test evaluates whether the residuals exhibit significant spatial clustering 

as compared to the null hypothesis of no clustering (Cliff & Ord, 1972). The spatial lag 

model is a theory-driven method for directly incorporating the effects of spatial 

dependence into regression models in order to obtain less biased coefficients, and is 

appropriate when the values of the response variable are influenced by the values taken 

by this variable in neighboring locations (Anselin, 2002).  The spatial lag model has the 

form: 

yi =ρWyi + Xiβ + εi, ε ~ N(0,σ
2
I)                                                                            (1) 

Where y is the n x 1 vector of the dependent variable (invasion resistance) and X 

represents an n x k matrix of explanatory variables,  i is a geographic location, Wyi is the 

spatially lagged predictor of yi, in which W is the n x n contiguity matrix defining the 

neighbors of location i, ρ is the spatial dependence parameter and is a measure of how 

correlated the value of yi is with its neighbors. The errors are assumed to follow a normal 

distribution with constant variance. Clustered data such as ours are often handled using a 

multilevel modeling approach to avoid Type I errors resulting from ignoring the lack of 

independence of the errors induced by the clustering. Multilevel models adjust for the 

clustered errors allowing for correct statistical inference (Ryu, 2014). The disadvantage 

of multilevel models to account for clustered data is that in order to obtain valid standard 

fit statistics, the statistics must be obtained for each individual level of the models (Hox 

& Maas, 2004; Ryu, 2014). In addition, multilevel models treat spatial autocorrelation as 

a “nuisance”, arriving solely from the sampling design, not from, or in part due to an 

ecological process. The levels are predefined, thus the effects of spatial autocorrelation 
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are filtered out, rather than being revealed endogenously through the autocorrelation 

structure of the data. The advantage of using spatial lag models is that we can explicitly 

account for spatial dependence in our model and examine its role in invasion resistance.  

We account for spatial autocorrelation by obtaining parameters for each sub-model using 

spatial lag models. In order to explicitly understand the direct and indirect effects of the 

neighboring values of invasion resistance on invasion resistance, we add a spatial lag (the 

average of the neighboring values) of invasion resistance, as a predictor in the structural 

equation model (Figure 3).  Finally we estimate the structural equation model shown in 

Figure 3 and evaluate model fit using the Stata 13 statistical software (Stata Corp. 2013). 

We describe each of these in more detail below. 

2.2.  Data Collection 

2.2.1  Study Extent, Sampling Design  

We carry out our investigation in the greater Charlotte, North Carolina area. The 

Charlotte metropolitan area is the 10
th

 fastest growing city in the United States, with a 

population over 1 million. This rapid population growth has been accompanied by low 

and mid-density development patterns that have consumed much of the forests and 

agricultural land in the vicinity.  The area is characterized by gently rolling terrain, 

erosion prone soils, and forests dominated by mixed hardwood and pine.  In order to 

ensure that the full spectrum of urbanization within the study extent is represented, we 

sampled woody plant species from 40 forest patches located across a rural-urban gradient 

spanning the county seat of Charlotte, NC and the adjacent county of Cabarrus (Figure 2). 

The rural-urban gradient was developed based on building densities obtained from parcel 

data (Mecklenburg County Geospatial Information Services; Cabarrus County Land 
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Records Information System) using a 1 km moving window in a GIS.  From this, three 

classes of land use intensity strata were derived: rural, suburban and urban using the 

classification developed by Theobald (2005).  The distribution of the three land use 

intensity classes is urban: 28.3%, suburban: 43.2% and rural: 28.5%. 

 

 
 

Figure 2: Study extent showing the location of forests that were sampled within the 

greater Charlotte metropolitan area.  
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species within the plot that were at least 1.3 meters in height. This constitutes the “forest 

stand” (Burton & Samuelson, 2005). The transgressive layer (stems less than 1.3 m in 

height) was sampled using five 1 m
2
 randomly located sub-plots in each of the 177 plots. 

Guo and Symtad (2008) argued that instead of focusing solely on the number of unique 

exotic species present in a community, both the number and abundance of exotic species 

should be considered when assessing invasibility. By including measures of exotic 

species abundance, one can assess the degree of invasion that has occurred. The degree of 

invasion observed in a community reflects both the intrinsic habitat vulnerability to 

invasions as determined by biotic factors such as the richness and competitive ability of 

the resident species, as well as extrinsic factors such as propagule pressure and 

disturbance that influence the likelihood of arrival of an exotic species. We measure the 

degree of invasion p as the proportion of unique exotic species present in each plot 

(exotic richness), weighted by their abundance (the number present of each exotic 

species), to the product of the total richness and abundance of each species present in 

each plot:  

 p = (exotic richness * exotic abundance)/(total species richness* total abundance)   (2)                                                                      

As invasion resistance is the degree to which a community is not invaded, we obtain 

invasion resistance as 1 – p, and apply a logit transformation to map the proportion data 

(Crawley, 2005), which are bounded by 0 and 1 to the real number line, giving us: 

 Logit( 1- p)                                                                                                                     (3) 

Given that that there is a lack of evidence to support the existence of habitats that are 

100% resistant to invasion, especially when exposed to high propagule pressure 

(Williamson, 1996; Von Holle & Simberloff, 2005), we regard uninvaded plots as being 
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99.99%  resistant to invasions as opposed to 100%. Therefore, our final metric for 

invasion resistance is  

logit (0.9999 – p)                                                                                                             (4) 

 In addition, the advantage of using count as a measure of abundance is that we can 

incorporate species richness and abundance, measured at both the stand level and the 

transgressive level, in a single metric.   

