
SCALABLE HIGH-CAPACITY HIGH-FAN-OUT OPTICAL NETWORKS FOR

CONSTRAINED ENVIRONMENTS

by

Syed Ali Haider

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Optical Science and Engineering

Charlotte

2012

 Approved by:

Dr. M Yasin Akhtar Raja

Dr. Michael A. Fiddy

Dr. Jiang (Linda) Xie

Dr. Gregory J. Gbur

Dr. Jamie Payton

ii

©2012

Syed Ali Haider

ALL RIGHTS RESERVED

iii

ABSTRACT

SYED ALI HAIDER. Scalable high-capacity high-fan-out optical networks for constrained

environments. (Under the direction of Dr. M YASIN AKHTAR RAJA)

 The investigations carried out as part of the dissertation address the architecture and

application of optical access networks pertaining to high-capacity and high fan-out applications

such as in-flight entertainment (IFE) and video-gaming environment. High-capacity and high-fan-

out optical networks have a multitude of applications such as expo-centers, train area networks

(TAN), video gaming competitions and other applications that require large number of connected

users. For the purpose of keeping the scope of the dissertation within limit however, we have

concentrated this work on IFE systems. IFE systems present unique challenges at physical and

application layers alike. In-flight entertainment (IFE) systems have been a part of passengers’

experience for a while now. Currently available systems can be considered a bare-bone at best

due to lack of adequate performance and support infrastructure. According to electronic arts (EA)

– one of the largest developers of video games in the world, an increase in demand for

electronically distributed video games will exceed boxed games in just a matter of few years. This

also shows a shifting trend towards the electronic distribution of video game content as opposed

to physical distribution.

Against the same backdrop, the dissertation project involved defining a novel system

architecture and capacity based on the requirements for development of novel physical layer

architecture utilizing optical networks for high-speed and high-fan-out distribution of content. At

the physical layer of the stacked communication model a novel high-fan-out optical network was

proposed and simulated for high data-rates. Having defined the physical layer, protocol stack was

identified through rigorous observations and data traffic analysis from a large set of traffic traces

obtained from various sources in order to understand the distribution and behavior of video game

related traffic compared with regular internet traffic. Data requirements were laid down based on

iv

analysis keeping in mind that bandwidth requirements are increasing at a tremendous pace and

that the network should be able to support future high-definition and 3D gaming as well. Based

on the data analysis, analytical models and latency analysis models were also developed for

bandwidth allocation in the high-fan-out network architectures. Analytical modeling gives an

insight into the performance of the technique as a function of incoming traffic whereas latency

analysis exposes the delay factors involved in running the technique over time. “State-full

bandwidth allocation” (SBA) was proposed as part of the network layer design for upstream

transmission. The novel technique involves keeping state information from previous states for

future allocation.

The results show that the proposed high-fan-out high-capacity physical layer architecture

can be used to distribute video-gaming related content. Also, latency analysis and design and

development of a novel SBA algorithm were carried out. Results were quiet promising, in that; a

large number of users can be supported on the same single channel network. SBA criteria can be

applied to multi-channel networks such as the physical architecture proposed / simulated and

investigated in this project. In summary, the project involved design of a novel physical layer;

network layer and protocol stack of the communication model and verification by simulations and

mathematical modeling while adhering to application layer requirements.

v

ACKNOWLEDGMENT

First of all, I would like to thank Almighty God for blessing me with the opportunity and

persistence to complete this work. I am humbled by what I have learned throughout the course of

this degree and from the environment around me. I would like to thank Dr Khurram Kazi (NYIT)

whose valuable comments and suggestion led the project in the right direction and his critique

was the key factor in finishing this work. I would like to thank Dr. M. Yasin Akhtar Raja, my

advisor, for steering the project and for his guidance and time during the course of this work and

other related projects. Exposure that I got by working with him in the optical networks lab and

with annual conference HONET is simply invaluable. I would also extend my sincere gratitude to

my dissertation committee members, Dr. Michael A. Fiddy, Dr Linda Xie, Dr. Greg Gbur and Dr

Jamie Payton for their valuable comments on the dissertation. Special thanks to Dr. Arshad Ali

and Dr. S. M. H. Zaidi at National University of Sciences and Technology (NUST), School of

Electrical Engineering and Computer Science (SEECS) for recommending me for this

opportunity. I am also indebted to the department of Physics and Optical Science for continued

support and help in professional growth in the area of teaching and learning beyond my research

area. I would also recognize my fellow graduate students and friends who made my graduate

study at UNC Charlotte very memorable period of life. Last but not the least; I would like to

acknowledge the professional and Graduate Assistant Scholarship Program (GASP) support from

the Graduate School at the UNC Charlotte and support extended by International Student Scholar

Office (ISSO).

vi

DEDICATION

 To my parents Maj. (r) Syed Sajjad Haider and Maj. (r) Dr. Zarafat Haider.

vii

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION TO IN-FLIGHT ENTERTAINMENT (IFE) 1

 SYSTEMS

1.1 The Concept/Paradigm 5

1.2 Requirements 6

1.3 Service oriented architectures 10

CHAPTER 2: PHYSICAL LAYER 12

2.1 Physical layer technologies 14

2.1.1 Overview of OFDM 15

2.1.2 Overview of TDM / Single channel 18

2.2 Proposed architecture 19

2.2.1 Details of Network Segment used in Simulations 19

2.3 Experiments 23

2.3.1 Simulation software 24

2.3.2 Results 25

2.4 Discussions and relevant remarks 28

CHAPTER 3: PROTOCOL STACK 29

3.1 Initial considerations 29

3.2 Real-time Video Game Stream (RVGS) 34

3.3 Data and observations 37

3.4 Discussions and remarks 44

viii

CHAPTER 4: BANDWIDTH ALLOCATION 46

4.1 Data collection and the datasets used 49

4.2 Bandwidth allocation for PON 50

4.3 State-full Bandwidth Allocation (SBA) for High-fan-out Optical Networks 54

4.4 Experiments 56

4.4.1 Analytical Model 56

4.4.2 Latency Analysis 68

4.4.3 Results 74

4.5 Discussions 81

CHAPTER 5: DISCUSSIONS AND CONCLUDING REMARKS 83

5.1 Concluding remarks 83

5.2 Future work 85

REFERENCES 88

APPENDIX A: RC-DBA CODE 93

APPENDIX B: RC-DBA & EFDBA WAITING TIMES CODE 97

APPENDIX C: SBA CODE 99

APPENDIX D: SBA WAITING TIME CODE 104

APPENDIX E: DATA CAPTURE CODE 106

ix

LIST OF TABLES

TABLE 1: Packet size UDP/IP stack 32

TABLE 2: Datasets/Traces 42

TABLE 3: Weight table – SBA 55

TABLE 4: Parameters 58

TABLE 5: RC-DBA 71

x

LIST OF FIGURES

FIGURE 1: System Deployment – Optical network based architecture for in-

flight systems (adapted from flight schematic)

6

FIGURE 2: OFDM sub-carriers (frequency domain) to time-domain signal 15

FIGURE 3: OFDM signal 17

FIGURE 4: A square wave generated with multiple sine waves 18

FIGURE 5: Typical time division multiplexing (TDM) allocation cycle 19

FIGURE 6: Block Diagram of proposed architecture 20

FIGURE 7: Component level view of proposed architecture 24

FIGURE 8: Coherent 100Gb/s transmitter with 2bits/symbol 25

FIGURE 9: 100Gb/s receiver 26

FIGURE 10: Effect of increasing the number of subcarriers on BER 27

FIGURE 11: Received signal power and its effect on BER performance for the

16-QAM OFDM signal

27

FIGURE 12: Headers information added by each protocol layer 30

FIGURE 13: UDP/IP protocol stack on Ethernet channel 33

FIGURE 14: Real-time Video Game Stream (RVGS) packet header and data

35

FIGURE 15: Data extracts from CAIDA datasets 40

FIGURE 16: Session information extracted from datasets 41

FIGURE 17: Video game datasets for SSR and CSR based games 44

FIGURE 18: SSR vs CSR 48

FIGURE 19: Video game reference traces 50

FIGURE 20a: Requests from connected ONUs 52

FIGURE 20b: An overview of RC-DBA ratio counter and allocation table 52

xi

FIGURE 21: Cycle time distribution in RC-DBA 53

FIGURE 22: Bandwidth allocation in SBA 59

FIGURE 23: A dynamic cycle set 60

FIGURE 24a: Flow chart for allocation in SBA 61

FIGURE 24b: Flow chart: first and second allocation 62

FIGURE 25: Changing cycle set 64

FIGURE 26a: Residual time after every cycle for 100 cycles for random users 66

FIGURE 26b: Residual time after every cycle for 500 cycles for random users 67

FIGURE 26c: Residual time after every cycle for 500 cycles for 250 users 67

FIGURE 27: Residual time calculation 72

FIGURE 28: Waiting time increases with larger cycle time (T) 75

FIGURE 29: Waiting time increases with increase in arrival rate at ONUs 75

FIGURE 30a: Waiting time vs Arrival rate for Poisson arrivals 76

FIGURE 30b: Waiting time vs Arrival rate for Poisson based arrivals (TDMA) 76

FIGURE 31a: Waiting time vs Offered load for (N=64) Pareto arrivals (RC-DBA) 77

FIGURE 31b: Waiting time vs Offered load for (N=32) Pareto arrivals (RC-DBA) 78

FIGURE 31c: Waiting time vs Offered load for (N=16) Pareto arrivals (RC-DBA) 78

FIGURE 32: Comparison of waiting time and residual time 79

FIGURE 33: Waiting time increases with increase in number of active users 80

FIGURE 34: First allocation time dependence on number of users and associated

waiting time

81

FIGURE 35: Waiting time increases with increase in cycle time 81

FIGURE 36: Applications of high-capacity high-fan-out optical networks 87

xii

LIST OF ABBREVIATIONS

ASK Amplitude Shift Keying

BA Bandwidth Allocation

BER Bit Error Rate

CAIDA Corporate Association for Internet Data Analysis

CO-OFDM Coherent Optical OFDM

CSR Client Side Rendering

DBA Dynamic Bandwidth Allocation

EA Electronic Arts

EDFA Erbium-doped Fiber Amplifier

EFDBA Enhanced Fair DBA

EW Ensured Window

FEC Forward Error Correction

FFT Fast Fourier Transform

HD High Definition (720p)

ICT Information and Communication Technology

IFE In-flight Entertainment

IFES In-flight Entertainment System

IFFT Inverse FFT

IP Internet Protocol

ISI Inter-symbol Interference

LAN Local Area Network

LO Local Oscillator

xiii

LPF Low Pass Filter

MTU Maximum Transmission Unit

MZM Mach-Zehnder Modulator

NIC Network Interface Card

OC Optical Carrier

OFDM Orthogonal Frequency Division Multiplexing

OLT Optical Line Terminal

ON Optical Network

ONU/ONT Optical Network Unit/ Optical Network Terminal

OOK On-Off Keying

PC Power Combiner

PIN P-type Intrinsic N-type

PM-QPSK Polarization Multiplexing QPSK

PON Passive Optical Network

PRBG Pseudo Random Bit Generator

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift keying

RC-DBA Ratio Counter based DBA

ROTW Rest Of The Window

RVGS Real-time Video Game Stream

SBA State-full Bandwidth Allocation

SLA Service Level Agreement

SSR Server Side Rendering

xiv

TCP Transmission Control Protocol

TDM Time Division Multiplexing

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WAEA World Airline Entertainment Association

CHAPTER 1: INTRODUCTION TO IN-FLIGHT ENTERTAINMENT (IFE)

SYSTEMS

Entertainment industry in general and the video game industry in particular is

growing at a faster pace than ever before owing to information and communication

technologies (ICT). A tremendous digital storage capacity, high-speed transport and

optical networks enhanced mobility is an impetuous in the growth of such sector.

Conventional video gaming has been steadily growing every year and since introduction

of modern gaming consoles such as Xbox and PlayStation, industry has seen

unprecedented growth. Not only in conventional gaming, the video games have started

adopting cloud based paradigm but also there are services that offer cloud based gaming

[1]. This trend is endorsed by the Electronic Arts (EA) a leading video game developer

[2]. EA predicts that in a matter of years, sales of electronically downloaded games will

outnumber boxed games. This prediction is based on the statistical data and facts and it

opens up potentially many new arenas that can benefit from the advancement in the video

game industry. Especially, high-speed communication systems can be developed that

offer services that are unprecedented in this industry.

While there are a large variety of video games spanning all walks and aspects of our

lives, we will concentrate on the in-flight games and their requirements. We focus on in-

flight entertainment (IFE) systems as one illustrated in Figure 1. Other applications that

can be served with the proposed solutions are explained in chapter 5. An IFE system is a

specialized communication network on-board a commercial airliner that provides

2

entertainment services to passengers. Entertainment can be in the form of on-demand

video, internet based services and video gaming. We focus on video gaming as the

required service. A simple implementation of such a network using a multi-level optical

fiber based network is shown in Figure 1. There is a tremendous opportunity in

developing the in-flight gaming/entertainment infrastructure and resources as new display

and interaction technologies make significant strides. Also, as the processing power

increases, more powerful gaming engines are developed. The end result of course is to

provide users/customers with an enhanced video gaming experience on-board

commercial airliners’ fleet. Long-haul flights are the best environment that can utilize the

state-of-the-art video gaming systems because passengers have more time for longer

game play. This need becomes even more pronounced when we consider the number of

hours spent in trans-continental and oceanic flights carrying everyday millions of

passengers [3] around the world. However, in order to have a high-fidelity, high-

performance, and high reliability infrastructure on-board, there needs to be a state-of-the-

art underlying network architecture to support the systems in the aircrafts.

Optical networks owing to their ultra-high bandwidth have the capability to bring

high-quality gaming experience to the users/passengers by virtue of high-speed data

transfer. Optical networks have other benefits too for instance; they are light weight; offer

extremely high capacity; are highly secure and non-intrusive due to the nature of the

optical fiber; generally do not require too much maintenance and have a future proof

infrastructure. Energy efficiency is inherent to the optical networks and being a wired

infrastructure thereby does not interfere with existing flight critical communications.

Along with the above mentioned benefits, due to high-speed, the latency is better than

3

competitor technologies such as copper based networks or Wi-Fi. Copper based networks

are heavy with heavier equipment and wireless networks may interfere with flight critical

communication and offer interrupted service.

The scope of this dissertation project is three pronged;

i) In the first phase, at the physical layer level, novel optical network architecture for

high-fan-out systems was designed and simulated on industry standard simulation

software Optsim® by RSoft. “High-fan-out” refers to the ability to support a large

number of simultaneous users. Proposed architecture uses orthogonal frequency

division multiplexing (OFDM) and utilizes coherent detection. Having multiple sub-

carriers allows the designers/developers to provide bandwidth to a large number of

users much more efficiently and without any bandwidth wastage. We also use

recently demonstrated high-capacity networks [4, 5] with direct detection, as the

underlying network for our TDM based bandwidth allocation introduced and

discussed in part (iii).

ii) Second phase of the project involved identification of a protocol stack and definition

of real-time video game stream (RVGS) for transporting the video game related data

over the network. Since data is transmitted in a unique way depending on what

service is being used or the system architecture we define the primitives and

communication stack for two types of video gaming paradigms involving distinct

experiences. The two types of experiences are categorized as:

a. Server side rendering

b. Client side rendering

4

Briefly, the server side rendering (SSR) systems have a huge processing power at

the server end (or service provider end) and frame rendering occurs at the servers.

Finished frames are then transmitted to the users much like a video transmission

system except that the experience is largely interactive. OnLive [1] is one example of

a server side rendering based video gaming system. The client side rendering (CSR)

system on the other hand is a conventional video game playing system where clients

install the game engines and requisite mapping information. Only vectors are

transmitted over the network. A vector contains information about motion of a certain

object inside a video game, for instance, information about players’ new location or

change in players’ viewing angle may be transmitted as a vector in the form of

change graphic coordinates. Since the characters in video games are also made up of

a mesh of known structures change vectors only change the locations on characters

(mesh) on the map. Rendered image is shown to the user as a continuous video called

the game play. This process can be pre-coded as well [6]. One vector represents one

such change and for the whole game play millions of vectors are transmitted. Video

games are very complex software systems and require immense choreography when

the game is being played. Vectors present a lightweight transportation envelops that

can be sent across multiple players so that all screens remain synchronized.

PlayStation and Xbox are examples of CSR system.

iii) Third phase of the project involved design and development of an efficient bandwidth

allocation algorithm that essentially serves as a soul for the distribution network while

catering to a large user base and keeping the latency within a minimum acceptable

5

range. We developed novel bandwidth allocation algorithms for direct detection

single carrier systems that also works with OFDM based architecture [7].

It can be seen that the three pronged project involves design and development of the

system starting for the physical layer and reaching up to the application layer, for the

source constrained video gaming environments such as IFE. Data collection for design

and model validation was a major phase of the project. Most datasets used for

observation and analysis are real-life datasets obtained from CAIDA [8] and OnLive [1].

1.1 The Concept/Paradigm

Airports in the United States handle over 4000 (~ 4277 to be exact) flights every day

[3]. Millions of people travel through the system each day. There exists a huge

opportunity for the airline industry to tap in to such opportunity of dedicated

audience/clients. State-of-the-art video gaming systems can help enhance traveling

experience for a large number of commuters and leisure travelers alike who enjoy video

games and associated interactive technologies. The World Airline Entertainment

Association (WAEA) has called on-board video gaming system a critical part of future of

in-flight entertainment in 2002 [9]. Not a major breakthrough, but there has been some

progress lately on this front. The key issue with the existing systems [10-12] is the lack of

resilience, physical infrastructure and operational means that can support the demanding

video gaming environment of today. The systems are also not standardized. On current

systems, video games are basic in nature and system uptime is low. There is a need for

support for high-quality graphical contents for user/passengers. A basic and simple theme

of such an optical fiber based content distribution system is shown in Figure 1 that

6

presents salient features; its architectural details are discussed in later sections and

chapters.

Figure 1: System Deployment – Optical network based architecture for in-flight systems

(adapted from flight schematic) [13]

Next, the basic requirements for developing a high-speed video gaming network for on-

board use in an aircraft are discussed briefly in the sub-section below.

1.2 Requirements

When looking carefully, in-flight systems in general are constrained by requirements

that are unparalleled in any other industry. Airworthiness standards dictate a strict set of

rules for equipment to be placed on-board a commercial airliner [14]. Besides the security

and challenges related to interference with flight-critical communication systems, high-

resolution graphics and low-latency are considered to be the two most important

7

characteristics of a good gaming experience and therefore following requirements are

biased accordingly. These requirements are summarized below:

i) In order for the system to sustain video gaming traffic generated by 450+ users and

also to be future proof, the network should be high-capacity. In that, it should be able

to adapt to future traffic demands.

ii) The system should be isolated from all other communication networks on the aircraft.

Security of on-board communication infrastructure (i.e., flight critical networks) must

not be compromised in any way, and any such possibility is eliminated by keeping the

gaming network completely in isolation as a standalone system. In the proposed

architecture, data is generated by the server and the clients for local consumption

therefore no inter-connection with any other network is required.

iii) Since such new entertainment systems will be retrofitted and integrated with existing

and future aircrafts, these have to meet some essential structural requirements. Flight

safety requires that materials and weight of modules and devices used inside the

aircraft must comply with national safety standards and therefore should be kept to

the minimum. Indeed, an optical network is a very light-weight system due to the

nature of fiber-optic cables, connectors, splitters and patch-cords. Active devices such

as optical line terminal (OLT) and optical network terminal (ONT) are not bulky and

are much lighter boxes than their electrical counterparts. Optical fiber cables and

connectors weigh much less than the copper cables and connectors. Moreover, optical

fiber networks are now being used in aircrafts for all other communication needs

including sensing applications and therefore are not new to the industry.

