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ABSTRACT 
 
 

BENJAMIN JOSEPH FUTRELL.  Optimization of building envelope design for 
daylighting and thermal performance.  (Under the direction of DR. ERTUNGA C. 

OZELKAN and MR. DALE BRENTRUP) 
 
 

 Buildings account for 40% of US energy usage. A building’s energy usage is 
largely determined by decisions made during its design. Such decisions relate to the form 
and orientation of the building, the materials used, and location of windows. A bi-
objective building design optimization method was developed to minimize heating and 
cooling energy usage and maximize natural lighting (daylighting). Four optimization 
algorithms were integrated and evaluated based on efficiency and consistency of results. 
Thermal performance was evaluated by enclosure elements’ (windows, floors, walls, and 
roofs) impact on heating and cooling energy. Lighting performance was evaluated by the 
frequency and magnitude at which natural light levels deviated from a desired range. To 
ensure the accuracy of results, a method of thermal model calibration was developed 
based on room temperature responses to various weather conditions. The model used for 
simulation-based optimization was first calibrated to measured values, of the building it 
represented, such that predicted and measured hourly room temperatures (°F) deviated by 
an RMSE of 0.82 on hot and cold days. Optimization results show that thermal and 
lighting performance can be significantly improved from an initial design and the 
associated Pareto front aids evaluation of trade-offs between the two. 
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CHAPTER 1: INTRODUCTION 
1.  

1 
In buildings, thermal and lighting comfort conditions are sustained primarily by 

energy-intensive equipment. In 2012, operational energy in the commercial building 
sector accounted for 19% of total energy consumption in the United States [1]. 
Nationwide, lighting alone accounts for 20.5% of major fuel consumption in commercial 
buildings [2]. Major determining factors of heating, cooling, and lighting loads that must 
be met by HVAC and electrical light systems are climate, internal equipment, building 
use type, and occupancy profile and schedule, and the design of the building enclosure. 
Of these factors, building enclosure design is perhaps the most freely controlled by the 
design team. Building enclosure design includes building orientation, floor plan/footprint 
shape, window placement and size, material selection, etc. The building itself is a system 
of energy (in the form of sensible heat and radiation – including light) conducting, 
transmitting, and storing elements (walls, windows, and building mass, respectively) that 
interface between the exterior and interior environments. Because the design team has 
great control over these load-determining aspects of design, it is appropriate that they be 
investigated as a first tier energy efficiency strategy. For example, annual electric lighting 
consumption can be reduced by 20% to 77% by good daylighting practices, as others 
have shown across various building types and climates [3-9]. 

Robust and validated modeling tools exist for the performance evaluation of 
building designs; however, they are not commonly used to explore the performance of 
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many design alternatives [10]. In practice, their use is often limited to validating one or 
several designs. Building design optimization programs have been developed; however, 
most of these tools focus exclusively on the optimization of envelope thermal loads or 
use simple, lighting evaluation methods. Rigorous evaluation and optimization of holistic 
lighting performance can help identify building designs that consume less heating, 
cooling, and lighting energy. 

This work, in part, analyzes the transmission of daylight by the building envelope 
to the building interior. Daylighting design has mainly to do with how windows and 
light-reflecting surfaces are located, sized, and assigned materials. Optimum daylighting 
design varies based on climate and geographic location, orientation, and surrounding 
exterior context. These considerations make optimizing for daylighting performance a 
unique problem for every building designed. During the building design process, the 
potential for daylighting to reduce electric lighting consumption is rarely analyzed or 
optimized. One aspect of the research presented here is to evaluate methods of optimizing 
building design for daylighting and, thereby, minimize the need for electric lighting. 

Because the design of windows not only affects lighting performance but also 
heat gains and losses to and from a building, the thermal effects of window and envelope 
design decisions are integrated into this work. Larger windows admit more light but also 
allow for the potential of larger heat gains and losses. A successfully sustainable building 
design will balance the sometimes conflicting benefits of optimizing a building design for 
daylighting and thermal performance. 

The work presented here is largely based on lighting and energy simulations, 
which are only trustworthy if the discrepancy between their predictions and reality is 



3 

 

acceptably small. The lighting simulation program used, RADIANCE, is well validated 
and trustworthy, as long as model input faithfully represents reality. Validation studies of 
RADIANCE include [11-15]. The major potential source of discrepancy between a 
RADIANCE lighting model and reality is how humans modify window condition (e.g., 
the use of blinds). This work focused on optimizing building design to provide the most 
comfortable levels of natural light, without the need for blinds. Therefore, an assumption 
of this work is that its lighting models do not account for modification by humans and 
are, therefore, reasonably trustworthy. Building energy/thermal models can also be 
trustworthy, if correct input is used. The building energy simulation program used in this 
work, EnergyPlus, has been validated by [16]. However, building energy models are 
based on input parameters that are difficult to determine, as [17] have shown. This work 
addresses the issue of underdetermined parameters by developing a method by which key 
parameters of an energy model are fine-tuned or calibrated such that the model predicts 
measured values, specifically zone temperatures, reasonably well for a given set of 
weather inputs. 

In Chapter 2, a review of related literature is presented. Works focused on 
building design optimization are discussed, along with how this body of work relates to 
and expends upon them. Following this, works related to energy model calibration are 
discuss in detail. 

Chapter 3 presents a brief simulation based demonstration of energy model 
calibration of a classroom design that is subsequently optimized in Chapters 4 and 5. In 
Chapter 4, a simulation based optimization method is developed to solve building 
daylighting design problems. An application of the proposed method is presented that 
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optimizes a prototype design of a grade school classroom. The prototype design 
optimizes the uniform delivery of daylight from windows to the classroom. The generic 
optimization program, GenOpt, was integrated into the method used to solve this design 
optimization problem [18]. Four of GenOpt's optimization algorithms were assessed for 
their speed of convergence to a solution and the distance of the found solution to the 
single best found solution of all algorithms. The four algorithms assessed were the 
Simplex Algorithm of Nelder and Mead with the Extension of O’Neill (SA), Hooke 
Jeeves (HJ), Particle Swarm Optimization using Inertia Weight (PSOIW), and a hybrid 
PSO Constriction/Hooke Jeeves (PSOC/HJ) algorithm. 
 Building upon the single objective optimization for daylighting performance, 
Chapter 5 presents a method of bi-objective optimization of daylighting and thermal 
performance. The daylighting optimization method was expanded to solve this bi-
objective optimization problem. Thermal performance was evaluated by how heat 
transfer across enclosure elements impacts hourly heating and cooling loads. Lighting 
performance was evaluated based on the frequency and magnitude at which daylight 
levels, during occupied hours, deviate from a desired target illuminance range. A single-
zone classroom design in Charlotte, NC was optimized for north, south, east, and west 
orientations. For each orientation, a Pareto front was approximated to help evaluate trade-
offs between thermal and daylighting objectives. Results show that for the south 
orientation, thermal and daylighting objectives are not in strong conflict, however, for 
other orientations there is a more marked conflict between these objectives, particularly 
for the north orientation. 
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 Chapter 6 presents a method of adapting the developed optimization method to 
calibrate an energy model to measured data, minimizing the difference between the two. 
This provides a means to ensure the energy model used for design optimization produces 
reasonably good results. The developed method of model calibration is relevant to 
building projects to be optimized where there is an existing building, such as a retrofit 
project or a standard design to be replicated, that can be measured and modeled. A case 
study example of such a project is presented. Hourly temperature and energy values were 
collected from an existing building to serve as the basis of design for other buildings. An 
energy model of this building was developed and calibrated to measured values. This was 
done by searching for the set of model parameter values that minimized the error between 
modeled and measured temperatures. The calibrated energy model was then used to 
optimize the prototype design for thermal and lighting performance. Since key 
parameters of the optimized energy model were calibrated, the results of the design 
optimization are more trustworthy than had a non-calibrated energy model been used. 
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CHAPTER 2: REVIEW OF THE LITERATURE
2.  

2 
This chapter first reviews related work about building design optimization and then 

reviews related work about building energy model calibration. 
2.1. Review of Related Building Design Optimization Work 

The application of optimization algorithms to the problem of energy efficient 
building design optimization has received much attention in recent years. For the problem 
of daylighting design, evolutionary-based optimization algorithms have been used more 
than other methods (see e.g. [19-23]), especially when the problem becomes intractable 
by a simple brute-force approach. This is due to the complex relationships between 
design parameters and performance. Gagne and Andersen apply a genetic algorithm (GA) 
to optimize façade design for daylighting performance and to facilitate “performance-
based” design exploration with a specific focus on integration into the design process 
[20]. This work focused on a generative and goal-oriented design process that integrated 
a GA to search for high-performing/near optimum thermal and lighting design solutions 
as evaluated by DOE2.1E. Results showed that the GA could find near optimal designs 
for basic building massing and window dimensions for different orientations and 
climates. GAs for ceiling form optimization in response to daylight levels was discussed 
in [22]. This paper's focus was on the shape of the ceiling with regard to how well it 
reflects and diffuses sources of daylight for the satisfaction of interior illumination needs. 
Works focused on bi-objective thermal and daylighting optimization include [24, 25]). 
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Hu and Olbina developed a faster approach for predicting thermal and lighting 
performance of buildings. They performed a bi-objective optimization of basic 
fenestration parameters, window dimensions, glazing transmittances, and blind 
reflectance, for thermal and daylighting performance. Padovan optimized the design of an 
external shading device, accounting for its interaction with dynamic blinds, for thermal 
and daylighting performance. 

In general, related work has shown that optimization algorithms are successful at 
finding high performing daylighting and thermal design solutions. The research presented 
in this paper builds upon the literature discussed above with some similarities but also 
several differences. Related work typically has investigate parameters that can be 
adjusted as single values in model input files. More complex parameters (e.g., ceiling 
height of complex room shapes and detailed fenestration elements such as lightshelves 
and external shading devices) have rarely been integrated in to optimization routines. 
Most works that do consider complex geometry evaluate either daylighting or thermal 
performance, but not both. When daylighting performance and thermal performance have 
been considered together, daylighting has been evaluated using simple methods. 
Additionally, the simultaneous optimization of solar and light transmittances of a 
window, with a dynamic constraint to ensure the physical feasibility of the window, has 
not been seen and is developed in this work. The stated dynamic constraint ensures that 
found solutions have realistic light to solar gain (LSG) values representative of 
commercially available products. In this work, a robust swarm based algorithm, 
GenOpt’s hybrid PSO Constriction/Hooke Jeeves (PSOC/HJ), was used to optimize such 
parameters along with complex geometry. In addition, a method of evaluating daylighting 
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performance was developed that was found to aid optimization algorithms in “fine-
tuning” complex daylighting designs. This method was based on state-of-the-art dynamic 
daylighting metrics. Additionally, the dynamic sizing and modeling of an economizer 
cycle for thermal performance has not been seen by the author in other works and, it too, 
has been developed in this work. 
2.2. Review of Related Energy Model Calibration Work 

Model calibration is important because optimization of a building model is only 
useful if the model closely predicts actual energy use for given weather and operational 
conditions. Because an energy model is a simplification of complex systems with many 
interactions, and the operation of buildings by humans is stochastic in nature, numerous 
studies have highlighted the discrepancies between modeled and measured quantities and 
are cataloged by [26]. Notable examples include [27] where model error was found to be 
50% on average for the studied building. Many LEED certified buildings earn LEED 
certification points based on energy use predicted by an energy model based on 
ASHRAE’s Energy Cost Budget (ECB) method [28]. As such, LEED certified buildings 
have been the focus of several studies that compare predicted and actual energy use of 
buildings. In [29] modeled and measured energy use of LEED certified buildings was 
studies and it was found that energy use predictions for individual buildings were very 
inconsistent; measured energy use ranged from 50% to 275% of that predicted. [30] 
further highlights the discrepancy between predicted and actual energy use of LEED 
certified buildings, and [31] performed a detailed analysis of two LEED certified 
buildings and found that their models over predicted energy consumption by 14% and 
25%. 
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As the works above have shown, building energy models have a reputation of 
being inaccurate. Because of this, much effort has been given to energy model calibration 
and several standards and example case studies have been developed [32-38]. However, 
these efforts and standards mostly focus on calibrating energy model results to monthly 
utility usage data, because these data are readily available. Studies have used hourly data 
as the basis of calibration [39, 40], and have correctly identified a major problem of 
calibrating to coarse data: many model solutions can closely match monthly utility data, 
making it difficult to identify which of the co-solutions is the most accurate 
representation of reality. In other words, there can exist many calibrated model instances 
because they each produce “acceptable” measures of calibration. The co-solutions 
problem stems from interactions and compensatory relationships between model 
parameters. For example, if internal heat from equipment is too low, the solar 
transmission of glazing could be increased to compensate. How is one two know whether 
the solar transmission of glazing is truly higher than originally thought, or if some other 
parameter, such as equipment heat gain, is the true source of greater heat gain? 

Studies that have calibrated to hourly values focus on HVAC system energy use, 
which can suffer from a similar co-solution problem as course data. This issue arises 
from the interaction between the HVAC system and the building loads. The potential 
flaw in this approach is that compensatory relationships may exist between HVAC and 
load-affecting parameters (such as those related to the building envelope and internal heat 
gains). For example, if a cooling system is not functioning properly, and therefore using 
more energy than it normally would, envelope parameters in the energy model, with the 
cooling system modeled as properly functioning, can be adjusted to create artificially 
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high cooling loads. As a result, the modeled cooling system energy consumption will also 
be artificially high and may closely match that of the actual cooling system. Figure 2.1 
illustrates such an example. Here, a close match between modeled and actual energy use 
was obtained by an artificially high infiltration rate. Upon closer examination of the 
“calibrated” model, the unrealistically high infiltration rate was discovered. Since the 
model assumed proper function of the cooling system, and air leakage is uncertain and 
difficult to measure, infiltration rates were adjusted until energy consumption matched 
measured values. After this discovery, it was determined that the cooling system was not 
operating properly, and thereby consuming excessive energy. 

 
 

 Figure 2.1: Component of peak cooling loads of “calibrated” energy models 
 
 
 
With advancements in building automation systems (BAS) and building 

monitoring systems (BMS), and deeper market penetration of related products, often 
building energy and systems data (temperatures and flow rates) are available on a 
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granular time step and at an increasingly affordable cost. This increasing access to 
building performance data has opened new possibilities for higher fidelity building 
energy model calibration. Some have demonstrated the value to model calibration that 
such data can provide [41-44]. However, none have decoupled envelope loads and 
HVAC energy usage (i.e., the thermal loads from the systems responding to them) to 
address the potential compensatory relationship between the two.  

The work presented here, specifically in Chapter 6, advances the related model 
calibration work by independently capturing the building heating and cooling loads, as 
determined by the building envelope and internal gains. Building internal gains from 
lights and equipment can be known at hourly, or in some cases sub-hourly, intervals 
because such data is monitored and reported by many BASs. BASs also have the ability 
to monitor room temperatures. Using these data, it is possible to measure building loads 
independent of effects from HVAC systems. This is done by temporarily disabling 
HVAC systems and recording the change in space temperature over time, the thermal 
response of the building. It is then possible to calibrate the modeled thermal response of a 
building to its measured thermal response. Internal heat gains from lights and equipment 
are determined by the BAS and input into the model. Actual weather conditions are also 
input into the model, leaving the envelope parameters as the only undetermined 
parameters that affect the thermal response. These envelope parameters can then be 
explored and optimized, with the goal of matching the actual thermal response of the 
building as close as possible. Subsequent to this, a properly functioning HVAC system 
can be modeled and used to audit the performance of the actual HVAC system.  
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For the purpose of building design optimization, accurately describing the building 
envelope, decoupled from the effects of the HVAC system, is an important first step. If a 
basic version of the envelope of the building to be optimized is characterized well, the 
optimized variant of the base design can be trusted with a reasonable degree of 
confidence. This approach is most appropriate in two cases. The first case is when there 
is an existing building similar to the one to be optimized. The base model can then be 
calibrated to data from the existing building. The second case is related to renovation 
projects. When an existing building is to be renovated, a base model can be calibrated to 
data from it before it is renovated. This model can then be used to optimize the 
renovation design. 
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CHAPTER 3: BUILDING ENERGY MODEL CALIBRATION: A SIMULATED 
EXAMPLE

3.  
3 

In this chapter, the design of a classroom building, subsequently optimized for 
lighting and thermal performance in Chapters 4 and 5, is used to demonstrate how an 
energy model can be calibrated to measured data. It is necessary to assess the accuracy of 
an energy model against actual performance data before using the model as a basis of 
design optimization. To this end, a method of energy model calibration, that is more fully 
described in Chapter 6, is used here to demonstrate how the quality and trustworthiness 
of an energy model can be increased before it is used for optimization purposes. The 
presented method is novel in that it is based on calibration to hourly end uses of energy 
and hourly zone temperatures, as opposed to daily or monthly aggregated energy usage, 
as is commonly done. The thermal characteristics of the building envelope are calibrated 
in isolation of the effects of the HVAC system. This allows for precise tuning of key 
envelope parameters and is significant because envelope parameters are the focus of 
subsequent optimization efforts.  