2.2.3.  Soil Fertility 

At each field plot, three 10m depth soil cores were taken from different locations 

and were pooled to form a representative sample for each plot. The pooled soil samples 

were sent to Brookside Laboratories (New Bremen, OH) to quantify the pH and the levels 

of available nitrogen, potassium, phosphorus, and calcium.. These five soil factors have 

been shown to influence species richness and vegetation composition in Piedmont forests 

(Peet and Christensen, 1980; Taverna et al., 2005). In order to reduce the dimensionality 

of our soil data, we use principal components analysis to reduce these 5 variables into 2 

predictors reflecting overall soil quality (Ye & Wright, 2010). The 2 principal 

components explain 42.1% and 22.7% of the data variance, respectively. Variables with 

significant loadings (p < 0.05) on the first principal component (SFv1) are pH (R
2
 = 

0.41), nitrogen (R
2 

= 0.36), calcium (R
2 

= 0.67), potassium (R
2
= 0.62); and on the second 

principal component are pH (R
2
 = 0.25), nitrogen (R

2
= 0.28), and phosphorous (R

2
= 

0.59). These principal components are labeled SFv1 and SFv2, respectively. 

2.2.4.  Light and Moisture Availability 

Light availability is estimated using the potential mean index of solar radiation 

(PMSI), which is an estimate of the solar insolation received at a given location, based 
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only on seasonal intervals, namely the winter and summer solstices and spring and fall 

equinoxes. The PMSI is derived from a 10m digital elevation model (DEM) using the 

area solar radiation tool in the ArcGIS 10 software application. Canopy closure is 

measured using the percent tree canopy coverage obtained from the Multi-Resolution 

Land Characteristics (MRLC) Consortium and is based on the 2001 National Land Cover 

Database (NLCD). Moisture availability is estimated using the  topographic moisture 

index, and is derived from a 10m resolution DEM.  The topographic moisture index 

(TMI) is calculated as the natural log of the ratio of the upslope contributing area to the 

slope (Moore et al., 1991).  Slope as measured in degrees is also derived from a 10m 

resolution DEM. 

2.2.5.  Landscape Proximity 

We derive the landscape proximity index for a 1 km
2
 area within each plot using a 

supervised classification of forest cover of 2009 satellite imagery of the study extent 

using Fragstats v4.1 (McGarigal et al., 2012).  The proximity index is a dimensionless 

number that provides a relative measure of forest connectivity within a landscape, where 

lower numbers are associated with forest patches that are more isolated, and higher 

numbers indicate less isolated patches.  

2.2.6. Area of Persistent Forest 

We use the area of persistent forest as a metric to reflect the degree of past 

landscape disturbance. Digital aerial photographs from 5 different time periods (1938, 

1957, 1975, 1997 and 2009) corresponding to plot locations were obtained from 

Mecklenburg and Cabarrus county GIS departments. We map the forest cover present 

within a 100 m diameter buffer of each plot for each of the 5 time steps using “heads up” 
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digitizing in ArcGIS, thus creating a separate layer of forest cover for each year. A spatial 

overlay is produced, in which each of these layers is stacked on the previous time layer in 

chronological order. The area of persistent forest cover is delineated on the basis that 

forest cover remains present in the same spatial location as evident in the spatial overlay 

and remains undisturbed (i.e. did not transition from deciduous  to coniferous forest) 

throughout all five time periods.  

2.2.7. Metrics of Urbanization 

To map road density, we use a moving window to map the density for every grid 

cell based on road centerlines obtained for the study extent within a 1-km neighborhood 

of the grid cell. The average single family housing age is derived from georeferenced 

property records (Mecklenburg County Geospatial Information Services; Cabarrus 

County Land Records Information System) also using a 1-km moving window. 

2.3  Pearson’s Correlation 

We evaluate the relationship among our hypothesized predictors and the response 

variable using Pearson’s correlation (Table 1). Canopy closure, PMSI, sFv2 and Edge 

density have very low, non-significant correlation with invasion resistance and are 

omitted from our models on that basis.  

 

Table 1. Pearson’s correlation among the variables examined in this study. 

 
 

 

Type Predictor
Invasion 

resistance

Road 

density

Housing 

Age

Canopy 

closure
PMSI TMI Slope  sFv1 s Fv2

2009 

Proximity

Pers. For 

Area

Response Invasion resistance 1.000 -0.171 -0.243 0.068 -0.073 -0.210 0.156 -0.235 0.011 0.201 0.343

Urban Road density -0.171 1.000 0.162 -0.119 0.159 0.117 -0.224 0.176 0.234 -0.498 -0.110

Urban Housing Age -0.243 0.162 1.000 -0.053 -0.040 0.093 0.154 0.067 0.068 -0.145 0.020

Resource availability Canopy closure 0.068 -0.119 -0.053 1.000 0.058 0.080 0.012 -0.022 -0.034 0.173 0.237

Resource availability PMSI -0.073 0.159 -0.040 0.058 1.000 0.191 -0.477 -0.079 0.089 -0.147 -0.156

Resource availability TMI -0.210 0.117 0.093 0.080 0.191 1.000 -0.492 0.033 -0.049 -0.140 -0.095