8

iv) Electrical Power in aircraft is a limited commodity and needs to be utilized

efficiently. Therefore, the proposed architecture must employ energy efficient

infrastructure. Authors in [15-24] have proposed energy efficient protocols that save

energy in optical networks. In a related work we have proposed observing traffic

patterns to predict off-times, rather than reacting to idle times, for transceivers [24].

This results in considerable energy savings since it does not wait for the channel to

become idle, rather predicts and takes action accordingly.

v) Network should be scalable, i.e., it should work with large aircrafts and as well as

medium and small platforms. Gaming-Server needs to be able to cater for heavy and

light traffic scenarios. The bandwidth allocation algorithm we proposed is dynamic,

in that, it calculates key system parameters on run time depending on the number of

users active in the system at that time. This is explained in detail in Chapter 4.

vi) Proposed network should be able to handle traffic for most types of games and even

future enhancements. The flow of information should be independent of the

application layer and therefore neutral. A modular approach is employed so that

changes made at one layer do not interfere with the functionality of other layers as

long as data is pushed up in the layered hierarchy in the correct format.

vii) Last but not the least, the network should be adaptable and cater to future

enhancements that can be retrofitted using the existing fiber network. This is

important to make sure that the system is future proof for the life of the aircraft (i.e.,

20+ years). Quality of graphics is being improved in video game industry at a

tremendous pace. High-resolution graphics essentially mean more data to be

9

transmitted between console, terminals, and servers. The network design architecture

should be able to handle increase in bandwidth requirements and future expansions.

Based on the above listed requirements, we designed and adapted the versatile and

flexible architecture, flexible protocol stack, and bandwidth allocation algorithms that

were simulated and analyzed for integrity and compatibility. These simulations were also

measured against typical industry figures.

IFE systems have been present on-board airliners for a significant amount of time. The

initial systems were able to stream songs only and after up gradation years later were able

to stream videos as well. During the progression from audio to video, infrastructure was

also upgraded to support basic videos using very low resolution screens and systems. It is

well known however that IFE systems even in today’s airlines do not represent the best of

technology in terms of quality, speed and robustness. Companies such as Samsung,

Thales, and Panasonic have developed systems that provide in-flight connectivity to the

internet [10-12] from the aircraft cabin. However, these systems do not support high-

speed connectivity for high-resolution gaming experience. Samsung and Thales are the

leaders in developing seatback terminals. Focus of these systems is to ensure connectivity

through email and social media applications. The most critical piece however is still

missing from the picture. That piece is a well thought out transport system that can

support all passengers (even for modern high-capacity aircrafts) with high-speed

connectivity for a number of services including video gaming.

Depending on the type of video game, the game engine has to perform tasks and

generate game play. Game play is what the player sees on the screen. It includes objects,

lightening, self and other players, arms, ammunition, structures such as boxes and ramps

10

etc. In the case of client side rendering, the server is generates motion vectors based on

input from all clients present in the game (a change in position of one user must be shown

to all users). Accordingly, the server has to inform each client about the changes

happening in the gaming environment. For instance, if a player destroys a tank, all other

players must be informed that the tank, as a structure, does not exist in the environment.

Providing information about changes in the environment presents a critical time

challenge. If transmitted too late, the information may be useless. If transmitted early it

could give undue advantage to a player. Therefore, latency is one of the most critical

parameters in video game system design.

1.3 Service oriented architectures

The concept of service oriented architecture is nascent. To understand what service

oriented architecture is, let us take the example of local area network (LAN) which is a

general purpose network. It can support a large number of services (i.e., Email/Exchange,

Voice over IP (VoIP), audio and video streaming, video conferencing and streaming etc)

with reasonable performance. It is not optimized for a particular service though; therefore

it will perform nominally if it were to cater to only one service with high load.

Performance depends on many factors that include type of service, tolerances in terms of

data loss and delays and utilization of the network. While designing service oriented

architectures all these parameters are optimized for a particular service, for instance,

VoIP. This ensures maximum performance for the particular service although networks

still work as a general resource for other less priority services if need be. Intelligent

infrastructures are therefore considered the way forward. In later chapters, physical layer

11

architecture, protocol stack and bandwidth allocation are introduced and discussed with

the concept of service orientated architectures in perspective.

In the introductory chapter the statement of the problems has been presented with

aims and objective. The needs and challenges have been briefly high-lighted. The current

state-of-the-art and literature review has also been presented with some pertinent recent

and original citations from the available resources. Rest of the dissertation has been

organized in the following order: Chapter 2 presents the physical layer architecture and

chapter 3 deals with the protocol stack. Next, the chapter 4 introduces bandwidth

allocation. The chapter 5 concludes the dissertation with summarizing the design

architecture and the simulation results and remarks regarding the validation of finding

and the scope for future work. The references follow the chapter on concluding remarks

and modeling code and software packages data and necessary info is included in the

appendices, A through E.

CHAPTER 2: PHYSICAL LAYER

Optical networks once only being in the core now are increasingly playing an

essential role in all parts of the network infrastructure in today’s data driven world.

Optical networks are inherently high-capacity, light weight, robust and greatly enable

bandwidth hungry applications. Among the numerous ICT applications, these properties

of optical networks render them very attractive for in-flight video gaming solutions and

similar constraint but high-capacity applications. Modern video games require a lot more

bandwidth, due to enhanced graphics, requiring ever increasing frame rates, and stability

in the networks. Video gaming data attributes are discussed in chapter 3 with somewhat

fine details. Various unique requirements for in-flight scenarios are that of the network

needs to serve a large number of users, all of whom may be connected at the same time,

as illustrated in Figure 1. Also, system should be able to adapt to changing number of

active users. These and more requirements have already been discussed in chapter 1.

In the same context, in this chapter we propose standalone scalable and high-capacity

network that can act as harbinger and enabler for real-time video content. Recently,

several physical layer architectures have been proposed that enable high data rates in

passive optical networks [5, 16, 25-30]. Improvements in data rates are realized by

pushing the limits of technology and consistent with the information and communication

theory [31]. Various modulation techniques are used to convert data into a transmittable

signals’ format. The signal that carries the data is called a carrier. Carrier signal in an

13

optical network is light therefore data signal, which is comparatively at a low frequency,

is modulated onto the optical carrier and transmitted over the optical fiber cable. Most

basic form of modulation is on-off keying (OOK), which is a special case of amplitude

shift keying (ASK) – which modulated the amplitude of the carrier signal. OOK refers to

transmitting a voltage level when a binary “1” needs to be transmitted and keeping the

laser diode off when “0” needs to be transmitted. It is intuitive to imagine that the speed

of such a communication system is limited by how fast the laser diode can shift between

the on and off states. Due to this bottleneck, complex modulation schemes have been

developed and reported in literature that enables networks to carry more data on each of

the active channels. Basic idea is to transmit two bits in one cycle of frequency instead of

one bit per cycle. Such a technique effectively doubles the data rate. There are more

complex techniques available today that can carry more than two bits per cycle. Two of

the many modulation schemes that gained attention in industry are polarization mode

quadrature phase shift keying (PM-QPSK) and coherent optical orthogonal frequency

division multiplexing (CO-OFDM). QPSK, use 4 different phases of the carrier signal to

transmit information. Hence, high data rates are achieved. This technique can be used in

conjunction with using multiple polarizations of a signal. Data rate is calculated as

 On the contrary, OFDM modulates data onto

low frequency carries which are later combined using inverse Fourier transform (IFFT)

into a single time-domain signal which is modulated onto the optical carrier. There are

definite advantages and dis-advantages of both the techniques and in our opinion OFDM

holds great promise due to its flexibility. This is the reason why OFDM QAM was

14

chosen over PM-QPSK, in this work. For completeness and quick-reference for the

reader, OFDM is discussed in the next section.

In this chapter, we present a novel network architecture that is capable of providing

approximately 195.2Mb/s (including FEC) data rate to each of the 450+ connected users.

This downstream bandwidth is considered more than what is required at the moment for

video gaming and would be able to cater for future gaming environments as well.

Network is flexible and scalable therefore; it supports fewer users as well and in-fact

bandwidth allocation increases for each individual user if fewer users are connected. This

is discussed in much more detail in chapter 4 that deals with bandwidth allocation

techniques. Aggregate data is transported using 16QAM OFDM signaling. Various

dispersion compensations are required for long-haul and ultra-long-haul links with data

rates of 10Gb/s and certainly for those that go beyond 100Gb/s [32], [33]. In our

application domain electronic dispersion compensation would not be required because

link lengths are quite small, and they are indeed almost negligible.

2.1 Physical layer technologies

In various domains of networks, data rates are largely limited by the physical layer

technologies in place. Depending on the applications, different physical layer

implementations can be adopted. Since the video-gaming involves an extremely data

intensive operation for a network, we look for and adopt the architectures that offer

higher data rates. Among various options OFDM is one of them that offer benefits that

are discussed in the next section.

15

2.1.1 Overview of OFDM

OFDM has been used in other network technologies however, it’s feasibility in optical

networking has recently emerged due to its ability to increase the effective data rate in the

network. It uses Fourier transform [34] to convert a set of low frequency electrical

signals, shown in Figure 2, into a single time-domain signal that is modulated onto the

optical carrier. Since low frequency signals are modulated separately with data, the

technique is modular, in that; a sub-carrier (one of the low frequency modulated signals

for one set of data stream) can be allocated to a particular user. This way the networks

become contention free and therefore can work like a wavelength division multiplexed

(WDM) system in principle although the technicalities do differ. One can also modulate

each sub-carrier separately and perform time division multiplexing onto each one of them

therefore serving more than one user with a single low frequency carrier. Lately, many

techniques have been proposed and demonstrated for OFDM based architectures and

curious reader should consult [16, 25, 28, 30, 35-37] for detailed reviews and latest

proposed techniques.

Figure 2: OFDM sub-carriers (frequency domain) to time-domain signal

16

Compared to other methods, an OFDM technique has certain distinct benefits. Some of

these are as follows:

i) In OFDM, sub-carriers are orthogonal to each other therefore there is no chance of

cross-talk between channels.

ii) An OFDM symbol is made up of bits, one from each sub-carrier data streams.

Therefore if a symbol gets distorted not all data is corrupted. This adds to data

integrity in case of poor channel conditions. Symbol rate is lower than the data rate

therefore guard-band can be used between symbol to reduce inter-symbol interference

(ISI).

iii) OFDM gives system designer an opportunity to utilize full available spectrum and

thus to improve spectral efficiency.

iv) OFDM allows the system to allocate a separate channel to every user which ensures

privacy and security of data channel. Also since crosstalk is not present, the data is

not corrupted.

v) An OFDM signal can handle filtering better because time domain signal is not

distorted at the decision time. Passing an OFDM signals for instance, through a low

pass filter does not change the signal at the decision time, therefore signal can be

interpreted correctly.

An ideal OFDM signal, in frequency domain would look like the one shown in Fig 3a

below which happens to be from one of the simulated results at the source. Figure 3b

shows an OFDM signal that has travelled a distance. Due to the fast processing high-

frequency components are added to the signal which act as noise and must be removed

before interpreting the signal. From Fourier synthesis one knows that a large number of

17

sine waves are required for constructing a perfect square wave signal illustrated in Fig 4.

Sinusoids used to achieve this are periodic harmonics of the fundamental frequency (i.e.,

1/3rd, 1/5th, 1/7
th

 and so on) also evident from Figure 4. FFT follows from the fact that

any time domain signal can be created if the right amount of sine waves are used each at

the a certain frequency. Therefore, OFDM can be spectrally very efficient, however,

complexity of calculations increases drastically with an increase in the number of sub-

carriers. Therefore a balance has to be reached for practical scenarios. The balance is

reached by rigorous simulations with carefully configuring the parameters.

(a) (b)

Figure 3: OFDM signal (a) OFDM signal in frequency domain (b) Non-filtered OFDM

signal in frequency domain after travelling a distance

Figure 3 above shows the results from one of our simulated environments detailed later in

this chapter.

18

Figure 4: A square wave generated with multiple sine waves [38]

2.1.2 Overview of TDM / Single channel

Time division multiplexing (TDM) is a seasoned technique for allocation of time in

communication systems [39]. TDM can be modeled to work in a manner that it not only

improves system performance but also reduces the latency. TDM based schemes allocate

time on a shared channel to contending users. In conventional TDM (also known as

statistical multiplexing), users are allocated time irrespective of their need or demand.

This means that a user is allocated time slots in the absence of any demand and need and

thus the allocated bandwidth gets wasted. A simple TDM based allocation scheme for

 users is shown in Figure 5. It is readily evident

19

Figure 5: Typical time division multiplexing (TDM) allocation cycle

that although users 3, 8, 13 and 20 do not have any data to transmit, yet they still get time

to transmit. Such deficiencies have been improved a lot in TDM based systems and in

chapter 4 we show that TDM can still be used to allocate bandwidth for a large number of

users as well.

The next section introduces the proposed physical layer architecture for high-capacity

high-fan-out applications.

2.2 Proposed architecture

For demonstration of feasibility of OFDM, we used 16QAM, which provides

relatively increased noise immunity with a reasonably large decision dynamic range for

the receivers. Figure 6 below shows the segment of network architectural layout. Dotted

box section on the top-left shows the transmitter and dotted box section on the bottom-

left shows the receiver with distribution sub-system shown to the right. For full fan-out,

signal has to pass through two splitters on each link. A 1 X 16 splitter in tandem with a 1

X 32 splitter enable a fan-out of 450+.

2.2.1 Details of Network Segment used in Simulations

This section details the design parameters and configurations for the proposed

architecture.

20

Figure 6: Block Diagram of proposed architecture. Three major components are the

OFDM transmitter, distribution system and the OFDM receiver

The illustrated diagram shows the architecture of the OFDM based architecture.

Transmitter and receiver components are discussed.

a) Transmitter: Pseudo Random Bit Generator (PRBG) generates random bit sequence at

the rate of 100Gb/s. The PRBG mimics our aggregate message signal that needs to be

transmitted. QAM generates 4-bit symbols and splits this signal into two orthogonal

components i.e., , where and are

amplitudes of the real and imaginary (orthogonal) part of the signal and w is the

frequency. Since each symbol represents 4 bits, this is a 16-QAM system i.e.,

 with baud-rate of 25GBaud/s. On the constellation

each point represents a symbol with its unique amplitude and phase. At the receiver,

we expect this diagram to be as less distorted as possible for data to be extracted

successfully. OFDM converts output signals (I and Q) from the quadrature amplitude

modulator (QAM) to a composite time domain signal. I-phase is the in-phase signal at

21

the output of the QAM and Q-phase is the quadrature phase signal at the output of the

QAM.

Large number of OFDM sub-carriers help with the applications requiring

scalability. Since sub-carriers can be individually allocated, although large number of

sub-carriers also has its own limitations that must be kept in mind. Close packing of

sub-carriers results in cross-talk. Inverse Fast Fourier Transformation (IFFT) and Fast

Fourier Transformation (FFT) at the transmitter and receiver respectively, perform

multiplications with a complexity that increases linearly with the number of sub-

carriers therefore overhead is minimum [40]. We use sub-carriers.

OFDM symbol period is dependent on QAM baud-rate and number of sub-carriers

used. Therefore, . Also, bits

per symbol. As an example, output of one of the OFDM signals (I-phase) is shown in

Figure 8b. Q-phase (quadrature phase) signal looks similar but is out of phase. A

raised cosine filter, low-pass-filter (LPF) is used to filter high frequencies that are

generated as a result of fast variations brought about in the carrier signals during

modulation. Using this filter allows us to satisfy Nyquist criteria for inter-symbol

interference Time domain representation of the signal changes due to filtering but

only at instances in time that are not the decision times. Data rate of 100Gb/s is sent

over 25GBaud/s in a 16QAM system. Spectral efficiency can be calculated to be 4

bits/sec/Hz. 1024 subcarriers travel inside one OFDM symbol therefore OFDM

symbol rate is =24.4MSym/sec. Each subcarrier carries

97.6Mb/s and each user is allocated 2 subcarriers amounting to 195.2Mb/s, ideally.

This translates to a 2.56THz modulated signal centered at 193.4THz. Nyquist

22

bandwidth is 12.8THz, when symbol duration (TS) is 0.04ns. Filtered signal is shown

in Figure 8c. I-phase and Q-phase are electrical signals at this point and must be

modulated onto optical carriers. A CW optical carrier centered at 1550nm (193.4THz)

is used as carrier signal. LiNbO3 based Mach-Zhender modulators (MZM) are used

to modulate the OFDM signal onto the optical carrier. Both I-phase and Q-phase

signals are modulated separately and combined using an optical combiner and the

combined signal, as shown in Figure 8e, is transmitted.

Passive optical splitters are used to split optical signal for distribution. Single

stage Erbium-doped fiber amplifiers (EDFA) are used to amplify the signal. Since

splitters are employed in tandem, amplifiers help keep power level high enough for

reliable detection. However, recurring amplification adds noise to the signals.

b) Receiver: At the receiver end, optical signal is distorted due to various impairments

and noise. One of the reasons for using a PIN photo detector is its ability to detect low

power signals due to high sensitivity and responsivity.

Optical signals are passed through the coherent optical receivers that separate two

orthogonal signals using four (4) PIN-photodiodes connected in balanced

configuration. Received signal and local oscillator (LO) signals are coupled using

3dB couplers. One component of LO is shifted by

 , where ,

using phase shifter. The other components (non-shifted) coupled with the incoming

signal as they are. Advantage of using a coherent receiver instead of an optical filter

to isolate the frequency of choice is that coherent receiver allows more precise

detection with strong signal from the weak incoming signals. For example, down-

converted signal is shown in Figure 9c containing high frequency components. The

23

low pass filter (LPF) stops the high frequency components to pass through to the

OFDM receiver, as illustrated in Figure 9d. These two signals are the I-phase and Q-

phase signals that are fed into the OFDM receiver for FFT to convert serial bit

streams into its frequency components. Resultant signals are fed into the QAM

decoder that generates the bit stream by detecting respective symbols, illustrated in

Figure 9e. Distortion in the received signals arises due to slight changes in phase of

the signals and variations in amplitudes.

2.3 Experiments

This section details the components used in simulations and their configuration. A

component level view of the architecture is illustrated in Figure 7. The design and

simulation of the architectures was carried out keeping in mind the requirements listed in

chapter 1 i.e., high-fan-out. Distortion in amplitude or phase of the modulated signal

results in a distorted constellation diagram at the receiver and renders the decision-

making more difficult and in some cases impossible. Since phase jitter shifts dots on the

constellation from one phase to another creating an arc like representation, it is hard to

decode. Similarly, with changes in amplitude constellation diagram converges to the

center (mostly) and makes it hard to decode. A combination of both of these occurrences

24

Figure 7: Component level view of proposed architecture. Transmitter: (a) OFDM signal

generated after IFFT using NSC subcarriers, non-filtered, 25GHz (b) Filtered output of

OFDM to be modulated onto the optical carrier at 1550nm. Roll-off of 0.5 and cut-off set

at 0.62. Link: (c) Transmitted optical signal with modulated OFDM signal. Receiver

results (d) down converted in-Phase signal at the receiver (e) signal after passing through

raised cosine low pass filter. BER of 5.4 * 10-3 (Figure 10).

gives us a spiral-like constellation illustrated in Figure 8f. We also get similar

constellation diagrams at the receiver when there is a discrepancy between number of

encoded and decoded sub-carriers.

2.3.1 Simulation software

Optsim
TM

 was used for simulations of various network layouts and architectures.

Optsim
TM

 is an industry leading optical network simulation software suit from RSoft
TM

.

The latest build-out allowed us to simulate the architectures based on coherent detection

with more realistic physical parameters. Coherent detection though studied earlier is

relatively new in the practical optical networks domain compared to direct detection

technology. However it is considered to be one of the most promising ways to go forward

owing to its advantages over other conventional techniques in the high-data rates of

25

20Gb/s and beyond. Indeed for 40Gb/s and higher data rates there are hardly any other

techniques in the literature that can address the physical limitations.

2.3.2 Results

This section introduces and presents the results based on the simulations studies and

investigations of Coherent OFDM QAM based architectures. For the demonstration

purpose, initially, 2 bits per QAM symbol were used with 512 OFDM sub-carriers.