To study the effects of the building envelope, namely how it responds to dynamic 
weather conditions, it is necessary to remove the effects of a building’s HVAC systems. 
When this is done, heat is added to or removed from the air mass of spaces/zones in the 
building by “passive” means, causing changes in temperature over time. This is referred 
to as the thermal response of the building or, more precisely, the thermal response of the 
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thermal zones that compose the building. The thermal response, or profile of temperature 
changes over time, in a zone is determined by factors in three main categories. 

 
1) Weather factors  

a. Dry-bulb temperature 
b. Relative humidity 
c. Sun position 
d. Direct solar radiation 
e. Diffuse solar radiation 
f. Ground temperature 

  
2) Envelope factors 

a. Thermal properties of envelope surfaces (floor, walls, roof, and 
fenestration) 

b. U-values as determined by material thickness, conductivity, specific 
heat, and diffusivity 

c. Solar transmittance of transparent surfaces (SHGC) 
d. The amount of internal mass (e.g., furniture and interior walls) and its 

thermal properties 
e. Infiltration and exfiltration of air  

 
3) Internal heat gain factors 

a. Heat gain from lights 
b. Heat gain from equipment 

 
 

Key parameters, not related to HVAC effects, that affect loads in buildings when 
they are occupied are heat gain from occupants, increased heat gain from lights and 
equipment used by occupants (although these may be measured and accounted for), and 
heat gains and losses from infiltration and exfiltration of air driven by occupant behavior 
such as the opening of doors when entering and exiting the building.  

It is possible to largely determine all the factors impacting a zone’s thermal 
response, except those in the envelope category. This is accomplished through 
measurement and data collection. For example, it is possible to measure the weather and 
internal heat gain factors impacting a zone’s thermal response. The collection of hourly 
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local weather measurements is often available. Hourly energy usage data of key electrical 
circuits can be acquired from commercially available building automation systems 
(BASs) and Building Management Systems (BMSs). Thus, the effects of weather factors 
and heat gains from lights and equipment can be reasonably determined and accounted 
for in a building energy model. With these two categories of thermal response factors 
accounted for, a detailed study of envelope parameters, as the only undetermined values 
impacting the thermal response of a zone, can be conducted. It is here that energy model 
optimization methods can aid in the determining of envelope parameters. The below 
example describes the process of thermal response analysis, and subsequent model 
calibration, through a similar optimization framework as is presented in later Chapters 4 
& 5 for the optimization of building design for lighting and thermal performance. 
3.1. Demonstration of a Method of Energy Model Calibration 

Figure 3.1 shows the basic classroom design that is later optimized. Here it is 
demonstrated, through simulation, how an energy model of the classroom may be 
calibrated. The method by which this is done follows. Using an initial model, based on 
the design optimization results from Chapter 5, hourly temperatures of the building 
interior are reported. On Saturdays and Sundays of the simulation, the modeled HVAC 
system was disabled so as to allow the space temperature to “float”. This was the thermal 
response of the building to the weather conditions on these test days. Saturdays and 
Sundays were used as test days because weekends are typically when a building is 
unoccupied and disabling the HVAC system will be least disruptive to people and 
operations. One thermal response “test” was conducted for each month of the simulation. 
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The simulation was run from January through the end of June, resulting in 6 thermal 
response test periods. TMY3 weather data for Charlotte, NC was used [45].  

 

  
 
 
 
 
Figure 3.1: Illustration of building design used for energy model calibration 
 
Certain envelope parameters of the model were intentionally changed and 

identified for optimization/calibration. These parameter values were searched and 
modified by an optimization algorithm with the objective of minimizing the Root Mean 
Square Error (RMSE) between the hourly thermal response temperatures of the base 
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model and the model being calibrated. It was assumed that the parameter set that 
minimized the RMSE between the models’ outputs would be close to the “true” 
parameter set, as defined in the base model. 
3.2. Results of Model Calibration Demonstration 

Figure 3.2 shows the hourly temperatures of the base model’s thermal response 
for the April thermal response test period. Also included on this graph are the hourly 
temperatures of the initial instance of the to-be-optimized version of the energy model. 
The initial model produced a thermal response that had an RMSE, with the base model’s 
thermal response, of 2.1. It can be seen that there is a large discrepancy between the two 
thermal responses. Table 3.1 lists the intentionally modified parameters and the values 
they took on for the base model and initial to-be-optimized model.  

An optimization procedure was then applied to the problem of calibrating the 
intentionally modified model. After about 150 simulations, the algorithm found a set of 
parameter values that resulted in a very good fit between the thermal responses (Figure 
3.3). The calibrated model produced a thermal response that had an RMSE, with the base 
model’s thermal response, of 0.013. The parameters values found by the optimization 
algorithm closely matched those of the base model, as seen in Table 3.1. 

The results of this demonstration show that the theory of model calibration 
through thermal response analysis is potentially useful for determining key envelope 
parameters of an energy model to be subsequently optimized. In Chapter 6, this theory is 
more fully developed and applied to the calibration of an energy model of an actual 
building with measured data. This calibrated model is then used in a demonstration of 
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optimizing the envelope design of the existing building for lighting and thermal 
performance.  

 
Table 3.1: Model parameters of base model and initial and calibrated models 

Model Parameter Base Model Value Initial Model (to be calibrated) Calibrated Model 
Roof Conductivity 0.049 0.03 0.049 
Window U-value 2.67 2.2 2.66 
Window SHGC 0.69 0.15 0.69 

 
 
 

 Figure 3.2: Thermal response of base mode and initial model to be calibrated 
 
 
 

 Figure 3.3: Thermal response of base model and calibrated model 
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CHAPTER 4: OPTIMIZATION OF DAYLIGHTING PERFORMANCE
4.  

4 
In this chapter, a method of optimizing building design is developed such that the 

illuminance needs of occupants is satisfied, to the greatest degree possible, through the 
admission and distribution of natural light. Key design parameters of the building were 
identified for optimization and feasible ranges for them were searched by optimization 
algorithms with the goal of achieving, as close as possible, ideal natural lighting 
conditions for each occupied hour of the year. The results of this chapter include the 
identification of optimum building designs for daylighting and the analysis of the 
performance of four optimization algorithms in their ability to efficiently and constantly 
find such designs. 

Before defining the specific objective function in consideration, illuminance and 
related terms are defined. Illuminance (i.e., incident light) at a point (E) is determined by 
integrating over the hemispherical field of luminance (i.e., surface brightness) seen by 
that point (Eq. 4.1) [46]). It is measured in lux, lumens per square meter, or foot-candles 
(fc), lumens per square foot. Besides the location of the point within the building/room, 
there are multiple external parameters (Ω) that influence the light field seen at any point 
in the building, including the building surface geometry, surface material properties (e.g., 
reflectance and/or transmittance), and a sky and sun model derived from historical 
climate/location data (month, day, hour, latitude, longitude, global horizontal irradiance 
and direct normal irradiance). 
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(4.1) 
 
 
 
 
 

 
 
 
 To approximate Eq. (4.1), a backwards ray-tracing method can be used based on a 
discrete number of sampling rays (2n2, where n is an integer parameter) as shown in Eq. 
(4.2) [46]. The amount of luminance associated with each ray is calculated and, 
accordingly, the illuminance of the point is determined as a summation of the individual 
luminance values. 
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denote an individual design parameters such that ω1 ∈ Ω1. Typically, these decisions will 
need to be within allowed minimum and maximum specifications, which are denoted as 
ωmin and ωmax, respectively. Similarly, ω2 denotes an individual fixed parameter or input 
such that ω2 ∈ Ω2. The L(θj, ϕk|Ω) function is based on the luminance in the direction θj, 
ϕk as seen by the calculation point. 

For daylighting evaluation, illuminance is typically measured at calculation points 
at workplane height (0.75 m above the floor). An illuminance (E) measurement is said to 
be within target if it is within Emin and Emax (typically, 100 lx and 2000 lx [47], however, 
here, a narrower range of 500 lx to 1000 lx is used in a modified manner described below 
to better distinguish between the performances of designs. Therefore, here, the objective 
is to identify a design that yields the maximum number of measurements within or in 
close proximity to the target range (denoted here using P which is formally defined 
below). 
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Several daylighting metrics based on hourly measurements have been developed. 
These include Daylight Autonomy (DA), Continuous Daylight Autonomy (CDA), Useful 
Daylight Illuminance (UDI), Spatial Daylight Autonomy (sDA), and Annual Sun 
Exposure (ASE) [47-50]. DA is the percentage of illuminance values above a minimum 

max1min

max2121max
min21min21

max21min

11

)(Equation                 
tosubject

)|(if)|(/
)|(if/)|(

)|(if1
max

3.2

22







 







  




EEEE
EEEE

EEE



22 

 

desired illuminance. Because DA has no upper threshold for illuminance, it does not 
capture whether a design is over-illuminated and, therefore, possibly visually 
uncomfortable. CDA gives partial credit to illuminance values below the minimum 
desired illuminance, but has the problem of not accounting for visual comfort. sDA is the 
parentage of area (based on the fraction of calculation points) that are above 300 lx for at 
least 50% of the annual hours evaluated. This metric also has the problem of not 
accounting for visual comfort; however, it is intended to be used in conjunction with 
ASE, which is a proxy measurement for visual comfort. ASE is the percentage of area 
(based on the fraction of calculation points) that is above a maximum threshold, typically 
1000 lx, by direct sunlight alone for more than 250 annual hours evaluated. UDI is the 
percentage of illuminance values above a desired minimum, typically 100 lux, and below 
a desired maximum, typically 2000 lx. Unlike other metrics, UDI’s “target range” of 
illuminance captures the daylight sufficiency and visual comfort of a design solution 
because values above the upper threshold are likely to cause visual discomfort/glare [49]. 
The measure of daylighting performance used here was based on UDI because a good 
daylighting solution meets both the illuminance and visual comfort requirements of 
occupants, and UDI is a good single indicator of both. However, based on experience, 
UDI and other metrics score too generally for optimization algorithms to converge 
efficiently. This is because these metrics give full credit to illuminance values above the 
minimum threshold or within the large target range and no credit to other values (except 
for CDA which gives partial credit to values below the minimum threshold), which leads 
to “crisp” binary based scores that do not always distinguish well enough between 
designs for algorithms to efficiently search the design space. 
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In addition to aiding the optimization process, a narrow target range of 500 lx to 
1000 lx is more rigorous than the typical 100 lx to 2000 lx range, with regard to guarding 
against visual discomfort/glare, and is therefore used here. Even though the traditional 
2000 lx upper limit is accepted as a good guard against visual discomfort, others have 
found a 500 to l000 lx target range to be the best metric for measuring how well the 
illuminance and visual comfort needs of occupants are met [51, 52]. Calculated values 
within this range were given full credit (a value of 1) while outside values were given 
partial credit (a value between 0 and 1) proportional to the distance away from either the 
upper or lower boundary of the target range, as defined by Eq. (4.3) and seen in Figure 
4.1. This scoring system ensured a unique score for every design solution and aided the 
optimization algorithm to converge quickly upon optimum solutions. As can be seen in 
Figure 4.1, the performance function is not symmetric about the target range because the 
benefit of values below the target range quickly diminishes while values above the target 
range can still be beneficial. The nature of the performance score curve helps to 
distinguish between designs. For example, if 0 value scores were given to all points 
above the upper threshold, then there would be no way to distinguish between the designs 
that grossly over-illuminate the classroom and those that moderately over-illuminate the 
classroom. The possibility of not optimizing to the best, least glare causing, solution is 
guarded against by the optimization algorithm finding the design solution that minimizes 
the magnitude of over-illuminated points. This effectively created a fuzzy membership 
function, which has been shown to work well in other types of optimization problems 
[53]. Using 88 calculation points, this method was found to give a unique score to each 
design solution and, therefore, a more precise representation of daylighting performance. 
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Figure 4.1: Graph of Eq. (4.3) used to score hourly illuminance values. 

 
 
 
In this case, the following design parameters or decision variables (Ω1) were selected: 
 
 

CS  = Ceiling Shape 
CH  = Ceiling Height 
CWA  = Clerestory Window Area 
DWLT  = Daylight Window Light Transmittance (translucent) 
VWLT = View Window Light Transmittance 
CWLT  = Clerestory Window Light Transmittance 
ESL  = Exterior Shade Length 
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And the fixed parameters or inputs (Ω 2) included the following: 
 
 

x = x-coordinate   of   the   illuminance   calculation   point 
y = y-coordinate   of   the   illuminance   calculation   point 
m = month   of   year 
d = day   of   month   (varies   between   28   and   31   depending   on   month) 
h = hour   of   day   (only   occupied   daylit   hours   used) 
α = simulation   parameters   (including   number   of   sampling   rays) 
β = static   model   geometry   and   material   properties 

 
 
4.1. Optimization Problem Formulation 

Eight rows of calculation points on the x-axis and 11 rows of calculation points on 
the y-axis were used to sample illuminance. This resulted in 88 calculation points on a 
0.91 m × 0.91 m grid centered in the classroom. Emin = 500 lx and Emax = 1000 lx were 
selected and the design parameters were normalized such that the minimum and 
maximum values corresponded to 0 and 1. Thus the following specific optimization 
problem was obtained: 
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Eq. (4.4) can be modified to 
 
 
ܲ݅ = 

(௨  ௨௧ ௧௦) (௨  ௨ௗ ௨௦)                                           (4.5) 
 
 
 
which transforms P to Pi, a value between 0 and 1 where 1 represents perfect daylighting 
performance. Representing daylighting performance with Pi allows for simple 
comparison between the performances of solutions found within a specific problem, and 
also between different design problems. 
 The design of a classroom, shown in Figure 4.2, for daylighting performance was 
chosen as an optimization problem. As discussed before, seven design parameters were 
selected for optimization: ceiling shape (CS), ceiling height (CH) (note: daylight window 
height increased with CH), clerestory window area (CWA), daylight window 
(translucent) light transmittance (DWLT), view window light transmittance (VWLT), 
clerestory window light transmittance (CWLT), and exterior shade length (ESL). These 
design parameters are identified in Figure 4.2. 
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 Figure 4.2: Building design parameters optimized. 
 
 
 
CWA was increased or decreased by uniformly varying the width of the three clerestory 
windows from their centers. The clerestory windows’ centers remained fixed. CS was 
varied by “sliding” a 0.61 m flat section of the ceiling perpendicular to the side windows. 
The ceiling sloped up to both ends of the room from this 0.61 m flat section, thus varying 
the position of the flat section changed the shape of the ceiling. CH was varied by 
increasing the height of the ceiling. The top of the daylight window (the upper glass of 
the side window) moved with the CH. The 0.61 m flat section of the window also moved 
with CH. ESL was varied by extending the distance away from the building the exterior 
shade reached. DWLT, VWLT, and CWLT were varied by uniformly changing the light 
transmittance of their associated windows. 
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Some of the main reasons for choosing these design parameters include: 
 
 
1) CS influences how light admitted by windows is inter-reflected and delivered 

to calculation points. 
2) Greater CH allows for a larger daylight window, thus admitting more daylight 

into the classroom. 
3) Greater CWA increases the daylight delivered to calculation points located at 

the back of the classroom. 
4) Greater DWLT increases the daylight delivered to calculation points 

throughout the classroom. The daylight window was modeled as a translucent 
material and delivers diffuse light to the classroom. 

5) Greater VWLT increases the daylight delivered to calculation points close to 
the view window. 

6) Greater CWLT increases the daylight delivered to calculation points located at 
the back of the classroom. 

7) ESL can help reduce excessive daylight close to the window, while also 
reducing solar heat gain. 

 
 

Table 4.1 shows the minimum and maximum settings of the investigated design 
parameters. Note that each design parameter was normalized such that 0 and 1 
corresponded to the low and high settings, respectively. 
 