Slope Slope 0.156 -0.224 0.154 0.012 -0.477 -0.492 1.000 0.016 0.003 0.279 0.284

Soil nutrient availability  sFv1 -0.235 0.176 0.067 -0.022 -0.079 0.033 0.016 1.000 0.015 -0.062 0.046

Soil nutrient availability s Fv2 0.011 0.234 0.068 -0.034 0.089 -0.049 0.003 0.015 1.000 -0.037 0.045

Landscape connectivity  Proximity 0.201 -0.498 -0.145 0.173 -0.147 -0.140 0.279 -0.062 -0.037 1.000 -0.012

Persistent forest Pers. For Area 0.343 -0.110 0.020 0.237 -0.156 -0.095 0.284 0.046 0.045 -0.012 1.000
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2.4  Spatial Dependence  

We confirm the presence of significant spatial autocorrelation in regression 

residuals for each sub-model using Moran’s I statistic in the spdep package in R (Bivand 

et al., 2013) (Table 2).   

 

Table 2: Results of Moran’s I tests for each of the sub-models. 

 
 

 

In order to account for spatial dependence in our SEM, we use spatial lag models 

to obtain parameter estimates for each of our sub-models  using the maximum likelihood 

estimation via the lagsarlm command in the spdep package in R. The lagsarlm command 

estimates the spatial dependence parameter, ρ, using a two-stage procedure in order to 

avoid obtaining biased parameter estimates and standard errors that would result from not 

Endogenous Exogenous

Moran's I  p

soil fertility

Road density 0.13 0.02

Invasion resistance

Soil fertility 0.26 <0.001

Proximity

Pers. Forest Area

TMI

Slope

Housing age

Road density

Proximity

Slope 0.51 <0.001

Road density

Pers. Forest Area

Slope 0.3 <0.001

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
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adequately accounting for the endogeneity introduced by including a spatial lag of the 

response variable. Since the forest patches have 3-5 samples each, we use a contiguity 

matrix based on the 4 nearest neighbors of yi, weighted by their inverse distances to yi 

when estimating the spatial lag model. In order to understand the direct and indirect 

effects of the neighboring values of invasion resistance on invasion resistance, we use the 

spatially lagged predictor of invasive resistance (Wyi) as an endogenous variable in the 

structural equation model (Figure 1).  

Specifically, we are testing whether the predictors that affect invasion resistance 

are also significantly correlated with the spatial lag of invasion resistance. If so, this 

suggests that the neighbors of i are similarly influenced by the predictors, and/or that the 

environmental conditions of the neighbors of i are similar to those at i. We estimate the 

following goodness of fit measures for our overall model using Stata 13:  χ2 statistic, root 

mean squared error (RMSEA), the Tucker - Lewis Index (TLI) and the standardized root 

mean square residual (SRMR). 

. 

 Results 

Prior to conducting SEM analysis, we use a one-way analysis of variance 

(ANOVA) to confirm that invasion resistance significantly differs by level of 

urbanization as measured by urban, suburban and rural land use intensity classes. The 

analysis is significant, F(2, 174) = 3.06, MSE = 14.81, p < 0.05.  Post-hoc Tukey’s HSD 

tests show that invasion resistance for urban forests is significantly lower as compared to 

rural forests. None of the other comparisons are significant. 

Our conceptual model presented in Figure 1 is supported by our data as indicated 

by the χ
2
 statistic (χ

2
 = 23.07, df  = 22, p = 0.398). The χ

2
 statistic assesses the fit of the 
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model, in relation to a model that fits the covariances perfectly (Grace & Bollen, 2005). 

Thus, our model is not statistically different from a model with a “perfect” fit. All of the 

additional fit statistics also support that this is a good fitting model. The RMSEA is 0.017 

(values below 0.05 indicate a good fit); the TLI is 0.992, (values greater than 0.95 

indicate a good fit), and finally the SRMR is less than 0.08, also indicating a good fit 

(Hooper et al., 2008).  However, our tested model differs slightly from the conceptual 

model (Table 1) because metrics of light availability were found not to be correlated with 

invasion to resistance, and thus were not included in the model specification tested and 

shown in Figure 3.   
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Figure  3: Final structural equation model showing the relationships among the predictors 

of invasion resistance. Dashed, double-headed arrows indicate covariances. The path 

coefficients are standardized and correspond to direct effects. 

 

 

 Housing age has statistically significant direct effects (DE) on invasion resistance 

(DE = 0.157, p=0.015), but road density is not found to have significant direct effects 

(Table 4).  

 

 

Housing 

age

TMI

Road 

density

Slope

Invasion 
resistance

Spatially 
lagged 

invasion 
resistance

Proximity

Soil 

fertility

Pers. 

Forest

- 0.098

0.272

0.256

0.238

-0.491

0.154

0.162

0.098

0.147

- 0.170

- 0.001

- 0.157

0.006

0.052

- 0.210

0.002

.009

-0.202

0.118

0.268

-0.147

- 0.239

0.172

- 0.224
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Table 4: Parameters for the final structural equation model for direct, indirect and total 

effects.  
 

