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ABSTRACT 

  

YASUNORI FURUKAWA. Freeform measurement with stitching Talbot interferometer. 

(Under the direction of DR. ANGELA DAVIES)  

 

Freeform optics are being used in many fields to realize the outstanding 

performance due to their high degree of freedom. To realize sufficiently high performance, 

it is necessary to manufacture the freeform surface with high accuracy, which requires a 

high accurate measurement of the freeform surface. Several methods to measure the 

freeform surface have been suggested. However, they are time-consuming, expensive or 

their dynamic range is limited. Therefore, we propose a new system that realizes high 

dynamic range and rapid freeform measurements of freeform surfaces using a combination 

of the Talbot interferometer and the stitching technique. In this thesis, we introduced the 

theory and simulation of the Talbot interferometer, and verified that the large reflected 

wavefront from a freeform (50 µmPV) can be retrieved from the Talbot image. For the 

stitching, we introduce the algorithm and confirm by simulation that alignment errors of 

the surface under test can be estimated and reduced. In addition, we estimate the 

measurement error of both the Talbot interferometer and stitching. In the experiment, the 

Talbot interferometer was assembled using Fizeau interferometer and a displacement 

sensor. Furthermore, we suggest a way to assemble the optical system for freeform surface 

measurement. 
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1. Introduction 
 

1.1. Freeform optics 

Freeform optics are optical parts composed of a surface or surfaces that lack 

translational or rotational symmetry. Compared with spherical or aspherical optics, 

freeform optics offer more design degrees of freedom [1], and this enables reduced system 

size [2], low aberration, increased field of view and larger spectral bandwidth. However, 

since it is difficult to design, manufacture and measure a freeform surface, they are not yet 

commonly incorporated into optical designs. In recent years, with advances in computing 

and fabrication [3], freeform optics are being used in various advanced optical products 

such as head mount displays [4], laser printers [5], astronomy-based system [6] and 

extreme-ultraviolet (EUV) lithography [7].  

The Alvarez lens [8] [9]is an example of freeform optics. Its surface is the so-

called ’monkey saddle’ and can be expressed by 

 𝑧(𝑥, 𝑦) = 𝐴 ቀ
ଵ

ଷ
𝑥ଷ + 𝑥𝑦ଶቁ, (1) 

where (x, y) denote Cartesian coordinates in the plane, and A is the coefficient whose unit 

is mm-2. Figure 1 shows the Alvarez lens surface when the coefficient A is 0.0012 mm-2, 

and the aperture size is 10 mm. 

Figure 1 Alvarez lens surface. 

Z [mm]

X [mm]Y [mm]
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The Alvarez lens is normally used in pairs as is shown in Figure 2. 

 

 

 

 
Figure 2 Cross-section illustrations of the Alvarez lens.  

(a) with no offset and (b) lateral displacement. 

With a lateral shift of the Alvarez lens by x0 in the x-direction, the surface geometry is 

expressed by 

𝒛(𝒙 − 𝒙𝟎, 𝒚) = 𝑨 ൜
𝟏

𝟑
(𝒙 − 𝒙𝟎)𝟑 + (𝒙 − 𝒙𝟎)𝒚𝟐ൠ 

 = 𝑧(𝑥, 𝑦) − 𝐴𝑥଴(𝑥ଶ + 𝑦ଶ) + 𝐴𝑥଴
ଶ ቀ𝑥 −

ଵ

ଷ
𝑥଴ቁ. (2) 

The first term of Equation (2) is the same as the Alvarez lens without shifting. The second 

term is a spherical component. The third term shows tilt and piston. Therefore, when a 

wavefront passes through two sheared Alvarez lenses, the optical path impact leads to a 

change in the wavefront curvature by having a lateral relative shift between the two Alvarez 

surfaces in the x-direction. This means the Alvarez lens can control the focus distance with 

a compact overall physical system size. For this reason, the Alvarez lens is used for glasses 

[10]. 

The Alvarez lens surface cannot be measured by a conventional interferometer 

because of the extreme deviation from a sphere or a plain surface, and the corresponding 

steep slopes. Therefore, we chose the measurement of an Alvarez lens to define 

measurement specifications of the measurement system proposed in this thesis.  

 

1.2. Freeform surface metrology 

The quality of any optical surface effects performance, therefore measuring the 

surface is one of the most important steps in the manufacturing process. However, 

(b)(a)
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compared with spherical and aspherical surfaces, which are used in conventional products 

and relatively easy to measure, it is much more difficult to measure a freeform surface. 

Therefore, the measurement of freeform surfaces is still very challenging. Several methods 

have been introduced for measuring freeform surfaces.  

 

1.2.1. Profilometer 

A profilometer is widely used to measure the freeform surface. In particular, the 

Talysurf series [11], an Ultrahigh accurate 3-D profilometer (UA3P) [12], and MahrSurf 

[13] are commonly used in industry. The profilometer uses the stylus to drag along the test 

surface and measures its deflection. The profilometer can measure almost arbitrary surface 

with high spatial resolution because the height of the surface is measured point by point. 

However, measurement time is long, and the stylus often damages the test surface. 

 

1.2.2. CGH interferometer 

In a CGH (computer generated hologram) interferometer [14], a CGH is inserted 

behind the transmission sphere to form a specified wavefront to match the freeform surface. 

Since the incident ray and reflected ray from the test surface are almost normal to the test 

surface, the wavefront on the detector is almost flat, and the fringe density is not high, 

which realizes a high accuracy measurement. In addition, the measurement time is short. 

However, the CGH must be designed and fabricated for each specific freeform surface. It 

is time-consuming, and the cost is high. Moreover, it is sensitive to alignment errors of the 

CGH and of the test sample [15]. 

1.2.3. Deflectometry 

A deflectometry uses structured light and measures the slope profile of the test 

surface by detecting the distortion of a pattern (often a sinusoidal pattern) reflected from 

the test surface. As examples of the deflectometry, the technique known as Software 

Configurable Optical Test System (SCOTS) [16] [17] was developed at the University of 
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Arizona, and Phase Measuring Deflectometry (PMD) [18] was developed at the University 

of Erlangen-Nuremberg. Deflectometry has a relatively high dynamic range, but the 

measurement accuracy is not high. In addition, it requires calibration of the projection 

screen and, camera, in addition to a geometric calibration of the entire system for 

improving the accuracy. 

  

1.2.4. Shearing interferometer 

In a shearing interferometer [19], the test wavefront is divided by a beam splitter, 

shear plate or grating [20], and an interferogram is formed by overlapping the wavefront 

with a small laterally-shifted duplicate of itself. The interferogram is thus a measure of the 

sheared wavefront. In this way, the interference signal is self-referencing and therefore a 

shearing interferometer does not require a reference wavefront as in conventional 

interferometry. Also, it has a large dynamic range due to a low fringe density. Therefore, 

shearing interferometry is used extensively in diverse applications such as inspection of a 

beam wavefront [21], testing of optical components and systems [22], the beam collimation 

check [23] [24] [25] and the study of flow and diffusion phenomena in gases [26]. Low 

spatial resolution is one drawback compared to conventional interferometry, and 2-

dimensional integration is necessary, which is sensitive to random noise such as CCD 

(charge-coupled device) noise [27]. In addition, when the tilt of a wavefront is to be 

measured, the tilt leads to a piston component of the retrieved sheared wavefront, which is 

equivalent to the lateral shift of the whole grating in the grating implementation of a 

shearing interferometer. Therefore, in the case of applying the FT method (discussed in 

Chapter 3.3.1) to retrieve the tilt in the incident wavefront, drift of the grating must be 

considered. Also, in the case of using the phase shift method described in Chapter 3.3.2, 

prominent position repeatability of the grating is required to measure the tilt in the 

wavefront.  
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1.2.5. Stitching interferometer 

In conventional interferometry, it is difficult to measure a large test surface 

because optics in the interferometer must be similarly large. In addition, it is difficult to 

measure a surface with a large deviation from a flat or spherical surface because the fringe 

density becomes too high to detect. To overcome these limitations, in stitching 

interferometry [28] [29] [30] [31], sub-aperture measurements are taken and the test sample 

is translated and tilted between measurements, usually with a common overlap region 

between adjacent measurements. The measurements are then connected (stitched together) 

by estimating and eliminating alignment errors of the test sample from the difference in the 

overlap area of the measurements. Thus, this method can measure large sized flat [32] or 

spherical surfaces [33]. However, if we measure the test surface whose deviation from a 

flat or sphere is large with a stitching interferometer, the sub-apertures must be small, 

meaning the number of measurements must be large. A large number of measurements 

increase measurement time and usually measurement error, effectively reducing the 

dynamic range. The uncertainty in the data for the overlap regions is reduced by averaging, 

but there is an added uncertainty related to the estimation of the alignment error of the test 

sample.  

  

1.2.6. Tilted wave interferometer 

The tilted wave interferometer (TWI) [34] has been discussed in the literature over 

the last few years. The TWI is a Twyman–Green interferometer with a two-dimensional 

extended source. An extended source is well modeled as a collection of incoherent point 

sources over an array in a plane perpendicular to the optical axis. The light from each point 

source gives rise to a tilted wavefront incident to the test surface. The TWI measures only 

rays which pass through the beam stop in the Fourier plane of the imaging optics to limit 

the fringe density. In other words, the TWI measures only the beam reflecting from the test 

surface which shows no tilt with respect to the reference. The measurement is rapid; 
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however, the dynamic range is limited by a maximum slope and maximum aperture size of 

the test surface. In addition, calibration of the TWI is very difficult and requires careful 

consideration of retrace errors, which occurs when the optical path of the incident ray and 

reflected ray from the test surface become significantly different [35] [36].  

 

1.3. Motivation 

Compared with these methods, our system provides rapid and flexible (high 

dynamic range) freeform measurements. Our method is a combination of the Talbot 

interferometry and the stitching technique. A Talbot interferometer is a type of shearing 

interferometer that consists of only a grating and a CCD and is thus particularly compact. 

The small aperture of our Talbot interferometer and its shearing-based principal mean that 

local measurements can be made of relatively extreme freeform surfaces. Our instrument 

combines this advantage with stitching to enable full measurements of large extreme 

freeform optics. In addition, the compact size of our instrument is compatible with on-

machine metrology and this is highly desirable for freeform surface fabrication where the 

loss of coordinate system registration with removal of the part is particularly detrimental. 

The stitching aspect adds two important capabilities. First, a maximum measurable 

wavefront gradient when restricted to a sub-aperture region means larger freeforms with 

more extreme gradients can be measured. Second, high spatial resolution measurements of 

large freeforms are possible with a small sensor and a small optical system.   

As shown in Figure 3, our measurement system is characterized by high accuracy 

and high dynamic range for large components. In addition, the instrument is low cost, 

compact, non-contact, and relatively easy to calibrate and characterize. Therefore, our 

system is an important contribution to the field of freeform surface metrology. 
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Figure 3 Specification about dynamic range and accuracy. 

 

1.4. Thesis overview 

This thesis consists of seven Chapters. Chapter 2 describes the principle of our 

measurement system. Chapter 3 describes the theory, sheared wavefront retrieval 

methodology, specification, and simulation of the Talbot interferometer. Chapter 4 

describes the principle and simulation of the stitching technique. Chapter 5 describes the 

uncertainty estimation of the Talbot interferometer, and the stitching process by simulation 

with the mathematical software, MATLAB®. The retrace error is also investigated using an 

optical design software, Zemax. Chapter 6 describes the assembly and alignment of both 

the Talbot interferometer and the full optical system. Finally, conclusions and future works 

are given in Chapter 7. 
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2. Freeform measurement system 
 

2.1. Principle 

The schematic of the freeform measurement system is shown in Figure 4. The 

light source is a He-Ne laser whose wavelength is 632.8 nm. A collimated beam is formed 

by a collimator lens which is then transferred to the test surface by two relay lenses. The 

beam reflected from the test surface passes back through the relay lens pair and is imaged 

onto the Talbot interferometer [37]. Here, the test surface and the Talbot interferometer are 

conjugates of each other by the two relay lenses. The Talbot interferometer is a wavefront 

measurement device which consists of a cross grating and an image detector array such as 

a charge-coupled device (CCD). The wavefront can be calculated from the distortion of the 

self-image which occurs at constant Talbot distances from the grating. Since the sheared 

wavefront is detected, the Talbot interferometer can measure a more steeply sloped 

wavefront than a Fizeau interferometer. However, measuring the whole test surface in one-

shot is not possible for freeforms with large slope variation because very large wavefront 

gradients lead to dense fringes that become unresolvable on the sensor. Therefore, small 

local areas of the test surface are measured with motion between the sampled areas realized 

with a 5-axis stage. When the test sample is moved to a new area, it is adjusted with 

potentially all 5-axes of the stage so that the wavefront gradients on the Talbot 

interferometer are as small as possible. The sub-aperture slope profile of the test surface at 

each location is obtained by reverse raytracing with the measured wavefront. In reverse 

raytracing, ray tracing is performed from the Talbot interferometer to the test surface using 

design values and calibration values of the optical system, and the ray coordinates and the 

ray angle or wavefront on the test surface are calculated. The sub-aperture shape is 

calculated by integrating the sub-aperture slope profile two-dimensionally. Finally, the full 

aperture test shape profile is obtained by connecting the multiple sub-aperture 

measurements by estimating and removing the alignment degrees of freedom between sub-
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aperture measurements. 

 

 

 

 

 

 

Figure 4 The schematic diagram of the freeform measurement. 

 

2.2. Measurement procedure 

The measurement procedure is shown in Figure 5. The steps are the following: 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Measurement flow. 
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each sub-aperture measurement. The detail is described in Chapter 4.2 
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Move the test sample with the 5-axis stage following the sub-aperture measurement 

layout. For each sub-aperture measurement, tip and tilt the test sample so that the 

difference between the measured wavefront and the nominal expected wavefront 

(based on ideal surface shape) becomes minimal.  

3. Measure the wavefront 

Measure the wavefront of the beam reflected from the test surface with the Talbot 

interferometer. The detail is described in Chapter 3. 

4. Measure the whole surface? 

If all sub-apertures have been measured, proceed to the next step. If not, go back to step 

2. 

5. Reverse raytrace 

Reverse raytrace from the Talbot interferometer to test surface is carried out with the 

measured wavefront and the optical design of the measurement system using an optical 

design software package (Zemax), obtaining the ray coordinate and slope on the test 

sample. 

6. Two-dimensional integration 

At this point, the measured data is the surface slope profile. The shape profile is 

calculated by 2-dimensional integration. The detail is described in Chapter 3.4. 

7. Stitching 

The whole test surface is obtained by stitching together the sub-aperture measurements 

with removal of the alignment degrees of freedom in each measurement. Details are 

described in Chapter 4.  
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Talbot distance

Grating

Detector

3. Talbot interferometer 
 

3.1. Background 

A Talbot interferometer is one kind of shearing interferometers. As is shown in 

Figure 6, it is composed of a grating and a photo detector such as a charge-coupled device 

(CCD). The incoming wavefront is divided mainly into the 0 and ±1st order diffraction 

beams by the grating, and they form an interferogram on a detector array positioned in the 

space beyond the grating. In particular, the self-image of the grating occurs at regular 

distances called the Talbot distance or the Talbot length behind the grating, which is called 

the Talbot effect [38]. If the incoming wave has aberration, the image is distorted from an 

exact grating pattern. Therefore, we can obtain the wavefront aberration by analyzing the 

distortion of the image. Compared with other shearing interferometers, the Talbot 

interferometer is compact, and therefore suitable for sub-aperature measurements of 

extreme wavefronts with large slopes.  

 

 

 

 

 

 

Figure 6 Talbot interferometer. 

 

3.2. Principle 

There are three ways to explain the Talbot interferometer: Fresnel approximation 

theory, angular spectrum propagation, and five beams interference model. The Fresnel 

approximation theory is the simplest way of theoretically understanding the Talbot 

phenomenon. The angular spectrum propagation calculation is not approximate; therefore 
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it is useful for accurate simulation. However, it requires a lot of computational memory. 

The five beams interference model is approximate and neglects higher order diffraction 

effects. Since it is not computationally challenging, it is suitable for simulating the 2-

dimensional Talbot image. The details of the three theories are discussed below. 

   

3.2.1. Fresnel approximation theory 

For simplicity, we assume that the grating has a cosine amplitude transmittance 

characteristic with pitch p in the horizontal direction. Assuming the lateral coordinates on 

the grating are ξ, η, the amplitude transmittance t0 is expressed by 

 𝑡଴(𝜉, 𝜂) =
ଵ

ଶ
ቂ1 + 𝑚𝑐𝑜𝑠 ቀ

ଶగ

௣
𝜉ቁቃ, (3) 

where m indicates contrast. According to the Fresnel approximation theory [38], the 

electric field E which propagates distance L is calculated by 

𝐸(𝑥, 𝑦) =
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
න 𝑡଴(𝜉, 𝜂)𝑒𝑥𝑝 ቄ𝑖

𝜋

𝜆𝐿
[(𝑥 − 𝜉)ଶ + (𝑦 − 𝜂)ଶ]ቅ 𝑑𝜉𝑑𝜂 

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
𝑡଴(𝜉, 𝜂)⨂𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃ 

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵℱ ቄ𝑡଴(𝜉, 𝜂)⨂𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃቅ 

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵ ቄℱ൫𝑡଴(𝜉, 𝜂)൯ℱ ቀ𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃቁቅ 

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵ ൜൤

1

2
𝛿൫𝑓௫ , 𝑓௬൯ +

1

4
𝑚𝛿 ൬𝑓௫ −

1

𝑝
, 𝑓௬൰

+
1

4
𝑚𝛿 ൬𝑓௫ +

1

𝑝
, 𝑓௬൰൨ 𝑖

𝜆𝐿

𝜋
𝑒𝑥𝑝ൣ−𝑖𝜋𝜆𝐿൫𝑓௫

ଶ + 𝑓௬
ଶ൯൧ൠ 

=
1

𝜋
𝑒

௜
ଶగ
ఒ

௅
൤
1

2
+

1

4
𝑚𝑒𝑥𝑝 ൬

−𝑖𝜋𝜆𝐿

𝑝ଶ
൰ 𝑒𝑥𝑝 ൬

𝑖2𝜋𝑥

𝑝
൰ +

1

4
𝑚𝑒𝑥𝑝 ൬

−𝑖𝜋𝜆𝐿

𝑝ଶ
൰ 𝑒𝑥𝑝 ൬

−𝑖2𝜋𝑥

𝑝
൰൨ 
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 =
ଵ

ଶగ
𝑒௜

మഏ

ഊ
௅ ቄቂ1 + 𝑚𝑒𝑥𝑝 ቀ

ି௜గఒ௅

௣మ
ቁ 𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁቃቅ, (4) 

where λ is the wavelength, fx, fy are coordinates of the Fourier domain, 𝓕 is the Fourier 

transform operator, 𝓕ି𝟏  is the inverse Fourier transform operator, ⨂  expresses 

convolution. The irradiance is expressed by  

𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 + 2𝑚𝑐𝑜𝑠 ቀ
గఒ௅

௣మ
ቁ 𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁ + 𝑚ଶ𝑐𝑜𝑠ଶ ቀ

ଶగ௫

௣
ቁቃ.  (5) 

When the distance L is 2𝑛𝑝ଶ 𝜆⁄  (n = 1,2,3 ...), the irradiance is expressed by 

 𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 + 𝑚𝑐𝑜𝑠 ቀ
ଶగ௫

௣
ቁቃ

ଶ

. (6) 

Equation (6) shows the self-image of the grating. When the distance L is (2𝑛 − 1)𝑝ଶ 𝜆⁄  

(n = 1,2,3 ...), the intensity is expressed by 

 𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 − 𝑚𝑐𝑜𝑠 ቀ
ଶగ௫

௣
ቁቃ

ଶ

. (7) 

Equation (7) shows the reversed self-image of the grating. As mentioned above, the 

phenomena by which the self-image appears at a constant interval is called the Talbot effect. 

In addition, since any transmittance functions are a linear combination of harmonic 

functions, the Talbot distance does not depend on the spatial frequency of the transmittance 

function. 

 

3.2.2. Angular spectrum propagation 

       When we know the electric field E(x,y,0) at z = 0, we can calculate the electric 

field E(x,y,z) at any z without approximation by the angular spectrum propagation [39]. 

The theory is described below. 

       Using the Fourier transform, the electric field E(x,y,z) is expressed by 

         𝐸(𝑥, 𝑦, 𝑧) = ∬ Γ൫𝑓௫ , 𝑓௬; 𝑧൯𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑓௫𝑑𝑓௬ . (8) 

where fx, fy are coordinates in the Fourier domain, Γ is a Fourier component of the electric 

field E. The electric field E must satisfy the Helmholtz equation, 



14 
 

 ∇ଶ𝐸 + kଶ𝐸 = 0.                                (9) 

Substituting Equation (8) into Equation (9), we obtain 

            
డమ୻൫௙ೣ ,௙೤;௭൯

డ௭మ
+ ቄkଶ − (2𝜋𝑓௫)ଶ − ൫2𝜋𝑓௬൯

ଶ
ቅ Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = 0. (10) 

When 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

< 0 , Γ which satisfies Equation (10) can be written in the 

form 

              Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ−𝑘𝑧ට(𝜆𝑓௫)ଶ + ൫𝜆𝑓௬൯
ଶ

− 1቉. (11) 

Equation (11) indicates that Γ decays exponentially in the z direction, and this is called the 

evanescent field. When 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

> 0, Γ can be written in the form 

             Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉. (12) 

𝜞൫𝒇𝒙, 𝒇𝒚; 𝟎൯ is expressed by 

             Γ൫𝑓௫ , 𝑓௬; 0൯ = ∬ E(𝑥, 𝑦; 0)𝑒𝑥𝑝ൣ𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑥𝑑𝑦.       (13) 

Therefore, substituting Equations (12) - (13) into Equation (8), the electric field E is 

calculated by 

𝐸(𝑥, 𝑦, 𝑧) = ඵ Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ 𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥

+ 𝑓௬𝑦൯൧ 𝑑𝑓௫𝑑𝑓௬ 

= ඵ ඵ 𝐸(𝑥, 𝑦, 0)𝑒𝑥𝑝ൣ𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑥𝑑𝑦 

       𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ 𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧𝑑𝑓௫𝑑𝑓௬ .     (14) 

Equation (14) shows that the electric field E(x,y,z) can be calculated by Fourier 

transforming E(x,y,0), multiplying by 𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉  and inverse 

Fourier transforming.  