 

Table 4.1: Minimum and maximum settings of the 
investigated design parameters 

Design Parameter Minimum -Maximum 
CS (distance from window) 1.52 m- 6.10 m 
CH (height of ceiling above floor) 2.44 m – 3.35 m 
CWA (width of clerestory 
windows) 

0.30 m – 2.44 m 
DWLT 30% - 70% 
VWLT 10% - 70% 
CWLT 30% - 70% 
ESL 0.15 m – 1.22 m 
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Daylighting performance was evaluated by measuring daylight illuminance delivered 
to 88 calculation points at workplane height (0.75 m above the floor), evenly spaced on a 
0.91 m × 0.91 m grid (11 rows by 8 columns) centered in the classroom, for every hour of 
the year that the classroom is scheduled to be occupied. This was accomplished by using 
the daylight coefficient method [54] and its associated programs available in the ray-
tracing software RADIANCE, along with hourly climate data for Charlotte [45]. The 
RADIANCE programs used were gendaymtx, rcontrib, and dctimestep. For daylight 
coefficient calculations using rcontrib, the sky was divided in to 578 patches and the 
following key ray-tracing parameters were used: 12 ambient bounces (ab), 50,000 
ambient divisions, and 0.00002 for the minimum contribution of each traced ray (lw). 
BASH shell scripts were written to calculate the Pi scores from the hourly illuminance 
values output by the RADIANCE programs. Each design solution took about 2 minutes 
to evaluate. As described in formulation (4.3), calculation point values within a desired 
illuminance range (i.e., between 500 lx Emin and 1000 lx Emax, neither too bright nor too 
dark) were fully rewarded while calculation point values outside of this range were 
partially rewarded based on their distance from either the upper or lower threshold. This 
narrow target illuminance range was found to help the optimization algorithm converge 
more quickly to near-optimal solutions. A wider target illuminance range, e.g., between 
300 lx and 2000 lx, is representative of appropriate illuminance levels for office and 
school work, but was found to produce longer convergence times. The narrower 
illuminance range helps distinguish better between designs when approaching near-
optimal solutions. 
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4.2. Solution Method 
The optimization problem in Eq. (4.4) is relatively complex due to the physical 

relationship described in Eq. (4.2). “If-then” statements make the problem discontinuous 
as well. The “if-then” statements in the objective function can be replaced by binary 
decisions (thus yielding a mixed integer non-linear optimization problem) but this does 
not simplify the problem either due to the complexity of the illuminance function. As 
discussed in the literature, there are simulation programs for computing the illuminance 
function [55-57]. As previously described, one of these packages, RADIANCE [57], is 
utilized here in conjunction with GenOpt. GenOpt was created to allow for the integration 
of optimization algorithms and any simulation program that reads and writes text files as 
input and output. GenOpt essentially acts as a dispatcher, or controller, between 
optimization algorithms and simulations programs. GenOpt includes methods of 
manipulating simulation input files and reading variables from simulation output files. 
Because of its generic functionality, it is fairly easy to “plug and play” different direct 
search and meta-heuristic optimization algorithms in the solution of a particular 
simulation-based problem. Direct search and meta-heuristic algorithms do not require 
computation of directional derivatives and are, therefore, appropriate for simulation-
based design problems that contain coding features that introduce discontinuity in the 
objective function. 
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4.2.1. Optimization Algorithms 
The performance of four optimization algorithms that are implemented in GenOpt 

is compared. In this section, the key concepts of how each algorithm operates are 
discussed; however, a comprehensive description of each is not provided. A detailed 
description of each algorithm may be found in [58], which contains technical information 
for each, as well as references related to the original development of each. The 
performance of an algorithm (the number of simulations required to converge to a 
solution, if not stopped by a limit on the number of simulations, and the performance 
value of the found solution), is dependent on its parameter settings. The evaluation of the 
effect of parameters settings on algorithm performance is not addressed by the work 
presented here. Instead, the parameters of each algorithm are set to values demonstrated 
to perform well for energy related building design problems [51]. The parameters chosen 
for each algorithm are listed in Table 4.2. Future work may include a detailed study of 
the influence of key parameters of each algorithm on performance and the identification 
of optimal parameters for daylighting design problems. The algorithms described below 
belong to the “direct search” and “meta-heuristic” classes of optimization algorithms; 
they make search decisions by the direct evaluation of the performance of solutions and 
do not require the derivative of the performance function to operate. As discussed above, 
these algorithms are appropriate for the daylighting design problem solved here which 
contains discontinuities in its performance function. 
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Table 4.2: Parameters of algorithms. 
Common Stopping Criteria for all Algorithms  
Maximum Iterations 2000 
Maximum Equal Results 100 
SA  
Accuracy  0.01 
Step Size Factor 0.1 
Block Restart Check  10 
Modify Stopping Criterion  TRUE 
HJ  
Mesh Size Divider 2 
Initial Mesh Size Exponent 0 
Mesh Size Exponent Increment 1 
Number of Step Reductions 4 
PSOIW  
Neighborhood Topology Von Neumann 
Neighborhood Size 5 
Number of Particles 20 
Number of Generations 20 
Seed 1 
Cognitive Acceleration 2.8 
Social Acceleration 1.3 
Maximum Velocity Gain Continuous 0.5 
Initial Inertia Weight 1.2 
Final Inertia Weight 0 
PSOIW/HJ   
PSOIW Component  
Neighborhood Topology Von Neumann 
Number of Particles 10 
Number of Generations 10 
Cognitive Acceleration 2.8 
Social Acceleration 1.3 
Maximum Velocity Gain 0.5 
Constriction Gain 0.5 
Mesh Size Divider 2 
Initial Mesh Size Exponent 0 
HJ Component  
Mesh Size Divider 2 
Initial Mesh Size Exponent 0 
Mesh Size Exponent Increment 1 
Number of Step Reductions 3 
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4.2.2. Simplex Algorithm of Nelder and Mead with the Extension of O’Neill 
This direct search algorithm begins by constructing a simplex in the solution 

space of the design problem composed of vertices that represent unique design solutions 
[59]. The size of the simplex is always one more than the number of design parameters 
being optimized. At each vertex, the performance of the associated design solution is 
simulated and recorded. For each iteration, the vertex with the worst performance is 
replaced by another, causing the simplex to “crawl” around the design space in search of 
an optimum solution. The vertex to be preplaced is reflected outside of the simplex along 
a line defined by its position and the centroid of the opposing side of the simplex. If the 
performance value of the new vertex is better than those of all other vertices, it is moved 
further along the reflection line and used to define the simplex of the next generation. 
This is known as expansion and causes the algorithm to be aggressive or “greedy” in its 
search for an optimum. If the performance value of the new vertex is equal to or worse 
than that of the best stationary vertex, and better than that of at least one other stationary 
vertex, it is accepted and used to define the simplex for the next generation. If the 
performance value of the new vertex is worse than those of all stationary vertices, it is 
moved along the reflection line toward its original position. This is known as contraction. 
If the performance value of the vertex generated by contraction shows no improvement 
over the original performance of the vertex before reflection, the entire simplex is shrunk 
such that the vertex with the best performance value remains fixed while all other vertices 
move toward it. Key parameters of this algorithm are the step size factor, which controls 
the distance between simplex vertices, and the minimum variance of the performance 
values of the vertices that must be met to achieve convergence. Advantages of this 
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algorithm include few simulations needed for each iteration and rapid improvement 
during initial runs. However, the algorithm has been demonstrated to sometimes fail at 
reaching convergence and often only finds a local optimum. Starting the algorithm at 
multiple random locations can often overcome the latter issue. 
4.2.3. Hooke Jeeves Algorithm 

This direct search algorithm starts with a single point in the design space, referred 
to here as the “head”, from which it searches in a predefined distance (step size) in both 
directions of all coordinates for a better performing solution [60-63]. After simulating the 
performance values of all design solutions emanating in the coordinate directions from 
the head, the solution with the best performance is identified. The head is moved along 
the line between it and the best performing solution a distance scaled by a parameter call 
the acceleration factor. The process of evaluating solutions is repeated at this new head 
location. When a solution better than the head cannot be found, the step size is reduced, 
allowing for the search to continue within the region of the design space defined by the 
extents of the previous set of non-head design solutions. This process is continued for a 
predefined number of step size reductions. After the maximum number of step size 
reductions have been made and a design better than the head cannot be found, the 
algorithm terminates. In GenOpt, the parameters mesh size divider, initial mesh size 
exponent, and mesh size exponent increment controlled the incremental reductions in step 
size. The reader is referred to the literature for specific information about these 
parameters. 

 
 



35 

 

4.2.4. Particle Swarm Optimization Algorithm 
This meta-heuristic algorithm is a population based algorithm that developed out 

of evolutionary computational theory and social behavior theory [64-66]. It was 
originally developed to model the social behaviors of birds in a flock, or swarm. A basic 
concept of this algorithm is that a swarm of particles with dynamic velocities influenced 
by the location of found high-performing solutions “flies” through the design space in 
search of an optimum solution. During each iteration of the algorithm, the performance 
values associated with the particles’ positions are simulated and used to control where the 
particles move next. This algorithm begins by choosing random points in the design 
space for the initial positions of the particles composing the swarm. Each particle 
remembers the position of the best performing solution it has visited (personal best) and 
that of the best solution found by its neighbors (neighborhood best). Neighboring 
particles are determined by the neighborhood topology parameter. The velocity of every 
particle is controlled by its current position relative to the positions of its personal best 
and neighborhood best solutions such that it accelerates toward both potentially optimal 
positions. During each iteration, a particle's magnitude of acceleration in the direction of 
its current neighborhood best solution is made proportional to its distance from the 
neighborhood best solution, a constant parameter value, and a random scalar between 0 
and 1 that is dynamically generated. The same is true of a particle's magnitude of 
acceleration in the direction of its personal best solution. In addition to these coefficients 
of acceleration, a dynamic inertia weight coefficient can be added. This coefficient starts 
large and gets smaller, with each iteration. When the inertia weight is large, it aids global 
search of the design space by allowing high acceleration of particles. When it is small, it 
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aids local searching and convergence by slowing down the movement of particles. An 
alternative approach to the inertia weight coefficient is called the constriction coefficient. 
During each iteration, this method scales the acceleration of a particle in each direction 
by a randomly generated scalar that can be greater than 1. A scalar less than one is then 
applied to the overall velocity of the particle. These operations constrain the overall 
velocity of a particle. This is important because unconstrained velocity of particles has 
been demonstrated to be problematic; particles tend to accelerate back and forth about 
optimal solutions and convergence is not reached. 
4.2.5. Particle swarm Optimization and Hooke Jeeves Hybrid Algorithm 

In addition to the three algorithms described above, the PSO/Hooke Jeeves hybrid 
algorithm implemented in GenOpt is evaluated. This algorithm begins by running the 
PSO algorithm using the constriction coefficient method. Once complete, the optimum 
solution found is used as the starting point for the Hooke Jeeves algorithm. The intent of 
this hybrid algorithm is that the PSO run will locate the optimal region of the design 
space and the Hooke Jeeves run will perform a refined search of that area. 
4.3. Results 
4.3.1. Numerical Experiments and Results 

For each of the four algorithms evaluated, 12 optimization runs were conducted, 
starting at random locations in the design space. Figure 4.3 illustrates the 
optimization/convergence process of each algorithm in which the best found solution is 
plotted against the number of simulations conducted to find it. It should be remarked that 
the number of runs was determined based on the required computation time for the 
experiments and the number of computers available. All simulations were run on 
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computers running Linux OS with 3.4 GHz quad-core processors. Each simulation took 
approximately 2 minutes to converge. Thus, an optimization run requiring 250 
simulations took between 8 and 9 hours to complete. Since the PSO algorithms are 
population based, their simulations could be run in parallel on the quad-core processors. 
Convergence times for the algorithms varied from 2 to 9 hours.  
 
 

(a) (b) 

(c) (d) 
Figure 4.3: Optimization sequences of 12 optimization runs for (a) Simplex Algorithm of 

Nelder and Mead with the Extension of O’Neill; (b) Hooke Jeeves; (c) 
Particle Swarmusing Inertia Weight; and (d) hybrid PSO Constriction/Hooke 
Jeeves. 

 
 
 

Figure 4.3(a) shows that the SA quickly reached convergence (ranging from 61 to 
155 simulations); however, found solutions were not consistently close to the best overall 
found solution (found by PSOIW with a Pi value of 73.0%). SA produced solutions with 
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Pi values ranging from 70.4% to 72.7%. Figure 4.3 (b) shows that the HJ algorithm runs 
reached convergence in 97 to 233 simulations. Like the SA, the HJ algorithm produced 
inconsistent results; Pi values of found solutions ranged from 71.1% to 72.9%. Figure 
4.3(c) shows that the PSOIW algorithm found the highest performing solution (73.0%) 
and consistently found solutions extremely close to it, ranging from 72.7% to 73.0%. In 
all 12 PSOIW runs, convergence was not reached before the 500 simulation limit that 
was set. Figure 4.3(d) shows that the PSOC/HJ algorithm also produced more consistent 
results than SA and HJ; however, its results were slightly less consistent than those of 
PSOIW, with Pi values ranging from 72.4% to 73.0%. In Figure 4.3(d) the benefit of the 
HJ run after PSOC is evident. After the PSOC sequence of found solutions “flattens” 
between 50 and 100 simulations, the HJ algorithm finds designs with improved Pi values. 
The PSOC/HJ algorithm runs took between 172 and 255 simulations to reach 
convergence. 
 Similar conclusions can be drawn from Figure 4.4, which plots the solutions 
found by each run of each algorithm and the number of simulations required to reach 
either convergence or the maximum number of simulations allowed. It can be seen that 
the SA typically reached convergence in the fewest number of simulations, but did not 
produce constant performance values of found solutions. HJ typically took about 50 more 
simulations to converge than SA and its performance values of found solutions were 
slightly less varied than those of SA. PSOC/HJ took about 25 to 75 more simulations to 
converge than HJ and found very high performing and more consistent solutions than SA 
and HJ. PSOIW found solutions are tightly clustered near the best overall solution of 
73.0%, but took the greatest number of simulations, 500, to find. 
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Figure 4.4: Plot of the best performing solution found by each run of each algorithm and 

the number of simulations required to reach either (1) convergence or (2) the 
stopping criterion of the maximum number of simulations. The overall best 
found solution of each algorithm is highlighted in red. 

 
 
 

Across all algorithms, performance values of found solutions varied by 3.6%. 
This is relatively small, but significant for this design problem, which started with basic 
good daylighting principles and was interested in “fine-tuning” the design to its best 
possible state. The results presented here indicate that a single run by PSOIW or several 
runs by PSOC/HJ can be trusted to find a near optimal design solution. However, for 
other design problems where the design team is interested in quickly finding a good, but 
not necessarily near-optimal, solution(s), performance differences of this magnitude may 
not be significant. In such cases, a quickly converging algorithm such as the SA may be 
appropriate. 
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The nature of found solutions varied somewhat. A description of the architectural 
characteristics of the best overall solution found by PSOIW follows. As seen in Figure 
4.5, the best overall solution had the following characteristics: a ceiling height of 3.35 m, 
a ceiling sloping down from the window wall such that the flat section of ceiling is 
6.10 m from the window wall, 1.52 m wide clerestory windows with 0.7 light 
transmittance, a 1.22 m exterior shade, a daylight window light transmittance of 0.3, and 
a view window light transmittance of 0.35.  
  



41 

 

 (a) 

 (b) 
Figure 4.5: Best overall solution found by PSOIW; section perspective (a), exterior 

elevation (b). 
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Several insights can be made by analyzing the results of the optimization runs. 
Figure 4.6 shows the parameter values of the best found design solution of each 
algorithm. Although each algorithm found at least one solution within 2% of the overall 
best found solution (Figure4.5), and similar in design parameter values, variation existed 
in the design parameter values of each algorithm's set of found solutions. Figure 4.7 
shows the dispersion of the parameter values of found solutions by each algorithm. It can 
be seen that SA and HJ did not find consistent design solutions, while PSOIW and 
PSOC/HJ found much more consistent design solutions. By examining the design 
parameter values of solutions found by PSOIW in Figure 4.7(a), it is evident that the 
highest performing solutions have large CH, CS, and ESL values; a VWLT value in the 
middle of its range; a small DWLT value; and CWA and CWLT values in the upper half 
of their ranges. All design parameter values of solutions found by PSOIW have little 
variance, except for CWA and CWLT. This is likely due to the interaction between CWA 
and CWLT; both regulate the amount of light delivered through the clerestory windows. 
When one decreases the other may increase and result in a similar amount of total 
admitted light. 
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 Figure 4.6: Parameter values of best design solution found by each algorithm. 
 
 
 

(a) (b) 

(c) (d) 
Figure 4.7: Dispersion of design parameters values of optimal solutions found by each 

algorithm. (a) Simplex Algorithm of Nelder and Mead with the Extension of 
O’Neill; (b) Hooke Jeeves; (c) Particle Swarm using Inertia Weight; and (d) 
hybrid PSO Constriction/Hooke Jeeves.  
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It is evident that the best solutions have a large translucent daylight window with 
a light transmittance value of 0.3. This low of a value of light transmittance for an upper 
daylighting window is usually not considered good practice; however, in this design it 
creates a large, but not too bright, light source. Because the daylight window faces south, 
large amounts of direct sunlight are mitigated and delivered in a diffuse manner to 
calculation points throughout the space, which all have a large view of this high window. 