Figure 8 a – e, shows the signal as is proceeds through the transmitter. Figure 9 illustrates

the receiver. One can see that the QAM signal, represented by the 4 unique symbols

shown in Figure 8a. This gives us a bit rate of 2 bits per symbol. Figure 8b illustrates the

(a)

(b) (c)

(d) (e)

(f)

Figure 8: Coherent 100Gb/s transmitter with 2bits/symbol. (a) Constellation Diagram

QAM Sequence Generator generates 2 sequences (b) OFDM Modulator (c) LP Filter (d)

Output from MZM (e) Power combiner Output from both MZM combined for

transmission (f) distorted constellation diagram for a 2 symbol system (just for

illustration, not connected with Figures 8a – 8e)

26

OFDM signal in the frequency domain followed by filtered signal in Figure 8c. It should

be noted that this is one of the two orthogonal signals modulated separately using Mach-

Zehnder modulators output of which is shown in Figures 8d and 8e.

The receiver related signal sequence is depicted in Figure 9 below.

(c) (b)

(a)

(e) (d)

Figure 9: 100Gb/s receiver (a) Incoming signal spectrum (b) Local Oscillator 193.1 THz -

2dBm (c) Limiting Amplifier (d) bandwidth limited signal (e) Received Optical Signal

RED = Signal BLUE = noise

Figure 9a shows the received signal. Local oscillator’s output is illustrated in Figure 9b,

followed by the decoded OFDM signal in Figure 9c. Since noise is visible in the form of

high frequencies, a LPF is used to filter out high frequency components, illustrated by

Figure 9d. Figure 9e shows the reconstructed QAM signal with reasonable noise that is to

be expected.

Figure 10 shows results achieved from other simulations with more complex signal

encoding such as 16-QAM with 4 bits per symbol. For the following BER discussions we

use the results achieved by the 16QAM simulations. Received signal BER is in

27

agreement with [35] and FEC threshold. It can be seen in Figure 10 that increases in

number of subcarriers effects BER performance. Similarly, received power affects the

BER performance as shown in Figure 11.

Figure 10: Effect of increasing the number of subcarriers on BER. Increasing number of

sub-carriers increases bit error rate significantly but shows unpredictable dependence.

Figure 11: Received signal power and its effect on BER performance for the 16-QAM

OFDM signal. With two amplifiers connected in tandem between the splitters we get

reasonable BER.

28

It is evident that the threshold BER performance varies with the number of sub-carriers

used as well as with the power received by the receiver, which dictates using the

optimum number of sub-carriers for a desired configuration.

2.4 Discussions and relevant remarks

Two architectures variations were discussed in this chapter with results pertaining to

proposed 16QAM OFDM based coherent architecture. We showed that in a high-fan-out

optical network 450+ simultaneous users can be supported with reasonable signal

performance within the typical limits. The physical layer infrastructure helps us develop

upper layers for optimizing full system performance. Proposed and investigated

architecture is best suited for high-capacity bandwidth hungry applications such as in-

flight video gaming systems. Proposed architecture will be able to provide up to

approximately 200Mb/s to each user with BER kept under the threshold of FEC using fair

allocation.

In the next chapter (3), we discuss the protocol stack and data/datasets used for

developing models for upper layers such as bandwidth allocation in chapter 4.

CHAPTER 3: PROTOCOL STACK

As introduced in previous chapters, the high-fan-out optical network is the workhorse

of the scalable high-capacity optical networks for constrained environments. At the

physical interface, data is collected between the optical network terminal (ONT) and

optical line terminal (OLT) as a variable bit stream. These bits form data packets that

have headers with information about source and destination routing. When a packet

arrives at the network interface (also known as the Network Interface Card or NIC) it is

passed on as “layer by layer”. A set of layers that a packet must traverse before being

transmitted at the sender and before being read at the receiver constitutes a protocol

stack. Stack refers to the protocol layers virtually sitting on top of each other as shown in

Fig 12.

In the following sections we contemplate the protocols in place for data transport and

define real-time video-game stream (RVGS) protocol envisioned for transportation of

video game data across the network.

3.1 Initial considerations

Each layer in the protocol stack associates and attaches information to the data is

receives from the upper later, as depicted in Figure 12 below. Associated information

carries specific functions that are necessary for transmission to be completed from one

end to the other.

30

Figure 12: Headers information added by each protocol layer

In Figure 12, application data refers to the data generated by the video game server in

both CSR and SSR based systems. Application attaches information about data that it

needs to transport such as “data length” in bytes. This is followed by user datagram

protocol (UDP) header that contains port numbers (source port and destination port) that

uniquely identify the application in the app header. As the packet arrives at the computer

port number identifies the application the packet belongs to. Subsequently, the IP header

attaches the course and destination IP addresses to the payload. These addresses help in

routing the packet all the way from source to destination. Since UDP is a connection less

protocol, each datagram is routed separately as a unique entity through the network. This

also means that UDP packets may not arrive at the receiver in order and need to be

ordered by the application. An alternative, transmission control protocol (TCP) is not

suitable for such applications due to the delays it introduces into the data streams. TCP

handles contention which increase delays on top of its heavy header therefore TCP is not

considered a good choice for video gaming data transport. IP header also contains other

information such as flags, time-to-live, fragmentation bit and IP version number. In the

31

end, and just before transmission, the IP packet is encapsulated inside an Ethernet packet

also known as a Frame, as illustrated in Figure 13 as well. Successive frames are

transmitted over the EPON in order to complete a transmission.

Since the receiver also has all the respective layers, a packet that arrives at the

receiver goes through the reverse process at each layer. Each layer removes the header

and passes on the packet to the upper layer until data is finally transmitted to the

application.

This process is similar to Amazon
TM

 sending a shipment in its own boxes although

products are already packaged by the manufacturers. Since Amazon is only a transporter,

it is concerned only with end-to-end delivery and not with the contents of the package

therefore a plain brown box with shipping labels is enough for the transportation. The

manufacturer however puts the product in its own packaging with labels, trademark, and

the product information, not for Amazon, but for the end consumer. For a consumer, the

specific information such as warranty and specifications are highly important. Amazon

analogy is also quite suitable because they have streamlined their processes to ensure a

fast, safe and accurate delivery. This is much like the service oriented architecture

discussed in earlier chapter 1. Continuing Amazon analogy, for an overnight delivery

Amazon uses FedEx’s premium network while a 3-5 days delivery is sent over USP’s

network. Both types of networks are optimized for certain specialty services.

Any communication would work in a similar fashion on the most part. The

differences lie primarily in stack implementation i.e., the type of protocol being used by a

particular service.

32

It should be noted that header information is considered an “over-head” that must be

transmitted in order to correctly and securely transmit information over a public network.

Also, the data to be transmitted is almost always much larger than the capacity allowed

packet size therefore data is fragmented and divided into smaller chunks and inserted into

packets one after the other in a sequence.

Packet sizes are defined for almost all networks dedicated to support specific

services. Consequently, depending on the specific network architectures packet sizes may

vary. These are called maximum transmission units (MTU) [41]. Table 1 below gives

view of packet sizes in a UDP/IP stack.

Figure 13 shows an Ethernet packet that carries real-time video game stream (RVGS).

This can be a SSR video frame or CSR based position vectors’ information for rendering

at the client. From the Ethernet packets’ perspective, it is simply data or payload (recall

the Amazon analogy).

Real-time video game stream (RVGS) is the protocol that carries video game data for

both SSR and CSR streams. RVGS is discussed in detail in the next section. PDU refers

TABLE 1

Packet size UDP/IP stack

Protocol
Payload

size

(bytes)

Packet Size

(bytes)

Ethernet frame 1500 3 (header) + IP packet size

IP PDU size 20 (header) + PDU size

UDP RVGS size 8 (header) + RVGS size

33

the protocol datagram unit which is a general term used for a packet for a particular

accompanying protocol type.

Figure 13: UDP/IP protocol stack on Ethernet channel

Maximum size of an Ethernet packet is 1518 bytes or 12144 bits [42]. This includes

data and all the headers that must be placed in order to make ready the packet for

transmission. Therefore, maximum payload an Ethernet packet can take is 1500 bytes.

Data enters the system from the physical interface and makes its way to the top layer

(application layer) after passing through the UDP/IP stack [43].

In a SSR system, software is installed at the client end within with the game play is

shown. The software connects with the remote video game server and essentially streams

video game frames in the downstream and the user interactions in the upstream.

Depending on the resolution and frame rate (frames per second, fps), we should expect to

see a much larger data rate compared to CSR system.

On the other hand, in a CSR system, vector information is transmitted as payload in

the downstream. This means more information related to game play is transmitted within

the same span of time. This behavior is discussed in detail in the next section followed by

deduced bandwidth requirements from the datasets.

34

Cycle times are optimized to equal packet lengths. For a low weight user, this means

at least one packet will be transmitted in every cycle. For a high weight user, if there is

enough data to be transmitted, at least three packets can be transmitted. Priority weights

and assignment mechanism is discussed in great detail in chapter 4.

3.2 Real-time Video Game Stream (RVGS)

RVGS is a novel UDP/IP stack compatible transmission protocol that specifies the

format in which video game data is transmitted over the network. Figure 14 illustrates

RVGS packet header. Service specific protocols such as file transfer protocol (FTP),

simple mail transfer protocol (SMTP) and real-time transport protocol (RTP) have been

in use for a long time in communication systems however a protocol specific to video

game traffic has not been proposed until recently, despite tremendous growth in the video

game industry. To the best of our knowledge there is no other current work related to

video game traffic protocols available for reference except for one proposed recently in

[44] and a protocol that was presented back in 2002 [45]. PGTP proposed in [44] deals

with the video game traffic targeted towards smartphones for mobile game play. Authors

propose an energy efficient protocol to save battery power while playing a video game on

a smartphone. It is shown that delays are kept under typical tolerances. Although it can

transport video game data, just like UDP or any other protocol can, it cannot perform

equally good for both types of video game stream i.e., SSR and CSR, due to lack of this

segregation of traffic in the paper. Authors in [45] propose game transport protocol

(GTP) that deals with online event driven data transport for video games for older video

games utilizing windows to control the flow of information. GTP is a TCP based protocol

35

When compared with PGTP and GTP, RVGS is inherently targeted towards video

game data in terms of inner video game details, such as information about type of data

stream (i.e., SSR or CSR), being transmitted in the header. Since RVGS is video game

specific there is more control on the information that is transmitted. This makes RVGS

more of an application layer service oriented protocol which is lightweight due to its

ability to hold more meaningful information in the header.

Figure 14: Real-time Video Game Stream (RVGS) packet header and data

The details about the fields used in RVGS packet header are as follows:

VER (3 bits): Provides information about the specific version of RVGS protocol header

used for transmission.

D. TYPE (3 bits): Describes the type of data that has arrived inside the payload/data

portion in the RVGS packet i.e., Audio data, video data, environment variables, player

info, admin info, settings. Note that some of the data may need acknowledgment.

T (bit): Frames/Vectors

36

C (bit): Check data bit is used to put specific checks for the data that is encapsulated in

the data payload portion of the packet. This field may be unset so that no checks are

performed and UDP/IP generic checks are used. This bit can be overloaded to perform

other Boolean tasks as well.

A (bit): Generally acknowledgements are not used in real-time transmission due to delays

incurred in transmitting and waiting for acknowledgments. However, there are types of

data that may require acknowledgment. Such acknowledgments do not interfere with

game play therefore can be set to acknowledge data like settings and administrative

controls.

O (bit): If packet contains completely non-conventional data, other data bit can be set to

caution the receiver not to decode it as a video game stream.

B (bit): Blank bit is set when there is not data present besides the header and the packet

acts as acknowledgement with the sequence number field with the acknowledgment

number.

F (bit): Fragment bit is set when the information in the payload is contains a fragment of

the whole, for instance, a fragment of the entire frame.

V. HOST ID (5 bits): Multiple game sessions may be active on a host. Virtual Host

application ID identifies the particular game session.

SEQ. No. (16 bits): UDP packets are not ordered due to lack of connection establishment

at the transport therefore sequence numbers help in ordering the packets at the receiver.

Sequence number reset after the maximum is reached.

BYTES (16 bits): Stores the number of bytes in the packet including payload.

SESSION ID (8 bits): Session the packet belongs to

37

GAME ID (8 bits): Game ID on the host (for multiple games)

TIME STAMP: Time stamp synchronization

DATA: Payload/data

As illustrated in Figure 14 the data is variable. This is suitable for both CSR and SSR

streams. Same amount of information about the game play will take many more packets

in SSR stream compared to CSR stream which will only transmit change vectors and

audio information. BYTES field helps in keeping track of number of bytes in the packet.

As mentioned earlier, RVGS is compatible with UDP/IP protocol stack, as shown in

Figure 13, and works seamlessly like other service specific protocols. The reason for

designing a new protocol rather than using an existing one such as RTP is that RTP was

designed for media related information, such as audio/video streams. The major

difference between a video game stream and a regular media stream is the detail in

information that is transmitted. Both the streams are inherently different in nature. For

instance, audio/video streams are pre-coded data bits that are decoded at the receiver

pretty much in the same manner for as long as the stream is relayed. A video game stream

has much more detail in terms of change vectors and other player related information. A

stream can be frames or vectors for example. Complexity of decoding at the receiver

increases if this information is not formatted, more so, if the information is transmitted in

a packet format that was developed for another type of service.

3.3 Data and observations

Analysis for bandwidth allocation in networks begins with identifying bandwidth

requirements for particular services. Bandwidth requirements ought to be based on real-

life data for realistic analysis. It is for the same reason that we use datasets gathered from

38

various sources throughout the course of this dissertation project and these are discussed

in detail in this chapter. From the network interface, data was captured using

Wireshark
TM

 – a standard data capture tool used extensively in networks research. These

were SSR and CSR based video game related datasets that were captured at the local

interface during online gameplay from OnLive [1] and local game play (computer to

computer, single and multi-player). Other network traffic datasets were downloaded

through CAIDA [8]. These datasets represent internet traffic at the core. Details about

these datasets have been listed in Table 2 for a quick reference and discussed below.

i) Datasets downloaded from CAIDA were captured at ultra-high-speed interfaces in

Chicago and San Jose, therefore, in order to use them, local traffic information was

extracted from them. Although not solely containing video-game data, these datasets

provided and insight into the way internet traffic works. The tedious task of extracting

local information required sniffing through large datasets to look for unique source and

destination pairs, which would then be categorized as data streams originated from

unique sources such as individual users or organizations. Packet sniffing for datasets was

done using code written in C++ using standard “lpcap” libraries for capturing traffic from

interfaces (Appendix E). After identifying communication sessions, session lengths,

arrival and other parameters were observed.

Figure 15 shows the nature of internet traffic which predominantly comprises of

transmission control protocol (TCP) packets. TCP is a connection oriented alternative

protocol to UDP. It can be seen the data follows Pareto distribution very closely. Pareto

distribution is a long tailed distribution that represents large number of smaller sessions

and a small number of larger sessions [24]. Just for reference, Figure 16 shows snapshots

39

of communication sessions (between unique source destination pairs) extracted from the

same datasets. When plotted on a time graph it is easy to see that the sessions occur in

bursts. It can also be observed that large number of smaller sessions and a small number

of larger sessions are present in each communication, which follows Pareto distribution.

Figure 16a shows a relatively large session at the data rate of OC-48 (Optical Carrier -

48) (OC=51.84Mb/s) which equals about 2.5Gb/s (OC * 48) at the interface where it was

collected. One can identify that the proportion of smaller sessions is larger than that of

larger sessions. Figures 16(b – d) show sessions extracted from the high-speed data.

Figures 16(e – f) are snapshots of higher data rate at OC- 192 (Optical Carrier-192)

which is approximately 10Gb/s at the interface. Rest of Fig 16 shows the extracted

sessions from the large dataset shown in Fig 16e. In all fairness, it is hard to say if there

was any co-relation between the separate communications shown in Figure 16, but we

can say with a high level of certainty that within a communication, all sessions were co-

related since they were communicating between the same source-destination pairs.

Many more datasets were also analyzed and were found to be following similar

patterns however, they cannot be used for specifically video-game purposes due to lack

of evidence about them carrying video-game data. This is the reason why latest video

game datasets were collected and are discussed next.

As far as the discussed datasets are concerned, conclusive evidence can be drawn

from them for proposing energy efficient schemes, by virtue of having idle times, in

optical networking, which was carried out as a separate work during the project and in

reported in [24].

40

D
u

ra
ti

o
n
 (

se
c)

 Session Session Session

 (a) (b) (c)

Figure 15: Data extracts from CAIDA datasets (a) Chicago OC-192 (b) San Jose OC-192

(c) Chicago OC-48

 (a) Session number vs Arrival time

and duration (OC-48)

 (b) Session duration vs Arrival

time (Local LAN)

 (c) Session duration vs Arrival time

(Local LAN)

 (d) Session duration vs Arrival time

(Local LAN)

 (e) Session number vs Arrival time

and duration / (OC-192)

 (f) Session number vs Arrival time

/ distribution of sessions (OC-192)

41

 (g) Session number vs Arrival time

(OC-192) / session spanning 13

seconds

 (h) Session number vs Arrival time

(OC-192) / session spanning 11

seconds

 (i) Session number vs Arrival time

(OC-192) / session duration <

seconds

 (j) Session number vs Arrival time

(OC-192) / session duration < one

second

 (k) Session number vs Arrival time

(OC-192) / session duration < one

second

 (l) Session number vs Arrival time

(OC-192) / session duration < one

second

Figure 16: Session information extracted from datasets

ii) From the local interface, data was captured using Wireshark while playing video

games on LAN and online using OnLive
TM

. It was observed, after analyzing the datasets,

that online servers can be caught up with demand and therefore employ load balancing.

Load balancing refers to switching servers during the gameplay depending on load

metrics. When a user starts to play a game, it may interact with a server which passes on

the connection to another server. It was observed that server shifts happen randomly and

that for accurate analysis it was imperative to include sessions generated by all servers in

the particular communication. The result of accumulation of all connected sessions can

be seen in Figure 17.

42

TABLE 2

Datasets/Traces

 Date Size

ONLIVE

Online 11-2011 846MB

 “ 11-2011 600MB

 “ 11-2011 559MB

Multiple Online datasets 10-2011 <500MB

LOCAL GAMES

Multiple LAN datasets 09-2011 4-50MB

Counter Strike 2003 1-3MB

Command & Conquer 2003 1-3MB

Misc. Games 2003 1-3MB

CAIDA

Chicago 10-2010 700MB

San Jose 03-2010 1.66GB

Chicago 02-2009 700MB

San Jose 03-2010 1.8GB

San Jose 12-2009 1.42GB

San Jose 03-2010 1.6GB

San Jose 12-2009 1.42GB

Chicago 100900 10-2003 1.07GB

Chicago 095900 11-2003 1.1GB

Chicago 100400 11-2003 1.06GB

NUST LOCAL

Multiple LAN datasets 2008 8-10MB

These datasets come under the category of SSR in Figure 17(a – b) and under the

category of CSR in Figure 17(c – e). Observations and critical communication parameters

such as packet length, arrival rate and average session length from these datasets are used

in experiments for SBA in chapter 4.

43

(a) OnLive trace

(b) OnLive trace

(c) LAN Trace

(d) LAN Trace

44

(e) LAN Trace

Figure 17: Video game datasets for SSR (a,b) and CSR (c – e) based games

Datasets shown in Figure 17 represent a sample of datasets that were collected. From

Figure 17 once can see that data rates or arrival rates vary depending of the type of video-

gaming experience i.e., SSR or CSR. For instance, as an example, for one of the OnLive

datasets (SSR), average packet arrival rate of ~600 packets per second was observed with

average packet size of ~800 bytes. This was low frame rate game play with sub HD

resolution. The same game when played in Full HD and 50fps increases the packet arrival

rate to ~1000 – 1500 packets per second. For CSR based games, bandwidth requirement

is less than SSR since vectors do not require the same amount of space as frames. Packet

arrival rates of ~100 packets per second with average packet size of ~200 bytes were

observed for most datasets.

