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ABSTRACT

RAKA GOYAL. Development of a survival based framework for bridge
deterioration modeling with large-scale application to the North Carolina bridge

management system. (Under the direction of DR. MATTHEW J. WHELAN)

This dissertation presents the development and implementation of a comprehen-

sive automated software framework for probabilistic bridge deterioration modeling

that takes into account the time dependent nature of deterioration as well as the

impact of various functional, design, and geographic factors on the deterioration rate.

Deterioration models are a critical component of the bridge management systems

(BMS) used by transportation departments to optimize the allocation of increasingly

constrained resources for maintenance, repair, and rehabilitation (MR&R). Since de-

terioration models are used to predict the MR&R needs at both the bridge and the

network levels, the effectiveness of BMS-driven investment decisions related to the re-

pair and preservation of bridge components and, consequently the economy of bridge

management actions and safety assurance of the traveling public, is directly affected

by the accuracy of the bridge deterioration models. Although probabilistic approaches

have been employed for construction of deterioration models, prior studies have largely

been constrained by excessive reliance on practitioner opinion surveys and limited ap-

plication of statistical analytics. Survival analysis-based approaches implemented to

date have been parametric in nature and have neither examined the suitability of the

pre-existing bridge classifications nor extended the probabilistic methodology to fully

realize the predictive potential of such models. In this study, semi-parametric multi-

variable proportional hazards modeling of survival functions is combined with appli-
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cation of semi-Markovian theory to develop probabilistic deterioration models that

reflect the time dependence as well as effects of explanatory variables on deteriora-

tion rates of individual bridge components throughout their life cycle. A user-friendly

standalone graphical user interface (GUI) is designed for use by transportation per-

sonnel to develop and update these models for obtaining future expected condition

rating forecasts over specified planning horizons during network-level multi-objective

optimization analyses. The developed framework is implemented on North Carolina’s

statewide bridge database consisting of over 17,000 bridge records spanning 35 years

of historical general condition ratings (GCR) assigned during bridge inspections. As

a result, significant factors affecting deterioration rates over different bridge compo-

nents are identified over the life cycle of component and their time-varying influence

is quantified in terms of state-dependent hazard ratios. Comparison of the predictive

fidelity of the developed probabilistic models to the currently used deterministic de-

terioration models is used to characterize the improvement in accuracy afforded by

the new technique. A strategy for probabilistically incorporating the effects of main-

tenance action on deterioration rates in the proposed model is discussed as well as

potential secondary applications of the developed framework, including quantifying

the value of preventative design measures and preservation actions.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

National Bridge Inspection Standards (NBIS) were instituted in early 1970’s fol-

lowing the collapse of Silver Bridge in Ohio due to corrosion-induced catastrophic

failure. This legislation mandates that all states maintain bridge inventory and in-

spection records for each and every bridge in their jurisdiction. Each bridge record

acts as a historical reference of any changes occurring in the physical condition of

the bridge over time. These changes are measured and recorded through periodic

inspections that must be performed no less frequently than on a biennial schedule.

In this way, the deterioration, if any, of the overall condition of the bridge and its

components is monitored so that remedial action can be taken as needed to preserve

the bridge in good condition and ensure the safety of the traveling public.

While trying to achieve the objective of maintaining all individual bridges in their

inventory, states continuously face the challenge of allocating increasingly limited

funds and resources to most efficiently address network-level maintenance and re-

construction as well as anticipate future funding needs. This challenge led to the

evolution of Bridge Management Systems (BMS), which are systematic data-driven

approaches for using available bridge data, projected costs, and functional needs at

the local and network-level to help objectively make such decisions. A BMS helps
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decision makers to interactively understand the trade-offs associated with allocating

constrained funding to rehabilitation or maintenance work versus bridge replacement

projects across the entire network of bridges to formulate optimal decisions based on

economics, performance, and safety. North Carolina was one of the first states to

develop a BMS (Chen and Johnston, 1987). Since then, many states, along with the

Federal Government, have developed bridge management systems, although the ma-

jority of states now use the AASHTOWare Pontis software for some degree of bridge

management (Markow and Hyman, 2009).

The North Carolina Department of Transportation (NCDOT) currently maintains

records for 17,046 in-service bridges with each record having over 200 items of oper-

ational and functional bridge information, including condition rating data from the

most recent visual inspection. The digital recording of National Bridge Inventory

(NBI) data for North Carolina bridges began in 1981, so there are now 35 years of

bridge records in NCDOT database. NCDOT currently uses a BMS software devel-

oped by AgileAssets Inc. However, while this software implements the constrained

optimization analysis to provide scenarios for decision-making, the database relies on

independent development of both deterioration models for the prediction of bridge

maintenance needs and user and agency costs.

The two most important prediction tools of a BMS are bridge deterioration models

and bridge-related cost models. Deterioration models are used to project the condi-

tion of key bridge components such as the deck, superstructure, and substructure in

the future based on the current and historical records of component condition ratings.

A condition rating is a number assigned by bridge inspectors to quantify the physical
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condition of these bridge components after assessing the extent of observable deteri-

oration. For example, within the NBIS, 9 is the condition rating assigned for a new

bridge component in excellent condition, whereas 3 denotes extensive deterioration

and serious need for rehabilitation or major repairs. The complete scale of condition

ratings and associated descriptions of general condition that are applied for bridge

deck, superstructure, and substructure condition rating is reproduced in Table 1.1

(FHWA, 1995).

TABLE 1.1: NBI condition ratings for bridge deck, superstructure, and
substructure components

Rating Condition Description
9 Excellent
8 Very Good No problem noted.
7 Good Some minor problems.
6 Satisfactory Structural elements show some minor deterioration
5 Fair All primary structural elements are sound but may have minor section

loss, cracking, spalling, or scour.
4 Poor Advanced section loss, deterioration, spalling, or scour.
3 Serious Loss of section, deterioration, spalling, or scour have seriously affected

the primary structural components. Local failures are possible. Fa-
tigue cracks in steel or shear cracks in concrete may be present.

2 Critical Advanced deterioration of primary structural elements. Fatigue
cracks in steel or shear cracks in concrete may be present or scour
may have removed substructure support. Unless closely monitored, it
may be necessary to close the bridge until corrective action is taken.

1 Imminent Failure Major deterioration or section loss present in critical structural
components, or obvious loss present in critical structural components,
or obvious vertical or horizontal movement affecting structural stabil-
ity. Bridge is closed to traffic, but corrective action may put back in
light service.

0 Failed Out of service; beyond corrective action.
N Not Applicable

Most states now have over 30 years of inspection data collected to support develop-

ment of prediction tools for decisions regarding maintenance, repair, and rehabilita-

tion (MR&R) and replacement of bridges. This level of collected data presents exten-

sive data mining opportunities for discovering inter-relationships amongst geographic,

functional, and structural characteristics and rates of deterioration to better predict

future rehabilitation needs as well as improve understanding of the performance and
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FIGURE 1.1: Deck condition ratings plotted against bridge age for all timber deck
bridges in the 1981-2013 NCDOT bridge records

expected service life of different highway bridge designs. However, processing the

database of condition ratings and functional descriptions is computationally chal-

lenging and requires advanced statistical tools to extract meaningful and reliable

information. To illustrate the magnitude and complexity of the deck condition rating

data alone, a scatter plot of the entire historical database of deck condition ratings for

all of the timber bridges in the NCDOT bridge network is shown in Figure 1.1. Bridge

components deteriorate over time and therefore are expected to be correlated with

bridge age, however this historical data suggests the need for more advanced analysis

than offered by simple regression techniques. Figure 1.2 shows the distribution of the

continuous durations at each condition rating observed in the same dataset. These

distributions contain significantly more meaningful information that can be leveraged

to develop appropriate deterioration models. Over the past several decades, method-

ologies for developing deterioration models from databases of inspection records have
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FIGURE 1.2: Distributions of observed continuous condition rating durations for all
timber bridge decks in the 1981-2013 NCDOT bridge records

matured from purely deterministic models to probabilistic Markovian methods and,

most recently, duration models, which take advantage of the now extensive history of

recorded condition ratings.

Ultimately, deterioration models are most useful for the prediction of future MR&R

needs when these models are developed after several cycles of inspection data are avail-

able to provide a basis of historical performance of bridges in the network. To enhance

the fidelity of these predictive models, bridges are often first preclassified into groups

specific to their design, functional, and geographic characteristics to independently

account for the effects of such external variables on the rate of deterioration. In

parallel to the deterioration models, cost models are used for calculating agency and

user costs with reference to impacts on detour mileage, accident costs, level of service

goals, and associated improvement actions. Both the deterioration and cost models
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are instrumental inputs for the BMS that then help determine the most beneficial

selection of projects to minimize overall network level costs through multi-objective

optimization schemes.

1.2 Objectives and Scope

This research seeks to improve the accuracy of deterioration model predictions by

developing strategies to overcome challenges identified by previous research. Theoret-

ical contributions are sought through the development of a framework for multivari-

able probabilistic deterioration modeling and strategies for efficiently implementing

these models over large databases. Using this developed framework, applied contri-

butions related to the discovery of external factors affecting deterioration of different

bridge components over the service life are sought. The broad components of research

associated with each of these objectives are summarized below:

1. Theoretical contributions sought by the research effort:

• Techniques for multivariable statistical regression of bridge condition rat-

ing data using semi-parametric Cox proportional hazards methodology for

probabilistic deterioration modeling.

• Development of a semi-Markov approach for condition rating forecasting

based on non-stationary transition probabilities and covariate hazard ratios

obtained from multivariable proportional hazards regression.

• Exploration of the time-dependent nature of transition probabilities in

probabilistic deterioration models and the impact of incorporating non-

stationary probabilities rather than simplified stationary probabilities in
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expected condition rating forecasts over near-term and long-term planning

horizons.

2. Applied contributions sought by the research effort:

• Development of deterioration models for each material-specific general con-

dition rating (GCR) bridge component category in the North Carolina

state bridge inventory.

• Examination of the significant design, functional, and geographic features

affecting deterioration rates at each condition state, their impact on ex-

pected condition rating forecasts, and the validity of expert elicited a priori

classification strategies.

• Quantitative comparison of the predictive fidelity of deterministic deterio-

ration models and probabilistic deterioration models over typical long-term

planning horizons.

• Development of a user-friendly standalone graphical user interface for de-

velopment and updating of deterioration models by transportation person-

nel.

1.3 Organization of Dissertation

This dissertation consists of a total of eight chapters including this introductory

chapter.

Chapter 2 provides a comprehensive literature review covering the various deterio-

ration modeling approaches developed since the initial conception of bridge manage-
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ment systems. The assumptions, advantages, and limitations of each approach are

discussed and a status review of implementations and practices by state and federal

transportation agencies is provided.

Chapter 3 explains the theoretical background of the Cox proportional hazards

model for survival analysis including model development, model selection, and model

assessment. The nature of its application to the modeling of bridge component condi-

tion rating durations, including the underlying assumptions and techniques for han-

dling descriptive data types, is discussed with illustrative examples.

Chapter 4 describes the methodology and statistical regression technique devel-

oped for construction of multivariable probabilistic deterioration models and for the

efficient use of these models in predicting future condition states of various bridge

components. The challenges associated with application of proportional hazards mod-

eling to bridge condition rating data are discussed and strategies adopted to overcome

them are formulated. The details of the functions executed by various constitutive

software routines developed to implement the methodology are presented with the

help of flowcharts and algorithms.

Chapter 5 describes the development, layout, and functionalities of the Windows-

based standalone graphical user interface designed for implementation of the proposed

deterioration framework.

Chapter 6 presents results obtained from successful implementation of the frame-

work on general condition rating databases of deck, superstructure, and substructure

components in the North Carolina state bridge inventory. Identified significant fac-

tors and their effect on deterioration rates are examined. Additionally, the impact of
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simplifications to the probabilistic deterioration models are assessed over near-term

and long-term planning horizons.

Chapter 7 provides validation of the deterioration models obtained from the devel-

oped framework by comparing their predictive fidelity with that of the deterministic

models currently used by NCDOT. The impact of incorporating covariates in the

probabilistic models is also assessed by comparison with predictions obtained by sim-

plified survival analysis without the proportional hazards model.

Chapter 8 reviews the theoretical and applied contributions of this dissertation and

provides recommendations for future work.



CHAPTER 2: LITERATURE REVIEW

Bridge deterioration models represent the estimated deterioration of specific bridge

components over time. These predictive models are developed on the basis of his-

torical condition ratings of bridge components characterizing the extent of physically

observable signs of deterioration as recorded by bridge inspectors during scheduled

biennial inspections. Deterioration models form an important component of bridge

management systems by predicting future MR&R needs at the bridge and network

level. Consequently, the efficacy of a BMS in optimally allocating MR&R budgets to

ensure the preservation of bridge components and the safety of the traveling public

is directly affected by the accuracy of the bridge deterioration models. With the

increased reliance on optimized, data-driven BMS planning to address infrastructure

maintenance needs of large bridge inventories under constrained budgets, the impor-

tance of having accurate deterioration models cannot be overemphasized.

Since the introduction of BMS frameworks in the early 1980s, approaches for de-

terioration modeling have continuously developed in complexity from the earliest

purely deterministic methods. Currently, the most widely prevalent in US are the

Markov chain based probabilistic approaches, which have also been incorporated in

the AASHTOWare Pontis and Bridgit commercial BMS softwares adopted by many

states. However, the growth of the historical condition rating database has recently

permitted duration-based probabilistic approaches to be investigated as well as the
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integration of these approaches with the earlier Markovian models. The different

strategies for developing deterioration models from condition rating data are discussed

in the following sections alongside their assumptions, advantages, and limitations.

2.1 Deterministic Models

Deterioration of bridge components is associated with many factors including age,

environment, design characteristics, and traffic conditions. It manifests itself in ob-

servable defects like corrosive loss in steel components, delamination in concrete,

cracking, and scour of foundation systems. Deterioration models are a way of link-

ing observable symptoms of deterioration to the various explanatory factors affecting

deterioration to enable prediction of deterioration behavior and planning of suitable

corrective actions. Early studies formulated mathematical relationships between ob-

served deterioration quantified by condition ratings with specific classifiers, such as

component and material type, using statistical measures like mean, standard devi-

ation, and linear regression coefficients. These studies ignored the random errors

inherent in statistical prediction and therefore all these models are classified as deter-

ministic models. A typical deterministic deterioration model is shown in Figure 2.1,

where the ordinate is the condition rating that is plotted against the average age of

the bridges at that condition rating, which forms the abscissa.

The earliest deterministic models devised in 1987 for the North Carolina bridge

inventory used two parameters: the average age of bridges at a particular condition

rating and the average age of bridges when the condition rating dropped by one point

(Chen and Johnston, 1987). The researchers did not use data regression as their ef-
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FIGURE 2.1: A deterministic bridge deterioration model.

forts to do so proved ineffective on account of substantial scatter in condition rating

data due to alteration in natural deterioration patterns caused by maintenance and

repair activities. As an alternative, they used a priori classification of bridges and

bridge components into categories based on factors believed to significantly affect the

deterioration of the particular bridge components. Through this heuristic classifi-

cation, all of the three primary bridge components analyzed (deck, superstructure,

and substructure) were initially grouped by primary material type under the logical

expectation that the deterioration rates would be strongly associated with character-

istics of the long-term durabilities of the construction materials. As a secondary level

of classification, bridge decks were further sub-classified into bins by average daily

traffic (ADT), superstructures were sub-classified by both structural design type and

highway functional classification, and substructures were sub-classified by geograph-

ical region. Statistical analysis of the then-limited historical condition rating data

indicated deterioration of bridge condition with age, but ultimately was found un-
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reliable for development of deterioration models due to ill-conditioning of the data

caused by characteristics of the bridge age distribution and effects of maintenance

activities. The deterioration models ultimately adopted at the time of this study

were based on the results of an opinion survey of professional bridge inspectors and

supervisors (Chen and Johnston, 1987). These heuristic deterioration models were

used in the development of the Optimum Bridge Budget Forecasting and Allocation

Module (OPBRIDGE) that produced North Carolina’s original BMS (Isa Al-Subhi

and Johnston, 1989).

A later study proposed the use of the average change in condition ratings over

multiple years to model deterioration and to improve the performance of the North

Carolina BMS (Abed-Al-Rahim and Johnston, 1991). The categorization of bridge

components on the basis of expected explanatory factors was expanded to include

geographic classifications in an attempt to account for the perceived dependence

of deterioration rates on the presence of marine environment and de-icing salt ap-

plications. The study developed illustrative sets of deterioration models that were

consistent in terms of predicting deterioration with respect to various material and

environmental factors as well as other considerations (Abed-Al-Rahim and Johnston,

1991). Updating of the bridge deterioration models in OPBRIDGE was, however,

implemented much later using the average durations of bridge components at par-

ticular condition ratings (Duncan and Johnston, 2002). Both of these models, while

still deterministic, had the advantage of using time series data of bridges in addition

to the cross-sectional data used exclusively by the earlier models. The NBI data is

cross-sectional as it is comprised of inspection records that report only the condition
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ratings of all the nation’s bridges in the current year. Time series data on the other

hand represents the historical condition data of a particular bridge as it changes over

time. In early studies that were disadvantaged by insufficient time series data for

analysis, the cross-sectional condition rating data of all bridges of various ages was

aggregated to represent the expected deterioration of a single representative bridge.

2.1.1 Linear and Non-linear Regression Models

During the early 1990’s, similar deterministic deterioration modeling studies were

carried out using NBI bridge inventories for the whole nation as well as those of in-

dividual states, some of which are reviewed here. Linear regression was used in a

study by the Transportation Research Center of the U.S. Department of Transporta-

tion (DOT) to correlate the relationship of bridge condition ratings with other bridge

characteristics recorded in the NBI database in a linear statistical model (Busa et al.,

1985). An improved piecewise linear regression was used in other studies performed

for the Wisconsin DOT and the New York State DOT (Fitzpatrick et al., 1981, Hy-

man and Hughes, 1983). Deterioration of bridges in the New York City Metropolitan

area was modeled as function of age using two methods: 1) the average rate of change

for each condition rating and 2) the average condition rating of bridges of all ages

(Yanev and Chen, 1993). Nonlinear regression models were also developed for the

first time using time-series data for Pennsylvania bridges (West et al., 1989). Most

of these studies developed composite deterioration curves with respect to age with

minimal or no classification of bridges into categories based on characteristics like

structural design or environment.
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In subsequent years, several studies used nonlinear statistical regression along with

classification of bridges into relatively homogeneous groups on the basis of poten-

tial determinants of deterioration identified through literature review and discussions

with the members of the bridge engineering community. To produce a representative

sample of diverse environments, one of these studies analyzed superstructure dete-

rioration with respect to age and ADT for all of the steel and prestressed concrete

bridges in the national inventory as well as individually for the seven states of Col-

orado, Illinois, Iowa, North Carolina, Pennsylvania, Tennessee, and Texas (Veshosky

et al., 1994). This study found that there was no statistically significant difference

in the rates of deterioration of steel superstructures relative to prestressed concrete

superstructures. In general, age was found to be the most statistically significant

factor followed by ADT, although the impact on the rate of deterioration was found

to decrease with time. Another study was performed for bridges within the state

of Nevada that correlated condition ratings with age while accounting for all other

factors through a priori classification of bridges (Sanders and Zhang, 1994). Explana-

tory factors investigated in these studies included material type, structure type, ADT,

maintenance responsibility, rehabilitation status, and geographical region. A particu-

lar challenge faced when increasing the number of variables in both of the studies was

the reduced number of bridges in each category. The classification of condition rating

data into such datasets of limited sample size ultimately compromised the reliability

and applicability of the statistical models. To overcome this problem, investigation

of some combinations of variables necessarily had to be abandoned whereas others

were combined into larger, more generalized groups that would lend themselves to a
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more statistically significant analysis. This was especially true for Nevada, as it is a

sparsely populated state with a relatively small bridge inventory.

2.1.2 Limitations and Contributions of Deterministic Models

While deterministic deterioration models based on simple statistical properties offer

relative computational ease, they are associated with some critical inherent limita-

tions. Primarily, they neglect the stochastic nature of the deterioration process as

well as the subjectivity and uncertainty present in the condition rating data. For

instance, it was found that although the polynomial regression techniques gave rea-

sonable results within the bounds of available data, their projection beyond these

bounds could be significantly misleading, thus severely limiting their predictive relia-

bility and usefulness in BMS. Probabilistic models have been shown to provide better

extrapolation capabilities and can be easily integrated into dynamic BMS optimiza-

tion processes resulting in more efficient and effective MR&R strategies (Butt et al.,

1987). Furthermore, a priori classification of bridges and bridge components may

overlook the impact of unobserved or unmodeled factors that influence deterioration

rates. Stated another way, the statistical model may ultimately predict the average

deterioration for a group of bridges well but inaccurately predict the deterioration of

the bridges individually. This phenomenon is evident from a comparative study of

deterioration models developed using two different approaches and applied to forty

bridges in the Indiana bridge database. It was found that the magnitudes of predic-

tion errors in models based on polynomial regression techniques were much higher

compared to those in models based on a probabilistic Markov chain approach (Jiang,
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2010).

The comparative lack of accuracy in model predictions has led to the gradual re-

placement of strict deterministic approaches with probabilistic approaches through-

out the majority of state BMS implementations. However, despite their limitations,

studies using deterministic approaches succeeded in deriving some common inferences

about bridge deterioration behavior. For instance, the statistical analysis of condi-

tion rating data revealed that decks deteriorate faster than the superstructure or the

substructure components of a bridge (Chen and Johnston, 1987, Sanders and Zhang,

1994). Likewise, similar components may deteriorate at different rates depending

upon various factors, including geographical location and ADT (Chen and Johnston,

1987, Veshosky et al., 1994). Decks with higher ADT tend to deteriorate faster than

those with lower ADT and, perhaps inter-related, bridges on secondary highway sys-

tems comprising local roads and minor collector roads tend to deteriorate at a lower

rate than those on primary systems and interstates (Abed-Al-Rahim and Johnston,

1991, Chen and Johnston, 1987). Impact of saltwater in coastal regions, freeze-thaw

cycles, and the use of de-icing salts in cold climatic regions were found to measurably

exacerbate deterioration (Abed-Al-Rahim and Johnston, 1991, Sanders and Zhang,

1994). Bridges with expansion joints were found to deteriorate faster than continuous

span bridges without joints (Yanev and Chen, 1993). With respect to maintenance

actions, rehabilitated bridges tend to deteriorate faster than new bridges (Sanders

and Zhang, 1994, Yanev and Chen, 1993).
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2.2 Markov Chain Models

Probabilistic models aim to capture the stochastic nature of the deterioration pro-

cess and thereby improve the accuracy of prediction. These models are discrete time

and state as the infrastructure condition in these models is represented by discrete

condition states at fixed inspection intervals. The earliest probabilistic models con-

sidered deterioration as a discrete time Markov process, called a Markov chain, with

a finite number of states (Butt et al., 1987, Jiang et al., 1988). The Markov chain

models are also called incremental models or state-based models as they model the

change in condition or “state” over fixed increments of time. The change in state

during a fixed time increment is treated as a random variable that captures the un-

certain and random nature of deterioration. Aggregating these random variables over

time provides a more realistic representation of deterioration as a stochastic process

rather than a purely deterministic one like in the models presented earlier (Madanat

and Ibrahim, 1995, Papoulis and Pillai, 2002).

2.2.1 Markov Decision Processes

A key component of the Markovian approach is the definition of the states in the

system such that they capture the complete status of the system and all the infor-

mation necessary for the decision making process. Consideration of all N number

of bridges in a particular state inventory, a number of which may run in the tens

of thousands, each with n possible states corresponding to the NBI condition rat-

ings, would make the total state space of size nN , which would be computationally

burdensome. This problem has been resolved by pre-classifying the bridges into cat-
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egories with similar characteristics according to variables like material and design

type, traffic loading, and geographical and climatic regions, as described earlier in

the deterministic approaches. This allows for a tractable representation of the bridge

system. A Markov model is then constructed for each class of bridges with the capa-

bility to generate models for individual bridges in each class. As mentioned earlier,

this process may result in problems associated with limited data at the lower levels

of the classification hierarchy when the number of classes increases to the extent that

there are not enough bridges in each class to enable a statistically significant analysis

(Scherer and Glagola, 1994).

A Markov process is a stochastic process with the ‘Markovian’ property or assump-

tion of time-independence in which the conditional probability P of a future condition

state depends only on the present state and is independent of the past states. This

can be represented for a discrete time, discrete state stochastic process Xt as given

below (Morcous et al., 2003).

P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, ....., X1 = i1, X0 = i0)

= P (Xt+1 = it+1|Xt = it) (2.1)

where it is the condition state at time t. In the context of bridge deterioration, the

NBI condition ratings ranging from 0 to 9 represent the ten possible states of the

bridge component being modeled with state 1 corresponding to a condition rating of

9 and state 10 to a condition rating of 0. The change of state is assumed to occur at

discrete time intervals equal to the routine inspection period of 2 years. Consequently,
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the probabilities Pi,j that a bridge component would transition from state i to another

state j during a specified period are represented in a transition probability matrix

given below.

P =



P1,1 P1,2 . . . P1,10

P2,1 P2,2 . . . P2,10

˙ ˙ . . . ˙

˙ ˙ . . . ˙

˙ ˙ . . . ˙

P10,1 P10,2 . . . P10,10



(2.2)

where i = 1, ...., 10 and j = 1, ..., 10. The indices, i and j, can take any value

between the lowest and the highest condition state for the particular bridge inven-

tory database. The size of this matrix, however, is specific to the discrete integer

range of condition states in the rating system used. For example, the New York

State Department of Transportation (NYSDOT) implements its own visual inspec-

tion program that assigns condition ratings within the range from 1 to 7, resulting

in 7 condition states and therefore a 7x7 transition probability matrix. Similarly, the

condition ratings range from 1 to 5 for the Commonly Recognized (CoRe) Structural

Elements defined by the American Association of State Highway and Transportation

Officials (AASHTO) and the Federal Highway Administration (FHWA), resulting in

5 condition states and a 5x5 transition matrix. Each row of the matrix represents

the probability of moving from one state to any other state, including itself. Con-

sequently, the sum of the probabilities in each row should be equal to one. The
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associated probabilities of each condition rating remaining unchanged between in-

spections is simply the Pi,i probability values, which are found on the diagonal of the

transition matrix. The transition matrix has zero values below the diagonal, because

it is assumed that the deterioration takes place without rehabilitation and hence the

probability of an improvement at any state is zero. Furthermore, for computational

simplicity it is routinely assumed that a bridge component would not deteriorate by

more than one state in a single inspection cycle. The practical influence of these

simplifying assumptions on the transition matrix is shown in the reduced form shown

below:

P =



Pkk Pk(k−1) 0 0 . . . 0 0

0 P(k−1)(k−1) P(k−1)(k−2) 0 . . . 0 0

˙ ˙ ˙ ˙ . . . ˙ ˙

˙ ˙ ˙ ˙ . . . ˙ ˙

0 0 0 0 . . . P22 P21

0 0 0 0 . . . 0 P11



(2.3)

where k is the highest condition state and 1 is the lowest condition state, and Pk(k−1) =

1 − Pkk, P(k−1)(k−2) = 1 − P(k−1)(k−1).......P21 = 1 − P22 and P11 = 1. The transition

probability of the lowest state P11 is one because there is no possibility of transitioning

to a lower state that does not exist (Butt et al., 1987, Jiang et al., 1988, Madanat

et al., 1995). The transition probability matrix can be used to predict the future

condition of a specified bridge component if its present condition is known. The

condition at any point in time is represented by a vector; for example, the initial
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state vector Z0 for a component in new condition will be [1 0 0 0 0 0 0 0 0 0] for

the NBI condition rating scale of 0 to 9 with 9 signifying the good as new condition.

Given the transition matrix P as defined above, the future state vector Zt at time t

is obtained using

Zt = Z0 · (P )t (2.4)

Since the initial state vector is a known quantity, it is necessary to determine

the transition matrix to completely define the Markov chain (Jiang et al., 1988). A

illustrative Markovian bridge deterioration model is shown in Figure 2.2, where all of

the transition probabilities Pi,i on the diagonal of a 5x5 transition matrix are 0.8. The

Y-axis represents the initial state, Z0, when the probability of being in condition state,

5, is 1, and that of being in all the other states is zero. A vertical line drawn parallel

to the Y-axis at any time, t, on the X-axis represents the state vector, Zt, comprised

of the probabilities of being in each of the 5 states, and the expected condition rating

at that time, respectively, using equations 2.4 and 2.8. The accuracy of a Markovian

model depends nearly exclusively on the accuracy of the transition matrix. Various

methods have been developed to calculate the transition probabilities.

The earliest methods for determining transition probabilities were developed mainly

in construction of pavement deterioration models. One of these defined the transi-

tion probability, Pi,j, simply as the percentage or proportion of pavement sections

in condition state i that deteriorated to condition state j in one inspection period.

Mathematically, this yields:

Pi,j =
ni,j
ni

(2.5)
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FIGURE 2.2: A Markovian bridge deterioration model.

where ni is the total number of pavement sections in condition state i and ni,j is

the number of pavement sections whose condition state changes from i to j in one

inspection period (Scherer and Glagola, 1994, Wang et al., 1994). An inspection cycle

is representative of a specified duration of weather and traffic causing deterioration

in the pavement condition. In the early models, not only was the duration of the

inspection cycles assumed to be the same, but the deterioration contributing factors

of weather and traffic were also assumed to be the same in subsequent inspection

cycles irrespective of the age of the pavement section. Consequently, the transition

probabilities were not expected to change from one inspection cycle to the next.

This type of process is deemed a homogeneous or stationary process and known as a

Markov Decision Process (MDP) (Frangopol et al., 2004, Jiang et al., 1988).

The assumption of constancy of behavior within inspection cycles relative to factors

producing deterioration over the life of a infrastructure component is not realistic

as changes occur due to increases in traffic loads or modification of maintenance
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policies. This inadequacy was recognized after observing the deviation of the actual

deterioration curve from the predicted deterioration curve based on MDP for a 30 year

life of pavement (Butt et al., 1987). To overcome this limitation, a new model was

developed in which the life of the pavement section was zoned into 6-year periods. The

deterioration rate was assumed to be constant within each zone and a homogeneous

Markov chain with a stationary transition matrix was developed specific to each

zone. A non-homogeneous Markov chain was then developed to transition pavement

sections from one zone to another. During such transitions, each subsequent zone

takes the last state vector of the previous zone as its starting state vector. The

deterioration curve developed using this model was found to more closely represent

the actual deterioration curve (Butt et al., 1987). This model was also adopted for

developing the Markov chain based bridge deterioration models for the Indiana bridge

database, which were the earliest models of these kind developed in the U.S. (Jiang

et al., 1988, Sinha et al., 1988), and continue to be used in the present-day Indiana

Bridge Management System (IBMS) (Sinha et al., 2009).

In the previously mentioned models, a non-linear programming approach was used

to calculate the transition probabilities. This approach is known as the expected-

value method and is still the most widely used method of calculating Markov chain

transition matrix probabilities. In this method, the average condition rating of the

bridge components in a particular zone or age group is first determined by applying

a polynomial regression to all the bridges in that group in the form,

Yt = β0 + β1t+ β2t
2 + β3t

3 (2.6)
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where Yt is the bridge component condition rating for a bridge at age t, and β0, β1,

β2 and β3 are regression coefficients to be estimated. The transition probabilities are

then calculated by minimizing the distance between the average condition rating Ŷt

obtained through this regression and the theoretical expected value E(t, P ) of the

condition rating based on the Markov chain at time t for the transition probability

matrix P . The objective function to be minimized is thus given by

min

N∑
t=1

|Ŷt − E(t, P )| (2.7)

subject to 0 ≤ Pi,j ≤ 1 and
∑k

j=1 Pi,j = 1 for i, j = 1, 2, ....., k

where N is the number of years in one age group, and Pi,j is the transition probability

in the transition probability matrix, P , associated with moving from condition state i

to condition state j over the inspection cycle (Butt et al., 1987, Jiang et al., 1988). In

terms of equations (2.3) and (2.4), if the condition states are represented in a column

vector R, E(t, P ) in equation (2.7) is given by (Madanat et al., 1995)

E(t, P ) = Zt ·R (2.8)

The unknown transition probabilities are the decision variables and the maximum

number of these that can be estimated using the expected value method is the num-

ber of years in each age group (Madanat et al., 1995). The assumption that a bridge

component does not deteriorate by more than one state in any one inspection cycle, as

mentioned earlier, is helpful in this regard by reducing the probabilities of transition

to other states to zero thereby significantly minimizing the number of decision vari-
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ables that require estimation (Madanat et al., 1995). This assumption was recently

applied to element level inspection data to determine transition probability matrices

and develop deterioration models for use in Pontis for the Florida Department of

Transportation (FDOT). The so-called “One-step method” was found not only to be

simpler and require smaller sample sizes, but also more robust while having the same

coefficient of determination as the regression model that did not use this assumption

(Sobanjo and Thompson, 2011).

A limitation of the expected-value method is that it cannot handle the case where

the condition ratings in a particular age group remain the same or tend to increase

instead of decreasing. In such a case, the non-linear optimization statement provided

in equation (2.7) may result in a unity or close to unity transition matrix P and,

consequently, the deterioration curve flattens out at this point. This problem has

been resolved by introducing a second level Markov process (Agrawal et al., 2010). In

this second level process, the average condition rating, Ŷt, in equation (2.7) is derived

from the first level Markov chain predictions instead of the originally used polynomial

regression. The objective function is then minimized to determine a single transition

matrix for the total number of years in all age groups combined. The deterioration

curve generated by this second level transition probability matrix is found to follow

the original data but continues realistically to exhibit a decreasing trend even in case

where the original curve derived from the first level Markov process stops decreasing

beyond a certain age (Agrawal et al., 2010).
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2.2.2 Commercial BMS Packages and Element-Level Models

The Markov chain models are widely recognized as better than deterministic models

by accounting for the stochastic nature of the deterioration process. Moreover, these

models have the advantage of computational simplicity and can be applied to both

network level and project level bridge management systems. As a result, MDP-

based deterioration models were adopted in the two U.S. national bridge management

systems, AASHTOWare Pontis and BRIDGIT, that have been implemented in over

forty states since their development in the late 1990s (Golabi and Shepard, 1997,

Hawk and Small, 1998). Regarding these two commercial softwares, their difference is

based on the optimization strategy employed. Pontis follows a top-down approach by

doing network level optimization first before determining needs of individual bridges.

BRIDGIT, on the other hand, implements project-level optimization prior to making

network level recommendations (AASHTO, 2011b). BRIDGIT is better suited for

use by smaller transportation departments with limited staff resources, but it can

be run in parallel with Pontis to complement the decision process by providing an

independent set of recommendations (Hawk and Small, 1998).

AASHTOWare Pontis requires the use of element level condition rating data and

development of deterioration levels for each element. This requires more detailed data

than available in the NBI as each bridge component (deck, superstructure, and sub-

structure) is comprised of numerous elements that currently do not get independently

recorded condition ratings. Bridge inspections at the element level were formalized

by AASHTO in 1997 through its Guide for Commonly Recognized (CoRe) Elements,



28

which has been recently updated (AASHTO, 2011a). Most states did not have suffi-

cient bridge condition rating data for their bridge inventories when they implemented

Pontis. To overcome this limitation, Pontis provides for development of the initial

transition probability matrix using “expert elicitation” data. Expert elicitation data

is comprised of responses from qualified transportation engineers and inspectors to a

questionnaire asking for their estimate of transition probabilities for various elements

in a bridge inventory. For example, in Florida, this took the form of “do-nothing”

probabilities developed by asking bridge engineers to estimate the median number

of years, Y , that an element would take to transition out of a given condition state.

The estimate was established as the duration at which the probability of staying in

the same condition state dropped to 50%. The unknown “stay-the-same” transition

probability, Pi,i was then calculated using (Sobanjo and Thompson, 2001)

P Y
i,i = 50% (2.9)

which implies,

Pi,i = 0.5(1/Y ) (2.10)

Under the assumptions that an element can transition by only one state at the most in

any given inspection cycle and that there is no possibility of transitioning to a better

state in absence of any maintenance action, it is possible to ascertain the remaining

transition probabilities described in equation (2.3). Transition matrices obtained

from this approach were used to develop the first deterioration models in Pontis.

However, as new inspection data for element-level condition ratings become available,
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Pontis uses a Bayesian approach to update the initial transition probabilities. Using

this approach, updated posterior transition probabilities are developed by taking a

weighted average of the prior transition probabilities and those derived from the

observed inspection data (Bulusu and Sinha, 1997, Golabi and Shepard, 1997). This

leads to an improvement in the accuracy of the models over time as the process

continues (Golabi and Shepard, 1997). The same concept is also used in BRIDGIT

(Hawk and Small, 1998).

Recently, with the availability of sufficient element-level inspection data, FDOT

estimated its transition probability matrices entirely from historical inspection data

using regression and the one-step methods mentioned earlier instead of the expert

elicitation process used in the 2001 study (Sobanjo and Thompson, 2011). The median

transition times Y were also calculated from the transition probabilities Pi,i using the

inverse of equation (2.9)

Y =
ln (0.5)

ln (Pi,i)
(2.11)

It was found that the average ratio of the transition times for the new deterioration

models to those of the earlier models was 1.97, indicating that expert opinion tends

to overestimate the probabilities associated with deterioration (Sobanjo and Thomp-

son, 2011). The Colorado Department of Transportation also recently estimated its

transition probability matrices from its historical data using the percentage predic-

tion method. The median transition times were also calculated using equation (2.11)

(Hearn, 2012). The median transition times for prestressed concrete superstructure

elements were found to be unreasonably high, often exceeding 100 years, in both of
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these studies (Hearn, 2012, Sobanjo and Thompson, 2011).

The limitation encountered when applying regression techniques to historical ele-

ment level inspection data has been the lack of sufficient condition rating data avail-

able for each element. Pontis has the ability to handle as many as 160 elements

each having up to four deterioration models corresponding to the four specified en-

vironments (benign, low, moderate, and severe). To have sufficient sample sizes for

meaningful regression analysis, the elements have to be grouped by component (deck,

superstructure, substructure) or environment or both. Since grouping results in loss

of corresponding sensitivity, for example, collapsing of all environmental categories

into one would result in loss of sensitivity to environmental factors, different levels

and types of classifications have to be examined to obtain a complete picture (Sobanjo

and Thompson, 2011).

