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ABSTRACT 

 

 

SYED ALI HAIDER.  Scalable high-capacity high-fan-out optical networks for constrained 

environments.  (Under the direction of Dr. M YASIN AKHTAR RAJA) 

 

 

 The investigations carried out as part of the dissertation address the architecture and 

application of optical access networks pertaining to high-capacity and high fan-out applications 

such as in-flight entertainment (IFE) and video-gaming environment. High-capacity and high-fan-

out optical networks have a multitude of applications such as expo-centers, train area networks 

(TAN), video gaming competitions and other applications that require large number of connected 

users. For the purpose of keeping the scope of the dissertation within limit however, we have 

concentrated this work on IFE systems. IFE systems present unique challenges at physical and 

application layers alike. In-flight entertainment (IFE) systems have been a part of passengers’ 

experience for a while now. Currently available systems can be considered a bare-bone at best 

due to lack of adequate performance and support infrastructure. According to electronic arts (EA) 

– one of the largest developers of video games in the world, an increase in demand for 

electronically distributed video games will exceed boxed games in just a matter of few years. This 

also shows a shifting trend towards the electronic distribution of video game content as opposed 

to physical distribution. 

Against the same backdrop, the dissertation project involved defining a novel system 

architecture and capacity based on the requirements for development of novel physical layer 

architecture utilizing optical networks for high-speed and high-fan-out distribution of content. At 

the physical layer of the stacked communication model a novel high-fan-out optical network was 

proposed and simulated for high data-rates. Having defined the physical layer, protocol stack was 

identified through rigorous observations and data traffic analysis from a large set of traffic traces 

obtained from various sources in order to understand the distribution and behavior of video game 

related traffic compared with regular internet traffic. Data requirements were laid down based on 
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analysis keeping in mind that bandwidth requirements are increasing at a tremendous pace and 

that the network should be able to support future high-definition and 3D gaming as well. Based 

on the data analysis, analytical models and latency analysis models were also developed for 

bandwidth allocation in the high-fan-out network architectures. Analytical modeling gives an 

insight into the performance of the technique as a function of incoming traffic whereas latency 

analysis exposes the delay factors involved in running the technique over time. “State-full 

bandwidth allocation” (SBA) was proposed as part of the network layer design for upstream 

transmission. The novel technique involves keeping state information from previous states for 

future allocation. 

The results show that the proposed high-fan-out high-capacity physical layer architecture 

can be used to distribute video-gaming related content. Also, latency analysis and design and 

development of a novel SBA algorithm were carried out. Results were quiet promising, in that; a 

large number of users can be supported on the same single channel network. SBA criteria can be 

applied to multi-channel networks such as the physical architecture proposed / simulated and 

investigated in this project. In summary, the project involved design of a novel physical layer; 

network layer and protocol stack of the communication model and verification by simulations and 

mathematical modeling while adhering to application layer requirements.
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CHAPTER 1: INTRODUCTION TO IN-FLIGHT ENTERTAINMENT (IFE) 

SYSTEMS 

 

Entertainment industry in general and the video game industry in particular is 

growing at a faster pace than ever before owing to information and communication 

technologies (ICT). A tremendous digital storage capacity, high-speed transport and 

optical networks enhanced mobility is an impetuous in the growth of such sector. 

Conventional video gaming has been steadily growing every year and since introduction 

of modern gaming consoles such as Xbox and PlayStation, industry has seen 

unprecedented growth. Not only in conventional gaming, the video games have started 

adopting cloud based paradigm but also there are services that offer cloud based gaming 

[1]. This trend is endorsed by the Electronic Arts (EA) a leading video game developer 

[2]. EA predicts that in a matter of years, sales of electronically downloaded games will 

outnumber boxed games. This prediction is based on the statistical data and facts and it 

opens up potentially many new arenas that can benefit from the advancement in the video 

game industry. Especially, high-speed communication systems can be developed that 

offer services that are unprecedented in this industry. 

While there are a large variety of video games spanning all walks and aspects of our 

lives, we will concentrate on the in-flight games and their requirements. We focus on in-

flight entertainment (IFE) systems as one illustrated in Figure 1. Other applications that 

can be served with the proposed solutions are explained in chapter 5. An IFE system is a 

specialized communication network on-board a commercial airliner that provides 
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entertainment services to passengers. Entertainment can be in the form of on-demand 

video, internet based services and video gaming. We focus on video gaming as the 

required service. A simple implementation of such a network using a multi-level optical 

fiber based network is shown in Figure 1. There is a tremendous opportunity in 

developing the in-flight gaming/entertainment infrastructure and resources as new display 

and interaction technologies make significant strides. Also, as the processing power 

increases, more powerful gaming engines are developed. The end result of course is to 

provide users/customers with an enhanced video gaming experience on-board 

commercial airliners’ fleet. Long-haul flights are the best environment that can utilize the 

state-of-the-art video gaming systems because passengers have more time for longer 

game play. This need becomes even more pronounced when we consider the number of 

hours spent in trans-continental and oceanic flights carrying everyday millions of 

passengers [3] around the world. However, in order to have a high-fidelity, high-

performance, and high reliability infrastructure on-board, there needs to be a state-of-the-

art underlying network architecture to support the systems in the aircrafts.  

Optical networks owing to their ultra-high bandwidth have the capability to bring 

high-quality gaming experience to the users/passengers by virtue of high-speed data 

transfer. Optical networks have other benefits too for instance; they are light weight; offer 

extremely high capacity; are highly secure and non-intrusive due to the nature of the 

optical fiber; generally do not require too much maintenance and have a future proof 

infrastructure. Energy efficiency is inherent to the optical networks and being a wired 

infrastructure thereby does not interfere with existing flight critical communications. 

Along with the above mentioned benefits, due to high-speed, the latency is better than 
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competitor technologies such as copper based networks or Wi-Fi. Copper based networks 

are heavy with heavier equipment and wireless networks may interfere with flight critical 

communication and offer interrupted service. 

The scope of this dissertation project is three pronged;  

i) In the first phase, at the physical layer level, novel optical network architecture for 

high-fan-out systems was designed and simulated on industry standard simulation 

software Optsim® by RSoft. “High-fan-out” refers to the ability to support a large 

number of simultaneous users. Proposed architecture uses orthogonal frequency 

division multiplexing (OFDM) and utilizes coherent detection. Having multiple sub-

carriers allows the designers/developers to provide bandwidth to a large number of 

users much more efficiently and without any bandwidth wastage. We also use 

recently demonstrated high-capacity networks [4, 5] with direct detection, as the 

underlying network for our TDM based bandwidth allocation introduced and 

discussed in part (iii). 

ii) Second phase of the project involved identification of a protocol stack and definition 

of real-time video game stream (RVGS) for transporting the video game related data 

over the network. Since data is transmitted in a unique way depending on what 

service is being used or the system architecture we define the primitives and 

communication stack for two types of video gaming paradigms involving distinct 

experiences. The two types of experiences are categorized as:  

a. Server side rendering 

b. Client side rendering 
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Briefly, the server side rendering (SSR) systems have a huge processing power at 

the server end (or service provider end) and frame rendering occurs at the servers. 

Finished frames are then transmitted to the users much like a video transmission 

system except that the experience is largely interactive. OnLive [1] is one example of 

a server side rendering based video gaming system. The client side rendering (CSR) 

system on the other hand is a conventional video game playing system where clients 

install the game engines and requisite mapping information. Only vectors are 

transmitted over the network. A vector contains information about motion of a certain 

object inside a video game, for instance, information about players’ new location or 

change in players’ viewing angle may be transmitted as a vector in the form of 

change graphic coordinates. Since the characters in video games are also made up of 

a mesh of known structures change vectors only change the locations on characters 

(mesh) on the map. Rendered image is shown to the user as a continuous video called 

the game play. This process can be pre-coded as well [6]. One vector represents one 

such change and for the whole game play millions of vectors are transmitted. Video 

games are very complex software systems and require immense choreography when 

the game is being played. Vectors present a lightweight transportation envelops that 

can be sent across multiple players so that all screens remain synchronized. 

PlayStation and Xbox are examples of CSR system. 

iii) Third phase of the project involved design and development of an efficient bandwidth 

allocation algorithm that essentially serves as a soul for the distribution network while 

catering to a large user base and keeping the latency within a minimum acceptable 



5 

 

range. We developed novel bandwidth allocation algorithms for direct detection 

single carrier systems that also works with OFDM based architecture [7]. 

It can be seen that the three pronged project involves design and development of the 

system starting for the physical layer and reaching up to the application layer, for the 

source constrained video gaming environments such as IFE. Data collection for design 

and model validation was a major phase of the project. Most datasets used for 

observation and analysis are real-life datasets obtained from CAIDA [8] and OnLive [1]. 

1.1 The Concept/Paradigm 

Airports in the United States handle over 4000 (~ 4277 to be exact) flights every day 

[3]. Millions of people travel through the system each day. There exists a huge 

opportunity for the airline industry to tap in to such opportunity of dedicated 

audience/clients. State-of-the-art video gaming systems can help enhance traveling 

experience for a large number of commuters and leisure travelers alike who enjoy video 

games and associated interactive technologies. The World Airline Entertainment 

Association (WAEA) has called on-board video gaming system a critical part of future of 

in-flight entertainment in 2002 [9]. Not a major breakthrough, but there has been some 

progress lately on this front. The key issue with the existing systems [10-12] is the lack of 

resilience, physical infrastructure and operational means that can support the demanding 

video gaming environment of today. The systems are also not standardized. On current 

systems, video games are basic in nature and system uptime is low. There is a need for 

support for high-quality graphical contents for user/passengers. A basic and simple theme 

of such an optical fiber based content distribution system is shown in Figure 1 that 
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presents salient features; its architectural details are discussed in later sections and 

chapters.  

 

Figure 1: System Deployment – Optical network based architecture for in-flight systems 

(adapted from flight schematic) [13] 

 

Next, the basic requirements for developing a high-speed video gaming network for on-

board use in an aircraft are discussed briefly in the sub-section below. 

1.2 Requirements 

When looking carefully, in-flight systems in general are constrained by requirements 

that are unparalleled in any other industry. Airworthiness standards dictate a strict set of 

rules for equipment to be placed on-board a commercial airliner [14]. Besides the security 

and challenges related to interference with flight-critical communication systems, high-

resolution graphics and low-latency are considered to be the two most important 
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characteristics of a good gaming experience and therefore following requirements are 

biased accordingly. These requirements are summarized below: 

i) In order for the system to sustain video gaming traffic generated by 450+ users and 

also to be future proof, the network should be high-capacity. In that, it should be able 

to adapt to future traffic demands. 

ii) The system should be isolated from all other communication networks on the aircraft. 

Security of on-board communication infrastructure (i.e., flight critical networks) must 

not be compromised in any way, and any such possibility is eliminated by keeping the 

gaming network completely in isolation as a standalone system. In the proposed 

architecture, data is generated by the server and the clients for local consumption 

therefore no inter-connection with any other network is required. 

iii) Since such new entertainment systems will be retrofitted and integrated with existing 

and future aircrafts, these have to meet some essential structural requirements. Flight 

safety requires that materials and weight of modules and devices used inside the 

aircraft must comply with national safety standards and therefore should be kept to 

the minimum. Indeed, an optical network is a very light-weight system due to the 

nature of fiber-optic cables, connectors, splitters and patch-cords. Active devices such 

as optical line terminal (OLT) and optical network terminal (ONT) are not bulky and 

are much lighter boxes than their electrical counterparts. Optical fiber cables and 

connectors weigh much less than the copper cables and connectors. Moreover, optical 

fiber networks are now being used in aircrafts for all other communication needs 

including sensing applications and therefore are not new to the industry. 
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iv) Electrical Power in aircraft is a limited commodity and needs to be utilized 

efficiently. Therefore, the proposed architecture must employ energy efficient 

infrastructure. Authors in [15-24] have proposed energy efficient protocols that save 

energy in optical networks. In a related work we have proposed observing traffic 

patterns to predict off-times, rather than reacting to idle times, for transceivers [24]. 

This results in considerable energy savings since it does not wait for the channel to 

become idle, rather predicts and takes action accordingly. 

v) Network should be scalable, i.e., it should work with large aircrafts and as well as 

medium and small platforms. Gaming-Server needs to be able to cater for heavy and 

light traffic scenarios. The bandwidth allocation algorithm we proposed is dynamic, 

in that, it calculates key system parameters on run time depending on the number of 

users active in the system at that time. This is explained in detail in Chapter 4. 

vi) Proposed network should be able to handle traffic for most types of games and even 

future enhancements. The flow of information should be independent of the 

application layer and therefore neutral. A modular approach is employed so that 

changes made at one layer do not interfere with the functionality of other layers as 

long as data is pushed up in the layered hierarchy in the correct format. 

vii) Last but not the least, the network should be adaptable and cater to future 

enhancements that can be retrofitted using the existing fiber network. This is 

important to make sure that the system is future proof for the life of the aircraft (i.e., 

20+ years). Quality of graphics is being improved in video game industry at a 

tremendous pace. High-resolution graphics essentially mean more data to be 
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transmitted between console, terminals, and servers. The network design architecture 

should be able to handle increase in bandwidth requirements and future expansions. 

Based on the above listed requirements, we designed and adapted the versatile and 

flexible architecture, flexible protocol stack, and bandwidth allocation algorithms that 

were simulated and analyzed for integrity and compatibility. These simulations were also 

measured against typical industry figures. 

IFE systems have been present on-board airliners for a significant amount of time. The 

initial systems were able to stream songs only and after up gradation years later were able 

to stream videos as well. During the progression from audio to video, infrastructure was 

also upgraded to support basic videos using very low resolution screens and systems. It is 

well known however that IFE systems even in today’s airlines do not represent the best of 

technology in terms of quality, speed and robustness. Companies such as Samsung, 

Thales, and Panasonic have developed systems that provide in-flight connectivity to the 

internet [10-12] from the aircraft cabin. However, these systems do not support high-

speed connectivity for high-resolution gaming experience. Samsung and Thales are the 

leaders in developing seatback terminals. Focus of these systems is to ensure connectivity 

through email and social media applications. The most critical piece however is still 

missing from the picture. That piece is a well thought out transport system that can 

support all passengers (even for modern high-capacity aircrafts) with high-speed 

connectivity for a number of services including video gaming.  

Depending on the type of video game, the game engine has to perform tasks and 

generate game play. Game play is what the player sees on the screen. It includes objects, 

lightening, self and other players, arms, ammunition, structures such as boxes and ramps 
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etc. In the case of client side rendering, the server is generates motion vectors based on 

input from all clients present in the game (a change in position of one user must be shown 

to all users). Accordingly, the server has to inform each client about the changes 

happening in the gaming environment. For instance, if a player destroys a tank, all other 

players must be informed that the tank, as a structure, does not exist in the environment. 

Providing information about changes in the environment presents a critical time 

challenge. If transmitted too late, the information may be useless. If transmitted early it 

could give undue advantage to a player. Therefore, latency is one of the most critical 

parameters in video game system design. 

1.3 Service oriented architectures 

The concept of service oriented architecture is nascent. To understand what service 

oriented architecture is, let us take the example of local area network (LAN) which is a 

general purpose network. It can support a large number of services (i.e., Email/Exchange, 

Voice over IP (VoIP), audio and video streaming, video conferencing and streaming etc) 

with reasonable performance. It is not optimized for a particular service though; therefore 

it will perform nominally if it were to cater to only one service with high load. 

Performance depends on many factors that include type of service, tolerances in terms of 

data loss and delays and utilization of the network. While designing service oriented 

architectures all these parameters are optimized for a particular service, for instance, 

VoIP. This ensures maximum performance for the particular service although networks 

still work as a general resource for other less priority services if need be. Intelligent 

infrastructures are therefore considered the way forward. In later chapters, physical layer 
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architecture, protocol stack and bandwidth allocation are introduced and discussed with 

the concept of service orientated architectures in perspective.  

In the introductory chapter the statement of the problems has been presented with 

aims and objective. The needs and challenges have been briefly high-lighted. The current 

state-of-the-art and literature review has also been presented with some pertinent recent 

and original citations from the available resources.  Rest of the dissertation has been 

organized in the following order: Chapter 2 presents the physical layer architecture and 

chapter 3 deals with the protocol stack. Next, the chapter 4 introduces bandwidth 

allocation.  The chapter 5 concludes the dissertation with summarizing the design 

architecture and the simulation results and remarks regarding the validation of finding 

and the scope for future work. The references follow the chapter on concluding remarks 

and modeling code and software packages data and necessary info is included in the 

appendices, A through E. 

 



 

 

 

CHAPTER 2: PHYSICAL LAYER 

Optical networks once only being in the core now are increasingly playing an 

essential role in all parts of the network infrastructure in today’s data driven world. 

Optical networks are inherently high-capacity, light weight, robust and greatly enable 

bandwidth hungry applications. Among the numerous ICT applications, these properties 

of optical networks render them very attractive for in-flight video gaming solutions and 

similar constraint but high-capacity applications. Modern video games require a lot more 

bandwidth, due to enhanced graphics, requiring ever increasing frame rates, and stability 

in the networks. Video gaming data attributes are discussed in chapter 3 with somewhat 

fine details. Various unique requirements for in-flight scenarios are that of the network 

needs to serve a large number of users, all of whom may be connected at the same time, 

as illustrated in Figure 1. Also, system should be able to adapt to changing number of 

active users. These and more requirements have already been discussed in chapter 1. 

In the same context, in this chapter we propose standalone scalable and high-capacity 

network that can act as harbinger and enabler for real-time video content. Recently, 

several physical layer architectures have been proposed that enable high data rates in 

passive optical networks [5, 16, 25-30]. Improvements in data rates are realized by 

pushing the limits of technology and consistent with the information and communication 

theory [31]. Various modulation techniques are used to convert data into a transmittable 

signals’ format. The signal that carries the data is called a carrier. Carrier signal in an 
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optical network is light therefore data signal, which is comparatively at a low frequency, 

is modulated onto the optical carrier and transmitted over the optical fiber cable. Most 

basic form of modulation is on-off keying (OOK), which is a special case of amplitude 

shift keying (ASK) – which modulated the amplitude of the carrier signal. OOK refers to 

transmitting a voltage level when a binary “1” needs to be transmitted and keeping the 

laser diode off when “0” needs to be transmitted. It is intuitive to imagine that the speed 

of such a communication system is limited by how fast the laser diode can shift between 

the on and off states. Due to this bottleneck, complex modulation schemes have been 

developed and reported in literature that enables networks to carry more data on each of 

the active channels. Basic idea is to transmit two bits in one cycle of frequency instead of 

one bit per cycle. Such a technique effectively doubles the data rate. There are more 

complex techniques available today that can carry more than two bits per cycle. Two of 

the many modulation schemes that gained attention in industry are polarization mode 

quadrature phase shift keying (PM-QPSK) and coherent optical orthogonal frequency 

division multiplexing (CO-OFDM). QPSK, use 4 different phases of the carrier signal to 

transmit information. Hence, high data rates are achieved. This technique can be used in 

conjunction with using multiple polarizations of a signal. Data rate is calculated as 

                                     On the contrary, OFDM modulates data onto 

low frequency carries which are later combined using inverse Fourier transform (IFFT) 

into a single time-domain signal which is modulated onto the optical carrier. There are 

definite advantages and dis-advantages of both the techniques and in our opinion OFDM 

holds great promise due to its flexibility. This is the reason why OFDM QAM was 
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chosen over PM-QPSK, in this work. For completeness and quick-reference for the 

reader, OFDM is discussed in the next section.  