3.4 Discussions and remarks

This chapter discusses the data used for simulations that are detailed in chapter 4.

Datasets or traces that were used for the purpose of analysis and simulations were

gathered from a variety of sources. Large datasets containing information from a large

number of users were downloaded from CAIDA [8]. These datasets give an insight into

the behavior of internet traffic and general protocol stack. Service oriented, video-game

45

related datasets were downloaded during live gameplay from online video gaming

services such as OnLive [1]. LAN datasets were captured during gameplay on the local

area network. Some older traces were also used to observe the difference in traffic

generated by older and newer games. Captured and gathered datasets provide invaluable

information regarding data generated by game engines in both SSR and CSR based

systems as discussed in this chapter. It is evident from the graphs presented in this

chapter that SSR generates much larger data compared to CSR. Also, communication

sessions captured from high-speed interfaces in Chicago and San Jose show that data

generated by individual users is in the form of bursts. Data sessions follow Pareto

distribution which forms a basis for analytical modeling the next chapter.

CHAPTER 4 – BANDWIDTH ALLOCATION

In this chapter, latency analysis of ratio-counter based bandwidth allocation (RC-

DBA) algorithm [46] for conventional Ethernet passive optical networks (EPON) [47] is

carried out. Specific to the investigations, a novel bandwidth allocation algorithm, state-

full bandwidth allocation (SBA) algorithm, for in-flight high-fan-out communication

systems is also defined and analytical model is presented. Real-life video gaming data

traffic is used for analysis and validation of design.

Since the advent of video-gaming industry, bandwidth requirements have been

constantly increasing owing to ever-growing level of details in the game play and high-

resolution graphics. Also, as the processing power increases, more processing-intensive

gaming engines are being developed. At the heart of an IFE system is an efficient

bandwidth allocation algorithm that is capable of providing high-speed content

distribution with minimum to no starvation. Optical networks (ON), due to their light-

weight, robustness and high-capacity, and being highly secure and non-intrusive medium,

lower maintenance and future proof infrastructure, are very suitable for such an

environment. Figure 1 in chapter 1 gives a generalized view of an in-flight video gaming

system architecture that utilizes an on-board optical network for distribution of video

game content, over an adapted schematic. Insets show placement of small footprint

servers and optical splitters for distribution of contents to passengers.

For the purpose of analysis, data generated by video game servers has been divided

into two categories, as shown in Figure 18 below, pertaining to the nature of video game

47

server architectures. These categories are: A) Server side rendering (SSR) and B) Client

side rendering (CSR).

A. Server side rendering

In a “server side rendering” (SSR) system, user interaction with the video game server

happens at the server, as shown in Figure 18a. This means that data processing ensues at

the server. OnLive [1] is an example of such a video gaming experience. With a global

shift to cloud computing, it would not be wrong to predict that in the future most video

gaming will be done in this way. There are some definite benefits of this approach. The

most noteworthy advantage is that it works like video streaming which makes it useable

on practically any computer that can stream video although, higher frame rates will

require more processing power and bandwidth. All the processing is performed at the

server end. Such a gaming environment produces multiple data streams often originating

from multiple servers (as a result of load balancing) and therefore all new connections

that are generated during the course of the game have been included in the analysis and

design.

B. Client side rendering

“Client side rendering” (CSR) refers to a more conventional mode of playing a video

game whereby client has the video game engine installed on the console and mainly

motion and environment change-vectors are transmitted over the network, as shown in

Figure 18b. Xbox
TM

 and PlayStation
TM

 are examples of client side rendering systems,

although computers are also widely used as well. Server hosts the game and interacts

with the consoles. Reasonably high processing power is required at the user end, and

relatively small amount of data is transmitted over the network which makes this

48

approach less bandwidth intensive but at the same time more expensive for IFE systems

and less future proof.

Both categories are considered for the analysis in later sections. For demonstration a

large bandwidth capacity provided by optical networks is used.

Figure 18: SSR vs CSR (a) Server side rendering: game play is processed at the server

and frames are transmitted to the user (b) Client side rendering: game play is processed at

the client end. Motion vectors and environment vectors are transmitted over the network.

49

4.1 Data collection and the datasets used

For the investigation and evaluation purpose, data is gathered from two sources; as a

first step traffic behavior for both categories mentioned earlier, in this chapter, is

observed. First source of datasets is OnLive [1] video gaming server which falls under

the category of SSR. From the datasets resulting from server side rendering games, we

observed regular video transmission data rates in the range of 22 – 29 Mbps and in some

cases 33 Mbps for frame rates in the range of 45 to 60 fps in full HD or (1080p). This is

considered high frame rate scenario. Second source was the datasets collected through

network gaming and fall under the category of CSR i.e., client side rendering. Samples

from these traces [1] are shown in Figure 19.

SBA was tested for a maximum of U=400+ users. According to the collected datasets

(see 3.2 for details of datasets), on average, every user receives 550 – 560 packets/sec,

with an average packet size of 805 – 814 bytes. This gives a maximum rate of 3.5Mbps.

IP and UDP header lengths (base lengths) combine to be 32 bytes. Again, for the purpose

of analysis, a quad-core processor with frequency of 3.0 GHz provides service rate of

12Gbps.

50

Figure 19: Video game reference traces (samples taken from larger datasets)

4.2 Bandwidth allocation for PON

Before discussing about bandwidth allocation for low-fan-out networks such as

traditional PON, a short introduction about PON seems necessary. PONs or Ethernet

PONs have shaped the way consumers access information over the internet by enabling

high-speed data access at homes, offices and marketplace. A typical PON connects a

server or a set of servers with the clients using a passive splitter as shown in Figure 20a.

Optical Line Terminal (OLT) resides inside the server and Optical Network Unit (ONU)

resides at the client end. Downstream is broadcast whereas in upstream, each ONU gets a

time-slot to transmit on the shared channel. PONs use one dedicated wavelength for

upstream communication and one other for downstream communication. Transmission

from ONU to OLT is carefully timed so that each ONU gets a time-slot to transmit.

ONUs communicate their requirements to the OLT and OLT grants their requests using

pre-defined messages called primitives. Bandwidth allocation (BA) in a typical TDM

51

fashion (i.e., fair) wastes considerable amount of bandwidth because if a contending

ONU does not have any data to transmit, the allocated time-slots go wasted.

Various algorithms have been proposed to increase the bandwidth allocation

efficiency in passive optical networks [46, 48-51]. Some focus has been shifted to

bandwidth allocation in specialized networks such as long-reach PONs [50], allocation of

resources in conventional PONs, 10Gbps PONs [48, 49, 51] and beyond, still remains a

concern due to decreasing latency requirements. Access networks require larger

bandwidth with users consuming huge bandwidth. This trend is increasing by the day.

For networks that cater to a large number of active users, bandwidth allocation is even

more critical and is discussed in section 4.3.

This section presents a novel analytical model to gauge performance of ratio-counter

based dynamic bandwidth allocation (RC-DBA), in conjunction with the broader scope of

progressing towards performance analysis of bandwidth allocation for high-fan-out

networks described in the next section. RC-DBA is based on EFDBA [52] and improves

on utilization and residual queue length [46].

RC-DBA, that was proposed earlier, algorithm allocates bandwidth (in time) to ONUs

that wants to transmit in a particular time slot. During a communication session, each

ONU communicates to the OLT, its buffer size. Buffer size represents the amount of time

(translated from number of bytes sent in the request) required by the ONU in the next

cycle. Average waiting time is the time between consecutive transmissions for an ONU.

Cycle time is the time slot within which, all requesting ONUs get to transmit. Generally,

there is a guard time between two cycles which prevents frames overlap in transmission

sequence.

52

Figure 20(a): An overview of RC-DBA ratio counter and allocation table

Fig 20(b): Requests from the connected ONUs. Red line represents the amount of

bytes than can be accommodated within the ensured window

RC-DBA [46] divides a regular transmission cycle in two portions as shown in Figure

21. First portion is the “Ensured Window” (EW) that is allocated statistically based on

the number of ONUs irrespective of whether it has data in its buffer or not. Later on, the

time slot for this ONU (if idle) may be allocated to another ONU which needs more time.

Second portion or rest-of-the-window (ROTW) is allocated solely based on requirements.

53

Suppose each ONU is allocated 500µs in the EW as shown in Figure 20b by the red line.

In the given scenario ONU-1 has data (in buffer) that requires 200µs of transmission time

slot. RC-DBA, allocates 500µs to the ONU-1 and moves to the next ONU. ONU-2 has

data that requires 600µs to be transmitted, it is allocated 500 microseconds in the EW and

over-load flag is set. Over-load flag identifies need for more transmission time. ONU-3

only has 100µs duration of data and is allocated 500 microseconds. This means that

ONU-2 requires time in the ROTW. Similarly, all ONUs are allocated time slot in the

EW. When EW is allocated completely, residual time is calculated. Residual time is the

time-window that remains unused in the EW due to fewer requirements, such as in the

case of ONU-1 and ONU-3. This way EW is squeezed and ROTW is broadened as

illustrated in Figure 21 (bottom). ROTW can then be divided among ONUs that require

more than what they were given in the EW.

Figure 21: Cycle time distribution in RC-DBA. Pre-allocation state (top) and post-

allocation state (bottom)

54

Allocation of ROTW works using a ratio based counter. A counter keeps track of how

much time is required by each ONU e.g., ONU-2 requires 100µs extra slot. ONUs 4, 5,

and 6 require 300, 200, and 500µs in ROTW, respectively. Ratio counter sets 100µs as its

unit allocation for this cycle and then allocates multiples of 100µs. Therefore, ONU-2

gets one unit and other ONUs get 3, 2, and 5 units, respectively. Unit allocation may vary

from cycle to cycle and is therefore adaptive. I has been shown earlier in separate work

that this technique reduces residual queue length and ensures maximum channel

utilization as shown in [46] and it was presented recently that the latency performance [7]

of RC-DBA is better than other techniques. Next section discusses a more advanced way

of allocation bandwidth.

4.3 State-full Bandwidth Allocation (SBA) for High-fan-out Optical Networks

Bandwidth allocation becomes far more involved when dealing with a large number

of users. Along with added resource allocation challenges, there exists a dire need for

enabling to offer services based on service level agreements (SLA). Some users may

require more bandwidth than the others and this should be taken into consideration when

allocating the resources. There is not much in the literature recently in terms of allocation

in high-fan-out service oriented networks. Most of the related work is concentrated on

passive optical networks that are discussed in the previous section.

The proposed SBA allocation is an advanced form of allocation that is based on

evolving states within the system. State-full allocation is therefore a novel idea for

allocation resources in optical networks.

55

“State-full” refers to information gathered from previous states of the system where

each cycle is considered to be a distinct state. Based on state information weights are

assigned to users. However, weights can also be hard-coded for QoS assurance i.e., for

the business class users/passengers or a high priority user sitting in economy class (in the

context of IFE). Information from previous states is also used to predict of forecast

upcoming requests from users. Since each user is assigned a weight, accordingly a weight

or a priority code, accordingly a “weight table” (Table 3) is maintained. Assignment

engine only takes information from weight tables in order to maintain data integrity in the

system. Novelty in the technique lies in its state-full nature and ability to cater for high

fan-out. Formally, as noted earlier the algorithm is referred to as State-full Bandwidth

Allocation (SBA).

Numerous techniques have been proposed and reported [46, 48-50, 53, 54] over time

for allocation of bandwidth in optical networks; however, high-fan-out state-full

bandwidth allocation has not been tried and is novel. In the previous section we explained

RC-DBA and our latency analysis of RC-DBA is reported in [7] for conventional passive

optical networks i.e., low fan-out. As noted earlier, “high-fan-out” refers to a large

TABLE 3

Weight Table - SBA

Hard-

coded

1 0

2 1

3 0

…

 0

Weight table (SBA) after calculating based on Eqn. (4). Table
contains both assignment cases i) hard-coded and ii) dynamic. Table

shows user 3 with a hard-coded weight and user 1 and 2 with dynamically
assigned weights.

56

number of users connected to the system considering a distribution system as a “black

box”. In later sections, analytical model for SBA is presented in order to incorporate

bandwidths up to 100Gb/s from a single channel and support for high-fan-out. SBA

focuses on single channel transmission systems, for now, that have been demonstrated to

work at above mentioned data rates [55], however, with minimal changes it can be

adopted to multi-channel systems as well.

4.4 Experiments

An analytical model was developed for SBA and latency analysis model was

developed for both RC-DBA and SBA. In the following sub sections, parameters and

configurations are defined and explained. Modeling is followed by residual time

calculations and waiting time analysis in the later part of this chapter.

4.4.1 Analytical Model

This section describes analytical modeling of SBA. R represents incoming requests

from users in consecutive cycles.

 [{
} {

}], where represents current

allocation cycle, u is the current user and is the request by a user in current cycle

where, | || and | |. All requests are in the time domain. | | is the total

number of cycles in the communication session. Total requests in current cycle are given

by Eqn. (1) and the total requested time for an entire communication session is given by

 ∑ ∑

 is the maximum amount of time that may be allocated in first

allocation to a user u i.e., allocation threshold. This allocation increases based on need for

more requirement for a set of particular users in the secondary allocation. There are three

possible scenarios: i) ii) and iii) . Basis of this

57

allocation is the request from user informing the server about the amount of time it

requires in the next cycle. Depending on the weight assigned to each user at the time of

network initializing, a user will have more time allocated to it in , however, this

allocation is within the bounds where is the time allocated to user

u in first allocation. The maximum cycle time must not be exceeded therefore the limit

holds,

 ∑

where represents first allocation to user u in the current cycle. Also, to avoid

starvation we ensure minimum bandwidth (time-slots) to every user. This is represented

by and every user is entitled to this much allocation in every cycle. Table 4 lists all

parameters (with definition and notation) used in this paper for a quick reference.

A. Initialization of , and Cycle set

Minimum allocation, , is determined based on the number of active users and

weights set for each user. It is calculated during initialization and stays the same

thereafter. Figure 22a shows a snapshot of a cycle. A user with low weight gets a smaller

minimum time window compared to a high weight user (see Figure 22b).

Similarly, a high priority/weight user gets to transmit for a larger amount of time in

the current cycle (Figure 22c) compared to a low weight user (Figure 22e). All users get

the same weight in the first cycle and system stabilizes after initial cycles. In a real world

scenario, for instance on Airbus A-380 aircraft, 8 business class passenger may be

assigned weight “1”, 80 first class passengers may be assigned weight “2” and rest of the

58

450 passengers may be assigned weight “3”. Assigning the same weight to each user

initially tests the bandwidth allocation technique with maximum dynamic allocations.

TABLE 4

Parameters

Symbol Quantity

 Request by a user in current cycle (sec)

 Current transmission cycle

 Previous transmission cycle

 Current user

 Total number of users

 Number of transmission cycles in a communication session

 Total request for current cycle (all users)

 Total request for entire communication

 Maximum allocation in 1
st
 iteration for user u

 Minimum allocation for weight group w in a cycle

 Maximum allocation in 2
nd

 iteration for user u

 Time allocated to a user in first allocation

 Time allocated to a user in second allocation

 Maximum cycle time

 Guard time

 User (#) with weight w

 Weight assigned to user u

 Data rate (100Gb/s)

 Number of cycles in a cycle set

 Unit-segment of time / unit of time for allocation in first

and secondary allocation

59

Figure 22: Bandwidth allocation in SBA (a) Initial allocation based on weights (b)

Secondary allocation (c) Secondary allocation for user 7 (d) Efficient single combined

slot for user 7 (e) Secondary allocation for user 6. Initial allocation (left of bold vertical

line) and secondary allocation (right of bold vertical line)

Cycle time is fixed for a cycle set. Optimal cycle time depends on data rate and the

number of active users using the network. Latency increases with growing cycle time [7].

A “cycle set” as shown in Figure 23 is the group of cycles for which systems allocation

parameters (i.e., weights) remain unchanged. Parameters such as weights are re-assigned

after a cycle set is over; therefore it is called a dynamic cycle set.

60

Figure 23: A dynamic cycle set

B. Initialization of first allocation

In a fair system of allocation, each user carries the same weight. Fair systems of

allocation are not very efficient when it comes to large number of users due to wastage of

bandwidth and increased latency. Amount of wasted bandwidth can be reduced by

assigning weights to users individually. A user with a higher weight gets a larger chunk

of bandwidth. System assigns weights to users based on their past requests over the last

cycle set. For assignment, we consider the following cases:

i)
 : User has been requesting

less than the threshold in the last N cycles.

A critical parameter N, which represents the number of previous states we consider while

making the assignment decisions for the current cycle .

61

Figure 24(a): Flow chart for allocation in SBA

ii)
 : User has been requesting more

than the threshold in the last N cycles.

iii) : User has not requested anything

in the last N cycles, at all.

Since, decision for each user is taken individually; each user can be assigned a

weight , where . From the next section onwards we will use to

represent a user with a weight . must be maintained at all times to

62

avoid starvation. Low weight users get to transmit in

Figure 24(b): Flow chart: first and second allocation

Since, decision for each user is taken individually; each user can be assigned a

weight , where . From the next section onwards we will use to

represent a user with a weight . must be maintained at all times to

avoid starvation. Low weight users get to transmit in the initial cycle if they have data to

transmit. Weight can be assigned to a user based on the following two cases: i) hard

coded ii) dynamic. User 1 with an assigned weight of 1 is represented as , as

63

shown in Table 3, with a bit set to 1 if it is hard-coded. Hard-coded weights are not set or

re-set dynamically. Weights can be dynamically calculated for each user as:

∑

 is calculated for all users in accordance with weight assignment case (ii) above.

Hard-coded weights are set before dynamic weights are calculated. For first cycle all

users, except hard-coded, are assigned equal weight. Therefore,

 {

Weight table is shown above in Table 3. If a user requests more than threshold

constantly in previous N cycles, it is allocated a higher priority for next N cycles (a cycle

set, Figure 23). In this manner we can ensure that bandwidth is allocated according to

requirements and also that it is not wasted. Flow chart of the algorithm is shown in Figure

24a and 24b. Cycle sets with dynamically changing weights are shown in Figure 25,

where dark bars represent changes within the consecutive cycles. These changes reflect

the dynamic nature of weight assignment.

64

Figure 25: Changing cycle set

We use Pareto distribution [56] that represents the distribution of requests from users

in a cycle. Pareto distribution is characterized by a sharp initial rise for small duration and

falling a long tail. It follows from the famous 80/20 rule of economics [57] and fits really

well for internet traffic models. On the basis of analysis we determine,

 , which is the probability that a user will request greater than its request in

previous cycle. If it’s high, this probability means that user will be a contender in

secondary allocation. Considering the number of requests received from users as Pareto

distributed we can define the probability that a user will have request in the next

cycle , as given by Eqn. (4).

 {
(

)

∑

65

Since is maximum allocation allowed in first allocation for user u, initialization

can be formulated based on parameters given in (i) – (iii) above. ,

where is a unit-segment of the time that constitutes secondary allocation cycle. In

the second allocation , each user gets a time slot based on its weight.

C. Allocating time in secondary allocation

Initial cycle is compressed before allocating secondary cycle, such that

 where ∑

 and ∑

 ,

therefore,

. If a user with high weight requires more time

to transmit, it gets more time in secondary allocation whereas if a user with low weight

requires more time, it has to wait for the next cycle if secondary allocation is complete. If

secondary allocation is not complete and there is time to spare, a user with low priority

will be accommodated in the interest of maximum utilization, as shown in Figure 24b.

Also, if a user has not requested any bandwidth or has been requesting low bandwidth in

the last N cycles, its weight reduces or remains unchanged. Slots can be distributed

among contending users depending on weights and as:

D. Allocation Table / Assignment (SBA)

Allocation table keeps track of incoming requests, weights, and maximum allowed

time, allocated time in first allocation, granted time in second allocation and residual

66

time. For randomly generated requests arriving from users, assignment engine allocates

the slots based on Figure 24a and 24b. Figure 26 shows a glimpse of simulated residual

times (i.e., time taken forward to the next cycle due to lack of available time in current

system) for SBA.