It is pertinent to mention the role of the NBI translator at this point. The NBI

translator works on the concept of assigning relative weights to the condition rat-

ings of elements constituting a particular bridge component (deck, superstructure,

or substructure) and aggregating them to obtain a single condition rating for that

bridge component (Sobanjo and Thompson, 2011). An NBI translator program was

developed by FHWA to help transportation agencies convert the element level inspec-

tion data to the format required for NBI submittals and subsequent consideration for

federal funding eligibility (Markow and Hyman, 2009). However, the translator was

found to have some shortcomings that resulted in inaccuracies in condition rating

prediction, especially for bridges in very good condition. This was because it could

not distinguish effectively between the highest (6 to 9) and the lowest (0 to 3) NBI
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condition ratings. Moreover, it assigned too much weight to the fraction of elements

in the poorer condition states thereby resulting in unreasonably rapid deterioration

rates associated with the NBI condition ratings (Patidar et al., 2007). These inac-

curacies were found to affect all performance measures based on NBI ratings that

were developed for use in the optimization programming and budgeting decision sup-

port tools in the BMS. This was especially true for newly developed BMS software

products like the Multi-Objective Optimization System (MOOS) developed by the

National Cooperative Highway Research Program (NCHRP) Project 12-67 (Patidar

et al., 2007), and the Project Level Analysis Tool (PLAT) and Network Analysis

Tool (NAT), both developed by FDOT (Sobanjo and Thompson, 2011). All of these

optimization tools were found to be highly sensitive to any changes in deterioration

or unit cost inputs. To overcome these issues, FDOT has further improved upon its

version of the NBI translator by applying multiple regression and optimization tech-

niques to two years of bridge inspection data from the Florida bridge inventory to

estimate the relative weights of element condition ratings. Reviews of initially trans-

lated ratings were performed by studying randomly selected bridges and corrections

were applied to the translator algorithms as necessary. Although the final developed

version had similar issues with regard to the lowest and the highest condition ratings,

it performed significantly better than the FHWA translator and produced more accu-

rate translated ratings when compared to the actual NBI inspected ratings (Sobanjo

and Thompson, 2011).

Pontis also has an action effectiveness model to determine the effect of MR&R

activities. Any MR&R action is assumed to produce an immediate transition to a
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better condition state, defined by a set of action effectiveness transition probabilities.

These “do something” probabilities are also obtained through the expert elicitation

process (Sobanjo and Thompson, 2001). The action effectiveness transition probabil-

ities are used once to arrive at the new condition state vector immediately following

the action, after which deterioration is assumed to resume according to the process

defined by the deterioration transition probability matrix for the component. Thus,

any MR&R action has the effect of resetting the deterioration curve to a prior state

in time (Golabi and Shepard, 1997).

Although Pontis has been licensed by 46 states, it is mostly used solely for man-

aging bridge inspection data. Only 17 states, or less than 37%, are using the Pontis

BMS capabilities for network level planning, project planning, or both (Markow and

Hyman, 2009). Many of these states, including Idaho, Virginia, and South Dakota,

have modified and customized the Pontis framework instead of adopting it completely

in its original format (FHWA, 2010b,c). The percentage of states using the deteriora-

tion modeling capabilities of the BMS is even lower at less than 20%. This has been

attributed to various reasons including lack of trained staff for using these models,

lack of data analysis and preprocessing tools needed to generate the models, or lack

of credibility of the available predictive models (Markow and Hyman, 2009). Some

states, including Ohio, Michigan, and New York, develop their own deterioration

models outside of Pontis and input them into Pontis for optimization and decision

making.

At the national level, a National Bridge Investment Analysis System (NBIAS) is

used by FHWA to predict nationwide future bridge conditions and investment re-
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quirements based on the complete NBI database. The prediction models use element

level data and the Markovian models derived from Pontis. Since the NBI data do

not contain element level data, a series of stochastic models, known as the Synthe-

sis, Quantity, and Condition (SQC) models, are applied by NBIAS to “synthesize”

element-level condition data from the NBI data (FHWA, 2010a, Markow and Hyman,

2009). These SQC models are based on statistical analysis of over 10,000 bridges na-

tionwide to form a representative sample of various structural and material configura-

tions. These models enable NBIAS to create a statistical model consisting of a typical

assortment of elements with estimated quantities and condition state distributions for

each structure based on its functional descriptors in the NBI database. NBIAS was

first used in 1999 for preparing bridge-related need estimates for the Conditions and

Performance report submitted biennially to the U.S. Congress. It has replaced the

Bridge Needs and Investment Process (BNIP) model developed earlier by the FHWA

in 1991 (FHWA, 2010a, Markow and Hyman, 2009).

2.2.3 Limitations of Markovian Models and Proposed Improvements

Despite the widespread use of Markovian models and the commonly used ap-

proaches for estimating transition probability matrices, a number of limitations have

been identified in these models. These approaches do not model the effects of various

explanatory variables, and therefore, as mentioned earlier, have to rely on pre-defined

segmentation of the bridge population into homogeneous categories for meaningful

statistical analysis. Moreover, the Markovian assumption of time independence is

contrary to the time dependence of the deterioration process. This time dependence
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can indirectly be taken into account by dividing the bridges within each category fur-

ther into various age groups. However, this grouping is ad hoc and fails to recognize

the continuous nature of the underlying deterioration. The use of linear regression

to calculate transition probabilities, as described in the expected-value method, is

also deemed to be inappropriate by some researchers because the dependent variable,

which in this case is the condition rating, is discrete and ordinal, and not continuous as

presumed by linear regression (Bulusu and Sinha, 1997, Madanat and Ibrahim, 1995,

Madanat et al., 1995, 1997, Mishalani and Madanat, 2002, Morcous et al., 2002).

Different models and approaches for calculating infrastructure transition proba-

bilities have been proposed progressively with a view toward addressing the above-

mentioned limitations. The discrete nature of the dependent variable was first ad-

dressed through applying Poisson regression instead of linear regression in the es-

timation of transition probabilities (Madanat and Ibrahim, 1995). In addition to

improving the predictive fidelity of the previous model, this model also permitted

the development of a relationship between deterioration and the various explanatory

variables affecting it. Further, it eliminated the need for segmenting the bridge popu-

lation into homogeneous groups so that the statistical advantage of having the entire

dataset for estimation was obtained. The model was extended into a negative bino-

mial regression model to relax the constraining assumption of equality of variance and

mean in Poisson regression. Both models were applied to a subset of bridges in the

Indiana State Bridge inventory to estimate the infrastructure transition probabilities.

The results were found to be very close to the actual observed frequencies (Madanat

and Ibrahim, 1995). Another model developed around the same time also accounted
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for the ordinality of the dependent variable and the time-dependence of the deterio-

ration process. This model, known as the ordered probit model, was used to derive

non-stationary transition probabilities for a subset of bridges also from the Indiana

State Bridge Inventory. The results were compared to those obtained from the ex-

pected value method by using a chi-square test on a sample of concrete bridge decks

in condition state 7. The probabilities calculated using the ordered probit model were

found to be more accurate in prediction than prior models (Madanat et al., 1995).

The above mentioned models, however, are still considered deficient in their ability

to address the two issues of heterogeneity and state-dependence found in panel data,

or longitudinal data (Bulusu and Sinha, 1997, Madanat et al., 1997). Panel data is

multidimensional data. It is comprised of data sets combining cross-sectional and

time-series data, such as those being used for deterioration modeling where the de-

terioration behavior of a number of facilities is observed across time (Greene, 1997).

Such data may have persistent facility specific unobserved factors, referred to as “het-

erogeneity”, for example, construction quality, that if not accounted for may bias the

estimates of model coefficients. State dependence, on the other hand, is when the

transition probability of moving from one state to another is dependent on the history

of the deterioration. Such dependence is likely to make some facilities more deterio-

ration prone than others in the same condition rating (Madanat et al., 1997). The

issue of heterogeneity was addressed by developing the binary probit (Bulusu and

Sinha, 1997) and random-effects (Madanat et al., 1997) models. Although no appre-

ciable difference was observed in the coefficient values of explanatory variables, these

models were found to improve significantly the goodness of fit and predictive fidelity
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relative to the previous models (Bulusu and Sinha, 1997, Madanat et al., 1997). The

issue of state-dependence is, however, still unresolved. Madanat et al. (1997) found

that state dependence was present and correlated heavily with the elapsed time in

the condition state. However, once the effect of heterogeneity is accounted for, it

is difficult to distinguish between the effects of time nonhomogeneity as captured in

non-homogeneous Markov chain models and true state dependence (Madanat et al.,

1997).

All of the above-mentioned model improvements were tested only on sample subsets

of bridges and have not been applied to complete statewide bridge inventories for

actual use in a BMS. However, by investigating and exposing the weaknesses of the

state-based models, these models served as precursors to the time-based or duration

models discussed in the following section.

2.3 Duration Models

Duration models are those that model the time or duration that a bridge compo-

nent remains in a particular condition state. In these models, the duration until the

occurrence of the event of deterioration to the next lower condition state is treated

as a random variable, instead of the event itself as done in the state-based Markovian

models. Duration models have been found to better model the stochastic nature of the

deterioration process by accounting for duration dependence among other aspects of

deterioration that could not be considered in earlier models. The earliest time-based

models were the state increment models developed for the pavement management and

bridge management systems of the New York State Thruway Authority (NYSTA). In
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these models, the concept of state transition time was defined as the time between

two consecutive changes of state, or in other words, the time taken by a bridge com-

ponent to transition from an initial condition state to the next lower condition state

(Ravirala and Grivas, 1995). A uniform distribution of transition time was assumed

between minimum and maximum values of transition time, which were estimated on

basis of expert elicitation. This assumed parametric distribution was then used to

estimate the cumulative probability of the occurrence of a specified state transition

event within any specified time, known as the ‘transition probability’ (DeStefano and

Grivas, 1998). The initial models were verified and enhanced by determining the

transition probabilities using a non-parametric Kaplan-Meier approach and adding

an elapsed-time parameter, respectively (DeStefano and Grivas, 1998). The revised

models were then tested on a subset of 123 bridge decks located on the New York

State Thruway and the resulting deterioration models were found to be more accurate

than the original models. These models used life data analysis techniques on bridge

inspection data for the first time. Previously, these techniques had long been used

in engineering for reliability studies of industrial components, in the biomedical field

for survival time analysis of patients diagnosed with a disease, and more recently, in

the social sciences (Greene, 1997). Life data, or duration data, has typical charac-

teristics like censored observations that were taken into account in this study. Later

researchers used survival analysis techniques to further develop the duration models

(Mauch and Madanat, 2001, Mishalani and Madanat, 2002). The problem of cen-

sored observations in duration data and the basic concepts of survival analysis are

described in the following subsections before continuing further with the review of
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duration models in bridge deterioration.

2.3.1 Censored Data

‘Censoring’ is the term applied to instances when a particular event is not com-

pletely observed, and it is a commonly encountered and unavoidable problem in anal-

ysis of any duration data. Bridge condition rating data has a large number of censored

observations, the reason being that discrete time measurements are made during the

continuously ongoing deterioration process. A commonly occurring type of censored

observation is the right censored observation where the observed period is known to

be less than a certain value. There are many instances of right censored observations

in condition rating data, such as at the beginning and end points of the data. For

example, let’s consider a bridge component that had a condition rating of 7 at the

beginning of the observation period in 1981 and stayed at that rating until 1987 when

it changed to 6. In this case, all we know is that the time in condition state 7 was at

least 6 years as we cannot say how long it was at that rating before the observation

first began in 1981 when the state inventory was initiated. Similar is the case for

condition ratings observed at the most recent observation period (currently 2015),

when we only know that the observed time in the state is at least as long as the

actual time, since the remaining duration in that state has yet to be observed.

Likewise, the condition rating of a bridge component may increase during its life-

time because of maintenance actions. This represents a premature interruption of

the natural deterioration processes. For example, if an observed condition rating of

5 increases to 7 due to maintenance, we do not know how long the bridge compo-
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nent would have stayed at rating 5 in the absence of maintenance. Therefore, the

actual duration of condition rating 5 for the structure is again not fully observed

and only known to be as long as or longer than the observed duration, making it a

right-censored observation.

In addition to right censoring of data, bridge condition rating data is also subject

to a form of censoring due to the discrete interval of inspection recording. Condition

ratings are required to be recorded at least every two years in the USA. Therefore,

although deterioration itself is a continuous process, the accuracy of the time measure-

ment is limited to the two year inspection interval. This type of discrete measurement

results in a type of incomplete observation of data known as interval censoring. For

example, if a bridge component is observed to be at condition rating 6 since 1992,

and remains at the same condition rating during inspections in 1994 and 1996, but

deteriorates to condition rating 5 in 1998, all we can say is that the time that it stayed

in condition rating 6 is between four years and six years.

Presence of censored observations in data does not lend well to deterministic model-

ing or many conventional statistical regression techniques. However, survival analysis

models can account for the effect of censored observations and are therefore suitable

for analysis of bridge condition rating data (Greene, 1997, Hosmer and Lemeshow,

1999).

2.3.2 Survival Analysis Concepts

Analysis of duration or life data, known as survival analysis, is a category of sta-

tistical analysis that models the time until the occurrence of an event of interest.
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In such analysis, the duration observed is referred to as survival time or time until

failure. In analyzing bridge condition rating data, this time, T , would be the duration

that a bridge component stays at a particular condition rating until it deteriorates to

a lower rating. If T has a cumulative distribution function, F (t), at time, t, then the

probability that T exceeds t is given by the Survivor or Survival function, S(t), given

by (Greene, 1997),

S(t) = 1− F (t) = Pr(T ≥ t) (2.12)

The survival function, or cumulative survival rate, is a non-increasing function of

time that takes a value of one at t = 0 and a value of zero at t =∞. Given that the

survival time exceeds t or T ≥ t, the probability that the failure event will occur in

the next small interval of time, ∆t , or when t ≤ T ≤ t+ ∆t, is given by the hazard

function, l(t,∆t), where

l(t,∆t) = Pr(t ≤ T ≤ t+ ∆t|T ≥ t). (2.13)

The hazard function is usually characterized by using the hazard rate function, h(t),

which is the instantaneous rate of failure at time t and is given by

h(t) =
lim∆t→0(Pr(t ≤ T ≤ t+ ∆t)|T ≥ t)

∆t
= − d

dt
lnS(t). (2.14)

The hazard rate of a bridge deck at a particular condition rating is a measure of

the risk of dropping to a lower rating at any given time, t. The hazard rate is also

known as the conditional failure rate and depends on when the observation was made.

If the hazard rate is constant and does not vary with time, it implies that the process

is memoryless, like the Markovian processes discussed earlier. This is also known as
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duration independence and can be modeled using an exponential distribution,

S(t) = e−λt (2.15)

where h(t) = λ (a constant). In general, the hazard rate function may have an upward

or a downward slope depending on whether the risk of failure increases or decreases

with time. This is termed as positive or negative duration dependence, respectively

(Greene, 1997).

Let f(t) be the probability density function of T associated with F (t). It is the

probability of failure in a small interval of time per unit time, also known as the

unconditional failure rate. The probability density function, the cumulative density

function, survival rate, and hazard rate are related as follows,

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
(2.16)

The sum total of risk or hazard up to any time, t, is given by the cumulative

or integrated hazard function, H(t), and it is a useful tool in survival analysis. Its

relationship to the survival function is given by,

H(t) =

∫ t

0

h(x)dx = − lnS(t) (2.17)

The cumulative hazard function is zero at time t = 0 and infinity at t =∞ (Lee and

Wang, 2003).

Duration data can be modeled using non-parametric, fully parametric, or semi-

parametric methods. Non-parametric methods are strictly empirical or distribution-

free as they are not constrained by any pre-imposed structure. A commonly used non-
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parametric approach is the Kaplan-Meier estimator, also known as the product limit

estimator, which was used for developing duration based bridge deterioration models

by DeStefano and Grivas (1998), as mentioned earlier. Although this approach is

simple and flexible, it is not possible to relate exogenous explanatory factors to the

dependent variable using this approach.

2.3.3 Parametric Duration Models

Parametric models are those that follow a theoretical distribution mathematically

defined by one or more parameters. The exponential distribution that applies to

the constant hazard rate model is one such parametric distribution. A parametric

generalization of the exponential distribution that allows for a duration dependent

hazard rate is the Weibull distribution. The Weibull distribution is characterized by

a shape parameter, γ, and a scale parameter, λ, that determine the shape and the

scale of the distribution, respectively. Estimation of these distribution parameters is

done by maximizing the statistical likelihood function. The survivorship function for

a Weibull distribution is given by

S(t) = e−(λt)γ (2.18)

A limitation of the non-parametric and parametric distributions relative to the

semi-parametric distributions is that they cannot directly model the effect of exoge-

nous variables. This limitation can however be overcome by defining λ of the Weibull

distribution as an exponential function of the exogenous variables (Greene, 1997,

Mishalani and Madanat, 2002).
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It is possible to determine the transition probabilities of Markovian state-based

models from those of time-based models. In fact, transition probabilities derived

from time based models are found to give more accurate results, particularly when

inspection data are available for a sufficiently long and continuous time period (Mauch

and Madanat, 2001). Duration models using the parametric Weibull distribution were

developed for a subset of reinforced concrete bridge decks in the Indiana State bridge

inventory (Mishalani and Madanat, 2002). This study illustrated a methodology for

determining the state transition probabilities from transition time distributions. The

results highlighted that deterioration rates of bridge components could exhibit differ-

ent behavior at different condition states. For example, condition state 7 was found

to exhibit the Markovian property of duration independence whereas condition state

8 had a hazard rate that was positively duration dependent (Mishalani and Madanat,

2002). All of these studies proposed using estimated duration distributions for com-

puting accurate transition probabilities for the corresponding state-based models in

order to construct the deterioration models (DeStefano and Grivas, 1998, Mauch and

Madanat, 2001, Mishalani and Madanat, 2002).

Recently duration models using the Weibull distribution were developed for the

New York State Department of Transportation (NYSDOT) (Agrawal et al., 2009,

2010). The deterioration models were constructed by calculating the expected dura-

tion spent in each condition rating using

E(Ti) = ηiΓ(1 +
1

βi
) (2.19)
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These duration based deterioration models were compared to Markovian models

developed using the second level Markov process. The Weibull models were found to

be more realistic and were therefore adopted for use in the NYSDOT BMS (Agrawal

et al., 2009, 2010). A Weibull based enhancement was also used to improve the

Markovian deterioration models recently updated for the FDOT database (Sobanjo

and Thompson, 2011).

Weibull based models, however, can only model monotonically increasing or de-

creasing hazard rate functions. They cannot model unimodal distributions frequently

found in infrastructure deterioration (Yang et al., 2013). Moreover, they cannot take

into account the effect of explanatory variables without preclassification of data.

2.3.4 Semi-Parametric Duration Models

Semi-parametric models, on the other hand, support multivariate analysis while

not making any assumptions about the shape of the distribution. A commonly used

semi-parametric approach is the Cox Proportional Hazards Model (Cox, 1972), which

defines hazard rate, h(t, ~z), at time t and for covariates, ~z, in terms of two components:

1. A non-parametric baseline hazard function, h0, which varies only with time, and 2.

A time-independent multiplier function using the exponential function to represent

the effects of the covariates, ~z, through regression coefficients, ~β, as given by,

h(t, ~z) = h0(t)e~z
~β = h0(t)e(z1β1+z2β2+...znβn) (2.20)

Here, ~z is a row vector of covariates or explanatory factors and ~β is a column vector

of the corresponding regression coefficients that define the effect of the covariates on



45

the hazard rate. The baseline hazard rate is the underlying model for the default

factors or with covariates set to zero. The multiplier function associated with the

covariates adjusts the hazard rate proportionally to the values of the covariates. The

Hazard Ratio, HR, is defined as the relative risk of instantaneous failure of any two

items observed at time t associated with covariate sets ~z1 and ~z2, and is constant, as

shown below, thus giving the model its name (Kumar and Klefsjõ, 1994).

HR =
h(t, ~z1)

h(t, ~z2)
= constant (2.21)

Semi-parametric models do not restrict the shape of the distribution but give it

better structure than non-parametric models by relating it to various explanatory

variables. Model parameters are estimated by maximizing a partial likelihood function

derived from the distribution. The use of semi-parametric Cox proportional hazards

regression was illustrated for the Indiana state bridge inventory using a subset of

reinforced concrete bridge decks in condition states 6, 7, and 8 (Mauch and Madanat,

2001). Different condition ratings were found to have different hazard functions, which

served to recognize the change in the nature of deterioration of reinforced concrete

from one condition state to the next. For example, for decks in condition state 8

and 7, deterioration may be primarily caused by chemical processes, like chloride

ingress and corrosion, whereas for decks at condition state 6, it may be due more to

mechanistic processes, like delamination cracking. The regression coefficient estimates

were also found to be different and not all parameter estimates were significant for

each condition state. Ultimately, the hazard ratios helped quantify the relative effect

of explanatory variables on the deck deterioration rate at different condition states
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(Mauch and Madanat, 2001) and can be used to improve bridge classification over a

priori groupings.

To overcome the limitations inherent in fully parametric models, an integrated

modeling approach to combine the advantages of semi-parametric and parametric

models has also been proposed (Yang et al., 2013). This approach suggests first

determining the shape of the distribution using the semi-parametric Cox proportional

hazards method, and then fitting a mixed Weibull model to it for ease of determining

transition probabilities and application to BMS. The mixed Weibull model was shown

to produce significantly better results than the two-parameter Weibull model used in

earlier studies (Yang et al., 2013).

2.3.5 Limitations

Duration models are considered appropriate only if more than 20 years of inspection

data are available, otherwise state based models are considered more suitable (Mauch

and Madanat, 2001). Consequently, it is only recently that sufficient NBI records

have been available to facilitate use of these powerful statistical regression models.

It is expected that duration modeling will be a very active and productive area of

bridge management research over the coming decades as analysts exploit the over

three decades worth of condition rating data now available in the NBI. However, for

element level data where only 10 years or less of inspection data is available, duration

models may not give reliable results. To overcome this limitation, various approaches

have been recently suggested. One of these is a backward prediction model that can be

used to generate past historical data from available inspection data (Lee et al., 2008).
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Likewise, an integrated algorithm that can match a suitable modeling technique to

the available data has also been proposed (Bu et al., 2014).

Other bridge deterioration modeling approaches found in the literature review in-

clude Artificial Neural Network techniques (Lee et al., 2008), case based reasoning

(Morcous et al., 2002), and fault tree modeling (Sianipar and Adams, 1997). A two

level approach using probabilistic duration models at the network level and a mecha-

nistic approach at the project level for safety critical bridges has also been proposed

to improve the effectiveness of the BMS (Cusson et al., 2011, Lounis and Madanat,

2002, Morcous et al., 2010).



CHAPTER 3: PROPORTIONAL HAZARDS REGRESSION MODELING

The Cox Proportional Hazards Model (PHM), a type of semi-parametric duration

model, has been used in this study to model the deterioration rates of bridge compo-

nents and their dependence on various exogenous explanatory factors. As described

in Chapter 2 (Section 2.3.4), this model defines the hazard rate as a multiplica-

tive function of a time dependent non-parametric baseline hazard function and a

time-independent exponential function. The time-independent exponential function

represents the effects of covariates on the hazard rate, as given by equation (2.20).

The following sections describe the model-specific interpretation of survival analysis

terminology, model development including model fitting and model selection, and the

assessment of overall goodness-of-fit of the model. This description is largely based

on comprehensive guidance for survival analysis provided in Hosmer and Lemeshow

(1999). In particular, this chapter explains the underlying techniques and assump-

tions used for development of survival functions to model the probability of time

spent by a bridge component in a certain state of deterioration based on historical

condition rating data. These functions later form the basis for development of a semi-

Markov deterioration model in Chapter 4. This newly proposed deterioration model

will reflect the duration dependent nature of transition probabilities as well as the

impact of significant exogenous variables on bridge deterioration rates.
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3.1 Hazard and Survival Functions

Hazard rate, or failure rate, is the instantaneous rate of failure or transition from

one state to another. Hazard rate can be a function of time and include the effect

of explanatory factors. If it is assumed, for the sake of simplicity, that the model

contains only one covariate, z1, the hazard rate for the Cox Proportional Hazards

Model (Cox, 1972) is given by

h(t, z1) = h0(t)e(z1β) (3.1)

where β is the regression coefficient quantifying the effect of z1 on the hazard rate.

Due to the exponential form of the time independent component of the hazard rate

function, the hazard rate is equal to h0(t) when e(z1β) = 1 or z1 = 0. Therefore, h0(t),

known as the baseline hazard function, is the hazard rate of the subject under study

when the covariate affecting it takes a value of zero. For example, in investigating

fatigue failure of a structural component, consider the effect of a dichotomous variable

such as presence or absence of cracking, which takes only two values: z1 = 0 for

uncracked components and z1 = 1 for cracked components. In this case, the hazard

ratio, originally defined in Section 2.3.4, is given by

HR =
h(t, 1)

h(t, 0)
= eβ(1−0) = eβ (3.2)

If β is expressed as logarithm of x,

HR = eln(x) = x (3.3)
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FIGURE 3.1: Hazard functions for fatigue failure of structural components

implying that the risk of failure of cracked components is x times the risk of uncracked

components. For instance, HR = 2 would indicate that cracked components are likely

to fail at twice the rate of failure of the uncracked components. This is illustrated in

Figure 3.1 using a hypothetical linear hazard rate function. It can be observed that,

at any instance, the hazard rate of a cracked component has a value that is twice that

of the hazard rate of an uncracked component. The hazard ratio of the Cox PHM

thus lends itself to a quantifiable and easy interpretation of the comparative effect of

the covariates under study.

The cumulative hazard function, H, is an integration of the hazard rate based on

an assumption of absolutely continuous survival time. For a single covariate PHM,

H(t, z1) =

∫ t

0

h(t, z1)dt = e(z1β)

∫ t

0

h0(t)dt = e(z1β)H0(t) (3.4)

where H0 is the baseline cumulative hazard function, which takes the same value
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FIGURE 3.2: Cumulative hazard functions for fatigue failure of structural
components

at any particular instant of time for different covariates in the same model. The

cumulative hazard function incorporating the effect of covariate z1 can be obtained

by multiplying H0 by the hazard ratio. The cumulative hazard functions for cracked

and uncracked components are shown in Figure 3.2. In this example, H for cracked

components can be obtained by multiplying H0 with HR = 2 when considering the

cumulative hazard function for uncracked components as H0.

Although the cumulative hazard function is typically not used directly, its impor-

tance to survival analysis is that it is the negative logarithm of the survival function,

as given in equation (2.17). Alternatively, the survival function can be written in

terms of the cumulative hazard function using (Hosmer and Lemeshow, 1999)

S(t, z1) = e−H(t,z1) = e−e
(z1β)H0(t) = [e−H0(t)]e

(z1β) = [S0(t)]e
(z1β) (3.5)
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FIGURE 3.3: Survival functions for fatigue failure of structural components

where S0 is the baseline survival function. Continuing with the structural component

failure example, a hazard ratio of e(z1β) = x = 2 > 1 implies that S(t, z1) < S0(t)

since the value of the baseline survival function is always between 0 and 1. This

means that the survival probabilities associated with cracked components are lower

than the survival probabilities associated with uncracked components. The survival

functions for cracked and uncracked components based on the hypothetical hazard

rate functions are plotted in Figure 3.3. A comparison amongst Figures 3.1 to 3.3

illustrates the nature of the relationship between the hazard rate function, cumulative

hazard function, and survival function.

3.2 Model Fitting

Cox proportional hazards regression is performed using a partial likelihood function

based on the concept of maximum likelihood estimation (MLE). MLE employs a

likelihood function that represents the probability of occurrence of observed survival
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time data under the given model. It is employed in survival analysis to estimate the

model parameters from limited and potentially censored observations. For censored

survival data, f(t, z) is taken as the probability of the survival time being exactly t for

uncensored observations and the survival function S(t, z) is taken as the probability of

the survival time being at least t for censored observations. The likelihood function,

l(β), is then obtained by multiplying these probabilities over the entire sample, so

that

l(β) =
n∏
i=1

{([f(ti, zi)]
ci × [S(ti, zi)]

1−ci}. (3.6)

where c = 1 for uncensored observations and c = 0 for censored observations. This can

be written in terms of the hazard function h(t, z) and the survival function (Hosmer

and Lemeshow, 1999), by substitution of equation (2.16), as

l(β) =
n∏
i=1

{[h(ti, zi)× S(ti, zi)]
ci × [S(ti, zi)]

1−ci} =
n∏
i=1

{[h(ti, zi)]
ci × [S(ti, zi)]}.

(3.7)

The estimates of the regression coefficients β, can be obtained by maximizing this

likelihood function with respect to β. For computational simplicity, the logarithm of

the likelihood function, commonly known as the Log Likelihood function, is used for

this purpose, since its maximum occurs at the same value of β. Iterative optimization

methods, such as the Newton-Raphson algorithm or its variations, are commonly em-

ployed on the gradient of the maximum likelihood equations to determine maximum

of the log likelihood function, and consequently the regression coefficients, β (Lawless,

1982).
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3.2.1 Maximum Partial Likelihood Estimation

MLE can be used for parametric models that have fully defined and continuous

hazard and survival functions. However, the proportional hazards model, being semi-

parametric in nature, does not specify a distribution for its error component, which

results in an unknown functional form for the baseline hazard and survival functions.

Therefore, the MLE defined above cannot be used to estimate β since these regression

coefficients are not the only unknown variables within the equation. This problem

can be resolved by defining a partial likelihood function, lp(β), developed only with

terms of the parameters of interest, β (Cox, 1972, Cox and Oakes, 1984, Hosmer

and Lemeshow, 1999). For the proportional hazards model, this partial likelihood

function is

lp(β) =
n∏
i=1

[
eziβ∑

j∈R(ti)
ezjβ

]ci
(3.8)

where each term of the product on the right hand side represents the likelihood of

failure estimated at a particular survival time. The survival times are ordered and

R(ti) is the set of subjects at risk at any time ti, which corresponds to those having a

censored or actual survival time equal to or greater than ti. The log partial likelihood

function is given by

Lp(β) =
n∑
i=1

ci

ziβ − ln
 ∑
j∈R(ti)

ezjβ

 (3.9)

The maximum partial likelihood estimation is performed in a similar way to MLE by

differentiating Lp(β) with respect to β and equating the gradient of the function to
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zero, or

∂Lp(β)

∂β
=

n∑
i=1

ci

{
zi −

∑
j∈R(ti)

zje
zjβ∑

j∈R(ti)
ezjβ

]
= 0 (3.10)

It can be observed that the value of β so obtained is such that the sum of the

covariate over the uncensored subjects is equal to the sum of the risk-set weighted

means of the covariate. The likelihood expressions given above assume that there

are no tied survival times in the observed data. Tied survival times are, however,

common in applied settings. In such cases, it is assumed that the ties in survival

times are due to limited measurement precision and so the r tied values could have

been observed in order of any one of the r! possible combinations. The likelihood

expression given by equation (3.8) is suitably modified for data with tied times to

include each of these arrangements in the denominator (Kalbfleisch and Prentice,

1980). The maximum partial likelihood estimated value of β is generally designated

as β̂. The estimated variance of β̂ is based on the negative of the second derivative

of the log partial likelihood, −∂2Lp(β)/∂β2, which is called the observed information,

I(β). The estimated variance is the inverse of observed information, evaluated at β̂,

or

ˆV ar(β̂) =

[
−∂

2Lp(β̂)

∂β2

]−1

= I(β̂)−1 (3.11)

I(β) takes the form of a matrix in models with multiple covariates and is called the

observed information matrix for such models. The estimated standard error used

for determining the confidence intervals on the estimated coefficients is the positive

square root of the variance (Hosmer and Lemeshow, 1999) or

ŜE(β̂) =

√
ˆV ar(β̂) (3.12)
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The estimated variance and standard error, as defined above, are used to assess

the significance of individual coefficients within a PHM model as well as the overall

significance of the model. Such assessment is required after the preliminary regression

of a PHM and subsequently when adjusting the model, to achieve a lean and improved

final fit. The two most common statistics used to test the significance of coefficients

are the Wald statistic and the partial likelihood ratio, which are described in the

following subsections.

3.2.2 Wald Statistic

The Wald statistic, Z, is the ratio of the estimated coefficient to its estimated

standard error, or

Z =
β̂

ŜE(β̂)
(3.13)

The Wald statistic follows a standard normal distribution under the null hypothesis

that the coefficient is not significant and consequently equal to zero. Therefore, its

two-tailed p-value can be used to determine if the null hypothesis can be rejected, or

in other words, if the coefficient β is significant to the predictive fidelity of the model.

For example, if the p-value is less than 0.05, the null hypothesis can be rejected at the

5% level of significance and the coefficient is deemed to be significant with at least

95% confidence. For a significance level of α, the endpoints of a 100(1 − α) percent

confidence interval (CI) for β are obtained using

CI = [β̂ − Z1−α/2ŜE(β̂), β̂ + Z1−α/2ŜE(β̂)] (3.14)
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Statistical software used to fit PHM models typically provide the estimated maximum

partial likelihood value for each coefficient and the corresponding standard error, Wald

statistic, and p-value. For example, considering again the covariate associated with

the presence of cracking used earlier in the hypothetical model described in Section

3.1, the estimated coefficient would be β̂ = ln(2) = 0.6931. If the estimated standard

error, obtained from a maximum partial likelihood estimate, is 0.1, the Wald statistic

is calculated using equation (3.15) as Z = (0.6931/0.1) = 6.931. Since the two-tailed

p-value for this Wald statistic, as obtained from the standard normal distribution, is

less than 0.001, it can be concluded that the coefficient is significant. Consequently,

the model would indicate that the presence of cracking in the structural component

has a statistically significant effect on the rate of failure under the proportional haz-

ards assumptions. The 95% confidence interval of the coefficient, calculated using

equation (3.16), is (0.6931± 1.96× 0.1) or [0.4972, 0.8892], and gives an estimate of

the expected variability of the parameter under the model assumptions. The confi-

dence interval for the hazard ratio can be obtained by exponentiating the CI bounds

for β̂. The values obtained above are summarized in Table 3.1. In this example, the

TABLE 3.1: Wald statistic and confidence intervals on estimated coefficient

Variable β̂ HR Std. Error Z p-value 95% CI(β̂) 95% CI(HR)
Cracking 0.6931 2.000 0.1000 6.931 < 0.0001 0.4972, 0.8892 1.644, 2.433

confidence interval for the hazard ratio does not contain 1. Therefore, there is greater

than 95% confidence that the hazard rate of the components is significantly affected

by the covariate. In addition to the null hypothesis test on the Wald statistic, this

evaluation of the confidence interval is another way of determining that an individual
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coefficient is significant to the model fit (Hosmer and Lemeshow, 1999).

3.2.3 Partial Likelihood Ratio Test

In addition to the Wald statistic, the partial likelihood ratio test is routinely used

for assessing the significance of individual covariates to the PHM model fit. The

log partial likelihood ratio statistic, G, is defined as twice the difference between the

log likelihood of a model constructed using the covariate and that of a model not

containing the covariate. For a single covariate model,

G = 2(Lp(β̂)− Lp(0)) (3.15)

The statistic G is used to test the null hypothesis on the covariate associated with β̂.

Rejection of the null hypothesis is required to prove the significance of the covariate

with coefficient β̂. In this case, the G statistic follows a chi-square distribution with a

single degree of freedom under the null hypothesis that the coefficient is equal to zero.

This distribution is used to obtain the p-value for the model’s G to determine if the

null hypothesis can be rejected or not. For multivariate models, the significance of

several covariates can be similarly tested by calculating the likelihood ratio statistic

relative to the reduced model not containing these covariates. In this case, the number

of degrees of freedom for the chi-square distribution that G will follow under the null

hypothesis would be equal to the difference in the number of covariates between the

full model and the reduced model. The log partial likelihood ratio test is preferred

for PHM regression as it is easier to compute than the Wald test and other available

methods, such as the score test (Hosmer and Lemeshow, 1999). This is especially
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true in the case of multiple covariate models for which computation of the Wald test

and the score test requires matrix calculations. Moreover, the log partial likelihood

test is considered the best test for assessing the significance of a fitted PHM model

(Hosmer and Lemeshow, 1999). The log partial likelihood value is also a statistical

measure regularly provided by statistical regression software used for PHM. Its use

is illustrated in a subsequent section.

3.2.4 Estimation of the Survival Function

The survival function of a individual subject in a proportional hazards model can

be expressed in terms of the covariate vector, z, for the subject, and the baseline

survival function, S0, for z = 0, as given in equation (3.5) and repeated as follows

S(t, z) = [S0(t)]e
(zβ)

(3.16)

The regression coefficients, β̂, are estimated using the partial likelihood function as

explained in the previous subsections. However, to complete the development of the

proportional hazards model it is necessary to estimate the baseline survival function.

The approach adopted to achieve this is to substitute the maximum partial likelihood

estimates, β̂, for β in the full likelihood function, which is then maximized to obtain

estimates of S0 (Lawless, 1982). This approach is based on the empirical Kaplan-

Meier estimator of the survival function given by

ˆS(t) =
∏
t(i)≤t

(
1− di

ni

)
(3.17)

where t(i) are the rank-ordered survival times in a sample of n independent observa-

tions, di is the observed number of failures at t(i), and ni is the number at risk of failing
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at t(i). The expression (1− di/ni) represents the estimated conditional probability of

survival, α̂i, at the observed ordered survival time t(i). The Kaplan-Meier estimator

of the survival function is the product of estimators of the individual conditional sur-

vival probabilities. The estimator of the survival function in the proportional hazards

model is similarly developed on basis of conditional survival probabilities (Hosmer and

Lemeshow, 1999). The conditional survival probability in a PH model is given by

S(t(i), z)

S(t(i−1), z)
=
{S0(t(i)}e(zβ)

{S0(t(i−1)}e(zβ)
=

{
S0(t(i))

S0(t(i−1))

}e(zβ)
= αe

(zβ)

i (3.18)

where αi is defined as the conditional baseline survival probability. The differentiation

of the PH log likelihood function with respect to αi yields equation (3.19) that can

be solved to obtain the estimator, α̂i, of the baseline conditional survival probability.