 
 

However, road density has statistically significant indirect effects on invasion 

resistance.  There are four pathways that potentially contribute to the coefficient 

calculated for the indirect effects of road density on invasion resistance. They are 1) road 

Endogenous Exogenous

Direct Indirect Total

soil fertility

Road density 0.147* na 0.147*

Invasion resistance

Spatially lagged 

invasion resistance 0.272*** na 0.272***

Soil fertility -0.17** -0.057** -0.227***

Proximity 0.052 0.032 0.084***

Pers. Forest Area 0.256*** 0.073*** 0.329***

TMI -0.098 -0.04 -0.138***

Slope 0.006 0.087*** 0.093***

Housing age -0.157* -0.055** -0.212***

Road density -0.001 -0.051** -0.052**

Spatially lagged 

invasion resistance

Soil fertility -0.21** na -0.21**

Proximity 0.118 na 0.118

Pers. Forest Area 0.268*** na 0.268***

TMI -0.147 na -0.147

Slope 0.002 0.075*** 0.077

Housing age -0.202** na -0.202***

Road density 0.009 -0.059** -0.05

Proximity

Slope 0.098 na 0.098

Road density -0.239*** na -0.239***

Pers. Forest Area

Slope 0.238*** na 0.238***

Std. Coef

Significance levels:   ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
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density via soil fertility, 2) road density via soil fertility via spatially lagged invasion 

resistance, 3) road density via landscape proximity and 4) road density via landscape 

proximity via spatially lagged invasion resistance.  Since there are a number of different 

sources of indirect effects of road density on invasion resistance, we have decomposed 

the sources of variation (Table 5). The indirect effect of road density via soil fertility is 

clearly the main contributor of the negative indirect effects of road density on invasion 

resistance, supporting our hypothesis that urbanization has indirect negative effects on 

invasion resistance via habitat eutrophication. 

 

Table 5: Decomposition of the indirect effect of road density on invasion resistance by 

source. 
  

 
 

 

 

The only measure of resource availability in the model that has statistically 

significant effects on invasion resistance is soil fertility; slope and TMI are not 

significant. However, slope has a positive indirect effect on invasion resistance (IE = 

0.087, p = <0.001), via the effects of slope on landscape proximity and persistent forest 

area. As was found with invasion resistance, housing age and soil fertility also have 

significant negative direct effect on spatially lagged invasion resistance, while similarly, 

persistent forest area has a significant positive direct effect, and road density, slope and 

TMI and landscape proximity are not associated with a significant direct effect on 

Path of Indirect Effects Std. Coef

Road density via soil fertility -0.025

Road density via soil fertility via spatially lagged invasion resistance -0.008

Road density via proximity -0.012

Road density via proximity via spatially lagged invasion resistance -0.007

Total indirect effects -0.052
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invasion resistance. This indicates that the predictors of invasion resistance are similarly 

correlated with the values of invasion resistance at neighboring sites as represented by  

spatially lagged invasion resistance. Overall, spatially lagged invasion resistance is the 

strongest predictor of invasion resistance as indicated by a comparison of the 

standardized coefficients derived for each predictor (Table 4). The area of persistent 

forest is the second strongest predictor of invasion resistance (Table 4), thus supporting 

our hypothesis that the area of locally intact habitat discourages invasions. As we 

expected, the area of persistent forest increases positively with slope, suggesting that 

steeper areas are less likely to be disturbed. Slope, which does not have a statistically 

significant direct effect on invasion resistance, has indirect positive effects on invasion 

resistance via its effects on the area of persistent forest. 

Despite being correlated with invasion resistance as shown in Table 1, TMI and 

landscape proximity are not associated with statistically significant direct effects in our 

model, suggesting that these predictors do not directly influence invasion resistance. Both 

of these predictors have indirect effects on invasion resistance, albeit, statistically 

insignificant effects, that contribute to the total effects measured for these predictors, 

which are statistically significant. Whereas the same suite of predictors have the same 

direction of effect and similar level of statistical significance for both invasion resistance 

and spatially lagged invasion resistance, the total effects of landscape proximity, TMI and 

slope, and road density are statistically significant for invasion resistance, but not for 

spatially lagged invasion resistance. This can be explained, in part, due to the absence of 

indirect effects to be considered for landscape proximity and TMI, and that the direct and 
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indirect coefficients for the predictors of spatially lagged invasion resistance were lower 

than those observed for invasion resistance. 

Discussion and Conclusions 

In this research, we confirmed that urban forests have significantly lower invasion 

resistance as compared to rural forests and we then investigated a causal model to explain 

this phenomenon using SEM. We tested the hypothesis that urbanization has both direct 

and indirect negative effects on invasion resistance, using an SEM framework that 

integrates other factors that are known to influence invasibility, namely measures of 

resource availability (soil fertility and TMI), topographic slope, area of persistent forest, 

landscape proximity and spatial dependence of neighboring observations. 

Housing age and road density were the two metrics of urbanization tested in the 

model, and only housing age had statistically significant direct effects on invasion 

resistance. The significant negative path coefficient between housing age and resistance 

to invasions provides insight into the mechanisms by which urbanization negatively 

influences resistance to invasions. This supports our hypothesis that locations surrounded 

by older housing have been receiving an influx of exotic propagules arriving from 

residential yards and gardens longer than those that are surrounded by younger housing. 

We also tested the hypothesis that urbanization has indirect negative effects on invasion 

resistance and this was also supported by our findings. Specifically, we investigated 

whether urbanization has negative consequences for resistance to invasions via habitat 

eutrophication by assessing whether road density is associated with increased soil 

fertility. Our results show that road density has a significant positive direct effect on soil 

fertility and soil fertility has a direct negative effect on invasion resistance. The path 
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coefficient for the indirect effect of road density on invasion resistance via soil fertility 

accounts for 50% of the indirect effects of road density on invasion resistance.   This is in 

line with previous studies that have observed an urbanization-eutrophication link in soils 

obtained from forests located an urban-rural gradient (Pouyat et al., 1995; Lovett et al., 

2000) and provides a plausible mechanism of how urbanization can be detrimental to 

native diversity and resistance to invasions.  