In this chapter, we present a novel network architecture that is capable of providing 

approximately 195.2Mb/s (including FEC) data rate to each of the 450+ connected users. 

This downstream bandwidth is considered more than what is required at the moment for 

video gaming and would be able to cater for future gaming environments as well. 

Network is flexible and scalable therefore; it supports fewer users as well and in-fact 

bandwidth allocation increases for each individual user if fewer users are connected. This 

is discussed in much more detail in chapter 4 that deals with bandwidth allocation 

techniques. Aggregate data is transported using 16QAM OFDM signaling. Various 

dispersion compensations are required for long-haul and ultra-long-haul links with data 

rates of 10Gb/s and certainly for those that go beyond 100Gb/s [32], [33]. In our 

application domain electronic dispersion compensation would not be required because 

link lengths are quite small, and they are indeed almost negligible. 

2.1 Physical layer technologies 

In various domains of networks, data rates are largely limited by the physical layer 

technologies in place. Depending on the applications, different physical layer 

implementations can be adopted. Since the video-gaming involves an extremely data 

intensive operation for a network, we look for and adopt the architectures that offer 

higher data rates. Among various options OFDM is one of them that offer benefits that 

are discussed in the next section.  
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2.1.1 Overview of OFDM 

OFDM has been used in other network technologies however, it’s feasibility in optical 

networking has recently emerged due to its ability to increase the effective data rate in the 

network. It uses Fourier transform [34] to convert a set of low frequency electrical 

signals, shown in Figure 2, into a single time-domain signal that is modulated onto the 

optical carrier. Since low frequency signals are modulated separately with data, the 

technique is modular, in that; a sub-carrier (one of the low frequency modulated signals 

for one set of data stream) can be allocated to a particular user. This way the networks 

become contention free and therefore can work like a wavelength division multiplexed 

(WDM) system in principle although the technicalities do differ. One can also modulate 

each sub-carrier separately and perform time division multiplexing onto each one of them 

therefore serving more than one user with a single low frequency carrier. Lately, many 

techniques have been proposed and demonstrated for OFDM based architectures and 

curious reader should consult [16, 25, 28, 30, 35-37] for detailed reviews and latest 

proposed techniques. 

 

 

Figure 2: OFDM sub-carriers (frequency domain) to time-domain signal 
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Compared to other methods, an OFDM technique has certain distinct benefits. Some of 

these are as follows: 

i) In OFDM, sub-carriers are orthogonal to each other therefore there is no chance of 

cross-talk between channels. 

ii) An OFDM symbol is made up of bits, one from each sub-carrier data streams. 

Therefore if a symbol gets distorted not all data is corrupted. This adds to data 

integrity in case of poor channel conditions. Symbol rate is lower than the data rate 

therefore guard-band can be used between symbol to reduce inter-symbol interference 

(ISI). 

iii) OFDM gives system designer an opportunity to utilize full available spectrum and 

thus to improve spectral efficiency. 

iv) OFDM allows the system to allocate a separate channel to every user which ensures 

privacy and security of data channel. Also since crosstalk is not present, the data is 

not corrupted. 

v) An OFDM signal can handle filtering better because time domain signal is not 

distorted at the decision time. Passing an OFDM signals for instance, through a low 

pass filter does not change the signal at the decision time, therefore signal can be 

interpreted correctly. 

An ideal OFDM signal, in frequency domain would look like the one shown in Fig 3a 

below which happens to be from one of the simulated results at the source. Figure 3b 

shows an OFDM signal that has travelled a distance. Due to the fast processing high-

frequency components are added to the signal which act as noise and must be removed 

before interpreting the signal. From Fourier synthesis one knows that a large number of 
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sine waves are required for constructing a perfect square wave signal illustrated in Fig 4. 

Sinusoids used to achieve this are periodic harmonics of the fundamental frequency (i.e., 

1/3rd, 1/5th, 1/7
th

 and so on) also evident from Figure 4. FFT follows from the fact that 

any time domain signal can be created if the right amount of sine waves are used each at 

the a certain frequency. Therefore, OFDM can be spectrally very efficient, however, 

complexity of calculations increases drastically with an increase in the number of sub-

carriers. Therefore a balance has to be reached for practical scenarios. The balance is 

reached by rigorous simulations with carefully configuring the parameters.  

 

  

(a) (b) 

Figure 3: OFDM signal (a) OFDM signal in frequency domain (b) Non-filtered OFDM 

signal in frequency domain after travelling a distance 

 

Figure 3 above shows the results from one of our simulated environments detailed later in 

this chapter. 

 



18 

 

 

Figure 4: A square wave generated with multiple sine waves [38] 

 

2.1.2 Overview of TDM / Single channel 

Time division multiplexing (TDM) is a seasoned technique for allocation of time in 

communication systems [39]. TDM can be modeled to work in a manner that it not only 

improves system performance but also reduces the latency. TDM based schemes allocate 

time on a shared channel to contending users. In conventional TDM (also known as 

statistical multiplexing), users are allocated time irrespective of their need or demand. 

This means that a user is allocated time slots in the absence of any demand and need and 

thus the allocated bandwidth gets wasted. A simple TDM based allocation scheme for 

     users is shown in Figure 5. It is readily evident 
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Figure 5: Typical time division multiplexing (TDM) allocation cycle 

 

that although users 3, 8, 13 and 20 do not have any data to transmit, yet they still get time 

to transmit. Such deficiencies have been improved a lot in TDM based systems and in 

chapter 4 we show that TDM can still be used to allocate bandwidth for a large number of 

users as well. 

The next section introduces the proposed physical layer architecture for high-capacity 

high-fan-out applications. 

2.2 Proposed architecture 

For demonstration of feasibility of OFDM, we used 16QAM, which provides 

relatively increased noise immunity with a reasonably large decision dynamic range for 

the receivers. Figure 6 below shows the segment of network architectural layout. Dotted 

box section on the top-left shows the transmitter and dotted box section on the bottom-

left shows the receiver with distribution sub-system shown to the right. For full fan-out, 

signal has to pass through two splitters on each link. A 1 X 16 splitter in tandem with a 1 

X 32 splitter enable a fan-out of 450+. 

2.2.1 Details of Network Segment used in Simulations 

This section details the design parameters and configurations for the proposed 

architecture.  
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Figure 6: Block Diagram of proposed architecture. Three major components are the 

OFDM transmitter, distribution system and the OFDM receiver 

 

The illustrated diagram shows the architecture of the OFDM based architecture. 

Transmitter and receiver components are discussed. 

a) Transmitter: Pseudo Random Bit Generator (PRBG) generates random bit sequence at 

the rate of 100Gb/s. The PRBG mimics our aggregate message signal that needs to be 

transmitted.  QAM generates 4-bit symbols and splits this signal into two orthogonal 

components i.e.,                                 , where     and    are 

amplitudes of the real and imaginary (orthogonal) part of the signal and w is the 

frequency. Since each symbol represents 4 bits, this is a 16-QAM system i.e., 

                          with baud-rate of 25GBaud/s. On the constellation 

each point represents a symbol with its unique amplitude and phase. At the receiver, 

we expect this diagram to be as less distorted as possible for data to be extracted 

successfully. OFDM converts output signals (I and Q) from the quadrature amplitude 

modulator (QAM) to a composite time domain signal. I-phase is the in-phase signal at 
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the output of the QAM and Q-phase is the quadrature phase signal at the output of the 

QAM. 

Large number of OFDM sub-carriers help with the applications requiring 

scalability. Since sub-carriers can be individually allocated, although large number of 

sub-carriers also has its own limitations that must be kept in mind. Close packing of 

sub-carriers results in cross-talk. Inverse Fast Fourier Transformation (IFFT) and Fast 

Fourier Transformation (FFT) at the transmitter and receiver respectively, perform 

multiplications with a complexity that increases linearly with the number of sub-

carriers therefore overhead is minimum [40]. We use          sub-carriers. 

OFDM symbol period is dependent on QAM baud-rate and number of sub-carriers 

used. Therefore,                    . Also,                      bits 

per symbol. As an example, output of one of the OFDM signals (I-phase) is shown in 

Figure 8b. Q-phase (quadrature phase) signal looks similar but is out of phase. A 

raised cosine filter, low-pass-filter (LPF) is used to filter high frequencies that are 

generated as a result of fast variations brought about in the carrier signals during 

modulation. Using this filter allows us to satisfy Nyquist criteria for inter-symbol 

interference Time domain representation of the signal changes due to filtering but 

only at instances in time that are not the decision times. Data rate of 100Gb/s is sent 

over 25GBaud/s in a 16QAM system. Spectral efficiency can be calculated to be 4 

bits/sec/Hz. 1024 subcarriers travel inside one OFDM symbol therefore OFDM 

symbol rate is                      =24.4MSym/sec. Each subcarrier carries 

97.6Mb/s and each user is allocated 2 subcarriers amounting to 195.2Mb/s, ideally. 

This translates to a 2.56THz modulated signal centered at 193.4THz. Nyquist 
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bandwidth is 12.8THz, when symbol duration (TS) is 0.04ns. Filtered signal is shown 

in Figure 8c. I-phase and Q-phase are electrical signals at this point and must be 

modulated onto optical carriers. A CW optical carrier centered at 1550nm (193.4THz) 

is used as carrier signal. LiNbO3 based Mach-Zhender modulators (MZM) are used 

to modulate the OFDM signal onto the optical carrier. Both I-phase and Q-phase 

signals are modulated separately and combined using an optical combiner and the 

combined signal, as shown in Figure 8e, is transmitted. 

Passive optical splitters are used to split optical signal for distribution. Single 

stage Erbium-doped fiber amplifiers (EDFA) are used to amplify the signal. Since 

splitters are employed in tandem, amplifiers help keep power level high enough for 

reliable detection. However, recurring amplification adds noise to the signals.  

b) Receiver: At the receiver end, optical signal is distorted due to various impairments 

and noise. One of the reasons for using a PIN photo detector is its ability to detect low 

power signals due to high sensitivity and responsivity.  

Optical signals are passed through the coherent optical receivers that separate two 

orthogonal signals using four (4) PIN-photodiodes connected in balanced 

configuration. Received signal and local oscillator (LO) signals are coupled using 

3dB couplers. One component of LO is shifted by 
 

 
           , where       , 

using phase shifter. The other components (non-shifted) coupled with the incoming 

signal as they are.  Advantage of using a coherent receiver instead of an optical filter 

to isolate the frequency of choice is that coherent receiver allows more precise 

detection with strong signal from the weak incoming signals. For example, down-

converted signal is shown in Figure 9c containing high frequency components. The 
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low pass filter (LPF) stops the high frequency components to pass through to the 

OFDM receiver, as illustrated in Figure 9d. These two signals are the I-phase and Q-

phase signals that are fed into the OFDM receiver for FFT to convert serial bit 

streams into its frequency components. Resultant signals are fed into the QAM 

decoder that generates the bit stream by detecting respective symbols, illustrated in 

Figure 9e. Distortion in the received signals arises due to slight changes in phase of 

the signals and variations in amplitudes. 

2.3 Experiments 

This section details the components used in simulations and their configuration. A 

component level view of the architecture is illustrated in Figure 7. The design and 

simulation of the architectures was carried out keeping in mind the requirements listed in 

chapter 1 i.e., high-fan-out. Distortion in amplitude or phase of the modulated signal 

results in a distorted constellation diagram at the receiver and renders the decision- 

making more difficult and in some cases impossible. Since phase jitter shifts dots on the 

constellation from one phase to another creating an arc like representation, it is hard to 

decode. Similarly, with changes in amplitude constellation diagram converges to the 

center (mostly) and makes it hard to decode. A combination of both of these occurrences 
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Figure 7: Component level view of proposed architecture. Transmitter: (a) OFDM signal 

generated after IFFT using NSC subcarriers, non-filtered, 25GHz (b) Filtered output of 

OFDM to be modulated onto the optical carrier at 1550nm. Roll-off of 0.5 and cut-off set 

at 0.62. Link: (c) Transmitted optical signal with modulated OFDM signal. Receiver 

results (d) down converted in-Phase signal at the receiver (e) signal after passing through 

raised cosine low pass filter. BER of 5.4 * 10-3 (Figure 10). 

 

gives us a spiral-like constellation illustrated in Figure 8f. We also get similar 

constellation diagrams at the receiver when there is a discrepancy between number of 

encoded and decoded sub-carriers. 

2.3.1 Simulation software 

Optsim
TM

 was used for simulations of various network layouts and architectures. 

Optsim
TM

 is an industry leading optical network simulation software suit from RSoft
TM

. 

The latest build-out allowed us to simulate the architectures based on coherent detection 

with more realistic physical parameters. Coherent detection though studied earlier is 

relatively new in the practical optical networks domain compared to direct detection 

technology. However it is considered to be one of the most promising ways to go forward 

owing to its advantages over other conventional techniques in the high-data rates of 
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20Gb/s and beyond. Indeed for 40Gb/s and higher data rates there are hardly any other 

techniques in the literature that can address the physical limitations. 

2.3.2 Results 

This section introduces and presents the results based on the simulations studies and 

investigations of Coherent OFDM QAM based architectures. For the demonstration 

purpose, initially, 2 bits per QAM symbol were used with 512 OFDM sub-carriers. 

Figure 8 a – e, shows the signal as is proceeds through the transmitter. Figure 9 illustrates 

the receiver. One can see that the QAM signal, represented by the 4 unique symbols 

shown in Figure 8a. This gives us a bit rate of 2 bits per symbol. Figure 8b illustrates the  

 

   

(a) 

 

(b) (c) 

  
 

(d) (e) 

 

(f) 

Figure 8: Coherent 100Gb/s transmitter with 2bits/symbol. (a) Constellation Diagram 

QAM Sequence Generator generates 2 sequences (b) OFDM Modulator (c) LP Filter (d) 

Output from MZM (e) Power combiner Output from both MZM combined for 

transmission (f) distorted constellation diagram for a 2 symbol system (just for 

illustration, not connected with Figures  8a – 8e)  
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OFDM signal in the frequency domain followed by filtered signal in Figure 8c. It should 

be noted that this is one of the two orthogonal signals modulated separately using Mach-

Zehnder modulators output of which is shown in Figures 8d and 8e. 

The receiver related signal sequence is depicted in Figure 9 below. 

   
(c) (b) 

 

(a) 

  

 

(e) (d)  

Figure 9: 100Gb/s receiver (a) Incoming signal spectrum (b) Local Oscillator 193.1 THz -

2dBm (c) Limiting Amplifier (d) bandwidth limited signal (e) Received Optical Signal 

RED = Signal BLUE = noise 

 

Figure 9a shows the received signal. Local oscillator’s output is illustrated in Figure 9b, 

followed by the decoded OFDM signal in Figure 9c. Since noise is visible in the form of 

high frequencies, a LPF is used to filter out high frequency components, illustrated by 

Figure 9d. Figure 9e shows the reconstructed QAM signal with reasonable noise that is to 

be expected.  

Figure 10 shows results achieved from other simulations with more complex signal 

encoding such as 16-QAM with 4 bits per symbol. For the following BER discussions we 

use the results achieved by the 16QAM simulations. Received signal BER is in 
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agreement with [35] and FEC threshold. It can be seen in Figure 10 that increases in 

number of subcarriers effects BER performance. Similarly, received power affects the 

BER performance as shown in Figure 11.  

 

 
Figure 10: Effect of increasing the number of subcarriers on BER. Increasing number of 

sub-carriers increases bit error rate significantly but shows unpredictable dependence. 

 

 
Figure 11: Received signal power and its effect on BER performance for the 16-QAM 

OFDM signal. With two amplifiers connected in tandem between the splitters we get 

reasonable BER. 
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It is evident that the threshold BER performance varies with the number of sub-carriers 

used as well as with the power received by the receiver, which dictates using the 

optimum number of sub-carriers for a desired configuration. 

2.4 Discussions and relevant remarks 

Two architectures variations were discussed in this chapter with results pertaining to 

proposed 16QAM OFDM based coherent architecture. We showed that in a high-fan-out 

optical network 450+ simultaneous users can be supported with reasonable signal 

performance within the typical limits. The physical layer infrastructure helps us develop 

upper layers for optimizing full system performance. Proposed and investigated 

architecture is best suited for high-capacity bandwidth hungry applications such as in-

flight video gaming systems. Proposed architecture will be able to provide up to 

approximately 200Mb/s to each user with BER kept under the threshold of FEC using fair 

allocation.  

In the next chapter (3), we discuss the protocol stack and data/datasets used for 

developing models for upper layers such as bandwidth allocation in chapter 4.



 

 

 

 

 

CHAPTER 3: PROTOCOL STACK 

 

As introduced in previous chapters, the high-fan-out optical network is the workhorse 

of the scalable high-capacity optical networks for constrained environments. At the 

physical interface, data is collected between the optical network terminal (ONT) and 

optical line terminal (OLT) as a variable bit stream. These bits form data packets that 

have headers with information about source and destination routing. When a packet 

arrives at the network interface (also known as the Network Interface Card or NIC) it is 

passed on as “layer by layer”. A set of layers that a packet must traverse before being 

transmitted at the sender and before being read at the receiver constitutes a protocol 

stack. Stack refers to the protocol layers virtually sitting on top of each other as shown in 

Fig 12. 

In the following sections we contemplate the protocols in place for data transport and 

define real-time video-game stream (RVGS) protocol envisioned for transportation of 

video game data across the network. 

3.1 Initial considerations 

Each layer in the protocol stack associates and attaches information to the data is 

receives from the upper later, as depicted in Figure 12 below. Associated information 

carries specific functions that are necessary for transmission to be completed from one 

end to the other.  