∑
l∈Di

e(zlβ̂)

1− αe(zlβ̂)i

=
∑
l∈Ri

e(zlβ̂) (3.19)

where Di is the set of subjects failing at the ordered survival time t(i) and Ri is the

set of subjects at risk of failure at t(i) (Lawless, 1982). In the absence of tied survival

times, Di contains only one subject, and the solution of equation (3.19) is given by

α̂i
e(zlβ̂) = 1− e(zlβ̂)∑

l∈Ri e
(zlβ̂)

(3.20)

In case of tied survival times, however, α̂i can be obtained by using iterative techniques

to solve equation (3.19) (Hosmer and Lemeshow, 1999, Lawless, 1982). As mentioned

earlier, α̂i are determined using the previously estimated β̂.

The estimator of the baseline survival function is obtained by multiplying the
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individual estimators of the conditional baseline survival probabilities using

Ŝ0(t) =
∏
t(i)

α̂i (3.21)

The estimator of the survival function for any subject associated with a given set of

covariates can then be obtained by substituting the corresponding parameter esti-

mates and the estimated baseline survival function in equation (3.16). Software for

proportional hazards regression generally provide an estimator of the baseline survival

function in addition to the estimated regression coefficients.

3.3 Types of Covariates

Explanatory variables or covariates characterizing descriptive features of a popu-

lation that may be linked to survival time may be of different data types and unique

strategies may be required depending on the nature of the explanatory variables.

The statistical regression as well as interpretation of a variable in a proportional

hazards model differs depending on whether it is a binary variable, nominal scale

variable, or a continuous variable. Commonly encountered variable types and their

treatment within proportional hazards regression are discussed in the following sub-

sections with illustrative examples generated using historical condition rating data

and bridge records from the North Carolina inventory. The following analysis uses

recorded data from 1981-2013 sourced from NC bridge maintenance inventory files,

the AgileAssets North Carolina BMS, and FHWA NBI files. Additional information

on the source data and features of the bridge records is discussed in Chapter 4.
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3.3.1 Binary or Dichotomous Variables

Binary or dichotomous variables are descriptors that take one of only two values,

such as the presence or absence of cracking described in the earlier example. An

example of a dichotomous variable used within the BMS is the State System clas-

sification. In North Carolina, bridges are classified into either State System 1 or 2

depending on the highway functional classification. State System 1 is comprised of

bridges on interstate, urban, and primary roads while State System 2 is comprised

of those on secondary roads. For PH regression of data with a dichotomous variable,

the descriptor field, z, may be simply coded to take binary values, such as 0 for State

System 1 and 1 for State System 2 (or not State System 1). The hazard ratio asso-

ciated with the dichotomous variable is obtained simply by taking the exponential of

the coefficient β̂, or HR = eβ̂, as given in equation (3.2). Further, given the standard

error for β̂, the 100(1 − α) confidence interval for the hazard ratio at any required

level of significance, α, can also be obtained by taking the exponential of the end

points of the confidence interval for β̂, as discussed in Section 3.2.2. For α = 0.05 or

the 95% confidence interval, this is given by [e(β̂−1.96×SE(β̂)), e(β̂+1.96×SE(β̂))].

Illustrative survival functions based on PH regression analysis of data from North

Carolina bridges with timber decks in condition rating 4, using State System as

the only explanatory variable, are shown in Figure 3.4. The value of coefficient, β̂,

obtained from the regression is -0.7550, which provides the difference in log hazard

for bridges on State System 2 relative to State System 1. Consequently, the hazard

ratio, HR, is 0.4700. This signifies that the risk of a timber bridge deck deteriorating
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FIGURE 3.4: Survival functions for timber decks in condition rating 4 based on the
covariate ‘State System’

from condition rating 4 to a lower rating on a secondary road is 0.47 times the risk of

a similar bridge deck located on an interstate, urban, or primary road. As previously

detailed, the significance of the coefficient β̂ is commonly assessed using either the

Wald statistic and its two-tailed p-value, or the partial likelihood ratio test. In this

case, the p-value obtained is less than 0.001 which indicates that the covariate ‘State

System’ is significant at α = 0.05 for timber bridge decks in condition rating 4.

Furthermore, the standard error of the coefficient estimate is 0.2268 giving the 95%

confidence interval for the hazard ratio as (0.3013, 0.7331). The interval for the hazard

ratio does not include 1.0, which corroborates the significance of this covariate.

3.3.2 Nominal Scale Explanatory Factors

Nominal scale variables are classified as those that may take one of more than two

values, but on a scale that is limited to an integer number of predefined values. In
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general, if a nominal scale variable is associated with a scale of K predefined values,

we can model it using K - 1 ‘design variables’ using a method known as reference cell

coding. In this method, one of the levels is established as the reference level against

which all other levels are compared (Kleinbaum et al., 2008). An example of such a

variable in the NCDOT bridge inventory is geographical region. Depending on county,

bridges are classified into one of three regions: Coastal, Piedmont or Mountain. To

accommodate this nominal scale variable over the three potential values, reference

cell coding can be introduced using two design variables, z1 and z2. In this coding,

each of these design variables then takes a binary assignment like the dichotomous

variable discussed in the earlier section. For example, bridges in the Coastal region

could be arbitrarily established as the reference condition, which requires that all

coastal bridges are coded with both design variables z1 and z2 assigned as zero. The

first design variable, z1, could be associated with bridges in the Piedmont and then

the second design variable, z2, would be associated with bridges in the Mountain

region. For bridges in each of these regions, the respective design variable would take

an assignment of 1, as illustrated in Table 3.2.

TABLE 3.2: Reference cell coding of a nominal scale variable over a scale of three
values using two design variables

Region z1 z2
Coastal 0 0
Piedmont 1 0
Mountain 0 1

The hazard ratio for a proportional hazards model with two design variables, such

as the example above, would be given by

HR = ez1β̂1+z2β̂2 where z1 ∈ [0, 1] and z2 ∈ [0, 1] (3.22)
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It follows from equation (3.22) and the coded values in Table 3.2 that the HR is

necessarily one for the Coastal region in this model since it is the reference assignment.

Likewise, the HR is eβ̂1 for the Piedmont region and eβ̂2 for the Mountain region due

to the convenience of the binary assignments for the design variables. The results of

fitting the Cox PHM to the condition rating 4 data of North Carolina’s timber deck

bridges using the variable, Region, as coded above in bivariate analysis are shown in

Table 3.3.

TABLE 3.3: Illustrative PHM analysis for timber decks at condition rating 4 using
reference cell coding

Variable β̂ HR Std. Error Z p-value 95% CI(β̂) 95% CI(HR)
Piedmont −0.394 0.675 0.101 −3.920 < 0.001 −0.591,−0.197 0.554, 0.821
Mountain −0.582 0.559 0.107 −5.461 < 0.001 −0.791,−0.373 0.454, 0.689

As seen from the HR values in Table 3.3, the timber bridge decks in the Piedmont

region are 0.675 times as likely to deteriorate from condition rating 4 to 3 in the same

time as those in the Coastal region. Similarly, the risk for deterioration of timber

decks in the Mountain region is 0.559 times less severe than those in the Coastal

region. In this example, the 95% confidence intervals on the hazard ratios of both

variables do not include 1.0, indicating that these are significant covariates. Likewise,

the p-values of less than 0.001 confirm this. The survival functions for the bivariate

analysis associated with geographic region are plotted in Figure 3.5.

3.3.3 Continuous Scale Explanatory Factors

In contrast to nominal scale variables that are associated with a finite number of

integer assignments, real valued variables or variables associated with a large number

of assignments over either a bounded or unbounded range can be treated as contin-
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FIGURE 3.5: Timber deck survival functions for condition rating 4 and covariate
‘Region’

uous variables (Kleinbaum et al., 2008). For example, Average Daily Traffic (ADT)

is an explanatory factor in the bridge database that falls in the latter category and

can be considered a continuous variable. With dichotomous variables or nominal

scale variables treated as dichotomous variables using reference cell coding, linearity

assumptions need not be assessed since each covariate can take only one of two assign-

ments. However, in the analysis of continuous variables, it is important to examine

the relationship between the scale of the variable and the effect of the covariate on

the log hazard to assess whether the continuous scale sufficiently adheres to linearity

assumptions related to β in the proportional hazards models. If the relationship is

nonlinear, a linearizing transformation has to be applied to the hazard function to

make it linear in the coefficients. This is necessary for correct interpretation of the

PHM coefficients. The linearizing transformation, also called the link function, can be

determined using the method of fractional polynomials (Royston and Altman, 1997).
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FIGURE 3.6: Estimated coefficients versus group midpoints for average daily traffic
categories

This method is illustrated here using a bivariate PHM for the timber bridge deck

condition rating data with ADT as the single explanatory variable.

The scale of ADT is first examined using the method of design variables. This was

done by grouping ADT values into 6 binned ranges with an equal number of bridges

in each category. The continuous variable is thus replaced with 6 design variables

representing these categories, as in the nominal scale analysis presented in the prior

subsection, and a PH model is fitted to the binned data. The coefficient values are

then plotted against the category midpoints to assess the linearity of the log hazard,

as shown in Figure 3.6. The figure illustrates that the assumption of linearity is not

justified.

The method of fractional polynomials entails defining the covariate z in terms of

J functions, each of which is defined in terms of a power pj of z, where j=1,2, ...,
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J. Therefore, if J=1, there will be one function with one value of p. Likewise, for

J=2, there will be two functions and therefore two associated powers in the model.

For each value of J, the best power coefficients are found by maximizing the log

partial likelihood function. As a general rule, a simpler transformation, or lower-

order fractional polynomial model, is to be preferred unless a significant improvement

is achieved by increasing the level of complexity (Hosmer and Lemeshow, 1999). Table

3.4 presents the powers and log likelihood values for the best fit fractional polynomial

models of ADT. The first row represents a model without ADT as a covariate and

TABLE 3.4: Fractional polynomial results for timber deck bridges at condition
rating 5 for average daily traffic

Log-Likelihood G for Model Approx. Powers
vs Linear p-Value

Not in Model −9367.1934
Linear −9363.6424 0.0000 0.01393∗ 1

J = 1(2dof) −9363.2539 0.7770 0.37807+ 0.6
J = 2(4dof) −9363.1755 0.9337 0.81729 @ 1.1,−2
∗Compares linear model to model without ADT
+Compares the best J=1 model to one with ADT Linear
@ Compares the best J=2 model to one with ADT Linear

the subsequent rows are for the linear model, first-order, and second-order polynomial

models, respectively. The G statistic in column 3 is the partial log likelihood ratio

of two models relative to one another. A comparison of p-values of the partial log

likelihood ratios of the models indicates that none of the fractional polynomial models

affords a significantly better fit than the linear model. It is generally recommended

that the fit of models be graphically assessed before making any final decision. The

linear, J=1, and J=2 models are plotted in Figures 3.7 , 3.8, and 3.9 respectively. It

can be seen that the none of the models captures the impact of ADT as exhibited in

Figure 3.6.
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FIGURE 3.7: Linear model for average daily traffic
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FIGURE 3.8: J=1 fractional polynomial best fit model for average daily traffic
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As observed in the above example, an assumption of linearity for ADT treated

as a continuous variable was not found to be justified, however even a second order

polynomial distribution or J=2 model was not found to be an appropriate fit for

the ADT continuous variable. To avoid the complexities involved with modeling of

continuous variables as demonstrated above and in the interest of simpler models and

ease of interpretation, continuous variables like ADT, Average Daily Truck Traffic

(ADTT), Age, and Maximum Span, have been analyzed as categorical or nominal

scale variables in this study.

3.4 Multiple Covariate Models

Most practical situations require consideration of more than one covariate affecting

the outcome under study. The proportional hazards model allows for construction

of such multi-variable models. The advantage of having multiple covariates in a

model is that it allows for statistical adjustment of the relative impact of various

covariates as well as their possible interactions with one another. Consequently, the

resulting statistical inferences are more meaningful in their application (Hosmer and

Lemeshow, 1999). This is explained by illustration using the example of the variable

‘Geographical Region’ affecting the survival time of timber decks in condition rating

4 discussed earlier.

The results of bivariate analyses with Geographical Region as the only factor af-

fecting survival time are presented in Table 3.3. A multivariable PHM regression

of the observed survival data for timber decks at condition rating 4 was also per-

formed. In addition to Geographical Region, the variables State System, Maximum
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Span, and Age were also included in the analysis. The coefficient values and statistics

for the covariate, Geographical Region, obtained through multivariable regression are

presented in Table 3.5.

TABLE 3.5: Multivariable PHM results for covariate ‘Region’ for timber decks at
condition rating 4

Variable β̂ HR Std. Error Z p-value 95% CI(β̂) 95% CI(HR)
Piedmont −0.289 0.750 0.104 −2.750 0.006 −0.492,−0.0827 0.611, 0.921
Mountain −0.475 0.622 0.110 −4.328 < 0.001 −0.690,−0.260 0.502, 0.771

By comparison with the values in Table 3.3, it can be observed that the coefficient

values obtained from the maximum partial likelihood estimation have undergone a

change of 37% for the Piedmont region and 22.6% for the Mountain region, which in-

dicates that the presence of other covariates in the multivariable model has influenced

the effect of the covariate Geographical Region on survival time under the propor-

tional hazards assumptions. In practice, it is generally considered that a change

greater than 15-20% in the coefficient values indicates a need to include the other

covariates in the model (Hosmer and Lemeshow, 1999). Although multivariable PH

models are more complex than bivariate PH models, a key advantage of the functional

form of the PH model is that the coefficient value and hazard ratio of a covariate in

a multivariate model still quantifies the individual effect of the specific covariate on

survival time when the values of all other covariates in the model are held constant.

In the current example, two bridges of the same age, same maximum span length,

and within the same State System can be considered using the condensed results

presented in Table 3.5. If one of these bridges is located in the Coastal region and

the other in Mountain region, the hazard ratio of 0.622 associated with the design
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variable for the Mountain region signifies that the bridge in the Mountain region is

62.2% less likely to deteriorate from condition rating 4 to 3 than the bridge in the

Coastal region. Although a model with multiple variables is the objective of most

statistical analyses, bivariate models discussed earlier are nonetheless important as a

starting point for any multivariable modeling to determine the individual impacts on

the survival time associated with the various covariates and their significance.

3.4.1 Multicollinearity

Collinearity or multicollinearity amongst independent variables in a multivariable

model can be the cause of unstable parameter estimates and high standard errors

(Kleinbaum et al., 2008). Therefore investigating multicollinearity is an important

step in any multivariable model development process. The intercorrelation between

independent variables is generally examined by regressing each independent variable

on all other independent variables in the model. If R2
j is the squared multiple cor-

relation for an independent variable zj based on such a regression on the remaining

independent variables, a Variance Inflation Factor (VIF) for that variable can be

calculated using

V IFj =
1

1−R2
j

(3.23)

The value of VIF greater than 10 is generally considered indicative of presence of

collinearity (Kleinbaum et al., 2008). The inverse of VIF or (1− R2
j ), also known as

Tolerance, can also be used to assess multicollinearity. Tolerance approaches zero as

R2
j approaches 1, while VIF goes to infinity. In this study, an algorithm was developed

to calculate the values of R2
j , VIF, and Tolerance for regression of each independent
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variable included in the model on the remaining variables. This multicollinearity

assessment is used to indicate the presence of any pairs of variables for which ab-

normal values of these statistics were obtained. This analysis ensures that the final

multivariable models do not include covariates that are linearly related to each other.

3.4.2 Model Selection

Development of multivariable models can become challenging if there are a large

number of explanatory factors to be investigated in the model development. In such

cases, it is useful to follow certain model development strategies to select as few signif-

icant covariates required for inclusion in a model to adequately predict the underlying

behavior captured by the model without sacrificing the accuracy and applicability.

These model selection methods depend on comparison of different subsets of variables

using selection criteria based on model fit statistics, such as the log partial likelihood

ratio discussed in Section 3.2. Model selection is commonly employed in survival

analysis and covered in most statistics textbooks (Hosmer and Lemeshow, 1999, Lee

and Wang, 2003). Application to the proportional hazards model is similar to other

types of multivariate regression modeling and consists of the following basic steps

(Kleinbaum et al., 2008):

1. Define a preliminary model with maximum number of covariates

2. Choose a criterion for selecting a model

3. Formulate a strategy for selecting variables

4. Perform regression analyses
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5. Assess goodness of fit of the selected model

In this study, the Akaike Information Criterion (AIC), has been adopted for model

selection (Lee and Wang, 2003). Its value is calculated using,

AIC = Lp(β̂)− 2p (3.24)

where Lp(β̂) is the log partial likelihood of the model, β̂ is the maximum partial

likelihood estimator of all parameters in the model, and p is the total number of

parameters in the model. The magnitude of Lp(β̂) is generally directly related to

the number of parameters p since the goodness of fit is improved as the number of

degrees of freedom in the model is increased. Therefore, by itself, the log partial

likelihood measure can only be used as a selection criterion across models that have

the same number of variables. In the AIC, it represents the gain as the number of

variables included in the model is increased. The second term of the AIC balances

this gain by imposing a penalty for increasing the number of variables and is included

as a means of directing the selection of an optimally lean model without jeopardizing

the predictive capability of the model. The AIC is therefore suitable for models

with varying numbers of parameters and is widely used as a selection criterion for

multivariable statistical regression.

3.4.3 Model Assessment

Assessment of model fit is required to provide confidence in the validity of the

inferences derived from any model under the inherent assumptions introduced by the

functional form of the particular model used and regression techniques employed. For
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inferences to be considered valid, the model must adequately represent the data on

which it is based. Proportional hazards modeling, being a semi-parametric method,

presents more of a challenge because it does not contain an intercept and, unlike

parametric models, therefore does not provide an absolute estimate of mean survival

time. Various tests to measure goodness-of-fit of a proportional hazards model have

been proposed, however most of these involve complex computations and depend on

built-in capabilities of individual software packages used to process the PHM (Hosmer

and Lemeshow, 1999). However, in the case of large datasets such as the one used in

this study, it is possible to perform a fully stratified analysis and compute Kaplan-

Meier estimators of survival functions for all possible combinations of covariates. The

similarity of these empirically derived functions to the survival functions obtained

from the developed model can serve to assess the adherence of the underlying data to

the assumptions in the developed model and therefore verify the correctness of any

inferences drawn. Verified models can then be reliably used to describe survival times

and calculate median values in absolute terms, as for any parametric model.

3.5 Alternatives to Proportional Hazards Models

In addition to the Cox proportional hazards model adopted in this study and the

previously discussed Weibull parametric model that can be modified for multivariable

analysis, the accelerated failure time (AFT) model is an alternative survival analysis

model suitable for modeling of multivariable survival data. In this model, the ef-

fect of the covariates is multiplicative on the survival time, or time to failure, rather

than on the hazard function, as in the case of the proportional hazards model. In
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other words, the covariates, z, directly accelerate, or decelerate, the time to failure,

giving the model its name. This model also assumes a baseline hazard function.

However, the methods for estimating β in the accelerated failure time model place

undue restrictions on the baseline hazard function. The unique advantage of the pro-

portional hazards model is the availability of methods of inference that do not place

any restriction whatsoever on the baseline hazard function (Cox and Oakes, 1984,

Kalbfleisch and Prentice, 1980, Lawless, 1982). The adherence to relatively weaker

model assumptions in comparison to other models, makes the Cox proportional haz-

ards model a more robust choice in the case of infrastructure deterioration modeling

where the distribution of survival time is as yet undefined. However, the advantages

of parametric approaches in offering increased precision and statistical power make it

important to explore the appropriateness of different models. Given the similarities to

the Cox proportional hazards model and the more intuitive interpretation of the effect

of regression coefficients on survival time, the accelerated failure time model may be

appropriate for future research in the area of infrastructure deterioration modeling.



CHAPTER 4: DEVELOPMENT OF A FRAMEWORK FOR PROPORTIONAL
HAZARDS DETERIORATION MODELING

The recent applications of survival analysis methodologies for improving the un-

derstanding and modeling of bridge deterioration modeling are described in Chapter

2 and can be divided into two general categories. Under one approach, multivariable

proportional hazards regression techniques have been employed to study the effect of

explanatory factors on deterioration rates at individual condition ratings, although

these studies have been limited to small subsets of bridges (Mauch and Madanat,

2001, Mishalani and Madanat, 2002). Under the second approach, univariate Weibull

survival functions are developed at each condition rating. These parametric survival

functions are then used to obtain the expected durations associated with each rating,

from which a final deterministic model was proposed (Agrawal et al., 2009, 2010).

The latter approach has produced the only survival-based deterioration models in

the country currently in use in a state BMS (NYSDOT). It is notable that, although

survival analysis is used in the statistical regression at each condition rating, the sec-

ond approach does not carry forward the probabilistic nature of the regression model

when constructing the deterioration model used for future prediction. Moreover, in

this prior work, the univariate survival analysis proposed at each condition rating is

not capable of accounting for the individual effects of explanatory factors on the de-

terioration rate. The framework developed in the current study and described in this
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chapter overcomes the limitations of all previous models by developing multivariable

survival functions for each condition rating and then integrating them into probabilis-

tic deterioration models using the familiar Markov chain approach. By quantifying

the effects of the explanatory variables on the deterioration process at each stage in

its service life, such models would potentially enhance the predictive fidelity and, con-

sequently, improve MR&R decisions within multi-objective optimization analysis at

the network level. Fundamental challenges associated with integrating survival anal-

yses over all condition ratings while incorporating the effect of various explanatory

factors throughout the lifecycle of the bridge and developing probabilistic tools into

tractable deterioration models suitable for use in a BMS, are summarized in Section

4.1.

A fundamental contribution of this dissertation is the development of a method-

ology based on proportional hazard modeling that is capable of estimating survival

functions associated with the different stages of deterioration throughout the full life

cycle of highway bridge components using large databases of historical condition rat-

ing data and associated functional, geographic, and design features from the bridge

records. Through the analysis routine presented in Section 4.2, regression coefficients

that quantify the effect of individual significant exogenous variables on the deterio-

ration rate over each condition rating are obtained to provide unique insight on the

factors influencing deterioration rates and characterize how the influence of these fac-

tors changes over the life cycle of each bridge. For each subset of bridge components,

a set of baseline values is assigned to the significant covariates resulting in baseline

survival functions at these values. The proportional hazards model allows scaling of
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these baseline functions for any individual bridge or category of bridges by a hazard

ratio calculated using the vector of descriptive covariates specific to that bridge and

their respective regression coefficients. Section 4.3 of this chapter explains how these

survival functions can be used to derive non-stationary transition probabilities asso-

ciated with the change in condition rating of specific bridge components as a function

of the duration in each condition rating. These non-stationary transition probabili-

ties are then used to develop Markov chain transition probability matrices leading up

to the development of a semi-Markov model of deterioration that not only accounts

for duration dependence but can model the effect of various exogenous variables. In

this section, a method is derived that permits for easily incorporating the influence

of covariates into the transition probability matrices using the hazard ratios formed

through the multivariate proportional hazards regression. Owing to its Markovian

formulation and the simplicity of applying proportional hazard ratios, the developed

model is easily implementable in current bridge management systems, especially those

already using Markov chain deterioration models.

4.1 Challenges of PHM Application to Bridge Condition Rating Data

The challenges in applying multivariable PHM regression to bridge condition rat-

ing data with a view towards developing an integrated deterioration model across

all condition ratings stem from the time dependent influences of explanatory factors

on deterioration rates across the different ratings. Furthermore, from a practical

implementation perspective, advanced multistate PHM applications are still actively

evolving, especially with respect to infrastructure applications, and therefore algo-
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Deterioration Model 

Survival Functions at different condition ratings 

S1=f(t,z1,z2,z3) S2=f(t,z1,z2,z4) S3=f(t,z2,z4) 

Explanatory Variables 
z1- Material Type 
z2-Design Type 
z3- Average Daily Traffic 
z4-Geographical Region 

FIGURE 4.1: Deterioration model from survival analysis across individual condition
ratings

rithms suitable for bridge deterioration analysis may not be integrated in available

software. The phenomenon of time dependency of explanatory factors over the ser-

vice life a typical bridge component is illustrated in Figure 4.1. As shown, S1 is the

survival function at condition rating 9, which denotes the probability that the specific

bridge component will deteriorate to a condition rating lower than 9. It is naturally a

function of time, but in this multivariate model it is also dependent on the fictitious

explanatory variables z1, z2, and z3. Similarly, S2 is the survival function associated

with condition rating 8, and very likely depends on a different set of fictitious ex-

planatory variables z1, z2, and z4. Likewise, the survival function, S3, for behavior in

condition rating 7 is shown in this example to depend on fictitious explanatory vari-

ables z2, and z4. Thus the survival functions at individual condition ratings are not
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only unique but may be affected by a different set of explanatory variables as the un-

derlying physical mechanisms that influence deterioration of specific components may

be variable over the service life. Likewise, the same variable may affect the hazard

rate of the survival functions of individual condition ratings differently, which would

be reflected in changes in the regression coefficients associated with the covariate.

This is true across all condition ratings and with any number of relevant explana-

tory variables. The construction of an overall probabilistic deterioration model for

the bridge component under study using multivariate survival analysis requires incor-

porating these unique survival functions developed from individual condition rating

observations. In order to make such an integration possible, it is necessary to devise a

common multivariate model structure underlying the survival functions developed for

all condition ratings. Some of the challenges encountered in achieving this objective

are summarized below:

• Independent variables may have different statistical distributions within ob-

served data at each condition rating. Strategies to ensure uniformity when

categorizing continuous scale variables across all condition ratings should be

adopted to simplify the structure of the common model.

• There are potentially different subsets of factors expressing statistically signifi-

cant influence on the deterioration rate at each condition rating.

• Given the large number of potential explanatory factors, efficient strategies for

best subset selection of multi-variable PHM models at each condition rating are

required.
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• Scarcity of records associated with certain material-specific GCRs may preclude

identification of any significant factors affecting deterioration at certain condi-

tion ratings.

More details about the specific nature of these challenges and the strategies developed

to address them are discussed in subsequent sections as measures accommodating

them are described.

4.2 Approach for Proportional Hazards Regression of Bridge Condition Rating

Data

The general framework developed for generation of multivariable survival func-

tions associated with specific condition ratings is presented in this section. These are

used subsequently to develop the multivariable probabilistic deterioration models that

form the basis of this dissertation’s contributions. The methodology established for

proportional hazards regression analysis of bridge condition rating data is presented

schematically in the flowchart in Figure 4.2 and described here briefly to provide

an overview of the process prior to the detailed descriptions of the individual steps

provided in the following subsections. The process begins with the querying and ex-

traction of relevant descriptive and condition-specific data from the bridge database.

This data is preprocessed to extract all observations of the response variable, which is

the observed continuous duration at the particular condition rating being analyzed,

for each bridge in the dataset. Censoring information is compiled in a separate vector

of the same size as the response variable but stored as a binary variable of either 0

or 1 depending on whether the observations are classified by the extraction algorithm
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FIGURE 4.2: Proportional hazards model development flowchart

as fully observed or censored. The BMS historical records also contain descriptive

information on each structure, such as the design type, functional classification, geo-

graphical region, average daily traffic, percent average daily truck traffic, maximum

span length, wearing surface and others that could be considered to potentially pro-

duce significant influence on deterioration rates of specific bridge components and

therefore could be treated as explanatory variables. Each of these variables is orga-

nized into categories designated by one or more design variables to which bridges are
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classified based on either binary or reference cell coding. It is important to note that

a distinct set of dependent and independent PH regression input variables are associ-

ated with each condition rating for any subset of bridges being analyzed. For example,

in analyzing timber deck condition rating durations, the full subset of bridges with

timber decks is first isolated from the full bridge and then unique individual sets of

variables associated with historical observations within each condition rating are then

extracted. The subsequent steps in the processes of multivariable PH regression, best

subset selection, and development of survival models are then performed individually

on each of these condition-rating specific sets associated with the component subset

analyzed.

An initial multivariate PHM regression is carried out using only those design vari-

ables that are observed within one or more bridge records for the condition rating

under study. From this initial multivariate model, only those variables that are statis-

tically significant with a Wald statistic p-value of≤ 0.2, are included in the benchmark

multivariable model. This benchmark model represents the best possible fit to the

observed data under the proportional hazards assumptions with the largest number

of degrees of freedom available. A model selection algorithm for determining the best

subset of significant variables to achieve an optimal model fit with reduced degrees of

freedom is then implemented on this benchmark multivariable model. This algorithm

executes a constrained step-wise forward selection strategy based on a combination of

maximizing log partial likelihood and minimizing the number of covariates included

in the model. The best subset of statistically significant covariates is then included

in a multivariable PH regression to estimate the regression coefficients, hazard ratios,
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and baseline survival function associated with that rating. At this point, this best

subset model is also tested for potential multicollinearity issues using the VIF indi-

cator. Additionally, the goodness-of-fit of the final model is assessed by developing

Kaplan-Meier estimators on the select categorical data at each rating for qualitative

comparison. The survival functions developed using this best subset model incorpo-

rate the effects of the most significant explanatory variables on the deterioration rate

over an individual condition rating.

The survival function for each condition rating is subsequently used to calculate

the transition probabilities associated with staying at the same condition rating or

deteriorating to a lower rating at the end of each annual prediction cycle. The tran-

sition probabilities associated with all condition ratings at the end of one annual

prediction cycle are integrated into a single transition probability matrix applicable

to that annual prediction cycle. In this way, a set of non-stationary transition prob-

ability matrices is developed, as described in Section 4.3, that are used to develop a

complete deterioration model incorporating the input from all condition ratings. This

deterioration model fully characterizes the impact of significant explanatory factors

over the full life-cycle of the component.

The MATLAB software environment has been employed in this study to develop

the new deterioration models as well as package the developed framework into a

graphical user interface (GUI) to facilitate its implementation. The development

of the graphical user interface is discussed in a subsequent chapter. MATLAB was

selected because of its ability to process and organize vast amounts of data, and

the flexibility it allows in developing customized models and algorithms through its
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various toolboxes and design environments including those for statistical analysis,

optimization, and GUI development. Over the following sections, the process for

developing deterioration models that is implemented in the MATLAB environment

is described in the following sections using algorithms. The algorithms represent the

substantially more complex MATLAB routines and functions that were developed

to execute the various steps in model building and implementation. The MATLAB

functions and subroutines are presented in the appendices.

4.2.1 Database Development and Data Preprocessing

The first step in the model building process consists of compiling the database for

the statistical regression by extracting relevant records from source data files. In this

case, the source data was comprised primarily of the NCDOT Bridge Maintenance

Inventory files (1981-2009) and supplemented with exported yearly databases from

the NCDOT Agile Assets BMS database (2010, 2012-2015), as well as one year from

the FHWA NBI database (2011). Both the NCDOT Bridge Maintenance Inventory

files and the FHWA NBI files contain electronically recorded historical inspection

data from all of North Carolina’s bridge structures in ASCII format. Every bridge

structure has a record for each year consisting of over a hundred fields with entries

coded in accordance with the NBI Record Format (FHWA, 1995). It is notable that,

since the routine developed can manage data from any of these sources, the current

code and user interface can be directly applied to any state database using NBI files.

The data used in this study spans a period of 35 years from 1981 to 2015, and contains

records for over 17,000 individual in-service bridges.
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Relevant fields from each of the external databases were imported and organized

into a MATLAB Master File as shown in Algorithm 1, procedure [1]. The MATLAB

Algorithm 1 Compiling Material Specific GCR Data Sets for Deterioration Modeling

Input: Source Data: NCDOT Bridge Maintenance Files, NCDOT BMS, and NBI
Output: MATLAB Master File, Material Specific GCR Data Sets . Ma-

terial: Timber, Concrete, Steel; General Component: Deck, Superstructure,
Substructure

1: procedure [1] ImportData(Source Data)
2: MATLAB ← NCDOT Bridge Files . Import Required Fields for all Records
3: MATLAB ← NBI: NC
4: MATLAB ← NCDOT BMS
5: Create separate identifiable records for reconstructed and rebuilt bridges
6: return MATLAB Master File
7: end procedure

8: procedure [2] DataQuery & Preprocessing(MATLAB Master File)
9: for Specified Material and General Component do . Such as Timber Deck
10: Extract Records having Material Code
11: Extract Records having General Component Condition Ratings
12: Eliminate Records not having both of the above
13: return Material-Specific GCR Data File
14: end for
15: end procedure

structure array so created served as the master database for all subsequent modeling

and analyses performed during this study. In addition to the challenges associated

with importing and collating large volumes of data selectively from different sources,

the identification and rectification of anomalies invariably associated with such large

and manually recorded databases was also difficult and time consuming. Examples

of some data anomalies discovered during this process and strategies implemented to

address them are given below:

• Inconsistencies in the description data recorded for individual bridges over mul-
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tiple data records are present in the historical database. The inconsistencies

consist largely of instances of missing entries as well as some apparent cases of

miscoding, such as a recorded change in deck material in one year of the record

only to revert back to the original deck material description in the following

year. Eliminating all records with apparent recording errors would have re-

duced the dataset for statistical analysis significantly. Therefore it was decided

to use the most frequently recorded value, or mode, across all data years avail-

able for a particular structure to determine explanatory variable assignments

for fields where consistency was expected.

• For reconstructed bridges, the ‘Year Reconstructed’ field was erroneously found

to be recorded as ‘0’ (indicating no reconstruction) in many instances of yearly

records following the reconstruction. This anomaly would impact the calcula-

tion of bridge age relative to each observation of condition rating duration and

measures to correct these instances needed to be developed.

• In parsing records for the response variable, i.e. the number of continuous years

spent at a particular condition rating, it was found that there were some cases

where a condition rating was observed for just one year. These observations

are treated in the following analysis as anomalies since the typical inspection

cycle is biennial, and therefore the minimum expected duration at any condition

rating is two years. To address these perceived anomalies, any observations with

a duration of less than two years were filtered from the data prior to statistical

regression.
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• County numbers in the bridge records are based on alphabetical order of counties

in the state. A typical anomaly relating to this was discovered in select database

years where assignments of county numbers to counties beginning with ‘Mc’,

such as McDowell county, were placed ahead of Macon county because of a

special alphabetization rule, which considers ‘Mc’ as an abbreviated form of

‘Mac’ and uses the latter for alphabetical sorting. Failure to address this coding

inconsistency would have resulted in erroneous interpretation of county codes

relating to these counties and importing of mismatched records relating to these

counties from the source databases.

• Each bridge in the sourced bridge records is associated with a unique number

that is based on the bridge location and is unchanged even when the bridge is

reconstructed or rebuilt. For the purpose of condition rating duration analysis,

it was decided that rebuilt bridges should be treated as new structures and

reconstructed bridges should be identified to explore the potential effects of

reconstruction on component deterioration rates. To achieve this, a searching

algorithm was written to create separate records for these bridges by developing

a new structure number after each indication of rebuilding or reconstruction in

the bridge record.

Procedure [2] of Algorithm 1 describes the creation of database subsets from the mas-

ter file, each containing records pertinent only to a selected bridge component and

specified material type. The material type for bridge decks is coded separately in the

‘Deck Structure Type’ field in the NBI, whereas the material type used for superstruc-
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ture and substructure is coded in the ‘Structure Type, Main’ field. The general con-

dition ratings (GCRs) for each component are coded as ‘Deck’, ‘Superstructure’ and

‘Substructure’. Each material-specific GCR file developed by the algorithm contains

complete database records pertaining to the specific component type and material

designation.

4.2.2 Structuring Data and Design Variables for PHM Regression

Algorithm 2 presents the master code designed for constructing PHM-based deteri-

oration models for any material-specific GCR from the database subset files, generated

above. The master code executes various independent subroutines by calling asso-

ciated functions from the main code. These subroutines were developed to perform

various tasks in the modeling process and correspond to the functions outlined in the

algorithm.

Function [1] preprocesses the data contained in the material-specific GCR file to

develop the dependent and independent variables for individual Cox proportional

hazards regression over each condition rating. For all condition ratings from 4 to 9,

the records in the material-specific GCR file are first parsed into a ‘Subset’ containing

only the records where the particular condition rating is observed. Each such record

in the ‘Subset’ contains the complete set of relevant data fields imported from the

source data, including the condition rating fields. The condition rating data in this

subset is further preprocessed to determine the values of the response variable, ‘Years

In Rating’, which is the observed continuous duration at the particular condition

rating. For each bridge, all continuous observations of the condition rating for two or
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Algorithm 2 Developing Multivariable Proportional Hazards Deterioration Models:
Part I

Input: Material-Specific GCR Data File
Output: Baseline Deterioration Model:Regression Coefficients and Associated Haz-

ard Ratios

1: function [1] PHMInputData(Material-specific GCR Data File)
2: for Condition Ratings 4:9 do
3: Subset{j} ← All records including the Condition Rating j
4: Years In Rating(:, j) ← Maximum continuous duration at the Rating
5: Censor(:, j) ← ‘0’ if Rating is completely observed, ‘1’ otherwise
6: Age(:, j) ← Years since first built or reconstructed
7: return Subset, Censor, Years In Rating, Age
8: end for
9: end function

10: function [2] Categorical Variable Means(Subset, Age)
11: for Condition Ratings 4:9 do
12: Categorize ADT, ADTT, Age, Maximum Span into equal frequency bins
13: Determine Category Minima for all variables
14: end for
15: Weight ← Number of Records for each Condition Rating
16: Calculate Weighted Mean Category Minima across all Ratings
17: return Category Minima: ADT, ADTT, Age, Maximum Span
18: end function

19: function [3] Preliminary Multivariate Analysis(Subset, Censor, Years In
Rating, Age, Categorical Variable Means)

20: for Condition Ratings 4:9 do
21: Develop Design Variables and Coding for Covariates:
22: (State System, Reconstruction, Number of Spans) ← Binary Coding
23: (ADT, ADTT, Age, Region, Wearing Surface,Maximum Span) ← Refer-

ence Cell Coding
24: Covariate Values for ‘Baseline’ Hazard ← 0
25: Matrix of Coded Design Variables ← ‘X’
26: Reduced X ← Exclude Variables with no associated bridge records
27: [Reduced X, Years In Rating, Censor] ← Baseline Multivariable PH Re-

gression
28: return Preliminary PHM Statistics
29: end for
30: end function
31: Continued in Part II
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more years are treated as separate records and the ‘Subset’ is accordingly augmented.