       We assume that the light comes to the CCD through the grating. The electric field 

E0 on the grating is expressed by 

              𝐸଴(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑡(𝑥, 𝑦)𝑒𝑥𝑝[𝑖𝑘𝑊(𝑥, 𝑦)],               (15) 

where A is the amplitude of the light, t is the transmittance of the grating, k is a wavenumber, 

and W is the wavefront of the light. According to Equation (14), the electric field on the 
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plane of distance L from the grating is written as  

      𝐸(𝑥, 𝑦, 𝐿) = ℱିଵ ቊℱ൫𝐸଴(𝑥, 𝑦)൯𝑒𝑥𝑝 ቈ−𝑖𝑘𝐿ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ቋ, (16) 

In Equation (16), the expression inside the square root is physically meaningful for positive 

values. A negative value, meaning  

 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

< 0. (17) 

leads to an amplitude that grows exponentially and this is not physical. Therefore, the value 

which satisfies Equation (17) must be zero for simulation before the inverse Fourier 

transform is calculated. When the distance L is long, a lot of computational memory is 

necessary because the exponential term changes quickly with the Fourier domain 

coordinates fx, fy, and high-density sampling is required to capture this detail. Otherwise, 

an error due to aliasing occurs in the calculation result. The irradiance I on the plane of L 

distance from the grating is calculated by  

𝐼(𝑥, 𝑦, 𝐿) = |𝐸(𝑥, 𝑦, 𝐿)|ଶ. (18) 

 

3.2.3. Five beams interference model  

Talbot effect using a cross grating can be calculated from the interference of five- 

beam (0, ±1 in the x-direction, ±1 in the y-direction order diffraction beams). As first order 

diffraction beams are added to a linear phase ∓2πx/p or ∓2πy/p, the electric fields of 0, ±1 

order diffraction beams are respectively expressed by  

 𝐸଴(𝑥, 𝑦) = 𝐴଴𝑒𝑥𝑝 ൫𝑖𝑘𝑊(𝑥, 𝑦)൯, (19) 

𝐸ଵ,଴,௝ೣ
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥 − 𝑎, 𝑦) +

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗௫ቁቅቃ,  (20) 

𝐸ିଵ,଴,௝ೣ
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥 + 𝑎, 𝑦) −

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗௫ቁቅቃ, (21) 

𝐸଴,ଵ,௝೤
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥, 𝑦 − 𝑎) +

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗௬ቁቅቃ, (22) 

𝐸଴,ିଵ,௝೤
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥, 𝑦 + 𝑎) −

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗௬ቁቅቃ, (23) 
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where jx, jy is an integer which indicates the phase step in the x-direction and y-direction, 

respectively, A0, and A1 are the amplitudes of the 0 and ±1st order diffracted beams, 

respectively, k is the wave number, W is the wavefront, a is the amount of shear, p is the 

pitch of the grating, N is the number of phase shift. Referring to Appendix A, the irradiance 

of the five-beam interference is expressed by 

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = ห𝐸଴(𝑥, 𝑦) + 𝐸ଵ,଴,௝ೣ

(𝑥, 𝑦) + 𝐸ିଵ,଴,௝ೣ
(𝑥, 𝑦) + 𝐸଴,ଵ,௝ೣ

(𝑥, 𝑦) + 𝐸଴,ିଵ,௝ೣ
(𝑥, 𝑦)ห

ଶ
 

= 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௫(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௫൨ + 4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௬(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௬൨

+ 2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௫ൠ൨ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௬ൠ൨ 

+8𝐴ଵ
ଶ𝑐𝑜𝑠 ቀ𝛿𝑊௫(𝑥, 𝑦) +

ଶగ

ே
𝑗௫ቁ 𝑐𝑜𝑠 ቀ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቁ 𝑐𝑜𝑠 ቂ

௞௔మ

ଶ
ቄ

ௗమௐ(௫,௬)

ௗ௫మ
−

ௗమௐ(௫,௬)

ௗ௬మ
ቅቃ ,

 (24) 

where 

 𝐵௫(𝑥, 𝑦) = 𝐴଴𝐴ଵ cos ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
ቃ, (25) 

 𝐵௬(𝑥, 𝑦) = 𝐴଴𝐴ଵ cos ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
ቃ, (26) 

 𝛿𝑊௫(𝑥, 𝑦) = 𝑘𝑎 ቄ
ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
ቅ −

ଶగ

௣
𝑥, (27) 

 𝛿𝑊௬(𝑥, 𝑦) = 𝑘𝑎 ቄ
ௗௐ(௫,௬)

ௗ௬
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௬య
ቅ −

ଶగ

௣
𝑦. (28) 

The first and second terms of Equation (24) are constant, and the coefficients of the third 

and fourth term, 4Bx, 4By include the variables x and y, but they are assumed to be constant 

because the spatial change is very small. The fifth and sixth terms are twice the frequency 

of the third and fourth terms, and unnecessary for the wavefront retrieval. These terms are 

removed in the process of the sheared wavefront retrieval described in Chapter 3.3. 

Focusing on the x-shear wavefront, the intensity is expressed by 
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𝐼௝ೣ,௝೤
(𝑥, 𝑦) = 4𝑐𝑜𝑠 ൤𝛿𝑊௫(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௫൨ {𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)} 

. +2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ2 ቄ𝛿𝑊௫(𝑥, 𝑦) +

ଶగ

ே
𝑗௫ቅቃ + 𝐼௒(𝑥, 𝑦), (29) 

where  

𝐶(𝑥, 𝑦) = 2𝐴ଵ
ଶ𝑐𝑜𝑠 ቀ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቁ 𝑐𝑜𝑠 ቂ

௞௔మ

ଶ
ቄ

ௗమௐ(௫,௬)

ௗ௫మ
−

ௗమௐ(௫,௬)

ௗ௬మ
ቅቃ, (30) 

𝐼௒(𝑥, 𝑦) = 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௬(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௬൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ2 ቄ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቅቃ.                        (31) 

The 𝜹𝑾𝒙(𝒙, 𝒚) in the argument of the first cosine term in Equation (29) is obtained by 

the sheared wavefront retrieval method described in Chapter 3.3.  

 

3.3. Sheared wavefront retrieval 

There are three methods to retrieve the sheared wavefront from the Talbot image: 

the Fourier transform method [40] [41], the x y phase shift method [42] [43] and the 

diagonal phase shift method. As is shown in Table 1, the Fourier transform method retrieves 

the sheared wavefront from only one image. Therefore, it is fast, robust against vibration 

and drift, and an actuator is not necessary. However, the high spatial frequency component 

of the wavefront cannot be obtained because it is filtered in the process of the wavefront 

retrieval. The x y phase shift method enables us to obtain the high frequency component of 

the wavefront, but the grating must be moved tens of microns in the x and y direction, 

respectively. Thus, it requires two actuators, is time-consuming, and is sensitive to external 

vibration and drift. In the diagonal phase shift method, the grating is moved in the diagonal 

direction (45 degree from the x-direction). Compared with the x y phase shift method, it 

requires only one actuator, and the wavefront is retrieved from fewer images, but the spatial 

resolution is a little worse. Other features are similar to the x y phase shift method. Table 
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1 shows the pros and cons of each method.  

Table 1 Comparison between Fourier transform, phase shift and diagonal phase 

shift method. 

 

These three methods are described below. In addition, the data obtained by these methods 

must be unwrapped because it is wrapped 2π. Unwrapping is described in Chapter 3.3.4.  

 

3.3.1. Fourier transform method 

       The Fourier transform (FT) method was published by Takeda [40] [41], and 

enables us to retrieve the wavefront from a single fringe pattern. Therefore, the 

configuration of the measurement system becomes simpler because the actuator to move 

the reference part or grating is not necessary. The FT method is widely applied to fringe 

analysis such as ultrashort pulse analysis [44], thin film thickness measurements [45] and 

evaluation of imaging optics for EUV lithography [46]. On the other hand, the Fourier 

transform method has a drawback in that the high frequency component of the wavefront 

is filtered.  

When ∆𝑊௫(𝑥, 𝑦) is expressed by 

 ∆𝑊௫(𝑥, 𝑦) =
ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
, (32) 

from Equation(29), the interferogram including aberration is expressed by 

Fourier transform 
method

X y phase shift 
method

Diagonal phase shift 
method

Pros
- Fast
- Simple design
- Not sensitive to vibration

Can obtain high frequency 
component

Can obtain high frequency 
component

Cons
High frequency 
component is filtered

- Time-consuming
- Sensitive to vibration
- Requires two actuators

- Time-consuming
- Sensitive to vibration
- Requires an actuator
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𝐼଴,଴(𝑥, 𝑦)~2A଴Aଵ ቈ𝑒
௜୩൜∆ௐೣ (௫,௬)ୟି

஛
୮

୶ൠ
+ 𝑒

ି௜୩൜∆ௐೣ (௫,௬)ୟି
஛
୮

୶ൠ
቉ {𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)} 

 +Aଵ
ଶ ൤𝑒

௜ଶ୩ቄ∆ௐೣ (௫,௬)ୟି
ಓ

౦
୶ቅ

+ 𝑒
ି௜ଶ୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

൨ + 𝐼௒(𝑥, 𝑦).          (33) 

Taking the Fourier transform of both side, we have 

ℱ൛𝐼଴,଴(x, y)ൟ~I଴δ(𝑓௫) + 2A଴Aଵ𝐵௫(𝑥, 𝑦) ∫ 𝑒
௜ଶగቄ

భ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

భ

౦
ା௙ೣ ቁ୶ቅ

+

𝑒
ି௜ଶగቄ

భ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

భ

౦
ି௙ೣ ቁ୶ቅ

dx + 2A଴Aଵℱ ൜𝐶(𝑥, 𝑦) ൤𝑒
௜୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

+

𝑒
ି௜୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

൨ൠ + Aଵ
ଶ ∫ 𝑒

௜ଶగቄ
మ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

మ

౦
ା௙ೣ ቁ୶ቅ

+ 𝑒
ି௜ଶగቄ

మ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

మ

౦
ି௙ೣ ቁ୶ቅ

dx +

ℱ{𝐼௒(𝑥, 𝑦)}.                                                        (34) 

The data near the frequency x/p is filtered and then shifted to the center of the Fourier plane. 

We then obtain Г(fx,fy) as 

                Γ൫𝑓௫ , 𝑓௬൯ = 2A଴Aଵ𝐵௫(𝑥, 𝑦) ∫ 𝑒
௜ଶగቄ

ೌ

ಓ
∆ௐೣ (௫,௬)ି௙ೣ ୶ቅ

𝑑𝑥.     (35) 

The inverse Fourier-transformed signal of Г(fx,fy) can be expressed as  

ℱିଵ൛Γ൫𝑓௫ , 𝑓௬൯ൟ = 2A଴Aଵ𝐵௫(𝑥, 𝑦) 𝑒
௜ଶగቄ

ೌ

ಓ
∆ௐೣ (௫,௬)ቅ.          (36) 

Next, ∆𝑊௫(𝑥, 𝑦) is calculated by 

 ∆𝑊௫(𝑥, 𝑦) =
ఒ

ଶగ௔
𝑎𝑡𝑎𝑛 ൬

ூ௠ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧

ோ௘ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧
൰, (37) 

where Im[] indicates the imaginary part, Re[] indicates the real part. Assuming the 

following equation is true, 

 
ௗௐ(௫,௬)

ௗ௫
≫

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
, (38) 

the sheared wavefront is obtained by 

 
ୢ୛(୶,୷)

ୢ୶
=

ఒ

ଶగ௔
𝑎𝑡𝑎𝑛 ൬

ூ௠ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧

ோ௘ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧
൰, (39) Figure 7Figure 7 shows the 

above procedure of the sheared wavefrront retrieval using simulation data.  
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Figure 7 Sheared wavefront retrieval flow. 

 

3.3.2. X y phase shift method 

       The x y phase shift can be implemented by shifting the grating in both the x and y 

directions. Although the Talbot image includes twice the frequency of the self-image as is 

shown in the second term of Equation (29), it cancels in the calculation process of the 

wavefront retrieval. For example, the four step wavefront retrieval is calculated by 
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𝐼ଷ,଴ − 𝐼ଵ,଴ = 4 ൜𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +
3

4
2𝜋൰ − 𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +

1

4
2𝜋൰ൠ {𝐵௫(𝑥, 𝑦)

+ 𝐶(𝑥, 𝑦)}+2𝐴ଵ
ଶ ൜𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

3

4
2𝜋ൠ൨

− 𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +
1

4
2𝜋ൠ൨ൠ 

 = 8𝑠𝑖𝑛൫𝛿𝑊௫(𝑥, 𝑦)൯{𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}. (40) 

𝐼ଶ,଴ − 𝐼଴,଴ = 4 ൜𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +
2

4
2𝜋൰ − 𝑐𝑜𝑠൫𝛿𝑊௫(𝑥, 𝑦)൯ൠ {𝐵௫(𝑥, 𝑦)

+ 𝐶(𝑥, 𝑦)}+2𝐴ଵ
ଶ ൜𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

2

4
2𝜋ൠ൨ − 𝑐𝑜𝑠[2{𝛿𝑊௫(𝑥, 𝑦)}]ൠ 

 = −8𝑐𝑜𝑠൫𝛿𝑊௫(𝑥, 𝑦)൯{𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}. (41) 

 −
ூయ,బିூభ,బ

ூమ,బିூబ,బ
= 𝑡𝑎𝑛{𝛿𝑊௫(𝑥, 𝑦)}. (42) 

From Equations (40) - (42), we can see that the twice frequency terms of the self-image 

cancel. Since 𝛿𝑊௫ is expressed by Equation (27), the sheared wavefront is calculated by 

ௗௐ(௫,௬)

ௗ௫
~

ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
=

ଵ

௔௞
atan ൬

ூయ,బିூభ,బ

ூమ,బିூబ,బ
൰ +

ఒ௫

௔௣
. (43) 

Except for N = 3, the double–frequency term disappears. Therefore, the error due to it is 

small. Similarly, the y-shear wavefront is also retrieved. 

 

3.3.3. Diagonal phase shift method 

       When the grating is shifted in the diagonal direction, the irradiance is 

approximately expressed by 

𝐼௝,௝(𝑥, 𝑦)~𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫(𝑥, 𝑦)𝑐𝑜𝑠 ቆ𝑘𝑝
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
−

2𝜋

𝑝
𝑥 +

2𝜋

𝑁
𝑗ቇ 

+4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ቀ𝑘𝑝
ௗௐ(௫,௬)

ௗ௬
−

ଶగ

௣
𝑦 +

ଶగ

ே
𝑗ቁ,    (44) 

where j is an integer that represents the phase step. A Fourier transform of the irradiance 
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gives the result shown in Figure 8. The Fourier spectrum except for the signal regarding 

the x-shear wavefront is substituted zero as is shown in Figure 9. When it is inverse Fourier 

transformed, the cosine of x is obtained as shown in Figure 10.. 

 

 

 

 

 

 

 

Figure 8 Fourier spectrum of irradiance (log of absolute). 

 

 

 

 

 

 

 

 

Figure 9 Filtered Fourier spectrum of irradiance (log of absolute). 

 

 

 

 

 

 

 

 

Figure 10 Irradiance whose y frequency component is filtered.  

       When the same processing is applied to all the phase shifted irradiance images, 

the x-sheared wavefront is obtained using the same equation as the phase shift method in 
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Chapter 3.3.2. Also, y-shear wavefront is obtained in the analogous way. Compared with 

the Fourier transform method, the diagonal phase shift method enables us to obtain higher 

frequency component of the wavefront. Compared with the phase shift method, the 

diagonal phase shift method requires fewer irradiance images, and only one direction shift 

of the grating. 

 

3.3.4. Unwrapping 

       Many unwrapping algorithms have been developed [47] [48]. In our research, a 

complicated algorithm is not necessary because the measured wavefront will be smooth, 

meaning there are no vortices or discontinuities. Therefore, we apply the simple unwrapping 

method called the flood-fill algorithm [49].   

 

3.4. Two-dimensional integration 

       What we directly obtain from the Talbot interferometer is the sheared wavefront 

or sheared shape. Therefore, 2-dimensional integration is necessary to obtain the wavefront 

or shape of the test surface. As is shown in Table 2, three methods of integration have been 

explored in this work: a Fourier transform method, a fitting method with the sheared 

wavefront and a path integral method. In the Fourier transform method [50], integration is 

done by Fourier transforming twice. It can retrieve high frequency wavefront, but the 

boundary condition affects the result because the sheared wavefront is often non-

contiguous near the boundary. The fitting method [51] [52] [53] is called modal method. 

The sheared wavefront is integrated by making many functions and fitting the measured 

sheared wavefront with functions. This method is fast, and robust to noise. But it has the 

drawback that the wavefront except for functions cannot be retrieved. In addition, it 

requires a lot of computational memories. The path integral method [54] [55] is called zonal 

method. The integration is implemented by keeps adding adjacent data. This method takes 
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time, and is sensitive to the noise, but the high frequency component of wavefront can be 

retrieved. Table 2 shows the pros and cons of three methods.  

 

 

 

 

 

 

 

 

Three methods are explained below. 

 

3.4.1. Fourier transform method 

       For simplicity, consider one dimension. The sheared wavefront Wm measured by 

Talbot interferometer is expressed by 

 𝑊௠(𝑥) = 𝑊(𝑥 + 𝑎) − 𝑊(𝑥), (45) 

where W is the incident wavefront, and a is the amount of shear. To obtain the incident 

wavefront W, Fourier transform is implemented. 

ℱ{𝑊௠(𝑥)} = න 𝑊(𝑥 + 𝑎)𝑒ି௜ଶగ௙ 𝑑𝑥 − ℱ{𝑊(𝑥)} 

= න 𝑊(𝑥 + 𝑎)𝑒ି௜ଶగ (௫ା௔)𝑑𝑥𝑒௜ଶగ௙௔ − ℱ{𝑊(𝑥)} 

= න 𝑊(𝑥)𝑒ି௜ଶగ௙ 𝑑𝑥𝑒௜ଶగ௙௔ − ℱ{𝑊(𝑥)} 

 = ൫𝑒௜ଶగ௙௔ − 1൯ℱ{𝑊(𝑥)}. (46) 

From Equation (46), the Fourier transform of the incident wavefront W is expressed 

by.                    

 ℱ{𝑊(𝑥)} =
ℱ{ௐ೘(௫)}

൫௘೔మഏ೑ೌିଵ൯
. (47) 

Finally, the incident wavefront W is obtained by inverse Fourier transforming Equation 

Table 2 Integration methods. 

Fourier transform 
method

Fitting method
(modal method)

Path integral method 
(zonal method)

Pros
- Fast

- High spatial resolution
- Fast

- Robust to noise
High spatial resolution

Cons
Boundary condition 

affects the result

- Low spatial resolution
- Requires a lot of 

memories

- Time-consuming
- sensitive to noise
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(47). 

 𝑊(𝑥) = ℱିଵ ൜
ℱ{ௐ೘(௫)}

൫௘೔మഏ೑ೌିଵ൯
ൠ. (48) 

The Fourier transform method is fast, but the boundary condition of the data often leads to 

errors. This is because the wavefront is not continuous on the boundary of the data, and 

errors appear in the high frequency component due to the boundary discontinuity. 

 

3.4.2.  Fitting method with sheared wavefront 

       This is called the modal method. First, the basic functions of the sheared wavefront 

are chosen and calculated. For example, when using Fringe Zernike polynomials [56] as 

the basis set, the x-shear wavefront Zxs and y-shear wavefront Zys are given by 

𝑍௫௦(𝑥, 𝑦, 𝑗) = 𝑍௝(𝑥 + 𝑎, 𝑦) − 𝑍௝(𝑥, 𝑦),   

 𝑍௬௦(𝑥, 𝑦, 𝑗) = 𝑍௝(𝑥, 𝑦 + 𝑎) − 𝑍௝(𝑥, 𝑦), (49) 

where j is a positive integer, Zj is jth Fringe Zernike polynomials, a is the amount of shear. 

Second, the measured x-shear wavefront Wx, and y-shear wavefront Wy are expressed with 

sheared Zernike polynomials Zxs and Zys by 

 ൤
𝑊௫(𝑥, 𝑦)

𝑊௬(𝑥, 𝑦)
൨ = ∑ 𝐶௝ ൤

𝑍௫௦(𝑥, 𝑦, 𝑗)

𝑍௬௦(𝑥, 𝑦, 𝑗)
൨ே

௝ୀଵ , (50) 

where C is the coefficients of both the x-shear wavefront Zxs and the y-shear wavefront Zys, 

and N is the number of Zernike polynomials considered for the fit. The coefficients C of 

the sheared Zernike polynomials are calculated by fitting the measured x-shear wavefront 

Wx, and y-shear wavefront Wy with the sheared Zernike polynomials Zxs and Zys. The 

coefficients C are normally obtained by least square method or singular value 

decomposition [57]. 

       Finally, the wavefront W is retrieved by 

 𝑊(𝑥, 𝑦) = ∑ 𝐶௝𝑍(𝑥, 𝑦, 𝑗)ே
௝ୀଵ . (51) 

This method is robust against the irregular (spike) error and a random noise due to a CCD 
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noise. The drawbacks are that the high spatial frequency components of the wavefront are 

difficult to represent because this method would require a fit out to very high order. By the 

way, as the wavefront obtained from the Talbot image is expressed by Equation (32), 

Equation (52) will be better regarding x-shear wavefront Zxs and y-shear wavefront Zys in 

Equation (49). 

𝑍௫௦(𝑥, 𝑦, 𝑗) =
ௗ௓ೕ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయ௓ೕ(௫,௬)

ௗ௫య
,   

 𝑍௬௦(𝑥, 𝑦, 𝑗) =
ௗ௓ೕ(௫,௬)

ௗ௬
+

௔మ

଺

ௗయ௓ೕ(௫,௬)

ௗ௬య
. (52) 

Although the third-order term can be ignored when solving for a low-amplitude wavefront, 

it is necessary to take this term into account in the case of a large wavefront, which is 

usually the case on a freeform surface. 

 

3.4.3. Path integral method 

       Path integral method is one kind of zonal methods [54] [55]. Integration starts 

from arbitrary point on 2-dimensional grid data and keeps adding adjacent data. As an 

example, let us think it starts from point A in Figure 11, and we calculate the integral value 

on point B.  

 

 

 

 

 

 

Figure 11 Integration paths. 

There are different multiple paths. To reduce the integration error, it is obtained by 

calculating the average of integral value of different multiple paths. In addition, since this 

way is not enough to reduce the integration error, the start location is dispersed, and the  

A

B

Shear wavefront
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Figure 12 Integration flow. 

average of their integral values is taken as the final integral value. A concrete flow is shown 

in Figure 12. In step 1, start location is dispersed so that they are not located on the vertical 

or horizontal line each other, and they separate each other as far as possible like Figure 13. 