Figure 26(a): Residual time after every cycle for 100 cycles for random users

67

Figure 26(b): Residual time after every cycle for 500 cycles for random users

Figure 26(c): Residual time after every cycle for 500 cycles for 250 users

68

One can see that residual times remain in an acceptable range. Above shown results

are for randomly selected users out of a total of 500 since pictorial representation of all

users renders the plots unreadable as shown in Figure 26c. The results in Figure 26 are

from simulations that ran for 100 cycles (a) and 500 (b) accumulating residual times

along the way. We can see that residual time remained within the range. This is also the

time during which system stabilizes. For a particular cycle, if a user requires less time

(for new data) residual requests are serviced and therefore residual time at the end of the

cycle decreases. This behavior is evident in Figure 26 (i.e., valleys).

4.4.2 Latency Analysis

This section presents latency analysis model of RC-DBA followed by that of SBA.

Average waiting time for an ONU, between transmissions is calculated, for RC-DBA and

compare it with EFDBA and statistical multiple access. For completeness, we compare

Poisson as well as Pareto distributed arrivals. Equation (7) gives the delay incurred when

request is fulfilled by EW. In this case, ROTW stays idle and bandwidth is wasted but

since there is no data to be transmitted it cannot be allocated. We can however reduce the

cycle time by half in case of low load and reduce the average waiting time by half. WHIGH

is the average waiting time experienced by an ONU under high load.

For the first scenario, average residual time before an ONU gets to transmit again can

be expressed by Eqn. (6). T is cycle time which is kept at 2 msec. Theoretically, T can be

any length i.e., T= [1ms, 2ms, 3ms,…], but length of cycle time affects waiting time in

consecutive cycles for ONUs. Ensured and ROTW, initially, are equal to half the cycle

time i.e., T/2 each. N is number of ONUs connected to the OLT and n is the number of

69

computers or devices connected to the ONU such that N=[1,2,3,….N] and n=[1,2,3,….n].

EW is compressed, but not expanded, after the initial fair allocation. Compression in EW

results from smaller requirements from ONUs. This spare time is allocated to highly

loaded ONUs in the ROTW. Since average waiting time is the same for each ONU in the

first scenario, i and j (current ONU and device number respectively) are irrelevant. TG is

the guard time kept at 2µs. Standard EPON data rate of 1.25Gbps has been used for all

calculations.

Waiting time can be calculated from [58] for the first scenario as shown in Eqn. (7)

below.

Where α is a positive parameter larger than 1 and xm is the minimum value of arrival. We

vary arrival rate to see the effect on waiting time. Mean values of Poisson and Pareto

distribution have been used for the purpose of this analysis. Pareto distribution maps

network (predominantly TCP) traffic pretty accurately. It is a long tailed distribution with

small number of occurrences of large magnitude and a large number of occurrences of

smaller magnitude. This behavior is consistent with network traffic and can be observed

easily [24].

70

In the second scenario, ONUs have more data and therefore require ROTW. High

load situation requires a more complex analysis since any ONU can request a slot in

ROTW, randomly. This essentially means that there is a high probability that an ONU

will have more data to transmit than allocated in EW. Average waiting time for such a

scenario is given by Eqn. (8). Increase in incoming traffic causes the ROTW to be

utilized efficiently, unlike in the low load situation where it goes largely wasted. The

result of this is reduction in residual queue lengths. Average waiting time also reduces

significantly since an ONU can have allocation in both ensured and ROTW of the same

cycle depending on its initial request. A maximum of may be allocated to an ONU

in the EW.

Compared with EFDBA, RC-DBA shows smaller waiting times. Major reason for

this behavior is the fact that ROTW is not allocated fairly, instead, only the ONUs that

require data to be transmitted are allocated time and those that do not require even the

EW slot are not given the whole slot. Eqn. (9) gives the average waiting time for

EFDBA. This has been determined for the purpose of comparison.

71

Ratio counter is a table (as shown in Table 5) enlisting the status of ONUs in terms to

their requirement for a time slot in ROTW. Towards the end of for allocation cycle, the

algorithm calculates all the remaining requests that still need to be fulfilled. The smallest

such request is called a unit. Multiples of this unit is then allocated in ROTW. As shown

in Table 3, ONU 1 needs a single unit whereas ONU 2 needs three units. ONU 3 does not

need any further allocation in this cycle.

TABLE 5

RC-DBA

ONU Request Flag Remaining Units Residual

1 500 0 0 - 0

2 600 1 100 1 0

3 100 0 0 - 0

4 800 1 300 3 0

5 700 1 200 2 0

6 1000 1 500 5 0

…

N 450 0 0 - 0

An ONU that does not require a time slot in ROTW is not flagged. Only Flagged

ONUs get unit allocation in ROTW. Any data that remains to be transmitted after each

cycle is passed on to the next cycle for scheduling. Table 5 shows no residual data from

72

this cycle to the next. 100 microseconds is the minimum request (remaining) for this

cycle.

We can treat the ratio-counter as an array of random variables where each item in the

array represents an ONU. These requirements are fulfilled as multiples of unit allocation

that is calculated in every cycle and may change in every cycle. Also, there may be more

units allocated in ROTW than the time remaining therefore all that can be transmitted is

transmitted in the current cycle and residual requirement (if any) from all ONUs is

forwarded to the next cycle and is added to the new requirement in that cycle.

For SBA however the system is modeled in a slightly different manner since weights

and statistically calculated parameters are involved. Residual times are calculated and

based on those, average waiting times are determined for users. Since average waiting

time is the same for all users individual times need not be calculated for close

approximation.

 is a set containing the number of users with respective weights.

 ∑

 ∑

 as shown in Figure 27. Slot length is equal to packet

length and we neglect propagation delay due to negligible distances.

Figure 27: Residual time calculation (i.e., for user number 3)

73

 {

Residual time can be calculated as and

residual time for user u when it does not qualify for a slot in secondary allocation is then,

 ∑

 ∑

Similarly, when user u gets a slot to transmit in secondary allocation based on Eqn. (10),

it faces a different wait time until the next cycle since transmission time in the current

cycle increases. Also, if a user gets time in secondary allocation, it is allocated the total

time together in one slot in order to reduce management complications as shown in

Figure 22d. In this case residual time is given by,

 ∑

 ∑

where, is the current user and total allocation to a user in next cycle is .

From Eqn. (11), for waiting time, we get,

74

∑

 ∑

 [

]

and from Eqn. (12), for waiting time, we get,

∑

 ∑

 [

]

Equations (13) and (14) are special cases of the average latency incurred by a user during

and between cycles and can be derived from Figure 27.

4.4.3 Results

As mentioned earlier, cycle time of 2 ms has been set for RC-DBA and cycle time

changes for SBA. Cycle time must not be too large or too small. For a large cycle time,

average system waiting time increases and for small cycle times much of the time is spent

in managing cycles compared to transmitting data which increases overhead. Also, if

transmission window allotted to a particular ONU is less than the time it needs to

transmit a packet completely, the packet will need fragmentation that would require

processing as well as overhead transmission of fragmented headers. Figure 28 shows that

waiting time increases exponentially as the cycle time increases beyond a threshold. This

behavior is relatively consistent when we use larger number of ONUs. Figure 29 shows

increase in delay as number of ONUs connected to OLT increases. This is consistent with

the characteristic waiting time curve for TDMA systems. This is obvious since each

75

ONU is pushed back in time for next transmission due to time allocated to an added

ONU.

Figure 28: Waiting time increases with larger cycle time (T)

Figure 29: Waiting time increases with increase in arrival rate at ONUs

Compared with existing low-fan-out BA algorithms, RC-DBA performs better in

many aspects as shown in figures below. Latency incurred by using RC-DBA is much

less than that of statistical and much better than EFDBA. Figure 30a gives a comparison

76

between EFDBA and RC-DBA. It can be seen clearly that RC-DBA out performs

EFDBA in latency performance at least by three orders of magnitude. This is significant

improvement and delay being reduced to microseconds means a packet can be

transmitted in every transmission cycle although very small.

For completion and reference, statistical allocation incurs huge delays, as shown in

Figure 30b, when the number of connected ONUs is large. Since allocation is fair there is

not much that can be done to improve.

Figure 30(a): Waiting time vs Arrival rate for Poisson arrivals

Figure 30(b): Waiting time vs Arrival rate for Poisson based arrivals (TDMA)

77

The trade-off is between the number of ONUs that can connected for a particular

scenario and acceptable delay. For a large number of connected ONUs delay tolerances

would have to be relaxed and for strict delay considerations, number of ONUs must be

very less.

Following figures show the same models with Pareto distributed arrivals. Figures 31

(a), (b) and (c) show the results based on , , and

 . It can be seen that as the offered load increases the waiting time increases

and after a cetrain threshold the waiting time increases exponentially. This point defines

the limit of maximum load that can be supported by the network with a certain number of

ONUs.

Figure 31(a): Waiting time vs Offered load for (N=64) Pareto arrivals (RC-DBA)

With a decrease in the number of connected ONUs, more traffic load can be afforded

in the network.

78

Figure 31(b): Waiting time vs Offered load for (N=32) Pareto arrivals (RC-DBA)

RC-DBA sustains its better performance by keeping the waiting times low.

Figure 31(c): Waiting time vs Offered load for (N=16) Pareto arrivals (RC-DBA)

Similarly, in terms of scalability, we can see that delays tend to increase rapidly with

as number of ONUs increase. This exponential behavior is prominent in Figures 31(a –

c). Since, this is a TDM based solution; there is a direct dependence of average system

delay on number of contending users. For SBA, based on the analytical results achieved

in previous section (i.e., Eqns. 11 – 14) we show that in terms of latency performance

79

SBA performs better than the typical requirements of high performance gaming systems.

SBA achieves these results for a fan-out of 400+ simultaneous users according to

requirements mentioned in chapter 1. Figure 32 shows a comparative view of residual

time and waiting time as number of active user’s increases.

Figure 32: Comparison of waiting time and residual time

For a typical online video gaming system such as OnLive, latency of around 150ms to

200ms [59] can be observed and SBA achieves around 30ms for a cycle time of 0.6ms for

450 users. Similarly, with a relatively smaller cycle time of 0.4ms, SBA achieves 20ms

which is still under the acceptable range for OnLive. Since waiting time is a function of

average residual times for each user it can be seen in Figure 32 that residual times also

show similar behavior.

80

Figure 33: Waiting time increases with increase in number of active users. Various slot

times and corresponding cycle times are plotted for a better view of system latency

We realize that with an increase in frame rate from 30fps to 60fps latency increases

further but that is to be expected in such a system. With a decrease in number of active

users latency increases and can compensate for high frame rate games. Figure 33 shows

increase in waiting times with an increase in number of users and as the system reaches

around 500 users.

First allocation is where each user gets to transmit regardless of its weight although a

user with high weight gets a larger chunk of time. Figure 34 shows waiting time

dependence on increasing number of users and increase in arrival rate. With an increase

in arrival rate the system tries to expand to accommodate the increased traffic. As a

81

Figure 34: First allocation time dependence on number of users and associated waiting

time. Note that this only shows the first phase in bandwidth allocation which is done by

allocating based on user weightage

result, latency increases. Moreover, with an increase in cycle time, waiting time also

increases and this can be seen in Figure 18, for a range for cycle time values.

Figure 35: Waiting time increases with increase in cycle time

Presented results clearly show that SBA performs better than existing systems for

similar kind of traffic. Also, SBA is novel because it caters for a high-fan-out.

4.5 Discussion

In this chapter we proposed analytical models for latency analysis of RC-DBA and a

novel allocation, SBA. Both allocation schemes target different types of networks. While

82

RC-DBA deals with low-fan-out conventional PONs, SBA allocates resources in high-

performance; high-fan-out networks that require SLA based allocation. These schemes

are best suited for their respective domains as shown by the results. Performance of SBA

can be termed as better than the current day requirements for in-flight video gaming

systems, therefore according to the requirements set in chapter 1, SBA is suitable for in-

flight implementation. Both RC-DBA and SBA eliminate starvation from the network, in

that; each user gets to transmit a minimum time irrespective of SLA. SBA shows better

performance in most cases where latency is less than the typical. This helps in increased

frame rates for high performance games and also enhances quality of game play

experience for regular games of up to 30fps. Latency is less for CSR based systems when

compared with SSR based systems although over systems’ latency performance is

deemed acceptable for lag free gameplay.

The modular nature of SBA gives administrators more leverage, in that; it can also be

used with multi-carrier OFDM systems discussed in chapter 2 hence making SBA a

useful techniques for multiple architectures. Minimal changes are required for this

transition. Instead of single channel, multiple sub-carriers can be treated, each as a single

channel. Results presented in this chapter are encouraging since they can be used to

unlock further potential in the domain of high-fan-out resource allocation in future works.

CHAPTER 5: DISCUSSIONS

This chapter concludes the dissertation project report by summarizing the project

description, methodology, approach and the results. Each chapter presents the results

achieved during the various phases of the investigations. Future work has also been

identified in the later part of the chapter.

5.1 Concluding remarks

The first phase of the project dealt with the development and verification of a novel

high-fan-out short-range optical network which is based on the passive optical networks

(PON) architecture on the physical layer. The network layer architecture acts as the

backbone for high-fan-out applications discussed in this dissertation and in section 5.2.

PONs have now been well established in various renditions over the past decade. We

considered the TDM-PON for adaption to enable an in-flight entertainment (IFE) system.

In the second phase and at the transport layer a novel real-time video game stream

(RVGS) protocol was presented that is sensitive to the video game streams (both CSR

and SSR) unlike any other protocol today. In the third phase of the project a novel

bandwidth allocation algorithm (SBA) is presented that is state-full in nature. It allocates

bandwidth based on the previous states of the system and it is shown that latency

performance of SBA is in accordance and in fact better than those of existing online

video game systems.

84

In the contemporary world IFE systems play an important role in enhancing

passenger experience. IFE has grown to be a huge industry and companies such as

Panasonic and Thales as major shareholders. IFE systems are constrained in their ability

to perform, due to inadequate support infrastructure. Entertainment industry and

especially the video game industry have evolved rapidly over the years but the IFE

systems have remained slow, perhaps due to an evidently focused market. In this project

we endeavored to design and test/simulate both the physical layer and the network layer

architecture with the help of real-life data.

The project was initiated by identifying the requirements for the networks in

constrained environments. At the physical layer level, network architecture has been

proposed and investigated that can support high-fan-out applications with high-capacity.

The physical layer infrastructure formed the basis and helped develop upper layer models

for optimizing full system performance. The designed and demonstrated architecture is

best suited for high-capacity bandwidth hungry applications such as in-flight video

gaming systems. It is able to provide approximately 200Mb/s to each user with BER kept

under the threshold with forward error correction (FEC). It is understood that this

bandwidth is much more than the current requirement as evidenced in chapter 3, however

keeping in mind the future requirements and the fact that airliners have a life span of few

decades, a future proof system was one of the requirements.

Latency models for ratio-counter based dynamic bandwidth allocation (RC-DBA) and

analytical and latency model for state-full bandwidth allocation (SBA) technique have

been proposed and investigated. Both of the above mentioned allocation techniques target

different types of networks. The distinction is drawn based on the number of users each

85

of the networks can serve. RC-DBA allocates bandwidth in conventional low-fan-out

optical networks i.e., passive optical networks, whereas SBA is a state-full bandwidth

allocation technique that is investigated for allocation of bandwidth in high-fan-out

networks. SBA is able to allocate based on priority that can be hard-coded by the system

administrator. Otherwise, the priority is set by the system on run time based on demands

made by a particular user. In either case, it is ensured that none of the users is starved for

bandwidth.

Results show that SBA performs well in terms of latency performance for both client

side rendering (CSR) and server side rendering (SSR) based video games. It was shown

that approximately 30ms of inter-cycle transmission delay would be incurred by a user on

average which is believed to be within the tolerances of around 300ms for online video

games. SBA can support the full load of users for upstream transmission as well as

downstream transmission which is broadcast. The support extends for games with frame

rates in excess of 40fps. Not only in single channel systems, SBA can be used in multiple

channel systems such as the QAM OFDM based architecture presented in chapter 2. This

shows the flexibility in the technique and adaptability to multiple physical layer

scenarios.

5.2 Future work

As mentioned in Chapter 1, there are many applications that can benefit from the

work reported in this dissertation. High-fan-out high-capacity systems have many

applications besides the IFE. There exist other constrained environments that pose unique

challenges in terms of system design and resource allocation. There are a multitude of

applications that can benefit from the physical layer architecture and bandwidth

86

allocation techniques demonstrated in this dissertation and those investigations can be

done in the future. Thus the proposed system can be optimized for other scenarios based

on unique traffic models and physical layer constraints. Some of these applications are

pictorially represented in Figure 36 and described below:

1. Train Area Networks (TAN): Trains are becoming increasingly advanced not only

in their speed but also in the technology presence on-board. Similar to the in-flight

entertainment scenario, train area networks can utilize high-fan-out networks for

affording a large number of passengers with large bandwidth.

2. Video gaming competitions (direct application): Perhaps the most direct

application of our work is in video gaming competitions. Although, video gaming

competitions do not have energy constraints, number of players is large and latency

requirements are similar for state-of-the-art video games.

3. Secure networks such that of security agencies that require high-capacity and

security: Government agencies such as NASA have a requirement of high-fan-out high-

capacity networks due to the nature of their work. Traffic is generated, among other

things by high resolution images that are constantly transmitted between terminals. Due

to the time critical nature of the job, low latency high-capacity optical network, such as

the one proposed in this dissertation, will be able to fulfill the requirements of such a

demanding environment.

4. Scientific expositions: Expositions take place all the time and mostly have a large

number of participants. A large percentage of the participants are from the industry and

academia that showcase the advancements in science and technology. High-speed

connectivity among terminals at the expos and with the back end functions is an essential

87

part of a successful demonstration. A high-speed networks with support for a large

number of users is most suitable for such a scenario.

Figure 36: Applications of high-capacity high-fan-out optical networks

Scenarios mentioned above are just a few of the many that can be enabled with the help

of high-speed networks that are tailored to be service oriented. New services are

emerging at a high rate and service oriented networks are going to define the efficiency

and productivity in the future or optical networking.

88

REFERENCES

[1] "OnLive - Play on-demand video games over the internet," http://www.onlive.com.

[2] Z. Whittaker, “Electronic Arts: Digital sales will surpass boxed game sales in

years,” news.cnet.com, 2012.

[3] B. o. T. Statistics. "June 2011 Airline System Traffic Up 1.6 Percent from June

2010," http://www.bts.gov/press_releases/2011/bts046_11/html/bts046_11.html

[4] S. Perrin, “Cisco 100G Test With EANTC : Overview & Analysis Prepared by,”

Cisco, 2012.

[5] M. Birk, P. Gerard, R. Curto et al., “Real-Time Single-Carrier Coherent 100 Gb/s

PM-QPSK Field Trial,” Journal of Lightwave Technology, vol. 29, pp. 417-425,

2011.

[6] C. W. M. Robert Craig, Ulrich Sigmund, Video game system using pre-generated

motion vectors, USA, USPTO, 2007.

[7] A. Haider, and M. Y. A. Raja, "Latency Analysis of Ratio-Counter based Dynamic

Bandwidth," ISCC, 2012, pp. 161 - 165.

[8] http://www.caida.org/home/. "The cooperative association for internet data

analysis," 2010,2011,2012.

[9] B. A. Subramanian, In-flight Entertainment, Wipro, 2002.

[10] A. Aviation. "In-Flight Entertainment,"

http://www.asianaviation.com/articles/160/In-Flight-Entertainment.

[11] Thales. "Innovating for In-flight Entertainment (IFE)," http://www.thalesraytheon-

fr.com/Case_Studies/Markets/Aerospace/Innovating_for_inflight_entertainment_(I

FE)/.

[12] P. A. Corporation. "Connecting the Business and Pleasure of Flying,"

http://www.thefutureofifec.com/.