Censoring information is compiled in a separate vector, ‘Censor’, of the same size as

the response variable but taking values of only 0 or 1 depending on whether the

observations are fully observed or censored, respectively. As explained in Section

2.3.1, all observations that contain records from the end-point years of the database

are considered as censored, as it is presumed that the actual duration of the condition

rating is longer than observed due to the limited time span of the data recording

period. Similarly, all observations where an increase in condition rating is observed

after the observation are also considered as censored due to an assumed interruption

of the natural deterioration process on account of maintenance intervention. It should

be recognized that variability in condition ratings due to subjectivity of the inspection

process is known to be a factor in the accuracy of condition rating data (Phares et al.,

2004), which is not considered explicitly in this analysis due to a lack of available

techniques for accounting for the subjectivity. In our analysis, we assume that the

effect of observations prematurely shortened as a result of subjectivity in the rating

process is balanced by records either lengthened as a result of this same subjectivity

or denoted as censored as a result of a subjective increase in rating rather than

actual maintenance. It was found that at condition ratings below 4, not only did the

number of records become relatively sparse compared to the other ratings but also

90% to 100% were censored records, which is expected due to the priority given to

maintenance of such structures. Due to this reason, it was decided to analyze only

condition rating data pertaining to ratings 4 through 9. The preprocessing function

also computes ‘Age’ of the bridge at the beginning of an observed duration, which is
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not directly available and is calculated based on the data year at the beginning of the

observation relative to the year at which the bridge was built or reconstructed.

NBI records contain information about various explanatory variables or covariates,

such as design type, functional classification, geographical region, average daily traf-

fic, percent average daily truck traffic, maximum span length, wearing surface, and

other information that could be considered to have the potential to significantly influ-

ence deterioration rates of specific bridge components. For the purpose of regression,

dichotomous variables are assigned binary coding, and nominal scale variables that

take more than two values were coded using the reference cell coding technique de-

scribed in Chapter 3. As mentioned in Section 3.3.3, continuous scale variables like

ADT and Age have been treated as categorical variables in this study in the interest

of simplicity of implementation and ease of interpretation. These variables take nu-

meric values in their respective database and are reassigned as binary design variables

through reference cell coding after being binned into categories before the analysis.

The preference is to bin these variables into groups of uniform size. However, the

bounds of uniformly distributed bins are not consistent over all of the condition rat-

ing data analyzed. To address this challenge, a subroutine, represented by Function

[2], was developed to analyze such variables across condition ratings 4 through 9 to

determine these bins for each condition rating and then develop an optimal binning

strategy for the material-specific GCR based off of a weighted average of the bins

for each condition rating. The number of observable bridge records in the material-

specific GCR database for each condition rating is used to weight the average. The

covariates analyzed in this study along with the associated design variables and refer-



94

ence categories are listed in Table 4.1. The category bounds for continuous variables

ADT, ADTT, MaxSpan, and Age shown in this table relate only to timber decks and

are updated for every other component model according to the categorical statistics

described above.

TABLE 4.1: PHM covariates

Covariate
Design Variable Reference or Baseline

Name Category Category
State System StateSystem State System 2 State System 1

Reconstruction Reconstruction Reconstructed Original or Rebuilt

Region
Piedmont Piedmont

Coastal
Mountain Mountain

Wearing Surface

MonolithicConcrete MonolithicConcrete

None

IntegralConcrete IntegralConcrete
LatexConcrete LatexConcrete

LowSlumpConcrete LowSlumpConcrete
Bituminous Bituminous

Timber Timber
Gravel Gravel
Other Other

Average Daily Traffic
ADT2 94 ≤ ADT < 204

0 ≤ ADT < 94ADT3 204 ≤ ADT < 468
(ADT) ADT4 ADT ≥ 468

Average Daily Truck
ADTT2 6 ≤ ADT < 13

0 ≤ ADTT < 6ADTT3 13 ≤ ADTT < 29
Traffic (ADTT) ADTT4 ADTT ≥ 29

Maximum Span (m)
MaxSpan2 2 ≤MaxSpan < 3

0 ≤MaxSpan < 2
MaxSpan3 MaxSpan ≥ 3

Number of Spans NumberSpans Multiple spans Single span

Age (years)
Age2 20 ≤ Age < 28

0 ≤ Age < 20Age3 28 ≤ Age < 35
Age4 Age ≥ 35

Bivariate analyses of some of these variables were discussed in Chapter 3. Since

there are limited functional features available in the database, it was decided to in-

clude all of these features in the initial multivariable regression irrespective of the

Wald statistic p-values obtained from bivariate analyses. The matrix of design vari-

ables coded appropriately as above is represented by ‘X’ in Function [3]. A reduced

X is obtained by excluding variables that do not have a single bridge record with

the associated variable expressed. The functional features or covariate values asso-

ciated with baseline hazard are coded as zero. This reduced subset of covariates
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is then analysed using proportional hazards multivariable regression to produce the

preliminary multivariable model and associated statistics, within Function [3]. This

preliminary multivariable model contains the greatest number of degrees of freedom

for the material-specific GCR model and serves as a benchmark during the forward

selection of a best subsets model by indicating the significance of variables excluded in

the subsequent models. This is accomplished using the p-values of the Wald statistic.

4.2.3 Best Subset Selection

A strategy for reduced model selection, summarized in Function [4], is implemented

to determine the ‘best subset’ of parameters to include in the deterioration model.

This task requires a balance between the inclusion of a sufficient number of variables

to ensure that the predictions are strongly correlated to the underlying data but also

minimization of the number of variables to the smallest set needed to accomplish

the former objective so that the deterioration model is not unnecessarily large or

complicated to implement in practice. In this study, several different approaches

for best subset determination were examined, including step-wise forward selection

and step-wise backward elimination, before selecting a constrained step-wise forward

approach based on the AIC, as discussed in Section 3.4.1.

Under this approach, the variables in the preliminary model that exhibit a p-value

of the Wald statistic of more than 20% are deemed insignificant and are removed

as potential covariates of the best subset model. For the remainder of the variables

that express significance in the benchmark multivariate model, proportional hazards

regression is first implemented on all possible combinations of two variables in or-
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Algorithm 2 (Continued) Developing Multivariable Proportional Hazards Deterio-
ration Models: Part II

32: function [4] Best Subset Multivariable Model(X,Years In Rating, Cen-
sor, Preliminary PHM Statistics)

33: for Condition Ratings 4:9 do
34: Eliminate Covariate Design Variables with p-values > 0.2
35: N ← Number of Design Variables in Reduced X
36: for n = 2:N Variables
37: Fit PHM to all possible combinations of n Variables
38: Best Combination of n Variables ←Highest Lp(β̂)
39: AICn ← AIC value of Best Combination of size n
40: if AICn > AICn−1 go to n=n+1 until AIC is maximized
41: end
42: If a Variable is included in two consecutive Best Combinations, include it

permanently . Reduces computation time significantly without affecting
accuracy

43: Best Subset←Highest AIC value
44: return PHM Best Subset
45: end for
46: end function

47: function [5] PHM Coefficients & Survival Functions(Best Subset, Years
In Rating, Censor)

48: for Condition Ratings 4:9 do
49: [Best Subset, Years In Rating, Censor] ← Baseline Multivariable PH Re-

gression
50: return Final PHM Statistics including β and HR
51: return Baseline Survival Function
52: end for
53: end function

der to select the combination that provides the best statistical fit to the data. In

this routine, the best statistical fit is determined through the log partial likelihood

estimate. The number of variables, or the degrees of freedom, in the models is in-

creased incrementally one degree of freedom at a time until the AIC associated with

the identified best combination is maximized. The AIC measure is used to assess

the adequacy of the best combination models but with inclusion of a penalty term

proportional to the number of variables included. In order to reduce the computa-
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tional complexity and time associated with processing all possible combinations as

the model increases in size, a strategy is adopted that constrains the combinations

evaluated in each iteration to include any variables that are identified as significant

in any two consecutive best combination models. Since the total number of combi-

nations of all sizes possible for N variables is 2N , reduction of each variable reduces

the total number of potential combinations to be evaluated by half. For example,

the total number of combinations of all sizes possible for 15 variables is 215 = 32768.

However, as variables are progressively selected to be included in the final best set,

the number of combinations to be evaluated reduces to 214 = 16384 for reduction of

one variable, 213 = 8192 for reduction of two variables and so on. This strategy was

found to be especially useful in reducing computation time in processing best subsets

for condition ratings 6 to 8 within which it was common to have 15-20 candidate

variables in the initial set. To assess potential issues associated with this constrained

best subset selection approach, best subsets for ratings with initial sets of up to 10

variables were processed both with and without implementation of this strategy for

several material-specific GCR datasets. The resulting best subsets in both the cases

including the constrained selection technique and those developed by full evaluation

of all possible combinations were found to be exactly the same. Consequently, this

strategy has been uniformly adopted in the interest of faster processing times and is

assumed to not compromise the selection of the final best subset of covariates.

Function [5] is then used to perform the proportional hazards regression on the iden-

tified best subset for each condition rating and obtain the model statistics, including

regression coefficients and hazard ratios. For example, Table 4.2 gives the best subset
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covariates and the corresponding hazard ratios and Wald statistic p-values across con-

dition ratings 9-4 for analysis of NCDOT timber decks. In this table, a ‘∗’ indicates

that the associated covariate is not included in the best subset survival model for that

condition rating. It can be observed that some covariates are significant at certain

ratings and not at others. Consequently, the final model indicates that these factors

influence deterioration of the timber deck only during those periods of the life cycle.

This state dependent effect of covariates over the life cycle of the bridge is a unique

aspect of the developed framework and a potentially significant improvement to con-

ventional deterioration modeling approaches that rely on a prior bridge classification

that is fixed over all condition rating states in the life cycle.

TABLE 4.2: PHM hazard ratios and Wald statistic p-values for timber deck best
subset

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
’StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.449 0.114
’Reconstruction’ ∗ ∗ 0.842 0.008 ∗ ∗ 1.293 < 0.001 0.779 0.048 ∗ ∗
’Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.363 0.001 ∗ ∗
’Mountain’ ∗ ∗ 1.277 < 0.001 0.857 < 0.001 1.143 0.001 1.424 < 0.001 ∗ ∗
’ADT4’ ∗ ∗ ∗ ∗ 1.138 0.003 ∗ ∗ ∗ ∗ ∗ ∗
’ADTT3’ ∗ ∗ 1.140 0.003 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
’ADTT4’ ∗ ∗ 1.296 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
’MaxSpan2’ ∗ ∗ ∗ ∗ 1.171 0.003 1.199 < 0.001 ∗ ∗ ∗ ∗
’MaxSpan3’ ∗ ∗ ∗ ∗ 1.165 0.002 1.194 < 0.001 ∗ ∗ ∗ ∗
’NumberSpans’ ∗ ∗ 1.119 0.007 1.284 < 0.001 1.218 < 0.001 ∗ ∗ ∗ ∗
’Age2’ 2.289 < 0.001 2.438 < 0.001 1.715 < 0.001 1.332 < 0.001 1.302 0.028 0.742 0.163
’Age3’ 2.503 < 0.001 2.210 < 0.001 1.264 < 0.001 2.076 < 0.001 1.814 < 0.001 ∗ ∗
’Age4’ 2.445 < 0.001 3.045 < 0.001 0.787 < 0.001 2.265 < 0.001 1.564 < 0.001 ∗ ∗

The baseline survival function for each condition rating is also obtained from this

proportional hazards regression analysis. The set of baseline survival functions de-

veloped for material-specific GCR ‘timber deck’ over all condition ratings is shown

in Figure 4.3 as an example of the baseline survival functions returned. The state

dependent effects of covariates are only incorporated into the deterioration model
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FIGURE 4.3: Baseline survival functions for timber deck across condition ratings 9
through 4

developed from these condition rating survival functions through operations on the

transition probabilities estimated from the baseline survival functions. The derivation

of this implementation is explained later in Section 4.3.

During model development, the best subset model is tested for multicollinearity

between the covariates by calculation of the Variance Inflation Factor (VIF). As men-

tioned in Section 3.4.1, a VIF value of 10 or greater is generally suggested as indicative

of the presence of collinearity. Across the timber deck models developed for all condi-

tion ratings and presented for illustration in this chapter, the maximum VIF observed

was only 2.2. In subsequent model development performed in later chapters, none of

the models in this study were found to exhibit any multicollinearity issues except for

the concrete deck model. In the concrete deck model, multicollinearity was observed

between only two variables that were removed from the final subset. The goodness-
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FIGURE 4.4: Timber deck survival functions: model vs empirical

of-fit of these models is also assessed by developing fully stratified analyses. Thus

survival functions were constructed for specific subsets of timber deck bridges using

the empirical Kaplan Meier product estimator and compared to the corresponding

PHM survival functions. Similarity between the two is indicative of the robustness of

the model and correctness of the proportional hazards assumption. Figure 4.4 shows

such comparisons for timber decks for condition ratings 9 to 4. The number of records

used in the analyses are indicated in parentheses against the type of model. Kaplan-

Meier (K-M) functions are based on only the records associated with the particular

subset of bridges. For example for condition rating 7, the K-M subset is comprised

of 627 timber deck bridge records for original/rebuilt bridges of single span, less than

19 years old, and located in Mountain region. The corresponding PHM model on

the other hand uses all 7077 records associated with condition rating 7, resulting in a

more robust model. Similarly, the K-M model for condition rating 4 uses 1646 records
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associated with bridges in State System 2 and of age less than 19 years or 27 years and

older. The corresponding PHM function for condition rating 4 is based on all 2086

records associated with this rating. The PHM best subset for rating 4 has only two

design variables viz. StateSystem and Age2. This minimal stratification accounts for

the relatively larger subset of bridges available for K-M modeling at condition rating

4. It can be observed that the PHM survival functions at all condition ratings are

similar to the Kaplan-Meier empirical estimates developed for comparable subsets of

the database, which demonstrates that the PHM functions can be used correctly for

estimation of survival time in a particular condition rating.

4.3 Forward Prediction Using the Developed PHM Deterioration Model

The developed deterioration modeling framework presented in the prior section gen-

erated survival functions that characterize the state dependent impact of significant

explanatory factors over the life cycle of the component. However, the use of survival

functions in forward prediction of condition ratings over a planning horizon has not

been adequately addressed in the literature, with the only proposed approaches sug-

gesting a reduction to deterministic models through simple statistics obtained from

the survival function (Agrawal et al., 2009, 2010). This section provides another

fundamental contribution of the research effort through defining a probabilistic, yet

easily implementable, approach for predicting condition ratings over a planning hori-

zon using the Cox Proportional Hazards-based deterioration models detailed in the

prior section. This implementation adopts a semi-Markovian approach, associated

with calculation of transition probabilities, with proportional hazards effects, and is
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explained in detail in the following subsections.

4.3.1 Derivation of Transition Probabilities from Proportional Hazards Models

Transition probabilities associated with changes in condition ratings resulting from

deterioration processes can be calculated based on survival functions developed across

the individual condition states, as mentioned in Section 2.3.3. Transition probabilities

calculated by such an approach have been determined to be more accurate than those

based on linear regression or expert elicitation methods currently used in most BMS.

The calculation of transition probabilities has been illustrated earlier for parametric

duration models (Mishalani and Madanat, 2002). This section describes the deriva-

tion of non-stationary transition probabilities from PHM survival functions. In this

derivation, the conventional assumption that a bridge component does not deteriorate

by more than one state in any one inspection cycle has been adopted. This assump-

tion has been routinely employed by past researchers and has been found to result

in simpler and more robust models (Madanat et al., 1995, Sobanjo and Thompson,

2011). Moreover, deterioration is routinely assumed to occur without rehabilitation

and hence the probability of an improvement in condition state is taken to be zero.

An approach for incorporating the probability of condition state improvement due

to rehabilitation is outlined in the final chapter of this dissertation as a suggested

improved implementation of the developed framework.

For this derivation of the non-stationary transition probabilities, let Sk(t, ~z) be the

survival function of a material-specific GCR component associated with condition

rating k for a bridge described by the vector of covariates ~z . At any time t, the
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value of Sk(t, ~z) is the cumulative probability that the structural component will

remain in condition rating k up to time t. This probability is naturally 1 at t = 0

and decreases with each inspection cycle ∆, as illustrated in Figure 4.3. Therefore,

the instantaneous probability that the structural component will remain at the same

condition rating over the next annual reporting cycle at any time t (Mishalani and

Madanat, 2002) is given by

Pkk(t, ~z) =
Sk(t+ ∆, ~z)

Sk(t, ~z)
=
Sk(t+ 1, ~z)

Sk(t, ~z)
for ∆ = 1 year (4.1)

The step nature of the non-parametric survival function obtained from PHM regres-

sion complicates the implementation of the equation (4.1). Although each interval of

survival time is associated with a unique survival probability, the instantaneous drop

in the survival probability at the end of each interval to the lower step associated with

the subsequent survival interval generates a discontinuity in the survival probabilities

at that instant when one interval ends and the next one begins. Also, the survival in-

terval represented by one step is not consistently equal to one inspection interval but

sometimes spans across multiple or partial inspection intervals. Therefore, a special

subroutine had to be designed to extract unique values of Sk(t, ~z) for each inspection

interval of one year. The maximum survival probability recorded at any year was

assigned to that year. The problem of intervals spanning multiple years was resolved

by linear interpolation of the survival probabilities associated with the years at the

beginning and end of such an interval. The survival probabilities so obtained were

then used to calculate the transition probabilities Pkk using equation (4.1). Since

it is assumed that improvement in condition rating is not possible in the presence
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FIGURE 4.5: Baseline transition probabilities for timber deck across condition
ratings 9 through 4

of deterioration without rehabilitation, the probability of deteriorating to condition

rating (k − 1) at any time t is consequently given by

Pk(k−1)(t, ~z) = 1− Pkk(t, ~z) (4.2)

Figure 4.3 shows the previously presented baseline survival functions for the timber

deck proportional hazards deterioration model over condition ratings 9 through 4.

Transition probabilities calculated from these survival functions using the methodol-

ogy described above are presented in Figure 4.5. It can be observed that the stay-

the-same transition probabilities for each of the condition ratings 8 to 4 are nearly

constant with the duration that the deck has been continuously rated in the respective

condition rating, with some gradual decrease in the probability after approximately

15-20 years at that condition rating. Only in case of condition rating 9 is a mild de-
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crease in the stay-the-same transition probability observed from the very beginning.

It should be noted that the visible increase in stay-the-same transition probabilities

in the odd numbered years at each condition rating reflects the biennial frequency of

the typical inspection cycle.

The deterioration models developed in this study can account for the duration

dependent changes in transition probabilities by developing separate transition prob-

ability matrices for each consecutive inspection cycle. However, since the transition

probabilities are generally constant with the duration in the condition rating, sim-

plified stationary transition probability matrices may be justified for computational

simplicity in most practical applications. It is proposed that the mean value of the

transition probabilities over the duration of the survival function be used for this

purpose. The implementation of both stationary and non-stationary transition prob-

ability approaches for deterioration modeling are described in the next subsection and

a comparative analysis is presented.

There is no reference in literature to the use of stationary transition probabilities

based on survival analysis. However, use of stationary transition probability matrices

in Markovian deterioration modeling have been described in Chapter 2. Stationary

transition probabilities associated with staying in the same condition rating can be

calculated based on the percentage prediction method (Jiang et al., 1988, Scherer

and Glagola, 1994, Wang et al., 1994) or the expected value method (Butt et al.,

1987, Jiang et al., 1988, Madanat et al., 1995) explained in section 2.2.1. Stationary

transition probabilities for element level models implemented in Pontis are generally

based on expert opinion surveys of bridge engineers on account of limited duration
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of element level data. Only recently have the above-mentioned data based methods

been applied to element level data in a couple of state bridge inventories (Hearn,

2012, Sobanjo and Thompson, 2001, 2011). Stationary transition matrices developed

in this way were not considered to account for the time dependent nature of deterio-

ration. To provide for time dependence, bridges were divided into several age groups,

each of which had its own stationary transition matrix. Non-homogeneous Markov

chain methodology was then applied to obtain the deterioration models (Jiang et al.,

1988). A major advantage of using survival analysis for the construction of probabilis-

tic deterioration models is its ability to account for the duration dependent nature

of deterioration. The calculation of non-stationary transition probabilities and de-

velopment of non-stationary transition matrices has been illustrated for parametric

Weibull survival models (Kallen and van Noortwijk, 2005, Mishalani and Madanat,

2002, Sobanjo, 2011), however, as mentioned earlier, this approach has not yet been

implemented in practice.

At this point, it is important to note that the transition probabilities do not yet

incorporate the influence of covariates included in the deterioration model on the

hazard rate. Considering that the survival functions in Figure 4.3 are the baseline

survival functions where all of the covariates, ~z, take baseline values, the correspond-

ing transition probabilities reflected in Figure 4.5 can be called the baseline transition

probabilities. If z0 denotes the set of baseline covariates, Sk(t, z
0) can be defined as

the baseline survival function and Pkk(t, z
0) can be defined as the baseline stay-the-

same transition probability for condition rating k. For any other set of covariates,

denoted as z1, associated with assignments in a multivariable model, the PHM allows
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calculation of a hazard ratio (refer to equation (3.2)),

HRk = e
~βk(z1−z0) = eβk,1(z11−z01)+βk,2(z12−z02)+...+βk,n(z1n−z0n) (4.3)

such that (refer to equation (3.5)),

Sk(t, z
1) = Sk(t, z

0)
HRk . (4.4)

Therefore, using equation (4.1),

Pkk(t, z
1) =

Sk(t+ ∆, z1)

Sk(t, z1)
=

[
Sk(t+ ∆, z0)

Sk(t, z0)

]HRk
=
[
Pkk(t, z

0)
]HRk , and (4.5)

Pk(k−1)(t, z
1) = 1−

[
Pkk(t, z

0)
]HRk = 1− Pkk(t, z1) (4.6)

The basic output of a proportional hazards model is comprised of the baseline sur-

vival function and the PHM regression coefficients. Equations (4.5) and (4.6) illus-

trate the ease with which this basic output can be used to calculate the transition

probabilities for any individual bridge component, or category of bridge components,

associated with a specific set of covariate values, and thus develop the correspond-

ing deterioration models. As reflected in the derivation above, the survival functions

are not directly used beyond developing the baseline transition probabilities. There-

fore, for practical implementation, the BMS needs only to store baseline transition

probabilities for each model and the corresponding hazard ratios associated with the

specific bridge covariate assignments over each condition rating. These are small ma-

trices with nominal storage requirements and insignificant computational resources

are necessary to carry out the subsequent construction of bridge-specific transition

probability matrices.
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4.3.2 Transition Probability Matrices

For matrix-based implementation of the probabilistic deterioration models, tran-

sition probability matrices introduced in Section 2.2.1, can be developed either as

stationary or non-stationary matrices for each year of the planning horizon. Consid-

ering a planning horizon of N years, if the duration of each prediction cycle, ∆, is

one year, the transition probability matrix for the nth year, where n = 1, 2, ..., N , is

developed using

Pn =


Pmm(n,~z) Pm(m−1)(n,~z) 0 0 ... 0 0

0 P(m−1)(m−1)(n,~z) P(m−1)(m−2)(n,~z) 0 ... 0 0

˙ ˙ ˙ ˙ ... ˙ ˙
˙ ˙ ˙ ˙ ... ˙ ˙
0 0 0 0 ... P22(n,~z) P21(n,~z)
0 0 0 0 ... 0 P11(n,~z)

 (4.7)

In the above matrix, m is the highest condition state and 1 is the lowest condition

state. In developing practical transition probability matrices for implementation in

the NCDOT BMS, it is important to recognize that very few bridges are permitted

to deteriorate below condition rating 3. There are few records, if any, associated with

condition ratings 1 and 2 associated with each material specific GCR and all of these

are censored records. Even at condition rating 3, records available for analysis are

very limited and nearly all are censored records. Due to this reason, the transition

probabilities for condition ratings 1 and 2 were excluded from the transition prob-

ability matrix in developing the earliest Markovian bridge deterioration models for

the Indiana BMS (Jiang et al., 1988). In development of the current models, it was

observed that following this approach caused the deterioration models to unnaturally

converge to the lowest condition rating, or condition rating 3, that was included in the

transition probability matrix. To avoid this problem, and since insufficient historical
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condition rating data is available for lower condition ratings to develop meaningful

transition probabilities through survival analysis, the stay-the-same transition proba-

bilities for condition ratings 3 to 1 have been prescribed as 0.75 in subsequent models

developed in this study. Likewise, NCDOT follows the NBI condition rating scale,

where the highest condition rating is 9. Therefore, the baseline transition proba-

bility matrix for NCDOT bridge components for the first prediction cycle, which is

associated with baseline survival functions and baseline covariate assignments, will

be

P1 =


P99(1,z0) P98(1,z0) 0 0 0 0 0 0 0

0 P88(1,z0) P87(1,z0) 0 0 0 0 0 0

0 0 P77(1,z0) P76(1,z0) 0 0 0 0 0

0 0 0 P66(1,z0) P65(1,z0) 0 0 0 0

0 0 0 0 P55(1,z0) P54(1,z0) 0 0 0

0 0 0 0 0 P44(1,z0) P43(1,z0) 0 0
0 0 0 0 0 0 0.75 0.25 0
0 0 0 0 0 0 0 0.75 0.25
0 0 0 0 0 0 0 0 1

 (4.8)

Transition probability matrices can similarly be developed for each year in the plan-

ning horizon based on the values of the transition probabilities in that year. A

simplifying assumption made in the development of non-stationary transition proba-

bility matrices is that the time spent in the initial condition state is zero (Sobanjo,

2011). The application of non-stationary transition probability matrices follows the

semi-Markov approach as explained in Section 4.3.3. The current NCDOT database

has 35 years of data, which allows for calculation of observed transition probabilities,

based on equations (4.1) and (4.2), over the duration of the survival functions, which

is less than or equal to the period of observation. Beyond this observed duration,

the transition probability is assumed to remain constant for the remaining prediction

period. In practical implementation, the planning horizon in long-term analyses does

not typically exceed 10 or 20 years. However, longer horizons are used to describe the
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characteristics of the deterioration model over the full service life of the component.

Function [1] of Algorithm 3 presents the calculation of the baseline transition proba-

bilities and construction of transition probability matrices as explained above. These

matrices can then be used to predict the future condition of a bridge component if

its vector of descriptive covariate assignments and present condition is known.

Algorithm 3 Construction of Transition Probability Matrices and Condition State
Prediction over the Planning Horizon

Input: Baseline Survival Functions, z1, β, HR, N, Initial Condition Rating,R
Output: Baseline Transition Probabilities, Transition Probability Matrices, PHM

Deterioration Models, E

1: function [1] Baseline Transition Probabilities & Matrices( Baseline
Survival Function)

2: for Condition Ratings 4:9 do
3: Transition Probability of staying at the same rating← Pkk . Equation 4.1
4: Transition Probability of deteriorating to lower rating← Pk(k−1) = 1−Pkk
5: return Baseline Transition Probabilities
6: end for
7: Assemble Transition Probability Matrices ← Pn . Equation 4.7
8: return Baseline Transition Probability Matrices
9: end function

10: function [2] Forward Prediction of Expected Condition State over
Planning Horizon(z1, β, Transition Probability Matrices, N, Initial Rating,
R)

11: Baseline Deterioration Model . Equations 4.9 to 4.13
12: for other than baseline covariate values: for Condition Ratings 4:9 do
13: Calculate HR . Equations 4.3
14: end for
15: Adjusted Transition Probability Matrices ← Pn & HR
16: for n = 1 : N do
17: Zn ← Z(n−1) · Pn
18: En ← Zn ·R
19: return EN and Adjusted Deterioration Model
20: end for
21: end function
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4.3.3 Probabilistic Prediction of Condition over the Planning Horizon

Using the conventional Markov chain approach, the condition state of a bridge

component is represented in the form of a vector for the purpose of developing a

probabilistic predictive deterioration model. For example, the initial state vector Z0

for a newly constructed NCDOT timber deck would be represented by [1 0 0 0 0 0 0 0

0], which indicates the probability of the deck being rated at condition rating 9 being

1 and the probability of the deck being rated at any other condition rating being 0.

The predicted state vector at the end of the first year, Z1, and for consecutive years

can be obtained as follows:

Z1 = Z0 · P1 after 1st year (4.9)

Z2 = Z1 · P2 after 2nd year (4.10)

Z3 = Z2 · P3 after 3rd year (4.11)

or recursively for every year until the nth year prediction as

Zn = Zn−1 · Pn after nth year (4.12)

If stationary transition probability matrices, P , are adopted, the calculation of the

predicted state vector does not need to be calculated recursively but can be obtained

as

Zn = Z0 · (P )n (4.13)

The state vector at any year of the planning horizon represents the probability of the

bridge component being at each individual condition rating in that year. Using this
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state vector, it is possible to plot the probability associated with individual condition

ratings over the planning horizon. Figure 4.6 shows condition rating probabilities for

the timber deck model described throughout this chapter over a prediction period of

120 years, assuming an initial condition rating of 9 and baseline covariate assignments.

These condition rating probabilities are based on the non-stationary transition prob-

abilities using the semi-Markov formulation. Figure 4.7 shows the same condition

rating probabilities calculated using the stationary transition probability matrix in a

Markov Decision Process.

It is observed that the distributions obtained from the stationary transition prob-

ability matrix in general have thick tails whereas the distributions obtained from the

non-stationary semi-Markov approach are more concentrated around the peak. This

is indicative of the relatively smaller uncertainty associated with condition rating du-

ration distributions obtained using the non-stationary approach. This is especially

noticeable in case of condition ratings 8 and 7 for which the distributions from the

non-stationary approach have almost no tail. The mean durations or expected tran-

sition times for the respective condition ratings are accordingly shorter. It is to be

noted that this mean transition time is not the same as the time for the expected

condition state to be at that rating (Kallen and van Noortwijk, 2005). In either the

case of stationary or non-stationary transition probability matrices, if the condition

ratings are represented in a column vector R = [9 8 7 6 5 4 3 2 1]T , the expected

condition state at the nth year can be obtained using

E = Zn ·R (4.14)
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FIGURE 4.6: Condition rating probabilities for timber deck from semi-Markov
process
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FIGURE 4.7: Condition rating probabilities for timber deck from stationary
Markov process
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FIGURE 4.8: Expected values of condition rating for timber deck determined using
stationary and non-stationary transition probabilities

The predicted expected condition ratings obtained using equation (4.14) can be used

in the BMS multi-year optimization iterations, to determine the repair, maintenance,

and replacement decisions required at every stage over the planning horizon.

Figure 4.8 shows the expected condition states over the prediction period calculated

using the non-stationary and stationary transition matrices. It is observed that the

deterioration rates obtained from both approaches are in close agreement over the first

20-30 years of the prediction period. Subsequently, the deterioration rate from the

non-stationary matrices is faster and converges to a condition rating of 4 in 60 years.

The deterioration rate from the stationary matrices, however, does not converge to

the rating 4 even after 80 years, which appears unrealistic, especially for timber

decks. This observation is consistent with similar observations of unreasonably high

median transition times obtained for prestressed concrete superstructure elements

using stationary transition matrices for the bridge inventories in Florida and Colorado,
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FIGURE 4.9: Expected condition rating prediction of timber deck bridges in
different age groups

as mentioned in section 2.2.2 (Hearn, 2012, Sobanjo and Thompson, 2011), and also

the observed flattening of the deterioration curve obtained from first level Markov

process for the NYSDOT bridge inventory, as mentioned in Section 2.2.1 (Agrawal

et al., 2009, 2010). From the above account, it can be justifiably concluded that the

use of non-stationary matrices is advisable for longer planning periods to correctly

model deterioration behavior.

As discussed earlier, deterioration models can be developed for any category of

bridges by scaling the transition probabilities with the respective hazard ratios, as

indicated in equations (4.5) and (4.6). Deterioration models for timber decks of dif-

ferent age groups developed in this way are shown in Figure 4.9. This presentation

is based on statistically identified significant factors affecting timber deck deteriora-

tion, in contrast to the judgment-based a priori grouping used in present day BMS.

This not only constitutes a breakthrough in modeling infrastructure deterioration,
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FIGURE 4.10: Proportional hazards model prediction flowchart

but will contribute immensely to understanding the effect of various functional and

design features, as well as potentially preservation strategies, on bridge deterioration

rates. The final Function [2] of Algorithm 3 represents the subroutines for calculation

of hazard ratios for any set of covariates and the development of the final deteri-

oration models for any desired prediction period. The proportional hazards model

flowchart shown in Figure 4.10 summarizes the deterioration forecasting process de-

scribed above. The forecasting period is a user controlled input enabling the program

to perform the calculations for bridge-specific transition probability matrices, state

vectors, and expected condition ratings over the specified prediction period.



CHAPTER 5: IMPLEMENTATION OF DEVELOPED FRAMEWORK

A Windows-based standalone graphical user interface (GUI) has been developed

in the MATLAB software environment for implementation of the deterioration mod-

eling framework described in the previous chapter. The complex software routines

developed for deterioration modeling form the basis of the GUI, which translates

and abstracts the software code to a series of guided and interactive interfaces. The

result is a very accessible and user friendly program suitable for routine use by trans-

portation personnel working with the BMS. The GUI, titled the Bridge Management

System - Deterioration Modeling Program (BMS-DMP) is used to produce the results

presented in subsequent chapters of this dissertation and can be used in the future

to update both deterministic and proportional hazards probabilistic models as addi-

tional condition rating data is added to the BMS database each year. The layout and

functionalities of the BMS-DMP are presented in the following sections. Using the

MATLAB Compiler, the GUI has been developed into a standalone executable that

can be installed and operated on workstations without MATLAB installations.

5.1 General Functionality

The GUI design environment (GUIDE) in MATLAB allows construction of a cus-

tomized user interface with multiple windows that can be opened successively from

one main window. Each window can be individually designed to have various types
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of controls including drop-down menus and buttons as well as to dynamically display

output in form of text or images. The Main window of the BMS-DMP is shown in

Figure 5.1.

FIGURE 5.1: BMS-DMP Main window

The Main window has three main functionalities: Importing BMS Data, calling De-

terioration Modeling subroutines, and File Management. Respective buttons on the

front panel activate callback functions associated with each button that execute code

in the compiled MATLAB subroutines. For example, the ‘Import BMS Database’

button executes the function to load the Master Database to be used for developing

the deterioration models. In this case, it is also programmed to display the message

‘Loading BMS Database’, also captured in Figure 5.1, while the function is being
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FIGURE 5.2: Primary window: component selection and classification

executed. This is especially helpful when working with large databases and matrices

with relatively long file processing times.

5.1.1 Deterioration Modeling Functionality

The deterioration modeling functionality provided by the BMS-DMP allows for im-

plementation of either the survival analysis-based probabilistic modeling techniques

developed in this study or the deterministic modeling techniques developed originally

by Chen and Johnston (1987) and presently used within the NCDOT BMS. The de-

terministic deterioration modeling functions can be applied to either primary compo-

nent, also known as the general condition rating (GCR) data, element-level condition

ratings, or culvert condition ratings. The extension of the deterministic deteriora-

tion modeling technique to element-level and culvert condition rating data is a new

contribution provided by this software. Due to the limited duration of element-level

condition rating data available, it is recommended that survival analysis techniques

should not be applied yet for the development of element-level deterioration models

in North Carolina.
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The Primary deterioration models refer to those for those bridge components re-

ceiving general condition ratings (GCR): deck, superstructure and substructure. Fig-

ure 5.2 shows the window that opens on clicking ‘Primary’ which allows the user

to choose the GCR component and classification hierarchy used to build the deter-

ministic models through four drop-down menus. The first menu is for selecting the

GCR bridge component and each of the remaining three menus contain the list of

available classifiers, including material, design, functional, and geographical features,

that are available in the bridge database and are considered to potentially influence

the deterioration rate of bridge components. Since the number of bridge classification

tiers used in the current North Carolina deterioration models vary by component, the

developed interface allows the user to specify between one and three tiers for pre-

classifying bridges prior to deterministic regression. Specific to the selected bridge

classification tiers, the program generates three types of output: a cascading clas-

sification tree plot showing the number of bridge data records available for analysis

within each tier, a table for each of the lowest tier categories showing the number

of censored and uncensored records available for analysis over each condition rating

with the calculated deterministic duration estimate, and a plot of the deterministic

deterioration model for each of the lowest tier categories in the specific bridge classi-

fication tree. Figure 5.3 shows a typical output for a single tier of the deterministic

deterioration modeling routine. When running the program with the specified bridge

classification displayed in Figure 5.2, similar output is provided for the remaining cat-

egories of the selected Tier 1 Classifier: Structure Type Main - Material (i.e. concrete,

steel and prestressed concrete).
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FIGURE 5.3: Representative output from deterministic deterioration modeling
functions

Development of element-level and culvert deterministic deterioration models pro-

ceeds analogous to the primary components, with the exception of the element and

bridge classification tier selection options that are unique to each general category of

model. Following generation of any deterministic deterioration model, the regression

models and analysis statistics can be exported to the Main window by clicking the

‘Export Model to Workspace’ button in the respective classification window, as seen

in Figure 5.2.
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FIGURE 5.4: File management and model comparison

5.1.2 File Management Functionality

The File Management functionality is presented to the user through four push-

buttons provided on the Main window. The topmost button permits for the importing

of models that may be saved locally to the user’s drive during prior usage of the

GUI. All models loaded into the workspace memory, either from the local drive or

developed in the current session, are listed in the list box to the right of the buttons.

The remaining buttons execute functions on the selected models in the workspace.

Developed models, exported to the workspace after generation as mentioned earlier,

can be saved on the computer using the ‘Save Models to Disk’ button. The ‘Plot

Selected Models’ button is used to develop comparative plots of selected models from
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FIGURE 5.5: BMS-DMP Survival window

the workspace. For example, Figure 5.4 shows a subwindow where deterministic

substructure deterioration models developed using material type as the sole classifier

were exported to the workspace and are comparatively plotted using this function.

This functionality is very useful for comparing models and visually assessing the

impact of various classifiers on the relative deterioration rate.

5.2 Survival Analysis Functionality

While the developed software permits for development of either classical determin-

istic deterioration models or probabilistic deterioration models based on the developed

proportional hazards approach, the emphasis of this GUI development is placed on

the latter approach. Figure 5.5 shows the Survival window that opens on clicking the

button ‘Survival Analysis Models’ in the Main window. The Survival window has a

component drop down menu at the top left. This menu lists all of the bridge compo-
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FIGURE 5.6: Survival window: material component dropdown menu

nents of different material types for which survival-based deterioration models can be

developed. A screen capture of the component drop down menu is shown in Figure

5.6. In developing this list, the assumption was made that material type would always

be used to classify bridges prior to development of the deterioration model. This de-

cision was made in the interest of practical implementation and does not represent an

inherent limitation of the developed framework for proportional hazards deterioration

modeling. The Survival window has been equipped with three buttons: Run Survival

Analysis, Forecast Model and Save Results, each supporting an important capability.