In step 2, the integral value is calculated by averaging the integral value of all shortest paths. 

Then we repeat the integration with changing the start location. In step 4, final integral 

value is obtained by averaging the integral value calculated in step 2. 

 

 

 

 

    

 

Figure 13 Start location of integration. 

Determine start location
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       Local integration is implemented by calculating the difference between adjacent 

integral values. Specifically, first, for each of three adjacent sheared wavefronts dW(x1), 

dW(x2), dW(x3), fitting is performed with a following quadratic polynomial f(x) of lateral 

coordinate x to calculate coefficients a2, a1, a0. 

 𝑓(𝑥) = 𝑎ଶ𝑥ଶ + 𝑎ଵ𝑥 + 𝑎଴. (53) 

Integral value F(x) of Equation (53) is expressed by 

 𝐹(𝑥) =
ଵ

ଷ
𝑎ଶ𝑥ଷ +

ଵ

ଶ
𝑎ଵ𝑥ଶ + 𝑎଴𝑥. (54) 

The difference D(x) between adjacent integral values is calculated by 

                   𝐷(𝑥ଵ) = 𝐹(𝑥ଶ) − 𝐹(𝑥ଵ). 

 𝐷(𝑥ଶ) = 𝐹(𝑥ଷ) − 𝐹(𝑥ଶ). (55) 

After calculating the whole difference D(x) in measured sheared wavefront, integration is 

implemented by sequentially adding this difference D(x) along the path shown in  

Figure 11. The sheared wavefront is approximated as being a quadratic function in 

Equation (53) and integrated, which is called Simpson’s rule [58]. 

 

3.5. Measurement range 

       The distortion of the fringe is proportional to the sheared wavefront. Therefore, 

measurement range is approximately limited by the second derivative of the wavefront. We 

explain it with equations as below.  

       The fringe of the Talbot image is expressed by Equation (29), and its phase of 

forth term ψ is expressed by 

 Ψ = 2𝑘 ቄ
ௗௐ(௫)

ௗ௫
𝑎 +

௔య

଺

ௗయௐ(௫)

ௗ௫య
+

ఒ

௣
𝑥ቅ  

 ~2𝑘 ቄ
ௗௐ(௫)

ௗ௫
𝑎 +

ఒ

௣
𝑥ቅ, (56) 

According to the sampling theory, the following equation must be satisfied. 
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2 ቚ𝑘𝑎
ௗ୛(୶೙శభ,୷)

ୢ୶
−

ଶగ

௣
x௡ାଵ − ቀ𝑘𝑎

ௗ୛(୶೙,୷)

ୢ୶
−

ଶగ

௣
x௡ቁቚ < π, 

 ቚ
௔

ఒ
ቀ

ௗ୛(୶೙శభ,୷)

ୢ୶
−

ௗ୛(୶೙,୷)

ୢ୶
ቁ −

௤

௣
ቚ <

ଵ

ସ
, (57) 

where q is a CCD pixel size, xn (n=1,2,3…) is x-coordinate of n-th CCD pixel. Substituting 

the following approximation, 

 
ௗ୛(୶೙శభ,୷)

ୢ୶
−

ௗ୛(୶೙,୷)

ୢ୶
~𝑞

ௗమ୛(୶೙,୷)

ୢ௫మ
, (58) 

the measurement range is expressed by 

 ቚ
ௗௐమ(௫,୷)

ୢ௫మ
ቚ <

ఒ

௔௤
ቀ

ଵ

ସ
−

௤

௣
ቁ. (59) 

As an example, substituting a = p = 80 µm, q = 4.6 µm, λ= 0.6328 µm, the right side is 0.33 

mm-1. This value is bigger than the maximal second derivative wavefront reflected from the 

Alvarez surface shown in Figure 1. Therefore, this Talbot interferometer can measure the 

Alvarez surface. 

 

3.6. Spatial resolution 

       In case of wavefront retrieval using the phase shift method, the spatial resolution 

of Talbot interferometer is equal to the amount of shear a. Using FT method, the spatial 

resolution becomes worse because many data in the Fourier domain is filtered. Specifically, 

Fourier spectrum shown in Figure 14 is obtained by Fourier transforming the Talbot image. 

As expressed in Equation (29), there are signals at 0, 1/p (=1/80 = 0.0125 µm-1) and 2/p (= 

0.025 µm-1).  
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Figure 14 Fourier spectrum of the Talbot image. 

In the FT method, wavefront is retrieved by cutting the Fourier spectrum data surrounded 

by the red dotted line in Figure 14. If the cutting area is large, wavefront retrieval error 

becomes large because the tails of the signal of frequency 0 and 2/p are included. Therefore, 

the cutting range is at most half the length between two signals, which means the maximum 

measurable frequency is 1/(2p). Thus, the spatial resolution with FT method is 2p (160 µm).   

 

3.7. Dynamic range of a tilt wavefront 

       From Equation (24), the intensity of the Talbot interferogram is approximately 

expressed by 

 𝐼(𝑥) ~ 𝑐𝑜𝑠 ቂ𝑘𝑎
ௗ

ௗ௫
𝑊(𝑥) −

ଶగ

௔
𝑥ቃ. (60) 

Assuming the tilt wavefront is tx, the intensity is expressed by 

  𝐼(𝑥)~𝑐𝑜𝑠 ቂ𝑘𝑎𝑡 −
ଶగ

௔
𝑥ቃ. (61) 

Equation (61) shows that the tilt wavefront occurs lateral shift of the Talbot image. When 

the amount of the lateral shift is longer than half of the grating pitch (a/2 = 40 µm), we 

cannot distinguish between plus tilt and minus tilt. Therefore, dynamic range of the tilt 

wavefront is expressed by 

 |𝑘𝑎𝑡| < 𝜋. (62) 

 |𝑡| <
ఒ

ଶ௔
. (63) 

Substituting λ = 632.8 nm, a = 80 µm, we obtain 

 |𝑡| < 3.95 × 10ିଷ. (64) 

-0.05 -0.025 0 0.025 0.05
fx [µm -1]
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This Talbot interferometer can measure the tilt wavefront less than 4 mrad. 

 

3.8. Simulation 

3.8.1. Angular spectrum propagation 

       We programed the angular spectrum propagation with MATLAB® to simulate the 

Talbot interferometer. MATLAB code is written in Appendix B. We did only one-

dimension (x) because two-dimensional simulation (x, y) requires many memories and 

calculation time.  

       The electric field E0 on the grating is expressed by 

 𝐸଴(𝑥) = 𝐴(𝑥)𝑡(𝑥)𝑒𝑥𝑝[𝑖𝑘𝑊(𝑥)], (65) 

where W is the wavefront of the light, A is the amplitude, and t is transmittance of the 

grating. In case of rectangle, the transmittance is expressed as  

 𝑡(𝑥) = ∏ ቀ
௫

ଶ௣
ቁ ⨂𝐼𝐼𝐼 ቀ

௫

௣
ቁ, (66) 

where ⨂ indicates convolution, and it is shown in Figure 15 (a). In case of sinusoidal, the 

transmittance is expressed as 

 𝑡(𝑥) =
ଵ

ଶ
+

ଵ

ଶ
𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁ, (67) 

and shown in Figure 15 (b). 

 

 

 

 

 

Figure 15 Transmittance amplitude of the grating. (a) sinusoidal and (b) rectangle. 
 

Figure 16Figure 16 shows the intensity on the x-z plane calculated using Equation (16). 

We assumed that the grating pitch p was 80 µm, wavelength λ was 632.8 nm and wavefront 

p
t

x

p
t

x
(a) (b) 
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was constant (plane wave). As can be seen in Figure 16, the self-imaging takes place at the 

Talbot distance  

 

 

 

 

 

 
 

Figure 16 Irradiance on the x-z plane. (a) sinusoidal transmittance and (b) rectangle 
transmittance 

𝐿 =
ଶ௡௣మ

ఒ
, 𝑛 = 1,2,3, … , and reversed self-image takes place at the distance 𝐿 =

(ଶ௡ିଵ)௣మ

ఒ
, 𝑛 = 1,2,3, ….. 

       In addition, we implemented the simulation to make sure the wavefront retrieval 

from Talbot image. In the same as above condition, we input the wavefront Win on the 

grating, and calculated the intensity I on the plane (CCD) at the distance L= p2/λ = 10.114 

mm using the angular spectrum propagation. We calculated intensity four times with 

shifting the grating by 20 µm in the x-direction. Then, the wavefront Wout was retrieved 

from four intensities by four step phase shift method (Equations. (40) - (43)) and path 

integration method described in Chapter 3.4. To evaluate the retrieved wavefront, we 

calculated the electric field Eref by propagating the wavefront to the CCD without the 

grating, and reference wavefront Wref on the CCD was calculated by 

 𝑊௥௘௙ = 𝑎𝑡𝑎𝑛 ൜
ூ௠௔௚(ாೝ೐೑)

௥௘௔௟(ாೝ೐೑)
ൠ. (68) 

As is shown in Figure 17, we compared the retrieved wavefront Wout with the reference 

wavefront Wref. 
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Figure 17 Schematic diagram for comparison between retrieved wavefront and 

reference wavefront. 

The intensity is shown in Figure 18. The Talbot image is distorted a little by input wavefront 

Win.  

 

 

 

 

 
 

Figure 18 Intensity with sinusoidal grating calculated by angular spectrum 
propagation. (a) intensity and (b) magnified intensity. 

 

Figure 19 (a) shows the reference wavefront Wref and wavefront Wout retrieved from four 

intensities using phase shift method. Difference between them is shown in Figure 19 (b).  
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Figure 19 Comparison between retrieved wavefront and reference wavefront. (a) 
reference and retrieved wavefront, (b) difference between reference and retrieved 
wavefront and (c) difference between the reference wavefront and the retrieved 

wavefront with the approximation of Equation (38). 

As you can see from Figure 19 (a) and (b), the wavefront can be retrieved accurately. Figure 

19 (c) is the difference between the reference wavefront and the retrieved wavefront with 

the approximation of Equation (38). The retrieval error was 13.3 nmPV. This error is caused 

by ignoring the third-order differentiation term in the wavefront retrieval calculation.  

     Similarly, we calculated the intensity with the rectangle grating as is shown in Figure 

20. High-order diffraction occurs at the edge of the rectangle grating, and the sharp 

rectangle irradiance boundary cannot be obtained [59]. Figure 21 (a) shows the reference 

wavefront Wref and retrieved wavefront Wout from four intensities using phase shift method. 

Difference between them is shown in Figure 21 (b). 

 

 

 

 

 

 

 

Figure 20 Intensity with rectangle grating. (a) intensity and (b) magnified intensity. 
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Figure 21 Comparison between retrieved wavefront with phase shift method and 
reference wavefront. (a) reference and retrieved wavefront and (b) difference 

between reference and retrieved wavefront. 

The retrieved wavefront is not accurate. It will be because intensity is not sinusoidal shape, 

but the phase shift method assumes that the intensity is sinusoidal. Next, the results of the 

wavefront retrieved from the intensity shown in Figure 20 using FT method is shown in 

Figure 22.  

 

 

 

 

 

 

 

 

 

       The accuracy is better than that of the phase shift method. It is thought that the 

higher order diffraction from the edge of the rectangle grating occurs the intensity 

turbulence of high frequency, however it is filtered in the Fourier domain.   
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Figure 22 Comparison between retrieved wavefront and reference wavefront. (a) 

reference and retrieved wavefront with FT method and (b) difference between 
reference and retrieved wavefront.  
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3.8.2. Five beams interference 

       Unlike the angular spectrum propagation, five beams interference does not 

consume a lot of computational memories. Therefore, it is possible to calculate the 

irradiance two-dimensionally. MATLAB code is written in Appendix C. Regarding the 

specific calculation, first, the wavefront on the CCD is set, and the electric field E00 is 

calculated with the wavefront using Equation (19). Second, we calculated four electric 

fields E10, E-10, E01, E0-1 with wavefront which is shifted by ±80 µm (grating pitch) in the 

x and y direction using Equations (20) - (23), respectively. Third, we calculated the 

intensity by adding five electric fields and squaring the absolute of them. As an example, 

the intensity when astigmatism is included is shown in Figure 23. 

 

 

 

 

 

 

Figure 23 Irradiance of five beams interference. 

Irradiance is distorted a little by input wavefront. The wavefront is retrieved from this 

intensity using FT method explained in Chapter 3.3.1. The results are shown in Figure 24. 

 

 

 

 

 

 

 
Figure 24 Wavefront retrieved from the irradiance using FT method. (a) retrieved 

wavefront, (b) reference wavefront and (c) difference between (a) and (b). 
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As can be seen in Figure 24, the wavefront is retrieved accurately. The high frequency error 

seen in Figure 24 (c) is considered to be caused by the fact that the tail of the signal of 

frequency 0 and 2/p is in the cut range of Fourier domain.   
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4. Stitching 
 

4.1. Background 

       When the size of a test surface is larger than the sensor size or the detected 

wavefront is too large to measure in one-shoot, it can be measured by dividing and 

measuring it with the partial area of the test surface or wavefront and connecting them, 

which is called stitching [29]. To do that, the test sample or the sensor must be moved 

multiple times, and it leads to the (positional) alignment errors in measured wavefront, 

such as pitching, rolling, and shifting. In stitching, their alignment errors are estimated by 

the difference in the overlapped measurement data and removed. The principle is explained 

below. 

 

4.2. Lattice design 

       To determine lattice design is to determine the location of the sub-aperture and 

tip-tilt amount of the test sample. The necessary conditions are to make sub-apertures 

overlap each other and cover the whole test sample with sub-apertures. The larger the 

overlapping area, the better the accuracy is because it is easier to estimate the alignment 

error of the test sample. However, this will increase the number of measurements and 

measurement time. After determining the location of the sub-aperture, we determine the 

amount of tip and tilt of the test sample so that the detected wavefront becomes minimal. 

 

4.3. Principle 

       The measured shape z’ including alignment errors is expressed as 

      𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) + ∑ 𝑎௜௡𝑓௜௡(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ହ
௡ୀଵ , (69) 

where i is the number of sub-aperture, xi, yi are the central location of the i-th sub-aperture, 

zi is the test shape of the i-th sub-aperture, fi1, fi2, fi3, fi4, fi5 indicate z error, x-tilt error, y-

tilt error, x-shift error, y-shift error of the i-th sub-aperture measurement, respectively, 
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which are expressed as 

𝑓௜ଵ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 1, (70) 

𝑓௜ଶ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑥 − 𝑥௜, (71) 

𝑓௜ଷ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑦 − 𝑦௜, (72) 

𝑓௜ସ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ + ∆𝑥, 𝑦 − 𝑦௜) − 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜), (73) 

𝑓௜ହ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜ + ∆𝑦) − 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜), (74) 

ain are coefficients of alignment errors of the i-th sub-aperture measurement. To minimize 

the difference between each sub-aperture measurement in the overlapped area, the 

following equation must be satisfied.  

    𝛿 = ∑ே
௜ୀଵ ෍ ∩௜௝ ൛𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) − 𝑧௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ൟ

ଶ
= 𝑚𝑖𝑛

ே

௝ୀଵ
, (75) 

where ∩ij indicates the summation of the overlapped area of i-th and j-th sub-aperture. To 

obtain the coefficients ain, the following equation must be satisfied 

 
డఋ

డ௔೔೙
= 0. (76) 

Equation (76) is a matrix expressed by 

 𝑃 = 𝐹𝐴, (77) 

where 

 𝑃 = ൥
∆Pଵ

⋮
∆Pே

൩, (78) 

∆P௜ = ∑ ∩௜௝
ே
௝ୀଵ ቎

൛𝑧′௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ − 𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ൟ𝑓௜ଵ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)

⋮
൛𝑧′௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ − 𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ൟ𝑓௜ହ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)

቏,(79) 

 𝐹 =

⎣
⎢
⎢
⎡

𝐹ଵ,ଵ −𝐹ଵ,ଶ ⋯ −𝐹ଵ,ே

−𝐹ଶ,ଵ 𝐹ଶ,ଶ

⋮ ⋱
−𝐹ே,ଵ 𝐹ே,ே ⎦

⎥
⎥
⎤

, (80) 

where Fij is 5 × 5 matrix, and s row t column component (1 ≤ s, t ≤ 5) is expressed by 
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𝐹௜,௝(𝑠, 𝑡) =∩௜௝ 𝑓௜௦(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)𝑓௝௧൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯   (i = j), (81) 

𝐹௜,௜(𝑠, 𝑡) = ∑ ∩௜௞
ே
௞ஷ௜ 𝑓௜௦(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)𝑓௜௧(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)   (i ≠ j), (82) 

 𝐴 = ൥
Aଵ

⋮
Aே

൩, (83) 

 A௜ = ൥

a௜ଵ

⋮
a௜ହ

൩, (84) 

The unknown coefficients a in Equation (69) can be obtained by least-squares solution as 

follow 

 𝑎 = (𝐴்𝐴)ିଵ𝐴். (85) 

We can subtract the alignment errors with coefficients a from each sub-aperture data. 

Finally, the whole surface is obtained by averaging the sub-aperture data in the overlapped 

area. 

 

4.4. Simulation 

       To make sure the above principle, we implemented the stitching simulation using 

MATLAB®. The code is written in Appendix E. The shape of the test sample and its error 

shape were assumed to be the Alvarez surface and the spherical error shown in  

Figure 25 (a) and (b), respectively. Here, the size of the test sample is 10 × 10 mm2.  

 

 

 

  

 

 

Figure 25 Test shape. (a) nominal shape and (b) error shape. 

The simulation flow is shown in Figure 26. 
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Figure 26 Stitching simulation flow. 

       In step 1, the lattice design is determined as is shown in Figure 27. We assumed 

the sub-aperture size was 4.2 mm × 3 mm rectangle, and the number of measurements was 

12. The overlapping ratio of each sub-aperture is approximately 30%, and it becomes 

difficult to estimate the alignment error of the test sample when it is less than 30%. When 

the center position of the sub-aperture is displayed in Figure 27 (a), the overlap number is 

expressed in 

 

 

 

 

 

 

 
Figure 27 Lattice design. (a) center position of the sub-aperture and (b) overlap 

number. 

Determine lattice design

Calculate the 
sub-aperture shape

Add alignment error and 
system error

Inverse coordinate 
transformation

Stitch

Calculate the sample 
shape

Start

End

complete the whole 
sub-aperture ?

Yes

No

Evaluate the results

Coordinate 
transformation

1

2

3

4

6

7

8

9

5

x [mm] x [mm]
(a) (b)

y [mm]y [mm]



42 
 

Figure 27 (b). For example, since four sub-apertures are overlapped in six small yellow 

squares, their area is measured four times. The center coordinates of the sub-aperture and 

tip-tilt (θx, θy) of the test sample are shown in Table 3. 

Table 3 Center coordinate of sub-aperture and tip-tilt of the test sample. 

 

 

 

 

 

 

 

 

Here z0, θx, θy are calculated by fitting the nominal shape of the test sample shown in Figure 

25 (a) with Equations (70)-(72).  

       In step 2, according to the lattice design, we calculated the sample shape of every 

sub-aperture on the global coordinate (x, y, z). In step 3, we transformed it from global 

coordinate to measurement coordinate (x’, y’, z’) using Equation (86).  

൭
𝑥′
𝑦′

𝑧′

൱ = ൥

1 0 0
0 𝑐𝑜𝑠θ௫ −𝑠inθ௫

0 𝑠𝑖𝑛θ௫ 𝑐𝑜𝑠θ௫

൩ ቎

𝑐𝑜𝑠θ௬ 0 𝑠𝑖𝑛θ௬

0 1 0
−sinθ௬ 0 𝑐𝑜𝑠θ௬

቏ ൭

𝑥 − 𝑥଴

𝑦 − 𝑦଴

𝑧 − 𝑧଴

൱. (86) 

       In step 4, we added the alignment error (x, y, z shift, tip-tilt) of the test sample. 

Measurement shape of each sub-aperture including alignment error is shown in Figure 28. 

 

 

 

 

 

 

 

x0 [mm] y0 [mm] z0 [mm] θx [rad] θy [rad]
1 -2.9 3.5 -0.060 -0.024 -0.027
2 0 3.5 0.000 0.000 -0.017
3 2.9 3.5 0.060 0.024 -0.027
4 -2.9 1.17 -0.022 -0.008 -0.014
5 0 1.17 0.000 0.000 -0.004
6 2.9 1.17 0.022 0.008 -0.014
7 -2.9 -1.17 -0.022 0.008 -0.014
8 0 -1.17 0.000 0.000 -0.004
9 2.9 -1.17 0.022 -0.008 -0.014

10 -2.9 -3.5 -0.060 0.024 -0.027
11 0 -3.5 0.000 0.000 -0.017
12 2.9 -3.5 0.060 -0.024 -0.027
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Figure 28 Sub-aperture shape. 

After repeating step 2-4 until whole sub-aperture were calculated, we transformed from 

measurement coordinate to global coordinate using Equation (87). 

       ቆ
𝑥
𝑦
𝑧

ቇ = ቎

𝑐𝑜𝑠θ௬ 0 −𝑠𝑖𝑛θ௬

0 1 0
𝑠𝑖𝑛θ௬ 0 𝑐𝑜𝑠θ௬

቏ ൥

1 0 0
0 𝑐𝑜𝑠θ௫ 𝑠inθ௫

0 −𝑠𝑖𝑛θ௫ 𝑐𝑜𝑠θ௫

൩ ൭
𝑥′
𝑦′

𝑧′

൱ + ൭

𝑥଴

𝑦଴

𝑧଴

൱. (87) 

       In step 6, the alignment errors are estimated by stitching described in Chapter 4.3, 

and removed them from sub-aperture shape. In step 7, whole sample shape was calculated 

by averaging the sub-aperture shape. Finally, we evaluated the stitching result by 

comparing it with input shape. The alignment error estimated by stitching is shown in 

Figure 29. x-axis is the number of the sub-aperture. 
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Figure 29 Estimation results of the alignment error. (a) x shift error, (b) y shift error, 

(c) z shift error, (d) θx tilt error and (e) θy tilt error.  

As you can see, the alignment error can be estimated. The difference between the input and 

output alignment errors is shown in Figure 30. 

 

 

 

 

 

 

 

 

 
Figure 30 Estimation results of the alignment error difference. (a) x shift error, (b) y 

shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error. 

It is found from Figure 30 that the estimation of the alignment error was not high accurate. 