[13] Bigestplane.com, "Seat plan for boeing 777," 2012.

[14] N. A. a. R. Administration., "Code of Federal Regulations," Title 14: Aeronautics

and Space.

http://www.onlive.com/
http://www.bts.gov/press_releases/2011/bts046_11/html/bts046_11.html
http://www.caida.org/home/
http://www.asianaviation.com/articles/160/In-Flight-Entertainment
http://www.thalesraytheon-fr.com/Case_Studies/Markets/Aerospace/Innovating_for_inflight_entertainment_(IFE)/
http://www.thalesraytheon-fr.com/Case_Studies/Markets/Aerospace/Innovating_for_inflight_entertainment_(IFE)/
http://www.thalesraytheon-fr.com/Case_Studies/Markets/Aerospace/Innovating_for_inflight_entertainment_(IFE)/
http://www.thefutureofifec.com/

89

[15] J. Baliga, R. Ayre, W. V. Sorin et al., “Energy consumption in access networks,” in

OFC/NFOEC, 2008.

[16] I. Kang, X. Liu, S. Chandrasekhar et al., "Energy-efficient 0.26-Tb/s coherent-

optical OFDM transmission using photonic-integrated all-optical discrete Fourier

transform," Optics express/OSA, 2012, pp. 896-904.

[17] S. Wong, L. Valcarenghi, S. Yen et al., “Sleep mode for energy saving PONs:

advantages and drawbacks,” 2009.

[18] Y. Zhang, P. Chowdhury, M. Tornatore et al., “Energy efficiency in telecom optical

networks,” IEEE Comm. Surverys and Tutorials, 2010.

[19] Z. J. h. Mohamed Elhawary, “Energy-Efficient Protocol for Cooperative

Networks,” IEEE/ACM Transactions on Networking, vol. 19, no. 2, pp. 561-574,

2011.

[20] P. Chowdhury, M. Tornatore, A. Nag et al., “On the Design of Energy-Efficient

Mixed-Line-Rate (MLR) Optical Networks,” J. Lightwave Technol., vol. 30, no. 1,

pp. 130-139, 2012.

[21] F. B. B. Bernhard Schrenk, Johan Bauwelinck, and J. A. L. Josep Prat, “Energy-

Efficient Optical Access Networks Supported by a Noise-Powered Extender Box,”

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol.

17, no. 2, pp. 480-488, 2011.

[22] L. Shi, B. Mukherjee, and S.-S. Lee, “Energy-Efficient PON with Sleep-Mode

ONU: Progress, Challenges, and Solutions,” IEEE Network, pp. 36-41, 2012.

[23] C. P. Lai, A. Naughton, P. Ossieur et al., “Low-Power Colourless Reflective

Components for Energy-Efficient Optical Networks,” in ICTON, 2012.

[24] A. Haider, K. Acharya, and M. Y. A. Raja, “Cross-Layer TCP Flow Aware Model

for Energy Efficient Use of FP Lasers in Passive Optical Networks,” in HONET,

2010.

[25] W. Li, J. Shao, X. Liang et al., “An optical OFDM multiplexer and 16×10Gb/s

OOFDM system using serrodyne optical frequency translation based on LiNbO3

phase modulator,” Optics Communications, vol. 284, pp. 3970-3976, 2011.

[26] R. Nagarajan, J. Rahn, M. Kato et al., “10 Channel, 45.6 Gb/s per Channel,

Polarization-Multiplexed DQPSK, InP Receiver Photonic Integrated Circuit,”

Journal of Lightwave Technology, vol. 29, pp. 386-395, 2011.

90

[27] W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design.,”

Optics express, vol. 16, pp. 841-59, 2008.

[28] J. Yu, M.-f. Huang, and D. Qian, “Centralized Lightwave WDM-PON Employing

16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream

Signals,” Photonic Technology Letters, vol. 20, pp. 1545-1547, 2008.

[29] D. Foursa, Y. Cai, J. Cai et al., “Coherent 40 Gb / s Transmission with High

Spectral Efficiency Over Transpacific Distance,” OFC, pp. 4-6, 2011.

[30] B. Zhao, and X. Chen, “A 40Gbps SSB-OFDMA-PON Architecture Using Direct-

Detection and Source-Free ONUs Supporting Dynamic Bandwidth Allocation,”

2011 Third International Conference on Communications and Mobile Computing,

pp. 223-225, 2011.

[31] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[32] “Ciena - Ciena Widens Leadership in High Speed Optics with Innovative

WaveLogic 3 Technology - WaveLogic 3, 100G, Coherent, 400 Gb/s,

programmable.”

[33] “The 400G Photonic Service Engine | TechZine - Alcatel-Lucent.”

[34] FFT Tutorial, University of Rhode Island, Department of Electrical Engineering

and Computer Science.

[35] G. Bosco, A. Carena, V. Curri et al., “Performance Limits of Nyquist-WDM and

CO-OFDM in High-Speed PM-QPSK Systems,” Photonic Technology Letters, vol.

22, pp. 1129-1131, 2010.

[36] G. Shen, and M. Zukerman, “Spectrum-efficient and agile CO-OFDM optical

transport networks: architecture, design, and operation,” IEEE Communications

Magazine, vol. 50, pp. 82-89, 2012.

[37] X. Wang, and G. B. Giannakis, “Resource Allocation for Wireless Multiuser

OFDM Networks,” IEEE Transactions on Information Theory, vol. 57, pp. 4359-

4372, 2011.

[38] D. Johnson. "Fourier Series Approximation of a Square Wave," 09/09/12, 2012.

[39] H. L. Cooke, Time Division Multiplex System for Signals of Different Bandwidth,

2,919,308, U. P. Office, 1954.

91

[40] W. Shieh, “OFDM for Flexible High-Speed Optical Networks,” Journal of

Lightwave Technology, vol. 29, pp. 1560-1577, 2011.

[41] D. I. Program, "Internet Protocol DARPA Internet Program Protocol

Specificncation," Defence Advanced Research Projects Agency, 1981.

[42] "Ethernet Frame," Sep, 2012;

http://www.infocellar.com/networks/ethernet/frame.htm.

[43] J. F. Kurose, and K. W. Ross, Computer Networking: A Top-Down Approach, 6

ed.: Addision Wesley, 2012.

[44] B. Anand, J. Sebastian, S. Y. Ming et al., “PGTP: Power aware game transport

protocol for multi-player mobile games,” in Communications and Signal Processing

(ICCSP), 2011 International Conference on, 2011, pp. 399-404.

[45] S. Pack, E. Hong, Y. Choi et al., “Game Transport Protocol: A Reliable

Lightweight Transport Protocol for Massively Multiplayer On-line Games

(MMPOGs),” 2002.

[46] U. K. Mufti, S. A. Haider, and S. M. H. Zaidi, "Ratio-counter based dynamic

bandwidth allocation algorithm (RCDBA) extending EFDBA," HONET 2009,

IEEE, 2009, pp. 115-119.

[47] IEEE, "Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Access Method and Physical Layer Specifications," Physical Layer Specifications

and Management Parameters for 10Gb/s Passive Optical Networks, IEEE, 2009.

[48] F. Wang, and C. Chen, “Dynamic bandwidth allocation algorithm based on idle

times over Ethernet PONs,” in ICSPCC, 2011.

[49] M. Tanaka, T. Nishitani, H. Mukai et al., “Adaptive dynamic bandwidth allocation

scheme for multiple-services in 10GEPON systems,” in ICC, 2011.

[50] B. Skubic, J. Chen, J. Ahmed et al., “Dynamic bandwidth allocation for long-reach

PON: overcoming performance degradation,” IEEE Communications Magazine,

vol. 48, no. 11, November 2010, 2010.

[51] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Routing and Spectrum

Allocation in OFDM-Based Optical Networks with Elastic Bandwidth Allocation ”

in GLOBECOM, 2010, pp. 1-6.

http://www.infocellar.com/networks/ethernet/frame.htm

92

[52] B. Park, A. Hwang, and J. H. Yoo, “Enhanced Dynamic Bandwidth Allocation

Algorithm in EPONs,” ETRI Journal, vol. 30, no. 2, 2008.

[53] A. Gumaste, K. Pulverer, A. Teixeira et al., “Medium access control for the next-

generation passive optical networks: the OLIMAC approach,” IEEE Network, vol.

26, pp. 49-56, 2012.

[54] S. Kawanishi, H. M. Yokosuka Takara, T., O. Kamatani et al., “Single channel 400

Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 km

employing dispersion slope compensation,” Electronics Letters, vol. 32, pp. 916-

918, 2002.

[55] "Cisco Systems' 100 Gigabit spans metro to ultra long-haul," May 2012, 2012;

http://www.gazettabyte.com/home/2012/3/7/cisco-systems-100-gigabit-spans-

metro-to-ultra-long-.

[56] "ParetoDistribution," Sep, 2012;

http://reference.wolfram.com/mathematica/ref/ParetoDistribution.html.

[57] M. O. Lorenz, Methods of Measuring the Concentration of Wealth, p.^pp. 209-219:

Publications of the American Statistical Association, 1905.

[58] L. Kleinrock, Queueing Systems, Volume 1, Theory: John Wiley & Sons, 1975.

[59] R. Leadbetter, “Console Gaming: The Lag Factor,” Eurogamer.net, 2009.

http://www.gazettabyte.com/home/2012/3/7/cisco-systems-100-gigabit-spans-metro-to-ultra-long-
http://www.gazettabyte.com/home/2012/3/7/cisco-systems-100-gigabit-spans-metro-to-ultra-long-
http://reference.wolfram.com/mathematica/ref/ParetoDistribution.html

93

APPENDIX A: RC-DBA CODE

#include <iostream>

#include <math.h>

#include <fstream>

#include "rngs.h"

#include "rngs.c"

#define N 8

#define datarate 1E+09

#define PI 3.147

using namespace std;

int populateRequests(int []);

float generatePoisson();

void printList(int []);

void printList(double []);

int convertBytesToTime(int [], double []);

int convertTimeToBytes(double [], int []);

int calResidualTimes(double [],double [],double,int []);

double compressEnsuredWindow(double [],int [],double);

double findMinRequest(double [],int []);

int calUnitsAllocated(int [],double [],double,int [],int);

int allocateRestWindow(int [],double [],int [],double);

int calResidualTimeForNextSlot(int [],double [],double [],double,double []);

int printChart(int [],int [],int [],int [],int []);

int main (int argc, char *argv[])

{

 int slot=1, unitsAllowedInRest;

 int ratioCounter[N], reqBytes[N],unitsAllocated[N], residualBytesForNextSlot[N],

restWindowAllocated_Bytes[N];

 double reqTime[N], residualTime[N], restWindowAllocated[N],

residualTimeForNextSlot[N];

 double T=0.002,T_G=0.000001,oneSlot,compressedWindowSize,minOverReq;

 char quit;

 oneSlot=(T/2)/N;

 for (int K=0;K<N;K++) ratioCounter[K]=0;

 for (int K=0;K<N;K++) unitsAllocated[K]=0;

 populateRequests(reqBytes); //populate the request list

 //printList(reqBytes); //print the passed list

 convertBytesToTime(reqBytes,reqTime); //printList(reqTime);

 calResidualTimes(reqTime,residualTime,oneSlot,ratioCounter); //Ensured window -

requested time

 //printList(residualTime);

 //printList(ratioCounter);

 compressedWindowSize=compressEnsuredWindow(reqTime,ratioCounter,oneSlot);

 cout<<endl<<"TOTAL="<<T<<" Ensured="<<compressedWindowSize<<" Rest="<<T-

compressedWindowSize<<endl;

 minOverReq=findMinRequest(residualTime,ratioCounter);

 unitsAllowedInRest = (T-compressedWindowSize)/minOverReq;

 cout<<endl<<"MINIMUM REQUEST: "<<minOverReq<<endl;

 calUnitsAllocated(unitsAllocated,residualTime,minOverReq,ratioCounter,

unitsAllowedInRest);

 //printList(unitsAllocated);

 allocateRestWindow(ratioCounter,restWindowAllocated,unitsAllocated,minOverReq);

 convertTimeToBytes(restWindowAllocated,restWindowAllocated_Bytes);

 //printList(restWindowAllocated);

calResidualTimeForNextSlot(ratioCounter,residualTimeForNextSlot,reqTime,oneSlot,restWindo

wAllocated);

 //printList(residualTimeForNextSlot);

 convertTimeToBytes(residualTimeForNextSlot,residualBytesForNextSlot);

 //printList(residualBytesForNextSlot);

94

printChart(reqBytes,ratioCounter,unitsAllocated,restWindowAllocated_Bytes,residualBytesFo

rNextSlot);

 //convertTimeToBytes()

 quit = '\0';

 while (quit != 'q')

 {

 cout << "Press q to quit " << endl;

 cin >> quit;

 }

 return 0;

}

int populateRequests(int reqBytes[])

{

 for (int i=0; i<N; i++)

 {

 reqBytes[i]= generatePoisson();

 }

 reqBytes[0]=100000;

 return 1;

}

float generatePoisson()

{

 float lambda = 10,u,x,n,v,y,lhs,rhs;

 float c = 0.767 - 3.36/lambda;

 float beta = PI/sqrt(3.0*lambda);

 float alpha = beta*lambda;

 float k = log(c) - lambda - log(beta);

 while(1)

 {

 u = rand();

 x = (alpha - log((1.0 - u)/u))/beta;

 n = floor(x + 0.5);

 if (n < 0)

 {

 v = rand();

 y = alpha - beta*x;

 lhs = y + log(v/(1.0 + exp(y))^2);

 rhs = k + n*log(lambda) - lgamma(n+1); //log(n!)

 if (lhs <= rhs)

 return n;

 }

 }

}

void printList(int inputList[])

{

 for (int i=0; i<N; i++)

 {

 cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl;

 }

}

void printList(double inputList[])

{

 for (int i=0; i<N; i++)

 {

 cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl;

 }

}

95

int convertBytesToTime(int Bytes[], double Time[])

{

 for (int i=0; i<N; i++)

 {

 Time[i]=Bytes[i]/datarate;

 }

 return 1;

}

int convertTimeToBytes(double Time[], int Bytes[])

{

 for (int i=0; i<N; i++)

 {

 Bytes[i]=Time[i]*datarate;

 }

 return 1;

}

int calResidualTimes(double Request[],double Residual[],double oneSlotTime,int Counter[])

{

 for (int i=0; i<N; i++)

 {

 Residual[i]=oneSlotTime-Request[i];

 if (Residual[i] < 0) Counter[i]=1; else Counter[i]=0; //set

ratio counter here as well

 }

 return 1;

}

double compressEnsuredWindow(double Request[], int Counter[],double oneSlotSize)

{

double size=0;

 for (int i=0; i<N; i++)

 {

 if (Counter[i]==0) size+=Request[i];

 else if (Counter[i]==1) size+=oneSlotSize;

 }

 return size;

}

double findMinRequest(double Residual[],int Counter[])

{

double minReq=999999;

 for (int i=0;i<N;i++)

 {

 if ((Counter[i]==1) && (Residual[i]*-1 < minReq)) minReq = Residual[i]*-1;

 }

 return minReq;

}

int calUnitsAllocated(int Units[],double Residual[],double minReq, int Counter[], int

maxUnitsAllowed)

{

int k=0;

while (k<maxUnitsAllowed)

 {

 for(int i=0;i<N;i++)

 {

 if(Counter[i]==1)

 {

 Units[i]=Units[i]+1;

 k++;

 if (Units[i] == Residual[i]*-1/ minReq) Counter[i]=0;

 }

 else

 Units[i]=0;

 }

96

 }

/*

 for (int i=0;i<N;i++)

 {

 if (Counter[i]==1)

 Units[i]=Residual[i]*-1/ minReq;

 else

 Units[i]=0;

 }

*/

 return 1;

}

int allocateRestWindow(int Counter[],double restAllocated[],int Units[],double minReq)

{

 for (int i=0;i<N;i++)

 {

 if (Counter[i]==1)

 restAllocated[i] = Units[i] * minReq;

 else

 restAllocated[i]=0;

 }

 return 1;

}

int calResidualTimeForNextSlot(int Counter[],double residualTimeNextSlot[],double

reqTime[],double slotSize, double restAllocated[])

{

 for (int i=0;i<N;i++)

 {

 if (Counter[i]==1) residualTimeNextSlot[i]=reqTime[i]-slotSize-restAllocated[i];

 else residualTimeNextSlot[i]=0;

 }

 return 1;

}

int printChart(int requestedBytes[],int Counter[],int Units[],int

restAllocated_Bytes[],int residualBytes[])

{

cout<<"Request\t\t"<<"Counter\t"<<"Units\t"<<"Rest\t"<<"Residual"<<endl;

 for(int i=0;i<N;i++)

 {

cout<<requestedBytes[i]<<"\t\t"<<Counter[i]<<"\t"<<Units[i]<<"\t"<<restAllocated_Bytes[i]

<<"\t"<<residualBytes[i]<<endl;

 }

 return 1;

}

97

APPENDIX B: RC-DBA & EFDBA WAITING TIMES CODE

#include <iostream>

#include <math.h>

#include <fstream>

using namespace std;

int main (int argc, char *argv[])

{

 int N=16,n=1,i,j,lambda=557, alpha=2,x_m=1;

 double T=0.002,T_G=0.000001,L_S,W,R,Row=0.1,E_Pareto;

 L_S = T/(2*N);

 char quit;

 //open file for writing

 ofstream myfile;

 myfile.open ("Waiting_Time_High.txt");

//for(double T=0.001; T<0.005; T=T+0.001)

// {

 // cout << endl << "t=" << T << endl;

 // myfile << endl << "t=" << T << endl;

// for(int lambda=1;lambda<50;lambda++)

for (x_m=1;x_m<10;x_m++)

 {

 for(float alpha=1.0;alpha<2.0;alpha=alpha+0.01)

 //while (Row < 0.9)

 {

 E_Pareto=(alpha * x_m)/(alpha-1);

 R=T*((3/4)-(1/(N*n)))+T_G;

// W=R/(1-(n*lambda*N*T));

 W=R/(1-(n*E_Pareto*N*T));

// cout << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W <<

endl;

 cout << "x_m="<<x_m<<", N=" << N <<", n="<< n <<", alpha="<< alpha <<",

E_Pareto="<< E_Pareto<<", W="<< W << endl;

 myfile << "x_m="<<x_m<<", N=" << N <<", n="<< n <<", alpha="<< alpha<<",

E_Pareto="<< E_Pareto <<", W="<< W << endl;

 Row=Row+.1;

 W=0.0;R=0.0;

 //N=N+1;

 }

 }

// }

//}

 quit = '\0';

 while (quit != 'q')

 {

 cout << "Press q to quit " << endl;

 cin >> quit;

 }

 myfile.close();

 return 0;

}

98

#include <iostream>

#include <math.h>

#include <fstream>

using namespace std;

int main (int argc, char *argv[])

{

 int N=64,n=1,i,j,lambda=557,pkt_len=30*8;

 double T=0.002,T_G=0.000001,L_S,W,R,Row=0.1,data_rate=1E09;

 L_S = T/(2*N);

 char quit;

 //open file for writing

 ofstream myfile;

 myfile.open ("Waiting_Time_EFDBA.txt");

for(int N=8; N<65; N=N*2)

{

 cout << endl << "N=" << N << endl;

 myfile << endl << "=,=,=,=W;N=" << N <<" (EFDBA)"<< endl;

 for(int lambda=1;lambda<50;lambda++)

 //while (Row < 0.9)

 {

 R= (T*((2*n*(3*N - 2) - 1)/(4*N*n))+T_G);

 W=R/(2*(1-(n*((lambda*pkt_len)/data_rate)*N*T)));

 cout << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W <<

endl;

 myfile << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W <<

endl;

 Row=Row+.1;

 W=0.0;R=0.0;

 //N=N+1;

 }

// }

}

 quit = '\0';

 while (quit != 'q')

 {

 cout << "Press q to quit " << endl;

 cin >> quit;