5.2.1 Survival Analysis

The ‘Run Survival Analysis’ button can be clicked after selecting the material com-

ponent from the drop down menu. It activates an automated process for developing

the baseline deterioration models for that component. This process has been described

in detail in Chapter 4. The very first code that is executed after the button-press

is for extracting the material component data from the master database previously

imported into the program through the Main window (Algorithm 1, procedure [2]).
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FIGURE 5.7: BMS-DMP performing survival analysis

This is followed by implementation of the PHM master code, represented by Algo-

rithm 2. The various functions of the master code are executed automatically and

sequentially through the generation of the final deterioration models. The Survival

window is designed with a number of tables that are dynamically programmed to

progressively populate the display with critical results from the functions performed

to allow for user assessment of data richness, categorical statistics, and regression

results. First, the ‘Bridge Rating Information’ table displays the overview of simple

statistics related to the richness of the underlying condition rating data used in the

survival analysis. This table presents the number and percentage of censored and

uncensored bridge records after completion of Function [1], ‘PHM Input Data’, of

Algorithm 2. The ‘Categorical Binning’ table subsequently shows the mean categor-

ical bounds calculated over the continuous scale variables: Age, ADT, ADTT, and
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FIGURE 5.8: Baseline expected value deterioration model

MaxSpan. This table reflects the intervals used for reference cell coding developed

by Function [2]. The three tables at the bottom of the survival analysis window are

programmed to display the significant factors identified by best subset regression,

and their respective coefficients and hazard ratios. These tables are populated after

the functions for preliminary multivariable model development (Function [3]), best

subset selection (Function [4]), and calculation of final PHM coefficients (Function

[5]) are executed. These display tables are meant to keep the user informed about

essential model attributes during the implementation process. Additionally, to keep

track of the progress of the program, individual ‘waitbar’ displays have been coded

in for the more time-consuming functions. Figure 5.7 shows an intermediate screen

capture of the Survival window with such a waitbar indicating that the best subset

regression (Function [4]) has been completed for condition ratings 4 and 5 and is being

carried out currently for rating 6. Following completion of the proportional hazards

deterioration modeling, the baseline transition probability matrix is obtained through

Function [6] of Algorithm 2 and presented in the remaining table on the survival anal-
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FIGURE 5.9: BMS-DMP: survival analysis completed

ysis window. In addition to these tables, plots of baseline survival functions for each

condition rating and transition probability plots are also displayed in individual fig-

ures and saved automatically to the local drive. Furthermore, the baseline expected

value deterioration model (assuming an initial condition rating of 9), is presented as

shown in Figure 5.8. A screen capture of the Survival window after completion of the

process initialized by the ‘Run Survival Analysis’ button is shown in Figure 5.9.

5.2.2 Model Forecasting

The hazard ratios and the baseline transition probabilities can be used to develop

deterioration models for any specific bridge or category of bridges as explained in

Section 4.3.3 and summarized in Figure 4.10. The Model Forecasting window is

envisaged as providing the interface for ease in development of these predictive models

in accordance with user specifications. The development of the BMS-DMP GUI is
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an ongoing process and will be tailored and improved further in accordance with

feedback received from its primary users at NCDOT.



CHAPTER 6: APPLICATION TO THE NORTH CAROLINA STATE BRIDGE
INVENTORY

The framework for deterioration modeling developed in this study and its imple-

mentation was described in Chapters 3, 4, and 5 with the help of the general condition

rating (GCR) dataset associated with timber decks in the North Carolina state bridge

inventory. This chapter presents selected results obtained from implementing the

framework on the remaining GCR components in the NCDOT inventory. The results

for material-specific deck, superstructure, and substructure GCR components are or-

ganized in separate sections to enable comparative assessments of time-dependent

behaviors and effects of significant explanatory factors. Some results for timber decks

already presented in previous chapters are reproduced here for uniformity and to facil-

itate these comparisons. Applied contributions developed through application of the

developed methodology are compared to expected responses and observations from

prior studies to assess the plausibility of the results and develop conclusions on the

factors that most significantly influence deterioration rates of different materials and

components.

6.1 Bridge Deck Deterioration Models

Although proportional hazards regression facilitates the data-driven identification

of significant bridge features that influence the deterioration rates of specific bridge

components, a priori preclassification of bridge components by material type was per-
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formed prior to all statistical regression. The rationale for this decision is based on an

engineering mechanics-based reasoning that deterioration of different materials is nat-

urally driven by different mechanisms and occurs by different processes. Furthermore,

this material-based preclassification is consistent with current NCDOT deterioration

models and the independent development of material-specific models produces a basis

from which the plausibility and consistency of external factor coefficients can be as-

sessed. In the following analysis, bridge decks are classified by primary construction

material, which is coded in the Deck Structure Type field in the NBI database. In

this coding system, all timber deck structures are categorized under the same code

(8). Concrete bridge decks in the state are comprised primarily of decks built with

cast-in-place concrete, coded as 1, and a much smaller percentage constructed of pre-

cast panels, which are coded as 2. Both of these categories are included within the

general concrete deck models developed and analyzed in this study. Similarly, the

dataset used for construction of steel deck models includes Deck Structure Types 3

to 6, which represent steel decks with open grating, closed grating, steel plate, and

corrugated steel, respectively. This grouping is justified on account of the limited

number of bridges in many of the categories associated with this material. The same

grouping and an assumption that deterioration rates are more significantly affected

by material type itself than deck design type was adopted by previous researchers

working on the NCDOT bridge inventory (Chen and Johnston, 1987, Duncan and

Johnston, 2002).

Deterministic deterioration models for decks, superstructures, and substructures

currently being used in the NCDOT BMS were first developed in 2002 (Duncan and
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Johnston) based on the average years in rating spent in each condition rating. The

first task implemented in the current study was to develop MATLAB software routines

in order to update these models for the twelve years of additional data now available

in the NCDOT database. In developing these routines, the procedures originally

established by prior NCDOT researchers (Chen and Johnston, 1987, Duncan and

Johnston, 2002) were followed as closely as possible to ensure consistent updating

of the deterministic deterioration models. Deterministic models are presented here

in order to provide a comparative assessment of the survival analysis-based models

developed in this study and presented in the subsequent subsections. The updated

deterministic models for timber decks, concrete decks, and steel decks, are presented

in Figures 6.1, 6.2, and 6.3, respectively. In these figures, the deterioration models

were developed after further classification of the bridge records by the ADT ranges

currently used in NCDOT deterministic deterioration models, which are presented

in Table 6.1. These deterministic models, in particular those for timber deck and

concrete decks, illustrate the challenge of a priori classification, as the use of ADT

as a preclassifier provides insignificant differences between the models for each deck

material.

TABLE 6.1: Tier 2 ADT classification of deterministic models under each deck
material type

Tier 2 ADT Range
1 0− 200
2 200− 800
3 800− 2000
4 2000− 4000
5 > 4000
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FIGURE 6.1: Timber deck deterministic deterioration models

FIGURE 6.2: Concrete deck deterministic deterioration models

FIGURE 6.3: Steel deck deterministic deterioration models
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6.1.1 Data Overview

The sample size of available uncensored data is an important consideration in

development of duration-based models. Although the superiority of duration models

has been recognized for more than a decade, the availability of records of longer

continuous inspection duration have only recently made their implementation feasible

because of corresponding increase in the relative quantity of uncensored data. In

early illustrative studies performed on concrete deck datasets, a censoring percentage

exceeding 70% was observed at all condition ratings (Mauch and Madanat, 2001,

Mishalani and Madanat, 2002). Censoring information from recent studies is not

available for GCR data, however Weibull-based models that accounted for censoring

were found to be more accurate than Markov models in the 2009 NYSDOT study

(Agrawal et al., 2010).

To facilitate the development of probabilistic deterioration models using Cox pro-

portional hazards regression, observed historical records for continuous durations

spent at individual condition ratings and corresponding censoring information were

extracted for each deck category. Tables 6.2, 6.3, and 6.4 present summaries of the

distribution and characteristics of this data for timber, concrete, and steel decks, re-

spectively. From these summaries, it can be observed that observations at condition

ratings 5 to 8 contribute the greatest percentage of records to each dataset. The per-

centage of censored records for condition ratings 6, 7, and 8 is generally in the range

of 50-65%. Condition rating 5 has a relatively higher percentage of censored records

with a maximum censored percentage of 86.6% associated with condition rating data
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from concrete decks. The reason for this increase in percentage of censoring with

lower condition ratings can largely be attributed to the increased priority given to

MR&R activities at this state of deterioration, although it is plausible that a greater

fluctuation in inspection rating assignments occurs due to an increase in subjectivity

at this advanced stage of deterioration, which would contribute to the increase in

observed censoring. Records associated with condition rating 9 are relatively limited

and are associated with a wide variation in the percentages of censored observations

found across the different material types: 10.1% for timber decks, 87.7% for concrete

decks, and 67.7% for steel decks. Since censoring due to an increase in condition

rating is not possible at condition rating 9, it is most probable that the higher per-

centage of censored observations present for condition rating 9 is related to a larger

percentage of records censored at the beginning or end of the recording period. The

lower percentage for timber decks is indicative of the relatively lower construction

rates of timber decks in recent years leading to higher ages and, consequently, less

likelihood of being in new condition at the end of the recording period. This reason-

ing is supported by statistical analysis of age distributions for different deck material

types, discussed later in this subsection. Observations at condition rating 4 constitute

a sufficient number of records for statistical analysis, however it should be noted that

over 90% of these records are censored for all deck materials. The impact of cen-

soring is later reflected in higher survival probabilities due to the consequently lower

percentages of observed failures or transitions to lower condition ratings associated

with uncensored records at the same duration. This can be observed in the survival

functions for condition rating 4 in the deck deterioration analysis, presented in a
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TABLE 6.2: Timber deck condition rating data overview

Deck No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 745 670 75 10.07
8 4781 3089 1692 35.39
7 7372 2623 4749 64.42
6 7681 2854 4827 62.84
5 5498 1259 4239 77.10
4 2126 169 1957 92.05
3 313 2 311 99.36

TABLE 6.3: Concrete deck condition rating data overview

Deck No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 1419 175 1244 87.67
8 5477 2438 3039 55.49
7 10544 3376 7168 67.98
6 9541 4039 5502 57.67
5 6555 879 5676 86.59
4 1452 94 1358 93.53
3 201 2 199 99.00

TABLE 6.4: Steel deck condition rating data overview

Deck No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 68 22 46 67.65
8 871 437 434 49.83
7 1129 499 630 55.80
6 805 378 427 53.04
5 556 99 457 82.19
4 146 10 136 93.15
3 13 1 12 92.31



136

later subsection. There are almost no uncensored observations recorded for condition

rating 3 in data associated with any of the deck materials, and therefore data from

this condition rating does not lend itself to survival analysis. Moreover, the total

number of observations available for steel decks at condition rating 3, and for all deck

material types for condition ratings lower than 3, is insufficient not only for survival

analysis but for any meaningful statistical analysis. Therefore, observations recorded

for condition ratings 3 and below are necessarily excluded from the current analyses.

Descriptive variables associated with condition rating data that are recorded on a

continuous scale include Average Daily Traffic (ADT), Average Daily Truck Traffic

(ADTT), age, and maximum span length. These are divided into categories of approx-

imately equal frequency based on weighted averages computed across bridge records

with observed condition ratings 4 to 9, as described in Chapter 4. The individual cate-

gories are designated by design variables, which are coded with reference to a baseline

category. Table 6.5 shows the lower bounds determined for categorical design vari-

ables determined from weighted averaging across all condition ratings. The reference,

TABLE 6.5: Lower bounds of intervals developed for categorical design variables

Deck Type Timber Concrete Steel
Category 2 3 4 2 3 4 2 3 4

ADT 94 204 468 878 3184 9090 324 669 1677
ADTT 6 13 29 57 226 941 20 42 109

Age(Years) 20 28 35 14 23 33 12 19 27
MaxSpan(m) 2 3 ∗ 4 6 ∗ 3 4 ∗

or baseline, assignment for each of these descriptive variables includes all values from

zero to the lower bound of the second category for that design variable. The complete

categorization of design variables for timber deck analysis was previously presented

in Table 4.1. The categories for other deck material types can be similarly obtained
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using the lower bounds provided in Table 6.5 for the reference cell coding of other

deck material types. It can be observed that the statistical distributions of the same

design variable develop significantly different categorical ranges over each of the deck

material types. For example, the reference cell category MaxSpan3 includes bridges

with maximum span length of 3 meters or longer when applied to timber decks, but

bridges with maximum span length of 6 meters or longer when applied to concrete

decks. Consequently, deterioration models for different deck material types adjusted

for the same variables are not necessarily quantitatively comparable. Table 6.4 also

captures features of the general distribution of bridges in these classifications for each

deck material type. For instance, it can be observed from the categorical bounds that

the distribution of bridges with timber decks is biased toward older structures with

shorter maximum span length and lower ADT and ADTT than concrete deck and

steel deck bridges in the state.

6.1.2 Survival Analysis

The most significant, or best subset, variables identified for timber deck deterio-

ration models by proportional hazards survival analysis are presented in Table 6.6

along with the associated hazard ratios and Wald statistic p-values across condition

ratings 9 to 4. Corresponding baseline survival functions for the timber deck model

over each of these condition ratings are presented in Figure 6.4. Similarly, the best

subset statistics obtained for the concrete deck and steel deck models are presented

in Tables 6.7 and 6.8 and Figures 6.5 and 6.6, respectively.

The variables with hazard ratios denoted by ‘*’ are not included in the best subset
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for the particular condition rating. For steel decks, it is observed that no variables

are found significant at condition ratings 4 and 9. This is a reflection of the limited

number of recorded observations available in these datasets, as noted in Table 6.4.

Likewise, for timber decks and concrete decks in condition rating 4, it is observed that

there are only two variables in the respective best subset selection. This small set of

significant variables is again a reflection of the limited availability of recorded obser-

vations and the high percentage of censored records at these ratings, as documented

in Tables 6.2 and 6.3.

Comparison of the developed models reveals that the significant explanatory vari-

ables identified in the best subsets for individual deck material types all include

geographic region, maximum span length, number of spans, and age. However, the

influence of these variables on deterioration rate varies across deck material types and

also across the individual condition ratings associated with each deck material type.

Although the geographic region ‘Piedmont’ was found to be a significant explanatory

variable for deterioration in condition rating 5, the effect of geographic region on tim-

ber decks was more notably expressed by whether or not the bridge was located in the

mountain region. For concrete decks, the effect of the ‘Piedmont’ geographic region,

although significant is not consistent across condition ratings. It was associated with

an increased rate of deterioration in condition ratings 5 and 8 but a decreased rate

of deterioration in condition ratings 6, and 9. Similar inconsistency is observed with

respect to the ‘Mountain’ geographic region in the concrete deck models, with an

increased rate of deterioration predicted over condition rating 8, but a significantly

reduced hazard rate for ratings 7 and 9. Higher rates of deterioration of concrete
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bridge decks in northern Indiana compared to those in southern Indiana were found

in earlier studies (Madanat and Ibrahim, 1995, Madanat et al., 1995, Mauch and

Madanat, 2001, Mishalani and Madanat, 2002) and were attributed to the use of

deicing salts in cold weather regions that contribute to corrosion of concrete deck re-

inforcement bars. Similar impact was found in a study on bridge deterioration rates

in the state of Nevada with bridges in northern Nevada deteriorating much faster

than those in southern Nevada on account of harsher winter environment and, conse-

quently, increased freeze-thaw cycles and salt application (Sanders and Zhang, 1994).

In an earlier study done on NCDOT bridges, it is noted that the western divisions

of the state’s Piedmont region experience more frequent ice and snow compared to

the eastern Piedmont divisions, which in turn leads to higher rates of deterioration

for these divisions due to the increased use of deicing and anti-icing salts. This study

recommended classifying regions into salt/non-salt and marine/non-marine regions

instead of Mountain, Piedmont, and Coastal because of striking differences in deteri-

oration rates observed for these classifications (Abed-Al-Rahim and Johnston, 1991).

Differences in weather conditions and associated deterioration rates within the same

region may be the source of the inconsistent effects of geographic region on deteri-

oration rates in the models developed in the present study. However, the changing

mechanisms of the deterioration process itself may be the reason for the observed

changes in hazard ratios over the life cycle of individual components. For instance, it

is believed that deterioration from condition state 8 to 7 in concrete decks is primarily

associated with chemical processes, whereas deterioration from condition state 7 is

associated with mechanical processes reflected in spalling of concrete (Mishalani and
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Madanat, 2002). For steel decks, ‘Piedmont’ and ‘Mountain’ are found to be signif-

icant at condition ratings 7 and 8 and are associated with hazard ratios less than 1.

The lower hazard ratio in these geographic regions relative to the coastal region is

plausible due to increased susceptibility of steel decks to corrosion in the humid and

salt laden environment associated with the coastal region.

From the proportional hazards regression, an increase in maximum span length is

observed to increase the rate of deterioration for all deck material types. This increase

in deterioration rates with an increased span length has been documented for concrete

bridge decks in earlier studies (Freyermuth et al., 1970, Madanat and Ibrahim, 1995,

Madanat et al., 1995). The current regression analysis also indicates that multiple

span bridges are consistently and often significantly more prone to deterioration than

single span bridges. Evidence of increase in rate of deterioration with increase in

number of spans has been documented in a number of previous studies (Busa et al.,

1985, Madanat and Ibrahim, 1995, Madanat et al., 1995). Multispan bridge decks

necessarily include expansion joints with a known propensity for maintenance issues

(Chang and Lee, 2002) that are likely to affect the overall general condition rating of

the deck. Presence of joints was found to exacerbate deck deterioration in an earlier

study (Yanev and Chen, 1993) and serves to support the higher deterioration rate

predicted for multispan bridge decks.

Of all of the potential factors included in the best subset selection, bridge age

was found to have the greatest impact on the hazard ratio across all deck material

types. The positive correlation between the age at inspection and the observed rate

of deterioration is well established in deterioration modeling literature (Busa et al.,
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TABLE 6.6: Timber deck best subset covariates, hazard ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.449 0.114
‘Reconstruction’ ∗ ∗ 0.842 0.008 ∗ ∗ 1.293 < 0.001 0.779 0.048 ∗ ∗
‘Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.363 0.001 ∗ ∗
‘Mountain’ ∗ ∗ 1.277 < 0.001 0.857 < 0.001 1.143 0.001 1.424 < 0.001 ∗ ∗
‘ADT4’ ∗ ∗ ∗ ∗ 1.138 0.003 ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT3’ ∗ ∗ 1.140 0.003 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT4’ ∗ ∗ 1.296 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan2’ ∗ ∗ ∗ ∗ 1.171 0.003 1.199 < 0.001 ∗ ∗ ∗ ∗
‘MaxSpan3’ ∗ ∗ ∗ ∗ 1.165 0.002 1.194 < 0.001 ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ 1.119 0.007 1.284 < 0.001 1.218 < 0.001 ∗ ∗ ∗ ∗
‘Age2’ 2.289 < 0.001 2.438 < 0.001 1.715 < 0.001 1.332 < 0.001 1.302 0.028 0.742 0.163
‘Age3’ 2.503 < 0.001 2.210 < 0.001 1.264 < 0.001 2.076 < 0.001 1.814 < 0.001 ∗ ∗
‘Age4’ 2.445 < 0.001 3.045 < 0.001 0.787 < 0.001 2.265 < 0.001 1.564 < 0.001 ∗ ∗

FIGURE 6.4: Timber deck baseline survival functions
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TABLE 6.7: Concrete deck best subset covariates, hazard ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ 1.124 0.004 0.772 < 0.001 ∗ ∗
‘Piedmont’ 0.631 0.010 1.224 < 0.001 ∗ ∗ 0.753 < 0.001 1.434 < 0.001 ∗ ∗
‘Mountain’ 0.460 0.002 1.207 0.003 0.752 < 0.001 0.809 < 0.001 ∗ ∗ ∗ ∗
‘ADT3’ ∗ ∗ ∗ ∗ ∗ ∗ 1.131 0.004 ∗ ∗ ∗ ∗
‘ADT4’ ∗ ∗ ∗ ∗ ∗ ∗ 1.248 < 0.001 ∗ ∗ 1.551 0.037
‘MaxSpan2’ ∗ ∗ 1.482 < 0.001 0.804 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan3’ 0.497 < 0.001 2.179 < 0.001 ∗ ∗ 1.353 < 0.001 ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ 1.575 < 0.001 1.300 < 0.001 ∗ ∗ ∗ ∗
‘Age2’ 4.525 0.003 1.684 < 0.001 1.130 0.011 1.262 < 0.001 ∗ ∗ 0.257 0.058
‘Age3’ ∗ ∗ 2.285 < 0.001 1.405 < 0.001 1.460 < 0.001 1.692 < 0.001 ∗ ∗
‘Age4’ ∗ ∗ 2.280 < 0.001 2.223 < 0.001 2.279 < 0.001 1.363 0.002 ∗ ∗

FIGURE 6.5: Concrete deck baseline survival functions
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TABLE 6.8: Steel deck best subset covariates, hazard ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ 0.828 0.324 ∗ ∗ ∗ ∗
‘Reconstruction’ ∗ ∗ ∗ ∗ ∗ ∗ 1.415 0.006 ∗ ∗ ∗ ∗
‘Piedmont’ ∗ ∗ 0.705 < 0.001 0.719 0.016 ∗ ∗ ∗ ∗ ∗ ∗
‘Mountain’ ∗ ∗ ∗ ∗ 0.624 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan2’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.280 0.002 ∗ ∗
‘MaxSpan3’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2.837 0.006 ∗ ∗
‘NumberSpans’ ∗ ∗ 1.412 < 0.001 1.376 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age2’ ∗ ∗ 2.995 < 0.001 1.484 0.002 ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ ∗ ∗ 3.094 < 0.001 1.613 0.001 1.377 0.019 ∗ ∗ ∗ ∗
‘Age4’ ∗ ∗ 5.498 < 0.001 1.868 < 0.001 2.593 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.6: Steel deck baseline survival functions
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1985, Chen and Johnston, 1987, Madanat and Ibrahim, 1995, Madanat et al., 1995).

The decreases and increases in rates of deterioration represented by the hazard ratios

associated with State System and Reconstruction are also expected and generally

corroborated by earlier studies. In this study, the baseline assignment of State System

corresponds to State System 1 comprising of interstate, urban and primary roads.

Therefore a hazard ratio lower than 1 is indicative of a lower rate of deterioration of

secondary or rural roads located on State System 2 in comparison to those located on

State System 1. A lower rate of deterioration associated with State System 2 was also

observed in an earlier study conducted on North Carolina bridges and is most likely

attributable to the lower traffic volumes on secondary roads (Abed-Al-Rahim and

Johnston, 1991). It is interesting to note that a reverse phenomenon was observed

in studies conducted on Indiana’s concrete bridges, with decks of bridges located on

interstates and primary roads showing significantly lower rates of deterioration than

those on secondary highways (Madanat and Ibrahim, 1995, Madanat et al., 1995,

Mauch and Madanat, 2001, Mishalani and Madanat, 2002). This was postulated to

be a reflection of the lower design and maintenance standards associated with bridges

on secondary roads. In the present study, it can be observed from the p-values that

State System is identified as a significant variable only in the case of concrete decks,

where it has a hazard ratio slightly higher than 1 at condition rating 6, but a hazard

ratio lower than 1 at condition rating 5. Reconstructed bridges have been observed to

have higher deterioration rates than original or rebuilt bridges (Sanders and Zhang,

1994, Yanev and Chen, 1993), which is reflected in two out of four of the hazard ratios

developed for the effect of reconstruction on the deck deterioration models.
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Increase in ADT was found to slightly increase the deterioration rate of timber

and concrete decks, but the effect was found to be significant over only one condition

rating for each of these components. Similarly, increase in ADTT was also found

significant in moderately increasing the deterioration rate, but only in the case of

timber decks and only at condition rating 8. Given the a priori classification used

currently in the protocol for developing deterministic deterioration models for the

NDOT BMS, it is important to emphasize the near absence of ADT as an identified

significant explanatory factor in the proportional hazards regression. This finding

was not unexpected given the nature of the deterministic deck deterioration models,

previously presented in Figures 6.1, 6.2, and 6.3, which generally indicate that the use

of ADT as a preclassifier for the deterioration models leads to poor development of

independent models that clearly distinguish significant factors affecting deterioration.

The lack of ADT as a significant factor in the deck deterioration models developed by

proportional hazards regression serves to support the validity of the developed frame-

work and benefit offered by the multivariate regression technique. Formal validation

of the predictive fidelity of the developed models relative to the deterministic models

is documented in Chapter 7.

The survival functions, shown in Figures 6.4, 6.5, and 6.6, are associated with

baseline value assignments for the best subset variables for each deck material type.

The survival functions are obtained from Cox proportional hazards regression with

the exception of the survival functions for steel decks in condition ratings 4 and 9

that were found to have no associated covariates influencing the deterioration rate.

The survival functions for these datasets are developed using the Kaplan-Meier em-
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pirical estimator and indicated by dashed lines. Observation of the median duration

of these survival functions is useful for generally comparing these models with de-

terministic models currently being used by NCDOT, although it should be noted

that the survival functions presented only represent the behavior of bridges in the

baseline classification. The longer median duration at each rating in comparison to

deterministic models reflects the ability of the survival-based models to account for

censoring of the condition rating observations. Condition rating 9 is observed to have

a relatively lower duration with respect to all other ratings across all deck material

types. This phenomenon is commonly observed in deterioration modeling and is most

likely attributable to strict guidelines for assigning a new or excellent rating to bridge

decks. In one of the earliest studies on NCDOT bridge deterioration rates, it was

observed that if a reinforced concrete component had cracks after construction, its

condition rating was automatically recorded as 8 rather than 9 (Chen and Johnston,

1987). In this study, it was also observed that a bridge component would have lower

deterioration rates between condition ratings 9 and 6, and the deterioration rate

would accelerate if the condition rating was less than 6. The slope of the survival

function indicates the rate of deterioration or transition to the lower condition rating.

The survival functions obtained from this study corroborate the above-mentioned ob-

servation with the exception of the observed behavior in condition ratings 4 and 5

for concrete and steel decks. The flatter slope of survival functions associated with

certain condition ratings is indicative of a lower rate of deterioration, which may be

partly associated with high censoring percentages. The lower rates of deterioration

are also likely to be associated with frequent low-level maintenance work that does
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not improve the condition rating of the component but might prolong the duration

until deterioration to a lower rating (Abed-Al-Rahim and Johnston, 1991). It should

be recognized that accounting for the contribution of all maintenance activities is a

continuing challenge associated with infrastructure deterioration modeling.

6.1.3 Transition Probabilities and Expected Value Prediction Models

Figures 6.7 to 6.15 show the baseline transition probabilities, mean baseline transi-

tion probability matrices, and expected value prediction models developed for baseline

assignments of significant covariates associated with individual deck material types.

The software framework calculates non-stationary transition probability matrices for

each inspection cycle that can be used to produce predictions of the expected condi-

tion rating by implementing the deterioration model as a semi-Markov process. The

mean baseline transition probability matrix is also used in the following analysis to

produce a simplified expected value prediction model using the stationary Markov

process. This simplified stationary model is distinguished by the use of a dashed

line in Figures 6.9, 6.12 and 6.15. Initial observations on the suitability of the use

of stationary transition matrices to simplify the implementation of the deteriora-

tion models, as well as potential limitations, were discussed in Section 4.3.3. The

comparisons between non-stationary and stationary predictions obtained across the

different deterioration models developed in this chapter serve to formulate conclu-

sions and recommendations on the use of stationary transition probabilities instead

of non-stationary transition probabilities.

Across all deck material types, it is observed that the expected condition ratings
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FIGURE 6.7: Timber deck baseline transition probabilities
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FIGURE 6.10: Concrete deck baseline transition probabilities
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FIGURE 6.13: Steel deck baseline transition probabilities
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predicted by the simplified stationary transition probabilities over an initial period

of approximately 20 years agree strongly with those predicted by the non-stationary

models. In the longer term, the non-stationary model appears to provide less opti-

mistic, yet more realistic, predictions of expected condition ratings. It is observed

from Figure 6.9 that the timber deck with baseline covariate properties deteriorates

from condition rating 7 to condition rating 5 within this planning scenario in a period

of approximately 20 years for the non-stationary model and in a period of approx-

imately 45 years using the stationary model. Similar difference is observed in steel

decks where the relative time associated with deterioration from rating 7 to 5 is ap-

proximately 25 years more using the stationary model and planning scenario shown.

However, in the case of concrete decks, the non-stationary model provides a more

optimistic prediction than the stationary model. The reason for this is the nature

of the baseline transition probabilities over the condition rating duration, which are

nearly constant for the concrete deck model in ratings 4 through 8, but the stationary

model is biased by the lower mean transition probability in condition rating 9. Use

of non-stationary transition probability matrices is recommended for greater accu-

racy in predictions while accounting for non-constancy in transition probabilities and

long-term planning periods exceeding 20 years. However for planning periods limited

to 20 years or less, stationary transition probability matrices may be adopted without

significant loss of accuracy while optimizing the use of computational resources. For

BMS that are able to support the computation of non-stationary matrices, decision

makers can reserve the option of selecting either model depending on the planning

range and purpose of the deterioration forecasting.
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Deterioration models can be obtained for bridge components featuring covariate

assignments other than the baseline values by using the hazard ratios to scale the

baseline transition matrices, as previously explained in Chapter 4. Figure 6.16 shows

the effect of different age categories on timber deck deterioration rates. The effect

of number of spans on rate of deterioration of concrete decks is shown in Figure

6.17. Figure 6.18 shows the effect of reconstruction on steel deck deterioration rate.

The combined effect of two covariates, e.g. age and state system, on concrete deck

deterioration rates is illustrated in Figure 6.19. The interested reader can relate the

changes in each of these illustrative examples to the hazard ratios associated with each

factor presented in Tables 6.6, 6.7, and 6.8. These examples illustrate the depth of

information revealed by the models developed in this study using the same databases

used for developing the deterministic deck models, which were classified using ADT

and expressed far less variable-dependent behavior than expressed in these simple

single or two parameter illustrative prediction models.

6.2 Bridge Superstructure Deterioration Models

In the current NCDOT deterministic deterioration model, bridge superstructures

are also primarily classified by construction material, which for the superstructure is

obtained using the field ‘Structure Type - Main’ in the NBI database record. The four

primary main material categories present with any significant number of associated

bridge records in the NCDOT BMS are: Timber, Concrete, Steel, and Prestressed

Concrete. All structures categorized as timber superstructure carry a code assign-

ment of 7. Concrete and concrete continuous structures, which are coded as 1 and
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2, respectively, are both categorized under the general grouping of concrete super-

structures for deterioration modeling. Similarly, prestressed concrete and prestressed

concrete continuous structures, which are coded as 5 and 6, respectively, are catego-

rized under a single prestressed concrete grouping for deterioration modeling. This

category also includes post-tensioned concrete structures, which are not designated

separately from prestressed concrete structures in the coding system. The steel su-

perstructure category includes both steel structures and steel continuous structures,

which are coded 3 and 4, respectively. Using the same rationale applied for material-

specific pre-classification in the deck deterioration analysis, this primary classification

was also applied for pre-classification of the superstructure condition rating data prior

to application of the proportional hazards regression.

The updated deterministic deterioration models for timber, concrete, steel, and

prestressed concrete superstructures are presented in Figures 6.20 to 6.23. These

deterministic deterioration models are constructed after pre-classification of the bridge

records on basis of State System (Tier 2) and structural design type (Tier 3). The

State System categorization is based on the NCDOT practice of dividing highways

into two broad categories on the basis of functional classification. State System 1

is comprised of bridges on interstate, urban, and primary roads, while State System

2 is comprised of bridges on secondary and rural roads. This same State System

categorization also serves as one of the covariates analyzed for potential influence on

deterioration rates using proportional hazards regression. Structural design type used

for the third tier of bridge classification is also a broader categorization developed

by previous researchers working with the NCDOT bridge inventory (Duncan and



155

Johnston, 2002) based on the field ‘Structure Type - Main’ in the NBI database

record. The Tier 2 and Tier 3 categories used in the development of superstructure

deterministic deterioration models are summarized in Table 6.9. In application of

TABLE 6.9: Tier 2 and Tier 3 classification of deterministic deterioration models
under each superstructure material type

Tier2 State System Tier3 Design Type
1 1 1 Multi-Beam
2 2 2 Slab

3 Tee-Beam
4 Truss
5 Floor-Beam

the deterministic regression procedure to the statewide historical database, it was

observed that the number of bridges within several categories at the Tier 3 level

was insufficient for statistical analysis. Bridges with timber or steel superstructures

were found to be predominantly of the multi-beam design type, while concrete and

prestressed concrete superstructures were predominantly designed with slab or tee-

beam construction. Deterministic deterioration models for categories with at least

50 bridge records available for deterministic analysis at the Tier 3 level are presented

here. The limited diversity of design type within each main material category was the

primary reason for not including design type in the variables analyzed for potential

effect on deterioration rates of material-specific bridge components within the PHM

regression.

6.2.1 Data Overview

The total number of records and censoring characteristics of the datasets associ-

ated with individual condition ratings for all four superstructure material categories

are presented in Tables 6.10 to 6.12 . As observed for decks, observations at con-
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FIGURE 6.20: Timber
superstructure deterministic

deterioration models

FIGURE 6.21: Concrete
superstructure deterministic

deterioration models

FIGURE 6.22: Steel
superstructure deterministic

deterioration models

FIGURE 6.23: Prestressed
concrete superstructure

deterministic deterioration
models
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TABLE 6.10: Timber superstructure condition rating data overview

Superstructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 179 164 15 8.38
8 1123 608 515 45.86
7 3023 1027 1996 66.03
6 3842 1572 2270 59.08
5 2625 591 2034 77.49
4 948 79 869 91.67
3 341 0 341 100.00

TABLE 6.11: Concrete superstructure condition rating data overview

Superstructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 11 0 11 100.00
8 315 147 168 53.33
7 1079 412 667 61.82
6 1580 675 905 57.28
5 1301 244 1057 81.25
4 442 33 409 92.53
3 61 1 60 98.36

TABLE 6.12: Steel superstructure condition rating data overview

Superstructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 799 117 682 85.36
8 7290 4195 3095 42.46
7 12908 4486 8422 65.25
6 9668 3407 6261 64.76
5 5372 1078 4294 79.93
4 1808 152 1656 91.59
3 376 5 371 98.67

TABLE 6.13: Prestressed concrete superstructure condition rating data overview

Superstructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 1335 183 1152 86.29
8 4676 2124 2552 54.58
7 5511 881 4630 84.01
6 1601 626 975 60.90
5 912 123 789 86.51
4 199 15 184 92.46
3 39 1 38 97.44
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dition ratings 5 to 9 contribute the greatest percentage of records to the dataset of

superstructure condition ratings for each material type. The percentage of censored

records is in the range of approximately 45-65% for condition ratings 6 to 8, with the

exception of prestressed concrete superstructures at rating 7, which have 84% cen-

sored records. The percentage of censored records at condition rating 5 is relatively

high ranging from 77.5% for timber superstructures to 86.5% for prestressed concrete

superstructures, whereas that for rating 4 is over 90% for all material types. However,

these percentages are similar to those previously observed in the deck condition rat-

ing data. There are comparatively limited number of records available at condition

ratings 3 and 9. The insufficiently small number of uncensored records available at

condition rating 3, if any, prohibits the use of survival analysis over this rating. How-

ever, there are a sufficient number of total and uncensored records to permit survival

analysis over condition rating 9 for all material types, with the exception of concrete

superstructures where only eleven observations are present and all are censored.

Table 6.14 shows the lower bounds for the categorical design variables developed

for the continuous scale variables: ADT, ADTT, age, and length of maximum span.

These bounds were determined by weighted averaging of the observed bridge records

extracted across all condition ratings for each superstructure material type. It can

TABLE 6.14: Lower bounds of intervals developed for categorical design variables

Superstructure Timber Concrete Steel Prestressed
Type Concrete

Category 2 3 4 2 3 4 2 3 4 2 3 4
ADT 102 239 555 1419 3815 8263 282 1015 5179 515 1636 5432

ADTT 6 15 34 96 296 788 18 71 454 36 141 738
Age(Years) 22 28 36 32 46 58 17 26 35 7 12 19

MaxSpan(m) ∗ 2 ∗ 3 5 ∗ 3 5 ∗ 4 6 ∗

be observed from the categorical bounds that reinforced concrete superstructures are
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generally older that the other superstructure materials and tend to carry higher ADT

and ADTT. Prestressed concrete superstructures are of more recent construction than

the other superstructure material types according to the age categorical distributions.

The distribution of timber superstructures is biased toward lower number of spans

and lower ADT and ADTT than bridge superstructures of all other material types in

the state.