While other designs appear to be maximizing the daylighting delivered through 
the daylight window to the entire room, Figure 4.8 shows a very different design solution 
found by one of the runs of SA with a Pi of 70.4%. This design appears to focus on 
providing the appropriate amount of light to the back of the room, by increased CWA and 
CWLT, while sacrificing appropriate daylighting at the front of the room. A short 
exterior shading device will result in uncontrolled direct sunlight in winter months near 
the view window. However, with only a 2.6% lower Pi than the best overall found 
solution, the reduced ceiling height of this design solution may have a relatively low 
construction cost, and therefore be a more desirable solution to the design team. 
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 (a) 

 (b) 
Figure 4.8: Solution found by SA with a lesser Pi value (70.4%), lower ceiling height, 

and different ceiling shape, as compared to best performing solutions. Section 
perspective (a), exterior elevation (b). 
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In conclusion, the nature that each algorithm demonstrated at solving this 
complex daylighting problem reveals that PSOIW and PSOC/HJ can be relied on to 
consistently find solutions likely close to the absolute best solution. SA and HJ can find 
lower, albeit slightly, performing solutions more economically, but with less consistency 
of found solutions. Nonetheless, the variety of solutions found by SA and HJ may be of 
interest to a design team, who may be willing to sacrifice some amount of performance 
for other design criteria, such as construction cost or aesthetics. Likewise, design 
solutions found by PSOIW and PSOC/HJ on their way to converging can be explored for 
such tradeoffs. Analyzing found solutions’ design parameter values can lead to insights 
such as the interaction between clerestory window area and clerestory window light 
transmittance. 
4.3.2. Analysis of Thermal Performance 

Thus far, this work has focused on optimizing building design for daylighting 
performance without regard for how thermal loads, sensitive to envelope design, are 
affected. Because of this, the overall energy performance of found solutions is unknown. 
And it is not known if the benefits of daylighting optimization are negated by large 
heating and cooling loads stemming from solar gains and conducted losses through 
windows. While the method presented in this paper is intended to be part of an overall 
integrated method that includes evaluation of thermal loads, an examination of the 
thermal performance of the daylighting optimal designs found here is warranted. 
4.3.3. Description of Thermal Models 

The analysis of thermal performance consisted of three parts. In the first part, the 
annual thermal and lighting performance of a reference classroom building energy model 



47 

 

is analyzed for the purpose of establishing a benchmark performance value and standard 
settings of key energy model parameters. Heating and cooling loads were defined as the 
annual sum of hourly thermal energy needed to be added or removed from the room air 
mass to maintain a thermostat set point for temperature and humidity. For all analyzed 
models, heating loads, cooling loads, and lighting energy were normalized to kW h/m2. In 
the second part, these key parameters are used in an optimization process of an energy 
model of the daylit classroom design presented above. The classroom design was 
optimized for thermal performance without regard for daylighting, serving as a reference 
for understanding how a design might be traditionally optimized. In the third part, the 
best daylighting design of the classroom found by the PSOIW algorithm is optimized for 
thermal performance. Its optimized parameters include the solar heat gain coefficients of 
the daylight, view, and clerestory windows for thermal performance. Solar heat gain 
coefficients were constrained to values realistic for the daylighting optimized light 
transmittance of each window group. In this energy model, the benefit of daylight to 
reduce electric lighting energy was taken into account. All energy models were simulated 
on an annual hourly basis using TMY3 weather data of Charlotte, NC [45]. 

EnergyPlus 8.1.0 was used to model energy performance. Of principal interest 
was knowing how the building envelope design affected annual heating and cooling loads 
placed on HVAC systems and annual lighting energy use. Analyzing thermal loads 
simplified the energy simulations and allowed for focused analysis on the building 
envelope. The goal was to identify the building envelope design that minimized the 
annual energy use of any HVAC system design for the building. EnergyPlus's “Ideal 
Loads Air System” HVAC object accommodates such an analysis as it “…can be thought 
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of as an ideal unit that mixes air at the zone exhaust condition with the specified amount 
of outdoor air and then adds or removes heat and moisture at 100% efficiency in order to 
produce a supply air stream at the specified conditions” [67]. In addition, the sensible and 
latent heating and cooling loads can be reported easily. 

The first model analyzed was the Primary School in ASHRAE climate zone 3A 
from the U.S. Department of Energy Commercial Reference Building Models of the 
National Building Stock [68]. This set of reference buildings was developed to “assess 
new technologies; optimize designs; analyze advanced controls; develop energy codes 
and standards; and to conduct lighting, daylighting, ventilation, and indoor air quality 
studies.” The models are based on “reasonably realistic building characteristics and 
construction practices.” Since this model was a realistic reference of actual building use 
and energy performance, its key parameters (envelope constructions, lighting power 
density, equipment power density, occupant density, thermostat set points, and associated 
schedules) were also used in the two thermal optimization models of the classroom 
design, described below. Key parameters common to all three energy models analyzed 
are listed in Table 4.3. Parameters specific to the reference model are listed in Table 4.4. 
For the purpose of this study, which focused on the design of a single classroom, the 
south facing classroom zone of the reference model, most similar to the classroom design 
being optimized, was isolated and given an Ideal Loads Air System. Interior walls of the 
classroom that interfaced other thermal zones in the complete model were made adiabatic 
surfaces.  
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Table 4.3: Energy model parameters common to all energy models. 
Parameter Description Value 
Lighting Power Density (LPD) 15.06 W/m2 
Equipment Power Density (EPD) 15.00 W/m2 
Exterior Wall U-Value 0.79 W/m2-K 
Floor U-Value 3.40 W/m2-K 
Ceiling U-Value 0.38 W/m2-K 
Window U-Value 3.24 W/m2-K 
Occupancy Density 4 m2/person 
Sep – Jun Occupancy Rates 8:00 AM – 5:00 PM: 75%; 5:00 PM – 9:00 PM: 15% 
Jul – Aug Occupancy Rates 8:00 AM – 9:00 PM: 15% 
Infiltration Rate 0.39 ACH 

 
 
 

Table 4.4: Energy model parameters of reference classroom 
model. 

Parameter Description Value 
South Window SHGC 0.25 
Window to Wall Area Ratio 0.35 

 
 
 

The second model analyzed for optimal thermal performance was the classroom 
design presented in Section 4.1 and 4.2, but instead of investigating light transmittance of 
daylight, view, and clerestory windows, solar heat gain coefficients (SHGC) of the 
window groups was investigated. All other optimized envelope variables were optimized 
within their ranges outlined above. SHGCs were allowed to range from 0.15 to 0.6. 
Twelve optimization runs using the PSOIW algorithm were conducted. PSOIW was 
chosen because it was found to most consistently find near-optimal solutions for the 
daylighting optimization runs. The annual sum of heating loads, cooling loads, and 
lighting energy in kW h/m2 was minimized. The east, west, and north walls of the 
classroom were made adiabatic, as they would interface other thermal zones with similar 
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thermostat set points in a complete school building. Parameters specific to the reference 
model are listed in Table 4.5. 
 
 

Table 4.5: Energy model parameters of design optimized 
for thermal performance without regard for 
daylighting performance.  

Parameter Description Value 
CH (height of ceiling above floor)* 3.35 m 
CWA (width of clerestory windows)* 1.52 m 
ESL* 1.22 m 
Daylight Window SHGC* 0.16 
View Window SHGC* 0.16 
Clerestory Window SHGC* 0.16 
Window to Wall Area Ratio 0.38 
* Optimized parameter  

 
 

The third model analyzed was the best overall daylighting solution found by 
PSOIW, described in Section 4.3.1 and show in Figure 4.5. All parameters optimized for 
daylighting were left unchanged. The SHGCs of the daylight, view, and clerestory 
windows were optimized for thermal performance. Commercially available 1” insulated 
glazing units (IGU) were surveyed to identify realistic minimum SHGCs to associate 
with the LT of each glass group. The minimum SHGC values identified were, for the 
daylighting windows (LT 0.3), 0.2; for the view windows (LT 0.35), 0.2; and for the 
clerestory windows (LT 0.7), 0.35. SHGCs were allowed to be no greater than the LT of 
their window group. The reduction of hourly lighting energy made possible by daylight 
illuminance was accounted for in the following way. Hourly average workplane daylight 
illuminance values in three zones were calculated and used to create a fractional (0 to 1) 
hourly lighting schedule. The lighting schedule was used in the energy model to scale 
hourly lighting power (LP) values to levels appropriate to supplement daylight 
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illuminance, effectively modeling a continuously dimming daylighting control system. 
The classroom was divided into three lighting zone rows of equal size running parallel to 
the lower daylighting wall. In each zone and for each hour, if the average daylight 
illuminance was greater than 450 lx (90% of the 500 lx target illuminance), its fractional 
LP value was set to 0.1 (assuming a continuous dimming system with a minimum output 
of 10%). For values below 450 lx, the fractional LP value was set to the quotient of the 
average daylight illuminance and 500 lx. For each hour of the year, the fractional LP 
values of each zone were averaged to arrive at a grand average of fractional LP for the 
entire classroom. These hourly values were modified by the building occupancy schedule 
(lights were assumed to be fully off when unoccupied) and used as a continuous dimming 
lighting schedule for the EnergyPlus model. As with the second model, twelve 
optimization runs using the PSOIW algorithm were conducted to minimize the annual 
sum of heating loads, cooling loads, and lighting energy, and the east, west, and north 
walls of the classroom were made adiabatic. Parameters specific to the reference model 
are listed in Table 4.6. 
 
 

Table 4.6: Energy model parameters of design optimized 
for thermal performance that was based on the 
daylighting optimal design. 

Parameter Description Value 
CH (height of ceiling above floor) 3.23 m 
CWA (width of clerestory windows) 2.17 m 
ESL 1.21 m 
Daylight Window SHGC* 0.20 
View Window SHGC* 0.21 
Clerestory Window SHGC* 0.35 
Window to Wall Area Ratio 0.35 
* Optimized parameter  
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4.3.4. Summary of Thermal Analysis Results 
Table 4.5 and Table 4.6 list the optimized envelope design parameters of the 

second and third models. Table 4.7 lists the annual energy performance of each model. 
Figure 4.9 illustrates the monthly heating loads, cooling loads, and lighting energy of the 
three analyzed models. For all models, the largest load was cooling, followed by lighting 
and heating. For all models, heating loads were significantly less than cooling loads and 
lighting energy. The noticeably small heating loads are due to internal gains from 
relatively high lighting and equipment power densities and winter solar gains from south-
facing glass. The thermal optimal solution minimized cooling loads by minimizing 
SHGC values and maximizing the length of the exterior shade. Even though its ceiling 
height, exterior shade, and window areas were optimized for daylighting without regard 
for thermal impacts, the third model of the daylighting optimal solution had annual loads 
40%, and 33% lower than the reference and thermal optimal models, respectively. In this 
case, the benefit of daylight to reduce electric lighting use, and associated internal heat 
gain, significantly reduced the two largest energy loads of cooling and lighting, without 
causing excessive solar gains during the summer or thermal losses during the winter. The 
presented method of daylighting optimization has a steep penalty for over-illumination by 
daylight (Figure 4.1), which likely guards against excessive solar gains and is evident in 
the best design's low LT values of the view and daylight windows (allowing for lower 
SHGC values) and its relatively long exterior shading device. It is important to note that, 
without the benefit of reduced lighting energy from daylighting, the daylighting optimal 
design had a poor annual performance of 145.8 kW h/m2. This underscores the 
importance of properly working lighting control to achieve the energy reduction potential 
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of a daylighting optimal design. It should be stated that the thermal performance of a 
design optimized for daylighting performance will likely vary by building orientation, 
and, as done here, a design optimized for daylighting performance should always be 
critically evaluated for overall energy performance. 
 
 

Table 4.7: Annual energy performance of energy models. 
Model Sum of annual heating, cooling, and 

lighting loads (kW h/m2) 
Reference classroom 154.7 
Thermally optimized classroom 137.3 
Daylighting optimized classroom 92.4 

 
 
 

(a) (b) 

(c) 
Figure 4.9: Monthly energy performance; reference classroom (a), classroom optimized 

for thermal performance without regard for daylighting (b), and thermal 
optimization of best daylighting design (c). 
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4.3.5. Discussion and Conclusions 
A new methodology to optimize building design for daylighting performance that 

uses state-of-the-art dynamic climate-based lighting simulations was presented. Four 
optimization algorithms were evaluated for their performance at finding an optimally 
performing solution. The four algorithms were Simplex Algorithm of Nelder and Mead 
with the Extension of O’Neill (SA), Hooke Jeeves (HJ), Particle Swarm Optimization 
using Inertia Weight (PSOIW), and a hybrid PSO Constriction/Hooke Jeeves (PSOC/HJ) 
algorithm. Each algorithm was run twelve times and in each case was able to improve 
daylighting performance above a randomly chosen base design. The SA algorithm 
produced inconsistent results and reached convergence in the fewest number of 
simulations (from 61 to 155), typically. The HJ algorithm reached convergence in fewer 
simulations (from 97 to 233) than PSOIW and PSOC/HJ, typically, but also produced 
inconsistent results. Compared to SA and HJ, The PSOC/HJ hybrid algorithm produced 
more consistent solutions closer to the overall best solution found, but with more 
simulations (from 172 to 255) required. The PSOIW found the best overall design 
solution and produced the most consistent design solutions. PSOIW required the greatest 
number of simulations and did not reach convergence before reaching the maximum 
number of simulations specified (500). In addition, the SHGCs of the best daylighting 
design's window groups were optimized for thermal performance. This design had an 
annual energy performance (the sum of hourly heating loads, cooling loads, and lighting 
energy) 40% lower than the DOE reference classroom model and 33% lower than the 
classroom design that was optimized for thermal performance without regard for 
daylighting. The steep penalty for over-illumination by daylight applied in this method 
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likely guards against excessive solar gains. It is suggested that, when time allows, the 
PSOIW algorithm is the preferred algorithm for this and similar optimization problems; 
any increase in search time is worth the certainty of the quality of the design solutions 
found. When analysis time is constrained, PSOC/HJ will likely find a solution close to 
the absolute best in a reasonable amount of time. When only a good solution, or a variety 
of good solutions, is/are desired, multiple runs of SA may be appropriate. 

The use of optimization algorithms in complex daylighting design problems 
allows building design decision makers to identify high-performing designs that would 
have otherwise been unidentified. In addition, the results of an optimization run can be 
analyzed to identify a collection of near-optimal solutions, which likely have different 
design attributes that the design team may consider. 

The optimization method presented was used to solve a design problem with only 
vertical daylighting apertures; however, it is expected to be relevant to optimizing all 
types of building apertures, including horizontal ones, because it operates on the design 
factors that impact transmitted light from the sky vault, the sun disk, and that which is 
reflected off of exterior surfaces. Therefore, the presented method and conclusions about 
the performance of algorithms are expected to also apply to designs with horizontal 
skylights. 
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CHAPTER 5: BI-OBJECTIVE OPTIMIZATION OF DAYLIGHTING AND 
THERMAL PERFORMANCE

5.  
5 

In this chapter, a challenging problem is addressed: optimizing early building 
design for daylighting and thermal performance with the objectives of passively 
satisfying occupant thermal and luminous needs, to the greatest degree possible, therefore 
minimizing energy demand for heating, cooling, and lighting. A bi-objective optimization 
method using GenOpt and its implementation of a Hooke Jeeves and Particle Swarm 
Optimization algorithm is demonstrated that investigates how building enclosure design 
influences the above objectives. Thermal performance was evaluated by how heat 
transfer across enclosure elements impacts hourly heating and cooling loads. Lighting 
performance was evaluated based on the frequency and magnitude at which daylight 
levels, during occupied hours, deviate from a desired target illuminance range. A single-
zone classroom design in Charlotte, NC was optimized for north, south, east, and west 
orientations. For each orientation, a Pareto front was approximated to help evaluate trade-
offs between thermal and daylighting objectives. Results show that for the south, east, 
and west orientations, thermal and daylighting objectives are not in strong conflict, 
however, for the north orientation there is a more marked conflict between these 
objectives. 

In Charlotte’s South Atlantic region, where this investigation was conducted, 
heating, cooling, and lighting represent the three largest end uses of energy in 
commercial and institutional buildings, 23.4%, 12.4%, and 24.2%, respectively [2]. 
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Optimizing the building enclosure to minimize one of these quantities will likely have a 
negative influence on at least one of the others. This conflict between thermal and 
lighting objectives is largely because the windows that provide daylight to a space are 
also the weakest thermal barrier between the inside and outside environments and have a 
significant impact on heating and cooling loads. Optimum thermal and daylighting design 
varies based on climate and geographic location, orientation, and surrounding exterior 
context. These considerations make optimizing for thermal and daylighting performance 
a unique problem for every building designed. The purpose of this study is to 
demonstrate a method of optimizing building enclosure design such that annual thermal 
and lighting energy is minimized while providing a high-quality lighting environment for 
occupants. 