30 

 

 
Figure 12: Headers information added by each protocol layer 

 

In Figure 12, application data refers to the data generated by the video game server in 

both CSR and SSR based systems. Application attaches information about data that it 

needs to transport such as “data length” in bytes. This is followed by user datagram 

protocol (UDP) header that contains port numbers (source port and destination port) that 

uniquely identify the application in the app header. As the packet arrives at the computer 

port number identifies the application the packet belongs to. Subsequently, the IP header 

attaches the course and destination IP addresses to the payload. These addresses help in 

routing the packet all the way from source to destination. Since UDP is a connection less 

protocol, each datagram is routed separately as a unique entity through the network. This 

also means that UDP packets may not arrive at the receiver in order and need to be 

ordered by the application. An alternative, transmission control protocol (TCP) is not 

suitable for such applications due to the delays it introduces into the data streams. TCP 

handles contention which increase delays on top of its heavy header therefore TCP is not 

considered a good choice for video gaming data transport. IP header also contains other 

information such as flags, time-to-live, fragmentation bit and IP version number. In the 
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end, and just before transmission, the IP packet is encapsulated inside an Ethernet packet 

also known as a Frame, as illustrated in Figure 13 as well. Successive frames are 

transmitted over the EPON in order to complete a transmission. 

Since the receiver also has all the respective layers, a packet that arrives at the 

receiver goes through the reverse process at each layer. Each layer removes the header 

and passes on the packet to the upper layer until data is finally transmitted to the 

application. 

This process is similar to Amazon
TM

 sending a shipment in its own boxes although 

products are already packaged by the manufacturers. Since Amazon is only a transporter, 

it is concerned only with end-to-end delivery and not with the contents of the package 

therefore a plain brown box with shipping labels is enough for the transportation. The 

manufacturer however puts the product in its own packaging with labels, trademark, and 

the product information, not for Amazon, but for the end consumer. For a consumer, the 

specific information such as warranty and specifications are highly important. Amazon 

analogy is also quite suitable because they have streamlined their processes to ensure a 

fast, safe and accurate delivery. This is much like the service oriented architecture 

discussed in earlier chapter 1. Continuing Amazon analogy, for an overnight delivery 

Amazon uses FedEx’s premium network while a 3-5 days delivery is sent over USP’s 

network. Both types of networks are optimized for certain specialty services. 

Any communication would work in a similar fashion on the most part. The 

differences lie primarily in stack implementation i.e., the type of protocol being used by a 

particular service. 
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It should be noted that header information is considered an “over-head” that must be 

transmitted in order to correctly and securely transmit information over a public network. 

Also, the data to be transmitted is almost always much larger than the capacity allowed 

packet size therefore data is fragmented and divided into smaller chunks and inserted into 

packets one after the other in a sequence. 

Packet sizes are defined for almost all networks dedicated to support specific 

services. Consequently, depending on the specific network architectures packet sizes may 

vary. These are called maximum transmission units (MTU) [41]. Table 1 below gives 

view of packet sizes in a UDP/IP stack.  

Figure 13 shows an Ethernet packet that carries real-time video game stream (RVGS). 

This can be a SSR video frame or CSR based position vectors’ information for rendering 

at the client. From the Ethernet packets’ perspective, it is simply data or payload (recall 

the Amazon analogy).  

 

 
 

 

Real-time video game stream (RVGS) is the protocol that carries video game data for 

both SSR and CSR streams. RVGS is discussed in detail in the next section. PDU refers 

TABLE 1 

Packet size UDP/IP stack 

Protocol 
Payload 

size 

(bytes) 

Packet Size 

(bytes) 

Ethernet frame 1500 3 (header) + IP packet size 

IP PDU size 20 (header) + PDU size 

UDP RVGS size 8 (header) + RVGS size 

 



33 

 

the protocol datagram unit which is a general term used for a packet for a particular 

accompanying protocol type. 

 

 
Figure 13: UDP/IP protocol stack on Ethernet channel 

  

 

Maximum size of an Ethernet packet is 1518 bytes or 12144 bits [42]. This includes 

data and all the headers that must be placed in order to make ready the packet for 

transmission. Therefore, maximum payload an Ethernet packet can take is 1500 bytes. 

Data enters the system from the physical interface and makes its way to the top layer 

(application layer) after passing through the UDP/IP stack [43]. 

In a SSR system, software is installed at the client end within with the game play is 

shown. The software connects with the remote video game server and essentially streams 

video game frames in the downstream and the user interactions in the upstream. 

Depending on the resolution and frame rate (frames per second, fps), we should expect to 

see a much larger data rate compared to CSR system. 

On the other hand, in a CSR system, vector information is transmitted as payload in 

the downstream. This means more information related to game play is transmitted within 

the same span of time. This behavior is discussed in detail in the next section followed by 

deduced bandwidth requirements from the datasets. 
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Cycle times are optimized to equal packet lengths. For a low weight user, this means 

at least one packet will be transmitted in every cycle. For a high weight user, if there is 

enough data to be transmitted, at least three packets can be transmitted. Priority weights 

and assignment mechanism is discussed in great detail in chapter 4. 

3.2 Real-time Video Game Stream (RVGS) 

RVGS is a novel UDP/IP stack compatible transmission protocol that specifies the 

format in which video game data is transmitted over the network. Figure 14 illustrates 

RVGS packet header. Service specific protocols such as file transfer protocol (FTP), 

simple mail transfer protocol (SMTP) and real-time transport protocol (RTP) have been 

in use for a long time in communication systems however a protocol specific to video 

game traffic has not been proposed until recently, despite tremendous growth in the video 

game industry. To the best of our knowledge there is no other current work related to 

video game traffic protocols available for reference except for one proposed recently in 

[44] and a protocol that was presented back in 2002 [45]. PGTP proposed in [44] deals 

with the video game traffic targeted towards smartphones for mobile game play. Authors 

propose an energy efficient protocol to save battery power while playing a video game on 

a smartphone. It is shown that delays are kept under typical tolerances. Although it can 

transport video game data, just like UDP or any other protocol can, it cannot perform 

equally good for both types of video game stream i.e., SSR and CSR, due to lack of this 

segregation of traffic in the paper. Authors in [45] propose game transport protocol 

(GTP) that deals with online event driven data transport for video games for older video 

games utilizing windows to control the flow of information. GTP is a TCP based protocol 
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When compared with PGTP and GTP, RVGS is inherently targeted towards video 

game data in terms of inner video game details, such as information about type of data 

stream (i.e., SSR or CSR), being transmitted in the header. Since RVGS is video game 

specific there is more control on the information that is transmitted. This makes RVGS 

more of an application layer service oriented protocol which is lightweight due to its 

ability to hold more meaningful information in the header. 

 

 
 

Figure 14:  Real-time Video Game Stream (RVGS) packet header and data 

 

 

The details about the fields used in RVGS packet header are as follows: 

VER (3 bits): Provides information about the specific version of RVGS protocol header 

used for transmission. 

D. TYPE (3 bits): Describes the type of data that has arrived inside the payload/data 

portion in the RVGS packet i.e., Audio data, video data, environment variables, player 

info, admin info, settings. Note that some of the data may need acknowledgment. 

T (bit): Frames/Vectors 
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C (bit): Check data bit is used to put specific checks for the data that is encapsulated in 

the data payload portion of the packet. This field may be unset so that no checks are 

performed and UDP/IP generic checks are used. This bit can be overloaded to perform 

other Boolean tasks as well. 

A (bit): Generally acknowledgements are not used in real-time transmission due to delays 

incurred in transmitting and waiting for acknowledgments. However, there are types of 

data that may require acknowledgment. Such acknowledgments do not interfere with 

game play therefore can be set to acknowledge data like settings and administrative 

controls. 

O (bit): If packet contains completely non-conventional data, other data bit can be set to 

caution the receiver not to decode it as a video game stream. 

B (bit): Blank bit is set when there is not data present besides the header and the packet 

acts as acknowledgement with the sequence number field with the acknowledgment 

number. 

F (bit): Fragment bit is set when the information in the payload is contains a fragment of 

the whole, for instance, a fragment of the entire frame. 

V. HOST ID (5 bits): Multiple game sessions may be active on a host. Virtual Host 

application ID identifies the particular game session. 

SEQ. No. (16 bits): UDP packets are not ordered due to lack of connection establishment 

at the transport therefore sequence numbers help in ordering the packets at the receiver. 

Sequence number reset after the maximum is reached. 

BYTES (16 bits): Stores the number of bytes in the packet including payload.  

SESSION ID (8 bits): Session the packet belongs to 
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GAME ID (8 bits): Game ID on the host (for multiple games) 

TIME STAMP: Time stamp synchronization 

DATA: Payload/data 

As illustrated in Figure 14 the data is variable. This is suitable for both CSR and SSR 

streams. Same amount of information about the game play will take many more packets 

in SSR stream compared to CSR stream which will only transmit change vectors and 

audio information. BYTES field helps in keeping track of number of bytes in the packet. 

As mentioned earlier, RVGS is compatible with UDP/IP protocol stack, as shown in 

Figure 13, and works seamlessly like other service specific protocols. The reason for 

designing a new protocol rather than using an existing one such as RTP is that RTP was 

designed for media related information, such as audio/video streams. The major 

difference between a video game stream and a regular media stream is the detail in 

information that is transmitted. Both the streams are inherently different in nature. For 

instance, audio/video streams are pre-coded data bits that are decoded at the receiver 

pretty much in the same manner for as long as the stream is relayed. A video game stream 

has much more detail in terms of change vectors and other player related information. A 

stream can be frames or vectors for example. Complexity of decoding at the receiver 

increases if this information is not formatted, more so, if the information is transmitted in 

a packet format that was developed for another type of service. 

3.3 Data and observations 

Analysis for bandwidth allocation in networks begins with identifying bandwidth 

requirements for particular services. Bandwidth requirements ought to be based on real-

life data for realistic analysis. It is for the same reason that we use datasets gathered from 
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various sources throughout the course of this dissertation project and these are discussed 

in detail in this chapter. From the network interface, data was captured using 

Wireshark
TM

 – a standard data capture tool used extensively in networks research. These 

were SSR and CSR based video game related datasets that were captured at the local 

interface during online gameplay from OnLive [1] and local game play (computer to 

computer, single and multi-player). Other network traffic datasets were downloaded 

through CAIDA [8]. These datasets represent internet traffic at the core. Details about 

these datasets have been listed in Table 2 for a quick reference and discussed below.  

i) Datasets downloaded from CAIDA were captured at ultra-high-speed interfaces in 

Chicago and San Jose, therefore, in order to use them, local traffic information was 

extracted from them. Although not solely containing video-game data, these datasets 

provided and insight into the way internet traffic works. The tedious task of extracting 

local information required sniffing through large datasets to look for unique source and 

destination pairs, which would then be categorized as data streams originated from 

unique sources such as individual users or organizations. Packet sniffing for datasets was 

done using code written in C++ using standard “lpcap” libraries for capturing traffic from 

interfaces (Appendix E). After identifying communication sessions, session lengths, 

arrival and other parameters were observed.  

Figure 15 shows the nature of internet traffic which predominantly comprises of 

transmission control protocol (TCP) packets. TCP is a connection oriented alternative 

protocol to UDP. It can be seen the data follows Pareto distribution very closely. Pareto 

distribution is a long tailed distribution that represents large number of smaller sessions 

and a small number of larger sessions [24]. Just for reference, Figure 16 shows snapshots 
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of communication sessions (between unique source destination pairs) extracted from the 

same datasets. When plotted on a time graph it is easy to see that the sessions occur in 

bursts. It can also be observed that large number of smaller sessions and a small number 

of larger sessions are present in each communication, which follows Pareto distribution. 

Figure 16a shows a relatively large session at the data rate of OC-48 (Optical Carrier - 

48) (OC=51.84Mb/s) which equals about 2.5Gb/s (OC * 48) at the interface where it was 

collected. One can identify that the proportion of smaller sessions is larger than that of 

larger sessions. Figures 16(b – d) show sessions extracted from the high-speed data. 

Figures 16(e – f) are snapshots of higher data rate at OC- 192 (Optical Carrier-192) 

which is approximately 10Gb/s at the interface. Rest of Fig 16 shows the extracted 

sessions from the large dataset shown in Fig 16e. In all fairness, it is hard to say if there 

was any co-relation between the separate communications shown in Figure 16, but we 

can say with a high level of certainty that within a communication, all sessions were co-

related since they were communicating between the same source-destination pairs. 

Many more datasets were also analyzed and were found to be following similar 

patterns however, they cannot be used for specifically video-game purposes due to lack 

of evidence about them carrying video-game data. This is the reason why latest video 

game datasets were collected and are discussed next.  

As far as the discussed datasets are concerned, conclusive evidence can be drawn 

from them for proposing energy efficient schemes, by virtue of having idle times, in 

optical networking, which was carried out as a separate work during the project and in 

reported in [24]. 
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Figure 15:  Data extracts from CAIDA datasets (a) Chicago OC-192 (b) San Jose OC-192  

(c) Chicago OC-48 

 

 

  

 (a) Session number vs Arrival time 

and duration (OC-48) 

 (b) Session duration vs Arrival 

time (Local LAN) 

  

 (c) Session duration vs Arrival time 

(Local LAN) 

 (d) Session duration vs Arrival time 

(Local LAN) 

  

 (e) Session number vs Arrival time 

and duration / (OC-192) 

 (f) Session number vs Arrival time 

/ distribution of sessions (OC-192) 
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 (g) Session number vs Arrival time 

(OC-192) / session spanning 13 

seconds 

 (h) Session number vs Arrival time 

(OC-192) / session spanning 11 

seconds 

  

 (i) Session number vs Arrival time 

(OC-192) / session duration < 

seconds 

 (j) Session number vs Arrival time 

(OC-192) / session duration < one 

second 

  

 (k) Session number vs Arrival time 

(OC-192) / session duration < one 

second 

 (l) Session number vs Arrival time 

(OC-192) / session duration < one 

second 

Figure 16:  Session information extracted from datasets 

 

 

 

ii) From the local interface, data was captured using Wireshark while playing video 

games on LAN and online using OnLive
TM

. It was observed, after analyzing the datasets, 

that online servers can be caught up with demand and therefore employ load balancing. 

Load balancing refers to switching servers during the gameplay depending on load 

metrics. When a user starts to play a game, it may interact with a server which passes on 

the connection to another server. It was observed that server shifts happen randomly and 

that for accurate analysis it was imperative to include sessions generated by all servers in 

the particular communication. The result of accumulation of all connected sessions can 

be seen in Figure 17. 
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TABLE 2 

Datasets/Traces 

 Date Size 

ONLIVE   

Online 11-2011 846MB 

    “ 11-2011 600MB 

    “ 11-2011 559MB 

Multiple Online datasets 10-2011 <500MB 

 

LOCAL GAMES 

  

Multiple LAN datasets 09-2011 4-50MB 

Counter Strike 2003 1-3MB 

Command & Conquer 2003 1-3MB 

Misc. Games 2003 1-3MB 

 

CAIDA 

  

Chicago 10-2010 700MB 

San Jose 03-2010 1.66GB 

Chicago 02-2009 700MB 

San Jose 03-2010 1.8GB 

San Jose 12-2009 1.42GB 

San Jose 03-2010 1.6GB 

San Jose 12-2009 1.42GB 

Chicago 100900 10-2003 1.07GB 

Chicago 095900 11-2003 1.1GB 

Chicago 100400 11-2003 1.06GB 

   

NUST LOCAL   

Multiple LAN datasets 2008 8-10MB 

   

 

These datasets come under the category of SSR in Figure 17(a – b) and under the 

category of CSR in Figure 17(c – e). Observations and critical communication parameters 

such as packet length, arrival rate and average session length from these datasets are used 

in experiments for SBA in chapter 4. 
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(a) OnLive trace 

 
(b) OnLive trace 

 
(c) LAN Trace 

 
(d) LAN Trace 
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(e) LAN Trace 

Figure 17:  Video game datasets for SSR (a,b) and CSR (c – e) based games 

 

 

 

Datasets shown in Figure 17 represent a sample of datasets that were collected. From 

Figure 17 once can see that data rates or arrival rates vary depending of the type of video-

gaming experience i.e., SSR or CSR. For instance, as an example, for one of the OnLive 

datasets (SSR), average packet arrival rate of ~600 packets per second was observed with 

average packet size of ~800 bytes. This was low frame rate game play with sub HD 

resolution. The same game when played in Full HD and 50fps increases the packet arrival 

rate to ~1000 – 1500 packets per second. For CSR based games, bandwidth requirement 

is less than SSR since vectors do not require the same amount of space as frames. Packet 

arrival rates of ~100 packets per second with average packet size of ~200 bytes were 

observed for most datasets. 

3.4 Discussions and remarks 

This chapter discusses the data used for simulations that are detailed in chapter 4. 

Datasets or traces that were used for the purpose of analysis and simulations were 

gathered from a variety of sources. Large datasets containing information from a large 

number of users were downloaded from CAIDA [8]. These datasets give an insight into 

the behavior of internet traffic and general protocol stack. Service oriented, video-game 
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related datasets were downloaded during live gameplay from online video gaming 

services such as OnLive [1]. LAN datasets were captured during gameplay on the local 

area network. Some older traces were also used to observe the difference in traffic 

generated by older and newer games. Captured and gathered datasets provide invaluable 

information regarding data generated by game engines in both SSR and CSR based 

systems as discussed in this chapter. It is evident from the graphs presented in this 

chapter that SSR generates much larger data compared to CSR. Also, communication 

sessions captured from high-speed interfaces in Chicago and San Jose show that data 

generated by individual users is in the form of bursts. Data sessions follow Pareto 

distribution which forms a basis for analytical modeling the next chapter.



 

 

CHAPTER 4 – BANDWIDTH ALLOCATION 

 

 

In this chapter, latency analysis of ratio-counter based bandwidth allocation (RC-

DBA) algorithm [46] for conventional Ethernet passive optical networks (EPON) [47] is 

carried out. Specific to the investigations, a novel bandwidth allocation algorithm, state-

full bandwidth allocation (SBA) algorithm, for in-flight high-fan-out communication 

systems is also defined and analytical model is presented. Real-life video gaming data 

traffic is used for analysis and validation of design.  

Since the advent of video-gaming industry, bandwidth requirements have been 

constantly increasing owing to ever-growing level of details in the game play and high-

resolution graphics. Also, as the processing power increases, more processing-intensive 

gaming engines are being developed. At the heart of an IFE system is an efficient 

bandwidth allocation algorithm that is capable of providing high-speed content 

distribution with minimum to no starvation. Optical networks (ON), due to their light-

weight, robustness and high-capacity, and being highly secure and non-intrusive medium, 

lower maintenance and future proof infrastructure, are very suitable for such an 

environment. Figure 1 in chapter 1 gives a generalized view of an in-flight video gaming 

system architecture that utilizes an on-board optical network for distribution of video 

game content, over an adapted schematic. Insets show placement of small footprint 

servers and optical splitters for distribution of contents to passengers. 

For the purpose of analysis, data generated by video game servers has been divided 

into two categories, as shown in Figure 18 below, pertaining to the nature of video game 
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server architectures. These categories are: A) Server side rendering (SSR) and B) Client 

side rendering (CSR). 