 }

 myfile.close();

 return 0;

}

99

APPENDIX C: SBA CODE

#include <iostream>

#include <math.h>

#include <fstream>

#include <conio.h>

#define N 500

#define C 100 //number of cycles

#define datarate 100E+09

#define pkt_len 805

#define T_G 200E-09

#define cycleSet 10

#define AT_2ND 12 //allocation table 2nd index value

using namespace std;

int populateRequests(int []); //incoming requests

int populateWeightTable(int [][2]); //assign weights

void printList(int []);

void printList(int [][2]);

void printList(double []);

void printList(double [][AT_2ND]);

void printResidual(double [][C]);

int convertBytesToTime(int [], double []);

//int convertTimeToBytes(double [], int []);

int populateAllocTable(double [][AT_2ND],int,double []);

int assignFA(double [][AT_2ND], int [][2], int, double, double, double [],double

[][C],int); //alloc_table,weight_table,units,slot_time,cycle_time,req_time,residual_time

int printInFile(double [][AT_2ND]);

int assignSA(double [][AT_2ND], int [][2], int, double, double, double [],double

[][C],int);

//alloc_table,weight_table,units,slot_time,cycle_time,req_time,residual_time,cycle

int printResidualInFile(double [][C]);

int main (int argc, char *argv[])

{

 int units,cycle=0;

 int weightTable[N][2]; //(#,w)

 double

allocTable[N][AT_2ND];//(#,A?,w,cycle,req_current,max_current,min_current,allocated_curre

nt,SAbit?,residual,allocated_SA,left_bytes_for_next_cycle

 int reqBytes[N];

 double reqTime[N],residualTime[N][C];

 //int ratioCounter[N], unitsAllocated[N], residualBytesForNextSlot[N],

restWindowAllocated_Bytes[N];

 //double residualTime[N], restWindowAllocated[N], residualTimeForNextSlot[N];

 double T,slotTime;//,compressedWindowSize,minOverReq;

 char quit;

 //open file for writing

 ofstream myfile;

 myfile.open ("S-BA.txt");

 populateWeightTable(weightTable); // assign weights

 //printList(weightTable);

 //INITIALIZE ALLOCATION TABLE

 for(int i=0;i<N;i++) for(int j=0;j<AT_2ND;j++) allocTable[i][j]=0;

 //INITIALIZE RESIDUAL TIME

 for(int i=0;i<N;i++) for(int j=0;j<C;j++) residualTime[i][j]=0;

for(int c=0; c<C; c++)

{

 //CALCULATE SLOT-TIME

 slotTime=((pkt_len*8)/datarate) + T_G; //slot time equal to time it takes to transmit

one packet

 //calculate T_C (Cycle Time)

 units=0;

100

 for(int i=0;i<N;i++) units += weightTable[i][1];

 T=(slotTime * units);

 T += T/2;

 //cout<<T;getch();

 //CALCULATE SLOT-TIME (END)

 populateRequests(reqBytes);

 convertBytesToTime(reqBytes,reqTime);

 for(int i=0; i<N; i++)

 {

 allocTable[i][4]=allocTable[i][4]+allocTable[i][11];

 allocTable[i][11]=0.0;

 }

 //ASSIGN First Allocation

 assignFA(allocTable,weightTable,units,slotTime,T,reqTime,residualTime,cycle);

 assignSA(allocTable,weightTable,units,slotTime,T,reqTime,residualTime,cycle);

 //printList(allocTable);

 printInFile(allocTable);

 cycle++; //increment cycle

cout<<"Cycle: "<<c<<endl;

}

 //printResidual(residualTime);

 printResidualInFile(residualTime);

 quit = '\0';

 while (quit != 'q')

 {

 cout << "Press q to quit " << endl;

 cin >> quit;

 }

 return 0;

}

int populateRequests(int reqBytes[])

{

 int alpha=2;

 //INITIALIZE & POPULATE

 for(int j=0;j<N;j++) reqBytes[j]=0;

 for(int j=0;j<N;j++)

 {

 reqBytes[j]=((alpha*(gen())/(alpha-1)); //scaled request space Pareto

 }

 return 1;

}

int populateWeightTable(int weight_table[][2])

{

 //INITIALIZE & POPULATE

 for(int i=0;i<N;i++) for(int j=0;j<2;j++) weight_table[i][j]=0;

 for(int j=0;j<N;j++)

 {

 weight_table[j][0]=j;

 weight_table[j][1]=rand() % 3 + 1;

 }

 return 1;

}

void printList(int inputList[])

{

 for (int i=0; i<N; i++)

 {

 cout<<"ONU-"<<i<<"-->"<<inputList[i]<<endl;

 }

}

101

void printList(int inputList[][2])

{

 for (int i=0; i<N; i++)

 {

 cout<<"ONU-"<<i<<"-->"<<inputList[i][1]<<endl;

 }

}

void printList(double inputList[])

{

 for (int i=0; i<N; i++)

 {

 cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl;

 }

}

void printList(double inputList[][AT_2ND])

{

//(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,residual,all

ocated_SA,left_bytes_for_next_cycle

cout<<endl<<"#\tA?\tw\tcycle\treq_current\tmax_current\tmin_current\talocated_current\tSA

bit?\tresidual\tallocated_SA\tbytes_carry"<<endl;

 for (int i=0; i<N; i++)

 {

 cout<<endl;

 for (int j=0; j<AT_2ND; j++)

 {

 cout<<inputList[i][j]<<"\t";

 }

 }

}

void printResidual(double inputList[][C])

{

 cout<<endl<<"0\t1\t2\t3\t4\t5\t6\t7\t8\t9"<<endl;

 for (int i=0; i<N; i++)

 {

 cout<<endl;

 for (int j=0; j<C; j++)

 {

 cout<<inputList[i][j]<<"\t";

 }

 }

 }

int convertBytesToTime(int Bytes[], double Time[])

{

 for (int i=0; i<N; i++)

 {

 Time[i]=Bytes[i]/datarate;

 }

 return 1;

}

/*int convertTimeToBytes(double Time[], int Bytes[])

{

 for (int i=0; i<N; i++)

 {

 Bytes[i]=Time[i]*datarate;

 }

 return 1;

}*/

int populateAllocTable(double alloc_table[][AT_2ND],int col,int row,double val[])

{

 for (int i=0; i<N; i++)

102

 {

 alloc_table[i][col]=val[i];

 }

 return 1;

}

int assignFA(double alloc_table[][AT_2ND], int weight_table[][2], int unit, double

slot_time, double t, double req_time[], double residual_time[][C], int cyc)

//alloc_table,weight_table,units,slot_time,cycle_time

{

 //weight_table(#,w)

//alloc_table(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,r

esidual,allocated_SA,left_bytes_for_next_cycle

 for(int i=0; i<N; i++)

 {

 alloc_table[i][0] = i;

 alloc_table[i][1] = 1;

 alloc_table[i][2] = weight_table[i][1];

 alloc_table[i][3] = cyc;

 alloc_table[i][4] = req_time[i];

 alloc_table[i][5] = slot_time * weight_table[i][1]; //max allowed in current

 alloc_table[i][6] = slot_time * weight_table[i][1]; //min allowed time

 if(alloc_table[i][4] <= alloc_table[i][5]) //if requested < max allowed

 {

 alloc_table[i][7] = alloc_table[i][4]; //allocate requested

 //residualTime[i] = alloc_table[i][4]-alloc_table[i][5]; //put rest in

residual (-ve)

 alloc_table[i][8]= 0;

 alloc_table[i][9] = alloc_table[i][4]-alloc_table[i][5]; //put rest in

residual (-ve)

 }

 else if (alloc_table[i][4] > alloc_table[i][5]) //if requested > max allowed

 {

 alloc_table[i][7] = alloc_table[i][5]; //allocate max allowed

 //residualTime[i] = alloc_table[i][4]-alloc_table[i][5]; //put rest in

residual (+ve)

 alloc_table[i][8]= 1;

 alloc_table[i][9] = alloc_table[i][4]-alloc_table[i][5]; //put rest in

residual (+ve)

 }

 alloc_table[i][10]=0.0;

 alloc_table[i][11]=0.0;

 }

 return 1;

}

int printInFile(double inputList[][AT_2ND])

{

//open file for writing

 ofstream myfile;

 myfile.open ("S-BA.txt");

 myfile

<<endl<<"#\tA?\tw\tcycle\treq_current\tmax_FA\tmin_FA\tallocated_FA\tSAbit?\tresidual(+ve

req)\tallocated_SA\tbytes_carry"<<endl;

 for (int i=0; i<N; i++)

 {

 myfile <<endl;

 for (int j=0; j<AT_2ND; j++)

 {

 myfile <<inputList[i][j]<<"\t";

 }

 }

 myfile.close();

}

103

int assignSA(double alloc_table[][AT_2ND], int weight_table[][2], int unit, double

slot_time, double t, double req_time[], double residual_time[][C], int cyc)

//alloc_table,weight_table,units,slot_time,cycle_time

{

 int units=0;

 double time_used_in_FA=0.0,time_left_for_SA=0.0,slot=0.0;

 //weight_table(#,w)

//alloc_table(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,r

esidual,allocated_SA,left_bytes_for_next_cycle

 for(int i=0; i<N; i++)

 {

 if(alloc_table[i][8])

 {

 units+= weight_table[i][1]; //add all units

 }

 time_used_in_FA += alloc_table[i][7];

 }

 //also include other cases

 time_left_for_SA = t - (time_used_in_FA + (N * T_G));

 slot = time_left_for_SA/units;

 //cout<<slot<<endl<<units;getch();

 for(int j=0; j<N; j++)

 {

 if(alloc_table[j][8])

 {

 if (alloc_table[j][9] < (weight_table[j][1] * slot))

 {

 alloc_table[j][10]=alloc_table[j][9];//allocate residual only

 alloc_table[j][11]=0;

 }

 else if (alloc_table[j][9] >= (weight_table[j][1] * slot))

 {

 alloc_table[j][10]=weight_table[j][1] * slot;//allocate max possible in SA

 alloc_table[j][11]=alloc_table[j][9]-alloc_table[j][10];//record what is

still left

 }

 residual_time[j][cyc]=alloc_table[j][11] ;//also populate residual_time for

this cycle

 }

 }

 return 1;

}

int printResidualInFile(double inputList[][C])

{

 //open file for writing

 ofstream myfile;

 myfile.open ("S-BA_residual.txt");

 for (int j=0; j<C; j++) myfile<<j<<"\t";

 cout<<endl;

 for (int i=0; i<N; i++)

 {

 myfile <<endl;

 for (int j=0; j<C; j++)

 {

 myfile <<inputList[i][j]<<"\t";

 }

 }

 myfile.close();

}

104

APPENDIX D: SBA WAITING TIME CODE

#include <iostream>

#include <math.h>

#include <fstream>

using namespace std;

int main (int argc, char *argv[])

{

 char quit;

 int N=500,alpha=2,x_m=50,u=5,n;

 int WEIGHT_TABLE[N][2]; //(#,w)

 int MIN_ALLOC[3][2]; //weight,# of users(N_i)

 double ALLOC_TABLE[N][8];//user

#,weight,cycle,request_current_cycle,max_current_cycle,min_current_Cycle,allocated_FA,all

ocated_SA

 double r=100E+09,T_G=200E-09,T,R,W,tau,units,E_Pareto,row,SERV_RATE=12E+09;

 //open file for writing

 ofstream myfile;

 myfile.open ("Waiting_Time_High.txt");

 //INITIALIZE TABLES

 for(int i=0;i<N;i++) for(int j=0;j<2;j++) WEIGHT_TABLE[i][j]=0;

 for(int i=0;i<3;i++) {MIN_ALLOC[i][0]=i+1;MIN_ALLOC[i][1]=0;}

 for(int i=0;i<N;i++) for(int j=0;j<8;j++) ALLOC_TABLE[i][j]=0;

 //Print MIN_ALLOC

 //for(int i=0;i<3;i++) cout<<"\nWeight: "<<MIN_ALLOC[i][0]<<" No.:

"<<MIN_ALLOC[i][1];

 for(int j=0;j<N;j++)

 {

 WEIGHT_TABLE[j][0]=j;

 WEIGHT_TABLE[j][1]=rand() % 3 + 1;

 if(WEIGHT_TABLE[j][1] == 3) MIN_ALLOC[2][1]++;

 else if(WEIGHT_TABLE[j][1] == 2) MIN_ALLOC[1][1]++;

 else if(WEIGHT_TABLE[j][1] == 1) MIN_ALLOC[0][1]++;

 }

 //Print MIN_ALLOC

 //for(int i=0;i<3;i++) cout<<"\nWeight: "<<MIN_ALLOC[i][0]<<" No.:

"<<MIN_ALLOC[i][1];

 //Print WEIGHT_TABLE

 //for(int i=0;i<N;i++) cout<<"\nUser: "<<WEIGHT_TABLE[i][0]<<" w:

"<<WEIGHT_TABLE[i][1];

 double pkt_len,slot_time;//=805;//bytes

for (pkt_len=1000;pkt_len<150000;pkt_len=pkt_len+1000)

{

 //slot_length

 //pkt_len=805;

 slot_time=((pkt_len*8)/r) + T_G; //slot time equal to time it takes to transmit one

packet

 cout<<"\nPKT_LEN: "<<pkt_len<<"bytes\nSLOT_TIME: "<<slot_time;

 cout <<"\n";

//for (x_m=0;x_m<1500;x_m=x_m+100)

//for (alpha=1;alpha<10;alpha++)

//{

//for(n=1;n<N;n=n+50)

n=N;

//for (int u=0;u<N;u++)

//for(T=0.0001;T<0.005;T=T+0.0001)

// {

105

 //T_C (Cycle Time)

 units=0;

 for(int i=0;i<n;i++) units += WEIGHT_TABLE[i][1];

 T=(slot_time * units);

 T += T/2;

 T += T_G * n;

 cout<<"\nUNITS: "<<units<<"\nT_C: "<<T<<"\n";

 E_Pareto = ((alpha*x_m)/(alpha-1));

 row = E_Pareto / SERV_RATE;

 //w = 550 * pkt_len * 8 / SERV_RATE;

 cout <<"\nE_Pareto: "<< E_Pareto<<"\n";

 //Calculate tau

 //for(int i=0;i<3;i++) units += MIN_ALLOC[i][0] * MIN_ALLOC[i][1];

 //tau= T / (2*units);

 tau=slot_time;

 //cout<<"\nunits: "<<units<<"\n";

 //Calculate Residual Time

 //for(int i=0;i<3;i++) R += MIN_ALLOC[i][0] * MIN_ALLOC[i][1] * tau;

 for(int i=0;i<u-1;i++) R += WEIGHT_TABLE[i][0] * tau;

 for(int i=u+1;i<n;i++) R += WEIGHT_TABLE[i][0] * tau;

 //if (E_Pareto >)

 //R += (n-1)* (E_Pareto/r);

 //R += T/2;

 R +=T_G;

 //Determine Waiting Time

 W = (1*R) / (2*(1-row));

 cout << "T="<<T << ", tau="<<tau << ", x_m="<<x_m<<", n=" << n <<",

pkt_len=" << pkt_len <<", alpha="<< alpha <<", R="<< R <<", W="<< W << endl;

 myfile << "T="<<T<<", tau="<<tau<< ", x_m="<<x_m<<", n=" << n <<",

pkt_len=" << pkt_len <<", alpha="<< alpha<<", R="<< R <<", W="<< W << endl;

 W=0.0;R=0.0;tau=0.0;units=0.0;row=0.0;E_Pareto=0.0;

 }

//}

//}//outer for loop

 quit = '\0';

 while (quit != 'q')

 {

 cout << "Press q to quit " << endl;

 cin >> quit;

 }

 myfile.close();

 return 0;

}

106

APPENDIX E: DATA CAPTURE CODE

#include <stdio.h>

#include "/include/pcap.h"

#include <math.h>

#include <time.h>

#include <string.h>

#include <stdlib.h>

//#include <include/conio.h>

#define LINE_LEN 16

#define FIN 0x0001

#define SYN 0x0002

#define RST 0x0004

#define PUSH 0x0008

#define ACK 0x0010

#define URG 0x0020

#define ECE 0x0040

#define CWR 0x0080

#define LARGE_NUM 999999999

#define NUM_LOCAL_IPS 3

//FUNCTION PROTOTYPES

void packet_handler(u_char *, const struct pcap_pkthdr *, const u_char *);

void bin_print(int,int);

int chkSYNBit(int);

int chkACKBit(int);

int chkFINBit(int);

void print_src_dst_pairs_tofile();

void print_start_end_tofile();

int print_delays();

int num_active_sessions(); //returns number of active sessions

void initialize_root();

void add_new_session();//struct tcp_session *); //add new session to LL

void print_all_sessions(); //print LL

void print_completed_sessions();

unsigned int _session_exists(u_short,u_short);//struct ip_address,struct ip_address,

u_short, u_short); //find a session and return its id

int update_status(unsigned int,int);

int check_status(unsigned int);

int set_session_end_time(unsigned int, long double);

int load_local_ip_list(); //load all local ips

int is_local();//struct ip_address,struct ip_address); //chk is current ip is a local ip

//STRUCTURE DEFINITIONS

typedef struct ip_address

{

 u_char byte1;

 u_char byte2;

 u_char byte3;

 u_char byte4;

}ip_address;

/* IPv4 header */

typedef struct ip_header

{

 u_char ver_ihl; // Version (4 bits) + Internet header length (4 bits)

 u_char tos; // Type of service

 u_short tlen; // Total length

 u_short identification; // Identification

 u_short flags_fo; // Flags (3 bits) + Fragment offset (13 bits)

 u_char ttl; // Time to live

 u_char proto; // Protocol

 u_short crc; // Header checksum

 struct ip_address saddr; // Source address

 struct ip_address daddr; // Dest address

107

 u_int op_pad; // Option + Padding

}ip_header;

/* UDP header*/

typedef struct udp_header

{

 u_short sport; // Source port

 u_short dport; // Destination port

 u_short len; // Datagram length

 u_short crc; // Checksum

}udp_header;

/* TCP header*/

typedef struct tcp_header

{

 u_short srcport; // Source port

 u_short dstport; // Destination Port

 u_int seq; // SEQ Number

 u_int ack; // ACK

 u_short control; // includes offset, reserved and flags

 u_short window;

 u_short crc;

 u_int opt_pad;

 u_char data[65535]; // Payload

}tcp_header;

/* TCP Session Information Container*/

typedef struct tcp_session {

 unsigned int id;

 ip_address src_add;

 ip_address dst_add;

 u_short src_port;

 u_short dst_port;

 u_char status;

 double start;

 double end;

 struct tcp_session *next;

 struct tcp_session *prev;

}tcp_session;

//GLOBALS

int AVG_PKT_LEN=0; //

unsigned int TOT_PKT_LEN=0; // total number of packets

unsigned int NUM_OF_PKTS=0; //

long double pair_number=0; //index of src-dst pair in array

u_char mask = 0x003F; //to separate out the bits we need

u_char flags = 0; //flag bits

//CREATE LL ROOT

struct tcp_session *root; //linked list node

struct ip_header *ih; //For packet handler

struct tcp_header *th; //For packet handler

struct tcp_session *new_session; //For add_new_session

struct ip_address _ip_src; //For _session_exists

struct ip_address _ip_dst; //For _session_exists

struct ip_address src; //For is_local

struct ip_address dst; //For is_local

unsigned int session_id=0;

//END CREATE LL ROOT

int local_ips[NUM_LOCAL_IPS][4]; //for saving local ip list

int main()

{

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20100325-060200.UTC.anon.pcap"};

//1.66GB OC 192 trace

 //char filename[]= {"CAIDA/equinix-chicago.dirA.20090219-045912.UTC.anon.pcap"};

//72MB OC 48 trace

108

 //char filename []={"CAIDA/equinix-sanjose.dirA.20100325-060500.UTC.anon.pcap"};

//700MB OC 192 trace

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20091217-045904.UTC.anon.pcap"};