From examining the simulation, the reasons are considered interpolation error and non-

linearity. In step 6 in Figure 26, the cubic interpolation is applied to coordinate 
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transformation. As the shape of the submillimeter is evaluated on the nanometer order, the 

interpolation error cannot be ignored. As for the non-linearity, when the test sample has a 

large shape error or the alignment error is large, and coordinate transformation is carried 

out, such errors are not linear to the basic function like Zernike function. As a result, the 

estimation error of stitching becomes large too. Figure 31 (a), and (b) show the retrieved 

sample error shape with stitching and input sample error shape, respectively. The stitching 

error which is difference between Figure 31 (a) and (b) is shown in Figure 31 (c).   

 

 

 

 

 

 
Figure 31 Retrieved shape. (a) output error shape, (b) input error shape and (c) 

difference between output and input error shape.  

       The stitching error depends on the alignment errors of the test sample, and its error 

shown in Figure 31 (c) is 0.76 nmRMS. This result is not bad; however, it is thought that 

the stitching error becomes smaller by stitching again after subtracting the alignment errors 

obtained by stitching because the interpolation error and the non-linear error becomes small. 

The estimation error of the alignment error when stitching twice is shown in Figure 32. 

You can see that the error is small.  
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Figure 32 Estimation error of the alignment error when stitching twice. (a) x shift 

error, (b) y shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error. 

The retrieved sample shape with stitching twice is shown in Figure 33 (a). 

 

 

 

 

 

 
Figure 33 Retrieved shape when stitching twice. (a) output error shape, (b) input 

error shape and (c) difference between output and input error shape. 

As you can see from Figure 33 (c), the stitching error becomes considerably small (0.01 

nmRMS). 
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5. Error estimate 
 

5.1. Talbot interferometer 

       We calculated the error sensitivity of a CCD noise, and setting error (∆z, ∆θy, ∆θz) 

of the grating. The error sensitivity depends on the incoming wavefront. Therefore, it is 

important to decide how large wavefront should be input.  

       To assume the actual wavefront in the experiment, we decided the input wavefront 

Win the twice sag of the Alvarez surface on the average of the diagonal line (45 degree from 

x-axis) and x-axis. And we added the tilt to reduce the absolute wavefront. Specifically, the 

wavefront from the Alvarez surface on the x-axis, and on the diagonal line is expressed by 

 𝑊௫ି௔௫௜ (𝑥) =
ଶ୅

ଷ
(𝑥 − 5 + 𝑅)ଷ − 𝑎ଵ𝑥 − 𝑎଴, (88) 

 𝑊ௗ௜௔௚(𝑥) =
ଶ√ଶ୅

ଷ
൫𝑥 − 5√2 + 𝑅൯

ଷ
− 𝑏ଵ𝑥 − 𝑏଴, (89) 

where R is a radius of a sub-aperture, a1, b1 are coefficients of tilts, a0, b0 are piston. The 

input wavefront Win is expressed by 

  𝑊௜௡(𝑥) =
ଵ

ଶ
ቀ𝑊௫ି௔௫௜ (𝑥) + 𝑊ௗ௜௔௚(𝑥)ቁ. (90) 

Each wavefront is shown in Figure 34. 

 

 

 

 

 

 
Figure 34 Wavefront from the Alvarez surface. (a) wavefront on x-axis, (b) 

wavefront on the diagonal line and (c) input wavefront. 

The wavefront error was estimated by the same method as Chapter 3.8.1. We assumed that 

the grating is rectangular, and sub-aperture radius is 2 mm. First, we calculated the 

wavefront retrieval error by input the wavefront shown in Figure 34 (c) without additional 
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error. The result is shown in Figure 35. 

 

 

 

 

 

 

Figure 35 Wavefront retrieval error 

Wavefront retrieval error is 4.34 nmPMS, and the shape error is 2.17 nmRMS.  

 

5.1.1. CCD noise 

       To calculate the wavefront error sensitivity due to a CCD noise, we added the 

random error whose amplitude is 1, 3, and 5 % of the intensity to the intensity calculated 

by the angular spectrum propagation described in Chapter 3.2.2. Figure 36 shows 

wavefront error due to a CCD noise. 

 

 

 

 

 

 

Figure 36 Wavefront error due to CCD noise. (a) 1%, (b) 3 % and (c) 5 % CCD 

noise. 

RMS wavefront error 𝝈𝒏𝒐𝒊𝒔𝒆 due to a CCD noise is calculated by 

 𝜎௡௢௜௦௘(𝑖) = ඥ𝜎(𝑖)ଶ − 𝜎(0)ଶ, (91) 

where i indicates the percentage of the CCD noise, σ is RMS wavefront error. 
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Figure 37 RMS wavefront error due to a CCD noise. 

The wavefront error sensitivity due to a CCD noise was estimated to be 0.77 nmRMS / % 

from Figure 37, and the test shape error sensitivity was estimated to be 0.385 nmRMS / %. 

It is small because a CCD noise is high frequency error, which is filtered in the process of 

the wavefront retrieval (FT method). 

 

5.1.2. Z position error of the grating 

       We estimated the wavefront error when the grating is set with shifting ∆z in the z-

direction from the half Talbot distance. Figure 38 shows the wavefront error when the 

grating is shifted -3 µm - 3 µm from the half Talbot distance. 

 

 

 

 

 

 

 

 

 
 
 

Figure 38 Wavefront error due to z error of the grating. (a) -3 µm, (b) -2 µm, (c) -1 
µm, (d) 1 µm, (e) 2 µm and (f) 3 µm z error. 
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As the z error gets smaller, the wavefront error gets smaller. It is because there is a spherical 

wavefront error even if there is no z error. Therefore, when there is a z error of the grating 

in the minus direction, the wavefront error is canceled and it is reduced by chance. Figure 

39 shows RMS wavefront error calculated with Equation (91). Here since the wavefront 

error with minus z error happened to be smaller than that with no z error, it was not shown. 

 

 

 

 

 

Figure 39 RMS wavefront error due to z error of the grating. 

From Figure 39, the wavefront error sensitivity due to z error of the grating was estimated 

to be 2 nmRMS / µm, which means the test shape error sensitivity is 1 nmRMS / µm. Note 

that the grating position does not need to be exactly at the Talbot distance, but we need 

know the distance between the grating and the CCD. Assuming that the grating location 

from the half Talbot distance is Δz, the amount of shear a is calculated by 

 a = p ቀ1 +
∆௭

௅೅
ቁ, (92) 

where p is a grating pitch, LT is the half Talbot distance. The wavefront can be retrieved by 

the methods described in Chapter 3.3 substituting in Equation (92). Figure 40, Figure 41 

and Figure 42 show the simulation result. Assuming the sinusoidal grating shown in Figure 

15 (a), Figure 40 shows the calculated irradiance distributions at the position deviations 

from the half Talbot distance using the Angular spectrum propagation described in Chapter 

3.2.2. Figure 41 shows the retrieved wavefronts from the irradiance distributions shown in 

Figure 40, and Figure 42 shows the difference between the reference wavefront and the 

retrieved wavefront. 

 

0

2

4

6

0 1 2 3
Z error [µm]

σz_err [nmRMS]



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Irradiance [unit arb.]

(c)x [mm](a) (d)(b)

(e) (f) (g)

Figure 40 Irradiance distributions at different positions. The position deviation from 
the half Talbot distance Δz is (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f) 

1mm and (g) 3mm. 

W [µm]

(c)x [mm](a) (d)(b)

(e) (f) (g)
Figure 41 Retrieved wavefronts from the irradiance distributions at the different 
positions, Δz (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f) 1mm and (g) 
3mm. 
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       We can see that when the position deviation from the half Talbot distance of the 

grating is large, the contrast of the irradiance distribution is low, and the wavefront retrieval 

error is large. However, when the deviation (Δz) is about 0.1 mm, the contrast is reasonable 

and the wavefront retrieval error is almost the same as that of no position error. From these 

results, we realized that it is not necessary to set the grating accurately at the half Talbot 

distance, but to know the distance between the grating and the CCD. We also checked that 

the same results were obtained when we calculated using the rectangle grating shown in 

Figure 15 (b).  

 

5.1.3. Tilt error of the grating 

       In the Talbot interferometer with two gratings, Patorski [60] [61] and Liu and 

Ohba [62] [63] have shown that fringe formation is sensitive to tilt errors between the 

gratings. We estimated the measurement wavefront error when the grating was set inclined 

to the CCD. The MATLAB code is shown in Appendix D. Since it was difficult to model 

the tilted grating in the angular spectrum propagation, we applied the three beams 

interference model. To calculate the wavefront at the sensor when the wavefront is incident 

ΔW [nm]

(c)x [mm](a) (d)(b)

(e) (f) (g)

Figure 42 Differences between the reference wavefront and the retrieved wavefront at 
Δz (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f) 1mm and (g) 3mm. 
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on the tilted grating, it is sufficient to calculate the optical path length geometrically. We 

explain the specific calculation method below using Figure 43. We assumed that the grating 

was tilted θ, the interval between the grating and CCD was L.  

 

 

 

 

 

 

 

Figure 43 The schematic diagram of the optical length with tilted grating. 

Wavefront W and the incident ray angle α have a relation as  

 
ௗௐ(௫బ)

ௗ௫బ
= 𝑠𝑖𝑛൫𝛼(𝑥଴)൯, (93) 

where x0 is the x coordinate on the grating without tilt. According to Bragg's law, the 

diffraction angle β - θ satisfies Equation (94). 

 𝑝{𝑠𝑖𝑛(𝛽 − 𝜃) − 𝑠𝑖𝑛(𝛼 − 𝜃)} = 𝑚𝜆, (94) 

where p is a grating pitch, m is diffraction number. In addition, since the phase shift occurs 

when the ray is diffracted, the following integration value is added.  

 𝑊ௗ௜௙ = ∫ 𝑠𝑖𝑛(𝛼 − 𝜃) − 𝑠𝑖𝑛(𝛽 − 𝜃)𝑑𝑥ଵ/𝑐𝑜𝑠 (𝜃). (95) 

Assuming that the ray passes through the point R, the coordinates (x1, z1) of the intersection 

Q with the grating are expressed by 

 𝑥ଵ =
௫బ

ଵା௧௔௡(ఈ)௧௔௡(ఏ)
. (96) 

 𝑧ଵ = 𝑥ଵ𝑡𝑎𝑛(𝜃). (97) 

The x coordinate x2 of the ray on the CCD when there is no grating is calculated by 

 𝑥ଶ = 𝑥଴ + 𝐿𝑡𝑎𝑛(𝛼). (98) 

Light diffracted by the grating passes through the x coordinate x3 on the CCD which is 

grating

wavefront

θ

𝑧 = −
𝑥 − 𝑥଴

𝑡𝑎𝑛 𝛼

𝑧 = 𝑥𝑡𝑎𝑛 𝜃α

βR(x0,0)

Q(x1, z1)W(x0)

S(x2, -L) T(x3, -L)

L

P

1st order
0 order

CCD
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expressed by 

 𝑥ଷ = 𝑥ଵ + (𝐿 + 𝑧ଵ)𝑡𝑎𝑛(𝛽). (99) 

The optical path lengths of PQ and QT are expressed by 

 𝑊௉ொ = 𝑊(𝑥଴) − ඥ(𝑥ଵ−𝑥଴)ଶ + 𝑦ଵ
ଶ. (100) 

 𝑊ொ் =
(௅ା௬భ)

௖௢௦(ఉ)
. (101) 

Finally, the wavefront Wm of the 0, ±1st order diffraction ray on the CCD is calculated by 

 𝑊௠(𝑥ଷ, −𝐿) = 𝑊௉ொ + 𝑊ொ் + 𝑊ௗ௜௙, (102) 

where m is diffraction number. We calculated the intensity of three beams interference 

using wavefront W-1, W0, W1, and retrieved the wavefront by FT method. Figure 44 shows 

the wavefront error when the tilts of the grating are from -3 mrad to 3 mrad,  

 

 

 

 

 
Figure 44 Wavefront error due to the grating tilt. (a) -3 mrad, (b) -1 mrad, (c) 0 

mrad, (d) 1 mrad and (e) 3 mrad. 
 

 

 

 

 

 

 

 

 

Figure 45 RMS wavefront error due to the grating tilt. 

From Figure 45, the wavefront error sensitivity due to the grating tilt was estimated to be  

2.4 nmRMS / mrad, which means the test shape error sensitivity is 1.2 nmRMS / mrad. 
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5.1.4. Rotation error of the grating 

       We estimated the wavefront error when the grating is rotated φ radian with respect 

to the CCD. In this case, the retrieved x-shear wavefront error δWx,φ is expressed by 

𝛿𝑊௫,ఝ(𝑥, 𝑦) ≈ 𝑊(𝑥 + a × cos(𝜑) , 𝑦 + a × sin(𝜑)) − 𝑊(𝑥, 𝑦) 

≈ 𝑎
𝜕𝑊(𝑥, 𝑦)

𝜕𝑥
cos(𝜑) + 𝑎

𝜕𝑊(𝑥, 𝑦)

𝜕𝑦
sin(𝜑) 

 ≈ 𝑎
డௐ(௫,௬)

డ௫
−

௔

ଶ

డௐ(௫,௬)

డ௫
𝜑ଶ + 𝑎

డௐ(௫,௬)

డ௬
𝜑 (103) 

where a is the amount of shear, and the following approximations are applied. 

 𝑐𝑜𝑠(𝜑) ≈ 1 − 𝜑ଶ (104) 

 sin(𝜑) ≈ 𝜑 (105) 

The wavefront measurement error ∆Wφ obtained by integrating Equation (103) is 

expressed by 

 ∆𝑊ఝ(𝑥, 𝑦) = −
ଵ

ଶ
𝜑ଶ𝑊(𝑥, 𝑦) + 𝜑 ∫

డௐ(௫,௬)

డ௬
𝑑𝑥 (106) 

If the rotation error φ is small enough, the first term is negligible. Assuming the wavefront 

reflected from the Alvarez surface, wavefront measurement error ∆Wφ is calculated by 

∆𝑊ఝ(𝑥, 𝑦) ≈ 𝜑 න
𝜕

𝜕𝑦
൜2𝐴 ൬

1

3
𝑥ଷ + 𝑥𝑦ଶ൰ − 𝑐ଵ𝑥 − 𝑐ଶ𝑦ൠ 𝑑𝑥 

= 𝜑 න 4𝐴𝑥𝑦 − 𝑐ଶ𝑑𝑥 

             = 𝜑(2𝐴𝑥ଶ𝑦 − 𝑐ଶ𝑥), (107) 

where c1, c2 are the coefficients of tip-tilt. Assuming the area of x > 1 and y > 1, which is 

4 × 4 mm2 at the corner of the Alvarez surface, RMS wavefront error of Equation (107) 

∆𝑊ఝ,௥௠௦ becomes 

 ∆𝑊ఝ,௥௠௦ = 4.4 × 10ସ𝜑, (108) 

where the unit is nmRMS, the unit of φ is radian. To make the RMS wavefront error less 

than 6 nmRMS, rotation error of the grating must be less than 0.14 mrad. 
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5.2. Stitching 

       In stitching, there are some errors due to a random error, a system error, and a 

spike error. Each wavefront error is estimated by simulation below. 

 

5.2.1. Random error 

       The wavefront measured by the Talbot is considered to have a random error due 

to a CCD noise and so on. Therefore, we estimated the stitching error due to a random error 

by adding it to every sub-aperture data and stitching them. We calculated rms error of the 

test surface in stitching five times. Figure 46 shows the stitching error when 2, 6, and 10 

nmPV random noise are added, respectively. 

 

 

 

 

 

 

 
Figure 46 Stitching error due to a random error.  

(a) 2 nmPV, (b) 6 nmPV and (c) 10nmPV.  

Figure 47 shows stitching rms error σrandom_err due to a random error calculated by average 

of five results rms error. 

 

 

 

 

 

 

Figure 47 Stitching rms error due to a random error. 
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The stitching error sensitivity due to a random error was estimated to be 0.50 nmRMS / 

nmPV. 

 

5.2.2. System error 

       Since there are errors in the Talbot interferometer and the optical system, there is 

also an error in the measured wavefront. Therefore, we added the error as a system error to 

each sub-aperture data and estimated by simulation how the system error affected the result 

of stitching. Figure 48 shows the system error, and Figure 49 shows stitching shape error 

due to the system error. 

 

 

 

 

 

 

Figure 48 System error. (a) 2.1 nmRMS, (b) 4.6 nmRMS and (c) 9.7 nmRMS. 

 

 

 

 

 

 

 

Figure 49 Stitching error due to the system error (Figure 48). 

Figure 49 indicates the stitching RMS error is larger than the input system RMS error. This 

is thought to be because the system error is overcorrected as an alignment error, thereby 

increasing the stitching error. Figure 50 shows stitching RMS error σsys_err due to the system 

error. 
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Figure 50 Stitching rms error due to a system error. 

The stitching error sensitivity due to a system error was estimated to be 5.6 nmRMS / 

nmRMS. 

 

5.2.3. Spike noise 

       Assuming that there is a spike error on the measured shape (wavefront), an error 

of 0.36 mm square was randomly added to each sub-aperture to estimate the stitching error. 

Figure 51 shows stitching shape error due to the spike error. 

 

 

 

 

 

 
Figure 51 Stitching error due to a spike error.  

(a) 10 nm, (b) 20 nm and (c) 30 nm. 

Figure 52 shows stitching RMS error σspike_err due to a spike error calculated by average of 

five results RMS error.  
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Figure 52 Stitching error due to a spike error. 

The stitching error sensitivity due to a spike error was estimated to be 0.41 nmRMS / nm. 

 

5.3. Retrace error  

       As shown in Figure 4, the optical system consists mainly of two achromatic lenses 

of the same design and a beam splitter. These optical products have wavefront aberrations 

due to the alignment error, homogeneity, and the surface shape error. The retrace error is 

an error generated due to the influence of the above error caused by the ray reflected by the 

test sample passing through a different optical path from the outgoing path. The retrace 

error is divided into a coordinate error and an angle error. The coordinate error is that the 

ray coordinates on the sample are different from the ray coordinates on the sensor. As the 

sensor and the sample are conjugate with each other, the coordinate error should be small 

when the test sample is not deviated largely from the flat plane. However, when the 

deviation of the test sample from the flat plane is large, the coordinate error is not negligible. 

The angle error is an error that the ray angle reflected by the test sample does not coincide 

with the angle incident on the sensor. Raytracing is a direct solution to correct the retrace 

error. The sample shape is obtained by calculating the ray angle from the wavefront 

measured by the sensor, raytracing from the sensor to the test sample through the optical 

system, calculating the ray angle (slope) and the coordinate on the sample surface, and 

integrating the ray slope. However, this method requires all the parameters of the optical 
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system including the error, which is almost impossible. Since it is difficult to know all the 

parameters, it is also difficult to reduce the retrace error enough. On the other hand, a 

calibration method of measuring the reference surface is also conceivable. By measuring 

the plain or spherical reference surface which has already been measured with other method 

and subtracting it from the measurement data of the test sample, the system error is 

calibrated. However, it is valid only when the test sample shape is close to the reference 

surface shape because the optical path is different and the wavefront error is also different 

if the test sample and the reference are different. Hence several calibration methods are 

known for these retrace errors [64]. Evans [65] proposed a correction method with multiple 

measurements of a tilted flat. Although this method may be simple, the coordinate error 

cannot be calibrated. Murphy [66] proposed a calibration method with the third-order 

aberration theory. It becomes difficult to characterize the optical system error when there 

are many lenses in the optical system. The calibration method with the perturbation theory 

is presented by Osten [35]. The optical system is characterized by the perturbation based 

on priori measurements with the reference surface at various locations. Limitation of this 

method is mechanical stability. Greivenkamp [67] supposed reverse optimization that the 

optical system was optimized by iterative raytracing calculation so that it is consistent with 

multiple priori measurements. 

       We verified how much the retrace error can be reduced by raytracing and Evans’s 

method using the optical design software Zemax. As shown in Figure 53 and Table 4, an 

optical system consisting of a beam splitter and two achromatic lenses was designed. 

Design values of achromatic lenses, which we purchased, were downloaded from the 

website [68].  

 

 

 

 



61 
 

 

 

 

 
 
 
 
 

Figure 53 Optical design. (a) optical path from the light source to the test surface  
and (b) optical path from the test surface to the sensor. 

Table 4 Lens data of the optical system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The test shape f is the Alvarez lens, which is expressed by a white line in Figure 54. It is 

expressed by 

 𝑓(𝑥) =
஺√ଶ

ଷ
(𝑥 + 4.23)ଷ − 𝑥𝑡𝑎𝑛(

ଶ.଴ଽ

ଵ଼଴
), (109) 

where A is 0.0012 mm-2, the second term indicates the tilt of the test sample in stitching. 
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Figure 54 Test shape for simulation of calibration. 

We calculated the ray coordinate X0 and angle θ0 on the sensor by raytracing. Next, some 

errors as shown in Table 5 were added to this optical system, and the ray coordinate Xa and 

angle θa on the sensor were calculated by raytracing similarly.  

Table 5 Added system error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A plane was tilted from -3.8 degrees to 3.8 degrees in increments of 0.1 degree to 

implement raytracing, and a table for correcting the angle error was prepared by Equation 

(110) . 

 𝑄൫𝑋, 𝜃௙௟௔௧൯ = 𝜃௙௟௔௧(𝑋)/2 − 𝜑, (110) 

where X is the ray coordinate on the detector, φ indicates the tilt angle of the flat plane, and 

number Error
2 ∆z = 0.01 mm

4
∆x = 0.02 mm

∆θy = 0.005 deg

5 ∆z = - 0.02 mm
6 ∆z = 0.4 mm

7
∆x = - 0.04 mm

∆θy = 0.01 deg

8 ∆z = 0.7 mm
14 ∆z = - 0.7 mm

15
∆x = - 0.04 mm

∆θy = 0.01 deg

16 ∆z = -0.4 mm
17 ∆z = 0.02 mm

18
∆x = 0.02 mm

∆θy = 0.005 deg

20 ∆z =  - 0.01 mm
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θflat is the ray angle on the detector. The angle correction table is shown in Figure 55. 

 

 

 

 

 

 

 

 

Figure 55 Angle correction table. 

The coordinate error ∆X and angle error ∆θ are expressed by  

 ∆X = 𝑋௔ − 𝑋଴, (111) 

 ∆𝜃(𝑋௔) = 𝜃(𝑋௔) − 𝜃଴(𝑋଴), (112) 

where Xa and X0 are ray coordinates on the detector when the optical system has no error 

and the error of Table 5, θ and θ0 are ray angles on the detector when the optical system 

has no error and the error of Table 5. The coordinate error ∆X and angle error ∆θ are shown 

in Figure 56. 

 

 

 

 

 

 

 

Figure 56 Retrace error. (a) coordinate error and (b) angle error. 