A. Server side rendering  

In a “server side rendering” (SSR) system, user interaction with the video game server 

happens at the server, as shown in Figure 18a. This means that data processing ensues at 

the server. OnLive [1] is an example of such a video gaming experience. With a global 

shift to cloud computing, it would not be wrong to predict that in the future most video 

gaming will be done in this way. There are some definite benefits of this approach. The 

most noteworthy advantage is that it works like video streaming which makes it useable 

on practically any computer that can stream video although, higher frame rates will 

require more processing power and bandwidth. All the processing is performed at the 

server end. Such a gaming environment produces multiple data streams often originating 

from multiple servers (as a result of load balancing) and therefore all new connections 

that are generated during the course of the game have been included in the analysis and 

design. 

B. Client side rendering 

“Client side rendering” (CSR) refers to a more conventional mode of playing a video 

game whereby client has the video game engine installed on the console and mainly 

motion and environment change-vectors are transmitted over the network, as shown in 

Figure 18b. Xbox
TM

 and PlayStation
TM

 are examples of client side rendering systems, 

although computers are also widely used as well. Server hosts the game and interacts 

with the consoles. Reasonably high processing power is required at the user end, and 

relatively small amount of data is transmitted over the network which makes this 
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approach less bandwidth intensive but at the same time more expensive for IFE systems 

and less future proof.  

Both categories are considered for the analysis in later sections. For demonstration a 

large bandwidth capacity provided by optical networks is used. 

 

 

 
Figure 18: SSR vs CSR (a) Server side rendering: game play is processed at the server 

and frames are transmitted to the user (b) Client side rendering: game play is processed at 

the client end. Motion vectors and environment vectors are transmitted over the network. 
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4.1 Data collection and the datasets used 

For the investigation and evaluation purpose, data is gathered from two sources; as a 

first step traffic behavior for both categories mentioned earlier, in this chapter, is 

observed. First source of datasets is OnLive [1] video gaming server which falls under 

the category of SSR. From the datasets resulting from server side rendering games, we 

observed regular video transmission data rates in the range of 22 – 29 Mbps and in some 

cases 33 Mbps for frame rates in the range of 45 to 60 fps in full HD or (1080p). This is 

considered high frame rate scenario. Second source was the datasets collected through 

network gaming and fall under the category of CSR i.e., client side rendering. Samples 

from these traces [1] are shown in Figure 19.  

SBA was tested for a maximum of U=400+ users. According to the collected datasets 

(see 3.2 for details of datasets), on average, every user receives 550 – 560 packets/sec, 

with an average packet size of 805 – 814 bytes. This gives a maximum rate of 3.5Mbps. 

IP and UDP header lengths (base lengths) combine to be 32 bytes. Again, for the purpose 

of analysis, a quad-core processor with frequency of 3.0 GHz provides service rate of 

12Gbps. 
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Figure 19: Video game reference traces (samples taken from larger datasets) 

4.2 Bandwidth allocation for PON 

Before discussing about bandwidth allocation for low-fan-out networks such as 

traditional PON, a short introduction about PON seems necessary. PONs or Ethernet 

PONs have shaped the way consumers access information over the internet by enabling 

high-speed data access at homes, offices and marketplace. A typical PON connects a 

server or a set of servers with the clients using a passive splitter as shown in Figure 20a. 

Optical Line Terminal (OLT) resides inside the server and Optical Network Unit (ONU) 

resides at the client end. Downstream is broadcast whereas in upstream, each ONU gets a 

time-slot to transmit on the shared channel. PONs use one dedicated wavelength for 

upstream communication and one other for downstream communication. Transmission 

from ONU to OLT is carefully timed so that each ONU gets a time-slot to transmit. 

ONUs communicate their requirements to the OLT and OLT grants their requests using 

pre-defined messages called primitives. Bandwidth allocation (BA) in a typical TDM 
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fashion (i.e., fair) wastes considerable amount of bandwidth because if a contending 

ONU does not have any data to transmit, the allocated time-slots go wasted.  

Various algorithms have been proposed to increase the bandwidth allocation 

efficiency in passive optical networks [46, 48-51]. Some focus has been shifted to 

bandwidth allocation in specialized networks such as long-reach PONs [50], allocation of 

resources in conventional PONs, 10Gbps PONs [48, 49, 51] and beyond, still remains a 

concern due to decreasing latency requirements. Access networks require larger 

bandwidth with users consuming huge bandwidth. This trend is increasing by the day. 

For networks that cater to a large number of active users, bandwidth allocation is even 

more critical and is discussed in section 4.3. 

This section presents a novel analytical model to gauge performance of ratio-counter 

based dynamic bandwidth allocation (RC-DBA), in conjunction with the broader scope of 

progressing towards performance analysis of bandwidth allocation for high-fan-out 

networks described in the next section. RC-DBA is based on EFDBA [52] and improves 

on utilization and residual queue length [46]. 

RC-DBA, that was proposed earlier, algorithm allocates bandwidth (in time) to ONUs 

that wants to transmit in a particular time slot. During a communication session, each 

ONU communicates to the OLT, its buffer size. Buffer size represents the amount of time 

(translated from number of bytes sent in the request) required by the ONU in the next 

cycle. Average waiting time is the time between consecutive transmissions for an ONU. 

Cycle time is the time slot within which, all requesting ONUs get to transmit. Generally, 

there is a guard time between two cycles which prevents frames overlap in transmission 

sequence. 
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Figure 20(a): An overview of RC-DBA ratio counter and allocation table 

 

 
Fig 20(b): Requests from the connected ONUs. Red line represents the amount of 

bytes than can be accommodated within the ensured window 

 

 

RC-DBA [46] divides a regular transmission cycle in two portions as shown in Figure 

21. First portion is the “Ensured Window” (EW) that is allocated statistically based on 

the number of ONUs irrespective of whether it has data in its buffer or not. Later on, the 

time slot for this ONU (if idle) may be allocated to another ONU which needs more time. 

Second portion or rest-of-the-window (ROTW) is allocated solely based on requirements. 
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Suppose each ONU is allocated 500µs in the EW as shown in Figure 20b by the red line. 

In the given scenario ONU-1 has data (in buffer) that requires 200µs of transmission time 

slot. RC-DBA, allocates 500µs to the ONU-1 and moves to the next ONU. ONU-2 has 

data that requires 600µs to be transmitted, it is allocated 500 microseconds in the EW and 

over-load flag is set. Over-load flag identifies need for more transmission time. ONU-3 

only has 100µs duration of data and is allocated 500 microseconds. This means that 

ONU-2 requires time in the ROTW. Similarly, all ONUs are allocated time slot in the 

EW. When EW is allocated completely, residual time is calculated. Residual time is the 

time-window that remains unused in the EW due to fewer requirements, such as in the 

case of ONU-1 and ONU-3. This way EW is squeezed and ROTW is broadened as 

illustrated in Figure 21 (bottom). ROTW can then be divided among ONUs that require 

more than what they were given in the EW. 

 

 

 
Figure 21: Cycle time distribution in RC-DBA. Pre-allocation state (top) and post-

allocation state (bottom) 
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Allocation of ROTW works using a ratio based counter. A counter keeps track of how 

much time is required by each ONU e.g., ONU-2 requires 100µs extra slot. ONUs 4, 5, 

and 6 require 300, 200, and 500µs in ROTW, respectively. Ratio counter sets 100µs as its 

unit allocation for this cycle and then allocates multiples of 100µs. Therefore, ONU-2 

gets one unit and other ONUs get 3, 2, and 5 units, respectively. Unit allocation may vary 

from cycle to cycle and is therefore adaptive. I has been shown earlier in separate work 

that this technique reduces residual queue length and ensures maximum channel 

utilization as shown in [46] and it was presented recently that the latency performance [7] 

of RC-DBA is better than other techniques. Next section discusses a more advanced way 

of allocation bandwidth. 

4.3 State-full Bandwidth Allocation (SBA) for High-fan-out Optical Networks  

Bandwidth allocation becomes far more involved when dealing with a large number 

of users. Along with added resource allocation challenges, there exists a dire need for 

enabling to offer services based on service level agreements (SLA). Some users may 

require more bandwidth than the others and this should be taken into consideration when 

allocating the resources. There is not much in the literature recently in terms of allocation 

in high-fan-out service oriented networks. Most of the related work is concentrated on 

passive optical networks that are discussed in the previous section. 

The proposed SBA allocation is an advanced form of allocation that is based on 

evolving states within the system. State-full allocation is therefore a novel idea for 

allocation resources in optical networks.  



55 

 

 

“State-full” refers to information gathered from previous states of the system where 

each cycle is considered to be a distinct state. Based on state information weights are 

assigned to users. However, weights can also be hard-coded for QoS assurance i.e., for 

the business class users/passengers or a high priority user sitting in economy class (in the 

context of IFE). Information from previous states is also used to predict of forecast 

upcoming requests from users. Since each user is assigned a weight, accordingly a weight 

or a priority code, accordingly a “weight table” (Table 3) is maintained. Assignment 

engine only takes information from weight tables in order to maintain data integrity in the 

system. Novelty in the technique lies in its state-full nature and ability to cater for high 

fan-out. Formally, as noted earlier the algorithm is referred to as State-full Bandwidth 

Allocation (SBA). 

Numerous techniques have been proposed and reported [46, 48-50, 53, 54] over time 

for allocation of bandwidth in optical networks; however, high-fan-out state-full 

bandwidth allocation has not been tried and is novel. In the previous section we explained 

RC-DBA and our latency analysis of RC-DBA is reported in [7] for conventional passive 

optical networks i.e., low fan-out. As noted earlier, “high-fan-out” refers to a large 

TABLE 3 

Weight Table - SBA 

         
Hard-

coded 

1        0 

2        1 

3        0 

…   

         0 

Weight table (SBA) after calculating       based on Eqn. (4). Table 
contains both assignment cases i) hard-coded and ii) dynamic. Table 

shows user 3 with a hard-coded weight and user 1 and 2 with dynamically 
assigned weights. 
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number of users connected to the system considering a distribution system as a “black 

box”. In later sections, analytical model for SBA is presented in order to incorporate 

bandwidths up to 100Gb/s from a single channel and support for high-fan-out. SBA 

focuses on single channel transmission systems, for now, that have been demonstrated to 

work at above mentioned data rates [55], however, with minimal changes it can be 

adopted to multi-channel systems as well. 

4.4 Experiments 

An analytical model was developed for SBA and latency analysis model was 

developed for both RC-DBA and SBA. In the following sub sections, parameters and 

configurations are defined and explained. Modeling is followed by residual time 

calculations and waiting time analysis in the later part of this chapter.  

4.4.1 Analytical Model 

This section describes analytical modeling of SBA. R represents incoming requests 

from users in consecutive cycles. 

     [{                      
} {                 

}  ], where   represents current 

allocation cycle, u is the current user and      is the request by a user in current cycle 

where,   | || and   | |. All requests are in the time domain.   | |  is the total 

number of cycles in the communication session. Total requests in current cycle are given 

by Eqn. (1) and the total requested time for an entire communication session is given by 

   ∑ ∑     
 
     

                is the maximum amount of time that may be allocated in first 

allocation to a user u i.e., allocation threshold. This allocation increases based on need for 

more requirement for a set of particular users in the secondary allocation. There are three 

possible scenarios: i)            ii)           and iii)           . Basis of this 
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allocation is the request from user informing the server about the amount of time it 

requires in the next cycle. Depending on the weight assigned to each user at the time of 

network initializing, a user will have more time allocated to it in      , however, this 

allocation is within the bounds               where       is the time allocated to user 

u in first allocation. The maximum cycle time    must not be exceeded therefore the limit 

holds, 

        ∑        

 

   
                    

     

where      represents first allocation to user u in the current cycle. Also, to avoid 

starvation we ensure minimum bandwidth (time-slots) to every user. This is represented 

by         and every user is entitled to this much allocation in every cycle. Table 4 lists all 

parameters (with definition and notation) used in this paper for a quick reference. 

A. Initialization of        ,    and Cycle set     

Minimum allocation,       , is determined based on the number of active users and 

weights set for each user. It is calculated during initialization and stays the same 

thereafter. Figure 22a shows a snapshot of a cycle. A user with low weight gets a smaller 

minimum time window compared to a high weight user (see Figure 22b). 

Similarly, a high priority/weight user gets to transmit for a larger amount of time in 

the current cycle (Figure 22c) compared to a low weight user (Figure 22e). All users get 

the same weight in the first cycle and system stabilizes after initial cycles. In a real world 

scenario, for instance on Airbus A-380 aircraft, 8 business class passenger may be 

assigned weight “1”, 80 first class passengers may be assigned weight “2” and rest of the 
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450 passengers may be assigned weight “3”. Assigning the same weight to each user 

initially tests the bandwidth allocation technique with maximum dynamic allocations. 

 

 

 

 

TABLE 4 

Parameters 

Symbol Quantity 

     Request by a user in current cycle (sec) 

  Current transmission cycle 

   Previous transmission cycle  

  Current user 

  Total number of users 

  Number of transmission cycles in a communication session 

   Total request for current cycle (all users) 

   Total request for entire communication 

      Maximum allocation in 1
st
 iteration for user u 

       Minimum allocation for weight group w in a cycle 

      Maximum allocation in 2
nd

 iteration for user u  

      Time allocated to a user in first allocation 

      Time allocated to a user in second allocation 

   Maximum cycle time 

   Guard time 

       User (#) with weight w 

   Weight assigned to user u 

  Data rate (100Gb/s) 

  Number of cycles in a cycle set 

   Unit-segment of time / unit of time for allocation in first 

and secondary allocation 
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Figure 22: Bandwidth allocation in SBA (a) Initial allocation based on weights (b) 

Secondary allocation (c) Secondary allocation for user 7 (d) Efficient single combined 

slot for user 7 (e) Secondary allocation for user 6. Initial allocation (left of bold vertical 

line) and secondary allocation (right of bold vertical line) 

 

Cycle time    is fixed for a cycle set. Optimal cycle time depends on data rate and the 

number of active users using the network. Latency increases with growing cycle time [7]. 

A “cycle set” as shown in Figure 23 is the group of cycles for which systems allocation 

parameters (i.e., weights) remain unchanged. Parameters such as weights are re-assigned 

after a cycle set is over; therefore it is called a dynamic cycle set. 
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Figure 23: A dynamic cycle set 

 

B. Initialization of first allocation         

In a fair system of allocation, each user carries the same weight. Fair systems of 

allocation are not very efficient when it comes to large number of users due to wastage of 

bandwidth and increased latency. Amount of wasted bandwidth can be reduced by 

assigning weights to users individually. A user with a higher weight gets a larger chunk 

of bandwidth. System assigns weights to users based on their past requests over the last 

cycle set. For assignment, we consider the following cases: 

i)              
                       : User has been requesting 

less than the threshold in the last N cycles. 

A critical parameter N, which represents the number of previous states we consider while 

making the assignment decisions for the current cycle  .  
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Figure 24(a): Flow chart for allocation in SBA 

 

ii)              
                       : User has been requesting more 

than the threshold in the last N cycles. 

iii)                                 : User has not requested anything 

in the last N cycles, at all. 

Since, decision for each user is taken individually; each user can be assigned a 

weight    , where           . From the next section onwards we will use        to 

represent a user with a weight  .                    must be maintained at all times to 
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avoid starvation.  Low weight users get to transmit in 

 

 

Figure 24(b): Flow chart: first and second allocation 

 

Since, decision for each user is taken individually; each user can be assigned a 

weight    , where           . From the next section onwards we will use        to 

represent a user with a weight  .                   must be maintained at all times to 

avoid starvation.  Low weight users get to transmit in the initial cycle if they have data to 

transmit. Weight can be assigned to a user based on the following two cases: i) hard 

coded ii) dynamic. User 1 with an assigned weight of 1 is represented as       , as 
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shown in Table 3, with a bit set to 1 if it is hard-coded. Hard-coded weights are not set or 

re-set dynamically. Weights can be dynamically calculated for each user as: 

 

   
 

 
∑        

 

    
        

    

   is calculated for all users in accordance with weight assignment case (ii) above.  

Hard-coded weights are set before dynamic weights are calculated. For first cycle all 

users, except hard-coded, are assigned equal weight. Therefore, 

 

      {

             
             
          

  

    

Weight table is shown above in Table 3. If a user requests more than threshold 

constantly in previous N cycles, it is allocated a higher priority for next N cycles (a cycle 

set, Figure 23). In this manner we can ensure that bandwidth is allocated according to 

requirements and also that it is not wasted. Flow chart of the algorithm is shown in Figure 

24a and 24b. Cycle sets with dynamically changing weights are shown in Figure 25, 

where dark bars represent changes within the consecutive cycles. These changes reflect 

the dynamic nature of weight assignment. 
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Figure 25: Changing cycle set 

 

We use Pareto distribution [56] that represents the distribution of requests from users 

in a cycle. Pareto distribution is characterized by a sharp initial rise for small duration and 

falling a long tail. It follows from the famous 80/20 rule of economics [57] and fits really 

well for internet traffic models. On the basis of analysis we determine,           

       , which is the probability that a user will request greater than its request in 

previous cycle. If it’s high, this probability means that user will be a contender in 

secondary allocation. Considering the number of requests received from users as Pareto 

distributed we can define the probability that a user will have request in the next 

cycle      , as given by Eqn. (4). 
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Since       is maximum allocation allowed in first allocation for user u, initialization 

can be formulated based on parameters given in (i) – (iii) above.               , 

where       is a unit-segment of the time that constitutes secondary allocation cycle. In 

the second allocation      , each user gets a time slot based on its weight.  

C. Allocating time in secondary allocation          

Initial cycle is compressed before allocating secondary cycle, such that        

    where     ∑      
 
    and     ∑      

 
   , 

therefore,       
   

                       
. If a user with high weight requires more time 

to transmit, it gets more time in secondary allocation whereas if a user with low weight 

requires more time, it has to wait for the next cycle if secondary allocation is complete. If 

secondary allocation is not complete and there is time to spare, a user with low priority 

will be accommodated in the interest of maximum utilization, as shown in Figure 24b. 

Also, if a user has not requested any bandwidth or has been requesting low bandwidth in 

the last N cycles, its weight reduces or remains unchanged. Slots can be distributed 

among contending users depending on weights and       as: 

  

               

    

 

D. Allocation Table / Assignment (SBA) 

Allocation table keeps track of incoming requests, weights, and maximum allowed 

time, allocated time in first allocation, granted time in second allocation and residual 



66 

 

time. For randomly generated requests arriving from users, assignment engine allocates 

the slots based on Figure 24a and 24b. Figure 26 shows a glimpse of simulated residual 

times (i.e., time taken forward to the next cycle due to lack of available time in current 

system) for SBA.  