 Although the spatially lagged invasion resistance is a slightly stronger predictor of 

invasion resistance than persistent forest area, with regard to direct effects, the total 

effects coefficient for persistent forest area exceeds that for spatially lagged invasion 

resistance. This indicates that the lack of disturbance in the immediate vicinity is a strong 

protective mechanism against invasions and that this mechanism explains community 

invasion resistance better than the spatial dependence of neighboring observations. 

Mosher et al. (2009) also found that communities that had persistent tracts of forest cover 

were more resistant to invasions. Similarly, DeGasperis & Motzkin (2007) linked past 

disturbance in forest cover during the early 20
th

 century to the distribution and abundance 

of an invasive shrub. These findings along with ours, suggest that forest cover 

disturbance represents a major opportunity for both the arrival of invasive species via 

available space and newly available light as a result of a canopy gap. 

  Soil fertility was the strongest negative predictor of invasion resistance, 

supporting our expectation that eutrophication is detrimental to invasion resistance (Table 

4). The role of eutrophication on lowering resistance to invasions may be two-fold, 

namely 1) facilitating establishment by invasive species, as eutrophication implies the 

availability of excess nutrients available for utilization by invaders (Burke & Grime, 
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1996), and, 2) several studies have linked eutrophication, especially in the form of excess 

nitrogen to declines in native plant diversity (Smith et al., 1999; Bobbink et al., 2010; De 

Schrijver et al., 2011).  

 Slope is often considered a proxy or indirect measure of site conditions and thus is 

frequently included in invasion studies. However slope is often correlated with other 

predictors characterizing landscape structure or anthropogenic modification. In this study, 

slope was positively correlated with area of persistent forest and had a negative 

covariance with road density, thus revealing the indirect role of slope in influencing 

resistance to invasions. 

In our model, we examined the effects of the variables used to predict invasion 

resistance on spatially lagged invasion resistance. Our results revealed that the predictors 

of invasion resistance had a similar but overall lower effect on spatially lagged invasion 

resistance, suggesting that neighboring communities are exposed to similar habitat 

conditions. In many cases, accounting for spatial dependence in ecological models often 

results in the loss of statistical significance of environmental and landscape predictors 

(Dormann, 2007). However, our case, soil fertility, persistent forest area, and housing age 

have strong direct effects on invasion resistance, even when accounting for spatial 

dependence. In addition, all the predictors of invasion resistance in this study, have 

statistically significant total effects (which is the sum of the direct and indirect effects). 

This is due in part to the indirect effects of the predictors via spatially lagged invasion 

resistance, which would not have been apparent if spatially lagged invasion resistance 

was not explicitly a predictor in our SEM model. Thus an advantage of explicitly 
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incorporating a spatially lagged predictor in a SEM model is the ability to decompose the 

effects of spatial dependence from that of the other predictors.   

To the best of our knowledge, this study is the first to investigate the potential 

direct and indirect effects of urbanization on invasion resistance. These results 

emphasized the importance of integrating multiple hypotheses when investigating 

invasion resistance and have furthered our understanding of what makes communities 

more or less resistant to invasions. Our work has shown that the area of forest that has 

remained undisturbed for at least the past 75 years, is a strong predictor of invasion 

resistance and suggests that intact forest in the immediate vicinity of a plot confers a 

protective benefit. Conversely, we have shown how urbanization can negatively affect 

invasion resistance, as our results show that eutrophication increases with road density 

and has negative ramifications for forest ecosystems, in which excess soil nutrients can 

be “too much of a good thing” (Sutton et al., 2011)  resulting in decreased resistance to 

invasions. Also, housing age was shown to be linked to invasion resistance, in which 

forests surrounded by older housing have lowered resistance to invasions. Other than the 

indirect effects of slope, no abiotic factors outside of soil fertility were shown to 

influence invasion resistance, once other factors were accounted for. However, we do not 

suggest these metrics be excluded from future studies. Rather, more study is warranted in 

which the roles of these environmental predictors are considered using an integrated 

approach that also accounts for the impacts of urbanization.  
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CHAPTER 5: CONCLUSIONS 

 

 

  This dissertation examines and quantifies the impacts of urbanization and 

landscape change to patterns of native biodiversity and the distribution of exotic species 

by focusing on three questions that heretofore have not been addressed, yet have the 

potential to further our understanding of the consequences of anthropogenic activities to 

ecosystem processes. The following questions were addressed : 1) Does human-mediated 

invasion pressure influence the distribution of forest invaders in urban landscapes?; 2) Do 

multi-temporal forest change trajectories, classified into a typology, influence forest 

native diversity, if so, what spatial extent?; and 3) What are the direct and indirect effects 

of  metrics of urbanization on forest community invasion resistance? The unifying thread 

in this work is the desire to understand and quantify the impacts of urbanization to native 

plant biodiversity and vulnerability of forests to exotic species invasions, with the intent 

of obtaining much- needed empirical data in order to guide decision making about the 

management of forest biodiversity in order to sustain the provisioning of ecosystem 

services given that the urban footprint is expected to dramatically expand by 2030 (Seto 

et al., 2012). Within this context, each question addresses a missing piece of how 

urbanization and landscape change influences native biodiversity and exotic species 

invasions. This work is among the first to quantify the relationships between urbanization 

and landscape change on exotic and native forest plant diversity, using a statistically 

robust methodology that employs a stratified random vegetation data collection survey 
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along an urban to rural gradient to ensure both adequate replication and that the landscape 

context surrounding the forest samples reflects the full spectrum of landscape 

heterogeneity and land-use intensity present in the study extent, the Charlotte, NC 

metropolitan area.   