Presented is a simulation-based optimization method to solve this problem, 
integrated with GenOpt and its implementation of a hybrid Generalized Pattern Search 
implementing Hooke Jeeves and Particle Swarm Optimization algorithms [58]. An 
application of the proposed methodology is demonstrated that optimizes a grade school 
classroom prototype design (Figure 5.1). Key prototype design parameters are optimized 
to minimize the frequency and magnitude of hourly daylight levels, during occupied 
times, outside a desired illuminance range. Design parameters are also optimized to 
minimize the annual sum of hourly heating, cooling, and lighting energy. Heating and 
cooling loads are defined as the thermal energy necessary to add to or extract from the 
room air to maintain the thermostat set point temperature.  
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Daylighting performance was accounted for by simulating daylight illuminance at 
calculation points evenly distributed throughout the room on a 0.91 m by 0.91 m grid. 
This was done for every occupied hour of the year. The daylighting performance score of 
a particular design solution was based on that solution’s population of occupied hourly 
illuminance values. Each illuminance value was given a score between 0 and 1 that 
diminished proportionally with its distance from a narrow target range. Thus, an ideally 
daylit room would have all occupied hourly illuminance values given a score of 1. To 
calculate the overall daylighting performance score of a particular design, its illuminance 
value scores were summed and then divided by the sum of illuminance values scores if it 
had achieved ideal performance (all hourly illuminance values scores equal to 1). This 
resulted in a value between 0 and 1 that represented how close the design was to ideal 
performance. The calculation of daylighting performance is described in detail in Chapter 
4. 

Thermal performance was accounted for by performing annual energy simulations 
of design solutions. Thermal performance was defined as the sum of annual hourly 
energy consumption affected by envelope design, namely heating system energy, cooling 
system energy, and lighting energy. Annual hourly energy for each of these was summed 
and used as a measure of the thermal performance of a design. To account for the benefit 
of using outdoor air to cool a zone, when in cooling mode and the outdoor air 
temperature is below that of the zone’s return air, an economizer cycle was modeled. 
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5.1. Methodology 
5.1.1. Optimization Problem Formulation 

The objective of this optimization problem is to maximize daylighting and 
thermal performance of a building across various scenarios. Before defining the specific 
objective function in consideration, thermal performance and daylight illuminance, along 
with related terms, are defined. 

The evaluation of daylighting performance in this chapter is based on the 
formulation of daylighting performance described in Chapter 4. In this chapter, the n 
parameter of Eq. (4.2) is considered in detail. The n parameter controls the number of 
sampling rays used in the daylighting simulation and is a critical parameter for 
calculating daylight illuminance at a point. Therefore, it was studied, along with other 
key parameters, below in a sensitivity analysis that determined parameter values that 
balanced simulation time and accuracy of results. 

For thermal performance, a heating or cooling load is defined as the amount of 
heat needed to be added to or removed from the room air mass to maintain the room air 
mass temperature at the thermostat set point temperature. Heat is transferred from the 
room air mass by heat exchange across the building envelope. These exchanges include 
conduction through all envelope elements, shortwave (solar) and longwave (infrared) 
radiation between the external environment and building interior through windows, and 
infiltration and exfiltration of air through cracks and gaps in the building envelope. 
Ultimately, heat is transferred to and from room air by convection with interior surfaces, 
which are warmed or cooled by conducted and/or radiated heat. Because of their transient 
nature caused by dynamic weather conditions and thermal capacitance of materials, a full 
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description of how these heat transfer processes are modeled, is not possible here. 
However, the thermal load of a room can be generalized and expressed as: 
 

 
 
 
 

(5.1) 
 
 
 
 

 
 

In Eq. (5.1), the terms qce, qiv, and qconv are determined each through non-linear 
differential equations which are omitted here to keep the presentation concise and focus 
on the optimization aspects. For more details the reader may refer to [69]. For thermal 
evaluation, the sum of annual hourly heating loads and annual hourly cooling loads, 
modified by a heating efficiency of 0.85 and cooling system coefficient of performance 
(COP) of 3, was used. These system efficiencies were chosen to keep the found optimal 
solutions general with respect to HVAC system type. For ease of comparison with other 
buildings, this sum was converted to kWh/m2 of building floor area (denoted here as Q). 

Next, as in Chapter 4, the external factors (Ω) are elaborated. Without loss of 
generality, external factors were divided into two groups: design parameters or decision 
variables (Ω1) and fixed parameters or inputs (Ω2). Thus, Ω = Ω1 ∪ Ω2. Let ω1 denote an 
individual decision variable such that ω1 ∈ Ω1. Typically, these decisions will need to be 
within allowed minimum and maximum specifications, which are denoted as ωmin and 
ωmax, respectively. Similarly, let ω2 denote an individual fixed parameter or input such 
that ω2 ∈ Ω2.  
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For daylighting evaluation, illuminance was simulated at calculation points at 
workplane height (~0.75 m above the floor). Calculation points were uniformly 
distributed at workplane height on a 0.91 m x 0.91 m grid. This resulted in a 9 by 13 grid 
of calculation points in the optimized classroom described below (thus there are 9 values 
for x coordinates and 13 for y coordinates). Illuminance values were measured for every 
occupied hour of the year. An illuminance (E) value was said to be within target if it was 
within a desired  Emin and Emax representative of a comfortable luminous environment 
favorable for usual classroom activities, typically 300lx and 2500lx [49]. However, here, 
a narrower primary target range was used such that Emin = 500lx and Emax = 1000lx, 
which is different than daylighting metrics recently developed, or being developed, based 
on hourly climate specific measurements as described in detail in Chapter 4. Using 117 
calculation points, this method was found to give a unique score to each design solution 
and, therefore, a more precise representation of daylighting performance. 

The objective of the daylighting performance optimization was to find the design 
that maximized the sum of annual hourly daylighting scores of the calculation points. The 
objective of the thermal performance optimization was to minimize annual Q. These 
objectives, denoted P and Q, respectively, are captured in the formulation of the bi-
objective optimization problem in Eq. (5.2). 
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(5.2) 
 
 
 
 
 
 
 

 
 
In this case, the following design parameters or decision variables ( 1 ) were selected: 
 
 

CH   = Ceiling Height 
CW_LT  = Clerestory Window Light Transmittance 
CW_ST = Clerestory Window Solar Transmittance 
CWW   = Clerestory Window Width 
DW_LT = Daylight Window Light Transmittance 
DW_ST = Daylight Window Solar Transmittance 
ESL   = Exterior Shade Length 
LL   = Lightshelf Length 
VW_LT = View Window Light Transmittance 
VW_ST = View Window Solar Transmittance 
WW  = Window Width 
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And the fixed parameters or inputs ( 2 ) included the following: 
 
 

x = x-coordinate   of   the   illuminance   calculation   point 
y = y-coordinate   of   the   illuminance   calculation   point 
m = month   of   year 
d = day   of   month   (varies   between   28   and   31   depending   on   month) 
h = hour   of   day   (only   occupied   daylit   hours   used) 
α = simulation   parameters   (including   number   of   sampling   rays) 
β = static   model   geometry   and   material   properties 

 
 

In subsequent descriptions of found solutions, P has been converted to Pi based 
on Eq. (4.5), which normalized daylighting performance on a scale of 0 to 1 with 1 being 
the best possible daylighting score. 
5.1.2. Building Design Problem Definition 

The design of a classroom in Charlotte, NC, shown in Figure 5.1, was chosen as 
an optimization problem. Charlotte (35.2° N, 80.8° W) is located in ASHRAE Climate 
Zone 3A and is warm and humid with mild winters. Charlotte as 1327 heating degree 
days (15.5 °C base) and 1585 cooling degree days (15.5 °C base). The dimensions of the 
classroom were 8.1 m by 11.1 m. Windows were placed on one of the shorter side of the 
classroom. The orientation of the classroom, referenced in simulations runs described 
below, was such that the windows faced the stated orientation. The static parameters of 
the building enclosure design were based on constructions appropriate for a steel frame 
building in ASHRAE Climate Zone 3A, where Charlotte, NC is located. Table 5.1 gives 
the details of the thermally important materials used for the exterior walls, roof, and 
floor. 
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Table 5.1: Building enclosure materials. 
Material (from outside to inside) Thickness (m) 
Floor  
Concrete 0.101 
Carpet 0.005 
Exterior Wall  
Sheathing 0.002 
Insulation (0.045 W/m-K) 0.078 
Gypsum Board 0.013 
Roof  
Roof Membrane 0.009 
Insulation (0.049 W/m-K) 0.211 
Metal Decking 0.002 

 
 
 
As discussed before, eleven design factors were selected for optimization: ceiling 

height (CH), clerestory window light transmittance (CW_LT), clerestory window solar 
transmittance (CW_ST), clerestory window width (CWW), daylight window light 
transmittance (DW_LT), daylight window solar transmittance (DW_ST), exterior shade 
length (ESL), lightshelf length (LL), view window light transmittance (VW_LT), view 
window solar transmittance (VW_ST), window width (WW). 
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 Figure 5.1: Building design factors optimized 
 
 
 

CH was varied by increasing the height of the ceiling. The top of the daylight 
window (the upper glass of the side window) moved with the CH. The bottom of the 
daylight window and the top of the view window always met at two-thirds the distance 
from the bottom of the view window to the top of the daylighting window (this is good 
daylighting design practice). Likewise, the lightshelf and top edge of the exterior shade 
remained at the meeting of the daylight window and view window. CWW was increased 
or decreased by uniformly varying the width of the three clerestory windows from their 
centers. The clerestory windows’ centers remained fixed. The exterior shade length 
increased and decreased along its 45 degree angle from the exterior wall. Lightshelf 
length increased and decreased perpendicularly from the exterior wall. WW was 
increased or decreased by uniformly varying the width of the three daylight and view 
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window pairs from their centers. The pairs’ centers remained fixed. Table 5.2 shows the 
minimum and maximum settings of the investigated design factors. 
 
 

Table 5.2: Minimum and maximum settings of the 
investigated design factors. 

Design Factor Minimum -Maximum 
CH (height of ceiling above floor) 2.4 m – 3.7 m 
CW_LT 0.3 – 0.8 
CW_ST 0.1 – 0.7 
CWW 0.9 m – 2.4 m 
DW_LT 0.3 – 0.8 
DW_ST 0.1 – 0.7 
ESL 0 m – 1.2 m 
LL 0’ – 1.1m 
VW_LT 0.3 – 0.8 
VW_ST 0.1 – 0.7 
WW 0.9 m – 2.4 m 

 
 
 

Some of the reasons for choosing these design parameters include: 
 
 
1) Window sizes have a large impact on solar gains and conducted gains and 

losses. 
2) ST values have a great impact on solar gains. 
3) ESL can aid in control of solar gains while allowing for greater LTs of glass 

and thus more daylight admission. 
4) CH allows for a larger daylight window, thus admitting more daylight into the 

room. Also, the light admitted from the daylight window is delivered deeper 
into the room where it is usually more needed. 

5) VW_LT controls the daylight delivered to calculation points close to the view 
window. 

6) CW_LT controls the daylight delivered to the back of the room. 
7) DW_LT controls daylight delivered deeper into the room from the main 

daylighting wall. 
8) CWW and WW control the mount of light admitted through their respective 

windows and thus the locations to which those windows deliver light. 
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In short, these parameters independently affect the distribution of daylight 
throughout the space while having a large impact on solar gains and conducted gains and 
losses. Changing a parameter in one direction to improve either daylighting or thermal 
performance will usually result in a trade-off with the other objective, making the search 
for parameter value combinations that optimize both lighting and thermal performance an 
interesting optimization problem. 

Table 5.3 lists key static parameters of the classroom design used in the energy 
model. These values are based on ASHRAE 90.1 2010 standards [28] and the 
Department of Energy’s commercial reference buildings [70]. 
 
 

Table 5.3: Key parameters used in energy model of 
classroom. 

Energy Model Parameter Value 
Wall U-value (W/m2-K) 0.43 W/m2-K 
Floor U-value 2.193 W/m2-K 
Roof U-value 0.223 W/m2-K 
Window (all) U-value 2.672 W/m2-K 
Cooling Thermostat Set Point 25 °C 
Heating Thermostat Set Point 21 °C 
Lighting Power Density 10.76 W/m2 
Equipment Power Density 5.38 W/m2 
Ventilation Rate 0.08 m3/s - person 
Infiltration Rate 0.19 air changes/h 
Occupancy Density 0.25 people/m2 m 
Occupancy Schedule Week Days Sep-May 0.25 people/m2 m 
Occupancy Schedule Weekends Sep-May Unoccupied 
Occupancy Schedule Jun-Jul Unoccupied 

 
 
 

For the daylighting model, basic daylighting principles were followed for the 
assignment of light reflectance values to surfaces with 80%, 60%, and 30% assigned to 
the ceiling, walls, and floor, respectively. 
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5.1.3. Optimization Algorithm 
The optimization problem in Eq. (5.2) is relatively complex due to the physical 

relationship described in Eq. (4.2 & 5.1). If-then statements make the problem 
discontinuous, as well. The if-then statements in the objective function can be replaced 
by binary decisions (thus yielding a mixed integer non-linear optimization problem) but 
this does not simplify the problem either, due to the complexity of the illuminance 
function.  

GenOpt can interface with any simulation program that reads and writes text files 
for input and output. GenOpt includes several direct/pattern search and meta-heuristic 
optimization algorithms that do not require computation of directional derivatives. 
Because of the characteristics of Eq. (5.2), GenOpt was chosen as the optimization 
“controller” to execute daylighting and thermal simulations, read daylighting and thermal 
performance scores, and search the design space for optimal solutions. Here, GenOpt’s 
hybrid meta-heuristic (Particle Swarm Optimization using a constriction coefficient) and 
pattern search (Hooke Jeeves) algorithm, referred to as PSOC/HJ, is used. In Chapter 4, 
this algorithm was found to give good results with relatively few simulations. 

The PSO algorithm is a population based algorithm that was developed out of 
evolutionary computational theory and social behavior theory [64-66]. It is more fully 
described in Chapter 4. Here, several parameters (NP, NS, SA, CA, and CG) are 
highlighted again because they were investigated in the sensitivity analysis below. The 
number of particles composing the swarm in controlled by the NP parameter. Each 
particle remembers the position of the best performing solution it has visited (personal 
best) and that of the best solution found by its neighbors (neighborhood best). 
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Neighboring particles are determined by the neighborhood topology parameter and the 
NS parameter, which determines the number of particles in a neighborhood. The velocity 
of every particle is controlled by its current position relative to the positions of its 
personal best and neighborhood best solutions such that it accelerates toward both 
potentially optimal positions. During each iteration, a particle’s magnitude of acceleration 
in the direction of its current neighborhood best solution is made proportional to its 
distance from the neighborhood best solution, a constant parameter value known as SA, 
and a random scalar between 0 and 1 that is dynamically generated. The same is true of a 
particle’s magnitude of acceleration in the direction of its personal best solution, CA. In 
addition to these coefficients of acceleration, a constriction coefficient is used to limit the 
velocity of particles so that they more efficiently converge to an optimum point. When 
the constriction coefficient is large, it aids global search of the design space by allowing 
high acceleration of particles. When it is small, it aids local searching and convergence 
by slowing down the movement of particles. During each iteration, this constriction 
method scales the acceleration of a particle in each direction by a scalar controlled by the 
CG parameter. A scalar less than one is then applied to the overall velocity of the particle. 
These operations constrain the overall velocity of a particle. This is important because 
unconstrained velocity of particles has been demonstrated to be problematic; particles 
tend to accelerate back and forth about optimal solutions and convergence is not reached. 
5.1.4. Lighting Simulations 

There are several simulation packages (i.e., ray-tracing programs) available for 
computing the illuminance function [55-57]. One of these packages, RADIANCE [57], is 
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utilized here in conjunction with EnergyPlus [71], to calculate thermal performance, and 
GenOpt, to control the optimization procedure. 

Hourly illuminance values were simulated using the daylight coefficient method 
[54] and its associated programs available in the ray-tracing software RADIANCE, along 
with hourly climate data for Charlotte [45]. The RADIANCE programs used were 
epw2wea (which converted the EPW weather file to the WEA format), gendaymtx (which 
took the WEA formatted weather file and output hourly sky luminance models), rcontrib 
(which took the classroom model and calculation points as input and output daylight 
coefficients for each calculation point), and dctimestep (which took daylight coefficient 
values of calculation points and hourly sky models as input and output hourly 
illuminance values of calculation points). For daylight coefficient calculations using 
rcontrib, the sky was divided in to 578 patches. Key ray-tracing parameters are discussed 
below in the Section 5.1.4. BASH and GNU Octave scripts were written to calculate the 
Pi scores from the hourly illuminance values output by the RADIANCE programs. In 
addition, these scripts calculated hourly lighting schedules for the EnergyPlus simulations 
that accounted for the offsetting of electric lighting power made possible by daylight 
illuminance. Lighting schedules were produced for three lighting zones running parallel 
to the main daylighting wall and which divided the room equally into thirds. For each 
hour and for each zone, a scalar between 0.1 and 1 was produced that scaled the lighting 
power density to a level that complemented the amount of daylight present in the zone. 
By doing this, the energy models accounted for the reduction in electricity consumption 
from daylighting, and also the associated reduction in internal heat gain from lighting. 
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Hourly lighting schedule scalar values were calculated according to Eq. (5.3), which is 
based on a target illuminance of 500 lx. 
 