 

 

Figure 26(a): Residual time after every cycle for 100 cycles for random users 
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Figure 26(b): Residual time after every cycle for 500 cycles for random users 

 

 
Figure 26(c): Residual time after every cycle for 500 cycles for 250 users 
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One can see that residual times remain in an acceptable range. Above shown results 

are for randomly selected users out of a total of 500 since pictorial representation of all 

users renders the plots unreadable as shown in Figure 26c. The results in Figure 26 are 

from simulations that ran for 100 cycles (a) and 500 (b) accumulating residual times 

along the way. We can see that residual time remained within the range. This is also the 

time during which system stabilizes. For a particular cycle, if a user requires less time 

(for new data) residual requests are serviced and therefore residual time at the end of the 

cycle decreases. This behavior is evident in Figure 26 (i.e., valleys). 

4.4.2 Latency Analysis 

This section presents latency analysis model of RC-DBA followed by that of SBA. 

Average waiting time for an ONU, between transmissions is calculated, for RC-DBA and 

compare it with EFDBA and statistical multiple access. For completeness, we compare 

Poisson as well as Pareto distributed arrivals. Equation (7) gives the delay incurred when 

request is fulfilled by EW. In this case, ROTW stays idle and bandwidth is wasted but 

since there is no data to be transmitted it cannot be allocated. We can however reduce the 

cycle time by half in case of low load and reduce the average waiting time by half. WHIGH 

is the average waiting time experienced by an ONU under high load. 

For the first scenario, average residual time before an ONU gets to transmit again can 

be expressed by Eqn. (6). T is cycle time which is kept at 2 msec. Theoretically, T can be 

any length i.e., T= [1ms, 2ms, 3ms,…], but length of cycle time affects waiting time in 

consecutive cycles for ONUs. Ensured and ROTW, initially, are equal to half the cycle 

time i.e., T/2 each. N is number of ONUs connected to the OLT and n is the number of 
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computers or devices connected to the ONU such that N=[1,2,3,….N] and n=[1,2,3,….n]. 

EW is compressed, but not expanded, after the initial fair allocation. Compression in EW 

results from smaller requirements from ONUs. This spare time is allocated to highly 

loaded ONUs in the ROTW. Since average waiting time is the same for each ONU in the 

first scenario, i and j (current ONU and device number respectively) are irrelevant. TG is 

the guard time kept at 2µs. Standard EPON data rate of 1.25Gbps has been used for all 

calculations. 

 

    

Waiting time can be calculated from [58] for the first scenario as shown in Eqn. (7) 

below. 

 

    

Where α is a positive parameter larger than 1 and xm is the minimum value of arrival. We 

vary arrival rate to see the effect on waiting time. Mean values of Poisson and Pareto 

distribution have been used for the purpose of this analysis. Pareto distribution maps 

network (predominantly TCP) traffic pretty accurately. It is a long tailed distribution with 

small number of occurrences of large magnitude and a large number of occurrences of 

smaller magnitude. This behavior is consistent with network traffic and can be observed 

easily [24]. 
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In the second scenario, ONUs have more data and therefore require ROTW. High 

load situation requires a more complex analysis since any ONU can request a slot in 

ROTW, randomly. This essentially means that there is a high probability that an ONU 

will have more data to transmit than allocated in EW. Average waiting time for such a 

scenario is given by Eqn. (8). Increase in incoming traffic causes the ROTW to be 

utilized efficiently, unlike in the low load situation where it goes largely wasted. The 

result of this is reduction in residual queue lengths. Average waiting time also reduces 

significantly since an ONU can have allocation in both ensured and ROTW of the same 

cycle depending on its initial request. A maximum of      may be allocated to an ONU 

in the EW. 

 

    

Compared with EFDBA, RC-DBA shows smaller waiting times. Major reason for 

this behavior is the fact that ROTW is not allocated fairly, instead, only the ONUs that 

require data to be transmitted are allocated time and those that do not require even the 

EW slot are not given the whole slot. Eqn. (9) gives the average waiting time for 

EFDBA. This has been determined for the purpose of comparison. 
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Ratio counter is a table (as shown in Table 5) enlisting the status of ONUs in terms to 

their requirement for a time slot in ROTW. Towards the end of for allocation cycle, the 

algorithm calculates all the remaining requests that still need to be fulfilled. The smallest 

such request is called a unit. Multiples of this unit is then allocated in ROTW. As shown 

in Table 3, ONU 1 needs a single unit whereas ONU 2 needs three units. ONU 3 does not 

need any further allocation in this cycle. 

 

TABLE 5 

RC-DBA 

ONU Request Flag Remaining Units Residual 

1 500 0 0 - 0 

2 600 1 100 1 0 

3 100 0 0 - 0 

4 800 1 300 3 0 

5 700 1 200 2 0 

6 1000 1 500 5 0 

…      

N 450 0 0 - 0 

 

 

An ONU that does not require a time slot in ROTW is not flagged. Only Flagged 

ONUs get unit allocation in ROTW. Any data that remains to be transmitted after each 

cycle is passed on to the next cycle for scheduling. Table 5 shows no residual data from 
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this cycle to the next. 100 microseconds is the minimum request (remaining) for this 

cycle. 

We can treat the ratio-counter as an array of random variables where each item in the 

array represents an ONU. These requirements are fulfilled as multiples of unit allocation 

that is calculated in every cycle and may change in every cycle. Also, there may be more 

units allocated in ROTW than the time remaining therefore all that can be transmitted is 

transmitted in the current cycle and residual requirement (if any) from all ONUs is 

forwarded to the next cycle and is added to the new requirement in that cycle. 

For SBA however the system is modeled in a slightly different manner since weights 

and statistically calculated parameters are involved. Residual times are calculated and 

based on those, average waiting times are determined for users. Since average waiting 

time is the same for all users individual times need not be calculated for close 

approximation. 

              is a set containing the number of users with respective weights. 

   ∑       
   
     ∑        

 
    as shown in Figure 27. Slot length is equal to packet 

length and we neglect propagation delay due to negligible distances. 

 
Figure 27: Residual time calculation (i.e., for user number 3) 
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      {
               

                  
    

     

 

Residual time can be calculated as                            and 

residual time for user u when it does not qualify for a slot in secondary allocation is then, 

 

   ∑      

   

   

 ∑      

 

     

        

     

Similarly, when user u gets a slot to transmit in secondary allocation based on Eqn. (10), 

it faces a different wait time until the next cycle since transmission time in the current 

cycle increases. Also, if a user gets time in secondary allocation, it is allocated the total 

time together in one slot in order to reduce management complications as shown in 

Figure 22d. In this case residual time is given by, 

 

   ∑      

   

   

 ∑      

 

     

              

     

where,   is the current user and total allocation to a user in next cycle is            . 

 

From Eqn. (11), for waiting time, we get, 
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   ]
 

     

and from Eqn. (12), for waiting time, we get, 

 

  
∑      

   
    ∑      

 
                  

 [
           

   
]

 

     

Equations (13) and (14) are special cases of the average latency incurred by a user during 

and between cycles and can be derived from Figure 27. 

4.4.3 Results 

As mentioned earlier, cycle time of 2 ms has been set for RC-DBA and cycle time 

changes for SBA. Cycle time must not be too large or too small. For a large cycle time, 

average system waiting time increases and for small cycle times much of the time is spent 

in managing cycles compared to transmitting data which increases overhead. Also, if 

transmission window allotted to a particular ONU is less than the time it needs to 

transmit a packet completely, the packet will need fragmentation that would require 

processing as well as overhead transmission of fragmented headers. Figure 28 shows that 

waiting time increases exponentially as the cycle time increases beyond a threshold. This 

behavior is relatively consistent when we use larger number of ONUs. Figure 29 shows 

increase in delay as number of ONUs connected to OLT increases. This is consistent with 

the characteristic waiting time curve for TDMA systems.  This is obvious since each 
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ONU is pushed back in time for next transmission due to time allocated to an added 

ONU. 

 

Figure 28: Waiting time increases with larger cycle time (T) 

 

 

Figure 29: Waiting time increases with increase in arrival rate at ONUs 

 

Compared with existing low-fan-out BA algorithms, RC-DBA performs better in 

many aspects as shown in figures below. Latency incurred by using RC-DBA is much 

less than that of statistical and much better than EFDBA. Figure 30a gives a comparison 
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between EFDBA and RC-DBA. It can be seen clearly that RC-DBA out performs 

EFDBA in latency performance at least by three orders of magnitude. This is significant 

improvement and delay being reduced to microseconds means a packet can be 

transmitted in every transmission cycle although very small. 

For completion and reference, statistical allocation incurs huge delays, as shown in 

Figure 30b, when the number of connected ONUs is large. Since allocation is fair there is 

not much that can be done to improve.  

 

Figure 30(a): Waiting time vs Arrival rate for Poisson arrivals 

 

Figure 30(b): Waiting time vs Arrival rate for Poisson based arrivals (TDMA) 
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The trade-off is between the number of ONUs that can connected for a particular 

scenario and acceptable delay. For a large number of connected ONUs delay tolerances 

would have to be relaxed and for strict delay considerations, number of ONUs must be 

very less. 

Following figures show the same models with Pareto distributed arrivals. Figures 31 

(a), (b) and (c) show the results based on            ,          , and   

          . It can be seen that as the offered load increases the waiting time increases 

and after a cetrain threshold the waiting time increases exponentially. This point defines 

the limit of maximum load that can be supported by the network with a certain number of 

ONUs. 

 

 

Figure 31(a): Waiting time vs Offered load for (N=64) Pareto arrivals (RC-DBA) 

 

With a decrease in the number of connected ONUs, more traffic load can be afforded 

in the network.  
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Figure 31(b): Waiting time vs Offered load for (N=32) Pareto arrivals (RC-DBA) 

 

RC-DBA sustains its better performance by keeping the waiting times low. 

 

 

Figure 31(c): Waiting time vs Offered load for (N=16) Pareto arrivals (RC-DBA) 

 

Similarly, in terms of scalability, we can see that delays tend to increase rapidly with 

as number of ONUs increase. This exponential behavior is prominent in Figures 31(a – 

c). Since, this is a TDM based solution; there is a direct dependence of average system 

delay on number of contending users. For SBA, based on the analytical results achieved 

in previous section (i.e., Eqns. 11 – 14) we show that in terms of latency performance 
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SBA performs better than the typical requirements of high performance gaming systems. 

SBA achieves these results for a fan-out of 400+ simultaneous users according to 

requirements mentioned in chapter 1. Figure 32 shows a comparative view of residual 

time and waiting time as number of active user’s increases.  

 

Figure 32: Comparison of waiting time and residual time 

 

For a typical online video gaming system such as OnLive, latency of around 150ms to 

200ms [59] can be observed and SBA achieves around 30ms for a cycle time of 0.6ms for 

450 users. Similarly, with a relatively smaller cycle time of 0.4ms, SBA achieves 20ms 

which is still under the acceptable range for OnLive. Since waiting time is a function of 

average residual times for each user it can be seen in Figure 32 that residual times also 

show similar behavior. 
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Figure 33: Waiting time increases with increase in number of active users. Various slot 

times and corresponding cycle times are plotted for a better view of system latency 

 

We realize that with an increase in frame rate from 30fps to 60fps latency increases 

further but that is to be expected in such a system. With a decrease in number of active 

users latency increases and can compensate for high frame rate games. Figure 33 shows 

increase in waiting times with an increase in number of users and as the system reaches 

around 500 users.  

First allocation is where each user gets to transmit regardless of its weight although a 

user with high weight gets a larger chunk of time. Figure 34 shows waiting time 

dependence on increasing number of users and increase in arrival rate. With an increase 

in arrival rate the system tries to expand to accommodate the increased traffic. As a  
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Figure 34: First allocation time dependence on number of users and associated waiting 

time. Note that this only shows the first phase in bandwidth allocation which is done by 

allocating based on user weightage 

 

result, latency increases. Moreover, with an increase in cycle time, waiting time also 

increases and this can be seen in Figure 18, for a range for cycle time values. 

 

 
Figure 35: Waiting time increases with increase in cycle time         

 

Presented results clearly show that SBA performs better than existing systems for 

similar kind of traffic. Also, SBA is novel because it caters for a high-fan-out. 

4.5 Discussion 

In this chapter we proposed analytical models for latency analysis of RC-DBA and a 

novel allocation, SBA. Both allocation schemes target different types of networks. While 
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RC-DBA deals with low-fan-out conventional PONs, SBA allocates resources in high-

performance; high-fan-out networks that require SLA based allocation. These schemes 

are best suited for their respective domains as shown by the results. Performance of SBA 

can be termed as better than the current day requirements for in-flight video gaming 

systems, therefore according to the requirements set in chapter 1, SBA is suitable for in-

flight implementation. Both RC-DBA and SBA eliminate starvation from the network, in 

that; each user gets to transmit a minimum time irrespective of SLA. SBA shows better 

performance in most cases where latency is less than the typical. This helps in increased 

frame rates for high performance games and also enhances quality of game play 

experience for regular games of up to 30fps. Latency is less for CSR based systems when 

compared with SSR based systems although over systems’ latency performance is 

deemed acceptable for lag free gameplay.  

The modular nature of SBA gives administrators more leverage, in that; it can also be 

used with multi-carrier OFDM systems discussed in chapter 2 hence making SBA a 

useful techniques for multiple architectures. Minimal changes are required for this 

transition. Instead of single channel, multiple sub-carriers can be treated, each as a single 

channel. Results presented in this chapter are encouraging since they can be used to 

unlock further potential in the domain of high-fan-out resource allocation in future works. 



 

 

 

CHAPTER 5: DISCUSSIONS 

This chapter concludes the dissertation project report by summarizing the project 

description, methodology, approach and the results. Each chapter presents the results 

achieved during the various phases of the investigations. Future work has also been 

identified in the later part of the chapter. 

5.1 Concluding remarks 

The first phase of the project dealt with the development and verification of a novel 

high-fan-out short-range optical network which is based on the passive optical networks 

(PON) architecture on the physical layer. The network layer architecture acts as the 

backbone for high-fan-out applications discussed in this dissertation and in section 5.2. 

PONs have now been well established in various renditions over the past decade. We 

considered the TDM-PON for adaption to enable an in-flight entertainment (IFE) system. 

In the second phase and at the transport layer a novel real-time video game stream 

(RVGS) protocol was presented that is sensitive to the video game streams (both CSR 

and SSR) unlike any other protocol today. In the third phase of the project a novel 

bandwidth allocation algorithm (SBA) is presented that is state-full in nature. It allocates 

bandwidth based on the previous states of the system and it is shown that latency 

performance of SBA is in accordance and in fact better than those of existing online 

video game systems.  
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In the contemporary world IFE systems play an important role in enhancing 

passenger experience. IFE has grown to be a huge industry and companies such as 

Panasonic and Thales as major shareholders. IFE systems are constrained in their ability 

to perform, due to inadequate support infrastructure. Entertainment industry and 

especially the video game industry have evolved rapidly over the years but the IFE 

systems have remained slow, perhaps due to an evidently focused market. In this project 

we endeavored to design and test/simulate both the physical layer and the network layer 

architecture with the help of real-life data. 

The project was initiated by identifying the requirements for the networks in 

constrained environments. At the physical layer level, network architecture has been 

proposed and investigated that can support high-fan-out applications with high-capacity. 

The physical layer infrastructure formed the basis and helped develop upper layer models 

for optimizing full system performance. The designed and demonstrated architecture is 

best suited for high-capacity bandwidth hungry applications such as in-flight video 

gaming systems. It is able to provide approximately 200Mb/s to each user with BER kept 

under the threshold with forward error correction (FEC). It is understood that this 

bandwidth is much more than the current requirement as evidenced in chapter 3, however 

keeping in mind the future requirements and the fact that airliners have a life span of few 

decades, a future proof system was one of the requirements. 

Latency models for ratio-counter based dynamic bandwidth allocation (RC-DBA) and 

analytical and latency model for state-full bandwidth allocation (SBA) technique have 

been proposed and investigated. Both of the above mentioned allocation techniques target 

different types of networks. The distinction is drawn based on the number of users each 
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of the networks can serve. RC-DBA allocates bandwidth in conventional low-fan-out 

optical networks i.e., passive optical networks, whereas SBA is a state-full bandwidth 

allocation technique that is investigated for allocation of bandwidth in high-fan-out 

networks. SBA is able to allocate based on priority that can be hard-coded by the system 

administrator. Otherwise, the priority is set by the system on run time based on demands 

made by a particular user. In either case, it is ensured that none of the users is starved for 

bandwidth.  

Results show that SBA performs well in terms of latency performance for both client 

side rendering (CSR) and server side rendering (SSR) based video games. It was shown 

that approximately 30ms of inter-cycle transmission delay would be incurred by a user on 

average which is believed to be within the tolerances of around 300ms for online video 

games. SBA can support the full load of users for upstream transmission as well as 

downstream transmission which is broadcast. The support extends for games with frame 

rates in excess of 40fps. Not only in single channel systems, SBA can be used in multiple 

channel systems such as the QAM OFDM based architecture presented in chapter 2. This 

shows the flexibility in the technique and adaptability to multiple physical layer 

scenarios. 

5.2 Future work 

As mentioned in Chapter 1, there are many applications that can benefit from the 

work reported in this dissertation. High-fan-out high-capacity systems have many 

applications besides the IFE. There exist other constrained environments that pose unique 

challenges in terms of system design and resource allocation. There are a multitude of 

applications that can benefit from the physical layer architecture and bandwidth 
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allocation techniques demonstrated in this dissertation and those investigations can be 

done in the future. Thus the proposed system can be optimized for other scenarios based 

on unique traffic models and physical layer constraints. Some of these applications are 

pictorially represented in Figure 36 and described below: 

1. Train Area Networks (TAN): Trains are becoming increasingly advanced not only 

in their speed but also in the technology presence on-board. Similar to the in-flight 

entertainment scenario, train area networks can utilize high-fan-out networks for 

affording a large number of passengers with large bandwidth. 

2. Video gaming competitions (direct application): Perhaps the most direct 

application of our work is in video gaming competitions. Although, video gaming 

competitions do not have energy constraints, number of players is large and latency 

requirements are similar for state-of-the-art video games. 

3. Secure networks such that of security agencies that require high-capacity and 

security: Government agencies such as NASA have a requirement of high-fan-out high-

capacity networks due to the nature of their work. Traffic is generated, among other 

things by high resolution images that are constantly transmitted between terminals. Due 

to the time critical nature of the job, low latency high-capacity optical network, such as 

the one proposed in this dissertation, will be able to fulfill the requirements of such a 

demanding environment. 

4. Scientific expositions: Expositions take place all the time and mostly have a large 

number of participants. A large percentage of the participants are from the industry and 

academia that showcase the advancements in science and technology. High-speed 

connectivity among terminals at the expos and with the back end functions is an essential 
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part of a successful demonstration. A high-speed networks with support for a large 

number of users is most suitable for such a scenario. 