One of the fundamental differences of this work as compared to other urban to 

rural gradient studies is the method used to derive the gradient. Urban to rural gradient 

studies have been criticized for relying on over simplified metrics of urbanization such as 

distance from the central business district or percent impervious surface (Alberti et al., 

2007).  I have addressed this by delineating the urban to rural gradient using a 1 km 

moving window to map both building and road density. This produces an urban to rural 

gradient that reflects the intensity of development within 1 km of every 10m grid cell in 

the study extent, capturing both the intensity of human activity and development that is 

not always reflected by percent impervious surface, as well as the “leap frog” patterns of 

development that are missed when assuming urbanization decreases steadily from the 

central business district (Ewing, 2008). 

Although biological invasions are often cited as major cause of biodiversity loss, 

it is difficult to prove this using data from cross-sectional observational studies, as it 

cannot be distinguished whether invasions are the cause of biodiversity loss, or that areas 

of low biodiversity were simply more invasible (as is predicted by the diversity-

invasibility hypothesis) and thus low biodiversity was present prior to invader arrival. 

Furthermore, habitat loss and fragmentation induced by urbanization, as well as the 

chronic anthropogenic disturbance generated by urban development to ecosystem 

processes are also thought to result in biodiversity loss (Fahrig, 2003; Fischer and 
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Lindenmayer, 2006) as well as facilitate invasions by exotic species (McKinney, 2008; 

Kowarik, 2011). In this study, I found no statistically significant correlation between any 

metrics of native and exotic diversity. This is not surprising, as other studies have also 

noted an absence of a native-exotic species relationship, and the presence of a significant 

negative relationship is not robust if landscape context and anthropogenic factors that 

also affect the distribution and persistence of plant species were not accounted for 

(Fridley et al., 2007). In addition, the majority of studies fail to take propagule pressure 

into account, which has been a consistent predictor of invasibility success (Pysek et al., 

2010; Simberloff, 2009) and has been shown to overwhelm abiotic and biotic resistance 

to invasions (Von Holle & Simberloff, 2005). Thus, conclusions drawn from invasibility 

studies that do not consider propagule pressure are often inconsistent. In this work, I 

employed the theoretical link between propagule pressure and anthropogenic activity to 

develop a spatially explicit variable of human-mediated invasion pressure, the rFOI. This 

metric not only represents the intensity of surrounding development, but also reflects the 

likelihood of dispersal of an invader from single family residences as weighted by 

distance and age of housing (based on knowledge of how long the species has been used 

an ornamental by homeowners) unlike a more commonly used measure of housing 

density, which only reflects the intensity of surrounding development. The rFOI is a 

better proxy, theoretically, of the impacts of humans on the invasion process as compared 

to housing density because it explicitly links dispersal potential of the invader with the 

number, distance, and age of residences. This effort was justified, as my results show that 

the rFOI significantly better detect the presence of Autumn olive and Chinese privet as 

compared to housing density. This is the first study to explicitly consider the role of 
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human-mediated invasion pressure on the distribution of exotic species and on the 

performance of SDMs. As a result, I have shown that there is empirical evidence 

justifying the theoretical link between human activity and exotic species invasions and 

how inclusion of variables that link human activity to invasive dispersal can be used to 

improve the accuracy of spatially explicit predictive models of invasions such as SDMs.  

The results of my fourth dissertation chapter in which I investigated hypotheses 

rooted in urban and invasion ecology to assess the impacts of urbanization to forest 

invasion resistance further support the role of anthropogenic factors in influencing 

ecological processes. Until now, the underlying mechanisms explaining the link between 

susceptibility of forests to invasions and urbanization have not been investigated.  Here, I 

synthesized the findings of different disciplines that showed: 1) the nitrification of forest 

soils along an urban to rural gradient (Pouyat et al., 1995; Lovett et al., 2000)  that road 

density and increased atmospheric deposition of nitrogen and sulfur are linked, primarily 

via automobile emissions (Fenn et al, 2003; Redling et al., 2013) that habitat 

eutrophication resulting from increased atmospheric deposition negatively impacts native 

species richness (Maskell et al., 2010; Stevens et al., 2010; Clark & Tilman, 2008); and 

4) that excess nitrogen makes habitats more invasible according to Davis’(2000) resource 

availability theory to generate the hypothesis that urbanization (measured via road 

density) has negative impacts on invasion resistance as a result of increased atmospheric 

deposition  resulting in habitat eutrophication (measured via soil fertility).  While the 

results of the structural equation model did not support a direct effect of road density on 

invasion resistance, road density is shown to have statistically significant indirect 

negative effects on invasion resistance via its positive effects on soil fertility. These 
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results support my hypothesis that urbanization negatively effects invasion resistance via 

habitat eutrophication, which has been shown in other studies to result in biodiversity loss 

and increased susceptibility to invasions. Aspects of roads have been previously shown to 

be positively associated with exotic species presence, but this relationship has been 

attributed to the role of roads as dispersal corridors for exotic species (Christen & 