6.2.2 Survival Analysis

The best subset variables identified for timber superstructure deterioration mod-

els are presented in Table 6.15 along with their associated hazard ratios and Wald

statistic p-values across condition ratings 9 to 4. The corresponding baseline survival

functions are presented in Figure 6.24. Similarly, the best subset models, statistics,

and baseline survival functions for concrete, steel, and prestressed concrete super-

structures are presented in Tables 6.16, 6.17, and 6.18 and Figures 6.25, 6.26, and

6.27, respectively. It is observed that the significant best subset explanatory vari-

ables common to all individual superstructure material types include region, length

of maximum span, number of spans, and age. However, as quantified by hazard

ratios, the influence of these variables varies not only across superstructure material

types but also across individual condition ratings associated with each superstructure

material type. Both steel and prestressed concrete superstructures in the Mountain

and Piedmont geographic regions show overall lower rates of deterioration than those

in the Coastal region. Timber superstructures in the Piedmont region also have a

lower rate of deterioration than those in Coastal region. Higher rates of deteriora-
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TABLE 6.15: Timber superstructure best subset covariates, hazard ratios, and
p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ 1.412 0.004 ∗ ∗ ∗ ∗
‘Reconstruction’ ∗ ∗ 0.706 0.039 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ 0.746 < 0.001 ∗ ∗ 0.621 0.055
‘ADT3’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.453 0.006 ∗ ∗
‘ADTT3’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.937 0.021 ∗ ∗
‘MaxSpan3’ ∗ ∗ ∗ ∗ 1.305 0.003 ∗ ∗ ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ ∗ ∗ 1.435 < 0.001 ∗ ∗ 1.861 0.029
‘Age2’ ∗ ∗ 2.523 < 0.001 1.936 < 0.001 1.207 0.019 ∗ ∗ ∗ ∗
‘Age3’ 2.251 0.007 1.716 < 0.001 2.146 < 0.001 1.823 < 0.001 ∗ ∗ ∗ ∗
‘Age4’ 1.934 0.012 3.560 < 0.001 ∗ ∗ 2.408 < 0.001 0.715 < 0.001 ∗ ∗

FIGURE 6.24: Timber superstructure baseline survival functions



161

TABLE 6.16: Concrete superstructure best subset covariates, hazard ratios, and
p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.816 0.589
‘Piedmont’ ∗ ∗ 1.534 0.013 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘Mountain’ ∗ ∗ ∗ ∗ 0.791 0.031 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan2’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.520 0.034 ∗ ∗
‘MaxSpan3’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.996 0.001 ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ 1.849 < 0.001 1.621 < 0.001 1.862 0.003 ∗ ∗
‘Age2’ ∗ ∗ ∗ ∗ 2.059 < 0.001 1.286 0.023 ∗ ∗ ∗ ∗
‘Age3’ ∗ ∗ 1.512 0.074 2.434 < 0.001 1.920 < 0.001 ∗ ∗ 0.387 0.078
‘Age4’ ∗ ∗ ∗ ∗ 3.001 < 0.001 2.161 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.25: Concrete superstructure baseline survival functions
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TABLE 6.17: Steel superstructure best subset covariates, hazard ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ 0.916 0.014 1.162 0.005 0.950 0.265 1.311 < 0.001 ∗ ∗
‘Reconstruction’ ∗ ∗ ∗ ∗ 1.507 < 0.001 1.502 < 0.001 ∗ ∗ ∗ ∗
‘Piedmont’ ∗ ∗ 1.140 0.005 0.865 0.002 0.889 0.001 ∗ ∗ ∗ ∗
‘Mountain’ ∗ ∗ 1.139 0.009 0.803 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘IntegralConcrete’ ∗ ∗ ∗ ∗ 0.082 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘EpoxyOverlay’ ∗ ∗ ∗ ∗ 4.924 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘ADT2’ ∗ ∗ ∗ ∗ 1.140 0.002 1.126 0.006 ∗ ∗ ∗ ∗
‘ADT3’ ∗ ∗ ∗ ∗ 1.163 0.003 1.121 0.008 ∗ ∗ ∗ ∗
‘ADT4’ ∗ ∗ ∗ ∗ 1.277 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT4’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.881 0.551
‘MaxSpan2’ ∗ ∗ 0.864 < 0.001 0.920 0.026 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan3’ ∗ ∗ ∗ ∗ 0.816 < 0.001 1.287 < 0.001 ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ 1.245 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age2’ ∗ ∗ 2.451 < 0.001 1.583 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ 17.228 < 0.001 3.109 < 0.001 2.057 < 0.001 1.396 < 0.001 ∗ ∗ ∗ ∗
‘Age4’ 12.274 < 0.001 3.759 < 0.001 3.008 < 0.001 2.775 < 0.001 1.385 < 0.001 ∗ ∗

FIGURE 6.26: Steel superstructure baseline survival functions
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TABLE 6.18: Prestressed concrete superstructure best subset covariates, hazard
ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ 1.217 < 0.001 0.854 0.055 1.250 0.013 ∗ ∗ ∗ ∗
‘Piedmont’ 0.427 < 0.001 ∗ ∗ 0.689 < 0.001 0.725 < 0.001 ∗ ∗ ∗ ∗
‘Mountain’ ∗ ∗ ∗ ∗ 0.579 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘ADT3’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.643 0.075 ∗ ∗
‘ADT4’ 0.612 0.006 ∗ ∗ ∗ ∗ ∗ ∗ 0.456 0.006 ∗ ∗
‘ADTT2’ ∗ ∗ ∗ ∗ 1.204 0.022 ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT3’ ∗ ∗ 1.149 0.006 1.334 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan2’ ∗ ∗ 1.274 < 0.001 0.690 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan3’ ∗ ∗ 1.605 < 0.001 0.489 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ ∗ ∗ 1.508 0.002 ∗ ∗ ∗ ∗
‘Age2’ 9.457 < 0.001 2.440 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ 10.546 < 0.001 2.010 < 0.001 1.409 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age4’ ∗ ∗ 3.084 < 0.001 2.890 < 0.001 2.462 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.27: Prestressed concrete superstructure baseline survival functions
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tion in coastal regions have been observed in earlier studies and are attributed to the

salt laden atmosphere and humid marine environment in these regions, which exacer-

bate corrosion-driven deterioration mechanisms (Abed-Al-Rahim and Johnston, 1991,

Chen and Johnston, 1987). In general, geographic region was observed to have only

nominal effect on deterioration rates of concrete superstructures, as bridges in the

Piedmont region were found to deteriorate at a faster rate than the other geographic

regions only in condition rating 8. However, due to the total number of observations

recorded for this material type in this rating (less than 300), this result should be in-

terpreted cautiously. Likewise, bridges in the Mountain region deteriorate at a slower

rate than the other geographic regions only in condition rating 7.

State system and ADT were found to be significant in the case of prestressed con-

crete, steel, and timber superstructures, although their effect was limited to only one

condition rating each in the case of timber superstructures. An increase in ADT was

found to slightly increase deterioration rates in steel superstructures at condition rat-

ings 6 and 7. However, the observed effects of ADT were contrary to expectations in

prestressed concrete and timber superstructures as an increase in ADT was found to

decrease the deterioration rate. Similarly, the effect of State System was also contrary

to expectations in these two components and a secondary route highway classifica-

tion was found to increase the deterioration rate. A similar effect was observed in the

case of steel superstructures, in which a secondary highway classification was found

to increase the deterioration rate at condition ratings 5 and 7, although the effect

of decreasing the rate of deterioration was observed at condition rating 8. A similar

behavior was observed for prestressed concrete bridge decks in a previous study on
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North Carolina bridges and was attributed to possible variations in the design of pre-

stressed concrete decks (Abed-Al-Rahim and Johnston, 1991). In the current models,

the increased rate of deterioration observed in prestressed concrete superstructures

with lower ADT secondary route classification may be linked to design differences and

related design loads for these low volume rural bridges. ADTT was also identified

as a significant explanatory variable in the case of prestressed concrete and timber

superstructures, although the effect in timber superstructures was observed only at

condition rating 5. However, an increase in ADTT was observed to increase the de-

terioration rate in both components. The effect of ADTT is plausible and indicates

that the volume of heavy truck traffic, as represented by ADTT, may be a better

predictor of the deteriorating impact of traffic on roads than ADT, which includes all

vehicular traffic.

The presence of reconstruction was found to be influential in the case of steel su-

perstructures as well as timber superstructures, although the effect was again limited

to only one condition rating in the case of timber superstructures. In steel super-

structures, reconstruction caused an increase in the deterioration rate that was most

significant over condition ratings 6 and 7. This increased rate of deterioration in

reconstructed bridges is consistent with the observations from the bridge deck models

and is supported by the literature (Sanders and Zhang, 1994, Yanev and Chen, 1993).

However, timber superstructure components in reconstructed bridges appeared to de-

teriorate at a much slower rate than those in original or rebuilt bridges at condition

rating 8. An increase in rates of superstructure deterioration for multi-span bridges

and for bridges in higher age categories were observed across all superstructure ma-
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terials. Also, increase in length of maximum span was found to consistently increase

the deterioration rate in the case of timber and concrete superstructures, but this

variable exhibited uneven effects across different condition ratings in the case of steel

and prestressed concrete superstructures. Interestingly, the proportional hazards re-

gression of superstructure condition rating data produced the first inclusion of any

design variables associated with wear surface in the best subsets. The presence of

integral concrete wearing surface and epoxy overlay were identified as significant vari-

ables only in the case of steel superstructures and only at condition rating 7. Integral

concrete wearing surface was found to significantly decrease the deterioration rate of

steel superstructures whereas epoxy overlay was found to increase it substantially. A

further investigation revealed that very few records are associated with these wearing

surfaces, and therefore, the sparsely observed effects cannot be considered reliable in

all instances. A decrease in deck deterioration rates with presence of a protective

wearing surface is logical and has been documented in earlier studies (Madanat and

Ibrahim, 1995, Madanat et al., 1995, Mauch and Madanat, 2001). However, wearing

surface was not found to be included in any of the best subsets for deck deterioration

models in this study.

The survival functions shown in Figures 6.24 to 6.27 are associated with baseline

value assignments for the best subset variables at each condition rating with suf-

ficient data to permit survival analysis, with the exception of prestressed concrete

superstructures at condition rating 4 where no significant variables were identified in

the best subsets model. This is due to the limited availability of uncensored obser-

vations, as reflected in Table 6.13. The survival function for this model is therefore
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developed using the Kaplan-Meier empirical estimator. As mentioned earlier, survival

analysis could not be performed for condition rating observations of concrete bridge

superstructures at rating 9 and, consequently, no survival function can be developed

for this data. The insufficient number of observations present for condition rating 9

is not unexpected as the age distribution of concrete superstructures revealed by the

categorical bounds presented in Table 6.14, indicates that approximately 75% of con-

crete superstructures in the statewide inventory are older than the 35 year duration

of the inspection rating recording period. A comparison of survival functions reveals

similar trends to those observed for the deck models and reflected in the character-

istics of the superstructure deterministic deterioration models. The lowest median

duration and highest corresponding deterioration rate are observed at condition rat-

ing 9 and the highest median durations corresponding to lower rates of deterioration

are observed at condition ratings 6 through 8.

6.2.3 Transition Probabilities and Expected Value Prediction Models

Figures 6.28 to 6.39 show the baseline transition probabilities, mean baseline tran-

sition probability matrices, and expected value prediction models developed for base-

line assignments of significant covariates associated with timber, concrete, steel, and

prestressed concrete superstructures in the NCDOT bridge inventory. The expected

value predictions obtained using both the non-stationary and stationary approaches

are again shown for each material type to continue the assessment of simplified im-

plementation strategies. The stationary model uses the mean transition probability

matrix and is distinguished from the non-stationary model by use of a dashed line. As
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previously observed in the case of deck deterioration models, the expected condition

rating predictions obtained from the stationary and non-stationary models for each

superstructure material type agree strongly with each other over an initial planning

horizon of approximately 20 years. Notably, a less significant difference between the

two probabilistic modeling approaches is observed within both the timber and the

concrete superstructure prediction models over the long-term planning horizon when

compared to those developed for the deck models of the same materials. However,

the differences between the stationary and non-stationary model predictions for pre-

stressed concrete superstructures are more than those observed in the case of concrete

superstructures over the long-term planning horizon. This variation between long-

term predictions obtained from the two modeling approaches depends on the extent

of the deviation of the annual transition probabilities from the mean value across dif-

ferent condition ratings and only serves to highlight predictive accuracy limitations

associated with the simplified stationary models when applied to any bridge compo-

nent over long-term planning horizons. One notable feature expressed in the timber

and steel superstructure models relative to the deck models is the time required to

converge to a condition rating of 4, which is significantly longer than in the predic-

tions obtained from deck deterioration. This confirms the observations concluded by

previous studies that decks deteriorate faster than superstructure and substructure

components (Chen and Johnston, 1987, Sanders and Zhang, 1994).

The effect of covariates, as quantified by the hazard ratios on the forecasted ex-

pected condition ratings over time, is investigated by developing deterioration models

for the combinations of best case and worst case scenarios for timber superstructures
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FIGURE 6.28: Timber superstructure baseline transition probabilities

0.758 0.242 0 0 0 0 0 
0 0.898 0.102 0 0 0 0 
0 0 0.963 0.037 0 0 0 
0 0 0 0.958 0.042 0 0 
0 0 0 0 0.959 0.041 0 
0 0 0 0 0 0.980 0.020 
0 0 0 0 0 0 0.75 

CR        9               8               7               6               5                4               3           

9 
8 
7 
6 
5 
4 
3 

0 10 20 30 40 50 60 70 80 90 100
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Time (Years)

E
xp

ec
te

d 
C

on
di

tio
n 

R
at

in
g

 

 

Non−Stationary
Stationary

Student Version of MATLAB

FIGURE 6.29: Timber
superstructure mean baseline
transition probability matrix

FIGURE 6.30: Timber
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prediction model
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FIGURE 6.31: Concrete superstructure baseline transition probabilities
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FIGURE 6.34: Steel superstructure baseline transition probabilities
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FIGURE 6.37: Prestressed concrete superstructure baseline transition probabilities
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FIGURE 6.38: Prestressed
concrete superstructure mean
baseline transition probability

matrix
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FIGURE 6.40: Timber superstructure forecast models for best case (State System
1, reconstructed, Piedmont region, ADT 239− 555, ADTT < 6, max span < 2m,

single span, age < 22 years) and worst case (State System 2, original/rebuilt,
Coastal region, ADT < 102, ADTT 15− 34, max span ≥ 2m, multi span, age ≥ 36

years) combination of covariates
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FIGURE 6.41: Concrete superstructure forecast models for best case (State System
1, Mountain region, max span < 3m, single span, age < 32 years) and worst case
(State System 2, Piedmont region, max span ≥ 5m, multi span, age≥ 58 years)

combination of covariates
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and concrete superstructures, shown in Figures 6.40 and 6.41, respectively. It can be

observed that the range of variation in superstructure deterioration rates expressed

in the developed PHM models is significantly larger in comparison to the variation

observed in the respective deterministic models shown earlier. This suggests that the

PHM models are more robust at distinguishing the impact of explanatory factors on

historically observed deterioration rates of bridge components.

6.3 Bridge Substructure Deterioration Models

Bridge substructures are classified by substructure material type using the fields for

abutment material type, pier material type, and ‘Structure Type - Main’, in the NBI

database in this order of priority. Accordingly, the primary classification into four

categories, based on the construction material of Timber, Concrete, Steel, and Pre-

stressed Concrete, follows the same approach described for superstructures in Section

6.2. For development of deterministic deterioration models, this primary classification

is further classified (Tier 2) on the basis of geographic region, as shown in Table 6.19.

Geographic region is also one of the potential variables analyzed in the best subset

selection routine of the proportional hazards regression, wherein the Coastal region

serves as the baseline or reference category. The updated substructure deterministic

deterioration models for individual material types are presented in Figures 6.42 to

6.45.

TABLE 6.19: Tier 2 Region classification applied to each substructure material type
prior to construction of deterministic deterioration models

Tier 2 Region
1 Coastal
2 Piedmont
3 Mountain
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FIGURE 6.42: Timber
substructure deterministic

deterioration models

FIGURE 6.43: Concrete
substructure deterministic

deterioration models

FIGURE 6.44: Steel substructure
deterministic deterioration

models

FIGURE 6.45: Prestressed
concrete substructure

deterministic deterioration
models
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6.3.1 Data Overview

Tables 6.20 to 6.23 present an overview of the individual continuously observed

condition rating datasets available for development of timber, concrete, steel, and

prestressed concrete substructure deterioration models. The data is observed to follow

similar trends to those described earlier in Section 6.2.1 for superstructure condition

rating data. As in the case of superstructures, the majority of the observations are

associated with condition ratings 5 to 8, with censoring percentages varying in the

range of 50-70% for condition ratings 6 to 8. Censored percentages of observations

at condition ratings 4 and 5 are relatively higher and, as previously mentioned, are

believed to be reflected in the higher priority for maintenance action as well as in the

greater tendency for subjectivity in the inspection process. In the case of condition

rating 9, there is a sufficient, yet much lower, number of observations to permit

survival analysis across all material types. Table 6.24 presents the lower bounds for the

categorical design variables developed for the continuous scale descriptive variables

determined by weighted averages over all condition ratings for each substructure

material.

6.3.2 Survival Analysis

The best subset variables identified using proportional hazards regression for tim-

ber, concrete, steel, and prestressed concrete substructure material types are pre-

sented in Tables 6.25 to 6.28 along with the associated hazard ratios and Wald statistic

p-values. The corresponding survival functions developed over individual condition

ratings are presented in Figures 6.46 to 6.49. The significant explanatory variables
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TABLE 6.20: Timber substructure condition rating data overview

Substructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 73 55 18 24.66
8 1238 464 774 62.52
7 5545 2706 2839 51.20
6 10705 5639 5066 47.32
5 9093 2940 6153 67.67
4 4695 463 4232 90.14
3 1446 6 1440 99.59

TABLE 6.21: Concrete substructure condition rating data overview

Substructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 603 25 578 95.85
8 2185 883 1302 59.59
7 4578 1452 3126 68.28
6 4611 1919 2692 58.38
5 3322 528 2794 84.11
4 945 52 893 94.50
3 168 0 168 100.00

TABLE 6.22: Steel substructure condition rating data overview

Substructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 1266 159 1107 87.44
8 5189 2283 2906 56.00
7 6492 1759 4733 72.91
6 3050 1283 1767 57.93
5 1820 228 1592 87.47
4 423 24 399 94.33
3 95 4 91 95.79

TABLE 6.23: Prestressed concrete substructure condition rating data overview

Substructure No. Total No. Uncensored No. Censored % Censored
Condition Rating Records Records Records Records

9 112 33 79 70.54
8 1132 350 782 69.08
7 1833 719 1114 60.77
6 1464 724 740 50.55
5 958 155 803 83.82
4 274 19 255 93.07
3 35 0 35 100.00
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TABLE 6.24: Lower bounds of intervals developed for categorical design variables

Substructure Timber Concrete Steel Prestressed
Type Concrete

Category 2 3 4 2 3 4 2 3 4 2 3 4
ADT 124 314 768 289 1100 5102 745 3249 9862 2135 5336 11092

ADTT 8 19 48 19 88 514 54 261 1241 143 456 1387
Age(Years) 21 29 36 15 26 39 10 15 23 15 23 32

MaxSpan(m) 2 3 ∗ 4 5 ∗ 5 8 ∗ 5 7 ∗

included in best subset selection for deterioration models of all substructure material

types include the common variables of reconstruction, geographic region, number of

spans and age. An increase in maximum span length is associated with an increase

in hazard ratios for all material types, except for prestressed concrete substructures.

This trend is similar to that observed in the case of bridge decks. Studies on bridge

deterioration behavior have largely been limited to deck deterioration and very few

references to the impact of explanatory variables on the deterioration of bridge super-

structure and substructure components are available. The general literature related

to substructure deterioration is mainly related to the effect of exposure to saltwater,

which has been found to significantly exacerbate substructure deteriortion (Abed-Al-

Rahim and Johnston, 1991). The effect is reflected in the results of the proportional

hazards regression performed in the present study within the often significantly lower

hazard ratios predominantly developed for the Piedmont and Mountain regions across

all substructure material types. Also notable in the developed hazard ratios is an in-

crease in substructure deterioration rates with an increase in age. This response is

consistent with the observed effect of age on deck and superstructure deterioration

rates. However, an increase in the number of spans was found to cause an increase

in deterioration rates only in the case of timber and concrete substructures, whereas

a substantially contrary effect was observed in the case of steel and prestressed con-
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TABLE 6.25: Timber substructure best subset covariates, hazard ratios, and
p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ 2.415 0.002 1.539 < 0.001 1.232 < 0.001 1.094 0.182 ∗ ∗
‘Reconstruction’ ∗ ∗ 1.573 0.003 1.230 0.004 1.311 < 0.001 ∗ ∗ ∗ ∗
‘Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.116 0.011 0.788 0.020
‘Mountain’ ∗ ∗ ∗ ∗ ∗ ∗ 0.928 0.015 0.777 < 0.001 0.458 < 0.001
‘MaxSpan2’ ∗ ∗ ∗ ∗ 1.182 < 0.001 ∗ ∗ ∗ ∗ 0.742 0.026
‘NumberSpans’ ∗ ∗ ∗ ∗ ∗ ∗ 1.272 < 0.001 1.190 < 0.001 ∗ ∗
‘Age2’ ∗ ∗ 1.801 < 0.001 1.581 < 0.001 1.127 0.002 ∗ ∗ ∗ ∗
‘Age3’ 1.789 0.209 2.352 < 0.001 1.726 < 0.001 1.427 < 0.001 1.100 0.022 ∗ ∗
‘Age4’ 2.286 0.014 2.834 < 0.001 1.899 < 0.001 2.054 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.46: Timber substructure baseline survival functions
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TABLE 6.26: Concrete substructure best subset covariates, hazard ratios, and
p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.855 0.130 ∗ ∗
‘Reconstruction’ ∗ ∗ ∗ ∗ 1.422 < 0.001 1.160 0.008 ∗ ∗ ∗ ∗
‘Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ 0.764 < 0.001 ∗ ∗ ∗ ∗
‘Mountain’ ∗ ∗ 0.730 < 0.001 0.821 < 0.001 0.839 0.015 ∗ ∗ ∗ ∗
‘ADT3’ ∗ ∗ ∗ ∗ ∗ ∗ 0.800 < 0.001 ∗ ∗ ∗ ∗
‘ADT4’ ∗ ∗ 0.728 < 0.001 0.789 0.002 0.747 < 0.001 ∗ ∗ ∗ ∗
‘ADTT2’ ∗ ∗ ∗ ∗ 1.243 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT3’ 2.305 0.041 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT4’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.755 0.022 ∗ ∗
‘MaxSpan3’ ∗ ∗ 1.481 < 0.001 ∗ ∗ 1.171 0.011 ∗ ∗ 0.490 0.064
‘NumberSpans’ ∗ ∗ ∗ ∗ 1.230 < 0.001 1.412 < 0.001 1.674 < 0.001 ∗ ∗
‘Age2’ 7.164 0.001 ∗ ∗ 1.959 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ ∗ ∗ 1.777 < 0.001 2.607 < 0.001 1.218 0.001 1.393 < 0.001 ∗ ∗
‘Age4’ ∗ ∗ ∗ ∗ 2.580 < 0.001 1.453 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.47: Concrete substructure baseline survival functions
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TABLE 6.27: Steel substructure best subset covariates, hazard ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ 1.381 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ 2.195 0.067
‘Reconstruction’ ∗ ∗ ∗ ∗ 1.747 < 0.001 1.396 0.008 ∗ ∗ ∗ ∗
‘Piedmont’ 0.413 < 0.001 1.191 0.007 0.713 < 0.001 0.613 < 0.001 ∗ ∗ ∗ ∗
‘Mountain’ 0.489 0.007 0.789 0.001 0.557 < 0.001 0.703 < 0.001 ∗ ∗ ∗ ∗
‘IntegralConcrete’ ∗ ∗ 0.083 < 0.001 ∗ ∗ 0.037 < 0.001 ∗ ∗ ∗ ∗
‘LatexConcrete’ ∗ ∗ ∗ ∗ ∗ ∗ 1.657 0.008 ∗ ∗ ∗ ∗
‘Timber’ ∗ ∗ ∗ ∗ ∗ ∗ 0.543 0.014 ∗ ∗ ∗ ∗
‘ADT2’ 1.503 0.024 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘ADTT2’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.418 0.013 ∗ ∗
‘MaxSpan2’ ∗ ∗ 1.183 0.002 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘MaxSpan3’ ∗ ∗ 1.519 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘NumberSpans’ ∗ ∗ 0.805 0.003 ∗ ∗ ∗ ∗ 0.571 0.003 ∗ ∗
‘Age2’ 14.409 < 0.001 2.268 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ ∗ ∗ 2.563 < 0.001 1.524 < 0.001 1.816 < 0.001 ∗ ∗ ∗ ∗
‘Age4’ ∗ ∗ 3.590 < 0.001 2.383 < 0.001 2.934 < 0.001 ∗ ∗ ∗ ∗

FIGURE 6.48: Steel substructure baseline survival functions
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TABLE 6.28: Prestressed concrete substructure best subset covariates, hazard
ratios, and p-values

Rating 9 8 7 6 5 4
Covariates HR p HR p HR p HR p HR p HR p
‘StateSystem’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.465 0.069 ∗ ∗
‘Reconstruction’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.300 0.019 ∗ ∗
‘Piedmont’ ∗ ∗ ∗ ∗ ∗ ∗ 0.789 0.002 ∗ ∗ ∗ ∗
‘Mountain’ 2.274 0.130 ∗ ∗ 0.499 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘ADT4’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.508 0.022 ∗ ∗
‘NumberSpans’ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.245 < 0.001 ∗ ∗
‘Age2’ ∗ ∗ 1.740 < 0.001 1.295 0.014 ∗ ∗ ∗ ∗ ∗ ∗
‘Age3’ ∗ ∗ 2.438 < 0.001 1.652 < 0.001 ∗ ∗ ∗ ∗ ∗ ∗
‘Age4’ ∗ ∗ 5.253 < 0.001 2.750 < 0.001 1.498 < 0.001 ∗ ∗ 0.626 0.311

FIGURE 6.49: Prestressed concrete substructure baseline survival functions
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crete substructures. Length of maximum span was identified as a significant variable

in the case of concrete and steel substructures only and in both components increase

in length of maximum span was found to increase the deterioration rate, which is con-

sistent with the effect of these variable across all deck material types. The presence of

reconstruction was once again found to most often increase deterioration rates except

in the case of prestressed concrete substructures, in which, however, it was found to

be significant for only condition rating 5, but with the reverse of the expected effect.

Additionally, State System was found to be a significant variable only in the case of

timber and steel substructures, for both of which bridges located on secondary routes

are found to exhibit a higher deterioration rate compared to those located on inter-

states and primary routes. A similar observation was previously made for prestressed

concrete decks in North Carolina and was attributed to potential variations in the

design of prestressed concrete structures for low-volume routes (Abed-Al-Rahim and

Johnston, 1991). An increased deterioration rate for concrete bridge decks located

on secondary highways relative to interstates was also observed in another state,

where the observation was attributed to lower design requirements and maintenance

standards on secondary roads (Mauch and Madanat, 2001, Mishalani and Madanat,

2002).

Amongst wearing surface covariates, the presence of an integral concrete wearing

surface was found to significantly decrease the deterioration rate of steel substruc-

tures in condition ratings 6 and 8. Latex concrete and timber wearing surfaces were

also identified as significant, but also only in the case of steel substructures and only

at condition rating 6. Timber wearing surface was found to decrease the deteriora-
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tion rate, however, latex concrete was found to significantly increase the deterioration

rate. This is only the second instance where wearing surface is included in the best

subset for any of the deterioration models in this study, the first instance being in the

case of steel superstructure models as described in Section 6.2.2. As mentioned previ-

ously, the wearing surface categories identified as significant for steel superstructure

and substructure components are associated with very few records. The majority of

records are associated with monolithic concrete and bituminous wearing surfaces, nei-

ther of which is included in any of the deterioration model best subsets. This finding,

coupled with the fact that wearing surface covariates were not found to be significant

in any of the other deterioration models including all the deck deterioration models,

is indicative of the lack of reliability of the observed effects in these isolated instances.

6.3.3 Transition Probabilities and Expected Value Prediction Models

Figures 6.50 to 6.61 present the baseline transition probabilities, mean baseline

transition probability matrices, and expected value prediction models developed for

baseline assignments of best subset covariates associated with individual substructure

material types. A comparison of stationary and non-stationary models reveals a

similar agreement in predictions obtained from both models for approximately the

initial 20 years of the planning horizon. A comparison with deck models reveals that,

although decks exhibit a higher deterioration rate than substructures in general, the

deterioration rates for timber decks and timber substructures appear to be similar.

Forecasted expected condition ratings over time are developed using hazard ratios

to quantify the effect of best case and worst case combinations of covariates on the
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expected deterioration rates of timber and concrete substructures, shown in Figures

6.62 and 6.63, respectively. Comparison with the respective deterministic models,

which are classified only on geographic region, reveals the markedly superior ability

of PHM models to distinguish the effect of covariates on substructure deterioration

rates.

6.4 Summary of Results and Conclusion

Throughout this chapter, the effects of explanatory factors on deterioration rates

across different condition ratings were examined across material-specific GCR compo-

nent models. General trends in the explanatory factors affecting deterioration rates

across all components and their relative impact on deterioration rates are examined

and summarized in this section. To reduce the state-dependent hazard ratios to a

single index for ease of interpretation, weighted averages of hazard ratios expressed

for each covariate across condition ratings 4 to 9 were computed for each material-

specific GCR component in this analysis. The weighting is specified in proportion to

the number of total records available for individual condition ratings. This weighting

scheme reflects the certainty expressed in each hazard ratio and provides weighting

factors similar to those that would be developed by weighting based on duration in

each condition rating. The weighted mean HR values across all material specific deck,

superstructure, and substructure components for the significant variables identified

in the proportional hazards regression are presented in Table 6.29. In this table, only

factors appearing in at least two material specific component models are presented.

In order to rank the explanatory factors based on average significance, the variables
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FIGURE 6.50: Timber substructure baseline transition probabilities
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FIGURE 6.53: Concrete substructure baseline transition probabilities
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FIGURE 6.56: Steel substructure baseline transition probabilities
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FIGURE 6.59: Prestressed concrete substructure baseline transition probabilities
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FIGURE 6.62: Timber substructure forecast models for best case (State System 1,
original/rebuilt, Mountain region, max span 2− 3m, single span, age < 21 years)
and worst case (State System 2, reconstructed, Piedmont region, max span < 2m,

multi span, age≥ 36 years) combination of covariates
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FIGURE 6.63: Concrete substructure forecast models for best case (State System
1,original/rebuilt, Piedmont/Mountain region, ADT≥ 1100, ADTT19− 514, max

span < 4m, single span, age < 15 years) and worst case (State System 2,
reconstructed, Coastal region, ADT< 289, ADTT≥ 514, max span ≥ 5m, multi

span, age ≥ 39 years) combination of covariates
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have been sorted on basis of the mean absolute deviation from unity obtained by

averaging across the mean weighted HRs for all material-specific components.

TABLE 6.29: Weighted mean covariate hazard ratios across condition ratings 4 to 9
for all material-specific GCR components

Component Deck Superstructure Substructure
Material Timber Conc Steel Timber Conc Steel Prestr Timber Conc Steel Prestr

Age4 1.784 1.986 2.729 1.656 1.845 2.963 2.581 1.594 1.574 2.552 2.498

Age3 1.766 1.578 1.789 1.652 1.612 2.210 2.386 1.358 1.700 1.767 1.489

Age2 1.595 1.330 1.639 1.455 1.337 1.478 2.266 1.178 1.499 2.291 1.239

NumberSpans 1.154 1.255 1.219 1.212 1.638 1.083 1.057 1.148 1.320 0.902 0.875

Reconstruction 1.010 1.000 1.093 0.972 1.000 1.301 1.000 1.169 1.165 1.332 0.884

Mountain 1.131 0.884 0.881 1.000 0.952 0.960 0.837 0.830 0.868 0.697 0.866

Piedmont 1.071 1.034 0.839 0.886 1.036 0.952 0.795 1.002 0.933 0.847 0.947

MaxSpan 3 1.096 1.260 1.286 1.079 1.274 1.011 1.001 1.000 1.084 1.148 1.000

Max Span 2 1.099 1.016 1.355 1.000 1.143 0.946 0.970 0.994 1.000 1.052 1.000

State System 0.958 0.991 0.961 1.135 0.983 1.070 1.043 1.258 0.970 1.136 1.077

IntegralConcrete 1.000 1.000 1.000 1.000 1.000 0.687 1.000 1.000 1.000 0.578 1.000

ADT4 1.036 1.091 1.000 1.000 1.000 1.095 0.929 1.000 0.832 1.000 1.084

ADT3 1.000 1.036 1.000 0.878 1.000 1.087 0.977 1.000 0.943 1.000 1.000

ADT2 1.000 1.000 1.000 1.000 1.000 1.080 1.000 1.000 1.000 1.035 1.000

ADTT3 1.024 1.000 1.000 1.209 1.000 1.000 1.178 1.000 1.048 1.000 1.000

ADTT2 1.000 1.000 1.000 1.000 1.000 1.000 1.079 1.000 1.069 1.042 1.000

ADTT4 1.050 1.000 1.000 1.000 1.000 0.994 1.000 1.000 0.950 1.000 1.000

The weighted mean covariate hazard ratios exhibit generally consistent effects

across the different components and material types, although the amplitudes of the

hazard ratios do vary by both material type and component. In all instances, in-

creased age was associated with the most significant increased rate of deterioration

and, on average, the rates of deterioration increase with the age categories. The

weighted means for the age covariates vary more significantly by material type than

component type. Steel and prestressed concrete components were found to be more

significantly affected by age than timber and concrete components. The effect of mul-

tispan bridge designs was also found to consistently increase the deterioration rates

relative to single span bridge designs with the exception of the steel and prestressed

concrete substructure components. Concrete superstructures were found to be af-
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fected significantly more by multispan design than the remaining material-specific

components, although the effect of multispan design was also notably significant for

concrete substructures and concrete decks. The presence of reconstruction was found

to exhibit a mild to moderate effect on deterioration rates with the trend toward

increasing the deterioration rate for all material-specific components with the excep-

tion of timber superstructures and prestressed concrete substructures. Similarly, the

impact of geographic region was moderately significant across the majority of models.

Predominantly, bridge components in the Coastal region were found to deteriorate at

a faster rate than bridge components in the Mountain and Piedmont regions, which

were found to generally deteriorate on average at similar rates. This effect was found

to be most significantly expressed in steel bridge components, although concrete and

prestressed concrete substructures were also found to deteriorate at an accelerated

rate in the Coastal Region. Maximum span length was found to be mildly to mod-

erately significant on average across the material-specific components. However, this

covariate expresses no clear trends across the different models except that increased

span length was associated with increased deterioration rates of all deck materials.

Interestingly, bridge decks on structures servicing secondary routes were found to

consistently deteriorate at a slightly slower rate than those on interstate, urban, and

primary routes. However, the opposite effect was identified for superstructure and

substructure components in this study, which were found to exhibit faster rates of

deterioration in State System 2, with the exception of concrete superstructures and

substructures. The remaining covariates of wearing surface type, ADT, and ADTT

were found to exhibit little or no average effect on deterioration rates of the bridge
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component ratings. The general consistency and presence of clear trends exhibited

by the weighted mean covariate hazard ratios across the different components and

different material types serves to support the plausibility of the results generated by

the developed proportional hazards-based deterioration modeling framework.



CHAPTER 7: MODEL ASSESSMENT

The main objective of deterioration modeling is to predict future condition ratings

of bridge components, which is critical to the accurate identification and selection of

MR&R projects within the multi-objective constrained optimization techniques used

for data-driven transportation planning. Limited MR&R budgets constrain the selec-

tion to a limited number of candidate bridges in need of repairs or rehabilitation based

on anticipated future needs and performance objectives. The accuracy of condition

rating forecasts over the planning horizon directly affects how effectively the benefits

of allocating resources for the immediate preservation or replacement of bridges in

the inventory is maximized, while anticipating future increases in costs due to post-

ponement of repairs to other structures under the same budget constraints (Patidar

et al., 2007). This chapter demonstrates the improvement in accuracy and preci-

sion of condition rating predictions obtained through the developed multi-variable

proportional hazards based modeling framework described in the previous chapters.

An approach for model assessment is presented in the first section followed by com-

parison of prediction results obtained from the updated deterministic deterioration

models and the proposed probabilistic models. The impact of including the multiple

covariates identified in the proportional hazards regression on the predictive fidelity

is also evaluated by developing simplified probabilistic models based on solely empir-

ical Kaplan-Meier survival analysis. The prediction errors obtained from use of these
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simplified models are compared with the prediction errors obtained from use of the

fully developed PHM models.

7.1 Description of Approach for Model Assessment

Ideally, model assessment should be performed using data independent from the

records used to develop the statistical models. However, due to the rate of col-

lection of bridge condition rating data, assessment of the predictive fidelity of the

developed deterioration models to future response data is not possible for several

years. Consequently, model assessment is performed using a select 15 year time pe-

riod of condition rating data extracted from the existing NCDOT historical bridge

management database. For the assessment results presented in this chapter, the pe-

riod from 2000 to 2015 was selected. Individual material-specific GCR databases

were then parsed for condition rating records available for this period. Only those

records that were continuously observed between the starting year and the ending

year of the observation period were included. Additionally, to minimize the presence

of observations with significant maintenance or reconstruction actions, the data was

filtered to include only records where the observed condition ratings either remained

the same or decreased from the initial condition rating over the selected observation

period. This data preprocessing aims to extract records exhibiting natural deteriora-

tion, however it should be recognized that some records without actual maintenance

may have been inadvertently removed due to variations in condition rating resulting

from inspection subjectivity. Additionally, some records may be present that include

significant maintenance that may have prolonged the duration in condition ratings.



196

The filtering algorithm, however, removed records which exhibited an improvement

in condition rating at any point over the observation period. Further, if the condition

rating decreased by more than one rating over a single inspection cycle, then the

data was likewise treated as anomalous and removed from the dataset used for model

assessment.

For each of the continuously observed condition rating records satisfying the filter-

ing criteria, covariate assignments for each record were developed from the descriptive

data in the bridge record to facilitate selection of the corresponding deterministic or

probabilistic model applicable to each individual bridge component. These included

ADT, region, state system, and main structure design type for deterministic models

and other variables including reconstruction, ADT, ADTT, wearing surface, length

of maximum span, number of spans, and age that are associated with hazard ra-

tios in the probabilistic proportional hazards models. The covariate assignments are

consistent with the classification scheme prescribed for the deterministic deteriora-

tion models and those associated with reference cell coding for probabilistic models

described in Chapter 4.

In addition to the current rating at the start of the observation period, it was

necessary to determine the duration already spent by the bridge component at that

initial condition rating to incorporate this duration into the predictions generated by

the respective deterioration models. Using the sum of this initial duration and the

15 year period of the planning horizon, expected condition ratings at the end of the

prediction period (2015) were obtained for each individual bridge record using the de-

terministic as well as the probabilistic deterioration models. The stationary Markov
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probabilistic deterioration model was used for all model assessment results presented

in this chapter. As demonstrated throughout Chapter 6, the expected condition rat-

ing predictions obtained from the stationary models coincide almost exactly with

those obtained from the more rigorous non-stationary models over planning horizons

less than 20 years. The actual observed condition rating at the end of the 15-year

observation period was subtracted from the predicted condition rating obtained from

each model to compute the prediction errors associated with each model for all se-

lected records. Statistics of the prediction error distributions are used to reveal the

relative accuracy, precision, and confidence afforded by the deterioration models with

respect to the actual observed response data.