 

Figure 36: Applications of high-capacity high-fan-out optical networks 

Scenarios mentioned above are just a few of the many that can be enabled with the help 

of high-speed networks that are tailored to be service oriented. New services are 

emerging at a high rate and service oriented networks are going to define the efficiency 

and productivity in the future or optical networking. 
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APPENDIX A: RC-DBA CODE 

#include <iostream> 

#include <math.h> 

#include <fstream> 

#include "rngs.h" 

#include "rngs.c" 

 

#define N 8 

#define datarate 1E+09 

#define PI 3.147 

 

using namespace std; 

 

int populateRequests(int []); 

float generatePoisson(); 

void printList(int []); 

void printList(double []); 

int convertBytesToTime(int [], double []); 

int convertTimeToBytes(double [], int []); 

int calResidualTimes(double [],double [],double,int []); 

double compressEnsuredWindow(double [],int [],double); 

double findMinRequest(double [],int []); 

int calUnitsAllocated(int [],double [],double,int [],int); 

int allocateRestWindow(int [],double [],int [],double); 

int calResidualTimeForNextSlot(int [],double [],double [],double,double []); 

int printChart(int [],int [],int [],int [],int []); 

 

int main (int argc, char *argv[]) 

{  

    int slot=1, unitsAllowedInRest; 

    int ratioCounter[N], reqBytes[N],unitsAllocated[N], residualBytesForNextSlot[N], 

restWindowAllocated_Bytes[N]; 

    double reqTime[N], residualTime[N], restWindowAllocated[N], 

residualTimeForNextSlot[N]; 

    double T=0.002,T_G=0.000001,oneSlot,compressedWindowSize,minOverReq; 

    char quit; 

     

    oneSlot=(T/2)/N; 

    for (int K=0;K<N;K++) ratioCounter[K]=0; 

    for (int K=0;K<N;K++) unitsAllocated[K]=0; 

    populateRequests(reqBytes);     //populate the request list 

    //printList(reqBytes);          //print the passed list 

    convertBytesToTime(reqBytes,reqTime);     //printList(reqTime); 

    calResidualTimes(reqTime,residualTime,oneSlot,ratioCounter);   //Ensured window - 

requested time 

    //printList(residualTime); 

    //printList(ratioCounter); 

    compressedWindowSize=compressEnsuredWindow(reqTime,ratioCounter,oneSlot); 

    cout<<endl<<"TOTAL="<<T<<" Ensured="<<compressedWindowSize<<" Rest="<<T-

compressedWindowSize<<endl; 

    minOverReq=findMinRequest(residualTime,ratioCounter); 

     

    unitsAllowedInRest = (T-compressedWindowSize)/minOverReq; 

     

    cout<<endl<<"MINIMUM REQUEST: "<<minOverReq<<endl; 

    calUnitsAllocated(unitsAllocated,residualTime,minOverReq,ratioCounter, 

unitsAllowedInRest);   

    //printList(unitsAllocated); 

    allocateRestWindow(ratioCounter,restWindowAllocated,unitsAllocated,minOverReq); 

    convertTimeToBytes(restWindowAllocated,restWindowAllocated_Bytes); 

    //printList(restWindowAllocated); 

    

calResidualTimeForNextSlot(ratioCounter,residualTimeForNextSlot,reqTime,oneSlot,restWindo

wAllocated); 

    //printList(residualTimeForNextSlot); 

    convertTimeToBytes(residualTimeForNextSlot,residualBytesForNextSlot); 

    //printList(residualBytesForNextSlot); 
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printChart(reqBytes,ratioCounter,unitsAllocated,restWindowAllocated_Bytes,residualBytesFo

rNextSlot); 

     

    //convertTimeToBytes() 

     quit = '\0'; 

    while (quit != 'q') 

    { 

        cout << "Press q to quit " << endl; 

        cin >> quit; 

    } 

    return 0; 

} 

int populateRequests(int reqBytes[]) 

{ 

     

   for (int i=0; i<N; i++) 

        { 

        reqBytes[i]= generatePoisson(); 

        } 

     

     

    reqBytes[0]=100000; 

        

    return 1; 

} 

 

float generatePoisson() 

{ 

 

    float lambda = 10,u,x,n,v,y,lhs,rhs; 

    float c = 0.767 - 3.36/lambda; 

    float beta = PI/sqrt(3.0*lambda); 

    float alpha = beta*lambda; 

    float k = log(c) - lambda - log(beta); 

 

    while(1) 

    { 

     u = rand(); 

     x = (alpha - log((1.0 - u)/u))/beta; 

     n = floor(x + 0.5); 

     if (n < 0) 

      { 

         v = rand(); 

         y = alpha - beta*x; 

         lhs = y + log(v/(1.0 + exp(y))^2); 

         rhs = k + n*log(lambda) - lgamma(n+1); //log(n!) 

         if (lhs <= rhs) 

          return n; 

          } 

      } 

       

} 

 

void printList(int inputList[]) 

{ 

     for (int i=0; i<N; i++) 

        { 

        cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl; 

        } 

      

} 

void printList(double inputList[]) 

{ 

     for (int i=0; i<N; i++) 

        { 

        cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl; 

        } 

      

} 
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int convertBytesToTime(int Bytes[], double Time[]) 

{ 

    for (int i=0; i<N; i++) 

        { 

        Time[i]=Bytes[i]/datarate; 

        } 

    return 1; 

} 

 

int convertTimeToBytes(double Time[], int Bytes[]) 

{ 

    for (int i=0; i<N; i++) 

        { 

        Bytes[i]=Time[i]*datarate; 

        } 

    return 1; 

} 

 

int calResidualTimes(double Request[],double Residual[],double oneSlotTime,int Counter[]) 

{ 

    for (int i=0; i<N; i++) 

        { 

        Residual[i]=oneSlotTime-Request[i]; 

           if (Residual[i] < 0) Counter[i]=1; else Counter[i]=0;               //set 

ratio counter here as well 

        } 

    return 1; 

        

} 

 

double compressEnsuredWindow(double Request[], int Counter[],double oneSlotSize) 

{ 

double size=0; 

    for (int i=0; i<N; i++) 

        { 

         if (Counter[i]==0) size+=Request[i]; 

         else if (Counter[i]==1) size+=oneSlotSize; 

        } 

    return size;    

} 

 

double findMinRequest(double Residual[],int Counter[]) 

{ 

double minReq=999999; 

    for (int i=0;i<N;i++) 

        { 

        if ((Counter[i]==1) && (Residual[i]*-1 < minReq)) minReq = Residual[i]*-1;       

        } 

    return minReq; 

} 

 

int calUnitsAllocated(int Units[],double Residual[],double minReq, int Counter[],  int 

maxUnitsAllowed) 

{ 

int k=0; 

while (k<maxUnitsAllowed) 

      { 

      for(int i=0;i<N;i++) 

         { 

         if(Counter[i]==1) 

            { 

            Units[i]=Units[i]+1; 

            k++; 

            if (Units[i] == Residual[i]*-1/ minReq) Counter[i]=0; 

            } 

         else 

             Units[i]=0;        

               

         } 
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      } 

                          

/* 

     

   for (int i=0;i<N;i++) 

        { 

        if (Counter[i]==1)  

           Units[i]=Residual[i]*-1/ minReq; 

        else  

           Units[i]=0; 

        } 

*/ 

   return 1; 

} 

 

int allocateRestWindow(int Counter[],double restAllocated[],int Units[],double minReq) 

{ 

    for (int i=0;i<N;i++) 

        { 

        if (Counter[i]==1)  

           restAllocated[i] = Units[i] * minReq; 

        else  

           restAllocated[i]=0; 

        } 

   return 1; 

} 

 

int calResidualTimeForNextSlot(int Counter[],double residualTimeNextSlot[],double 

reqTime[],double slotSize, double restAllocated[]) 

{ 

    for (int i=0;i<N;i++) 

        { 

        if (Counter[i]==1) residualTimeNextSlot[i]=reqTime[i]-slotSize-restAllocated[i]; 

        else residualTimeNextSlot[i]=0; 

        } 

   return 1; 

} 

 

int printChart(int requestedBytes[],int Counter[],int Units[],int 

restAllocated_Bytes[],int residualBytes[]) 

{ 

cout<<"Request\t\t"<<"Counter\t"<<"Units\t"<<"Rest\t"<<"Residual"<<endl; 

 

    for(int i=0;i<N;i++) 

       { 

       

cout<<requestedBytes[i]<<"\t\t"<<Counter[i]<<"\t"<<Units[i]<<"\t"<<restAllocated_Bytes[i]

<<"\t"<<residualBytes[i]<<endl; 

       } 

    return 1; 

} 
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APPENDIX B: RC-DBA & EFDBA WAITING TIMES CODE 

#include <iostream> 

#include <math.h> 

#include <fstream> 

 

using namespace std; 

 

int main (int argc, char *argv[]) 

{  

    int N=16,n=1,i,j,lambda=557, alpha=2,x_m=1; 

    double T=0.002,T_G=0.000001,L_S,W,R,Row=0.1,E_Pareto; 

    L_S = T/(2*N); 

    char quit; 

    //open file for writing 

    ofstream myfile; 

    myfile.open ("Waiting_Time_High.txt"); 

     

    

//for(double T=0.001; T<0.005; T=T+0.001) 

//        { 

 //        cout << endl << "t=" << T << endl; 

 //        myfile << endl << "t=" << T << endl; 

//         for(int lambda=1;lambda<50;lambda++) 

for (x_m=1;x_m<10;x_m++) 

    { 

         for(float alpha=1.0;alpha<2.0;alpha=alpha+0.01) 

 

         //while (Row < 0.9) 

                 { 

                 E_Pareto=(alpha * x_m)/(alpha-1);                 

                 R=T*((3/4)-(1/(N*n)))+T_G; 

//                 W=R/(1-(n*lambda*N*T)); 

                 W=R/(1-(n*E_Pareto*N*T)); 

 

//                 cout << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W << 

endl; 

                 cout << "x_m="<<x_m<<", N=" << N <<", n="<< n <<", alpha="<< alpha <<", 

E_Pareto="<< E_Pareto<<", W="<< W << endl; 

 

                 myfile << "x_m="<<x_m<<", N=" << N <<", n="<< n <<", alpha="<< alpha<<", 

E_Pareto="<< E_Pareto <<", W="<< W << endl; 

                 Row=Row+.1; 

                 W=0.0;R=0.0; 

                 //N=N+1; 

                 } 

      } 

//         } 

//} 

    quit = '\0'; 

    while (quit != 'q') 

    { 

        cout << "Press q to quit " << endl; 

        cin >> quit; 

    } 

    myfile.close(); 

    return 0; 

} 
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#include <iostream> 

#include <math.h> 

#include <fstream> 

 

using namespace std; 

 

int main (int argc, char *argv[]) 

{  

    int N=64,n=1,i,j,lambda=557,pkt_len=30*8; 

    double T=0.002,T_G=0.000001,L_S,W,R,Row=0.1,data_rate=1E09; 

    L_S = T/(2*N); 

    char quit; 

    //open file for writing 

    ofstream myfile; 

    myfile.open ("Waiting_Time_EFDBA.txt"); 

for(int N=8; N<65; N=N*2) 

{ 

       cout << endl << "N=" << N << endl; 

       myfile << endl << "=,=,=,=W;N=" << N <<" (EFDBA)"<< endl; 

         for(int lambda=1;lambda<50;lambda++) 

         //while (Row < 0.9) 

                 { 

                                  

                 R= (T*((2*n*(3*N - 2) - 1)/(4*N*n))+T_G); 

                 W=R/(2*(1-(n*((lambda*pkt_len)/data_rate)*N*T))); 

                 cout << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W << 

endl; 

                 myfile << "N=" << N <<", n="<< n <<", lambda="<< lambda <<", W="<< W << 

endl; 

                 Row=Row+.1; 

                 W=0.0;R=0.0; 

                 //N=N+1; 

                 } 

//         } 

}    

    quit = '\0'; 

    while (quit != 'q') 

    { 

        cout << "Press q to quit " << endl; 

        cin >> quit; 

    } 

    myfile.close(); 

    return 0; 

} 
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APPENDIX C: SBA CODE 

#include <iostream> 

#include <math.h> 

#include <fstream> 

#include <conio.h> 

 

#define N 500 

#define C 100 //number of cycles 

#define datarate 100E+09 

#define pkt_len 805 

#define T_G 200E-09 

#define cycleSet 10 

#define AT_2ND 12 //allocation table 2nd index value 

 

using namespace std; 

int populateRequests(int []); //incoming requests 

int populateWeightTable(int [][2]); //assign weights 

void printList(int []); 

void printList(int [][2]); 

void printList(double []); 

void printList(double [][AT_2ND]); 

void printResidual(double [][C]); 

int convertBytesToTime(int [], double []); 

//int convertTimeToBytes(double [], int []); 

int populateAllocTable(double [][AT_2ND],int,double []); 

int assignFA(double [][AT_2ND], int [][2], int, double, double, double [],double 

[][C],int); //alloc_table,weight_table,units,slot_time,cycle_time,req_time,residual_time 

int printInFile(double [][AT_2ND]); 

int assignSA(double [][AT_2ND], int [][2], int, double, double, double [],double 

[][C],int); 

//alloc_table,weight_table,units,slot_time,cycle_time,req_time,residual_time,cycle 

int printResidualInFile(double [][C]); 

 

int main (int argc, char *argv[]) 

{  

    int units,cycle=0; 

    int weightTable[N][2]; //(#,w) 

    double 

allocTable[N][AT_2ND];//(#,A?,w,cycle,req_current,max_current,min_current,allocated_curre

nt,SAbit?,residual,allocated_SA,left_bytes_for_next_cycle 

    int reqBytes[N]; 

    double reqTime[N],residualTime[N][C]; 

    //int ratioCounter[N], unitsAllocated[N], residualBytesForNextSlot[N], 

restWindowAllocated_Bytes[N]; 

    //double residualTime[N], restWindowAllocated[N], residualTimeForNextSlot[N]; 

    double T,slotTime;//,compressedWindowSize,minOverReq; 

    char quit; 

     

    //open file for writing 

    ofstream myfile; 

    myfile.open ("S-BA.txt"); 

     

    populateWeightTable(weightTable); // assign weights 

    //printList(weightTable); 

     

    //INITIALIZE ALLOCATION TABLE 

    for(int i=0;i<N;i++) for(int j=0;j<AT_2ND;j++) allocTable[i][j]=0; 

    //INITIALIZE RESIDUAL TIME 

    for(int i=0;i<N;i++) for(int j=0;j<C;j++) residualTime[i][j]=0; 

 

 

for(int c=0; c<C; c++) 

{ 

                 

    //CALCULATE SLOT-TIME 

    slotTime=((pkt_len*8)/datarate) + T_G; //slot time equal to time it takes to transmit 

one packet 

    //calculate T_C (Cycle Time) 

    units=0; 
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    for(int i=0;i<N;i++) units += weightTable[i][1]; 

    T=(slotTime * units); 

    T += T/2; 

    //cout<<T;getch(); 

    //CALCULATE SLOT-TIME (END) 

    populateRequests(reqBytes); 

    convertBytesToTime(reqBytes,reqTime);  

     

    for(int i=0; i<N; i++)  

       { 

       allocTable[i][4]=allocTable[i][4]+allocTable[i][11]; 

       allocTable[i][11]=0.0; 

       } 

     

    //ASSIGN First Allocation 

    assignFA(allocTable,weightTable,units,slotTime,T,reqTime,residualTime,cycle); 

    assignSA(allocTable,weightTable,units,slotTime,T,reqTime,residualTime,cycle); 

    //printList(allocTable); 

    printInFile(allocTable); 

    cycle++;     //increment cycle 

cout<<"Cycle: "<<c<<endl; 

     

} 

    //printResidual(residualTime); 

    printResidualInFile(residualTime); 

    

    quit = '\0'; 

    while (quit != 'q') 

    { 

        cout << "Press q to quit " << endl; 

        cin >> quit; 

    } 

    return 0; 

} 

 

 

int populateRequests(int reqBytes[]) 

{ 

    int alpha=2; 

    //INITIALIZE & POPULATE  

    for(int j=0;j<N;j++) reqBytes[j]=0; 

     for(int j=0;j<N;j++)  

        { 

        reqBytes[j]=((alpha*(gen())/(alpha-1)); //scaled request space Pareto         

        }     

     

    return 1; 

} 

 

int populateWeightTable(int weight_table[][2]) 

{ 

     //INITIALIZE & POPULATE  

    for(int i=0;i<N;i++) for(int j=0;j<2;j++) weight_table[i][j]=0; 

     for(int j=0;j<N;j++)  

    { 

        weight_table[j][0]=j; 

        weight_table[j][1]=rand() % 3 + 1; 

         

    }   

     

    return 1; 

} 

 

void printList(int inputList[]) 

{ 

     for (int i=0; i<N; i++) 

        { 

        cout<<"ONU-"<<i<<"-->"<<inputList[i]<<endl; 

        } 

      

} 
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void printList(int inputList[][2]) 

{ 

     for (int i=0; i<N; i++) 

        { 

        cout<<"ONU-"<<i<<"-->"<<inputList[i][1]<<endl; 

        } 

      

} 

void printList(double inputList[]) 

{ 

     for (int i=0; i<N; i++) 

        { 

        cout<<endl<<"ONU-"<<i<<"-->"<<inputList[i]<<endl; 

        } 

      

} 

 

void printList(double inputList[][AT_2ND]) 

{               

               

//(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,residual,all

ocated_SA,left_bytes_for_next_cycle 

     

cout<<endl<<"#\tA?\tw\tcycle\treq_current\tmax_current\tmin_current\talocated_current\tSA

bit?\tresidual\tallocated_SA\tbytes_carry"<<endl; 

     for (int i=0; i<N; i++) 

        { 

        cout<<endl; 

        for (int j=0; j<AT_2ND; j++) 

            { 

            cout<<inputList[i][j]<<"\t"; 

            } 

         } 

} 

 

void printResidual(double inputList[][C]) 

{ 

     cout<<endl<<"0\t1\t2\t3\t4\t5\t6\t7\t8\t9"<<endl; 

     for (int i=0; i<N; i++) 

        { 

        cout<<endl; 

        for (int j=0; j<C; j++) 

            { 

            cout<<inputList[i][j]<<"\t"; 

            } 

         } 

      

 } 

 

 

int convertBytesToTime(int Bytes[], double Time[]) 

{ 

    for (int i=0; i<N; i++) 

        { 

        Time[i]=Bytes[i]/datarate; 

        } 

    return 1; 

} 

 

/*int convertTimeToBytes(double Time[], int Bytes[]) 

{ 

    for (int i=0; i<N; i++) 

        { 

        Bytes[i]=Time[i]*datarate; 

        } 

    return 1; 

}*/ 

 

int populateAllocTable(double alloc_table[][AT_2ND],int col,int row,double val[]) 

{ 

    for (int i=0; i<N; i++) 
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        { 

        alloc_table[i][col]=val[i]; 