Matlack, 2005; Gelbard & Belnap, 2003) While this mechanism is likely for weedy 

species that either grow alongside roads or possess tiny seeds that are easily transported 

via vehicular traffic (Von der Lippe & Kowarik, 2007), it is less likely for species such as 

slower growing/maturing shrubs that are largely not found along road sides and are 

mowed before they can set seed. Flory & Clay (2006) found a significant positive 

correlation within 10 m of forest interiors and invasive shrub species but this relationship 

can easily be explained by the increased availability of light, as these sites would also be 

close to forest edges. However this study does not address the role of light availability or 

other edge effects in influencing invasive shrub distributions. Therefore, caution is 

warranted when investigating the relationship of metrics of urbanization to ecological 

processes such as invasion, to ensure that the question at hand is testing a specific 

hypothesized ecological relationship underlying observed spatial phenomena, otherwise 

the informative power of the study is limited to just describing spatial relationships 

(McDonnell & Hahs, 2008). 

In a similar vein, my dissertation further investigated the link between housing 

and exotic species invasions (Gavier-Pizzaro et al., 2010). My results indicate a 

statistically significant negative effect of housing age on invasion resistance, suggesting 

that locations surrounded by older housing have been receiving an influx of exotic 



 

 

113 

 

 

propagules arriving from residential yards and gardens longer than those that are 

surrounded by younger housing. The temporal component represented by housing age 

also may reflect the duration of anthropogenic disturbances other than escaping exotic 

species originating from residential development. However, it cannot be distinguished 

whether housing age is a proxy of propagule pressure or anthropogenic disturbance, or 

both. Above, I discussed how human-mediated invasion pressure measured as the 

residential force of invasion is a better predictor of invasive shrub presence than single 

family housing density.  Up until now, the underlying mechanisms explaining the 

observed correlation between urbanization and exotic species richness have not been 

investigated, and my results address this gap. Specifically, this study is the first to 

investigate the potential direct and indirect effects of urbanization on invasion resistance. 

In this dissertation, I investigated a suite of metrics reflecting both landscape 

structure and landscape configuration. Several of these metrics such as distance to forest 

edge, patch size, and proximity have been linked to the distribution of exotic species 

(Deckers et al., 2005; Bartuszevige et al., 2006; Hutchinson & Vankat, 1998), but none of 

these metrics were significant predictors  in my research with regard to either exotic 

species distributions or forest invasion resistance once spatial dependence was accounted 

for. This suggests that the results of studies that investigate the effects of landscape scale 

factors on invasibility without controlling for spatial autocorrelation potentially not 

reliable and may suffer from a Type I error. This is not to say that landscape factors have 

not been found to be important in this research. To the contrary, one of the strongest 

predictors of invasion resistance is the area of forest persisting since at least 1938 

surrounding the sampled communities.  
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I have also provided a methodological framework to derive and assess the impacts 

of typologies of multi- temporal forest cover change trajectories on patterns of native 

biodiversity.  My results demonstrate that the impacts of a typology of forest cover 

change trajectories on native plant diversity are significant at only the 100 and 200 meter 

spatial extents, suggesting that diversity is more sensitive to local scale changes in forest 

cover. In addition, my results demonstrate that studies employing measures of forest 

cover change using one large time interval, as is commonly done, may fail to identify the 

underlying relationship between native biodiversity and forest change that would 

otherwise be exposed if multi-temporal trajectories of forest cover change based on 

smaller time intervals were used instead. The methodology described in this work can be 

used to analyze the effects of land cover change assessed over multiple cross-sectional 

datasets on biodiversity or on other metrics of ecosystem function and structure in order 

to understand the cumulative impacts of past anthropogenic induced landscape change 

and inform decision making with regard to biodiversity management.  

In conclusion, my doctoral training in geographic information science and urban-

regional analysis has allowed me to apply a unique perspective to problem of biological 

invasions and biodiversity loss in urban landscapes. I have coupled ecological theory 

with geographical methods to further our understanding of how ecological processes such 

as the dispersal of invaders are linked to spatial dependence and can be used to 

dramatically improve the accuracy of species distribution models for generalist invaders. 

In addition, I have shown how anthropogenic factors such as human-mediated invasion 

pressure, explains the distribution of invasive species in areas of low environmental 

suitability in urban forests and thus should not continue to be overlooked in invasion 
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ecology. Using this approach, I also used structural equation modeling to test 

hypothesized mechanisms of how metrics of urbanization interact with other ecosystem 

processes (eutrophication and atmospheric deposition) to make urban forest communities 

less resistant to invasions. As a result, I have produced much needed empirical data 

regarding the impacts of anthropogenic factors on invasive species spread in forests, the 

scale at which landscape change impacts patterns of native plant diversity in forests, and 

how urbanization lowers invasion resistance in forest communities.   I show that careful 

consideration of how anthropogenic factors may influence specific ecological processes 

can both advance our knowledge of invasion and urban ecology, as well as result in better 

predictive models that can be used to manage species invasions and protect native 

biodiversity in urban forests. 
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APPENDIX A: PEARSON’S CORRELATION OF PREDICTORS USED IN SPECIES 

DISTRIBUTION MODELS OF CHINESE PRIVET AND AUTUMN OLIVE                                      

 

 

Table 1a. Pearson correlation for the final set of predictors used to predict the distribution 

of autumn olive.  