As shown in Figure 56, the coordinate error is larger than 40 µm. We calculated the shape 

error ∆z (difference from the nominal shape) from the ray coordinate Xa and ray angle θ by 

X [mm]
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Equation (113) after calculating the ray angle at coordinate X0 using interpolation.  

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃(𝑋଴; 𝑥) − 𝜃଴(𝑋଴; 𝑥)}/2]𝑑𝑥, (113) 

The shape error ∆z is shown in Figure 57.  

 

 

 

 

 

 

 

Figure 57 Shape error. 

The shape error due to the retrace error is about 3.3 μmPV. Next, the angle error was 

corrected by Evans’s method. The Figure 58 shows the shape error when the ray angle is 

calibrated by Equation (114) using the correction table shown in Figure 55. It is to be noted 

that the shape error can be calculated by Equation (115) after calculating the ray angle at 

coordinate X0 using interpolation in the same way as before. 

 𝜃′(𝑋଴) = 𝜃(𝑋଴) − 𝑄(𝑋଴, 𝜃), (114) 

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃′(𝑋଴; 𝑥) − 𝜃(𝑋଴; 𝑥)}/2]𝑑𝑥, (115) 

 

 

 

 

 

 

 

 

Figure 58 Shape error when Evans’s method is applied. 
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The shape error is slightly improved. This result indicates it is not enough to calibrate only 

the angle error. Figure 59 shows the shape error when the coordinate error is assumed to 

be corrected by some method. It is calculated by 

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃"(𝑥) − 𝜃(𝑋଴; 𝑥)}/2]𝑑𝑥, (116) 

where θ” is a ray angle on the sensor calculated by interpolation at the ray coordinate x on 

the test sample. 

 

 

 

 

 

 

 

Figure 59 Shape error when the coordinate error is corrected. 

The shape error was improved but not enough. From above calculation results, it was found 

that in this optical system, the coordinate error affects the measurement shape error more 

than the angle error, and a method for calibrating the coordinate error is necessary. To 

develop the method is a future task. 

 

5.4. Uncertainty 

       Using the results obtained in Chapters 5.1 and 5.2, the measurement error estimate 

without the retrace error is shown in Table 6. 
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Table 6 Error estimation of the freeform measurement. 

 

The measurement error of the freeform surface excluding the retrace error was estimated 

to be 19.6 nmRMS when we assumed that there were errors shown in Table 6.  

Error factor Sensitivity Error
Measurement 

error
Wavefront retrieval error 2.2 nmRMS

CCD noise 0.39 nmRMS / % 3% 1.2 nmRMS
Z error of the grating 1 nmRMS / μm 4 μm 4 nmRMS

Tilt error of the grating 1.2 nmRMS / mrad 2 mrad 2.4 nmRMS
Rotation error of the grating 22 nmRMS / mrad 0. 25 mrad 5.5 nmRMS

Random error 0.5 nmRMS / nmPV 10 nmPV 5 nmRMS
System error 5.6 nmRMS / nmRMS 3 nmRMS 16.8 nmRMS
Spike error 0.41 nmRMS / nm 10 nm 4.1 nmRMS

Total 19.6 nmRMS

Talbot
interferometer

Stitching



67 
 

6. Assembly and alignment 
 

6.1. Talbot interferometer 

       We requested the company whose name is ‘PhotomaskPortal’ to make a cross 

grating shown in Figure 60. The substrate is a fused silica, and the grating is made from 

composition of Cr and CrO3, whose optical density is 0.2. In addition, we requested the 

company whose name is ‘ios Optics’ to coat anti-reflection (R < 0.5% at 633 nm) 

membrane on the other side of Chrome to avoid the stray beam. Dr. Robert A. Hudgins 

diced the fused silica to 2 inches square. 

 

 

 

 

 

 

Figure 60 The schematic of a cross grating. 

The image of the cross grating with microscope is shown in Figure 61. The x and y mean 

pitch of the grating are 80.08 µm, and 79.99 µm, respectively.  

 

 

 

 

 

 
Figure 61 Image of the cross grating with microscope. (a) transmission image, (b) x 

cross section and (c) y cross section.  

The picture with white light interferometer (Newview, Zygo corporation) is shown in 

Figure 62. As you can see, the thickness of the Chrome is 55 nm. Both Figure 61 and Figure 

Cr and CrO3

Fused silica

80 µm

Anti- Reflection 
coating at 633 nm

3 mm

50.8 mm

50.8 mm
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62 were captured by Gregory W. Caskey. 

 

 

 

 

 

 

 
Figure 62 Image of the cross grating with white light interferometer. (a) image and 

(b) x cross section. 

As a cover glass in front of the CCD to avoid the dust affects the measurement accuracy, 

we used a cover glassless 1/2-inch CCD camera whose product name is DMK 41BU02.H 

made by ‘The Imaging Source’. A CCD chip named ICX205AL is made by ‘Sony 

corporation’. The main specification is shown in Table 7. 

Table 7 CCD specification. 

 

 

 

From the error estimate shown in Table 6, the grating tilt error with response to the CCD 

must be less than 2 mrad, and the rotation error of the grating must be less than 0.28 mrad. 

Furthermore, the interval between grating and CCD must be set within 10.114 mm ± 2 µm. 

To realize this condition, we assembled them using Fizeau interferometer (Verifire AT 1000, 

Zygo corporation). The assembly procedure is (1) tip-tilt adjustment of the CCD, (2) 

rotation adjustment of the grating, (3) tip-tilt adjustment of the grating, (4) z position 

adjustment of the grating. Regarding tip-tilt adjustment of the CCD, as is shown in Figure 

63, we set the CCD in the collimated beam from the Fizeau interferometer and adjusted the 

tip-tilt of the CCD so that the fringe number of the interferogram was small. 

 

x [µm]x [µm]

y [µm]

39.8

39.4 39.5

39.6 39.6

z [nm][nm]

(b) (a)

Pixel number H: 1,280 px, V: 960 px
Pixel size H: 4.65 µm, V: 4.65 µm
Chip size H: 7.6 mm, V: 6.2 mm
Dynamic range 8 bit
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Figure 63 Setup for tip-tilt adjustment of the CCD. 

The fringe and form of the CCD obtained at that time are shown in Figure 64. 

 

 

 

 

 

 

 

Figure 64 CCD measurement with Fizeau interferometer. (a) Fringe and (b) form. 

The tilt amount of the CCD form is 800 nmPV, which is 0.14 mrad when it is converted 

into an angle. It is much lower than the error budget (2 mrad) shown in Table 6. You can 

see from Figure 64 (b) the CCD has a waviness of about 1.5 µmPV. 

       Regarding (2) rotation adjustment of the grating, as is shown in Figure 65. the 

grating mounted by 3-axis adjuster (50/50.8 mm Sq. Kinematic Mount, 3 Screws, Edmund 

Optics Inc) was set in front of the CCD, and the θz (φ) rotation angle of the grating was 

adjusted several times by looking at the image of the CCD so that the angular deviation 

with respect to the CCD became smaller.  

 

 

 

CCD

Fizeau
Interferometer
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Figure 66 shows the magnified intensity of the CCD only in the y direction. The grating 

(Talbot) image is seen. 

 

 

 

 

 

 

Since the grating image is shifted by about 1 pixel from the left side to the right side, the 

rotation angle θz is calculated by 

 𝜃௭ =
ଵ

ଵଶ଴଴
= 0.83 mrad. (117) 

The rotation angle θz was larger than the error budget (0.14 mrad). However, we will make 

it smaller than 0.14 mrad by repeating more trial and error or using a rotation stage of high 

resolution. 

       Regarding (3) tip-tilt adjustment of the grating, we similarly adjusted tip–tilt of 

the grating by looking at the fringe of the Fizeau interferometer as is shown in Figure 65. 

The interference fringe and form of the grating are shown in Figure 67. The waviness of 

the CCD can be seen in Figure 67 (a) despite measuring a grating because the light passes 

Grating

Fizeau
Interferometer

CCD

Figure 65 Setup for rotation and tip-tilt adjustment of the grating. 

Figure 66 Magnified intensity only in the y direction. 
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Figure 67 Grating measurement with Fizeau interferometer. (a) Fringe and (b) 

form. 

through the grating. Since the length of the diagonal in Figure 67 is longer than 8 mm and 

the form is 250 nmPV, the inclination angle of the grating is calculated by 250 nm / 8 mm 

= 31 µrad, which is much less than error budge (2 mrad) shown in Table 6.  

       Regarding (4) z position adjustment of the grating, intensities when the CCD is 

driven in the -z direction every 1/4 inch are shown in Figure 68 together with the calculation 

result using the angular spectrum propagation described in Chapter 3.2.2.  

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 68 Intensity comparison between calculation and experiment with CCD 
driven in the z-direction. 
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We see the clear grating image when the distance between the grating and the CCD is 10.16 

mm which is the half Talbot distance, and it collapses as the grating is moved away from 

the position. In addition, the calculation and experiment correspond to each other very well.  

These results show that the grating quality is reasonable and is creating the expected 

diffraction patterns. 

       We tried three methods to measure the distance between the grating and the CCD. 

One is the method using wavelength-shifting interferometer (VerifireTM MST, Zygo 

corporation). In MST, by acquiring a plurality of interference data by sweeping the 

wavelength and Fourier transforming data on each pixel with respect to three-dimensional 

interference data (z is a wavelength), it is possible to simultaneously measure the intervals 

of a plurality of planes aligned in the optical axis direction. We thought that this method 

was best because it was a direct solution, but the signal from the CCD was too weak to 

measure the interval. We used the Fizeau interferometer in the second method. As shown 

in Figure 69, first, the CCD and the grating were tilted together, then the reflected light was 

measured with Fizeau interferometer to obtain the amount of tilt, and the Talbot image was 

captured with CCD. Finally, the amount of tilt of the wavefront was calculated from the 

Talbot image. Since the wavefront by the Talbot interferometer is proportional to the shear 

amount and the shear amount is proportional to the distance between the grating and CCD, 

the distance can be obtained by comparing the amount of tilt obtained by the Fizeau 

interferometer and the Talbot interferometer. 

 

 

 

 

 

 

 

Grating

Fizeau
Interferometer

CCD

Figure 69 Setup for measuring the distance between the grating and the CCD. 
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Figure 70 shows the experimental results of the tilt θy calculated from the measured 

wavefront. Tilt amount of the Talbot image is calculated assuming the distance between the 

grating and the CCD is half Talbot distance. 

 

 

 

 

 

 

 

 

Figure 70 (a) presents that the amount of tilt of the Fizeau interferometer and the Talbot 

interferometer are roughly coincident, which means that the distance between the grating 

and the CCD is close to a half Talbot distance. Figure 70 (b) shows the difference between 

the tilt amount of Fizeau interferometer and the Talbot interferometer. They differ more 

than 1 %, which means more than 100 µm error. This error is much larger than the error 

budget (4 µm). Since this main cause is considered to be air fluctuation, it is expected that 

it can be reduced by increasing the number of measurement with Fizeau interferometer. 

However, as we thought the measurement error would be still large, we tried the third 

method. 

       The third method uses both Fizeau interferometer and a laser displacement sensor 

(Agilent 5529A Dynamic Calibrator, Agilent technology). Regarding the principle, as 

shown in Figure 71, it can be considered that there is a point light source at the position of 

the cat's eye, and the wavefront W on the CCD is expressed by Equation (118) using the 

distance Lm between the cat's eye and the grating, and the distance LT +∆L between the 

grating and the CCD. 

W(𝑥, 𝑦) = ඥ𝑥ଶ + 𝑦ଶ + (𝐿௠ + 𝐿் + ∆𝐿)ଶ − (𝐿௠ + 𝐿் + ∆𝐿) 

[mrad] [mrad]

(a) (b)
Figure 70 Experimental result of the tilt wavefront. (a) tilt amount measured by 

Fizeau interferometer and Talbot interferomter, and (b) difference between the results 
of Fizeau interferometer and Talbot interferometer. 
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≈
𝑥ଶ + 𝑦ଶ

2(𝐿௠ + 𝐿் + ∆𝐿)
 

         ≈
௫మା௬మ

ଶ(௅೘ା௅೅)
ቀ1 −

∆௅

(௅೘ା௅೅)
ቁ, (118) 

where LT is a half Talbot distance, 10.114 mm. In the Talbot interferometer, the wavefront 

is retrieved by modal method described in Chapter 3.4.2. using Fringe Zernike polynomial. 

The fourth term Z4 of the Fringe Zernike polynomial is expressed by  

 𝑍ସ(𝑥, 𝑦) = 2
௫మା௬మ

ோమ
− 1, (119) 

where R is an analysis radius. When the distance between the grating and the CCD is 

shifted by ∆L, the shear amount becomes p(Lt+∆L)/Lt. Therefore, assuming the obtained 

coefficient of the Fringe Zernike polynomial is Cm, the coefficient Ca of the true value is 

represented by  

 

 

 

 

 

 

 

Figure 71 Model for measuring the distance between a grating and a CCD.  

 

𝐶௔ = 𝐶௠ ൬
𝐿்

𝐿் + ∆𝐿
൰ 

= 𝐶௠ ൬
1

1 + ∆𝐿/𝐿்
൰ 

 ≈ 𝐶௠ ቀ1 −
∆௅

௅೅
ቁ. (120) 

If the distance Lm between the cat’s eye and the grating is known, the distance ∆L is 

Lm

Grating

LT+∆L

CCD

Cat’s eye 
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obtained by comparing the theory (Equation (118)) with measured coefficient (Eqs. (119) 

- (120)). Concretely, as we move the Talbot interferometer multiple times, which is 

represented by number i, we can obtain ∆L that minimizes Equation (121). 

෍ ቊ
1

2൫𝐿௠,௜ + 𝐿்൯
ቆ1 −

∆𝐿

൫𝐿௠,௜ + 𝐿்൯
ቇ −

2𝐶௠,ସ,௜

𝑅ଶ
൬1 −

∆𝐿

𝐿்
൰ቋ

ଶ

௜

 

= ෍ ൝
1

2(𝐿௠.௜ + 𝐿்)
−

2𝐶௠,ସ,௜

𝑅ଶ
− ൭

1

2൫𝐿௠,௜ + 𝐿்൯
ଶ −

2𝐶௠,ସ,௜

𝐿்𝑅ଶ
൱ ∆𝐿ൡ

ଶ

௜

 

 ∑ {𝐴௜ − 𝐵௜∆𝐿}ଶ
௜ → 𝑚𝑖𝑛. (121) 

where  

 𝐴௜ =
ଵ

ଶ(௅೘.೔ା௅೅)
−

ଶ஼೘,ర,೔

ோమ
. (122) 

 𝐵௜ = ൬
ଵ

ଶ൫௅೘,೔ା௅೅൯
మ −

ଶ஼೘,ర,೔

௅೅ோమ
൰. (123) 

In order to minimize Equation (121), it suffices that the partial differential with ∆L is zero, 

so that ∆L can be obtained by 

 ∆𝐿 =
∑ ஺೔஻೔೔

∑ ஻೔
మ

೔
. (124) 

In the experiment, as is shown in Figure 72, we measured the distance ∆L by measuring 

the distance Lm with the laser displacement sensor and the spherical wavefront with Talbot 

interferometer. Transmission sphere lens whose F number is 3.5 was used for making 

spherical wavefront. The grating is attached on the bread board, and CCD is attached on 

the z-stage on the bread board. As is shown in Figure 72 (a), the grating was set at the cat’s 

eye position by moving the bread board so that the fringe of the Fizeau interferometer 

became null. Next, the corner cube reflector was attached to the Talbot interferometer (z-

stage) and prepared so that the driving amount in the z-direction could be measured with a 

laser displacement sensor. After that, we moved the Talbot interferometer (bread board) in 

the z-direction multiple times and measured the driving amount with the laser displacement 

sensor, and the spherical wavefront with the Talbot interferometer. The measurement result  
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Figure 72 Setup to measure the distance between the grating and the CCD. (a) cat’s 

eye position and (b) Lm shift in the z-direction. 

is shown in Figure 73 (a). The x-axis is moving amount Lm of the Talbot interferometer, 

which is measured with the laser displacement sensor, and the y-axis is the coefficient of 

Zernike 4-th term whose analysis radius is 2 mm. The blue line is a value converted into 

the coefficient of Zernike 4-th term from the distance Lm.  

 

 

 

 

 

 

 
Figure 73 Experimental result of the spherical wavefront. (a) Coefficient of Zernike 
4-th term and (b) Difference between the results of displacement sensor and Talbot 

interferometer. 

Figure 73 (b) shows the difference between the results of the Talbot interferometer and the 

C4 [µm]

Lm [mm]

ΔC4 [µm]

Lm [mm]

(a) (b)

CCD

Grating

Fizeau 
Interferometer

(a)

Corner cube reflector

He-Ne laser

(b)

Lm
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displacement sensor. Calculating Equation (124), we obtained the result that ΔL was 

+190.9 µm. Therefore, we moved the CCD by 190 µm and brought it closer to the grating. 

We repeated the measurement and move several times, we finally obtained the results 

shown in Figure 74. 

 

 

 

 

 

 

 

 

 

Calculating Equation (124) from the results of Figure 74 (a), we obtained the result that ΔL 

was – 7.0 µm. This value is still larger than the error budget, but it is not necessary to set 

the distance between the grating and CCD to the exact half Talbot distance. If the distance 

ΔL is known, the wavefront can be obtained accurately by changing the amount of shear. 

Figure 75 shows the variation of measured distance δΔL when ΔL is taken into 

consideration.  

 

 

  

 

 

 

   

 

C4 [µm]

Lm [mm]

ΔC4 [µm]

Lm [mm]
(a) (b)

Figure 74 Experimental result of the spherical wavefront. (a) Coefficient of Zernike 
4-th term and (b) Difference between the results of displacement sensor and Talbot 

interferometer. 

Lm [mm]

δΔL [µm]

Figure 75 Variation of measured distance. 
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 The variation of measured distance is 13.8 µmRMS, which is larger than the error budget 

(4 µm). This main reason is thought to be the Abbe error because we moved the Talbot 

interferometer manually without z-stage due to poor stroke, and the corner cube reflector 

could not be set on the line of the Talbot interferometer. The Abbe error can be estimated 

from the geometry. The corner cube reflector and the laser displacement sensor are 1 m 

apart, and the reflected beam can be detected even if the beam deviates by about 2.5 mm. 

Therefore, the maximum inclination error over the z motion range is 1.25 mrad. Since the 

CCD and the corner cube reflector are 20 mm apart, the Abbe error is the product of this 

distance and the angle, resulting in a measurement error of 25 µm at most. It will be more 

accurate if the Abbe error is reduced by using a long stroke stage and setting the corner 

cube reflector on the line of the Talbot interferometer. 

       The picture of the Talbot interferometer is shown in Figure 76. 

 

 

 

 

 

 

 

 

6.2. Optical system 

       The optical system shown in Figure 4 is mainly composed of a cube beamsplitter 

and two same achromatic lenses. There is an anti-reflective coating on each surface to avoid 

the stray light. In this Chapter, we introduce how to assemble the optical system. The 

procedure is described below.  

       First, as is shown in Figure 77, the tip-tilt of the Talbot interferometer is adjusted 

so that the fringe of Fizeau interferometer is null. Then, as is shown in Figure 78, the tip-

Figure 76 Talbot interferometer. 
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tilt of the beam splitter is adjusted so that the fringe of Fizeau interferometer is null. Here 

both beams from the front surface and the back surface of the beam splitter is observed. 

Since the ray from the test sample does not pass the front surface of the beam splitter, we 

can adjust it with the beam from the back surface. We can recognize which beam comes 

from the back surface because its power is weaker than another in the Alignment mode of 

the Fizeau interferometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, as is shown in Figure 79, the tip-tilt of the beam splitter and the Talbot interferometer 

are adjusted by looking at the interference fringe between the reflected light from the 

grating and the reference light. And a plane mirror is set up, and tip-tilt is adjusted by 

looking at the interference fringes of the reflected light from the plane mirror and the 

reference light. Next, as shown in Figure 80, the tip-tilt of the achromatic lens is adjusted 

by looking at the interference fringe between the reflected light from the plain mirror and 

the reference light. Z position of the achromatic lens is adjusted so that the beam is focused 

on the CCD, and XY position is adjusted so that the beam comes to the center of the CCD. 

Figure 77 Tip-tilt adjustment of the Talbot interferometer. 

Figure 78 Tip-tilt adjustment of the beam splitter. 

Grating

Fizeau 
Interferometer

Beam splitter
CCD

Grating

Fizeau 
Interferometer

CCD
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As is shown in Figure 81, a plane mirror is set up, and tip-tilt is adjusted by looking at the 

interference fringe between the reflected light from the plane mirror and the reference light. 

 

 

 

 

 

 

 

As is shown in Figure 82, another achromatic lens is set up and tip-tilt is adjusted by 

looking at the interference fringe between the reflected light from the plane mirror and the 

Figure 79 Tip-tilt adjustment of the plane mirror. 

Achromatic lens

Figure 80 Alignment of the achromatic lens. 

Plane mirror

Figure 81 Tip-tilt adjustment of the plane mirror. 

Plane mirror
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reference light.  

 

 

 

 

 

 

 

As is shown in Figure 83, the plane mirror is removed, and the XYZ position of the 

achromatic lens is adjusted by looking at the interference fringe between the reflected light 

from the grating and the reference light.  

 

 

 

 

 

 

 

The picture of the optical system is shown in Figure 84.  

 

 

 

 

 

 

 

 

Achromatic lens

Figure 82 Tip-tilt adjustment of another achromatic lens. 

Figure 83 Alignment of another achromatic lens. 

Figure 84 Optical system. 
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The variable aperture is used for rough alignment of the test sample. It is because as 

discussed in Chapter 3.7, this Talbot interferometer cannot measure the wavefront whose 

tilt is more than 4 mrad, and it is difficult to align the test sample roughly. A variable 

aperture is placed in front of the grating, and the aperture size is reduced in the case of 

alignment. It enables us to align the test sample by detecting the position of the transmitted 

light with CCD, which is similar to Alignment mode in Fizeau interferometer.     
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7. Conclusion and future work 
 

       In this thesis, we proposed a system for measuring freeform surface by combining 

the Talbot interferometer and the stitching technique and verified its feasibility by 

simulation. For the Talbot interferometer, theory was introduced, and simulation was 

performed to confirm that the wavefront can be retrieved from the Talbot image. We also 

clarified the specifications and accuracy with error estimation. For the stitching technique, 

simulation was performed, and it was confirmed that even if there was an alignment error 

of the test sample in sub-aperture measurement, it could be estimated and reduced. 