        } 

    return 1; 

} 

 

int assignFA(double alloc_table[][AT_2ND], int weight_table[][2], int unit, double 

slot_time, double t, double req_time[], double residual_time[][C], int cyc) 

//alloc_table,weight_table,units,slot_time,cycle_time 

{ 

    //weight_table(#,w) 

    

//alloc_table(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,r

esidual,allocated_SA,left_bytes_for_next_cycle 

    for(int i=0; i<N; i++) 

        { 

         alloc_table[i][0] = i; 

         alloc_table[i][1] = 1; 

         alloc_table[i][2] = weight_table[i][1]; 

         alloc_table[i][3] = cyc; 

         alloc_table[i][4] = req_time[i]; 

         alloc_table[i][5] = slot_time * weight_table[i][1]; //max allowed in current 

         alloc_table[i][6] = slot_time * weight_table[i][1]; //min allowed time 

          

         if(alloc_table[i][4] <= alloc_table[i][5]) //if requested < max allowed 

             { 

             alloc_table[i][7] = alloc_table[i][4];                 //allocate requested 

             //residualTime[i] = alloc_table[i][4]-alloc_table[i][5]; //put rest in 

residual (-ve) 

             alloc_table[i][8]= 0; 

             alloc_table[i][9] = alloc_table[i][4]-alloc_table[i][5]; //put rest in 

residual (-ve) 

             } 

         else if (alloc_table[i][4] > alloc_table[i][5]) //if requested > max allowed 

             { 

             alloc_table[i][7] = alloc_table[i][5];      //allocate max allowed 

             //residualTime[i] = alloc_table[i][4]-alloc_table[i][5]; //put rest in 

residual (+ve) 

             alloc_table[i][8]= 1; 

             alloc_table[i][9] = alloc_table[i][4]-alloc_table[i][5]; //put rest in 

residual (+ve) 

             } 

 

         alloc_table[i][10]=0.0; 

         alloc_table[i][11]=0.0; 

        } 

     return 1; 

     

} 

 

int printInFile(double inputList[][AT_2ND]) 

{ 

 

//open file for writing 

    ofstream myfile; 

    myfile.open ("S-BA.txt"); 

 myfile 

<<endl<<"#\tA?\tw\tcycle\treq_current\tmax_FA\tmin_FA\tallocated_FA\tSAbit?\tresidual(+ve 

req)\tallocated_SA\tbytes_carry"<<endl; 

     for (int i=0; i<N; i++) 

        { 

         myfile <<endl; 

        for (int j=0; j<AT_2ND; j++) 

            { 

             myfile <<inputList[i][j]<<"\t"; 

            } 

         } 

 myfile.close(); 

} 
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int assignSA(double alloc_table[][AT_2ND], int weight_table[][2], int unit, double 

slot_time, double t, double req_time[], double residual_time[][C], int cyc) 

//alloc_table,weight_table,units,slot_time,cycle_time 

{ 

    int units=0; 

    double time_used_in_FA=0.0,time_left_for_SA=0.0,slot=0.0; 

    //weight_table(#,w) 

    

//alloc_table(#,A?,w,cycle,req_current,max_current,min_current,allocated_current,SAbit?,r

esidual,allocated_SA,left_bytes_for_next_cycle 

    for(int i=0; i<N; i++) 

        { 

          

         if(alloc_table[i][8]) 

            { 

            units+= weight_table[i][1]; //add all units 

            } 

        time_used_in_FA += alloc_table[i][7]; 

        }     

         

        //also include other cases 

        time_left_for_SA = t - (time_used_in_FA + (N * T_G)); 

         

        slot = time_left_for_SA/units;  

        //cout<<slot<<endl<<units;getch(); 

         

         

    for(int j=0; j<N; j++) 

         { 

         if(alloc_table[j][8]) 

            { 

             

            if (alloc_table[j][9] < (weight_table[j][1] * slot)) 

               { 

               alloc_table[j][10]=alloc_table[j][9];//allocate residual only 

               alloc_table[j][11]=0; 

               } 

            else if (alloc_table[j][9] >= (weight_table[j][1] * slot)) 

               { 

               alloc_table[j][10]=weight_table[j][1] * slot;//allocate max possible in SA 

               alloc_table[j][11]=alloc_table[j][9]-alloc_table[j][10];//record what is 

still left 

               } 

             

            residual_time[j][cyc]=alloc_table[j][11] ;//also populate residual_time for 

this cycle 

            } 

                                

         } 

     return 1; 

     

} 

 

int printResidualInFile(double inputList[][C]) 

{ 

   //open file for writing 

    ofstream myfile; 

    myfile.open ("S-BA_residual.txt"); 

    for (int j=0; j<C; j++) myfile<<j<<"\t"; 

    cout<<endl; 

     for (int i=0; i<N; i++) 

        { 

         myfile <<endl; 

        for (int j=0; j<C; j++) 

            { 

             myfile <<inputList[i][j]<<"\t"; 

            } 

         } 

 myfile.close();  

}
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APPENDIX D: SBA WAITING TIME CODE 

#include <iostream> 

#include <math.h> 

#include <fstream> 

 

using namespace std; 

 

int main (int argc, char *argv[]) 

{  

 

    char quit; 

    int N=500,alpha=2,x_m=50,u=5,n; 

    int WEIGHT_TABLE[N][2]; //(#,w) 

    int MIN_ALLOC[3][2]; //weight,# of users(N_i) 

    double ALLOC_TABLE[N][8];//user 

#,weight,cycle,request_current_cycle,max_current_cycle,min_current_Cycle,allocated_FA,all

ocated_SA  

    double r=100E+09,T_G=200E-09,T,R,W,tau,units,E_Pareto,row,SERV_RATE=12E+09; 

     

        

    //open file for writing 

    ofstream myfile; 

    myfile.open ("Waiting_Time_High.txt"); 

    

    //INITIALIZE TABLES 

    for(int i=0;i<N;i++) for(int j=0;j<2;j++) WEIGHT_TABLE[i][j]=0; 

    for(int i=0;i<3;i++) {MIN_ALLOC[i][0]=i+1;MIN_ALLOC[i][1]=0;} 

    for(int i=0;i<N;i++) for(int j=0;j<8;j++) ALLOC_TABLE[i][j]=0; 

 

    //Print MIN_ALLOC   

    //for(int i=0;i<3;i++) cout<<"\nWeight: "<<MIN_ALLOC[i][0]<<" No.: 

"<<MIN_ALLOC[i][1];       

    

                  

    for(int j=0;j<N;j++)  

    { 

        WEIGHT_TABLE[j][0]=j; 

        WEIGHT_TABLE[j][1]=rand() % 3 + 1; 

        if(WEIGHT_TABLE[j][1] == 3) MIN_ALLOC[2][1]++; 

        else if(WEIGHT_TABLE[j][1] == 2) MIN_ALLOC[1][1]++; 

        else if(WEIGHT_TABLE[j][1] == 1) MIN_ALLOC[0][1]++; 

    }   

    //Print MIN_ALLOC   

    //for(int i=0;i<3;i++) cout<<"\nWeight: "<<MIN_ALLOC[i][0]<<" No.: 

"<<MIN_ALLOC[i][1]; 

    //Print WEIGHT_TABLE 

    //for(int i=0;i<N;i++) cout<<"\nUser: "<<WEIGHT_TABLE[i][0]<<" w: 

"<<WEIGHT_TABLE[i][1]; 

 

    double pkt_len,slot_time;//=805;//bytes 

for (pkt_len=1000;pkt_len<150000;pkt_len=pkt_len+1000) 

{ 

    //slot_length 

    //pkt_len=805; 

    slot_time=((pkt_len*8)/r) + T_G; //slot time equal to time it takes to transmit one 

packet 

    cout<<"\nPKT_LEN: "<<pkt_len<<"bytes\nSLOT_TIME: "<<slot_time; 

     

     

 

    cout <<"\n"; 

//for (x_m=0;x_m<1500;x_m=x_m+100) 

//for (alpha=1;alpha<10;alpha++) 

//{ 

//for(n=1;n<N;n=n+50) 

n=N; 

//for (int u=0;u<N;u++) 

//for(T=0.0001;T<0.005;T=T+0.0001) 

//    { 
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                 //T_C (Cycle Time) 

                 units=0; 

                 for(int i=0;i<n;i++) units += WEIGHT_TABLE[i][1]; 

                 T=(slot_time * units); 

                 T += T/2; 

                 T += T_G * n; 

                 cout<<"\nUNITS: "<<units<<"\nT_C: "<<T<<"\n"; 

 

     

                 E_Pareto = ((alpha*x_m)/(alpha-1)); 

                 row = E_Pareto / SERV_RATE; 

                 //w = 550 * pkt_len * 8 / SERV_RATE; 

                 cout <<"\nE_Pareto: "<< E_Pareto<<"\n"; 

                  

                 //Calculate tau 

                 //for(int i=0;i<3;i++) units += MIN_ALLOC[i][0] * MIN_ALLOC[i][1]; 

                 //tau= T / (2*units); 

                 tau=slot_time; 

                 //cout<<"\nunits: "<<units<<"\n"; 

                  

                 //Calculate Residual Time 

                 //for(int i=0;i<3;i++) R += MIN_ALLOC[i][0] * MIN_ALLOC[i][1] * tau; 

                 for(int i=0;i<u-1;i++) R += WEIGHT_TABLE[i][0] * tau; 

                 for(int i=u+1;i<n;i++) R += WEIGHT_TABLE[i][0] * tau; 

 

                 //if (E_Pareto > ) 

                 //R += (n-1)* (E_Pareto/r); 

                 //R += T/2; 

                 R +=T_G; 

 

                 //Determine Waiting Time 

                 W = (1*R) / (2*(1-row)); 

 

                 cout << "T="<<T << ", tau="<<tau << ", x_m="<<x_m<<", n=" << n <<", 

pkt_len=" << pkt_len <<", alpha="<< alpha <<", R="<< R <<", W="<< W << endl; 

 

                 myfile << "T="<<T<<", tau="<<tau<< ", x_m="<<x_m<<", n=" << n <<", 

pkt_len=" << pkt_len <<", alpha="<< alpha<<", R="<< R <<", W="<< W << endl; 

 

                 W=0.0;R=0.0;tau=0.0;units=0.0;row=0.0;E_Pareto=0.0; 

 

     } 

//}    

 

//}//outer for loop   

 

  

    quit = '\0'; 

    while (quit != 'q') 

    { 

        cout << "Press q to quit " << endl; 

        cin >> quit; 

    } 

    myfile.close(); 

    return 0; 

} 
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APPENDIX E: DATA CAPTURE CODE 

#include <stdio.h> 

#include "/include/pcap.h" 

#include <math.h> 

#include <time.h> 

#include <string.h> 

#include <stdlib.h> 

//#include <include/conio.h> 

 

#define LINE_LEN 16 

#define FIN  0x0001 

#define SYN  0x0002 

#define RST  0x0004 

#define PUSH  0x0008 

#define ACK  0x0010 

#define URG  0x0020 

#define ECE  0x0040 

#define CWR  0x0080 

#define LARGE_NUM 999999999 

#define NUM_LOCAL_IPS 3 

 

 

 

//FUNCTION PROTOTYPES 

void packet_handler(u_char *, const struct pcap_pkthdr *, const u_char *); 

void bin_print(int,int); 

int chkSYNBit(int); 

int chkACKBit(int); 

int chkFINBit(int); 

void print_src_dst_pairs_tofile(); 

void print_start_end_tofile(); 

int print_delays(); 

int num_active_sessions();              //returns number of active sessions 

void initialize_root(); 

void add_new_session();//struct tcp_session *);     //add new session to LL 

void print_all_sessions();              //print LL 

void print_completed_sessions(); 

unsigned int _session_exists(u_short,u_short);//struct ip_address,struct ip_address, 

u_short, u_short); //find a session and return its id 

int update_status(unsigned int,int); 

int check_status(unsigned int); 

int set_session_end_time(unsigned int, long double); 

int load_local_ip_list();  //load all local ips 

int is_local();//struct ip_address,struct ip_address); //chk is current ip is a local ip 

 

 

//STRUCTURE DEFINITIONS 

typedef struct ip_address 

 

{ 

 u_char byte1; 

 u_char byte2; 

 u_char byte3; 

 u_char byte4; 

}ip_address; 

 

/* IPv4 header */ 

typedef struct ip_header 

{ 

 u_char ver_ihl; // Version (4 bits) + Internet header length (4 bits) 

 u_char tos;  // Type of service  

 u_short tlen;  // Total length  

 u_short identification; // Identification 

 u_short flags_fo; // Flags (3 bits) + Fragment offset (13 bits) 

 u_char ttl; // Time to live 

 u_char proto; // Protocol 

 u_short crc; // Header checksum 

 struct ip_address saddr; // Source address 

 struct ip_address daddr; // Dest address 
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 u_int op_pad;   // Option + Padding 

}ip_header; 

 

/* UDP header*/ 

typedef struct udp_header 

{ 

 u_short sport; // Source port 

 u_short dport; // Destination port 

 u_short len; // Datagram length 

 u_short crc; // Checksum 

}udp_header; 

 

/* TCP header*/ 

typedef struct tcp_header 

{ 

 u_short srcport; // Source port 

 u_short dstport; // Destination Port 

 u_int seq;  // SEQ Number 

 u_int ack;  // ACK 

 u_short control; // includes offset, reserved and flags 

 u_short window; 

 u_short crc; 

 u_int opt_pad; 

 u_char data[65535]; // Payload 

}tcp_header; 

 

/* TCP Session Information Container*/ 

typedef struct tcp_session { 

 unsigned int id; 

 ip_address src_add; 

 ip_address dst_add; 

 u_short src_port; 

 u_short dst_port; 

 u_char status; 

 double start; 

 double end; 

 struct tcp_session *next; 

 struct tcp_session *prev; 

}tcp_session; 

 

 

//GLOBALS 

int AVG_PKT_LEN=0;      // 

unsigned int TOT_PKT_LEN=0;      // total number of packets 

unsigned int NUM_OF_PKTS=0;      // 

long double pair_number=0; //index of src-dst pair in array 

u_char mask = 0x003F;   //to separate out the bits we need 

u_char flags = 0;       //flag bits 

 

//CREATE LL ROOT 

struct tcp_session *root; //linked list node 

struct ip_header *ih;  //For packet handler 

struct tcp_header *th;  //For packet handler 

struct tcp_session *new_session; //For add_new_session 

struct ip_address _ip_src; //For _session_exists 

struct ip_address _ip_dst; //For _session_exists 

struct ip_address src; //For is_local 

struct ip_address dst;  //For is_local 

unsigned int session_id=0; 

 

//END CREATE LL ROOT 

int local_ips[NUM_LOCAL_IPS][4]; //for saving local ip list 

 

 

int main() 

{ 

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20100325-060200.UTC.anon.pcap"}; 

//1.66GB OC 192 trace 

 //char filename[]= {"CAIDA/equinix-chicago.dirA.20090219-045912.UTC.anon.pcap"}; 

//72MB OC 48 trace 
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 //char filename []={"CAIDA/equinix-sanjose.dirA.20100325-060500.UTC.anon.pcap"}; 

//700MB OC 192 trace 

 

 

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20091217-045904.UTC.anon.pcap"}; 

//1.66GB OC 192 trace 

 

 //char filename[]= {"CAIDA/equinix-sanjose.dirA.20100325-055905.UTC.anon.pcap"}; 

//NUST trace 

 char filename[]= {"Game Traces/war3-traces/war3-traces/1vs1 Ethereal Trace"}; 

 

 pcap_t *fp; 

 char errbuf[PCAP_ERRBUF_SIZE]; 

 char packet_filter[] = "ip and tcp"; 

 struct bpf_program fcode; 

 pcap_if_t *alldevs; 

 

 initialize_root(); 

 

 printf("\nRoot initialized...\n"); 

 

 /* Open the captured file */ 

 if((fp = pcap_open_offline(filename, errbuf)) == NULL) 

  { 

  fprintf(stderr,"\nUnable to open the file %s.\n", filename); 

  getchar(); 

  return -1; 

  } 

 

 //compile the filter to only extract TCP packets defined in packet_filter[] 

 if (pcap_compile(fp, &fcode, packet_filter, 1, 0) <0 ) 

  { 

  fprintf(stderr,"\nUnable to compile the packet filter. Check the 

syntax.\n"); 

  /* Free the device list */ 

  pcap_freealldevs(alldevs); 

  return -1; 

  } 

 //set the filter 

 if (pcap_setfilter(fp, &fcode)<0) 

  { 

  fprintf(stderr,"\nError setting the filter.\n"); 

  /* Free the device list */ 

  pcap_freealldevs(alldevs); 

  return -1; 

  } 

  

 //load_local_ip_list(); 

 printf("\nFilter: %s\n",packet_filter); 

 printf("\nReading packets...do not exit...\n"); 

  

 pcap_loop(fp, 0, packet_handler, NULL); 

 

 pcap_close(fp); 

 printf("\n\nNUM_OF_PKTS=%d, AVG_PKT_LEN=%d",NUM_OF_PKTS,TOT_PKT_LEN/NUM_OF_PKTS); 

 //print_src_dst_pairs(); 

        //print_src_dst_pairs_tofile(); 

 //print_start_end_tofile(); 

 //print_delays(); 

 //print_all_sessions(); 

 //print_completed_sessions(); 

  

 getchar(); 

 return 0; 

} 

 

 

void packet_handler(u_char *param, const struct pcap_pkthdr *header, const u_char 

*pkt_data) 

{ 

 //struct tcp_session *new_session; 
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 struct tm *ltime; 

 char timestr[16]; 

 //struct ip_header *ih; 

 //struct tcp_header *th; 

 u_int ip_len; 

 u_short sport,dport; 

 time_t local_tv_sec; 

 int isSYN=0, isACK=0, isFIN=0; 

 

 

 //New tcp_session node to be added 

 new_session = (struct tcp_session *) malloc(sizeof(tcp_session)); 

  /* 

  * unused parameter 

  */ 

 //(VOID)(param); 

 

 /* retireve the position of the ip header */ 

 ih = (ip_header *) (pkt_data + 14); //length of ethernet header 

 

 /* retireve the position of the tcp header */ 

 ip_len = (ih->ver_ihl & 0xf) * 4; 

 //uh = (udp_header *) ((u_char*)ih + ip_len); 

 th = (tcp_header *) ((u_char*)ih + ip_len); 

 

 /* convert from network byte order to host byte order */ 

 sport = ntohs( th->srcport ); 

 dport = ntohs( th->dstport ); 

 

 /// separate control bits into offset, reserved and flags 

 flags = ntohs(th->control); 

 flags = flags&mask; 

 isSYN=chkSYNBit(flags); 

 isACK=chkACKBit(flags); 

 isFIN=chkFINBit(flags); 

 pair_number = _session_exists(sport,dport);//struct ih->saddr, struct ih-

>daddr,sport,dport); 