7.2 Comparison of Predictive Fidelity of Deterministic and Probabilistic Models

Results from implementation of the model assessment routine described above on

the timber deck condition rating data in the NCDOT bridge inventory are presented

in Figures 7.1 and 7.2. Figure 7.1 shows the histograms of prediction error distri-

butions for deterministic and probabilistic models along with the mean errors and

standard deviations. It can be readily observed that the mean error of -0.62 for the

probabilistic prediction is much smaller than the mean error of -1.82 for the deter-

ministic prediction, which indicates that the probabilistic deterioration models are

significantly more accurate than the deterministic models. The negative error value

for both indicates that the predicted condition ratings from both models are lower

than the actually observed condition rating. Although both models provide the ben-

efit of generally conservative predictions, the overly conservative deterministic model
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FIGURE 7.1: Histograms of timber deck condition rating data in observation period
and prediction errors

FIGURE 7.2: Empirical cumulative distribution functions associated with
prediction errors of deterministic and probabilistic models applied to timber deck

condition rating data
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predictions can have the undesirable result of overestimating bridge repair needs and,

since condition ratings are incorporated into aspects of the user cost models, the asso-

ciated costs (Patidar et al., 2007). This can become a significant limitation especially

when using the latest BMS optimization tools, such as those developed recently by

NCHRP and FDOT, which are highly sensitive to any changes in deterioration or

unit cost inputs (Patidar et al., 2007, Sobanjo and Thompson, 2011).

The distribution of the prediction errors from the probabilistic model also has a

smaller standard deviation than that of the deterministic model, which indicates im-

proved precision and is visible within the spread in the corresponding histograms.

Figure 7.1 also provides histograms of features of the observed condition rating data,

including the initial condition ratings observed at the starting year, the relative change

in condition ratings over the 15 year prediction period, and the continuous durations

that condition ratings had already accumulated at the start of the time windowed

15 year observation period. The empirical cumulative distribution function of the

prediction errors from each of the models relative to the observed timber deck con-

dition ratings is presented in Figure 7.2. These cumulative distribution functions are

particularly useful for estimating the probability that the prediction will be within

a prescribed bounded interval over the analyzed planning horizon. Since condition

ratings are assigned on an integer scale, the interval of interest might correspond to

+/-1 condition rating. It can be observed that this probability is only about 30% for

the deterministic timber deck models. On the other hand, the probability that the

probabilistic timber deck model will estimate the actual condition rating within +/-1

over a 15 year planning horizon is close to 75%.
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Comparative histograms of prediction errors generated over the same planning

period for concrete decks and steel decks are presented in Figures 7.3 and 7.4, respec-

tively. It can be observed in both cases that the mean errors and standard deviations

are significantly smaller for probabilistic models than for deterministic models thereby

confirming the improvements in accuracy and precision. The probability that the re-

spective deterioration models will predict the actual condition rating over the 15 year

planning horizon +/-1 condition rating was found to be 22% for deterministic models

and 62% for probabilistic models in the case of the concrete deck models. Likewise,

it was 29% for deterministic models and 48% for probabilistic models in the case of

the steel deck models, as determined from the respective empirical cumulative distri-

bution functions of prediction errors. Similar results were obtained for the cases of

superstructure and substructure data as well. These model assessment results there-

fore present a strong case to support the implementation of probabilistic models over

deterministic deterioration models in the interest of significantly improved accuracy

and precision in condition rating forecasting. Furthermore, the transition to more

accurate and precise deterioration models carries important implications for more

efficient management of the complete bridge inventory.

7.3 Evaluating the Effectiveness of Covariate Inclusion in the Probabilistic Models

Multivariable probabilistic deterioration models have been developed for the first

time in this study. To evaluate the contribution of covariates in enhancing the accu-

racy of the models, an approach was adopted that consisted of first developing Markov

chain transition probabilities on basis of empirical Kaplan-Meier survival functions
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FIGURE 7.3: Histograms of concrete deck condition rating data in observation
period and prediction errors

FIGURE 7.4: Histograms of steel deck condition rating data in observation period
and prediction errors
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across individual condition ratings for the material-specific GCR components. These

Kaplan-Meier based transition probabilities utilize the same datasets used for con-

struction of the PHM survival functions but do not explicitly include the effect of

covariates. Condition rating predictions were made using the previously described

filtered dataset with the Kaplan-Meier deterioration models to permit comparison

with the condition rating predictions obtained from the corresponding PHM model

that includes covariate hazard ratios. Figures 7.5 and 7.6 show the empirical cumula-

tive distribution functions and the normal probability plots, respectively, associated

with the prediction errors from both of these models for the concrete deck dataset.

It is observed from Figure 7.5 that the mean errors and mean standard deviation of

errors from both the models are comparable, however the PHM model errors appear

to be relatively more normally distributed. This is more clearly evident in the normal

probability plots presented in Figure 7.6, in which the PHM model residuals exhibit

less skew than the Kaplan-Meier model residuals. The closer to normal distribution

of PHM model residuals is indicative of its relatively better performance than the

Kaplan-Meier model.

It should be noted that, although the Kaplan-Meier model appears to be more

accurate by the lower mean error, the mean error is an imprecise measure of accuracy

on account of the discrete nature of the recorded condition ratings and continuous

nature of the expected value predictions. Furthermore, the accuracy of the prediction

ratings is sensitive to the probabilities assigned to the initial state vector. For the

generation of all prior predictions, the initial state vector was developed assuming a

probability of 1 that the condition rating of the component was directly as observed



203

FIGURE 7.5: Empirical cumulative distribution functions associated with
prediction errors of Kaplan-Meier and PHM models applied to concrete deck

condition rating data

FIGURE 7.6: Normal probability plots associated with prediction errors of
Kaplan-Meier and PHM models applied to concrete deck condition rating data
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at the beginning of the period of continuous rating. To assess the effect of the initial

state vector probabilities on the mean prediction error, an alternative formulation

was assessed. Specifically, it was postulated that, since the initial instance of any

condition rating occurs at the transition from a higher rating, a valid assumption for

the initial state vector would be to divide the probability equally among the observed

condition rating and the one step higher rating that was transitioned from. This

approach essentially starts the prediction cycle midway between the two condition

ratings present at the transition, or with an expected value that is 0.5 condition rat-

ing higher than the observed initial rating. The PHM model was executed with this

modified initial state vector and a significant improvement was observed in the re-

sulting distribution of errors in predicted condition ratings after a period of 15 years.

The results for concrete deck condition rating predictions for the revised initial state

vector are shown in Figure 7.7. Comparison with Figure 7.3 shows a favorable reduc-

tion in mean error from -0.59 to -0.22, and a lesser but equally noticeable reduction in

standard deviation from 0.81 to 0.76 for the revised probabilistic model predictions.

The empirical cumulative distribution functions of prediction errors for concrete decks

for deterministic models and the revised probabilistic models are shown in Figure 7.8.

The probability corresponding to prediction errors with +/-1 condition rating from

the observed rating at the end of the 15 year planning horizon is found to have im-

proved to almost 80% from the previously mentioned 62% for the original predictions.

Since the deterministic models do not incorporate probabilities, the probability that

the deterministic model will achieve accuracy within +/-1 condition rating remains

only 22%.
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Revised predictions were also obtained using the modified initial state vector for the

Kaplan-Meier deterioration models in order continue the assessment of the impact of

covariate inclusion on the predictive fidelity of the probabilistic models. The results

for concrete deck models are presented in Figure 7.9 in the form of empirical cumu-

lative distribution functions. Comparison with Figure 7.5 shows that the shift in the

mean error of the Kaplan-Meier model is of similar magnitude to the shift in the mean

error of the full PHM model. However, the shift in the mean of the prediction errors

causes the Kaplan-Meier model to develop slightly unconservative predictions with

only a modest improvement in absolute accuracy. In contrast, the shift in the mean

of the prediction errors in the full PHM model produces a more accurate, while still

conservative, estimate of condition rating over the 15 year planning horizon. Similar

results were obtained from comparisons developed for other material-specific GCR

components.

Lastly, a comparison between the stationary and non-stationary PHM model pre-

diction errors was also performed over the same planning horizon of 15 years. Figures

7.10 and 7.11 present the empirical cumulative distribution functions and the normal

probability plots associated with prediction errors from non-stationary and station-

ary PHM models applied to concrete deck condition rating data. The modified initial

state vector with the initial state probabilities split across the transition condition

ratings was used for this comparison. It is observed that the mean errors and stan-

dard deviations obtained from both of the models are quite similar to each other and

suggest that the simplified stationary transition probability implementation performs

acceptably well as a substitute for the more computationally complex non-stationary



206

FIGURE 7.7: Histograms of concrete deck condition rating prediction errors
obtained with split probability initial state vector

FIGURE 7.8: Empirical cumulative distribution functions associated with
prediction errors of concrete deck deterministic and probabilistic models obtained

with split probability initial state vector

FIGURE 7.9: Empirical cumulative distribution functions associated with
prediction errors of concrete deck Kaplan-Meier and PHM models obtained with

split probability initial state vector
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FIGURE 7.10: Empirical cumulative distribution functions associated with
prediction errors of non-stationary and stationary PHM models applied to concrete

deck condition rating data

FIGURE 7.11: Normal probability plots associated with prediction errors of
non-stationary and stationary PHM models applied to concrete deck condition

rating data
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model over typical planning horizons. This observation was expected for a planning

horizon of 15 years given the correlation between the stationary and non-stationary

models demonstrated by the baseline expected condition rating estimates presented

in Chapter 6. Both models exhibit strong adherence to the normal distribution, as

presented in the normal probability plots shown in Figure 7.11. To further investigate

the relative performance of the two models, analysis was also performed using data

from a 5-year period (2000-2005), a 10-year period (2000-2010), and the previously

presented results from the 15-year period (2000-2015). The modified initial state vec-

tor using initial state probabilities split across the transition condition ratings was

used for this comparison. The empirical cumulative distribution functions associated

with prediction errors from both models for these three prediction periods are shown

in Figure 7.12. It is observed that, although the mean error in the stationary PHM

model remains essentially constant, there is an improvement in the mean error in the

non-stationary models with an increase in length of the prediction period. Further-

more, the normality of the distribution of prediction errors for the non-stationary

model improves, while the normality of the distribution of prediction errors for the

stationary models degrades. Consequently, while the non-stationary model maintains

a high percentage of predictions within +/-1 condition rating of the recorded value as

the planning horizon is increased, the stationary model exhibits a moderate reduction

in the percentage of predictions accurate within +/-1 rating. This demonstrates that

the non-stationary models can achieve strong accuracy and precision over longer du-

ration planning horizons than the simplified stationary models. However, it should be

noted that currently the planning horizons used by NCDOT are typically only 5-10
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years and, consequently, either approach should offer significantly improved perfor-

mance over the deterministic models and strong predictive fidelity offering accuracy

within +/-1 condition rating greater than 80% of the time.

The lack of substantial difference in model prediction errors developed between the

Kaplan-Meier models and the PHM models is most likely related to the nature of

the general condition ratings, which reflect the aggregate performance of individual

elements comprising a particular bridge component. Since the composition of individ-

ual components may vary significantly by the number, design, and potentially even

material of elements contributing to the general condition rating, there is likely a

large variability in the deterioration rates of components that may share similar co-

variate assignments. Consequently, deterioration models for GCR components may

not warrant such an advanced PHM model to develop reliable condition rating pre-

dictions in the current BMS architecture given the resolution of general condition

ratings. Nonetheless, the PHM methodology developed in this work provides unique

quantitative insight on factors influencing deterioration over the life cycle that may

have important applications in decision making related to preservation and project

prioritization. Furthermore, the methodology developed may offer significant advan-

tages once sufficient element-level condition rating data becomes available following

the federal mandate to collect and record such data (FHWA, 2012). It is very likely

that element-level data will offer the granularity to overcome the stochastic charac-

teristics of general condition rating resulting from the aggregation of element ratings

and, therefore, the usefulness of covariate inclusion may become more evident. On

the other hand, the close agreement between the two models and the difference with
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FIGURE 7.12: Empirical cumulative distribution functions associated with
prediction errors of non-stationary and stationary PHM models applied to concrete

deck condition rating data: Comparison between 5-year (2000-2005), 10-year
(2000-2010), and 15-year (2000-2015) prediction periods
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deterministic model predictions does testify to the inordinately significant influence

of censoring on condition rating model predictions and advantage of duration-based

probabilistic models over deterministic models.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Deterioration modeling and its implementation in predicting future condition rat-

ings of bridge components presents many challenges owing to the multidimensional

nature, subjectivity, aggregation, and variability of bridge inspection data, manage-

ment and preprocessing demands of such a large database, and limited suitability of

available statistical techniques for infrastructure deterioration modeling. This area

has seen a significant amount of research since the conception of bridge management

systems, however increased accuracy of these models, while facilitating an ease of

implementation in current BMS software environments, is necessary to provide the

reliable data-driven framework to forecast infrastructure needs and inform project pri-

oritization under increasingly constrained budgets. An exhaustive review of bridge

deterioration modeling approaches was performed to identify limitations in current

methodologies and formulate potential strategies for addressing these limitations.

Through this research, a comprehensive framework for probabilistic deterioration

modeling based on the Cox proportional hazards method that combines the advan-

tages of duration-based modeling and semi-Markov theory of prediction was developed

and is presented in this dissertation. The developed framework was implemented on

and validated using the North Carolina state bridge inventory. The main theoretical

and applied contributions of this dissertation are first summarized in this chapter fol-

lowed by conclusions derived from model implementation and recommendations for
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future work.

8.1 Summary of Contributions and Significant Research Conclusions

The theoretical contribution of this research is comprised of two main parts. The

first is the development of a framework for multivariable statistical regression of bridge

condition rating data using the semi-parametric proportional hazards model that

yields hazard ratios associated with significant variables affecting deterioration and

non-stationary baseline transition probabilities of deterioration over individual condi-

tion ratings of a bridge component. This framework is designed to be implemented on

large bridge inspection databases and incorporates strategies devised specifically to

handle the challenges presented in the statistical analysis of bridge inspection data at

every stage from data extraction and preprocessing to the final construction of mod-

els. The second part of the theoretical contribution is the formulation of a strategy

for predicting expected condition ratings over a specified planning horizon using the

non-stationary transition probabilities based on semi-Markov probabilistic theory. A

simplified strategy of using the means of transition probabilities over the observed

condition rating durations to construct a stationary transition matrix for use in a

stationary Markov chain model was also developed. The time-dependent nature of

transition probabilities and their impact on probabilistic condition rating predictions

for short-term and long-term planning ranges was assessed by implementing both the

stationary and non-stationary models on the NCDOT bridge database.

A novel strategy for incorporating the effect of covariates on the condition rating

predictions by scaling the transition probabilities with applicable hazard ratios was
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derived to facilitate the strategy for probabilistically predicting expected condition

ratings using the multivariable proportional hazards models. In this way, the complete

advantage of the multivariable survival analyses at individual condition ratings was

translated probabilistically into an integrated deterioration model over the life cycle

of the bridge component. This resulting deterioration model is responsive to the

impact of individual covariate assignments and eliminates the dependence on a priori

classification for improved accuracy of predictions. The entire framework described

above was cast into an automated software routine that can run independently from

start to finish and produce the desired models based on a minimal one-time input. The

Markovian formulation of the prediction model makes it feasible to integrate it into

existing bridge management systems, particularly those already using probabilistic

models.

Applied contributions of the research were developed through implementation of

the above-mentioned theoretical framework. These include the development of pro-

portional hazards based deterioration models for material specific deck, superstruc-

ture, and substructure components of the NCDOT bridge inventory. The models are

comprised of covariate hazard ratios and non-stationary as well as stationary tran-

sition probabilities for baseline assignment of covariates. The significant covariates

affecting deterioration at individual condition ratings in the various material-specific

component categories were examined to provide an assessment of their overall im-

pact and to identify trends across all categories. A user friendly standalone graphical

user interface (GUI) was designed and made fully functional for development and

future updating of deterioration models by transportation personnel. Software rou-
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tines for developing and updating the existing deterministic models were designed and

implemented within the GUI. Functionalities for development of new deterministic

deterioration models for culverts and element level data were also incorporated in the

GUI.

The conclusions derived from implementation of the developed framework and dis-

cussed in Chapters 6 and 7 are summarized here. It was found from the survival

analysis of individual condition ratings that the rate of deterioration of a bridge

component depends on its condition state. This is evident from the difference in

survival functions obtained for individual condition ratings associated with the same

material-specific component. The transition times at condition rating 9 were ob-

served to be lowest and those at condition ratings 7 and 8 were observed to be the

highest across all material-specific components. The influence of covariates on deteri-

oration rate was found to differ not only across material-specific components but also

across individual condition ratings and is quantified in the hazard ratios associated

with each covariate. The significant variables affecting deterioration of all material-

specific components were identified as age, number of spans, reconstruction, region,

maximum span length, and state system. Increase in age and number of spans was

found to increase the rate of deterioration across all bridge components. Similarly, re-

constructed bridges were found to be generally associated with modestly higher rates

of deterioration. The impact of region was found to be moderately significant across

all component types. In general, and particularly for steel and prestressed concrete

bridge components, lower rates of deterioration were found to be associated with

the Piedmont and Mountain regions in comparison to the Coastal region. Increase
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in maximum span length was found to consistently increase deterioration in decks,

but exhibited no such clear trends in the case of superstructure and substructure

components. Similarly, deck components servicing interstate, urban, and primary

routes were prone to slightly higher rates of deterioration in comparison to those

on secondary routes, although the opposite effect was identified in the case of most

superstructure and substructure components. Decks were found to exhibit higher

rates of deterioration than superstructures and substructures of the same material,

except in the case of timber substructures which showed a similar deterioration rate

to timber decks. Many of the above conclusions are similar to those reached by earlier

researchers in the field. These conclusions serve the dual purpose of substantiating

the earlier research as well as validating the correctness of the current approach.

A significant constituent of the applied contribution of this research was the quan-

titative assessment of the predictive fidelity of the developed probabilistic models.

This is the first time such an assessment has been performed for duration-based de-

terioration models with transition probabilities derived from survival analysis. This

assessment was done on the basis of observed condition rating data relative to the

deterministic model predictions over typical long-range planning horizons using the

simplified stationary models. Similar assessment was carried out for stationary ver-

sus non-stationary model predictions and multivariable versus univariate probabilistic

models.

It was found that there was strong agreement between the expected condition rat-

ing predictions obtained from stationary and non-stationary transition probabilities

for prediction periods ranging up to approximately 20 years. In the longer term, the
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non-stationary model appears to generate more realistic, although at times conserva-

tive, predictions in comparison to the stationary model. Quantitative assessment of

the comparative predictive fidelity of these models over a 15 year planning horizon

revealed negligible differences in prediction errors but found that the non-stationary

models tended to be more robust than the simplified stationary models. It is there-

fore recommended that the simplified stationary models may be adopted for planning

horizons of 20 years or less in the interest of computational simplicity. However, for

longer planning ranges it is advisable to use non-stationary models.

Quantitative assessment of the comparative fidelity of the probabilistic models with

respect to the deterministic models currently in use by the NCDOT revealed signif-

icant improvement in accuracy associated with the probabilistic models, offering a

strong case for NCDOT to adopt the new probabilistic models. The effect of in-

clusion of covariates on the predictive fidelity of the multivariable models was also

assessed. The predictive fidelity of the Kaplan-Meier based univariate models was

found to be comparable to the multivariable models although closer examination re-

vealed that the multivariable models were statistically more robust. The probabilistic

models were also found to be sensitive to the resolution of the initial condition rating

and sensitive to the strategy for assigning condition rating probabilities in the initial

state vector. The lack of substantial difference in model prediction errors developed

between the Kaplan-Meier models and PHM models has been attributed largely to

the nature of the general condition ratings as nominal scale aggregated indexes. Al-

though the developed methodology provides unique quantitative insight into factors

influencing deterioration of bridge components over their life cycle and applications to
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preservation and prioritization decisions, such an advanced PHM model may not be

warranted for reliable forecasting of GCR condition ratings. However, it is believed

that the recent emphasis on element-level condition rating will eventually offer the

granularity of data necessary to fully realize the significant advantages offered by the

developed methodology.

A significant advantage of the developed framework is its ability to use both sta-

tionary and non-stationary transition matrices for prediction of expected condition

ratings in the forecasting algorithm. Development of these transition probability ma-

trices is not strictly limited to the proportional hazards survival-based method for

developing transition probabilities utilized in the first part of the framework. There-

fore, it is recommended that the Markov chain prediction framework be also used to

develop probabilistic models for the element-level and culvert condition rating data,

which are of relatively shorter duration than recommended for duration-based anal-

ysis. The stationary transition probabilities for these predictions may be developed

using the mean durations at each condition rating, as determined through the deter-

ministic modeling approach, in place of the expert opinion-elicited median durations

in equations (2.9) and (2.10). In this way, the advantages of accuracy and precision

offered by state-based probabilistic models over deterministic models can be obtained

for these databases until sufficient duration-based data becomes available.

8.2 Recommendations for Future Work

This study has provided a way of integrating the effect of covariates on condition

rating duration probabilities into a semi-Markovian methodology of prediction. The



219

developed methodology has been implemented on the historical NCDOT condition

rating database to develop probabilistic models for use in the NCDOT bridge man-

agement system. However, investigation of the full extent of the benefits accrued

from the developed models and their potential applications has been necessarily lim-

ited by time and logistical constraints within the scope of the present study. The

recommended directions for future work include the following:

• Investigation of improvement in accuracy and precision afforded by the new

models has been limited to comparisons of condition rating predictions with

respect to deterministic models. It is important to study the implications of

this improved accuracy and precision on the performance of the BMS multi-

objective optimization analysis and associated incremental benefits facilitated

by the use of the new models.

• The simplified stationary model developed in this study is based on mean tran-

sition probabilities obtained from survival analysis. This is different from the

state-based stationary Markovian approaches implemented to date that use

transition probabilities obtained from linear regression of condition rating data

at best and those derived from practitioner opinion surveys at the worst. It is

important to assess the difference between the developed duration-based sta-

tionary model and the existing approaches.

• As the observed condition rating data over longer planning ranges required

for proper model assessment becomes available, comparisons of the predictive

fidelity of the developed deterministic and probabilistic PHM models should be
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reassessed.

• The use of non-stationary probability matrices in the prediction approach per-

mits the possibility of incorporating the effect of maintenance actions through

introducing transition probabilities associated with condition rating improve-

ment in the transition probability matrices associated with the corresponding

inspection cycle. The pre-requisite for this approach is an estimation of the tran-

sition probabilities associated with condition rating improvement for specific

maintenance actions. This estimation is possible through pairing of historical

condition rating data with maintenance records available in the BMS database.

The transition probabilities of improvement can then be incorporated in the

transition probability matrix for the annual prediction cycle corresponding to

the maintenance action. For example, if the probability of improvement asso-

ciated with maintenance action, A, performed at condition rating ‘k’ is IkA, the

corresponding transition probability matrix, P , can be developed using

P =


P99 P98 0 ... 0 0 0
I8AP88 (1−I8A)P88+I8AP87 (1−I8A)P87 ... 0 0 0

˙ ˙ ˙ ... ˙ ˙ ˙
˙ ˙ ˙ ... ˙ ˙ ˙
0 0 0 ... I4AP44 (1−I4A)P44+I4AP43 (1−I4A)P43

0 0 0 ... 0 I3AP33 (1−I3A)P33

 (8.1)

The matrix formulation can be generalized to include the probability of a par-

ticular maintenance action increasing the condition rating by more than 1. This

approach needs further investigation to assess its benefits relative to the existing

approaches of resetting the deterioration curve to the original condition state

in the corresponding year of maintenance action.

• The methodology for developing covariate specific hazard ratios is limited by
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the availability of variables in the BMS database. This approach has the poten-

tial of quantifying the effect of various intervention strategies and preservation

treatments provided that strategies are adopted for recording these treatments

and actions in the BMS databases.

• The framework developed in this study has been implemented and tested on

the North Carolina database of GCR component ratings. It will be beneficial to

apply the methodology to NBI databases of other states, since these are readily

available from the FHWA. This would be helpful not only in substantiating some

of the applied results obtained from the NC database, but also in providing a

basis of comparison with other existing models that may be functional in these

states.
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APPENDIX A: CONCRETE DECK MASTER DATA CODE

1 function ConcreteDeckMasterData()
2 %**************************************************************************
3 % ConcreteDeckMasterData is a representative function for creating master
4 % database subsets pertaining to any selected bridge component and specified
5 % material type from the MATLAB Master File (NBI). This code prepares such
6 % a subset for all bridges with concrete decks including cast-in-place and
7 % precast panel decks
8 %**************************************************************************
9 global NBI

10 Material=zeros(size(NBI));
11 %Find all bridges with concrete cast-in-place & precast panel decks
12 for j=1:length(NBI)
13 Temp=double(NBI(1,j).Deck Structure Type);
14 I=find(Temp==255);
15 Temp(I)=NaN;
16 Type=mode(Temp);
17 I=(Type==1)|(Type==2);
18 if sum(I)>0
19 Material(j)=1;
20 end
21 end
22 I= find(Material==1);
23 Material=NBI(1,I);
24 for k=1:length(NBI)
25 L(k)=length(NBI(k).Data Year);
26 end
27 nyears=max(L);
28 %Produce matrix of deck condition ratings
29 DeckStructureType=zeros(nyears,length(Material));
30 Rating0=zeros(nyears,length(Material));
31 for j=1:length(Material)
32 Temp=Material(1,j).Deck Structure Type;
33 DeckStructureType(1:length(Temp),j)=Temp;
34 Temp=Material(1,j).Deck;
35 Rating0(1:length(Temp),j)=Temp;
36 end
37 % Account for condition rating fields left blank
38 [I,J]=find(Rating0==255);
39 for k=1:length(I)
40 if I(k)>1
41 Rating0(I(k),J(k))=Rating0(I(k)-1,J(k));
42 else
43 Rating0(I(k),J(k))=Rating0(I(k)+1,J(k));
44 end
45 end
46 save('Databases\ConcreteDeck','Material','DeckStructureType','Rating0');
47 end
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APPENDIX B: PHM INPUT VARIABLES CODE

1 function [Censor,YearsInRating,Subset,Age]=FnPHMInput(MTComp)
2 %**************************************************************************
3 % PHMInput is a generic function that preprocesses the master data for
4 % the material specific bridge component (MTComp) to develop the dependent
5 % and independent variables for individual Cox proportional hazards
6 % regression over each condition rating (RT).
7 %**************************************************************************
8 % MTComp='ConcreteDeck' or 'TimberSuperstructure'....
9 %***************************************************************************

10 load(strcat('Databases\',MTComp));
11 h=waitbar(0,'Processing Condition Rating Data');
12 for RT=4:9
13 waitbar((RT-2)/6,h);
14 clear Rating Subset2 Age YearsInRating Censor
15 Rating=Rating0;
16 %Example: Condition Rating Subset that includes RT
17 %Start by finding all bridges with data for RT
18 Subset=zeros(size(Material));
19 for j=1:length(Material)
20 if ((sum(Rating(:,j)==RT)>0))
21 Subset(j)=1; %has data for ratings RT
22 end
23 end
24 I=find(Subset==1);
25 Subset=Material(I);
26 Rating=Rating(:,I);
27 YearBuilt=uint16convert(Subset,'Year Built',length(Subset));
28 DataYear=uint16convert(Subset,'Data Year',length(Subset));
29 YearRecon=uint16convert(Subset,'Year Reconstructed',length(Subset));
30

31 %Code to ensure that once a bridge has been reconstructed, the year(s) of
32 %reconstruction are always considered in the age calculation
33 for j=1:length(YearRecon(1,:))
34 ReInd=find(YearRecon(:,j)>0);
35 if ~isempty(ReInd)
36 ReInstances=unique(YearRecon(ReInd,j));
37 clear I2
38 for jj=1:length(ReInstances)
39 I2(jj)=find(YearRecon(:,j)==ReInstances(jj),1,'first');
40 end
41 for jj=1:length(ReInstances)
42 YearRecon(I2(jj):end,j)=ReInstances(jj);
43 end
44 end
45 end
46

47 %Same story with YearBuilt
48 for j=1:length(YearBuilt(1,:))
49 ReInd=find(YearBuilt(:,j)>0);
50 if ~isempty(ReInd)
51 ReInstances=unique(YearBuilt(ReInd,j));
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52 clear I2
53 for jj=1:length(ReInstances)
54 I2(jj)=find(YearBuilt(:,j)==ReInstances(jj),1,'first');
55 end
56 for jj=1:length(ReInstances)
57 YearBuilt(I2(jj):end,j)=ReInstances(jj);
58 end
59 end
60 end
61

62 %Now develop data for PHM
63 clear Censor Age YearsInRating
64 cntr=1;
65 for j=1:length(Subset)
66 clear I I2 I3 I4 I5
67 ERating=Rating(:,j);
68 IR=find(ERating==RT);
69 while length(IR>0)
70 DER=diff(IR);
71 %******************************************
72 % CODE FOR ONLY 1 CONTINUOUS RECORD
73 %******************************************
74 if isempty(find(DER~=1))
75 if length(IR)>1
76 YearsInRating(cntr)=length(IR);
77 Subset2(cntr)=Subset(j);
78 if (YearRecon(IR(1),j))>0
79 Age(cntr)=DataYear(IR(1),j)-YearRecon(IR(1),j);
80 else
81 Age(cntr)=DataYear(IR(1),j)-YearBuilt(IR(1),j);
82 end
83 if (IR(1)==1)
84 Censor(cntr)=1;
85 elseif ERating(IR(1)-1)==255
86 Censor(cntr)=1;
87 elseif IR(end)==length(ERating)
88 Censor(cntr)=1;
89 elseif ERating(IR(end)+1)>ERating(IR(end))
90 Censor(cntr)=1;
91 elseif ERating(IR(end)+1)==0
92 Censor(cntr)=1;
93 else
94 Censor(cntr)=0;
95 end
96 cntr=cntr+1;
97 end
98 IR=[];
99 else

100 IE=find(DER~=1);
101 if IE(1)>1
102 YearsInRating(cntr)=IE(1);
103 Subset2(cntr)=Subset(j);
104 if (YearRecon(IR(1),j))>0
105 Age(cntr)=DataYear(IR(1),j)-YearRecon(IR(1),j);



231

106 else
107 Age(cntr)=DataYear(IR(1),j)-YearBuilt(IR(1),j);
108 end
109 if (IR(1)==1)
110 Censor(cntr)=1;
111 elseif ERating(IR(1)-1)==255
112 Censor(cntr)=1;
113 elseif IR(IE(1))==length(ERating)
114 Censor(cntr)=1;
115 elseif ERating(IR(IE(1))+1)>ERating(IR(IE(1)))
116 Censor(cntr)=1;
117 elseif ERating(IR(IE(1))+1)==0
118 Censor(cntr)=1;
119 else
120 Censor(cntr)=0;
121 end
122 cntr=cntr+1;
123 end
124 IR(1:IE(1))=[];
125 end
126 end
127 end
128 Subset=Subset2;
129 cntr
130

131 save(strcat('Databases\',MTComp,'\','CR',num2str(RT)),'Censor',...
132 'YearsInRating','Subset','Age')
133 end
134 close(h)
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APPENDIX C: CATEGORICAL VARIABLE MEAN BOUNDS CODE

1 function [ADTMin,ADTTMin,AgeMin,MaxSpanMin,CMinTable]=FnCatBounds(MTComp)
2 %**************************************************************************
3 % FnCatBounds calculates the lower bounds for the categorical variables ADT,
4 % ADTT, age, and maximum span, by first binning them uniformly at each
5 % condition rating (RT) and then taking the weighted average of the bins
6 % across condition ratings 4 to 9. The number of records in the particular
7 % material specific bridge component (MTComp) database is used to weight
8 % the average.
9 %**************************************************************************

10 RT=4:9;
11 ADTBin1Min=zeros(1,length(RT));
12 ADTBin2Min=zeros(1,length(RT));
13 ADTBin3Min=zeros(1,length(RT));
14 ADTBin4Min=zeros(1,length(RT));
15

16 ADTTBin1Min=zeros(1,length(RT));
17 ADTTBin2Min=zeros(1,length(RT));
18 ADTTBin3Min=zeros(1,length(RT));
19 ADTTBin4Min=zeros(1,length(RT));
20

21 AgeBin1Min=zeros(1,length(RT));
22 AgeBin2Min=zeros(1,length(RT));
23 AgeBin3Min=zeros(1,length(RT));
24 AgeBin4Min=zeros(1,length(RT));
25

26 MaxSpanBin1Min=zeros(1,length(RT));
27 MaxSpanBin2Min=zeros(1,length(RT));
28 MaxSpanBin3Min=zeros(1,length(RT));
29

30 Weight=zeros(1,length(RT));
31 for k=1:length(RT);
32 load(strcat('Databases\',MTComp,'CR',num2str(RT(k))),'Subset','Age') ;
33

34 %****AVERAGE DAILY TRAFFIC ******
35 ADT=uint32convert(Subset,'Average Daily Traffic',length(Subset));
36 I=find(ADT>500000); %Remove Outliers
37 ADT(I)=NaN;
38 ADT=nanmean(ADT);
39 Weight(k)=length(Subset);
40

41 NMeanADTCategory=ceil(4*tiedrank(ADT)/length(ADT));
42 NMeanADTCategory=NMeanADTCategory-1;
43 ADT1=ADT(find(NMeanADTCategory==0));
44 ADT2=ADT(find(NMeanADTCategory==1));
45 ADT3=ADT(find(NMeanADTCategory==2));
46 ADT4=ADT(find(NMeanADTCategory==3));
47

48 if ~isempty(ADT1);ADTBin1Min(k)=min(ADT1);end;
49 if ~isempty(ADT2);ADTBin2Min(k)=min(ADT2);end;
50 if ~isempty(ADT3);ADTBin3Min(k)=min(ADT3);end;
51 if ~isempty(ADT4);ADTBin4Min(k)=min(ADT4);end;
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52

53 %*****AVERAGE DAILY TRUCK TRAFFIC*****
54 PCNTADTT=uint8convert(Subset,'Percent ADTT',length(Subset));
55 I=PCNTADTT>100;
56 PCNTADTT(I)=NaN;
57 PCNTADTT=nanmean(PCNTADTT);
58 ADTT=(PCNTADTT/100).*(ADT);
59

60 NMeanADTTCategory=ceil(4*tiedrank(ADTT)/length(ADTT));
61 NMeanADTTCategory=NMeanADTTCategory-1;
62 ADTT1=ADTT(find(NMeanADTTCategory==0));
63 ADTT2=ADTT(find(NMeanADTTCategory==1));
64 ADTT3=ADTT(find(NMeanADTTCategory==2));
65 ADTT4=ADTT(find(NMeanADTTCategory==3));
66

67 if ~isempty(ADTT1);ADTTBin1Min(k)=min(ADTT1);end;
68 if ~isempty(ADTT2);ADTTBin2Min(k)=min(ADTT2);end;
69 if ~isempty(ADTT3);ADTTBin3Min(k)=min(ADTT3);end;
70 if ~isempty(ADTT4);ADTTBin4Min(k)=min(ADTT4);end;
71

72 %****AGE******
73

74 NAgeCategory=ceil(4*tiedrank(Age)/length(Age));
75 NAgeCategory=NAgeCategory-1;
76 Age1=Age(find(NAgeCategory==0));
77 Age2=Age(find(NAgeCategory==1));
78 Age3=Age(find(NAgeCategory==2));
79 Age4=Age(find(NAgeCategory==3));
80

81 if ~isempty(Age1); AgeBin1Min(k)=min(Age1);end;
82 if ~isempty(Age2);AgeBin2Min(k)=min(Age2);end;
83 if ~isempty(Age3);AgeBin3Min(k)=min(Age3);end;
84 if ~isempty(Age4);AgeBin4Min(k)=min(Age4);end;
85

86 %****Maximum Span Length*****
87 MaxSpan=uint16convert(Subset,'Maximum Span Length',length(Subset));
88 MaxSpan=nanmedian(MaxSpan)/10;
89 MaxSpanSet=~isnan(MaxSpan);
90 NMaxSpanCategory=ceil(3*tiedrank(MaxSpan)/length(MaxSpan));
91 NMaxSpanCategory=NMaxSpanCategory-1;
92 MaxSpan1=MaxSpan(find(NMaxSpanCategory==0));
93 MaxSpan2=MaxSpan(find(NMaxSpanCategory==1));
94 MaxSpan3=MaxSpan(find(NMaxSpanCategory==2));
95 if ~isempty(MaxSpan1);MaxSpanBin1Min(k)=min(MaxSpan1);end;
96 if ~isempty(MaxSpan2);MaxSpanBin2Min(k)=min(MaxSpan2);end;
97 if ~isempty(MaxSpan3);MaxSpanBin3Min(k)=min(MaxSpan3);end;
98 end
99

100 ADT1Min=round(((ADTBin1Min)*(Weight'))/sum(Weight));
101 ADT2Min=round(((ADTBin2Min)*(Weight'))/sum(Weight));
102 ADT3Min=round(((ADTBin3Min)*(Weight'))/sum(Weight));
103 ADT4Min=round(((ADTBin4Min)*(Weight'))/sum(Weight));
104 ADTMin=[ADT1Min,ADT2Min,ADT3Min,ADT4Min];
105
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106 ADTT1Min=round(((ADTTBin1Min)*(Weight'))/sum(Weight));
107 ADTT2Min=round(((ADTTBin2Min)*(Weight'))/sum(Weight));
108 ADTT3Min=round(((ADTTBin3Min)*(Weight'))/sum(Weight));
109 ADTT4Min=round(((ADTTBin4Min)*(Weight'))/sum(Weight));
110 ADTTMin=[ADTT1Min,ADTT2Min,ADTT3Min,ADTT4Min];
111

112 Age1Min=round(((AgeBin1Min)*(Weight'))/sum(Weight));
113 Age2Min=round(((AgeBin2Min)*(Weight'))/sum(Weight));
114 Age3Min=round(((AgeBin3Min)*(Weight'))/sum(Weight));
115 Age4Min=round(((AgeBin4Min)*(Weight'))/sum(Weight));
116 AgeMin=[Age1Min,Age2Min,Age3Min,Age4Min];
117