 

 
 

(5.3) 
 
 
 

 
 
 
5.1.5. Thermal Simulations 

EnergyPlus was used to perform the annual thermal simulations. Basic parameters 
of the energy model are given in Section 5.1.5. The energy model was simulated using 
the same EPW weather file of Charlotte, NC used to generate the hourly sky luminance 
models for the calculation of daylight illuminance. EnergyPlus’s Ideal Loads Air System 
object was used to calculate heating and cooling loads, which were scaled according to a 
generic heating system efficiency of 0.85 and a cooling system COP of 3. To account for 
the benefit of using outdoor air to cool a zone, when in cooling mode and the outdoor air 
temperature is below that of the zone’s return air, an economizer cycle was modeled. This 
required a sizing run to be performed, before the annual energy simulation, to size the 
maximum air flow rate of the system when cooling. For each building design solution, 
the process of performing this sizing run and subsequent annual simulation was 
automated through BASH scripts. 

To keep glass properties within realistic ranges, ST values were not allowed to be 
less than ½ of LT values. This constraint was implemented in GenOpt as a dynamic 
penalty function, which is described in detail in the GenOpt manual [58]. Design 
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solutions were penalized based on the magnitude by which they violated this constraint. 
The penalty increases with the number of simulations performed. This allowed for 
exploration of regions of the design space that violated the constraint but ensures that 
non-violating solutions are eventually converged upon. 
5.1.6. Determination of Pareto Fronts 

A Pareto front allows one to understand the trade-offs between confliction 
objectives of design solutions that are said to be “Pareto efficient” [72]. In the context of 
a bi-objective problem, Pareto efficient means that neither objective can be improved 
without worsening the other. Such solutions are called non-dominated. Because of this 
property, a population of Pareto efficient solutions will tend to form a Pareto front on a 
scatter plot whose axes represent the objectives. The front represents the farthest extent 
possible that design solutions can go in the directions of improving objective values. A 
Pareto front for the presented bi-objective problem allows decision makers to evaluate the 
trade-offs between daylighting performance and thermal performance and decide on a 
solution that best balances these conflicting objectives. Here, the Epsilon Constraint 
Method is used to determine the Pareto front of design solutions for the north, south, east, 
and west orientations of the classroom design [73]. The Epsilon Constraint Method finds 
points on the Pareto front by placing a constraint on one objective (determined a priori) 
and optimizing for the other objective. This creates a single objective problem and results 
in an optimized solution constrained in one objective dimension but fully optimized in 
the other. This process is repeated for multiple values of the constraint place on the one 
objective until the Pareto front is approximated at a sufficiently good resolution. Thermal 
performance was chosen as the objective to be constrained in the Epsilon Constraint 
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Method. Different values for the constraint were automatically explored, through 
automated scripts, until a well-defined Pareto front was established. 
5.1.7. Sensitivity Analysis of Lighting Simulation and PSO Algorithm Parameters 

Before optimization runs were preformed, a sensitivity analysis was performed, 
by means of a Design of Experiment (DOE), on the lighting simulations and PSOC/HJ 
algorithm with the goal of determining appropriate parameter settings for each. A DOE is 
a method of performing experiments to understand the response of a system to multiple 
parameter conditions [74]. DOE is a tool by which one can understand why these changes 
happen, that is the relationship between change in a parameter(s) and change in the 
response(s). This is of interest because one can gain an understanding of how sensitive 
the response of a system is to specific parameter changes. Parameters with a strong 
influence on system response should be set to values that ensure good results, regardless 
of impact on simulation time. Parameters with little influence can be set to values that are 
economical with respect to simulation time. Here, full 2k factorial designs (k 
factors/parameters at 2 levels, low and high) were used to study how sensitive the 
lighting simulations and PSO algorithm runs were to key parameters, with the goal of 
determining appropriate parameter settings that balance accuracy and time. Key outputs 
of a DOE run are plots showing the main effects (how changing the value of one 
factor/parameter changes the response) and interaction effects (how changing the value of 
one factor/parameter changes the response with different settings of the other factors).  

To better understand the effect of ray-tracing parameters on the calculation of 
illuminance values and daylighting performance Pi scores, key parameters of 
RADIANCE’s rcontrib program were investigated, including ambient bounces (ab), 
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ambient divisions (ad), and limit weight (lw). Because rcontrib’s method of calculating 
illuminance values, based on daylight coefficients and described above, does not use 
ambient caching, these parameters are the key determinants of rcontrib’s behavior. A 
short description of rcontrib’s parameters follows. For a detailed description of rcontrib 
and its parameters, readers are referred to its manual [75]. ab is the maximum number of 
diffuse bounces of light. It must be set to a number sufficiently large to account for the 
contribution of inter-reflected light to a point. ad is the number of ambient divisions and 
corresponds to the number of sampling rays, n, in Eq. (4.2). A large ad value will 
increase the probability of accurately sampling light entering a window as seen by a 
point. lw is known as the limit weight parameter. It requires the weight, or contribution, 
of each sampling ray to a point’s illuminance to be at least its value. Sampling rays that 
are estimated to contribute less than lw’s value are dropped from the ray-tracing 
calculation. It is important to set ad an lw to aggressive values since ambient caching is 
not used and, therefore, interpolation of values between sample ray locations does not 
occur. 

To verify the parameters initially used in this study, a 23 factorial design was 
created that used the initial parameter settings as the low factor levels and very aggressive 
parameter settings as high factor levels. These factor levels are given in Table 5.4. 
Daylighting simulations were performed on a south-facing classroom design with each 
design factor set to its center-point value. The Pi score was calculated and used as the 
response of the experiment. 10 replicates of this design were performed. The response 
values of replicates were averaged. As seen in Figure 5.2, the main effects of ab and ad 
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are very small. While the main effect of lw is larger than those of ab and ad, it is still 
quite small (0.002 Pi). 

 
 

Table 5.4: Factor levels for rcontrib sensitivity analysis. 
Parameter/Factor Low Setting High Setting 
ab 12 18 
ad 5 x 104 1 x 105 
lw 2 x 10-5 1 x 10-5 

 
 

 

Figure 5.2: Main effects of rcontrib parameters 
 
 
 

The interaction plot of this experiment (Figure 5.3) shows very little interaction 
between the parameters (factors have a similar effect regardless of the settings of the 
other factors). These results show that the initial parameter values for rcontrib produce 
very close Pi values to those of very aggressive parameters. The initial parameter values 
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were also associated with smaller simulation times. Therefore, the initial parameters were 
used in subsequent simulations. 
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 Figure 5.3: Interactions of rcontrib parameters 
 
 
 

A sensitivity analysis of the PSOC algorithm parameters was performed since it is 
the main algorithm of GenOpt’s PSOC/HJ hybrid algorithm. The goal of this sensitivity 
analysis was to identify PSOC parameters that reliably found near optimal solutions 
quickly so that the subsequent Hooke Jeeves algorithm run, which begins at the best 
solution found by PSOC, can search the region local to this solution for refinements. The 
PSOC algorithm parameter values were deemed to be more critical than those of the 
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Hooke Jeeves algorithm because when positioned at a near-optimal solution, the Hooke 
Jeeves algorithm will not have to search long to find a better solution, if it exists. 

The chosen sensitivity analysis for PSOC algorithm parameters was a 25 factorial 
design, which was performed twice: once with the Pi score of the found solution as the 
response and once with the simulation time as the response factor. The parameters/factors 
chosen for investigation were NP, NS, SA, CA, and CG. These parameters are described 
in Section 5.1.3. Table 5.5 gives the factor levels for this sensitivity run. 

 
 

Table 5.5: Factor levels for PSO sensitivity analysis 
Parameter/Factor Low Setting High Setting 
NP 10 20 
NS 1/5 NP 1/2 NP 
CA 1.3 2.8 
SA 1.3 2.8 
CG 0.5 1 

 
 
 
Figures 5.4 and 5.5 shows that NP had a very strong effect on simulation time; 

NS, CA, SA, CG had much less of an effect time, and all parameters had relatively minor 
effects on the Pi value of the found solution. This experiment confirmed that the default 
setting for PSO in GenOpt balance well the quality of found results with simulation time. 
Therefore, the default settings, shown in Table 5.6 and Table 5.7, were used. 
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 Figure 5.4: Main effects of PSO parameters on Pi scores 
 
 
 

 Figure 5.5: Main effects of PSO parameters on simulation time 
 
 
 

Table 5.6: Parameters of the GPS Hooke Jeeves Algorithm 
Parameter Value 
Mesh Size Divider 2 
Initial Mesh Size Exponent 0 
Mesh Size Exponent Increment 1 
Number of Step Reductions 3 
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Table 5.7: Parameters of the Particle Swarm Optimization 
Algorithm 

Parameter Value 
Neighborhood Topology Von Neumann 
Number of Particles 10 
Number of Generations 10 
Cognitive Acceleration 2.8 
Social Acceleration 1.3 
Maximum Velocity Gain 0.5 
Constriction Gain 0.5 
Mesh Size Divider 2 
Initial Mesh Size Exponent 0 

 
 
 
5.1.8. Optimization Process 

Figure 5.6 shows the sequence of operations and flow of data used to solve the 
optimization of the classroom model. GenOpt was used to control the optimization 
process. The optimization process was initiated by executing GenOpt, which accepted as 
input the parameters to be optimized (ω2), along with their ranges and initial values. 
Secondly, GenOpt generated RADIANCE and EnergyPlus input files by replacing 
variables in template input files with the values of parameters for the initial run. Thirdly, 
GenOpt executed a BASH shell script that coordinated the execution of RADIANCE and 
EnergyPlus. RADIANCE was executed first and output hourly illuminance values that 
were used to calculate a Pi score and lighting schedules. EnergyPlus was then executed to 
perform a sizing run to determine the maximum air flow rate for the economizer. After 
this, an annual simulation of EnergyPlus was executed that output thermal and lighting 
load data which was converted into kWh/m2 values for the design. With the simulations 
complete, GenOpt then accepted the thermal and daylighting performance scores as input 
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and used them to determine the region of the design space to search next. This process 
was continued until GenOpt reached its stopping or convergence criterion. 
 
 

 Figure 5.6: Sequence of operations used to solve classroom optimization process 
 
 
5.2. Results and Discussion 

Several observations of the nature of daylighting and thermal performance of this 
design for the cardinal orientations can be made from the Pareto fronts of each orientation 
(Figure 5.7) and their parameter values shown in Figure 5.8 and listed in Table 5.8. On 
each Pareto front, three designs, designated a, b, and c, are called out. For the north 
facing-orientation, much better daylighting performance was possible than in other 
orientations (87 Pi, which is approximately 10% better than the next best overall Pi score 
of all orientations), but this came at the cost of the overall poorest thermal performance 
score of all Pareto efficient solutions of all orientations (greater than 73 kWh/m2). In this 
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case, large windows admitted even, diffuse north daylight to the classroom but also 
caused large thermal losses in winter months, without direct solar gains during the day to 
help compensate for these losses. For the south facing-orientation, daylighting and 
thermal performances were constrained to a relatively narrow Pareto front, which 
contained the best overall thermal performance scores (less than 55 kWh/m2, 
approximately 11% better than the next best thermal performance score of all 
orientations). The south-facing design's best daylighting scores were similar to those of 
the east, and west-facing designs' (approximately 0.77 Pi). The very good thermal 
performance and relatively good daylighting performance of the south-facing orientation 
is a result of window sizes, LT values, and ST values that simultaneously provide 
appropriate amounts of daylight to the classroom when occupied, while minimizing 
negative solar gains during the cooling season and maximizing beneficial solar gains 
during the heating season. The south-facing orientation's windows were kept in the lower 
range of their possible dimensional values while the exterior shade and interior lightshelf 
were kept in the higher range of their possible values (Figure 5.8b). In short, the 
optimization of the south-facing orientation shows the benefits of traditional passive solar 
design. This is the only orientation that significantly benefits from winter gains, which 
have a large beneficial effect on overall thermal performance because of the disparity 
between heating and cooling system efficiencies. The east orientation showed more 
conflict between the objectives than the south orientation. Its range of thermal 
performance (61–63 kWh/m2) was worse than that of the south orientation (54–58 
kWh/m2). While its minimum daylighting performance (0.73 Pi) was similar to that of 
the south orientation, its best daylighting score (0.78 Pi) was slightly better than that of 
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the south (0.77 Pi). This may seem counter-intuitive, but it appears to result from the 
daily and seasonal occupancy patterns of the classroom and the physical characteristics of 
the east orientation optimized fully for daylighting. When fully optimized for thermal 
performance (the a solutions), the east-facing orientation's clerestory windows are 
smaller than those of the south-facing orientation. When fully optimized for daylighting 
performance (the c solutions), the east facing orientation's clerestory windows are larger 
than those of the south-facing orientation (Figure 5.8b and Figure 5.8c). This indicates 
that the east-facing orientation minimizes window area for thermal performance, since it 
has little potential for solar gain during the winter months and winter thermal losses by 
conduction dominate its overall thermal performance. The east-facing classroom, 
unoccupied in the summer, has fewer hours of low-altitude sun than the south-facing 
orientation. Therefore, when fully optimizing for daylighting, it guards less against it. It 
is also possible that early morning hours are relatively cloudy, making possible the east-
facing orientation's higher daylighting performance. 
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(a) (b) 

(c) (d) Figure 5.7: Pareto fronts of daylighting and thermal performance by orientation of 
classroom: (a) North-facing, (b) South-facing, (c) East-facing, and (d) West-
facing 
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(a) (b) 

(c) (d) Figure 5.8: Samples of Pareto solutions by classroom orientation: (a) North-facing, (b) 
South-facing, (c) East-facing, and (d) West-facing 

 
 
 

Table 5.8: Parameters of sample Pareto solutions 
 CH(m) CW_LT CW_ST CWW(m) DW_LT DW_ST ESL(m) LL(m) VW_LT VW_ST WW(m) 
North           
a 2.51 0.70 0.70 1.10 0.69 0.68 0.03 0.03 0.67 0.66 2.51 
b 3.66 0.68 0.61 2.34 0.69 0.62 0.28 0.30 0.70 0.58 3.66 
c 3.66 0.66 0.46 2.35 0.46 0.46 0.57 0.33 0.25 0.23 3.66 
South            
a 2.48 0.69 0.69 1.08 0.68 0.67 0.03 0.03 0.69 0.67 2.48 
b 3.20 0.69 0.56 0.92 0.68 0.68 0.95 1.05 0.64 0.60 3.20 
c 2.95 0.51 0.33 1.47 0.65 0.57 1.05 1.05 0.67 0.66 2.95 
East            
a 2.44 0.70 0.68 1.00 0.70 0.69 0.08 0.03 0.69 0.68 2.44 
b 2.97 0.70 0.70 1.31 0.70 0.54 0.29 0.19 0.66 0.58 2.97 
c 3.61 0.66 0.44 1.38 0.69 0.62 1.06 0.38 0.70 0.60 3.61 
West            
a 2.45 0.69 0.66 0.92 0.69 0.67 0.25 0.04 0.68 0.68 2.45 
b 2.92 0.68 0.64 0.98 0.70 0.36 1.05 0.10 0.33 0.32 2.92 
c 3.15 0.57 0.36 1.25 0.66 0.64 1.06 1.05 0.59 0.52 3.15  
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The west-facing orientation generally had similar performance characteristics as the 
east, except that its daylighting performance was slightly worse. This is most likely a 
result of clearer skies in afternoon hours resulting in low-altitude sun over-illuminating 
the classroom. 

Overall, the north-facing orientation exhibited the strongest conflict between 
daylighting and thermal performance, with daylighting performance scores ranging from 
67 to 87 Pi and thermal performance scores ranging from 64 to 74 kWh/m2. To gain a 
sense of the relative conflict between objectives of the different orientations, one can 
perform several operations on the Pareto front datasets. First, the daylighting and thermal 
performance scores are normalized over all orientations, with 0 representing the worst 
overall performance and 1 representing the best. Next, for each orientation, the distance 
between the best and worst thermal performance is determined. The same is done for 
daylighting performance. Finally, the product of the worst to best distances of thermal 
and daylighting performance is taken and represents the degree to which the objectives 
are in conflict for a particular orientation. These relative measures of conflict for the 
north, south, east, and west orientations were 0.52, 0.03, 0.03, and 0.02, respectively. 
Thus, the north orientation exhibited the greatest conflict while the south, east, and west 
orientations exhibited little conflict. 
5.3. Conclusions 

A hybrid GPS Hooke Jeeves/PSO algorithm was used in combination with the 
Epsilon Constraint Method to find Pareto efficient solutions to the daylighting and 
thermal optimization problem of a classroom design. Since windows admit light and 
provide weak resistance to heat conduction and radiation heat exchange, it was thought 
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that daylighting and thermal performance would be strongly conflicting objectives. 
However, the results show that, for the design problem with a south, east, or west 
orientation in the Charlotte climate, these two objectives are not strongly conflicting. This 
is evident in the Pareto front which ranges over relatively small differences in daylighting 
and thermal performances. Along the Pareto front, both objectives are close to their best 
possible value. For the north orientation, there is a much more pronounced conflict 
between the objectives, with much greater daylighting performance possible, with the 
consequence of poorer thermal performance. The east orientation showed better 
daylighting and thermal performance than the west orientation, most likely due to 
weather conditions. This information is valuable for design decision makers who are 
interested in understanding better the trade-offs between daylighting and thermal 
performance, beyond notional understanding and conventional wisdom. Future research 
on this problem may include the modeling of complex fenestration systems and dynamic 
shading systems along with advanced methods of accounting for glare and visual 
comfort.
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CHAPTER 6: ENERGY MODEL CALIBRATION CASE STUDY    
6.  