 /* 

 if (pair_number != LARGE_NUM)  

  { 

   window_size[pair_number]+=th->window - th->ack; 

   printf("\nW=%ld\tA=%ld\tS=%ld",th->window,th-

>ack,window_size[pair_number]); 

  } 

 */ 

  //printf("\n%d--SYN-%d-ACK-%d-FIN-%d\n",pair_number,isSYN,isACK,isFIN); 

 

 if (pair_number == LARGE_NUM)  

  { 

  //if (isSYN==1){ getchar();} 

  if ((isSYN==1) && (isACK==0) && (isFIN==0)) // && is_local())//ih-

>saddr,ih->daddr)) 

    { 

    session_id++; 

     

    //add new session to LL 

    new_session->id=session_id; 

    printf("sanjose.20100325-055905-SRC-DST-DUR-ID: 

%u\n",session_id); 

    new_session->src_port=sport; 

    new_session->dst_port=dport; 

    new_session->src_add = ih->saddr; 

    new_session->dst_add = ih->daddr; 

    new_session->status=1; 

    //if (header->ts.tv_usec>1000000) header->ts.tv_sec=header-

>ts.tv_usec % 2; 

    new_session->start = (double)header->ts.tv_usec / 1000000 + 

(header->ts.tv_sec); 

    new_session->end=0; 

    //printf("\nSESSION-START: %.8g - \n",new_session->start); 

    add_new_session(new_session); 



110 

 

    }  

  } 

 else if  ((isSYN==1) && (isACK==1))  

  { 

  update_status(pair_number,2); 

  } 

 else if  ((isFIN==1) && (check_status(pair_number) != 5)) 

  {  

   

  set_session_end_time(pair_number,((double)header->ts.tv_usec / 1000000 + 

(header->ts.tv_sec))); 

  update_status(pair_number,5); 

 

  } 

 else if ((isSYN==0) && (isFIN==0) && (check_status(pair_number)!=5)) 

  { 

  update_status(pair_number,4); 

  } 

 pair_number=0; 

 TOT_PKT_LEN +=header->len; 

 NUM_OF_PKTS++; 

  

} 

void bin_print(int num,int bits){ 

 

int j; 

 

for(j=bits-1;j>=0;j--) 

 

printf("%i",(num>>j)&01); 

 

} 

 

int chkSYNBit(int num){ 

 if (num & SYN) return 1; 

 return 0; 

} 

 

int chkACKBit(int num){ 

 if (num & ACK) return 1; 

 return 0; 

} 

 

int chkFINBit(int num){ 

 if (num & FIN) return 1; 

 return 0; 

} 

 

 

void print_src_dst_pairs_tofile() 

{ 

struct tcp_session *temp; 

double delay; 

char strWrite[100]=""; 

char temp_str[30]=""; 

FILE *fp_out; 

//fp_out = fopen ("equixnix-sanjose.dirA.20100325-

060200.UTC.anoni.SRC_DST_PAIRS.txt","w"); 

//fp_out = fopen ("equixnix-chicago.dirA.20090219-

045912.UTC.anoni.SRC_DST_PAIRS.txt","w"); 

//fp_out = fopen ("eqSan060500_SRC.txt","w"); 

fp_out = fopen ("OC48-100900.txt","w"); 

 

 

 

temp=root; 

strcat(strWrite,"#PRINT UNIQUE SRC-DST PAIRS\n"); 

strcat(strWrite,"#SRC_IP DST_IP STATUS DURATION START END\n"); 

while(temp->next!=NULL) 

 { 

 /////////////////////  
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 //printf("%d",fp_out==NULL); 

 //exit(1); 

 

 //if (ferror(fp_out==NULL)) 

 // { 

 // printf("Can't open output file.\n"); 

 // exit(1); 

 // } 

 //else 

 // { 

  if((temp->status==5))// || (temp->status==4)) 

   { 

   strcpy(temp_str,""); 

   //itoa(temp->src_add.byte1,temp_str,10); 

   sprintf(temp_str,"%d",temp->src_add.byte1); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->src_add.byte2,temp_str,10); 

   sprintf(temp_str,"%d",temp->src_add.byte2); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->src_add.byte3,temp_str,10); 

   sprintf(temp_str,"%d",temp->src_add.byte3); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->src_add.byte4,temp_str,10); 

   sprintf(temp_str,"%d",temp->src_add.byte4); 

   strcat(strWrite,temp_str);strcat(strWrite,","); 

   //itoa(temp->dst_add.byte1,temp_str,10); 

   sprintf(temp_str,"%d",temp->dst_add.byte1); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->dst_add.byte2,temp_str,10); 

   sprintf(temp_str,"%d",temp->dst_add.byte2); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->dst_add.byte3,temp_str,10); 

   sprintf(temp_str,"%d",temp->dst_add.byte3); 

   strcat(strWrite,temp_str);strcat(strWrite,"."); 

   //itoa(temp->dst_add.byte4,temp_str,10); 

   sprintf(temp_str,"%d",temp->dst_add.byte4); 

   strcat(strWrite,temp_str);strcat(strWrite,"\t"); 

 

   delay = temp->end - temp->start; 

   //itoa(temp->status,temp_str,10);   

   sprintf(temp_str,"%d",temp->status); 

   strcat(strWrite,temp_str); 

   strcat(strWrite,"\t"); 

   sprintf(temp_str, "%.8g", delay); 

   strcat(strWrite,temp_str);strcpy(temp_str,""); 

    

   strcat(strWrite,"\t"); 

   sprintf(temp_str, "%1.10f", temp->start); 

   strcat(strWrite,temp_str);strcpy(temp_str,""); 

   strcat(strWrite,"\t"); 

   sprintf(temp_str, "%1.10f", temp->end); 

   strcat(strWrite,temp_str);strcpy(temp_str,""); 

    

   strcat(strWrite,"\n"); 

    

   printf("\n%s\n",strWrite); 

 

   fputs(strWrite,fp_out);  //Print the whole record to file 

   strcpy(temp_str,""); 

   strcpy(strWrite,""); 

   } 

   temp=temp->next; 

 } 

 fclose(fp_out); 

} 

void print_start_end_tofile() 

{ 

struct tcp_session *temp; 

unsigned int i=0; 

double delay; 

char strWrite[200]=""; 
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char temp_str[30]=""; 

FILE *fp_out; 

 

//fp_out = fopen ("START_END_CHI_20090115_1-29GB.txt","w"); 

//fp_out = fopen ("equinix-sanjose.dirA.20100325-060500.UTC.anon.STR_END_DUR.txt","w"); 

//fp_out = fopen ("equinix-chicago.dirA.20090219-045912.UTC.anon.STR_END_DUR.txt","w"); 

//fp_out = fopen ("equinix-sanjose.dirA.20100325-060200.UTC.anon.STR_END_DUR.txt","w"); 

 

fp_out = fopen ("equinix-sanjose.dirA.20091217-045904.UTC.anon.txt","w"); 

 

temp=root; 

 

//sprintf(temp_str,"#NUM_OF_PKTS=%d, 

AVG_PKT_LEN=%d",NUM_OF_PKTS,TOT_PKT_LEN/NUM_OF_PKTS); 

//strcat(strWrite,temp_str); 

strcat(strWrite,"#PRINTING COMPLETED AND RUNNING SESSION START-END PAIRS\n"); 

strcat(strWrite,"#SERIAL_NUM,START,END,DURATION\n"); 

while(temp->next!=NULL) 

 { 

 /////////////////////  

 //printf("%d",fp_out==NULL); 

 //exit(1); 

 

 //if (ferror(fp_out==NULL)) 

 // { 

 // printf("Can't open output file.\n"); 

 // exit(1); 

 // } 

 //else 

 // { 

  if((temp->status==5))// || (temp->status==4)) 

   { 

    i+=1; 

   //if (temp->end == 0.0) temp->end=1999999999; 

   sprintf(temp_str,"%u", i); 

   strcat(strWrite,temp_str);    //serial 

number 

   strcat(strWrite,"\t"); 

    //printf("\nSTART-%1.10f",temp->start); 

   sprintf(temp_str,"%1.10f", temp->start); 

   strcat(strWrite,temp_str);    //start time 

   strcat(strWrite,"\t"); 

    //printf("END-%1.10f",temp->end); 

   sprintf(temp_str, "%1.10f", temp->end); 

   strcat(strWrite,temp_str);    //end time 

   strcat(strWrite,"\t"); 

   //itoa(temp->status,temp_str,10);   //status 

   sprintf(temp_str,"%d",temp->status); 

   strcat(strWrite,temp_str); 

   strcat(strWrite,"\t"); 

   //if (temp->end == 0.0) 

   // { 

   // delay = 0.0; 

   // } 

   //else 

   // { 

    delay=temp->end - temp->start; 

   // } 

   // printf("DURATION-%1.10f\n",delay); 

   sprintf(temp_str, "%1.10f", delay); 

   strcat(strWrite,temp_str);    //delay 

 

    

   strcat(strWrite,"\n"); 

   //printf("\n%s",strWrite); 

   //if (connection_status[i] == 5) 

   fputs(strWrite,fp_out); 

   strcpy(temp_str,""); 

   strcpy(strWrite,""); 

   } 

   //}  
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   temp=temp->next; 

 } 

 fclose(fp_out); 

} 

 

int print_delays() 

{ 

struct tcp_session *temp; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

  //printf("\nPRINTING DELAYS\n%d>%s - %s = %s",temp->id,ctime(temp-

>end),ctime(temp->start),ctime(temp->end-temp->start)); 

  temp=temp->next; 

 } 

return 1; 

} 

 

int num_active_sessions() 

{ 

struct tcp_session *temp; 

int num_active_sessions=0; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

  if(temp->status==4) num_active_sessions++; 

  temp=temp->next; 

 } 

return num_active_sessions; 

} 

 

void initialize_root() 

{ 

 //root=new tcp_session; 

 root = (struct tcp_session *) malloc(sizeof(tcp_session)); 

 //Initialize root 

 root->id=0; 

 root->src_add.byte1=0; 

 root->src_add.byte2=0; 

 root->src_add.byte3=0; 

 root->src_add.byte4=0; 

 root->src_port=0; 

 root->dst_add.byte1=0; 

 root->dst_add.byte2=0; 

 root->dst_add.byte3=0; 

 root->dst_add.byte4=0; 

 root->dst_port=0; 

 root->start=0; 

 root->end=0; 

 root->status=0; 

 root->next=NULL; 

 root->prev=NULL; 

 //end initialize root 

} 

void add_new_session()//struct tcp_session *new_session) 

{ 

struct tcp_session *temp; 

temp=root; 

 

while(temp->next != NULL) 

 { 

  temp=temp->next; 

 } 

temp->next = new_session; 

new_session->prev=temp; 

new_session->next=NULL; 

} 

 

void print_all_sessions() 
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{ 

struct tcp_session *temp; 

double duration=0; 

char temp_str[30]; 

printf("\nLL-UNIQUE SRC-DST PAIRS\n"); 

temp=root; 

while(temp->next!=NULL) 

 { 

  //duration = difftime(temp->end,temp->start); 

  //duration = (clock()-duration)/CLOCKS_PER_SEC; 

  //printf("\n%ld-%ld=%ld\n",temp->end,temp->start,temp->end-temp->start); 

  duration = temp->end - temp->start; 

  sprintf(temp_str, "%.8g", duration); 

  printf("%u>%d.%d.%d.%d\t[%d]\t%d.%d.%d.%d\t[%d]\tS=%d\tD=%s\n",temp-

>id,temp->src_add.byte1,temp->src_add.byte2,temp->src_add.byte3,temp->src_add.byte4,temp-

>src_port,temp->dst_add.byte1,temp->dst_add.byte2,temp->dst_add.byte3,temp-

>dst_add.byte4,temp->dst_port,temp->status,temp_str);//,delay); 

  duration=0; 

  temp=temp->next; 

  //_getche(); 

 } 

} 

void print_completed_sessions() 

{ 

struct tcp_session *temp; 

double duration; 

char temp_str[30]; 

printf("\nLL-UNIQUE SRC-DST PAIRS - COMPLETED\n"); 

temp=root; 

while(temp->next!=NULL) 

 { 

  if (temp->status == 5) 

   { 

   //duration = difftime(temp->end,temp->start); 

   //duration = (clock()-duration)/CLOCKS_PER_SEC; 

   duration = temp->end - temp->start; 

   sprintf(temp_str, "%.8g", duration); 

  

 printf("%u>%d.%d.%d.%d\t[%d]\t%d.%d.%d.%d\t[%d]\tS=%d\tD=%s\n",temp->id,temp-

>src_add.byte1,temp->src_add.byte2,temp->src_add.byte3,temp->src_add.byte4,temp-

>src_port,temp->dst_add.byte1,temp->dst_add.byte2,temp->dst_add.byte3,temp-

>dst_add.byte4,temp->dst_port,temp->status,temp_str); 

   duration=0; 

   //_getche(); 

   } 

  temp=temp->next; 

 } 

} 

unsigned int _session_exists(u_short sport, u_short dport)//struct ip_address _ip_src, 

struct ip_address _ip_dst, u_short sport, u_short dport) 

{ 

struct tcp_session *temp; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

   if ((temp->src_add.byte1 == ih->saddr.byte1) && (temp->src_add.byte2 == 

ih->saddr.byte2) && (temp->src_add.byte3 == ih->saddr.byte3) && (temp->src_add.byte4 == 

ih->saddr.byte4)) 

 

   { 

   if ((temp->dst_add.byte1 == ih->daddr.byte1) && (temp-

>dst_add.byte2 == ih->daddr.byte2) && (temp->dst_add.byte3 == ih->daddr.byte3) && (temp-

>dst_add.byte4 == ih->daddr.byte4)) 

    { 

    if ((temp->src_port == sport) && (temp->dst_port == dport)) 

     { 

     return temp->id; 

     } 

    } 

   } 
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  else if ((temp->src_add.byte1 == ih->daddr.byte1) && (temp->src_add.byte2 

== ih->daddr.byte2) && (temp->src_add.byte3 == ih->daddr.byte3) && (temp->src_add.byte4 

== ih->daddr.byte4)) 

   { 

   if ((temp->dst_add.byte1 ==  ih->saddr.byte1) && (temp-

>dst_add.byte2 ==  ih->saddr.byte2) && (temp->dst_add.byte3 ==  ih->saddr.byte3) && 

(temp->dst_add.byte4 ==  ih->saddr.byte4)) 

    { 

    if ((temp->src_port == dport) && (temp->dst_port == sport)) 

     { 

     return temp->id; 

     } 

    } 

   } 

  temp=temp->next; 

 } 

return LARGE_NUM; 

} 

 

int update_status(unsigned int session_number,int new_status) 

{ 

struct tcp_session *temp; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

  if (temp->id == session_number)  

   { 

   temp->status=new_status; 

    

   if (new_status == 5) 

    { 

    ///////////////////////WRITE FINISHED SESSION RECORD TO 

FILE 

    char strWrite[100]=""; 

    char temp_str[30]=""; 

    double delay; 

    FILE *fp_out; 

    fp_out = fopen ("data003.txt","a+"); 

   

    strcpy(temp_str,""); 

    sprintf(temp_str,"%d",temp->src_add.byte1); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->src_add.byte2); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->src_add.byte3); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->src_add.byte4); 

    strcat(strWrite,temp_str);strcat(strWrite,"\t"); 

    sprintf(temp_str,"%d",temp->dst_add.byte1); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->dst_add.byte2); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->dst_add.byte3); 

    strcat(strWrite,temp_str);strcat(strWrite,"."); 

    sprintf(temp_str,"%d",temp->dst_add.byte4); 

    strcat(strWrite,temp_str);strcat(strWrite,"\t"); 

 

    delay = temp->end - temp->start; 

    sprintf(temp_str,"%d",temp->status); 

    strcat(strWrite,temp_str); 

    strcat(strWrite,"\t"); 

    sprintf(temp_str, "%.8g", delay); 

    strcat(strWrite,temp_str);strcpy(temp_str,""); 

     

    strcat(strWrite,"\t"); 

    sprintf(temp_str, "%1.10f", temp->start); 

    strcat(strWrite,temp_str);strcpy(temp_str,""); 

    strcat(strWrite,"\t"); 

    sprintf(temp_str, "%1.10f", temp->end); 

    strcat(strWrite,temp_str);strcpy(temp_str,""); 
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    strcat(strWrite,"\n"); 

     

    //printf("\n%s\n",strWrite); 

 

    fputs(strWrite,fp_out);  //Print the whole record to 

file 

    strcpy(temp_str,""); 

    strcpy(strWrite,""); 

 

    fclose(fp_out); 

    /////////////////////////END WRITE RECORD TO FILE 

    } 

   return 1; 

   } 

  temp=temp->next; 

 } 

return 0; 

} 

 

int check_status(unsigned int session_number) 

{ 

struct tcp_session *temp; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

  if (temp->id == session_number)  

   { 

   return temp->status; 

   } 

  temp=temp->next; 

 } 

return 0; 

 

} 

int set_session_end_time(unsigned int session_number, long double end_time) 

{ 

struct tcp_session *temp; 

temp=root; 

//temp=temp->next; //skip root (root is empty) 

while(temp->next!=NULL) 

 { 

  if (temp->id == session_number)  

   { 

   temp->end=end_time;//time(NULL); 

   return 1; 

   } 

  temp=temp->next; 

 } 

return 0; 

} 

 

int load_local_ip_list() 

{ 

 local_ips[0][0]=0; 

 local_ips[0][1]=0; 

 local_ips[0][2]=112; 

 local_ips[0][3]=2; 

 local_ips[1][0]=0; 

 local_ips[1][1]=0; 

 local_ips[1][2]=96; 

 local_ips[1][3]=2; 

 local_ips[2][0]=0; 

 local_ips[2][1]=0; 

 local_ips[2][2]=128; 

 local_ips[2][3]=2; 

return 1; 

} 

int is_local()//ip_address src, ip_address dst) 

{ 
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 int i; 

 for (i=0;i<NUM_LOCAL_IPS;i++) 

  { 

   if((src.byte1 == local_ips[i][0]) && (src.byte2 == local_ips[i][1]) 

&& (src.byte3 == local_ips[i][2]) && (src.byte4 == local_ips[i][3]))  

    return 1; 

   else if((dst.byte1 == local_ips[i][0]) && (dst.byte2 == 

local_ips[i][1]) && (dst.byte3 == local_ips[i][2]) && (dst.byte4 == local_ips[i][3]))  

    return 1; 

   } 

//src.byte1=NULL;src.byte2=NULL;src.byte3=NULL;src.byte4=NULL; 

//dst.byte1=NULL;dst.byte2=NULL;dst.byte3=NULL;dst.byte4=NULL; 

 

return 0; 

}
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