Assuming the Alvarez lens with the shape of 400 μmPV, we estimated the measurement 

error of both the Talbot interferometer and the stitching, which was 19.6 nmRMS except 

for the retrace error. The stitching error due to the system error is the dominant source of 

error. It may be improved by changing the lattice design. Otherwise, it is necessary to 

develop more robust stitching algorithm. 

       We investigated the retrace error by simulation using the optical design software 

Zemax and tried the Evans’s method to reduce the retrace error, however, it turned out to 

be difficult to make the retrace error small. In particular, it was found that some method to 

reduce the coordinate error is necessary.  

       In the experiments, the cross grating and the windowless CCD were accurately 

placed using the Fizeau interferometer and a displacement sensor, and a Talbot 

interferometer was assembled. In addition, we suggested the way to assemble the optical 

system using Fizeau interferometer. It is a future work to measure the Alvarez lens surface 

which is one of freeform surfaces, and to verify measurement accuracy. 

       Since this system is high dynamic range, fast, compact, and ease to use, it will be 

beneficial to inspect various freeform optics.  
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Appendix A. Calculation of five beams interference 
 

       When the electric fields of 0, ±1 order diffraction beams are respectively 

expressed by Eqs. (19) - (23), the intensity of their five beams interference I(x,y) is 

calculated by 

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = ቚ𝐸଴(𝑥, 𝑦) + 𝐸1,0,𝑗𝑥

(𝑥, 𝑦) + 𝐸−1,0,𝑗𝑥
(𝑥, 𝑦) + 𝐸0,1,𝑗𝑥

(𝑥, 𝑦) + 𝐸0,−1,𝑗𝑥
(𝑥, 𝑦)ቚ

ଶ

 

= 𝐴଴
ଶ+4𝐴ଵ

ଶ + 2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥 − 𝑎, 𝑦) −
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥 + 𝑎, 𝑦) +
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) −
𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) +
𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥 + 𝑎, 𝑦) +

2𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦 − 𝑎) − 𝑊(𝑥, 𝑦 − 𝑎) +

2𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) +

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) +

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 + 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) −

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 + 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) −

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨ 
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~𝐴଴
ଶ+4𝐴ଵ

ଶ + 2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 −

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ

−
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
−

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎 −

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−2𝑎 ቆ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
+

𝑎ଶ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
ቇ +

2𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−2𝑎 ቆ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
+

𝑎ଶ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
ቇ +

2𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
+

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
+

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
+

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
+

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉ 
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+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ𝑘 ቄ

ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
−

ௗௐ(௫,௬)

ௗ௬
𝑎 −

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
−

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗

𝑥
ቁ +

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗

𝑦
ቁቅቃ,                               (125) 

where jx, jy indicate the number of the phase shift in the x-direction and y-direction, 

respectively. On the way to develop the above equations, the following approximations are 

used. 

 𝑊(𝑥 + 𝑎, 𝑦)~𝑊(𝑥, 𝑦) +
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
, (126) 

𝑊(𝑥 − 𝑎, 𝑦)~𝑊(𝑥, 𝑦) −
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
, (127) 

𝑊(𝑦 + 𝑎, 𝑦)~𝑊(𝑥, 𝑦) +
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
, (128) 

𝑊(𝑥 − 𝑎, 𝑦)~𝑊(𝑥, 𝑦) −
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
. (129) 

We assume 

  𝐵௫ = 𝐴଴𝐴ଵ𝑐𝑜𝑠 ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
ቃ, (130) 

  𝐵௬ = 𝐴଴𝐴ଵ𝑐𝑜𝑠 ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
ቃ, (131) 

  𝛿𝑊௫ = 𝑘 ቄ
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
ቅ −

ଶగ

௣
𝑥, (132) 

 𝛿𝑊௬ = 𝑘 ቄ
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
ቅ −

ଶగ

௣
𝑦. (133) 

The intensity of five beams interference I(x,y) is expressed by 

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = 𝐴଴

ଶ + 4𝐴ଵ
ଶ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௫ −
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

2𝜋

𝑁
𝑗

𝑥
቉ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௫ +
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

2𝜋

𝑁
𝑗

𝑥
቉ 
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+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௬ −
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

2𝜋

𝑁
𝑗

𝑦
቉ 

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௬ +
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

2𝜋

𝑁
𝑗

𝑦
቉ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫ +
2𝜋

𝑁
𝑗

𝑥
ൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬ +

2𝜋

𝑁
𝑗

𝑦
ൠ൨ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ−𝛿𝑊௫ + 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ −

2𝜋

𝑁
𝑗

𝑥
+

2𝜋

𝑁
𝑗

𝑦
቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ−𝛿𝑊௫ − 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ −

2𝜋

𝑁
𝑗

𝑥
−

2𝜋

𝑁
𝑗

𝑦
቉ 

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝛿𝑊௫ + 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ +
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Appendix B. MATLAB Code of a Talbot interferometer 
 

Talbot_sim.m 

% ------------------------------------------------------------------------- 

%% Talbot simulation (one dimension) 

% ------------------------------------------------------------------------- 

clear ;close all 

path(path,'.¥module')  

rad = pi/180; 

%% condition --------------------------------------------------------- 

% phase 

A = 0.5;                        % coefficient of the input wavefront [um] 

ZZ = 16;%-1;                        % Zernike number of the input wavefront 

                                % -1 : Alvarez surface 

lamb = 0.6328;                  % lambda[um] 

H = 64*1; 

n = 4096; 

N = n*H;                        % sampling number 

Lp = 80;                        % lattice pitch of the grating [um] 

p = Lp/8/H/2;                   % sampling pitch [um] 

span = N*p;                     % width of calculation [um] 

x = (-N/2:N/2-1)*p;             % coordinate[um] 

gzi = (-N/2:N/2-1)/span;        % Fourier coordinate  

Nz = 1;                         % Z sampling number 

pz = 500;                       % Z pitch [um] 

Ns = 4;                         % number of phase shift 

Lflag = 0;                      % 0 : cosine transmittance of the grating 
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                                % 1 : rectangle transmittance of the grating 

noise_flag = 0;                 % 0 : No noise 

                                % 1 : add noise 

Anoise = 0.0;                   % noise coefficient [%]                                 

Zerror = 0;                     % Z setting error of the grating [um] 

shft_error = zeros(1,Ns); 

R0 = 2000;                      % analyzation radius [um] 

R1 = 500;                       % extra radius [um] 

k = 2*pi/lamb;                  % wavenumber 

X = x/1e3;                      % x coordinate [mm] 

RR = (R0+R1)/1e3; 

Nt = 1;                         % Talbot number 

                                % 1 : half Talbot distance 

Zp = Nt*Lp^2/lamb+Zerror;       % Z position to calculate [um] 

Zp0 = Nt*Lp^2/lamb;             % Z position of the reference [um] 

xshr = Nt*Lp;                   % amount of shear [um] 

ins = abs(x) < R0;              % analyzation region 

%% grating ------------------------------------------------------- 

if Lflag == 0                   % cosine 

    for j = 1:Ns 

        tmp = 1/2+1/2*cos(2*pi*(x-j*Lp/Ns-shft_error(j))/Lp+eps); 

        Amp(j,:) = tmp;% 

    end 

    clear tmp 

elseif Lflag == 1               % rectangle 

    Amp = ones(Ns,N); 

    nnp = Lp/p/2; 
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    for i = 1:Ns 

        for j = 1:N/(2*nnp)-1 

            Amp(i,1+((j-1)+i/Ns)*2*nnp:((j-1)+i/Ns)*2*nnp+nnp) = 0; 

        end 

    end 

end 

%% Input wavefront 

phase = sperical_Zernike_function(x/R0,ZZ,A); 

% calculate the wavefront outside R0  

ff = sperical_Zernike_function((R0+R1)/R0,ZZ,A); 

dff = (sperical_Zernike_function((R0+R1+0.1)/R0,ZZ,A)-ff)/0.1; 

[ f ] = mild_curve_func( x,ff,dff,R0+R1,100 ); 

% figure;plot(x,f) 

if ZZ ~= -1 

    if ZZ ~= 0 

        phase(abs(x) > R0+R1) = f(abs(x) > R0+R1) ; 

    end 

    if ZZ == 2 

        phase(x < -(R0+R1)) = -phase(x < -(R0+R1)); 

    end  

else 

    [ W1 ] = Alvarez_phase_func( R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3 ,0 ); 

    [ W2 ] = Alvarez_phase_func( R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3 ,1 ); 

    phase = (W1+W2)/2; 

    figure;plot(x*1e-3,phase-8.75);xlim([-R0*1e-3 R0*1e-3]);grid;title('phase[um]') 

end 

for j = 1:Ns 
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    Ea(j,:) = Amp(j,:).*exp(1i*k*phase);        % Ea: electric field on the grating 

end 

E0 = exp(1i*k*phase);                        % E0: electric field of the reference 

on the grating 

clear Amp phase  

%% 

if Nz == 1 

    z = Zp;                                     % z position [um] 

else 

    z = transpose(Zp+(-Nz/2:Nz/2-1)*pz);        % z position [um] 

end 

%% Angular spectrum propagation -------------------------------------- 

for j = 1:Ns 

    FT(j,:) = fftshift(fft(fftshift(Ea(j,:))))/N; 

end 

FT0 = fftshift(fft(fftshift(E0)))/N; 

clear Ea E0 f  

% figure,plot(gzi,abs(FT(j,:)),'.-') 

if Nz == 1 

    kernel = k*z*sqrt(1-(lamb*gzi).^2);             % exponential part 

    for j = 1:Ns 

        FTa(j,:) = FT(j,:).*exp(1i*kernel);         % Angular spectrum 

    end 

    kernel = k*Zp0*sqrt(1-(lamb*gzi).^2); 

    FTa0 = FT0.*exp(1i*kernel); 

else 

    for j = 1:Nz 
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        kernel = k*z(j)*sqrt(1-(lamb*gzi).^2);      % exponential part 

        FTa(j,:) = FT(1,:).*exp(1i*kernel);         % Angular spectrum 

    end 

    FTa0 = FT0.*exp(1i*kernel); 

end 

clear FT FT0 kernel 

%% Selection of evanescent or propagating component 

select = find((1-(lamb*gzi).^2) <= 0);              % select whether propagating<= or 

evanescent> 

if Nz == 1 

    for j = 1:Ns 

        tmp = FTa(j,:); 

        tmp(select) = 0; 

        FTa(j,:) = tmp;                

    end 

    FTa0(select) = 0; 

    % figure,imagesc(x,z(:,1),abs(FTa)),xlabel('x [¥mum]'),ylabel('z [¥mum]');axis tight 

    Et = zeros(Ns,N);                       % Et:  

    for j = 1:Ns 

        Et(j,:) = fftshift(ifft(fftshift(FTa(j,:))))*N; % FFT at the each z position 

    end 

    Et0 = fftshift(ifft(fftshift(FTa0)))*N; % FFT at the each z position 

else 

    Et = zeros(Nz,N); 

    for j = 1:Nz 

        tmp = FTa(j,:); 

        tmp(select) = 0; 
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        Et(j,:) = fftshift(ifft(fftshift(tmp)))*N; % FFT at the each z position 

    end 

    clear FTa 

    FTa0(select) = 0; 

    Et0 = fftshift(ifft(fftshift(FTa0)))*N; % FFT at the each z position 

end 

phasd = atan2(imag(Et),real(Et));           % phase 

Iout = Et.*conj(Et);                        % intensity 

figure;plot(x*1e-3,1e3*Iout(1,:));xlim([-R0/1e3 R0/1e3]);grid 

xlim([1.5 1.76]) 

%% reference wavefront 

phas0 = atan2(imag(Et0),real(Et0)); % wrapped reference wavfront 

[ phas0 ] = unwrap1d_func( phas0 )/k;       % unwrapping 

phas0 = phas0-mean(phas0(ins)); 

figure;plot(x/1e3,phas0) 

clear tmp tmp1 

%% shear wavefront 

dphas0 = zeros(1,N); 

dphas0(1:N-1) = (phas0(2:N)-phas0(1:N-1))/p; 

% figure;plot(x,dphas0); 

%% noise --------------------------- 

maxI = max(Iout(1,N*3/8:N*5/8)); 

Iout = Iout/maxI*1024; 

if noise_flag == 1 

    for i = 1:Ns 

        noise = 0; 

        for j = 1:10 
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            noise = noise+1024*Anoise.*rand(size(Iout(1,:)))/0.5773; 

        end 

        Iout(i,:) = Iout(i,:) + noise/10; 

    end 

    clear noise 

end 

%% wavefront retrieval ---------------------------------------------------- 

if Ns == 1 

    fI = fftshift(fft(fftshift(Iout(1,:)))); 

    % figure;plot(real(fI));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]); 

    figure;plot(log10(abs(fI)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]); 

    % cut the FT data -------------------------------------------------------- 

    ff = zeros(1,N); 

    nr = 128;                       % radius of cutting [pix] 

    nc = N/2+1+round(n*H/(Lp/p));   % location of cutting [pix] 

    ff(N/2+1-nr:N/2+1+nr) = fI(nc-nr:nc+nr); 

    figure;plot(log10(abs(ff)));title('cut Fourier Spectrum');xlim([N/2-1000 N/2+1000]); 

    tmp = fftshift(ifft(fftshift(ff))); 

    dpha = -atan2(imag(tmp),real(tmp)); 

    dpha((abs(x)) > R0+R1) = 0; 

    figure;plot(X,dpha);xlim([-RR RR]);title('wrapped phase[rad]') 

    if dpha(N/2+1) < -pi+0.2 

        dpha(N/2+1) = dpha(N/2+1)+2*pi; 

    end 

    [ dpha ] = unwrap1d_func( dpha );% unwrapping 

    dpha((abs(x)) > R0+R1) = 0; 

    if Lflag == 0 
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        pstn = -0.003955; 

    else 

        pstn = -0.0019735-1.26e-7; 

    end 

    dpha = dpha/k/Lp+pstn; 

     

    [ ph ] = intg1D_func( x,dpha );         % integration 

    tmp = ph-phas0; 

    pst = mean(tmp(abs(x) < R0)); 

    ph = ph-pst; 

else 

    if Ns == 3 

        rdph = atan2(sqrt(3)*(Iout(2,:)-Iout(3,:)),-2*Iout(1,:)+Iout(2,:)+Iout(3,:)); 

    elseif Ns == 4 

        rdph = -atan2(Iout(4,:)-Iout(2,:),Iout(3,:)-Iout(1,:)); 

    elseif Ns == 6 

        rdph = -atan2(sqrt(3)*(Iout(2,:)+Iout(3,:)-Iout(5,:)-Iout(6,:)),... 

            2*Iout(1,:)+Iout(2,:)-Iout(3,:)-2*Iout(4,:)-Iout(5,:)+Iout(6,:)); 

    else 

        phshft = 2*pi/Ns; 

        tmp1 = 0; 

        tmp2 = 0; 

        for j = 1:Ns 

            tmp1 = tmp1+Iout(j,:)*sin(phshft*j); 

            tmp2 = tmp2+Iout(j,:)*cos(phshft*j); 

        end 

        rdph = atan2(-tmp1,tmp2); 
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        clear tmp1 tmp2 

    end 

    [ rdph ] = unwrap1d_func( rdph ); 

    if Lflag == 0 

        pistn = -0.0019775; 

    else 

        pistn = 3.85*1e-6; 

    end 

    rdph = 1/xshr*(lamb/Lp*x+1/k*rdph)+pistn; 

    rdph(abs(x) > R0+R1) = 0; 

    rdph = sin(atan(rdph)); 

    %% integral 

    [ ph ] = intg1D_func( x,rdph ); 

    ph = ph - mean(ph(ins)); 

end 

%% diplay output 

figure;plot(X,phas0,X,ph,'--r'); 

title('wavefront[um]'); 

xlim([-R0/1e3 R0/1e3]);grid;hold off 

dif = 1e3*(ph-phas0);                       % difference [nm] 

dif = dif-mean(dif(ins)); 

[ PV,rms,maxh,minh ] = PV_rms_func( dif(ins)); 

figure;plot(X,dif);        

xlim([-R0/1e3 R0/1e3]);grid;hold off 

title([num2str(PV,3) ' nmPV, ' num2str(rms,3) ' nmRMS']);ylim([-10 10]) 

 

tmp = compensate_wavefront_func(ph,Lp,x);     
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figure;plot(x/1e3,tmp);xlim([-R0/1e3 R0/1e3]); 

ph2 = ph-tmp; 

figure;plot(x/1e3,phas0,x/1e3,ph2);     

title('wavefront[um]') 

xlim([-R0/1e3 R0/1e3]);grid;hold off 

 

dif = 1e3*(ph2-phas0); 

dif = dif-(max(dif(ins))+min(dif(ins)))/2; 

[ PV,rms,maxh,minh ] = PV_rms_func( dif(ins)); 

figure;plot(x/1e3,dif);                     % difference of output 

xlim([-R0/1e3 R0/1e3]);grid;hold off;ylim([-15 015]) 

title([num2str(PV,3) ' nmPV, ' num2str(rms,3) ' nmRMS']); 

 

%% end of this file 

% programed by Yasunori Furukawa in 2017.06.07 

 

function [ W ] = Alvarez_phase_func( R0,x,x0,x1,flag ) 

%% ----------------------------------------------------- 

% Output the wavefront reflected from the Alvarez surface in stitching 

 

% W         : wavefront [um] 

 

% R0        : analyzation radius [mm] 

% x         : x coordinate [mm] 

% x0        : minimum analyzation coordinate [mm] 

% x1        : maximum analyzation coordinate [mm] 

% flag      : 0 = wavefront on x axis  
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%             1 = wavefront on diagonal direction 

%% ----------------------------------------------------- 

 

lamb0 = 15;     % length of the edge [mm]; 

v = 1;          % magnification 

shx = v*R0;     % amount of shear [mm] 

A = 0.0012;     % coefficient [mm-1] 

% wavefront 

if flag == 0 

    RR = 5;                 % radius [mm] 

    B = 1e3*2/3*A;          % coefficient 

    W = B*(v*x+RR-shx).^3; 

elseif flag == 1 

    RR = 5*sqrt(2);         % radius [mm] 

    B = 1e3*2*sqrt(2)/3*A;  % coefficient 

    W = B*(v*x+RR-shx).^3; 

end 

     

ins = abs(x) < R0; 

% remove piston and tilt 

n = 1; 

p = polyfit(x(ins),W(ins),n); 

for j = 1:n+1 

    W = W-p(j)*x.^(n-j+1); 

end 

% calculate the wavefront outside the analyzation area with smooth 

W0 = B*(v*x0+RR-shx).^3-p(1)*x0-p(2); 
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dW0 = 3*B*(v*x0+RR-shx).^2*v-p(1); 

g0 = dW0*lamb0/2/pi*sin((x-x0)*2*pi/lamb0)+W0; 

 

W1 = B*(v*x1+RR-shx).^3-p(1)*x1-p(2); 

dW1 = 3*B*(v*x1+RR-shx).^2*v-p(1); 

lamb1 = 1/dW1*(-lamb0*dW0+2*pi*(W0-W1)); 

g1 = dW1*lamb1/2/pi*sin(2*pi*(x-x1)/lamb1)+W1; 

% substitute the wavefront outside the analyzation area 

W(x < x0) = g0(x < x0); 

W(x < x0-lamb0/4) = -dW0*lamb0/2/pi+W0; 

W(x > x1) = g1(x > x1); 

W(x > x1+lamb1/4) = -dW0*lamb0/2/pi+W0; 

% figure;plot(x,W) 

end 

%% end of this function 

 

function cW = compensate_wavefront_func(W,p,x,y) 

%% -------------------------------------------- 

% compansate the wavefront of Talbot interferometer 

% cW        : compensated wavefront [um] 

% W         : wavefront [um] 

% p         : pitch [um] 

% x         : x coordinate [um] 

%% -------------------------------------------- 

[n1,n2] = size(W); 

if n1 == 1 || n2 == 1 

    W1 = interp1(x,W,x-p,'PCHIP'); 
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    W3 = interp1(x,W,x+p,'PCHIP'); 

    Wdd = W3+W1-2*W;        % second derivative wavefront 

else 

    W1 = interp2(x,y,W,x-p,y,'cubic'); 

    W3 = interp2(x,y,W,x+p,y,'cubic'); 

    Wdd = W3+W1-2*W; 

    W1 = interp2(x,y,W,x,y-p,'cubic'); 

    W3 = interp2(x,y,W,x,y+p,'cubic'); 

    Wdd = Wdd+W3+W1-2*W; 

end 

cW = 1/6*Wdd;     % compansated wavefront [um] 

%% end of this function 

% programed by Yasunori Furukawa on Sep. 26, 2016 

 

function [ intg_data ] = intg1D_func( x,dWx ) 

% ------------------------------------------------------------------------ 

% Integrate the shear wavefront in one-dimension 

 

% intg_data : wavefront [um]     

 

% x         : x coordinate [um] 

% dWx       : shear wavefront 

 

% ------------------------------------------------------------------------ 

 

[n1,n2] = size(dWx); 

NaNflag = zeros(n1,n2);             % NaN data  
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NaNflag(isnan(dWx)) = 1;  

%%  

warning off 

Dx = CalcDelta(dWx, x, 2);                          % difference between two 

data 

%% integration 

intg_data = Integral_func(Dx); 

intg_data = intg_data-mean(intg_data(NaNflag==0));    

intg_data(NaNflag==1) = NaN; 

warning on 

function [ data ] = Integral_func(Dx) 

% ------------------------------------------------------------------------ 

% data  : integrated data 

% Dx    : difference between two data 

% ------------------------------------------------------------------------ 

 

[row, col] = size(Dx); 

data = zeros(row, col); 

cx = col/2+1; 

% add Dx to right half data 

for j = cx+1:col 

    data(j) = data(j-1)+Dx(j-1); 

end 

% add Dx to left half data 

for j = cx-1:-1:1 

    data(j) = data(j+1)-Dx(j); 

end 
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function [ delta ] = CalcDelta(diff, crd, dim) 

% ------------------------------------------------------------------------ 

% calculate the integrated difference between two data 

% diff  : local shear wavefront 

% crd   : x coordinate [um] 

% dim   : 2 when data size is [1,3]  

% ------------------------------------------------------------------------ 

 

if dim == 2   % transpose 

    diff = diff.'; 

    crd = crd.'; 

end 

[row, col] = size(diff); 

delta = zeros(row, col); 

for j = 1:col 

    for i = 1:row-2 

        x = crd(i:i+2,j); 

        y = diff(i:i+2,j); 

        if sum(isnan(y)) == 0                  

            A = [x.^2 x ones(3,1)]; 

            p = A¥y; 