6 
In this chapter, the design of a prototypical retail brank bank building is optimized 

for thermal and lighting performance and is presented as a case study application of the 
optimization method presented earlier. Conveniently, an existing instance of the 
prototype design was available for empirical study. Thus, it was appropriate to assess the 
accuracy of the energy model to be optimized against actual performance data before 
using the model as a basis of design optimization. To this end, a method of energy model 
calibration was developed to serve as a valuable pre-optimization step that increases the 
accuracy of optimized building design results. The developed method is novel in that it is 
based on calibration to hourly end uses of energy and hourly zone temperatures, as 
opposed to daily or monthly aggregated energy usage, as is commonly done. In addition, 
the thermal characteristics of the building envelope were calibrated without the effects of 
the HVAC system. This allowed for precise tuning of key envelope parameters and is 
significant because envelope parameters are the focus of subsequent optimization efforts. 
This chapter is structured into two main parts. First, the method of model calibration is 
explained and demonstrated. Second, the optimization of the calibrated energy model for 
thermal and lighting performance is demonstrated. 
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6.1. Energy Model Calibration 
6.1.1. Description of Case Study Model Calibration 

As an example of model calibration, a retail bank building in the Miami, FL 
region was studied and modeled in detail. This bank serves as a prototype design that will 
be replicated; therefore, the results of model calibration can be used in the optimization 
of this design in other locations and belongs to the first case of model calibration 
presented in Chapter 3. Figure 6.1 is a floor plan of the bank and shows the major space 
types in the bank which include a customer teller line, open office space, teller area, and 
drive thru teller area. Other support spaces included a breakroom, electrical room, 
bathrooms, a workroom and a storage room. Figures 6.2 and 6.3 show exterior views of 
the bank with shading surfaces above windows colored purple. The walls of the building 
are made of insulated concrete forms (ICF). This made the building very airtight and also 
created a thermal mass effect in the building. The glazing of the building was 
electrochromic glass, which darkens or tints when direct sunlight is sensed on the 
glazing. The electrochromic glass varied from 0.4 SHGC (no incident direct sunlight) to 
0.09 SHGC (incident direct sunlight). The bank also had a highly insulated roof; 
however, it was breached by aluminum support members for a photovoltaic system on the 
roof that caused a thermal bridging effect and increased the U-value of the roof. Table 6.1 
outlines the major energy-impactful characteristics of the bank. 
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Table 6.1: Building attributes as specified in construction documents 
Building Attribute Value 
Gross Floor Area 297 m2 
Wall U-value 0.25 W/m2-K 
Floor U-value 0.98 W/m2-K 
Roof U-value 0.30 W/m2-K 
Window U-value 2.00 W/m2-K 
Electrochromic Glass SHGC 0.4,0.09 tinted  
Electrochromic Glass LT 0.59,0.01 tinted 
Cooling Thermostat Set Point 22.2 °C with 25.6 °C setback 
Heating Thermostat Set Point 20 °C with 18.3 °C setback 
Lighting Power Density 8.07 W/m2 
Equipment Power Density 5.38 W/m2 
Ventilation Rate 0.016 m3/s - person 
Infiltration Rate 1.2 ACH occupied, 0.01 ACH unoccupied  
Occupancy Density 0.07 people/m2 
Operation Schedule 7:00 AM to 6:00 PM Mon. through Fri. 
 7:00 AM to 5:00 PM Sat. 
 Unoccupied Sun. 
HVAC System Variable Refrigerant Flow (VRF)heat pump 35 kW 

cooling capacity 32kW heating capacity suppling 
single fan and coil unit in four thermal zones 

 Dedicated Outdoor Air Supply (DOAS) 10 kW 
cooling capacity 8kW heating capacity 

 
 
 
Figure 6.4 shows the three main thermal zones of the bank. A smaller fourth 

thermal zone, not labeled in Figure 6.4, was composed of the electrical room. Each 
thermal zone is served by a single indoor fan and coil unit (or air handling unit, AHU) 
with refrigerant supplied by the VRF outdoor heat pump unit. Each AHU’s supply air is 
distributed to its zone by duct work. Air is returned to each AHU through a plenum 
return. The bank is also served by a dedicated outdoor air system (DOAS) which supplies 
ventilation air during occupied hours. The DOAS supply air was ducted directly into the 
plenum near the intakes of each of the three main AHUs.  

The bank building was outfitted with an extensive BMS that reported hourly 
energy usage of each electrical circuit. The BMS also reported zone temperatures on an 
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“on change” basis in each zone as measured by their thermostats. This hourly data was 
valuable because it allowed for the precise description of equipment and lighting heat 
gains in the calibrated energy model and for modeled space temperatures to be calibrated 
to measured space temperatures. 
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Figure 6.1: Floor plan of bank 
 
 
 

 Figure 6.2: View of bank’s north corner 

Front 
Entrance 
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 Figure 6.3: View of bank’s south corner 
 
 

 Figure 6.4: Thermal zones of retail bank 
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6.1.2. Energy Model Calibration Methodology through Thermal Response Analysis 
As described above, it is very important for the envelope characteristics of a 

building to be accurately described in an energy model that is to be used for optimizing 
the envelope design of similar buildings. Current energy model calibration methods lack 
the ability to precisely calibrate building envelope parameters for main two reasons. First, 
they focus on monthly aggregate energy usage. In this case, interactions between model 
parameters make for the possibility of many model parameter value sets that match 
monthly aggregate energy usage data. It is very difficult, without detailed inspection, to 
know if a “calibrated” model parameter value set is a faithful representation of the actual 
building. Second, they focus on energy usage or temperature profiles of individual 
components but do not account for interactions between HVAC parameters and envelope 
and internal load parameters. The same co-solution problem can exist even when 
calibrating to granular time step energy and/or temperature data. A common example of 
this is when a cooling system is using excessive energy because of improper control or a 
system fault. In the “calibrated” model, this effect can be falsely accounted for most 
easily by increasing infiltration rates or equipment load rates until the artificially high 
loads on the modeled cooling system cause its energy usage to match actual values. This 
situation is common because it is much easier to adjust such envelope or equipment 
parameters than to explore parameter values representative of a malfunctioning cooling 
system. 

As presented in Chapter 3, many of the effects of an HVAC system can be 
removed so that the thermal response of a zone can be analyzed. In Chapter 3, several 
items were listed whose effects on a zone’s thermal response are difficult to account for. 
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Furthermore, HVAC systems often cause pressure differences between the building 
interior and the exterior environment, impacting infiltration rates when operational. A 
reasonable method to account for such unmeasurable effects in an energy model is to 
perform a sensitivity analysis on these factors to understand them and estimated upper 
and lower bounds of their effect on building thermal performance. The assumption, here, 
is that the thermal response of the building can only be analyzed when the building is 
unoccupied to avoid subjecting building occupants to potentially uncomfortable 
conditions. 

As previously discussed, it is possible to largely determine all be the factors 
impacting a zone’s thermal response, except those in the envelope category. This is 
accomplished through measurement and data collection. For example, it is possible to 
measure the weather and internal heat gain factors impacting a zone’s thermal response. 
The collection of hourly local weather measurements is often available. Hourly energy 
usage data of key electrical circuits can be measured by commercially available BASs 
and BMSs. Thus, the effects of weather factors and heat gains from lights and equipment 
can be reasonably determined and accounted for in a building energy model. With these 
two categories of thermal response factors accounted for, a detailed study of envelope 
parameters, as the only undetermined values impacting the thermal response of a zone, 
can be conducted. It is here that energy model optimization methods can aid in the 
determining of envelope parameters. The below case study describes the process of 
thermal response analysis, and subsequent model calibration, through a similar 
optimization method as presented previously for optimizing building design for thermal 
and lighting performance. 
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6.1.3. Method of Thermal Response Analysis of Case Study Building 
To measure the thermal response of the retail bank building, the bank’s VRF and 

DOAS systems were disabled over a period of time on weekends, so as to not disturb the 
normal operations of the bank. Temperatures in the three main thermal zones of the 
building were measured and recorded by the BMS. In addition, the BMS measured and 
recorded hourly electrical energy usage of all circuits, including lighting and equipment, 
in the bank. Over each test period, the lights were turned on in the same manner as when 
the building is occupied on weekdays. This was done on four occasions. Each time, the 
VRF and DOAS systems were turned off on a Saturday at 4:00 PM through the following 
Monday at 3:00 AM. Weather data was acquired from a local weather station over this 
time period as well. Table 6.2 outlines the Sunday each test was associated with and key 
weather conditions. As can be seen, three warm/hot weather days were used in this study 
and one cool day was used. 

 
 

Table 6.2: Sundays associated with each thermal response weekend period and weather 
conditions associated with each test period 

Test Sunday Date Temperature (°F) Sky Conditions 
 High Low Average  
February 15th 73 44 58 Clear 
July 19th 93 75 83 Partly Cloudy 
August 2nd 91 78 84 Partly Cloudy 
August 16th 91 77 84 Partly Cloudy 

 
 
 

At the conclusion of the thermal response data collection phase, acquired data included 
the points outlined in Table 6.3. 
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Table 6.3: Hourly measurements collected during each thermal response test period 
Hourly Weather Data Hourly Zonal Data 
Dry Bulb Temperature Dry Bulb Temperature (recorded at thermostat) 
Dew Point Lighting Energy Usage 
Humidity Equipment Energy Usage 
Barometric Pressure  
Wind Direction  
Wind Speed  
Precipitation Amount  
Sky Conditions  

 
 

Using these datasets, an energy model of actual conditions was created using 
EnergyPlus. EnergyPlus’ Weather Statistics and Conversion Tool was used to convert 
measured hourly weather data to the format required by EnergyPlus. The Weather 
Statistics and Conversion Tool also generated hourly solar radiation values based on its 
internal model which determines these values based on sky conditions and time of day 
and year. Actual lighting and equipment energy usages were integrated into the model 
using “Schedule:File” EnergyPlus objects which allow for hourly values to be read in 
from a file. The building geometry and material attributes were modeled according to 
construction documents made available, as can be seen in Figures 6.2 and 6.3 and 
summarized in Table 6.1. Ground temperatures have a strong effect on single-story 
buildings; therefore, ground temperature below the bank were modeled in detail by 
EnergyPlus’ Slab Preprocessor utility. 

With the weather and internal loads determined and accounted for in the energy 
model, focus could be given to the calibration of envelope factors. An initial energy 
model simulation, with model parameters based on information from construction 
documents, resulted in a poor fit between modeled and measured space temperatures 
(Figure 6.5). Key parameter values of this model are given in Table 6.4. 
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 Figure 6.5: Thermal response of original uncalibrated model: Modeled and actual zone 
temperatures on thermal response analysis days 
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Table 6.4: Envelope parameters of original uncalibrated model – values based on 
construction documents 

Envelope Parameter Factor Minimum -Maximum 
SHGC - electrochromic glass not tinted (fraction solar radiation transmitted) 0.4 
SHGC  - electrochromic glass tinted (fraction solar radiation transmitted) 0.09 
Window U-value (W/m2 °C) 2.0 
Roof Insulation Conductivity (W/m °C) 0.066 
Floor Conductivity (concrete slab) (W/m °C) 1.311 
Floor Slab Insulation R-value (m2 °C/W) not modeled* 
Floor Carpet R-value (m2 °C/W) 0.1 
Infiltration Rate (air changes per hour) 0.3** 
Heat Gain from Lights - fraction radiant 0.7 
Heat Gain from Equipment - fraction radiant 0.7 
Exterior Ground Reflectance 0.4 
Interior Mass – zone1, zone2, zone3 (m2 of interior walls) 10.34, 12.1, 10.34 

*not modeled because no slab insulation was shown in construction documents, however this parameters 
was included in calibration runs to account for a possible insulation effect not captured in the modeled 
floor construction 
**based on commonly used value for office buildings  

 
 
These envelope parameters were then the focus of calibration as outlined in Table 

6.5. Because the uncalibrated model seemed to be more sensitive to outside temperature 
than the actual building, infiltration and thermal mass were included in the set of 
optimized parameters. Infiltration was important because if too high, zone temperatures 
would be heavily influenced by the temperature of the outdoor air entering the building. 
Internal mass was important because it can help dampen the interior’s response to 
conducted gains and solar gains. Some fraction of heat from these sources can be 
absorbed by the internal mass instead of by the air mass of a zone. As can be seen, 
ground reflectance was considered in this calibration process. Although ground 
reflectance is not an inherent attribute of the building, the building’s surroundings, paved 
surfaces and landscape features affect the effective ground reflectance experienced by the 
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building. Because of these considerations, and the fact that ground reflectance could not 
be easily measured, it was included as a parameter to be optimized. 
 
 

Table 6.5: Envelope parameters calibrated 
Envelope Parameter Factor Minimum -Maximum 
SHGC - electrochromic glass not tinted (fraction solar radiation transmitted) 0.3 – 0.5 
SHGC  - electrochromic glass tinted (fraction solar radiation transmitted) 0.01 - 0.135 
Window U-value (W/m2 °C) 2.0 – 6.0 
Roof Insulation Conductivity (W/m °C) 0.02 – 0.1 
Floor Conductivity (concrete slab) (W/m °C) 1 - 4 
Floor Slab Insulation R-value (m2 °C/W) 0.001 – 1.0 
Floor Carpet R-value (m2 °C/W) 0.001 – 1.2 
Infiltration Rate (air changes per hour) 0.20 – 0.76 
Heat Gain from Lights - fraction radiant 0.01 – 0.90 
Heat Gain from Equipment - fraction radiant 0.01 – 0.90 
Exterior Ground Reflectance 0.1 – 0.6 
Interior Mass – zone1, zone2, zone3 (m2 of interior walls) 0 – 1000 (each zone)* 

*allowed to be very large to account for other sources of mass, such as underestimated mass of exterior 
walls, furniture, and bank vault  

 
 
To calibrate these parameters, an optimization problem was formulated. Values of 

these parameters were explored with the objective of minimizing the error, measured as 
root mean squared error (RMSE), between the measured and modeled thermal responses 
of each zone. A similar method as presented earlier for optimizing envelope parameters 
for thermal and lighting performance was used. The method employed the use of GenOpt 
to modify the identified parameters and search for the parameter value set that minimized 
RMSE as defined above. The hybrid PSOC/HJ algorithm was selected because it 
consistently produced solutions close to the true optimum in a reasonable number of 
simulations, as demonstrated above. 

It was desirable to know how accurate found model solutions were at predicting 
zonal thermal responses for days that had not been included in the calibration of the 
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model. Doing this give one a sense of the ability of the model to predict thermal 
responses of conditions unavailable for calibration “training”. To accomplish this, a 
cross-validation approach was taken whereby three of the four thermal response days 
were used to optimize or train the model’s envelope parameters. The remaining day was 
used as a testing day by which the model’s prediction accuracy was tested. Training days 
and testing days were cycled through such that each day served as a testing day once, 
resulting in a four-fold cross validation set by which to evaluate this method of envelope 
parameter calibration.  
6.1.4. Results of Thermal Response Analysis and Model Calibration 

Table 6.6 and Figures 6.7, 6.8, 6.9, and 6.10 show the modeled and measured 
thermal responses of the bank on each test day and for each thermal zone. In each figure, 
a different training day set and testing day is shown. Several observations can be made 
about the prediction accuracy of the energy model. By observing the fit of the modeled 
zonal temperature to measured temperature in the figures, and by cross-referencing the 
associated RMSE values in Table 6.6, it seems that an RMSE of less than 1 yields a 
reasonably good fit between modeled and measured thermal responses. For each set of 
training day combinations, an acceptable RMSE of less than 0.9 was achieved. However, 
when these model solutions where used to predict the thermal response of the testing day, 
results were varied. In the worst case, a testing day RMSE of 1.69 was produced by the 
model trained on July 19th, August 2nd, and August 16th. It is worth noting that this is 
perhaps a result of some issue that arises when the model parameters values are trained 
only on warm/hot days and tested on a cool day. This issue may also stem from an 
anomalous relationship between the training days of February 15th and August 16th. 
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When either is excluded from the training set and used as the testing day, a relatively 
poor testing RMSE results. For example, in addition to the testing RMSE of 1.69 when 
February 15th is used as the testing day, a poor testing RMSE of 1.06 was produced when 
August 16th was used as the testing day. It is possible that the Zone 2’s temperature was 
kept lower on February 14th leading into the February 15th training day and that this is the 
source of discrepancy. It is evident in the graph that Zone 2’s actual temperature was 
conditioned to 70 °F instead of the normal 72 °F. Despite this issue, the energy model 
calibration method seems to predict the building’s thermal response with a reasonable 
degree of accuracy. Thus, it is acceptable as a means to produce a calibrated instance of 
an energy model to serve as a base model from which optimized designs are explored.  