//1.66GB OC 192 trace

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20100325-055905.UTC.anon.pcap"};

//NUST trace

 char filename[]= {"Game Traces/war3-traces/war3-traces/1vs1 Ethereal Trace"};

 pcap_t *fp;

 char errbuf[PCAP_ERRBUF_SIZE];

 char packet_filter[] = "ip and tcp";

 struct bpf_program fcode;

 pcap_if_t *alldevs;

 initialize_root();

 printf("\nRoot initialized...\n");

 /* Open the captured file */

 if((fp = pcap_open_offline(filename, errbuf)) == NULL)

 {

 fprintf(stderr,"\nUnable to open the file %s.\n", filename);

 getchar();

 return -1;

 }

 //compile the filter to only extract TCP packets defined in packet_filter[]

 if (pcap_compile(fp, &fcode, packet_filter, 1, 0) <0)

 {

 fprintf(stderr,"\nUnable to compile the packet filter. Check the

syntax.\n");

 /* Free the device list */

 pcap_freealldevs(alldevs);

 return -1;

 }

 //set the filter

 if (pcap_setfilter(fp, &fcode)<0)

 {

 fprintf(stderr,"\nError setting the filter.\n");

 /* Free the device list */

 pcap_freealldevs(alldevs);

 return -1;

 }

 //load_local_ip_list();

 printf("\nFilter: %s\n",packet_filter);

 printf("\nReading packets...do not exit...\n");

 pcap_loop(fp, 0, packet_handler, NULL);

 pcap_close(fp);

 printf("\n\nNUM_OF_PKTS=%d, AVG_PKT_LEN=%d",NUM_OF_PKTS,TOT_PKT_LEN/NUM_OF_PKTS);

 //print_src_dst_pairs();

 //print_src_dst_pairs_tofile();

 //print_start_end_tofile();

 //print_delays();

 //print_all_sessions();

 //print_completed_sessions();

 getchar();

 return 0;

}

void packet_handler(u_char *param, const struct pcap_pkthdr *header, const u_char

*pkt_data)

{

 //struct tcp_session *new_session;

109

 struct tm *ltime;

 char timestr[16];

 //struct ip_header *ih;

 //struct tcp_header *th;

 u_int ip_len;

 u_short sport,dport;

 time_t local_tv_sec;

 int isSYN=0, isACK=0, isFIN=0;

 //New tcp_session node to be added

 new_session = (struct tcp_session *) malloc(sizeof(tcp_session));

 /*

 * unused parameter

 */

 //(VOID)(param);

 /* retireve the position of the ip header */

 ih = (ip_header *) (pkt_data + 14); //length of ethernet header

 /* retireve the position of the tcp header */

 ip_len = (ih->ver_ihl & 0xf) * 4;

 //uh = (udp_header *) ((u_char*)ih + ip_len);

 th = (tcp_header *) ((u_char*)ih + ip_len);

 /* convert from network byte order to host byte order */

 sport = ntohs(th->srcport);

 dport = ntohs(th->dstport);

 /// separate control bits into offset, reserved and flags

 flags = ntohs(th->control);

 flags = flags&mask;

 isSYN=chkSYNBit(flags);

 isACK=chkACKBit(flags);

 isFIN=chkFINBit(flags);

 pair_number = _session_exists(sport,dport);//struct ih->saddr, struct ih-

>daddr,sport,dport);

 /*

 if (pair_number != LARGE_NUM)

 {

 window_size[pair_number]+=th->window - th->ack;

 printf("\nW=%ld\tA=%ld\tS=%ld",th->window,th-

>ack,window_size[pair_number]);

 }

 */

 //printf("\n%d--SYN-%d-ACK-%d-FIN-%d\n",pair_number,isSYN,isACK,isFIN);

 if (pair_number == LARGE_NUM)

 {

 //if (isSYN==1){ getchar();}

 if ((isSYN==1) && (isACK==0) && (isFIN==0)) // && is_local())//ih-

>saddr,ih->daddr))

 {

 session_id++;

 //add new session to LL

 new_session->id=session_id;

 printf("sanjose.20100325-055905-SRC-DST-DUR-ID:

%u\n",session_id);

 new_session->src_port=sport;

 new_session->dst_port=dport;

 new_session->src_add = ih->saddr;

 new_session->dst_add = ih->daddr;

 new_session->status=1;

 //if (header->ts.tv_usec>1000000) header->ts.tv_sec=header-

>ts.tv_usec % 2;

 new_session->start = (double)header->ts.tv_usec / 1000000 +

(header->ts.tv_sec);

 new_session->end=0;

 //printf("\nSESSION-START: %.8g - \n",new_session->start);

 add_new_session(new_session);

110

 }

 }

 else if ((isSYN==1) && (isACK==1))

 {

 update_status(pair_number,2);

 }

 else if ((isFIN==1) && (check_status(pair_number) != 5))

 {

 set_session_end_time(pair_number,((double)header->ts.tv_usec / 1000000 +

(header->ts.tv_sec)));

 update_status(pair_number,5);

 }

 else if ((isSYN==0) && (isFIN==0) && (check_status(pair_number)!=5))

 {

 update_status(pair_number,4);

 }

 pair_number=0;

 TOT_PKT_LEN +=header->len;

 NUM_OF_PKTS++;

}

void bin_print(int num,int bits){

int j;

for(j=bits-1;j>=0;j--)

printf("%i",(num>>j)&01);

}

int chkSYNBit(int num){

 if (num & SYN) return 1;

 return 0;

}

int chkACKBit(int num){

 if (num & ACK) return 1;

 return 0;

}

int chkFINBit(int num){

 if (num & FIN) return 1;

 return 0;

}

void print_src_dst_pairs_tofile()

{

struct tcp_session *temp;

double delay;

char strWrite[100]="";

char temp_str[30]="";

FILE *fp_out;

//fp_out = fopen ("equixnix-sanjose.dirA.20100325-

060200.UTC.anoni.SRC_DST_PAIRS.txt","w");

//fp_out = fopen ("equixnix-chicago.dirA.20090219-

045912.UTC.anoni.SRC_DST_PAIRS.txt","w");

//fp_out = fopen ("eqSan060500_SRC.txt","w");

fp_out = fopen ("OC48-100900.txt","w");

temp=root;

strcat(strWrite,"#PRINT UNIQUE SRC-DST PAIRS\n");

strcat(strWrite,"#SRC_IP DST_IP STATUS DURATION START END\n");

while(temp->next!=NULL)

 {

 /////////////////////

111

 //printf("%d",fp_out==NULL);

 //exit(1);

 //if (ferror(fp_out==NULL))

 // {

 // printf("Can't open output file.\n");

 // exit(1);

 // }

 //else

 // {

 if((temp->status==5))// || (temp->status==4))

 {

 strcpy(temp_str,"");

 //itoa(temp->src_add.byte1,temp_str,10);

 sprintf(temp_str,"%d",temp->src_add.byte1);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->src_add.byte2,temp_str,10);

 sprintf(temp_str,"%d",temp->src_add.byte2);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->src_add.byte3,temp_str,10);

 sprintf(temp_str,"%d",temp->src_add.byte3);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->src_add.byte4,temp_str,10);

 sprintf(temp_str,"%d",temp->src_add.byte4);

 strcat(strWrite,temp_str);strcat(strWrite,",");

 //itoa(temp->dst_add.byte1,temp_str,10);

 sprintf(temp_str,"%d",temp->dst_add.byte1);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->dst_add.byte2,temp_str,10);

 sprintf(temp_str,"%d",temp->dst_add.byte2);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->dst_add.byte3,temp_str,10);

 sprintf(temp_str,"%d",temp->dst_add.byte3);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 //itoa(temp->dst_add.byte4,temp_str,10);

 sprintf(temp_str,"%d",temp->dst_add.byte4);

 strcat(strWrite,temp_str);strcat(strWrite,"\t");

 delay = temp->end - temp->start;

 //itoa(temp->status,temp_str,10);

 sprintf(temp_str,"%d",temp->status);

 strcat(strWrite,temp_str);

 strcat(strWrite,"\t");

 sprintf(temp_str, "%.8g", delay);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

 strcat(strWrite,"\t");

 sprintf(temp_str, "%1.10f", temp->start);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

 strcat(strWrite,"\t");

 sprintf(temp_str, "%1.10f", temp->end);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

 strcat(strWrite,"\n");

 printf("\n%s\n",strWrite);

 fputs(strWrite,fp_out); //Print the whole record to file

 strcpy(temp_str,"");

 strcpy(strWrite,"");

 }

 temp=temp->next;

 }

 fclose(fp_out);

}

void print_start_end_tofile()

{

struct tcp_session *temp;

unsigned int i=0;

double delay;

char strWrite[200]="";

112

char temp_str[30]="";

FILE *fp_out;

//fp_out = fopen ("START_END_CHI_20090115_1-29GB.txt","w");

//fp_out = fopen ("equinix-sanjose.dirA.20100325-060500.UTC.anon.STR_END_DUR.txt","w");

//fp_out = fopen ("equinix-chicago.dirA.20090219-045912.UTC.anon.STR_END_DUR.txt","w");

//fp_out = fopen ("equinix-sanjose.dirA.20100325-060200.UTC.anon.STR_END_DUR.txt","w");

fp_out = fopen ("equinix-sanjose.dirA.20091217-045904.UTC.anon.txt","w");

temp=root;

//sprintf(temp_str,"#NUM_OF_PKTS=%d,

AVG_PKT_LEN=%d",NUM_OF_PKTS,TOT_PKT_LEN/NUM_OF_PKTS);

//strcat(strWrite,temp_str);

strcat(strWrite,"#PRINTING COMPLETED AND RUNNING SESSION START-END PAIRS\n");

strcat(strWrite,"#SERIAL_NUM,START,END,DURATION\n");

while(temp->next!=NULL)

 {

 /////////////////////

 //printf("%d",fp_out==NULL);

 //exit(1);

 //if (ferror(fp_out==NULL))

 // {

 // printf("Can't open output file.\n");

 // exit(1);

 // }

 //else

 // {

 if((temp->status==5))// || (temp->status==4))

 {

 i+=1;

 //if (temp->end == 0.0) temp->end=1999999999;

 sprintf(temp_str,"%u", i);

 strcat(strWrite,temp_str); //serial

number

 strcat(strWrite,"\t");

 //printf("\nSTART-%1.10f",temp->start);

 sprintf(temp_str,"%1.10f", temp->start);

 strcat(strWrite,temp_str); //start time

 strcat(strWrite,"\t");

 //printf("END-%1.10f",temp->end);

 sprintf(temp_str, "%1.10f", temp->end);

 strcat(strWrite,temp_str); //end time

 strcat(strWrite,"\t");

 //itoa(temp->status,temp_str,10); //status

 sprintf(temp_str,"%d",temp->status);

 strcat(strWrite,temp_str);

 strcat(strWrite,"\t");

 //if (temp->end == 0.0)

 // {

 // delay = 0.0;

 // }

 //else

 // {

 delay=temp->end - temp->start;

 // }

 // printf("DURATION-%1.10f\n",delay);

 sprintf(temp_str, "%1.10f", delay);

 strcat(strWrite,temp_str); //delay

 strcat(strWrite,"\n");

 //printf("\n%s",strWrite);

 //if (connection_status[i] == 5)

 fputs(strWrite,fp_out);

 strcpy(temp_str,"");

 strcpy(strWrite,"");

 }

 //}

113

 temp=temp->next;

 }

 fclose(fp_out);

}

int print_delays()

{

struct tcp_session *temp;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 //printf("\nPRINTING DELAYS\n%d>%s - %s = %s",temp->id,ctime(temp-

>end),ctime(temp->start),ctime(temp->end-temp->start));

 temp=temp->next;

 }

return 1;

}

int num_active_sessions()

{

struct tcp_session *temp;

int num_active_sessions=0;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 if(temp->status==4) num_active_sessions++;

 temp=temp->next;

 }

return num_active_sessions;

}

void initialize_root()

{

 //root=new tcp_session;

 root = (struct tcp_session *) malloc(sizeof(tcp_session));

 //Initialize root

 root->id=0;

 root->src_add.byte1=0;

 root->src_add.byte2=0;

 root->src_add.byte3=0;

 root->src_add.byte4=0;

 root->src_port=0;

 root->dst_add.byte1=0;

 root->dst_add.byte2=0;

 root->dst_add.byte3=0;

 root->dst_add.byte4=0;

 root->dst_port=0;

 root->start=0;

 root->end=0;

 root->status=0;

 root->next=NULL;

 root->prev=NULL;

 //end initialize root

}

void add_new_session()//struct tcp_session *new_session)

{

struct tcp_session *temp;

temp=root;

while(temp->next != NULL)

 {

 temp=temp->next;

 }

temp->next = new_session;

new_session->prev=temp;

new_session->next=NULL;

}

void print_all_sessions()

114

{

struct tcp_session *temp;

double duration=0;

char temp_str[30];

printf("\nLL-UNIQUE SRC-DST PAIRS\n");

temp=root;

while(temp->next!=NULL)

 {

 //duration = difftime(temp->end,temp->start);

 //duration = (clock()-duration)/CLOCKS_PER_SEC;

 //printf("\n%ld-%ld=%ld\n",temp->end,temp->start,temp->end-temp->start);

 duration = temp->end - temp->start;

 sprintf(temp_str, "%.8g", duration);

 printf("%u>%d.%d.%d.%d\t[%d]\t%d.%d.%d.%d\t[%d]\tS=%d\tD=%s\n",temp-

>id,temp->src_add.byte1,temp->src_add.byte2,temp->src_add.byte3,temp->src_add.byte4,temp-

>src_port,temp->dst_add.byte1,temp->dst_add.byte2,temp->dst_add.byte3,temp-

>dst_add.byte4,temp->dst_port,temp->status,temp_str);//,delay);

 duration=0;

 temp=temp->next;

 //_getche();

 }

}

void print_completed_sessions()

{

struct tcp_session *temp;

double duration;

char temp_str[30];

printf("\nLL-UNIQUE SRC-DST PAIRS - COMPLETED\n");

temp=root;

while(temp->next!=NULL)

 {

 if (temp->status == 5)

 {

 //duration = difftime(temp->end,temp->start);

 //duration = (clock()-duration)/CLOCKS_PER_SEC;

 duration = temp->end - temp->start;

 sprintf(temp_str, "%.8g", duration);

 printf("%u>%d.%d.%d.%d\t[%d]\t%d.%d.%d.%d\t[%d]\tS=%d\tD=%s\n",temp->id,temp-

>src_add.byte1,temp->src_add.byte2,temp->src_add.byte3,temp->src_add.byte4,temp-

>src_port,temp->dst_add.byte1,temp->dst_add.byte2,temp->dst_add.byte3,temp-

>dst_add.byte4,temp->dst_port,temp->status,temp_str);

 duration=0;

 //_getche();

 }

 temp=temp->next;

 }

}

unsigned int _session_exists(u_short sport, u_short dport)//struct ip_address _ip_src,

struct ip_address _ip_dst, u_short sport, u_short dport)

{

struct tcp_session *temp;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 if ((temp->src_add.byte1 == ih->saddr.byte1) && (temp->src_add.byte2 ==

ih->saddr.byte2) && (temp->src_add.byte3 == ih->saddr.byte3) && (temp->src_add.byte4 ==

ih->saddr.byte4))

 {

 if ((temp->dst_add.byte1 == ih->daddr.byte1) && (temp-

>dst_add.byte2 == ih->daddr.byte2) && (temp->dst_add.byte3 == ih->daddr.byte3) && (temp-

>dst_add.byte4 == ih->daddr.byte4))

 {

 if ((temp->src_port == sport) && (temp->dst_port == dport))

 {

 return temp->id;

 }

 }

 }

115

 else if ((temp->src_add.byte1 == ih->daddr.byte1) && (temp->src_add.byte2

== ih->daddr.byte2) && (temp->src_add.byte3 == ih->daddr.byte3) && (temp->src_add.byte4

== ih->daddr.byte4))

 {

 if ((temp->dst_add.byte1 == ih->saddr.byte1) && (temp-

>dst_add.byte2 == ih->saddr.byte2) && (temp->dst_add.byte3 == ih->saddr.byte3) &&

(temp->dst_add.byte4 == ih->saddr.byte4))

 {

 if ((temp->src_port == dport) && (temp->dst_port == sport))

 {

 return temp->id;

 }

 }

 }

 temp=temp->next;

 }

return LARGE_NUM;

}

int update_status(unsigned int session_number,int new_status)

{

struct tcp_session *temp;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 if (temp->id == session_number)

 {

 temp->status=new_status;

 if (new_status == 5)

 {

 ///////////////////////WRITE FINISHED SESSION RECORD TO

FILE

 char strWrite[100]="";

 char temp_str[30]="";

 double delay;

 FILE *fp_out;

 fp_out = fopen ("data003.txt","a+");

 strcpy(temp_str,"");

 sprintf(temp_str,"%d",temp->src_add.byte1);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->src_add.byte2);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->src_add.byte3);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->src_add.byte4);

 strcat(strWrite,temp_str);strcat(strWrite,"\t");

 sprintf(temp_str,"%d",temp->dst_add.byte1);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->dst_add.byte2);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->dst_add.byte3);

 strcat(strWrite,temp_str);strcat(strWrite,".");

 sprintf(temp_str,"%d",temp->dst_add.byte4);

 strcat(strWrite,temp_str);strcat(strWrite,"\t");

 delay = temp->end - temp->start;

 sprintf(temp_str,"%d",temp->status);

 strcat(strWrite,temp_str);

 strcat(strWrite,"\t");

 sprintf(temp_str, "%.8g", delay);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

 strcat(strWrite,"\t");

 sprintf(temp_str, "%1.10f", temp->start);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

 strcat(strWrite,"\t");

 sprintf(temp_str, "%1.10f", temp->end);

 strcat(strWrite,temp_str);strcpy(temp_str,"");

116

 strcat(strWrite,"\n");

 //printf("\n%s\n",strWrite);

 fputs(strWrite,fp_out); //Print the whole record to

file

 strcpy(temp_str,"");

 strcpy(strWrite,"");

 fclose(fp_out);

 /////////////////////////END WRITE RECORD TO FILE

 }

 return 1;

 }

 temp=temp->next;

 }

return 0;

}

int check_status(unsigned int session_number)

{

struct tcp_session *temp;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 if (temp->id == session_number)

 {

 return temp->status;

 }

 temp=temp->next;

 }

return 0;

}

int set_session_end_time(unsigned int session_number, long double end_time)

{

struct tcp_session *temp;

temp=root;

//temp=temp->next; //skip root (root is empty)

while(temp->next!=NULL)

 {

 if (temp->id == session_number)

 {

 temp->end=end_time;//time(NULL);

 return 1;

 }

 temp=temp->next;

 }

return 0;

}

int load_local_ip_list()

{

 local_ips[0][0]=0;

 local_ips[0][1]=0;

 local_ips[0][2]=112;

 local_ips[0][3]=2;

 local_ips[1][0]=0;

 local_ips[1][1]=0;

 local_ips[1][2]=96;

 local_ips[1][3]=2;

 local_ips[2][0]=0;

 local_ips[2][1]=0;

 local_ips[2][2]=128;

 local_ips[2][3]=2;

return 1;

}

int is_local()//ip_address src, ip_address dst)

{

117

 int i;

 for (i=0;i<NUM_LOCAL_IPS;i++)

 {

 if((src.byte1 == local_ips[i][0]) && (src.byte2 == local_ips[i][1])

&& (src.byte3 == local_ips[i][2]) && (src.byte4 == local_ips[i][3]))

 return 1;

 else if((dst.byte1 == local_ips[i][0]) && (dst.byte2 ==

local_ips[i][1]) && (dst.byte3 == local_ips[i][2]) && (dst.byte4 == local_ips[i][3]))

 return 1;

 }

//src.byte1=NULL;src.byte2=NULL;src.byte3=NULL;src.byte4=NULL;

//dst.byte1=NULL;dst.byte2=NULL;dst.byte3=NULL;dst.byte4=NULL;

return 0;

}

	1
	2