            Q = p(1)/3*x.^3+p(2)/2*x.^2+p(3)*x;     % integrated data 

            if i == 1 

                delta(i,j) = Q(2)-Q(1); 

            else 

                if isnan(delta(i,j))     
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                    delta(i,j) = Q(2)-Q(1); 

                else 

                    delta(i,j) = (delta(i,j)+(Q(2)-Q(1)))/2; 

                end 

            end 

            delta(i+1,j) = Q(3)-Q(2);                    

        else    % when there is NaN data 

            if i == 1 

                delta(i,j) = 0; 

            else 

                if isnan(delta(i,j))     

                    delta(i,j) = 0; 

                end 

            end 

            if i == row-2 

                delta(i+1,j) = 0; 

            else 

                delta(i+1,j) = NaN; 

            end 

        end 

    end 

end 

if dim == 2   % transpose 

    delta = delta.'; 

end 

%% end of this function 
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function [ g ] = mild_curve_func( x,f,df,h,d ) 

% g     : wawvefront outside the analyzation area [um] 

 

% x     : x coordinate [um] 

% f     : wavefront at R0 [um] 

% df    : slope wavefront at R0 [um]  

% h     : extra coordinate [um]  

% d     : width [um] 

 

k = 2*pi/(4*d); 

g = f+df/k*sin(k*(abs(x)-h)); 

g(abs(x) > h+d) = f+df/k; 

g(abs(x) < h) = f; 

 

end 

 

function [ PV,rms,maxh,minh ] = PV_rms_func( data ) 

% ----------------------------------------------- 

% output PV and rms value 

 

% PV            : peak to valley 

% rms           : rms 

% maxh, minh    : max and min value 

 

% data          : data (only effective) 

% ----------------------------------------------- 

maxh = max(max(data)); 
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minh = min(min(data)); 

PV = maxh-minh; 

rms = std(data); 

 

end 

%% end of this function 

 

function W = sperical_Zernike_function(r,Zn,A) 

% W         : wavefront [um] 

 

% r         : normalized coordinate [um] 

% Zn        : number of Fringe Zernike 

% A         : coefficient 

 

switch Zn 

    case 1 

        W = ones(size(r)); 

    case 2 

        W = r; 

    case 4 

        W = 2*r.^2-1; 

    case 9 

        W = 6*r.^4-6*r.^2+1; 

    case 16 

        W = 20*r.^6-30*r.^4+12*r.^2-1; 

    case 25 

        W = 70*r.^8-140*r.^6+90*r.^4-20*r.^2+1; 
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    otherwise 

        W = 0; 

end 

W = A*W; 

end 

 

function [ unwrapped_data ] = unwrap1d_func( data ) 

% unwrap from center 

 

[n1,n2] = size(data); 

if n1 == 1 

    N = n2; 

else 

    N = n1; 

end 

unwrapped_data = zeros(n1,n2); 

tmp = unwrap(data(N/2+1:N)); 

tmp1 = flip(unwrap(flip(data(1:N/2+1)))); 

unwrapped_data(N/2+1:N) = tmp; 

unwrapped_data(1:N/2) = tmp1(1:N/2); 

 

end 
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Appendix C. MATLAB Code of a Talbot interferometer with five beams 

interference 

 

five_beams_interferogram.m 

 

%% Five beams interference 

% one-shoot measurement 

clear;close all 

path(path,'.¥module')  

%% condition 

lamb = 0.6328;                      % wavelenth [um] 

shr = 80;                           % amount of shear [um] 

Mag = 1;                            % magnification 

R = 2.5*1e3;                        % radius [um] 

Rx = 2.5*1e3;                       % analyzation radius x [um] 

Ry = Rx;                            % analyzation radius y [um] 

xd = -0*2.4*1e3;yd = 2.4*1e3;         % center position of the test surface [mm] 

flag = 0;                           % 0 : Alvarez surface 

                                    % 1 : other surface 

nx = 820;%640;                      % CCD pixel number (x) 

ny = nx;%480;                       % CCD pixel number (y) 

p = 7.4;                            % CCD pixel pitch [um] 

X = (-nx/2:nx/2-1)*p+1e-10; 

Y = (-ny/2:ny/2-1)*p+1e-10; 

[x,y] = meshgrid(X,Y); y = -y;      % lateral coordinate [um] 

fX = (-nx/2:nx/2-1)/(nx*p);         % Fourier coordinate  

fY = (-ny/2:ny/2-1)/(ny*p); 
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k = 2*pi/lamb;                      % wavenumber 

xq = x+xd;yq = y+yd; 

ins = find(x.^2+y.^2 < R^2);        % analyzation area 

ins2 = find(abs(x) < Rx+shr & abs(y) < Ry+shr); 

 

A = 0.0012;             % coefficient of the test surface [mm-2]         

%% interference 

W = zeros(ny,nx,4); 

if flag == 0 

    W0 = 1e3*2*A*(1/3*(xq*1e-3).^3+(xq*1e-3).*(yq*1e-3).^2);  % test surface[um] 

    [ a ] = linear_Fit2D_func(W0(ins),x(ins),y(ins)); 

    W0 = W0 - a(1)-a(2)*x-a(3)*y; 

    W(:,:,1) = interp2(x,y,W0,x-shr,y,'cubic');% -1st order x [um] 

    W(:,:,2) = interp2(x,y,W0,x+shr,y,'cubic');% 1st order x [um] 

    W(:,:,3) = interp2(x,y,W0,x,y-shr,'cubic');% -1st order y [um] 

    W(:,:,4) = interp2(x,y,W0,x,y+shr,'cubic');% 1st order y [um] 

else 

    [ W0 ] = surf_func( x,y,A,R,flag );     

    W(:,:,1) = surf_func( x-shr,y,A,R,flag ); 

    W(:,:,2) = surf_func( x+shr,y,A,R,flag ); 

    W(:,:,3) = surf_func( x,y-shr,A,R,flag ); 

    W(:,:,4) = surf_func( x,y+shr,A,R,flag ); 

end 

tmp = zeros(ny,nx); 

tmp(ins) = W0(ins); 

figure;imagesc(X/1e3,-Y/1e3,tmp);colorbar;axis equal xy tight; 

clear W0x W0y r2 tmp xx yy xq yq 
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%% Intensity 

E0 = exp(1i*k*W0);                          % 0 order 

Ex1 = 0.3*exp(1i*k*(lamb/shr*x+W(:,:,1)));  % -1st order x 

Ex2 = 0.3*exp(1i*k*(-lamb/shr*x+W(:,:,2))); % 1st order x 

Ey1 = 0.3*exp(1i*k*(lamb/shr*y+W(:,:,3)));  % -1st order y 

Ey2 = 0.3*exp(1i*k*(-lamb/shr*y+W(:,:,4))); % 1st order y 

E = E0+Ex1+Ex2+Ey1+Ey2; 

Iout = real(E.*conj(E));                    % irradiance 

 

tmp2 = Iout(:,:,1); 

tmp = zeros(ny,nx); 

tmp(ins) = tmp2(ins); 

figure;imagesc(tmp);colormap('gray');axis equal off 

figure;imagesc(tmp(183:220,183:220));colormap('gray');axis equal tight off 

 

%% wavefront retrieval (FT method) 

Iout(isnan(Iout)) = 0; 

FT = ifftshift(fft2(fftshift(Iout))); 

% figure;imagesc(fX,-fY,log(abs(FT)));axis xy equal tight;colormap('gray'); 

fshftx = round(p*nx/shr);                   % shift length(x) 

fshfty = round(p*ny/shr);                   % shift length(y) 

mdftx = p*nx/shr-fshftx;                    % remainder (x) 

mdfty = p*ny/shr-fshfty;                    % remainder (y) 

if mod(fshftx,2) == 0 

    fRx = fshftx/2;                         % size of cutting (x) 

else 

    fRx = fshftx/2+0.5;  
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end 

if mod(fshfty,2) == 0 

    fRy = fshfty/2;                         % size of cutting (y) 

else 

    fRy = fshfty/2+0.5;  

end 

tmpx = zeros(ny,nx); 

tmpx(ny/2+1-fRy:ny/2+1+fRy,nx/2+1-fRx:nx/2+1+fRx) = ... 

    FT(ny/2+1-fRy:ny/2+1+fRy,nx/2+1+fshftx-fRx:nx/2+1+fshftx+fRx); % cut and 

paste to the center(x) 

% figure;imagesc(fX,-fY,log(abs(tmpx)));axis xy equal tight;colorbar; 

tmpy = zeros(ny,nx); 

tmpy(ny/2+1-fRy:ny/2+1+fRy,nx/2+1-fRx:nx/2+1+fRx) = ... 

    FT(ny/2+1-fRy-fshfty:ny/2+1+fRy-fshfty,nx/2+1-fRx:nx/2+1+fRx); % cut and paste 

to the center(y) 

% figure;imagesc(fX,-fY,log(abs(tmpy)));axis xy equal tight;colorbar; 

tmpx = ifftshift(ifft2(fftshift(tmpx))); 

tmpy = ifftshift(ifft2(fftshift(tmpy))); 

% figure;imagesc((abs(tmpx)));axis equal;colorbar; 

tmpx = atan2(imag(tmpx),real(tmpx)); 

tmpy = atan2(imag(tmpy),real(tmpy)); 

%     figure;imagesc(X*1e-3,-Y*1e-3,tmpx);axis xy equal tight;colorbar; 

%     figure;imagesc(X*1e-3,-Y*1e-3,tmpy);axis xy equal tight;colorbar; 

tmp = zeros(ny,nx); 

tmp(ins) = tmpy(ins); 

figure;imagesc(X*1e-3,-Y*1e-3,tmp);axis xy equal tight;colorbar; 
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clear Iout 

tmp = zeros(ny,nx); 

tmp(ins2) = 1; 

tmp(:,end) = 0;tmp(end,:) = 0; 

%% unwrapping 

[phx] = unwrap_func(tmpx,tmp,pi/3,0.001,ny/2,nx/2); 

[phy] = unwrap_func(tmpy,tmp,pi/3,0.001,ny/2+10,nx/2); 

phx = -(phx-2*pi/shr*mdftx/(fshftx+mdftx)*x)/shr/k; 

tmpx = zeros(ny,nx); 

tmpx(ins) = phx(ins); 

phy = -(phy-2*pi/shr*mdfty/(fshfty+mdfty)*y)/shr/k; 

tmpy = zeros(ny,nx); 

tmpy(ins) = phy(ins); 

 

[ ph ] = intg_func( x,y,phx,phy,400 ); 

ph = ph-mean(ph(ins)); 

[ K ] = linear_Fit2D_func(ph(ins),x(ins),y(ins)); 

ph = ph-K(1)-K(2)*x-K(3)*y; 

tmp = zeros(ny,nx); 

tmp(ins) = ph(ins); 

figure;imagesc(X/1e3,-Y/1e3,tmp);axis equal tight xy;colorbar;title('recovered 

wavefront[um]') 

Ttmp = zeros(ny,nx); 

Ttmp(ins) = W0(ins)-mean(W0(ins)); 

figure;imagesc(Ttmp);axis equal tight;colorbar;title('input wavefront[um]') 

 

phc = compensate_wavefront_func(ph,shr,x,y); 
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tmp = zeros(size(phc)); 

tmp(ins) = phc(ins); 

figure;imagesc(tmp);axis equal tight;colorbar;title('cwavefront[um]') 

 

ph = ph-phc; 

dif = (ph-Ttmp); 

[ K ] = linear_Fit2D_func(dif(ins),x(ins),y(ins)); 

ph = ph-K(1)-K(2)*x-K(3)*y; 

dif = 1e3*(ph-Ttmp); 

dif = dif-mean(dif(ins)); 

tmp = zeros(ny,nx);tmp(ins) = dif(ins); dif = tmp; 

figure;imagesc(dif,[-10 10]);axis equal tight;colorbar;title('difference[nm]') 

[ PV,rms,maxh,minh ] = PV_rms_func(dif(ins)); 

figure;imagesc(X/1e3,-Y/1e3,dif);axis equal tight xy;colorbar;title('difference[nm]') 

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

beep 

%% end of this file 

% programed by Yasunori Furukawa in 12/3/2016 

 

function [ intg_data ] = intg_func( x,y,dWx,dWy,R ) 

%% ------------------------------------ 

% integrate the sheared or slope data 

 

% x,y       : coordinate [mm] 

% dWx,dWy   : slope 

% R         : radius of the start position [pix] 

%% ------------------------------------ 
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[n1,n2] = size(dWx); 

intg_data = 0;                       

 

NaNflag = zeros(n1,n2); 

NaNflag(isnan(dWx) | isnan(dWy)) = 1;  

%% decide the start position 

N = 60;                             % number of the start position 

if N == 1 

    tate = n1/2+1;yoko = n2/2+1; 

else 

tate = zeros(1,N);yoko = tate;       

rad = pi/180; 

 

nk = 360/30*rad; 

for j = 1:30 

    tate(j) = round(n1/2+R*sin(j*nk+10*rad));  

    yoko(j) = round(n2/2+R*cos(j*nk+10*rad)); 

end 

nk = 360/15*rad; 

for j = 1:15 

    tate(j+30) = round(n1/2+0.8*R*sin(j*nk+20*rad));  

    yoko(j+30) = round(n2/2+0.8*R*cos(j*nk+20*rad));  

end 

nk = 360/7*rad; 

for j = 1:7 

    tate(j+45) = round(n1/2+0.6*R*sin(j*nk+30*rad));  

    yoko(j+45) = round(n2/2+0.6*R*cos(j*nk+30*rad));  



121 
 

end 

nk = 360/5*rad; 

for j = 1:5 

    tate(j+52) = round(n1/2+0.4*R*sin(j*nk+40*rad));  

    yoko(j+52) = round(n2/2+0.4*R*cos(j*nk+40*rad));  

end 

nk = 360/3*rad; 

for j = 1:3 

    tate(j+57) = round(n1/2+0.2*R*sin(j*nk+50*rad));  

    yoko(j+57) = round(n2/2+0.2*R*cos(j*nk+50*rad));  

end 

if sum(isnan(tate)) > 0 || sum(isnan(yoko)) > 0       

    disp('Decrease R of start position') 

else 

    tmp = 0; 

    for j = 1:N 

        tmp = tmp+dWx(tate(j),yoko(j)); 

    end 

    if isnan(tmp) == 1 

        disp('There are NaN data at the start position') 

    end 

end 

end 

% figure,plot(tate,yoko,'.');axis square 

%% Differenciation 

Dx = CalcDelta(dWx, x, 2);                          

Dy = CalcDelta(dWy, y, 1);                           
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%% Keep adding Dx and Dy from different start positions 

for j = 1:N 

    data = Integral_func(Dx,Dy,tate(j),yoko(j)); 

    intg_data = intg_data + data; 

end 

intg_data = intg_data/N;                            % average 

intg_data = intg_data-mean(intg_data(NaNflag==0));  % remove piston 

intg_data(NaNflag==1) = NaN; 

 

function [ data ] = Integral_func(Dx,Dy,cy,cx) 

%% integration 

% Dx,Dy : differenciation 

% cy,cx : coordinate number 

%%  

[row, col] = size(Dx); 

data = zeros(row, col); 

flag = zeros(row, col); 

if Dx(cy,cx) == 0 

    disp('startˆÊ’u‚ªNaN‚Å‚·?BR‚Ì’l‚ð?¬‚³‚-‚µ‚Ä‰º‚³‚¢'); 

end 

%%    

% +X 

for j = cx+1:col 

    data(cy,j) = data(cy,j-1)+Dx(cy,j-1); 

end 

% -X 

for j = cx-1:-1:1 
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    data(cy,j) = data(cy,j+1)-Dx(cy,j); 

end 

% +Y 

for j = cy-1:-1:1 

    data(j,cx) = data(j+1,cx)-Dy(j,cx); 

end 

% -Y 

for j = cy+1:row 

    data(j,cx) = data(j-1,cx)+Dy(j-1,cx); 

end 

flag(:,cx) = 1;flag(cy,:) = 1; 

%%  

for ix = cx+1:col 

    for iy = cy-1:-1:1 

        if Dy(iy,ix) == 0       % if there is NaN 

            data(iy,ix) = data(iy,ix-1)+Dx(iy,ix-1); 

            flag(iy,ix) = flag(iy,ix-1); 

        elseif Dx(iy,ix-1) == 0 % if there is NaN 

            data(iy,ix) = data(iy+1,ix)-Dy(iy,ix);                

            flag(iy,ix) = flag(iy+1,ix); 

        else                     

            data(iy,ix) = (flag(iy+1,ix)*(data(iy+1,ix)-Dy(iy,ix))+... 

                flag(iy,ix-1)*(data(iy,ix-1)+Dx(iy,ix-1)))/(flag(iy+1,ix)+flag(iy,ix-1)); 

            flag(iy,ix) = flag(iy+1,ix)+flag(iy,ix-1); 

            if flag(iy,ix) > 1e15 

                flag(iy,ix) = 1e15; 

            end 
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        end 

    end 

end 

%%  

for ix = cx+1:col 

    for iy = cy+1:row 

        if Dy(iy-1,ix) == 0     % if there is NaN 

            data(iy,ix) = data(iy,ix-1)+Dx(iy,ix-1); 

            flag(iy,ix) = flag(iy,ix-1); 

        elseif Dx(iy,ix-1) == 0 % if there is NaN 

            data(iy,ix) = data(iy-1,ix)+Dy(iy-1,ix); 

            flag(iy,ix) = flag(iy-1,ix); 

        else                     

            data(iy,ix) = (flag(iy-1,ix)*(data(iy-1,ix)+Dy(iy-1,ix))+... 

                flag(iy,ix-1)*(data(iy,ix-1)+Dx(iy,ix-1)))/(flag(iy-1,ix)+flag(iy,ix-1)); 

            flag(iy,ix) = flag(iy-1,ix)+flag(iy,ix-1); 

            if flag(iy,ix) > 1e15 

                flag(iy,ix) = 1e15; 

            end 

        end 

    end 

end 

%%  

for ix = cx-1:-1:1 

    for iy = cy-1:-1:1 

        if Dy(iy,ix) == 0       % if there is NaN 

            data(iy,ix) =  data(iy,ix+1)-Dx(iy,ix); 
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            flag(iy,ix) = flag(iy,ix+1); 

        elseif Dx(iy,ix) == 0   % if there is NaN 

            data(iy,ix) = data(iy+1,ix)-Dy(iy,ix); 

            flag(iy,ix) = flag(iy+1,ix); 

        else                    

            data(iy,ix) = (flag(iy+1,ix)*(data(iy+1,ix)-Dy(iy,ix))+... 

                flag(iy,ix+1)*(data(iy,ix+1)-Dx(iy,ix)))/(flag(iy+1,ix)+flag(iy,ix+1)); 

            flag(iy,ix) = flag(iy+1,ix)+flag(iy,ix+1); 

            if flag(iy,ix) > 1e15 

                flag(iy,ix) = 1e15; 

            end 

        end 

    end 

end 

%%  

for ix = cx-1:-1:1 

    for iy = cy+1:row 

        if Dy(iy-1,ix) == 0     % if there is NaN 

            data(iy,ix) = data(iy,ix+1)-Dx(iy,ix); 

            flag(iy,ix) = flag(iy,ix+1); 

        elseif Dx(iy,ix) == 0   % if there is NaN 

            data(iy,ix) = data(iy-1,ix)+Dy(iy-1,ix);             

            flag(iy,ix) = flag(iy-1,ix); 

        else                     

            data(iy,ix) = (flag(iy-1,ix)*(data(iy-1,ix)+Dy(iy-1,ix))+... 

            flag(iy,ix+1)*(data(iy,ix+1)-Dx(iy,ix)))/(flag(iy-1,ix)+flag(iy,ix+1)); 

            flag(iy,ix) = flag(iy-1,ix)+flag(iy,ix+1); 
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            if flag(iy,ix) > 1e15 

                flag(iy,ix) = 1e15; 

            end 

        end 

    end 

end 

 

function [ delta ] = CalcDelta(diff, crd, dim) 

%%  

% diff  : slope data 

% crd   : coordinate 

% dim   : 1: colum; 2: row 

 

if dim == 2    

    diff = diff.'; 

    crd = crd.'; 

end 

[row, col] = size(diff); 

delta = zeros(row, col); 

%% 

for j = 1:col 

    for i = 1:row-2 

        x = crd(i:i+2,j); 

        y = diff(i:i+2,j); 

        if sum(isnan(y)) == 0                       % if there is not NaN 

            A = [x.^2 x ones(3,1)]; 

            G = inv_matrix_func(A);                 % 3*3‚ inverse matrix 
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            p = G*y;                                  

            Q = p(1)/3*x.^3+p(2)/2*x.^2+p(3)*x;     % integration 

            if i == 1 

                delta(i,j) = Q(2)-Q(1); 

            else 

                if isnan(delta(i,j))     

                    delta(i,j) = Q(2)-Q(1); 

                else 

                    delta(i,j) = (delta(i,j)+(Q(2)-Q(1)))/2;     

                end 

            end 

            delta(i+1,j) = Q(3)-Q(2);                            

        else    % if there is NaN 

            if i == 1 

                delta(i,j) = 0; 

            else 

                if isnan(delta(i,j))     

                    delta(i,j) = 0; 

                end 

            end 

            if i == row-2 

                delta(i+1,j) = 0; 

            else 

                delta(i+1,j) = NaN; 

            end 

        end 

    end 
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end 

if dim == 2    

    delta = delta.'; 

end 

function G = inv_matrix_func(A) 

%% calculate inverse matrix(3*3) 

% A : 3*3 matrix 

G = zeros(size(A)); 

detA = A(1,1)*A(2,2)*A(3,3)+A(2,1)*A(3,2)*A(1,3)+A(3,1)*A(1,2)*A(2,3)-

A(1,1)*A(3,2)*A(2,3)-... 