Next, a calibrated model instance was created by training the model parameters 
on all 4 thermal response days. This is show in Table 6.6 as Case 5 and in Figure 6.11. 
This calibrated model instance resulted in a relatively good training RMSE of 0.82. 
Because the cross-validation results showed reasonable good prediction capabilities of 
the model, it was determined that this calibrated model instance was a good base model 
to use in the optimization of the bank prototype design. 

The envelope parameters specified in construction documents (Case 6) and their 
calibrated versions (Cases 1-5) are compared in Figure 6.6. Several observations can be 
made about the calibrated models. Firstly, interior mass values of all calibrated models 
closely matched and were much greater than the values of the uncalibrated model, 
particularly in Zone 3. This seems to be correct because the thermal response of the 
uncalibrated model (Figure 6.5) responds much more quickly to outside temperature and 
solar radiation than the measured thermal response of the building. The thermal mass 
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absorbs heat before it can cause a change in air temperature. The amount of thermal mass 
predicted by the calibrated models may seem excessive, particularly in Zone 3; however, 
this mass accounts for the effect of all thermally engaged mass in each zone, not just that 
of the surface area of interior walls. Things such as furniture, the bank vault, and 
underestimated mass in exterior walls and floor must be accounted for. Another 
observation is that calibrated models Case 2 and Case 3 generally agree with Case 5 
(which was trained on all test days) while Case 1 and Case 4 show some discrepancy with 
Case 5, and each other. This points to the possibility of some unaccounted for anomalous 
condition on the test days associated with Case 1 and Case 4, February 15th and August 
16th. Notable discrepancies between the model based on construction documents (Case 6) 
and the calibrated models include a greater SHGC of tinted electrochromic glass, greater 
roof conductivity, some insulating effect of the floor slab not accounted for in the 
construction documents, and a lower than originally estimated ground reflectance. The 
following section presents the optimization of the calibrated model for thermal and 
lighting performance. 

 
Table 6.6: RMSE results of modeled and actual space temperatures (based on degrees 
Fahrenheit)  

 Thermal Response Day Type Training RMSE Testing RMSE 
 Feb 15th Jul 19th Aug 2 Aug 16   
Case 1 Testing Training Training Training 0.74 1.69 
Case 2 Training Testing Training Training 0.82 0.82 
Case 3 Training Training Testing Training 0.88 0.86 
Case 4 Training Training Training Testing 0.86 1.06 
       Case 5 Training Training Training Training 0.82 - 
Case 6  - original uncalibrated model - 2.18 - 

 
 



104 

 

 Figure 6.6: Graph of values (normalized) of calibrated parameter values for each case in 
Figure 6.6 
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Figure 6.7: Thermal response Case 1: Modeled and actual zone temperatures on thermal 

response analysis days with February 15th as the testing day 
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Figure 6.8: Thermal response Case 2: Modeled and actual zone temperatures on thermal 

response analysis days with July 19th as the testing day 
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Figure 6.9: Thermal response Case 3: Modeled and actual zone temperatures on thermal 

response analysis days with August 2nd as the testing day 
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Figure 6.10: Thermal response Case 4: Modeled and actual zone temperatures on thermal 

response analysis days with August 16th as the testing day 
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 Figure 6.11: Thermal response Case 5: Modeled and actual zone temperatures on thermal 
response analysis days with all days used for training 

 
 
 
6.2. Optimization of Retail Bank Building for Thermal and Daylighting Performance 

The open office area of the retail bank is daylit by large windows of electrochromic 
glass. It is of interest to know the best trade-off between daylighting performance and 
thermal performance associated with the design of these windows, principally their size. 
Each window has a shading device that also impacts its solar and light transmittance. An 
optimization experiment was setup such that each window was allowed to maximize or 
minimize its vertical and horizontal size and location (i.e., the location of the window’s 
center on its wall). Each window’s shading device followed the location and width of its 
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window and was allowed to shorten or lengthen its extension from the building. These 
optimized parameters are illustrated in Figure 6.12. 
 
 

Figure 6.12: Illustration of window parameters optimized for thermal and 
daylighting performance. Each window was allowed to independently 
vary its location (cx,y) and extents from this point (x+, x-, y+, y-) within 
the boundaries defined by dashed lines. The length of the shading 
device (s) was also allowed to vary up to 3’ from the building. These 
parameters are illustrated on a single window but apply to all optimized 
windows. 
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 The daylighting performance of the open office area was evaluated by analyzing 
the contribution of daylight to the illuminance of calculation points on two grids. One 
grid was located in the open office area of Zone 1. The other grid was located in the open 
office area of Zone 3. Both grids were placed at workplane height, or 0.75m above the 
floor (Figure 6.13).  
 
 

 
Figure 6.13: Location of grids of illuminance calculation points in zones 1 and 3. 
 
 

Daylighting performance was evaluated based on Equation 5.2 and the method 
presented in Chapters 4 & 5. Energy performance was also evaluated based on Equation 
5.2 but with a slight modification. The windows of interest for this optimization only 
impact the heating, cooling, and open office area lighting loads of the building. They do 
not impact the lighting loads in other spaces and they do not impact equipment loads. 
Because of this, energy performance was defined as the sum of energy used by the VRF 
cooling system and open office area lights on an annual basis measured in units of kWh. 
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Heating energy was not considered because in the Miami climate zone heating is a rare 
condition and results in negligible energy on an annual basis. 
 As in Chapter 5, the Epsilon constraint method was used to approximate the 
Pareto front related to lighting and thermal performance. Thermal performance was 
chosen as the objective to be constrained. Different values for the constraint were 
explored until a well define Pareto front was established. 
 Figure 6.14 shows the Pareto front of design solutions found by the PSOC/HJ 
algorithm. Three designs (a, b, and c) are identified on the Pareto front and are illustrated 
in Figures 6.15, 6.16, and 6.17. Design a represents a design at the extreme left of the 
Pareto front which fully optimized for thermal performance without regard for 
daylighting performance. Design c represents a design at the extreme right of the Pareto 
front which fully optimized for lighting performance without regard for thermal 
performance.  Design b represents a point near the middle of the Pareto front and is a 
design that balanced thermal and lighting performance. It can be seen that a very small 
difference in energy performance is present across the bounds of the Pareto front, less 
than 250 kWh/year and daylighting performance ranges from 48 to 56 P. This suggests 
that smaller windows tend to save energy by reducing window area and the associated 
heat transmission while larger windows tend to save energy by reducing lighting loads 
and relying on electrochromic glass to prevent excessive solar gains. In either scenario, 
annual energy usage is virtually the same. This leads one to focus on daylighting 
performance as the main determining factor in final design selection. It can be seen in 
Figures 6.15, 6.16, and 6.17 that smaller windows are associated with lower daylighting 
performance and larger windows are associate with greater daylighting performance. It 
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should be noted that, normally, excessive window area leads to poor daylighting 
performance due to over-illumination, but that does not appear to be the case for this 
building. The electrochromic glass seems to be reducing the majority of over-illumination 
from direct sunlight, allowing larger windows to deliver more daylight deeper into the 
space thus resulting in high daylighting performance scores. The key knowledge gained 
from this optimization exercise is that, because of the electrochromic glass, there is not a 
strong trade-off between energy and daylighting performance for this retail bank building 
design; larger windows produce higher daylighting performance results with little energy 
increase. 
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Figure 6.14: Pareto front of design solutions for the retail bank building. Pareto solutions 

are identified in red. 
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Figure 6.15: Visualization of Pareto solution a 
 
 

 
Figure 6.16: Visualization of Pareto solution b 
 
 

 
Figure 6.17: Visualization of Pareto solution c 
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CHAPTER 7: CONCLUSION
7.  

7 
7.1. Summary 

This dissertation has demonstrated how the problem of designing buildings to 
both minimize energy demand and maximize the appropriate admission of natural light, 
two objectives that are generally in conflict with one another, can be solved by coupling 
advanced simulation programs with optimization algorithms. These two objectives are 
not often considered together when evaluating building energy performance. When they 
have been, simplifications of the problem are used in either the building geometry 
parameters investigated or the means of evaluating daylighting performance. This work 
has advanced earlier approaches to solving the building design problem by employing 
new techniques of searching complex geometry and state-of-the art dynamic daylighting 
metrics. 

For the results of a building optimization to be trustworthy, there must be a 
certain degree of confidence in the prediction accuracy of the energy model that was used 
in the optimization. To this end, in Chapter 3, a framework for model calibration was 
demonstrated through a simulation based example. This example showed that when the 
true parameter set of an energy model is not known, it can be approximated by comparing 
the thermal response of the model to measured values. The parameter set of the energy 
model can then be explored with the goal of minimizing the error between its thermal 
response and that which was measured. In Chapter 4, an advanced method of evaluating 
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daylighting performance was presented and four optimization algorithms were evaluated 
based on how efficiently solutions were found and the consistency of found solutions, 
with respect to their design attributes. Algorithm/heuristic based optimization techniques 
were appropriate for this problem because of the complexities inherent in the 
formulations for evaluating daylighting and thermal performance. The four algorithms 
evaluated were the Simplex Algorithm of Nelder and Mead with the Extension of O’Neill 
(SA), Hooke Jeeves (HJ), Particle Swarm Optimization using Inertia Weight (PSOIW), 
and a hybrid PSO Constriction/Hooke Jeeves (PSOC/HJ) algorithm. PSOIW consistently 
found the best solution, while PSOC/HJ was slightly less consistent in finding the best 
solution, but always came close with much fewer simulations than PSOIW. In Chapter 5, 
the work in Chapter 4 was extended and used in the development of a method of bi-
objective optimization of building energy and daylighting performance. Pareto-efficient 
solutions were found for the design of a classroom for various orientations. This 
information is valuable for design decision makers who are interested in better 
understanding the trade-offs between daylighting and thermal performance. In Chapter 6, 
the method of energy model calibration presented in Chapter 3 was applied to a case 
study example. The calibration method minimized the error between the model predicted 
thermal response and measured thermal response of the building of interest. This 
calibration method is unique in that it is based on hourly end uses of energy and zone 
temperatures, unlike other methods that are based on monthly aggregate values or hourly 
aggregate uses of energy. The calibrated building model was then used as the basis of a 
building energy and daylighting performance optimization which resulted in Pareto 
efficient designs available for consideration by the building designer.  
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Some of the main contributions of the work are listed below. 
 

• Identification of well-performing optimization algorithms for the 
building envelope design problem. 

• Bi-objective optimization using state-of-the-art annual thermal and 
lighting simulation techniques. 

• Modification of annual daylighting performance metrics to aid the 
optimization process. 

• Simultaneous optimization of solar and light transmittances of glass 
for thermal and lighting performance with appropriate constraints. 

• Dynamic sizing and modeling of economizer cycle for thermal 
performance. 

• Development of a model calibration method that operates on envelope 
parameters in isolation of HVAC system interactions. 

 
 
 
7.2. Limitations and Future Work 

The results presented in this dissertation demonstrate that the developed methods 
are useful in finding Pareto efficient building designs for energy and daylighting 
performance. However, when a building designer is presented with a set of Pareto 
efficient designs, it is not necessarily evident which one is the best choice. In addition, it 
may not be obvious how a particular design achieves high energy and daylighting 
performance. This knowledge may be of use when determining how to modify a building 
for cost control or how to design future buildings to achieve desired results. These 
limitations present several opportunities for the extension of this work. In addition, this 
work may be extended by the inclusion of complex fenestration systems and dynamic 
shading systems along with advanced methods of accounting for visual comfort. 
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7.2.1. Building Element Performance 
Windows are the weakest thermal barrier in buildings and, of course, determine a 

building’s daylighting performance. A deeper understanding of how they achieve thermal 
and daylighting results is desirable. To this end, a possible post-optimization analysis of 
Pareto-efficient design solutions is the determination of each window element’s 
contribution to the lighting and thermal performance of the overall design. Such a method 
could operate on a design’s discrete window elements (a single window may be divided 
in to discrete elements of similar area for a more granular understanding of its 
performance) and express their additive value to the overall performance of the design. 
Knowledge of the performance of window elements is important because windows are 
expensive (per unit area) and performance-impactful elements of the building envelope. 
For each window element, key questions include: is it admitting too much light, or too 
little light; too much solar heat, or too little; too much conducted heat, or too little; could 
the same lighting and thermal performance be achieved with less window area? Also 
important is the knowledge of which components of the building are the most significant 
so that they are not easily dropped from the design due to concerns such as budget 
constraints. 
7.2.2. Analysis of Pareto Efficient Designs 

In the building design process, the building designer ultimately has to select one 
design from the set of Pareto-efficient designs. This can be cumbersome due to the 
potentially large number of designs in this set. To aid in the selection of a single design, 
the set of Pareto-efficient solutions can be pruned to prototypes representative of clusters 
of similar designs along the Pareto front. A clustering algorithm may be used to reduce 
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the full set of Pareto-efficient designs to a smaller representative set. Once a reduced set 
is created, a multi-criteria decision making framework, such as Analytic Hierarchy 
Process (AHP), can be used to evaluate trade-offs between designs. Such a framework 
can include the decision makers’ subjective valuation of energy and daylighting 
performance values. If desired, additional attributes of the reduced designs can also be 
assessed through a multi-criteria decision analysis framework. Possible additional 
attributes follow. 
 

• Aesthetic appeal 
• Visual comfort 

• Daylighting performance was evaluated based on the percentage of 
time within a desired range. This has been shown to control 
glare/visual comfort, but there are more advanced ways of 
evaluating visual comfort. 

• Outdoor connection 
• In addition to energy performance and quality of lighting 

environment, many designers value windows for the connection 
they give occupants to the outdoors.  

• Construction cost 
• General costs per area of building materials can be accessed. Using 

this information, along with the area of floor, walls, roofing, and 
windows, the construction cost of a design can be determined. 

• Peak energy demand 
• Peak electrical power demand is of interest for environmental and 

economic reasons. Most building energy simulation programs 
calculate peak energy demand. 

• Annual utility costs 
• Differences in fuel costs and time of use charges complicate the 

relationship between annual energy use and annual utility costs. 
Most building energy simulation programs allow for a rate 
structure to be specified for a detailed estimate of annual utility 
costs.  
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7.2.3. Model Calibration Improvements 
A limitation of the model calibration method is the lack of direct determination of 

thermal effects present during normal building operations but not during thermal 
response test periods. Such effects include heat gain from occupants and infiltration 
caused by the opening of exterior doors and other fenestration elements by occupants. 
Heat gain from building occupants was estimated by first estimating the number of 
occupants in the building on an hourly basis (from observations) and the rate at which an 
occupant emits heat while performing office-like activities. Infiltration rates during 
occupied times were estimated based on cooling equipment energy use. This seemed a 
reasonable approach since all other thermal loads acting on the cooling system were 
largely determined and cooling system energy use in response to thermal loading 
conditions can be approximated by referencing the system’s performance curves, 
assuming proper function of the system. A possible extension is the verification of this 
approach to estimate unaccounted for thermal effects and/or the development of a better 
approach. BAS data, such as logs from occupant sensors, door and window sensors, and 
HVAC performance, could possibly be useful for determining energy model parameters 
that account best for these effects. 

Another extension of this work is to determine the number and type (e.g., average 
temperature, humidity, solar radiation, etc.) of test days needed to create a sufficiently 
calibrated energy model. In addition, the calibration method could automatically receive 
relevant information from the BAS to possibly perform a continuous calibration of the 
energy model. This would, in effect, create an operational energy model of the building 
that could be used for continuous commissioning and fault detection of building systems. 
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7.2.4. Integration into Building Design Practice 
A limitation of this work is the study of how the building design optimization method 

could fit into building design practice. Issues to consider are the time required to setup an 
optimization model, the time required for the simulations of the optimization sequence, 
and the quality of found designs. As discussed, some algorithms converge very quickly to 
good, but less than global optimal, solutions. Other algorithms take considerably more 
time to converge but find higher quality designs very close to global optimal. 
Unanswered questions include the following. Do the good designs found by fast 
algorithms sufficiently satisfy the desires or requirements of the design team? Is the 
longer simulation time of the high-quality and consistent design finding algorithms a 
critical issue such that the results are not produced quickly enough for them to be useful? 
Can the optimization method be integrated into building modeling software commonly 
used by building design teams? 

Another extension is the creation of greater visibility of optimized solutions, and/or 
high-performing solutions found while searching for the optimum solution, that happen to 
be heterogeneous with regard to design features. This issue was discussed. One point 
made was that dissimilar designs can have similar daylighting and thermal performance. 
An understanding of such designs is important to building designers because they may 
have different attributes in other categories, such as construction cost. A framework to 
make visible and explore such designs and their attributes may prove valuable to the 
building design team. 
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