118 MaxSpan1Min=round(((MaxSpanBin1Min)*(Weight'))/sum(Weight));
119 MaxSpan2Min=round(((MaxSpanBin2Min)*(Weight'))/sum(Weight));
120 MaxSpan3Min=round(((MaxSpanBin3Min)*(Weight'))/sum(Weight));
121 MaxSpanMin=[MaxSpan1Min,MaxSpan2Min,MaxSpan3Min];
122

123 save(strcat('Databases\', MTComp,'CategoryMeans'),'ADTMin','ADTTMin',...
124 'AgeMin','MaxSpanMin')
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APPENDIX D: BENCHMARK MULTIVARIABLE MODEL CODE

1 function [X,XSet,PMulti1,FSetIndex]=FnBenchmark(MTComp)
2 %**************************************************************************
3 % FnBenchmark develops design variables and coding for covariates and
4 % then assembles the coded design variables into a matrix X, for each
5 % condition rating. A reduced X is obtained by excluding variables that do
6 % not have even a single associated bridge record. This reduced set of
7 % covariates is analyzed using Cox proportional hazards multivariable
8 % regression to produce the preliminary or benchmark model for each of the
9 % condition ratings (RT) 4 to 9 for any selected material-specific bridge

10 % component (MTComp).
11 %*************************************************************************
12 for RT=4:9;
13 clearvars -except RT MTComp ;
14 load(strcat('Databases\',MTComp,'CR',num2str(RT)),'Censor','YearsInRating',...
15 'Subset','Age') ;
16 load(strcat('Databases\',MTComp,'CategoryMeans'));
17

18 %***********************************************************************
19 % Develop Functional Classifications
20 %***********************************************************************
21 DataYear=uint16convert(Subset,'Data Year',length(Subset));
22

23 %****STATE SYSTEM*****
24 StateSystem=uint8convert(Subset,'State System',length(Subset));
25 I=find(StateSystem==3);
26 StateSystem(I)=NaN;
27 I=find(StateSystem==0);
28 StateSystem(I)=NaN;
29 StateSystem=nanmedian(StateSystem);
30 I=find(rem(StateSystem,1)>0);
31 StateSystem(I)=NaN;
32 StateSystemSet=~isnan(StateSystem);
33 StateSystem=StateSystem-1; %Convert 1 or 2 classification to 0 or 1
34 StateSystemTable=tabulate(StateSystem);
35

36 %****AVERAGE DAILY TRAFFIC******
37 ADT=uint32convert(Subset,'Average Daily Traffic',length(Subset));
38 I=find(ADT>500000); %Remove Outliers
39 ADT(I)=NaN;
40 ADT=nanmean(ADT);
41 for k=0:1:3
42 if k<3
43 I=ADT>=ADTMin(k+1);
44 I2=ADT<ADTMin(k+2);
45 NMeanADTCategory(I&I2)=k;
46 else I3=ADT>=ADTMin(k+1);
47 NMeanADTCategory(I3)=k;
48 end
49 end
50 ADT1=ADT(find(NMeanADTCategory==0));
51 ADT2=ADT(find(NMeanADTCategory==1));
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52 ADT3=ADT(find(NMeanADTCategory==2));
53 ADT4=ADT(find(NMeanADTCategory==3));
54 ADTTable=tabulate(NMeanADTCategory);
55

56 MeanADTCategory=zeros(length(Subset),3); %Initialize Nominal Scale
57 for k=1:3
58 I=NMeanADTCategory==k;
59 MeanADTCategory(I,k)=1;
60 end
61 MeanADTCategorySet=~isnan(MeanADTCategory(:,1));
62 ADTSet=~isnan(ADT);
63

64 %****AGE******
65 for k=0:1:3
66 if k<3
67 I=Age>=AgeMin(k+1);
68 I2=Age<AgeMin(k+2);
69 NAgeCategory(I&I2)=k;
70 else I3=Age>=AgeMin(k+1);
71 NAgeCategory(I3)=k;
72 end
73 end
74

75 Age1=Age(find(NAgeCategory==0));
76 Age2=Age(find(NAgeCategory==1));
77 Age3=Age(find(NAgeCategory==2));
78 Age4=Age(find(NAgeCategory==3));
79 AgeTable=tabulate(NAgeCategory);
80

81 AgeCategory=zeros(length(Subset),3); %Initialize Nominal Scale
82 for k=1:3
83 I=NAgeCategory==k;
84 AgeCategory(I,k)=1;
85 end
86 AgeCategorySet=~isnan(AgeCategory(:,1));
87 AgeSet=~isnan(Age);
88

89 %****ORIGINAL/REBUILT (0), RECONSTRUCTED (1)**********
90 Recon=uint16convert(Subset,'Year Reconstructed',length(Subset));
91 Recon=nanmedian(Recon);
92 I=Recon>1900;
93 Recon(I)=1; %Reconstructed
94 Recon(~I)=0; %Original or Rebuilt
95 ReconSet=~isnan(Recon);
96 ReconTable=tabulate(Recon);
97

98 %****REGION (Nominal Scale: Coastal 0/0, Piedmont 1/0, Mountain 0/1)
99 NRegion=uint8convert(Subset,'Region',length(Subset));

100 NRegion=mode(NRegion);
101 Inan=isnan(NRegion);%gives 1 when NRegion is a nan
102 NRegion=NRegion-1;
103 Region=zeros(length(Subset),2);
104 I=NRegion==1;
105 Region(I,1)=1;
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106 I=NRegion==2;
107 Region(I,2)=1;
108 Region(Inan,:)=NaN;
109 RegionSet=~isnan(Region(:,1));
110 RegionTable=tabulate(NRegion);
111

112 %****ADTT ****
113 PCNTADTT=uint8convert(Subset,'Percent ADTT',length(Subset));
114 I=PCNTADTT>100;
115 PCNTADTT(I)=NaN;
116 PCNTADTT=nanmean(PCNTADTT);
117 ADTT=(PCNTADTT/100).*(ADT);
118 for k=0:1:3
119 if k<3
120 I=ADTT>=ADTTMin(k+1);
121 I2=ADTT<ADTTMin(k+2);
122 NMeanADTTCategory(I&I2)=k;
123 else I3=ADTT>=ADTTMin(k+1);
124 NMeanADTTCategory(I3)=k;
125 end
126 end
127 ADTT1=ADTT(find(NMeanADTTCategory==0));
128 ADTT2=ADTT(find(NMeanADTTCategory==1));
129 ADTT3=ADTT(find(NMeanADTTCategory==2));
130 ADTT4=ADTT(find(NMeanADTTCategory==3));
131 ADTTTable=tabulate(NMeanADTTCategory);
132

133 MeanADTTCategory=zeros(length(Subset),3); %Initialize Nominal Scale
134 for k=1:3
135 I=NMeanADTTCategory==k;
136 MeanADTTCategory(I,k)=1;
137 end
138 MeanADTTCategorySet=~isnan(MeanADTTCategory(:,1));
139 ADTTSet=~isnan(ADTT);
140

141 %****Wearing Surface (Nominal Scale)****
142 WearSurface=uint16convert(Subset,'Wearing Surface',length(Subset));
143 WearSurface=nanmedian(WearSurface);
144 WearingCovars={'None','MonolithicConcrete','IntegralConcrete',...
145 'LatexConcrete','LowSlumpConcrete','EpoxyOverlay','Bituminous',...
146 'Timber','Gravel','Other'};
147 Inan=isnan(WearSurface);
148 Wearing=zeros(length(Subset),9); %Initialize Nominal Scale
149 for k=1:9
150 I=WearSurface>=k*100;
151 I2=WearSurface<(k+1)*100;
152 Wearing(I&I2,k)=1;
153 end
154 Wearing(Inan,:)=NaN;
155 WearKey=[0:9];
156 WearingCovars(1)=[];
157 WearingSet=~isnan(Wearing(:,1));
158

159 NWearing=Wearing;
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160 for k=1:length(NWearing(1,:))-1
161 NWearing(:,k+1)=NWearing(:,k+1)*(k+1);
162 end
163 NWearing=sum(NWearing,2);
164 NWearingTable=tabulate(NWearing);
165

166 %****Maximum Span Length*****
167 MaxSpan=uint16convert(Subset,'Maximum Span Length',length(Subset));
168 MaxSpan=nanmedian(MaxSpan)/10;
169 MaxSpanSet=~isnan(MaxSpan);
170 for k=0:1:2
171 if k<2
172 I=MaxSpan>=MaxSpanMin(k+1);
173 I2=MaxSpan<MaxSpanMin(k+2);
174 NMaxSpanCategory(I&I2)=k;
175 else I3=MaxSpan>=MaxSpanMin(k+1);
176 NMaxSpanCategory(I3)=k;
177 end
178 end
179

180 MaxSpan1=MaxSpan(find(NMaxSpanCategory==0));
181 MaxSpan2=MaxSpan(find(NMaxSpanCategory==1));
182 MaxSpan3=MaxSpan(find(NMaxSpanCategory==2));
183 MaxSpanTable=tabulate(NMaxSpanCategory);
184

185 MaxSpanCategory=zeros(length(Subset),2); %Initialize Nominal Scale
186 for k=1:2
187 I=NMaxSpanCategory==k;
188 MaxSpanCategory(I,k)=1;
189 end
190 MaxSpanCategorySet=~isnan(MaxSpanCategory(:,1));
191

192 %****Number of Spans*****
193 NumberSpans=uint16convert(Subset,'No of Main Spans',length(Subset));
194 NumberSpans=nanmedian(NumberSpans);
195 NumberSpansSet=~isnan(NumberSpans);
196 I=NumberSpans==1;
197

198 NNumberSpansCategory(I)=0;
199 I2=NumberSpans>1;
200 NNumberSpansCategory(I2)=1;
201 NumberSpans1=NumberSpans(find(NNumberSpansCategory==0));% Single Span
202 NumberSpans2=NumberSpans(find(NNumberSpansCategory==1));% Multi Span
203

204 NumberSpansCategory=NNumberSpansCategory;
205 NumberSpansTable=tabulate(NNumberSpansCategory);
206 NumberSpansCategorySet=~isnan(NumberSpansCategory);
207

208 %****Functional Class*****
209 FunClass=uint8convert(Subset,'Functional Class',length(Subset));
210 FunClass=nanmedian(FunClass);
211 %
212 FunClassCovars={'RInterstate','RPrincipalArterial','RMinorArterial',...
213 'RMajorCollector','RMinorCollector','RLocal','UInterstate',...
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214 'UFreeway','UPrincipalArterial','UMinorArterial','UCollector',...
215 'ULocal'};
216 FunClassKey=[1,2,6,7,8,9,11,12,14,16,17,19];
217 Functional=zeros(length(Subset),11); % 9 or 11? check - corrected to 11
218 Inan=~ismember(FunClass,FunClassKey); %Not a member of any classification
219 for k=1:11
220 I=(FunClass==FunClassKey(k+1));
221 Functional(I,k)=1;
222 end
223 Functional(Inan,:)=NaN;
224 FunClassCovars(1)=[];
225 FunctionalSet=~isnan(Functional(:,1));
226

227 NFunctional=Functional;
228 for k=1:length(NFunctional(1,:))-1
229 NFunctional(:,k+1)=NFunctional(:,k+1)*(k+1);
230 end
231 NFunctional=sum(NFunctional,2);
232 FunctionalTable=tabulate(NFunctional);
233

234 clearvars -except YearsInRating Wearing WearingSet StateSystem ...
235 StateSystemSet Region RegionSet Recon ReconSet NumberSpans ...
236 NumberSpansSet NumberSpansCategory NNumberSpansCategory ...
237 NumberSpansCategorySet MaxSpan MaxSpanSet MaxSpanCategory ...
238 MaxSpanCategorySet NMaxSpanCategory NMeanADTTCategory...
239 Functional FunctionalSet FunClassKey WearKey Censor ADTT ...
240 ADTTSet MeanADTTCategory MeanADTTCategorySet ADT MeanADTCategory ...
241 MeanADTCategorySet Subset ADTSet Age AgeCategory AgeTable...
242 FunClassCovars WearingCovars NBI StateSytemTable RegionTable...
243 NRegion NWearing NWearingTable NFunctional FunctionalTable ...
244 NMeanADTCategory NAgeCategory AgeCategorySet RT ...
245 MaxSpanTable NumberSpansTable StateSystemTable ADTTTable...
246 ADTTable ReconTable MTComp
247

248 %*************************************************************************
249 % INITIAL MULTIVARIATE ANALYSIS
250 %*************************************************************************
251 X=[StateSystem;Recon;Region';Wearing';Functional';MeanADTCategory';...
252 MeanADTTCategory';MaxSpanCategory';NumberSpansCategory;AgeCategory'];
253 XSet=[StateSystemSet'*ones(1,size(StateSystem,1)),...
254 ReconSet'*ones(1,size(Recon,1)),RegionSet*ones(1,size(Region,2)),...
255 WearingSet*ones(1,size(Wearing,2)),...
256 FunctionalSet*ones(1,size(Functional,2)),...
257 MeanADTCategorySet*ones(1,size(MeanADTCategory,2)),...
258 MeanADTTCategorySet*ones(1,size(MeanADTTCategory,2)),...
259 MaxSpanCategorySet*ones(1,size(MaxSpanCategory,2)),...
260 NumberSpansCategorySet'*ones(1,size(NumberSpansCategory,1)),...
261 AgeCategorySet*ones(1,size(AgeCategory,2))];
262 XSet2=sum(XSet==1,2)==36;
263 FCount1=min( sum((double(X(:,XSet2))'==1)), sum((double(X(:,XSet2))'==0)));
264 FSet1=FCount1~=0;
265 FSetIndex=find(FSet1==1);
266 FSetIndexNull=find(FSet1==0);
267 [b,logl,H,stats]=coxphfit(double(X(FSetIndex,XSet2))',YearsInRating(1,XSet2)',...
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268 'baseline',0,'censoring',Censor(1,XSet2)');
269 PMulti1(FSetIndex)=stats.p;
270 PMulti1(FSetIndexNull)=1;
271 LogLMultiPre=logl;
272 save(strcat('Databases\',MTComp,'Rating',num2str(RT),'PHData'),'X','XSet',...
273 'PMulti1','YearsInRating','Censor','FSetIndex','FSetIndexNull','FSet1',...
274 'RegionTable','NWearingTable','FunctionalTable','LogLMultiPre',...
275 'MaxSpanTable','NumberSpansTable','StateSystemTable','ADTTTable',...
276 'ADTTable','ReconTable','AgeTable')
277 end
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APPENDIX E: PHM BEST SUBSET CODE

1 function [FSet,BestCombination]=FnBestSubset(MTComp)
2 %**************************************************************************
3 % FnBestSubset first removes those variables from the benchmark model that
4 % exhibit a p-value of more than 20%, and then implements a constrained step-
5 % wise forward selection approach based on maximizing the AIC. The function
6 % returns the best subset of variables for each of the condition ratings 4 to
7 % 9 of any selected material-specific bridge component (MTComp).
8 %**************************************************************************
9 Ratings=4:9

10 for md=1:length(Ratings)
11 load(strcat('Databases\',MTComp,'Rating',num2str(Ratings(md)),'PHData'));
12

13 I=find(PMulti1>0.2);
14 FSet=setdiff(1:length(PMulti1),I)
15 FSet=setdiff(FSet,14:24) %Remove functional classification
16 clearvars -except FSet PMulti1 X XSet Censor YearsInRating Ratings...
17 MTComp md Best BestStats;
18

19 X=X(FSet,:);
20 XSet=XSet(:,FSet);
21 XSet2=sum(XSet==1,2)==length(FSet);
22 [b,logl,H,stats]=coxphfit(double(X(:,XSet2))',YearsInRating(1,XSet2)',...
23 'baseline',0,'censoring',Censor(1,XSet2)');
24 LogLMulti1=logl;
25 PMulti=stats.p;
26

27 N=length(FSet);
28 N1=N;
29 N1reserve=N1;
30 reduction=[];
31 Stats=[];
32 cntr=1; %Counter
33 statusflag=1; %1=true (keep running) 0 = false (stop running)
34 if N==0
35 statusflag=0; %Don't run loop if Fset is empty
36 end
37 while (statusflag==1)
38 combinations=[];
39 if ~isempty(reduction)
40 N1=setdiff(1:N1reserve,reduction);
41 else
42 N1=1:N1reserve;
43 end
44 for k=N1
45 combinations=[combinations;[ones(length(N1),1)*k,[N1]']];
46 end
47 for j=1:cntr-1-length(reduction)
48 temp=combinations;
49 cntr2=1;
50 for k=N1
51 if cntr2==1
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52 combinations=[k*ones(size(temp,1),1),temp];
53 else
54 combinations=[combinations;[k*ones(size(temp,1),1),temp]];
55 end
56 cntr2=cntr2+1;
57 end
58 end
59 for j=1:cntr-length(reduction)
60 I=combinations(:,j)>=combinations(:,j+1);
61 combinations(I,:)=[];
62 end
63 if ~isempty(reduction)
64 for k=length(reduction):-1:1
65 combinations=[reduction(k)*ones(length(combinations(:,1)),1),...
66 combinations];
67 end
68 end
69 if length(FSet)==1
70 combinations=1;
71 end
72 fprintf(strcat('# Sets =',num2str(length(combinations(:,1))),'\r'))
73 if length(combinations(:,1))>0
74 Stats=[];
75 for k=1:length(combinations(:,1))
76 if length(FSet)==1
77 S=X;
78 SSet=XSet2;
79

80 else
81 S=X(combinations(k,1:cntr+1),:);
82 SSet=XSet(:,combinations(k,1));
83 for j=1:cntr
84 SSet=SSet & XSet(:,combinations(k,j+1));
85 end
86 end
87

88 [b,logl,H,stats]=coxphfit(double(S(:,SSet))',YearsInRating(1,SSet)',...
89 'baseline',0,'censoring',Censor(1,SSet)');
90 Stats(k,1)=logl;
91 Stats(k,2)=2*LogLMulti1-2*logl;
92 Stats(k,3)=1-cdf('chi2',-2*logl+2*LogLMulti1,size(X,1)-size(S,1));
93 Stats(k,4)=(logl-size(S,1)/2*log(size(S(:,SSet),2)));
94 Stats(k,5)=(logl-2*size(S,1));
95 end
96

97 [Stats2,I] = sortrows(Stats,-1);
98 combinations2=combinations(I,:);
99 AIC(cntr)=Stats2(1,5);

100 BIC(cntr)=Stats2(1,4);
101 pval(cntr)=Stats2(1,3);
102 fprintf(strcat('# Parameters =',num2str(cntr+1),'\r'))
103 fprintf(strcat('Current AIC =',num2str(AIC(cntr)),'\r'))
104 fprintf(strcat('Current BIC =',num2str(BIC(cntr)),'\r'))
105 fprintf(strcat('Current p =',num2str(pval(cntr)),'\r'))
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106 fprintf(strcat('Best Combination =',num2str(combinations2(1,:)),'\r'))
107 Savedcombinations{cntr}=combinations2;
108 SavedStats{cntr}=Stats2;
109 Best{cntr}=combinations2(1,:)
110 BestStats{cntr}=Stats2(1,:)
111 if (cntr>1)
112 statusflag=(AIC(cntr)>AIC(cntr-1));
113 reduction=intersect(Best{cntr},Best{cntr-1});
114 else
115 statusflag=1;
116 end
117 if (length(FSet)==1)
118 statusflag=0;
119 end
120 cntr=cntr+1;
121 else
122 statusflag=0;
123 end
124 cntr
125 if cntr>2
126 SavedBest=Best(1,cntr-2);
127 SavedBestStats=BestStats(1,cntr-2);
128 else
129 SavedBest=Best(1,cntr-1);
130 SavedBestStats=BestStats(1,cntr-1);
131 end
132

133 BestCombination=FSet(1,cell2mat(SavedBest));
134 BestCombStats=cell2mat(SavedBestStats);
135 end
136

137 if length(FSet)==1
138 BestCombination=FSet;
139 BestCombStats=[];
140 elseif length(FSet)==0
141 Best=[];
142 BestStats=[];
143 BestCombination=[];
144 BestCombStats=[];
145 end
146

147 save(strcat('Databases\',MTComp,'BestSubset',num2str(Ratings(md))),'FSet',...
148 'LogLMulti1','PMulti','BestCombination','BestCombStats','Best','BestStats');
149 end
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APPENDIX F: PHM BEST SUBSET COEFFICIENTS CODE

1 function [BetaMulti2, HR2]=FnPHMCoefficients(MTComp)
2 %**************************************************************************
3 % FnPHMCoefficients performs the proportional hazards regression on the best
4 % subset for each condition rating of any selected material-specific bridge
5 % component (MTComp), and obtains the model statistics including
6 % regression coefficients, hazard ratios, and baseline survival function.
7 %**************************************************************************
8 foldername=strcat('Databases 12112014NBI\',MTComp);
9 Ratings=4:9

10 for k=1:length(Ratings)
11 load(strcat('Databases\',MTComp,'Rating',num2str(Ratings(k)),'PHData'));
12 load(strcat('Databases\',MTComp,'BestSubset',num2str(Ratings(k))));
13 clearvars -except FSet X XSet Censor YearsInRating Ratings MTComp k...
14 foldername BestCombination ;
15 if ~isempty(BestCombination)
16 XBest=X(BestCombination,:);
17 XBestSet=XSet(:,BestCombination);
18 XSet2Best=sum(XBestSet==1,2)==length(BestCombination);
19 %PHM coefficients
20 [b,logl,H,stats]=coxphfit(double(XBest(:,XSet2Best))',...
21 YearsInRating(1,XSet2Best)','baseline',0,'censoring',...
22 Censor(1,XSet2Best)');
23 LogLMulti2=logl;
24 PMulti2=stats.p;
25 BetaMulti2=b;
26 HR2=exp(b);
27 SEMulti2=stats.se;
28 HMulti2=H;
29 HRLB=exp(BetaMulti2-1.96*SEMulti2);
30 HRUB=exp(BetaMulti2+1.96*SEMulti2);
31 ZMulti2=stats.z; % b divided by se
32 CovBMulti2=stats.covb;
33 SMulti2=[HMulti2(:,1),exp(-HMulti2(:,2))]; % baseline survival function
34 save(strcat('Databases\',MTComp,'BestSubsetCoefficients',...
35 num2str(Ratings(k))),'BestCombination','XBest','XBestSet',...
36 'XSet2Best','LogLMulti2',...
37 'PMulti2','BetaMulti2','HR2','SEMulti2','HMulti2','HRLB','HRUB',...
38 'SMulti2','ZMulti2','CovBMulti2','Censor','YearsInRating','FSet');
39 figure(k)
40 % PHM survival function
41 plot(SMulti2(:,1),SMulti2(:,2),'b-','LineWidth',1.5);
42 set(gca,'FontSize',16,'color','w','XColor','k','YColor','k');
43 set(gca,'XLim',[0,30]);
44 set(gca,'YLim',[0,1]);
45 title(strcat({'Condition Rating '},num2str(Ratings(k))),'FontSize',20)
46 xlabel('Years in Rating','FontSize',20)
47 ylabel('Survival Probability','FontSize',20)
48 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
49 'Baseline Survival Function',num2str(Ratings(k))))
50

51 %Kaplan-Meier survival Function when best subset has no variables
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52 else [f,x]=ecdf(YearsInRating,'Censoring',Censor,'function','survivor');
53 stairs(x,f,'b--','LineWidth',1.5);
54 set(gca,'FontSize',16,'color','w','XColor','k','YColor','k');
55 set(gca,'XLim',[0,30]);
56 set(gca,'YLim',[0,1]);
57 title(strcat('Condition Rating ',num2str(Ratings(k))),'FontSize',20)
58 xlabel('Years in Rating','FontSize',20)
59 ylabel('Survival Probability','FontSize',20)
60 legend('K-M','FontSize',20,'Location','best')
61 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
62 'Kaplan Meier Survival Function',num2str(Ratings(k))))
63 BetaMulti2=[];
64 LogLMulti2=[];
65 PMulti2=[];
66 HR2=[];
67 SEMulti2=[];
68 HMulti2=[];
69 HRLB=[];
70 HRUB=[];
71 ZMulti2=[]; % b divided by se
72 CovBMulti2=[];
73 SMulti2=[x,f];
74 XBest=[];
75 XBestSet=[];
76 XSet2Best=[];
77

78 save(strcat('Databases 12112014NBI\', MTComp,'\',MTComp,...
79 'BestSubsetCoefficients',num2str(Ratings(k))),'BestCombination',...
80 'XBest','XBestSet','XSet2Best','LogLMulti2','PMulti2','BetaMulti2',...
81 'HR2','SEMulti2','HMulti2','HRLB','HRUB','SMulti2','ZMulti2',...
82 'CovBMulti2','Censor','YearsInRating','FSet');
83 end
84 end
85 for CR=1:6
86 load(strcat('Databases\', MTComp,'BestSubsetCoefficients',...
87 num2str(CR+3),'.mat'),...
88 'BetaMulti2','BestCombination','HR2','PMulti2','HRLB','HRUB');
89 TB(BestCombination,CR)=BetaMulti2;
90 THR(BestCombination,CR)=HR2;
91 TP(BestCombination,CR)=PMulti2;
92 THRLB(BestCombination,CR)=HRLB;
93 THRUB(BestCombination,CR)=HRUB;
94 if CR==1
95 Factors=BestCombination;
96 else
97 Factors=[Factors,BestCombination];
98 end
99 clear Censor

100 end
101 Factors=unique(Factors);
102 FactorNames={'StateSystem',...
103 'Reconstruction' ,...
104 'Piedmont' ,...
105 'Mountain' ,...
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106 'MonolithicConcrete',...
107 'IntegralConcrete' ,...
108 'LatexConcrete' ,...
109 'LowSlumpConcrete' ,...
110 'EpoxyOverlay' ,...
111 'Bituminous' ,...
112 'Timber' ,...
113 'Gravel' ,...
114 'Other' ,...
115 'RPrincipalArterial',...
116 'RMinorArterial' ,...
117 'RMajorCollector' ,...
118 'RMinorCollector' ,...
119 'RLocal' ,...
120 'UInterstate' ,...
121 'UFreeway' ,...
122 'UPrincipalArterial',...
123 'UMinorArterial' ,...
124 'UCollector' ,...
125 'ULocal' ,...
126 'ADT2' ,...
127 'ADT3' ,...
128 'ADT4' ,...
129 'ADTT2' ,...
130 'ADTT3' ,...
131 'ADTT4' ,...
132 'MaxSpan2' ,...
133 'MaxSpan3' ,...
134 'NumberSpans' ,...
135 'Age2' ,...
136 'Age3' ,...
137 'Age4'}
138

139 TB=TB(Factors,:);
140 TP=TP(Factors,:);
141 THR=THR(Factors,:);
142 THRLB=THRLB(Factors,:);
143 THRUB=THRUB(Factors,:);
144 I=find(THR==0);
145 THR(I)=1;
146 TFactor=FactorNames(Factors)';
147 save(strcat('Databases\',MTComp,'BestSubsetCoefficients'),'TB','TP',...
148 'THR','THRLB','THRUB','TFactor')
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APPENDIX G: MULTICOLLINEARITY CHECK VIF CODE

1 function [MVIF]=FnVIF(MTComp)
2 % FnVIF performs the multicollinearity check by calculating the Variance
3 % Inflation Factor (VIF) for the final PHM model. It provides a warning if
4 % VIF exceeds the threshold value of 10 for any two covariates, and also
5 % provides a summary of the maximum VIF values obtained for the best subsets
6 % at all condition ratings for a particular material specific bridge
7 % component (MTComp.
8

9 Ratings=4:9
10 for CR=1:length(Ratings)
11 load(strcat('Databases\',MTComp,'BestSubsetCoefficients',...
12 num2str(Ratings(CR))));
13 X2=XBest;
14 if ~isempty(X2)
15 rsq=zeros(length(X2(:,1)),length(X2(:,1)));
16 for k=1:length(X2(:,1))
17 for j=1:length(X2(:,1))
18 x=X2(k,:);
19 y=X2(j,:);
20 I1=isnan(x);
21 I2=isnan(y);
22 x=x(~(I1 |I2));
23 y=y(~(I1 |I2));
24 p = polyfit(x,y,1);
25 yfit = polyval(p,x);
26 yresid = y - yfit;
27 SSresid = sum(yresid.ˆ2);
28 SStotal = (length(y)-1) * var(y);
29 rsq(k,j) = 1 - SSresid/SStotal;
30 end
31 end
32 Tols=rsq>0.9;
33 NI=length(Tols(:,1));
34 for k=1:NI
35 if sum(Tols(setdiff(1:k-1,k),k)==1)>0
36 Ind=find(Tols(setdiff(1:k-1,k),k)==1);
37 [k,Ind']
38 warndlg(strcat('WARNING: VIF > 10, Collinearity detected between',...
39 num2str(BestCombination(k)),' and ',...
40 num2str(BestCombination(Ind')),' in Condition Rating ',...
41 num2str(Ratings(CR))),'Multicollinearity Check Violation');
42 end
43 end
44 rsq
45 rsq=rsq-diag(ones(length(rsq(:,1)),1));
46 MVIF(CR)=max(max(rsq));
47 MVIF(CR)=1./(1-MVIF(CR));
48 clear XBest BestCombination
49 else MVIF(CR)=1;
50

51 end
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52 end
53 warndlg(['Maximum VIF for Each Rating: ',num2str(MVIF)],...
54 'Multicollinearity Check Summary')
55 save(strcat('Databases\',MTComp,'MaxVIF'),'MVIF');
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APPENDIX H: TRANSITION PROBABILITIES CODE

1 function [SSTP,TP,SP,RSP]=FnTransitionProbability(MTComp)
2 %**************************************************************************
3 % FnTransitionProbability calculates the non-stationary transition
4 % probabilities associated with changes in condition ratings due to
5 % deterioration based on the PHM survival function for baseline assignment
6 % of covariates. The code accounts for the step nature of the survival
7 % function by assigning the maximum survival probability recorded at any
8 % year to that year, and by linear interpolation of survival probabilities
9 % for step intervals spanning multiple years.

10 %**************************************************************************
11 foldername=strcat('Databases 12112014NBI\',MTComp);
12 Ratings=4:9
13

14 for k=1:length(Ratings) % condition rating = k+3
15 load(strcat('Databases 12112014NBI\',MTComp,'BestSubsetCoefficients',...
16 num2str(Ratings(k))));
17 clearvars -except SMulti2 Ratings foldername MTComp k
18 SP=[]; % Survival probability
19

20 for i=1:max(SMulti2(:,1)) % years
21 Ind1=find(SMulti2(:,1)==i);
22 SP=[SP;SMulti2((min(Ind1)),:)];
23 end
24

25 for r=1:SP(1,1)
26 RSP(r,1)=1
27 end
28

29 for j=2:length(SP(:,1))
30 mx=SP(j,1)-SP(j-1,1);
31 my=(SP(j,2)-SP(j-1,2))/mx;
32 if SP(j,1)==j
33 r=j;
34 else
35 r=SP(j-1,1)+1;
36 end
37

38 RSP(r,1)=RSP(r-1,1)+my;
39 if mx>2
40 for n=1:mx-2
41 RSP(r+n,1)=RSP(r+n-1,1)+my;
42 end
43 elseif mx==2
44 n=0;
45 else
46 n=[];
47 end
48 RSP(r+n+1,1)=SP(j,2);
49

50 end
51



250

52 SSTP=[1]; % Stay the the same transition probability at condition
53 % rating k+3, at year 0
54 for j=1:length(RSP)-1
55 SSTP=[SSTP,RSP(j+1,1)/RSP(j,1)];
56 TP=1-SSTP; % Transition probability of rating k+3 of deteriorating
57 % to rating(k+3)-1
58 end
59 figure(k+6)
60 x=0:length(RSP)-1;
61

62 plot (x,SSTP,'b--',x, TP,'r-','LineWidth',1.5)
63 set(gca,'FontSize',16,'color','w','XColor','k','YColor','k');
64 set(gca,'XLim',[0,30]);
65 set(gca,'YLim',[0,1]);
66 title(strcat({'Condition Rating '},num2str(Ratings(k))),'FontSize',20)
67 xlabel('Years in Rating','FontSize',20)
68 ylabel('Transition Probability','FontSize',20)
69 legend(['P ',num2str(k+3),' ',num2str(k+3)],['P ',num2str(k+3),' ',...
70 num2str(k+2)],'FontSize',20,'Location','best')
71 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
72 'Transition Probabilities at CR',num2str(Ratings(k))))
73 save(strcat('Databases 12112014NBI\',MTComp,'\',MTComp,...
74 'TransitionProbabilities',num2str(Ratings(k))),'SSTP','TP','SP','RSP');
75 end
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APPENDIX I: PHM DETERIORATION PREDICTION CODE

1 function [P,S,Prob,CRM,PCR,PMean]=FnDeterioration(MTComp,Plan,S0)
2 %**************************************************************************
3 % FnDeterioration assembles the non-stationary transition probability matrices
4 % as well as the stationary transition probability matrices based on
5 % calculated mean transition probabilities over the length of the survival
6 % function. The code also plots the condition rating probabilities and
7 % baseline deterioration models for both the stationary and non-stationary
8 % transition probability approaches.
9 %**************************************************************************

10 foldername=strcat('Databases 12112014NBI\',MTComp);
11 Ratings=4:9
12 for k=1:length(Ratings)
13 load(strcat('Databases\',MTComp,'TransitionProbabilities',...
14 num2str(Ratings(k))));
15 plan(1,k)=length(SSTP)
16 RSSTP{k}=SSTP;
17 MeanSSTP{k}=mean(SSTP(2:end))
18 end
19

20 % Diagonal and Off diagonal transition probabilities - non-stationary
21 for j=1:Plan-1
22 PDiag{j}=[];
23 POffDiag{j}=[];
24 for k=6:-1:1
25 if j< plan(1,k)
26 PDiag{j}=[PDiag{j},RSSTP{1,k}(1,j+1)];
27 POffDiag{j}=[POffDiag{j},1-RSSTP{1,k}(1,j+1)];
28 else
29 PDiag{j}=[PDiag{j},RSSTP{1,k}(1,plan(1,k))];
30 POffDiag{j}=[POffDiag{j},1-RSSTP{1,k}(1,plan(1,k))];
31 end
32 end
33 end
34

35 % Mean transition probabilities over length of observation - stationary
36 PDiagMean=[];
37 POffDiagMean=[];
38 for k=6:-1:1
39 PDiagMean=[PDiagMean,MeanSSTP{1,k}];
40 POffDiagMean=[POffDiagMean,1-MeanSSTP{1,k}];
41 end
42

43 % Transition probability matrices - non-stationary
44 for j=1:Plan-1
45 P{j}=diag([PDiag{j} 0.75 0.75 1])+ diag([POffDiag{j} 0.25 0.25],1);
46 end
47

48 % Mean transition probability matrix - stationary
49 PMean=diag([PDiagMean 0.75 0.75 1])+ diag([POffDiagMean 0.25 0.25],1);
50

51 % Baseline deterioration model from non-stationary transition probabilities
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52 CRM=[9; 8; 7; 6; 5; 4; 3; 2; 1]
53 for j=1:length(P)
54 if j==1
55 S{j}=S0*P{j};
56 else
57 S{j}=S{j-1}*P{j};
58 end
59 Prob(:,j)=S{j};
60 PCR(j)=S{j}*CRM; %Predicted CR at year j
61 end
62 x=1:length(P);
63

64 figure(13)
65 plot(x,Prob(1:6,:)','LineWidth',1)
66 legend('CR9','CR8','CR7','CR6','CR5','CR4','location','best')
67 xlabel('Time (Years)','FontSize',12)
68 ylabel('Probability of Condition Rating','FontSize',12)
69 set(gca,'FontSize',12)
70 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
71 'PHM Non-stationary BL-Probability of CR PH',num2str(Plan)));
72

73 figure(14)
74 x=1:length(P);
75 plot(x,PCR)
76 set(gca,'YLim',[4,9]);
77 xlabel('Time (Years)','FontSize',12)
78 ylabel('Expected Condition Rating','FontSize',12)
79 set(gca,'FontSize',12)
80 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
81 'PHM Non-stationary BL-Expected CR PH',num2str(Plan)))
82

83 save(strcat('Databases\',MTComp,'TransitionMatricesPH',num2str(Plan),...
84 'Ratings',num2str(Ratings)),'PDiag','POffDiag','P','S','Prob','CRM','PCR');
85

86 % Baseline deterioration model from mean stationary transition probabilities
87 CRM=[9; 8; 7; 6; 5; 4; 3; 2; 1]
88 for j=1:Plan-1
89 if j==1
90 S1{j}=S0*PMean;
91 else
92 S1{j}=S1{j-1}*PMean;
93 end
94 Prob1(:,j)=S1{j};
95 PCR1(j)=S1{j}*CRM; %Predicted CR at year j
96 end
97 x=1:Plan-1;
98

99 figure(15)
100 plot(x,Prob1(1:6,:)','LineWidth',1)
101 legend('CR9','CR8','CR7','CR6','CR5','CR4','location','best')
102 xlabel('Time (Years)','FontSize',12)
103 ylabel('Probability of Condition Rating','FontSize',12)
104 set(gca,'FontSize',12)
105 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
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106 'PHM Stationary BL-Probability of CR PH',num2str(Plan)));
107

108 figure(16)
109 x=1:Plan-1;
110 plot(x,PCR1)
111 set(gca,'YLim',[4,9]);
112 xlabel('Time (Years)','FontSize',12)
113 ylabel('Expected Condition Rating','FontSize',12)
114 set(gca,'FontSize',12)
115 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
116 'PHM Stationary BL-Expected CR PH',num2str(Plan)))
117

118 save(strcat('Databases\',MTComp,'TransitionMatricesPH',num2str(Plan),...
119 'Ratings',num2str(Ratings)),'PDiag','POffDiag','P','S','Prob','CRM','PCR',...
120 'PDiagMean','POffDiagMean','PMean','S1','Prob1','PCR1');
121

122 figure(17)
123 x=1:Plan-1;
124 plot(x,PCR,'-',x,PCR1,'--')
125 set(gca,'YLim',[4,9]);
126 % set(gca,'YLim',[1,9]);
127 xlabel('Time (Years)','FontSize',12)
128 ylabel('Expected Condition Rating','FontSize',12)
129 legend('Non-Stationary','Stationary')
130 set(gca,'FontSize',12)
131 print('-dpdf','-r600',strcat(cd,'\',foldername,'\',...
132 'PHM Non-Stationary vs. Stationary BL-Expected CR PH',num2str(Plan)))