 
 

 

Table 1b. Pearson correlation for the final set of predictors used to predict the distribution 

of Chinese privet.  

 
 

 

 

 

AO (0/1) SI CC SFHD 1000 SFHD 10002 rFOI 1.5 rFOI 1.52 aoFOI 1.0 SWC

AO (0/1) Pearson Correlation 1 -0.19 0.19 -0.34 0.13 -0.33 0.17 0.53

Sig. 0.0011 <0.001 0.0292 0 0.0025 <0.001 <0.001

SI Pearson Correlation -0.19 1 -0.01 0.25 -0.07 0.27 -0.06 -0.12 0.370

Sig. 0.0012 0 0.2154 <0.001 0.3417 0.04 0.04 <0.001

CC Pearson Correlation 0.19 -0.01 1 -0.14 0 -0.12 0.01 0.17 0.095

Sig. 0.0011 0.8455 0.9894 0.033 0.8307 0.0033 0.0033 0.237

SFHD 1000 Pearson Correlation -0.34 0.25 -0.14 1 0.24 0.89 0.03 -0.42 0.173

Sig. <0.001 <0.001 0.0133 <0.001 0.5518 <0.001 <0.001 0.010

SFHD 10002 Pearson Correlation 0.13 -0.07 0 0.24 1 0.1 0.62 0.14 0.14

Sig. 0.0292 0.2154 0.9894 <0.001 <0.001 0.0142 0.0142 0.048

rFOI 1.5 Pearson Correlation -0.33 0.27 -0.12 0.89 0.1 1 0.05 -0.43 0.167

Sig. <0.001 <0.001 0.0331 0 0.0792 <0.001 <0.001 0.013

rFOI 1.52 Pearson Correlation 0.17 -0.06 0.01 0.03 0.62 0.05 1 0.2 0.077

Sig. 0.0025 0.3417 0.8307 0.5518 <0.001 0.3486 0.0004 0.4

aoFOI 1.0 Pearson Correlation 0.53 -0.12 0.17 -0.42 0.14 -0.43 0.2 1 0.070

Sig. <0.001 0.04 0.0033 <0.001 0.0142 <0.001 0.0004 0.418

SWC Pearson Correlation 0.370 0.095 0.173 0.14 0.167 0.077 0.070 1

Sig. <0.001 0.237 0.010 0.048 0.013 0.4 0.418

Priv(0/1) TMI RSP SI SI2 rFOI 1.0 rFOI 1.02 SFHD 1500m SFHD 1500m2 pFOI pFOI*RSP

Priv(0/1) Pearson Correlation 1 0.21 -0.30 0.12 -0.2 0.19 0.12 0.24 0.10 0.38 0.35

Sig. 0.00 0.04 0.00 0.00 0.03 0.00 0.08 0.00 0.00 0.00

TMI Pearson Correlation 0.21 1 -0.55 0.16 -0.27 0.10 -0.13 0.14 -0.03 0.10 -0.10

Sig. 0.00 0.00 0.00 0.07 0.02 0.01 0.54 0.07 0.07 0.07

RSP Pearson Correlation -0.30 -0.55 1.00 0.06 0.02 -0.12 -0.01 -0.11 -0.03 -0.19 0.08

Sig. 0.00 0.00 0.76 0.03 0.80 0.05 0.61 0.00 0.16 0.16

SI Pearson Correlation 0.12 0.16 0.06 1 -1 0.12 0.10 0.14 -0.01 0.10 0.08

Sig. 0.04 0.00 0.30 0.04 0.08 0.02 0.85 0.07 0.13 0.13

SI2 Pearson Correlation -0.20 -0.27 0.02 -0.55 1.00 -0.18 0.00 -0.20 0.04 -0.10 -0.06

Sig. 0.00 0.00 0.76 0.00 0.97 0.00 0.47 0.09 0.28 0.28

rFOI 1.0 Pearson Correlation 0.19 0.10 -0.12 0.12 -0.18 1 0 0.81 -0.12 0.17 0.12

Sig. 0.00 0.07 0.03 0.04 0.00 0.00 0.04 0.00 0.04 0.04

rFOI 1.02 Pearson Correlation 0.12 -0.13 -0.01 0.10 0.00 0.04 1.00 -0.03 0.52 0.02 0.03

Sig. 0.03 0.02 0.80 0.08 0.97 0.47 0.00 0.78 0.63 0.63

SFHD 1500m Pearson Correlation 0.24 0.14 -0.11 0.14 -0.20 0.81 -0.03 1 0 0.21 0.21

Sig. 0.00 0.01 0.05 0.02 0.00 0.00 0.62 0.00 0.00 0.00

SFHD 1500m2 Pearson Correlation 0.10 -0.03 -0.03 -0.01 0.04 -0.12 0.52 -0.04 1 0.03 0.06

Sig. 0.08 0.54 0.61 0.85 0.47 0.04 0.00 0.44 0.28 0.28

pFOI 1.5 Pearson Correlation 0.38 0.10 -0.19 0.10 -0.10 0.17 0.02 0.21 0.03 1 0.83

Sig. 0.00 0.07 0.00 0.07 0.09 0.00 0.78 0.00 0.64 0.00

pFOI*RSP Pearson Correlation 0.35 -0.10 0.08 0.08 -0.06 0.12 0.03 0.21 0.06 0.83 1

Sig. 0.00 0.07 0.16 0.13 0.28 0.04 0.63 0.00 0.28 0.00