    A(3,1)*A(2,2)*A(1,3)-A(2,1)*A(1,2)*A(3,3); 

G(1,1) = A(2,2)*A(3,3)-A(3,2)*A(2,3); 

G(2,1) = A(2,3)*A(3,1)-A(2,1)*A(3,3); 

G(3,1) = A(2,1)*A(3,2)-A(2,2)*A(3,1); 

G(1,2) = A(1,3)*A(3,2)-A(1,2)*A(3,3); 

G(2,2) = A(1,1)*A(3,3)-A(1,3)*A(3,1); 

G(3,2) = A(1,2)*A(3,1)-A(1,1)*A(3,2); 

G(1,3) = A(1,2)*A(2,3)-A(1,3)*A(2,2); 

G(2,3) = A(1,3)*A(2,1)-A(1,1)*A(2,3); 

G(3,3) = A(1,1)*A(2,2)-A(1,2)*A(2,1); 

G = G/detA; 

%% end of this function 

%  programed by Yasunori Furukawa in 2016.04.04 

function [ a ] = linear_Fit2D_func(f,x,y) 

%% ------------------------------ 

% Fit f with x, y and piston 

% input one-dimensional f,x,y 
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% a(1) : constant 

% a(2) : x tilt  

% a(3) : y tilt  

%% ------------------------------ 

 

[n1,n2] = size(f); 

if n1 == 1 

    N = n2; 

elseif n2 ==1 

    N = n1; 

end 

M12 = sum(x); 

M13 = sum(y); 

M22 = sum(x.^2); 

M23 = sum(x.*y); 

M33 = sum(y.^2); 

M = [N M12 M13; 

    M12 M22 M23; 

    M13 M23 M33]; 

a = M¥[sum(f); sum(f.*x); sum(f.*y)]; 

 

end 

 

function [Z,DZx,DZy] = make_Z_DZ_func(x,y,Zn,maxr,flag) 

% ---------------------------------------------------- 

%% calculate Zernike or derivative Zernike function 
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% Z         : Zernike function 

% DZx,DZy   : derivative Zernike function 

 

% x,y       : coordinate [mm] (one-dimension) 

% Zn        : maximum number of Zernike (16,25,36....) 

% maxr      : normalization value [mm] 

% flag      : 1 = Zernike, 2 = derivative Zernike 

% ---------------------------------------------------- 

 

nnum = sqrt(Zn)-1; 

[ang,R] = cart2pol(x,y); 

nn = size(x,1); 

Z = zeros(nn,Zn);DZx = Z;DZy = Z; 

R = R/maxr;                 % normalization 

%% Zernike 

if flag == 1 

    for n = 0:nnum 

        for m = nnum :-1:0   

            for k = 0:1     % sin / cos 

                Znum = (n+1)^2-2*m + k; 

                if (n >= m) && (m>=k) 

                    Z(1:nn,Znum) = 0; 

                    for s = 0:n-m  

                        Z(:,Znum) = Z(:,Znum) +(-1)^s*(prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:n-m-s).*R.^2.^(n-m-s)) ; 

                    end  
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                    if k == 0 

                        Z(:,Znum) = Z(:,Znum).* R.^m.*cos(m*ang); 

                    elseif k == 1 

                        Z(:,Znum) = Z(:,Znum).*R.^m.*sin(m*ang); 

                    end  

                end             

            end 

        end 

    end 

    Z(:,1) = ones(nn,1); 

    DZx = 0;DZy = 0; 

%% derivative Zernike 

else 

    for n = 0:nnum 

        for m = nnum:-1:0  % for the right order  

            for k = 0:1   % cos or sin            x = R*cos(ang) , y = R*sin(ang) 

                Zj = (n+1)^2-2*m+k; 

                if n == 0 && m == 0 

                elseif (n >= m) && (m >= k) 

                    Z(:,Zj) = 0;DZx(:,Zj) = 0; DZy(:,Zj) = 0;  

                    for s = 0:n-m 

                        N = n-m-s; 

                        Z(:,Zj) = Z(:,Zj)+(-1)^s * prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*N) ; 

                        DZx(:,Zj) = DZx(:,Zj)+(-1)^s*prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*(N-1))*N*2.*x/maxr^2 ; 

                        DZy(:,Zj) = DZy(:,Zj)+(-1)^s*prod(1:2*n-m-



132 
 

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*(N-1))*N*2.*y/maxr^2 ; 

                    end  

                    if k == 0 % cos 

                        DZx(:,Zj) = (DZx(:,Zj).*R.^m.*cos(m*ang)+Z(:,Zj) 

*m.*R.^(m-2)/maxr^2.*(x.*cos(m*ang)+y.*sin(m*ang))); 

                        DZy(:,Zj) = (DZy(:,Zj).*R.^m.*cos(m*ang)+Z(:,Zj) 

*m.*R.^(m-2)/maxr^2.*(y.*cos(m*ang)-x.*sin(m*ang))); 

                    elseif k == 1 % sin 

                        DZx(:,Zj) = (DZx(:,Zj).*R.^m.*sin(m*ang)+Z(:,Zj) 

*m.*R.^(m-2)/maxr^2.*(x.*sin(m*ang)-y.*cos(m*ang))); 

                        DZy(:,Zj) = (DZy(:,Zj).*R.^m.*sin(m*ang)+Z(:,Zj) 

*m.*R.^(m-2)/maxr^2.*(y.*sin(m*ang)+x.*cos(m*ang))); 

                    end  

                end  

            end 

        end 

    end 

end 

%% end of this function 

 

function [ z ] = surf_func( x,y,A,R0,flag ) 

% z         : surface [um] 

 

% x,y       : coordinate[um] 

% A         : coefficient [um] 

% R0        : radius [um] 

% flag      : 0 = Z25 
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%             1 = Z16 

r2 = x.^2+y.^2; 

if flag == 0 

     

elseif flag == 1 

    z = A*(20*r2.^3/R0^6-30*r2.^2/R0^4+12*r2/R0^2-1); 

elseif flag == 2 

    z = A*(1./(r2*1e-6/2+1)); 

end 

 

function [ph2] = unwrap_func(ph,data,change,limit,x_start,y_start) 

% --------------------------------------------------- 

% unwrap data 

% ph2       : unwrapped data 

 

% ph        : wrapped phase data 

% data      : irradiance 

% change    : threshold of change per 1 pixel phase 

% intense_limit : threshold of the irradiance  

% x_start and y_start : start position of unwrap 

% --------------------------------------------------- 

%% parameter setting     

[n1,n2] = size(ph);                             % n1 * n2 pixel 

flag = zeros(n1,n2);                            % for judge 

ph2 = ph ; 

first_pos = (y_start-1)*n1+x_start; 

flag(first_pos) = 1; 
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ph2(first_pos) = ph(first_pos);                 % insert the data of start position 

 

% about flag 

% 3 means Not unwrapping 

% 1 means boundary , 2 means unwrapped already ,  

% 0 means still not unwrapping  

%% unwrapping     

flag(data < limit) = 3;         % except for the region of low amplitude 

nn = 1; 

n_right = first_pos;n_left = []; n_up = []; n_down = []; 

while isempty(nn) ~= 1          % if nn is empty ,it finished 

    nn = [n_right n_left n_up n_down]; 

    %right 

    n_right = nn + n1 ; 

    n_right = n_right(n_right < n1*n2 + 1); 

    n_right = n_right(flag(n_right) == 0); 

    n_right = n_right(((abs(ph(n_right) - ph(n_right - n1)) < change ) | ...            % 

if change is too high,do not unwrap 

                           (abs(ph(n_right) - ph(n_right - n1) + 2*pi)<change ) |... 

                           (abs(ph(n_right) - ph(n_right - n1)-2*pi)<change))); 

    ph2(n_right) = ph(n_right)-ph(n_right-n1)+ph2(n_right-n1)-2*pi*fix((ph(n_right)-

ph(n_right-n1))/pi); 

    flag(n_right) = 1; 

    %left 

    n_left = nn - n1 ; 

    n_left = n_left(n_left > 1); 

    n_left = n_left(flag(n_left) == 0); 
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    n_left = n_left(((abs(ph(n_left) - ph(n_left + n1)) < change ) | ... 

                           (abs(ph(n_left) - ph(n_left + n1) + 2*pi ) < change ) |... 

                           (abs(ph(n_left) - ph(n_left + n1) - 2*pi ) < change ))); 

    ph2(n_left) = ph(n_left) - ph(n_left + n1) + ph2(n_left + n1 ) - 2*pi*fix((ph(n_left) - 

ph(n_left + n1))/pi); 

    flag(n_left) = 1; 

    %up 

    n_up = nn - 1 ; 

    n_up = n_up(n_up > 1); 

    n_up = n_up(mod(n_up,n1) ~= 0 & flag(n_up) == 0); 

    n_up = n_up(((abs(ph(n_up) - ph(n_up + 1)) < change ) | ... 

                           (abs(ph(n_up) - ph(n_up + 1) + 2*pi ) < change ) |... 

                           (abs(ph(n_up) - ph(n_up + 1) - 2*pi ) < change )));     

    ph2(n_up) = ph(n_up) - ph(n_up + 1) + ph2(n_up + 1) - 2*pi*fix((ph(n_up) - ph(n_up 

+ 1))/pi); 

    flag(n_up) = 1; 

    %down 

    n_down = nn + 1 ; 

    n_down = n_down(n_down < n1*n2 + 1); 

    n_down = n_down(mod(n_down,n1) ~= 1 & flag(n_down) == 0); 

    n_down = n_down(((abs(ph(n_down) - ph(n_down - 1)) < change ) | ... 

                           (abs(ph(n_down) - ph(n_down - 1) + 2*pi ) < change ) 

|... 

                           (abs(ph(n_down) - ph(n_down - 1) - 2*pi ) < change )));        

    ph2(n_down) = ph(n_down) - ph(n_down - 1) + ph2(n_down - 1) - 

2*pi*fix((ph(n_down) - ph(n_down - 1))/pi); 

    flag(n_down) = 1; 
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    flag(nn) = 2; 

end 

%% end of this function 
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Appendix D. MATLAB code of a Talbot interferometer with a tilted 

grating using three beams interference 

 

three_interferogram_with_tilted_grating.m 

 

%% Three beams interferogram with tilted grating  

clear;close all 

path(path,'.¥module')  

%% condition 

rad = pi/180; 

lamb = 0.6328;          % wavelength [um] 

k = 2*pi/lamb;          % wavenumber 

R0 = 2.0*1e3;           % analyzation radius [um] 

Lp = 80;                % grating pitch [um] 

L = Lp^2/lamb;         % 

distance of propagation [um] 

Ns = 1;                 % phase shift number 

gamma = -0.000;         % angle of grating [rad] 

Af = 1;                 % coefficient 

xshr = Lp;              % amount of shear [um] 

N = 2^13*1;             % sampling number 

p = (R0+10*Lp)/(N/2);   % pixel pitch [um] 

x = (-N/2:N/2-1)*p;     % x coordinate [um] 

ref_pist = -2.60516586238;      % piston phase of the reference [rad] 

if Ns == 1 

    zero_pist = -0.02684914;    % piston phase when input wavefront is zero,  

elseif Ns == 3 
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    zero_pist = 3.115; 

elseif Ns == 4 

    zero_pist = 3.112713048; 

end 

flag = -1; 

dx = 1e-4;  % [um] 

R1 = 10*Lp; 

W1 = 1*Alvarez_phase_func( R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,0 ); % 

wavefront on x-axis 

W2 = 1*Alvarez_phase_func( R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,1 ); % 

wavefront on diagonal 

W = Af*(W1+W2)/2;clear W1 W2 

Ws1 = 1*Alvarez_phase_func( R0*1e-3,(x-dx)*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,0 );% 

shifted wavefront on x-axis 

Ws2 = 1*Alvarez_phase_func( R0*1e-3,(x-dx)*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,1 );% 

shifted wavefront on diagonal 

Ws = Af*(Ws1+Ws2)/2;clear Ws1 Ws2 

dW = (W-Ws)/dx; 

% figure;plot(x,W);xlim([-R0 R0]) 

alfa = asin(dW);                        % incident ray angle [rad] 

%% wavefront without grating (reference)  

Wt = W+L./cos(alfa)-L; 

xt = x+L*tan(alfa); 

Wt = interp1(xt,Wt,x,'spline'); 

clear xt 

%% 

x1 = x./(1+tan(alfa)*tan(gamma));       % x coordinate on the grating 
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y1 = tan(gamma)*x1;                     % y coordinate on the grating 

nega = y1 < 0; 

ph1 = W-sqrt((x-x1).^2+y1.^2); 

ph1(nega) = W(nega)+sqrt((x(nega)-x1(nega)).^2+y1(nega).^2); 

clear nega 

%% diffraction angle 

m = 0;                      % 0 order  

ang = asin(sin(alfa-gamma)+m*lamb/Lp);   

beta = gamma+ang; 

ph2 = (L+y1)./cos(beta); 

W20 = ph1+ph2-L; 

x2 = x1+(L+y1).*tan(beta); 

W0 = interp1(x2,W20,x,'spline'); 

m = 1;                      % 1 order  

ang = asin(sin(alfa-gamma)+m*lamb/Lp);   

beta = gamma+ang; 

ph2 = (L+y1)./cos(beta); 

[ diffr_ph ] = intg1D_func( x1/cos(gamma),sin(beta)-sin(alfa)); 

W21 = ph1+ph2+1*m*diffr_ph-L; 

x21 = x1+(L+y1).*tan(beta); 

W1 = interp1(x21,W21,x,'spline')+lamb/2; 

m = -1;                      % -1 order  

ang = asin(sin(alfa-gamma)+m*lamb/Lp);   

beta = gamma+ang; 

ph2 = (L+y1)./cos(beta); 

[ diffr_ph ] = -intg1D_func( x1/cos(gamma),sin(beta)-sin(alfa)); 

W2n1 = ph1+ph2+1*m*diffr_ph-L; 
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x2n1 = x1+(L+y1).*tan(beta); 

Wn1 = interp1(x2n1,W2n1,x,'spline')+lamb/2; 

%% irradiance 

E0 = exp(1i*k*W0); 

Iout = zeros(Ns,N); 

for j = 1:Ns 

    E1 = sqrt(0.3)*exp(1i*(k*W1-2*pi/Ns*(j-1))); 

    E2 = sqrt(0.3)*exp(1i*(k*Wn1+2*pi/Ns*(j-1))); 

    E = E0+E1+E2; 

    Iout(j,:) = E.*conj(E); 

end 

figure;plot(x,Iout(1,:)) 

 

if Ns == 3 

    Wsh = atan2(sqrt(3)*(Iout(2,:)-Iout(3,:)),-2*Iout(1,:)+Iout(2,:)+Iout(3,:)); 

elseif Ns == 4 

    Wsh = -atan2(Iout(4,:)-Iout(2,:),Iout(3,:)-Iout(1,:)); 

elseif Ns == 6 

    Wsh = -atan2(sqrt(3)*(Iout(2,:)+Iout(3,:)-Iout(5,:)-Iout(6,:)),... 

                           2*Iout(1,:)+Iout(2,:)-Iout(3,:)-2*Iout(4,:)-

Iout(5,:)+Iout(6,:)); 

end 

if Ns > 1 

    Wsh = Wsh-zero_pist; 

    if Wsh(N/2+1) < -pi 

        Wsh = Wsh+ 2*pi; 

    end 
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    Wsh = unwrap1d_func(Wsh);   % unwrap 

    Wsh = 1/xshr*(lamb/Lp*x+1/k*Wsh); 

    Wt2 = interp1(x,Wt,x+Lp,'spline'); 

    figure;plot(x,(Wt2-Wt)/Lp,x,Wsh,'--'),title('slope');grid 

    %% integral 

    [ ph ] = intg1D_func( x,Wsh ); 

    ins = abs(x) < R0; 

    ph = ph-mean(ph(ins)-Wt(ins)); 

    figure;plot(x,Wt,x,ph,'--'),title('wavefront [um]');xlim([-R0 R0]) 

    figure;plot(x,1e3*(ph-Wt)),title('difference [nm]');xlim([-R0 R0]) 

    Wc = compensate_wavefront_func(ph,Lp,x); 

    figure;plot(x,Wc);xlim([-R0 R0]) 

    figure;plot(x,1e3*(ph-Wt-Wc+mean(Wc(ins)))),title('error [nm]');xlim([-R0 R0]) 

    ph = ph-Wc; 

    if flag == -1         

        dif = ph-Wt; 

        n = 1; 

        p = polyfit(x(ins),dif(ins),n); 

        for j = 1:n+1 

            ph = ph-p(j)*x.^(n-j+1); 

        end 

        dif = ph-Wt; 

        figure;plot(x,Wt,x,ph,'--'),title('[um]') 

        [ PV,rms,maxh,minh ] = PV_rms_func(1e3*dif(ins)); 

        figure;plot(x*1e-3,1e3*(dif)), title(['error ',num2str(PV,3),'nmPV, 

',num2str(rms,3),'nmRMS']);%ylim([-10 10]) 

        xlim([-R0*1e-3 R0*1e-3]) 
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    end 

else    % FFT method 

    %% phase recovery ---------------------------------------------------- 

    fI = fftshift(fft(fftshift(Iout(1,:)))); 

    figure;plot(log10(abs(fI)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]); 

    % cut the FFT data -------------------------------------------------------- 

    ff = zeros(1,N); 

    fshftx = round(p*N/xshr);                   % shift length(x) 

    mdftx = p*N/xshr-fshftx;                    % remainder (x) 

    if mod(fshftx,2) == 0 

        fRx = fshftx/2;                         % size of cutting (x) 

    else 

        fRx = fshftx/2+0.5; 

    end 

    fRx = fRx-7; 

    ff(N/2+1-fRx:N/2+1+fRx) = fI(N/2+1+fshftx-fRx:N/2+1+fshftx+fRx); % cut(x)   

    nc = N/2+1+round(N/(Lp/p)); 

    figure;plot(real(ff));title('cut Fourier Spectrum');xlim([N/2-1000 N/2+1000]); 

    % figure;plot(log10(abs(ff)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]); 

    tmp = fftshift(ifft(fftshift(ff))); 

    Wsh = -atan2(imag(tmp),real(tmp))-zero_pist; 

    RR = R0+R1; 

    Wsh((abs(x)) > RR) = 0; 

    figure;plot(x,Wsh);xlim([-RR RR]);title('wrapped phase[rad]') 

    if Wsh(N/2+1) > pi 

        Wsh = Wsh-2*pi; 

    end 



143 
 

    [ Wsh ] = unwrap1d_func( Wsh ); % unwrap 

    Wsh((abs(x)) > RR) = 0; 

    Wsh = Wsh/k/Lp;  

    figure;plot(x,Wsh);title('unwrapped subtraction phase');xlim([-RR RR]) 

 

    [ W ] = intg1D_func( x,Wsh ); % integration 

    tmp = compensate_wavefront_func(W,Lp,x); 

    ph2 = W-tmp; 

    dif = ph2-Wt; 

    tmp = mean(dif(abs(x) < R0)); 

    dif = 1e3*(dif-tmp); 

    ph2 = ph2-tmp; 

    figure;plot(x/1e3,Wt,x/1e3,ph2,'--');           

    title('wavefront[um]') 

    xlim([-R0/1e3 R0/1e3]);grid;hold off 

    [ PV,rms,maxh,minh ] = PV_rms_func(dif(abs(x) < R0)); 

    figure;plot(x/1e3,dif);         % difference of output 

    xlim([-R0/1e3 R0/1e3]);grid;hold off 

    title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']);ylim([-10 10]) 

    %% remove piston and tilt 

    ins = abs(x) < R0; 

    n = 1; 

    p = polyfit(x(ins),dif(ins),n); 

    for j = 1:n+1 

        dif = dif-p(j)*x.^(n-j+1); 

    end 

     [ PV,rms,maxh,minh ] = PV_rms_func(dif(abs(x) < R0)); 
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    figure;plot(x/1e3,dif);         % difference of output 

    xlim([-R0/1e3 R0/1e3]);grid;hold off 

    title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']);ylim([-10 10]) 

end 

% save('dif_noerror','dif') 
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Appendix E. MATLAB code of a stitching simulation 

 

stitch_sim.m 

 

%% --------------------------------------------------------- 

%% stitch simulation 

 

% 1. Set parameters 

% 2. Create error shape 

% 3. Determine lattice design 

% 4. Assume alignment error and system error 

% 5. Calculate sub-aperture shape  

% 6. Coordinate transform before stitching 

% 7. Stitching 

% 8. Evaluate coefficients 

% 9. Calculate stitch shape 

% 10. Evaluate the error shape 

% 11. Estimate the stitching error from difference between overlapped data 

 

%% --------------------------------------------------------- 

clear;close all 

path(path,'.¥module') 

path(path,'..¥module') 

%% 1. Set parameter 

Q = 4; 

Ncx = 640/Q;                          % CCD pixel number (x) 

Ncy = 640/Q;                          % CCD pixel number (y) 
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cp = 0.0074*Q;                        % CCD pixel pitch [mm] 

 

flag = 0;                           % 0 = Alvarez surface 

mtrx_flag =0;                      % 0 = load Zernike function 

                                    % 1 = calculate Zernike function which 

expresses alignment error and system error stitching 

shftflag = 0;                       % 0 = estimate shift error 

                                    % 1 = Not estimate shift error 

syserrflag = 1;                     % 0 = estimate sysyem error 

                                    % 1 = Not estimate sysyem error 

                                    % 2 = Not estimate, but input sysyem error 

spike_noise_flag = 0;               % 0 = Not add spike noise 

                                    % 1 = add spike noise 

Cnoise = 0;                         % noise [Cnoise*2 nmPV] 

ptime  = 0.2;                       % pause time[s] 

Lx = 10;                            % sample size (x) [mm] 

Ly = 10;                            % sample size (y) [mm] 

pp = 0.0074*7;                      % sample pixel pitch [mm] 

Nx = 320;                           % sample pixel number (x) 

Ny = 320;                           % sample pixel number (y) 

Nset = 6; 

Nsys = 16; 

Zn = 16; 

Znin = 16; 

 

slx = 4.2;                          % length(x) of sub-aperture [mm] 

sly = 3;                            % length(y) of sub-aperture [mm] 
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Nsx = 3;                            % number of stitching (x) 

Nsy = 4;                            % number of stitching (y) 

N = Nsx*Nsy;                        % total number of stitching 

rr = sqrt((Lx/2).^2+(Ly/2).^2); 

% CCD coordinate [mm] 

Ncx = round(Ncx*cp/pp); 

Ncy = round(Ncy*cp/pp); 

if mod(Ncx,2) == 0 

    cX = (-Ncx/2:Ncx/2-1)*pp; 

else 

    cX = (-(Ncx-1)/2:(Ncx+1)/2-1)*pp; 

end 

if mod(Ncy,2) == 0 

    cY = (-Ncy/2:Ncy/2-1)*pp; 

else 

    cY = (-(Ncy-1)/2:(Ncy+1)/2-1)*pp; 

end 

% global coordinate [mm] 

X = (-Nx/2:Nx/2-1)*pp ; 

Y = (-Ny/2:Ny/2-1)*pp ; 

[x,y] = meshgrid(X,Y) ;y = -y; 

%% 2. Create error shape 

f = surface_func( x,y,flag ); % design shape [mm] 

% outa = abs(x) > Lx/2 | abs(y) > Ly/2; 

% f(outa) = 0; 

% figure,imagesc(X,-Y,f);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -Ly/2 

Ly/2])    
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ferr = 45*(6*(x.^2+y.^2).^2/(Lx/2)^4-6*(x.^2+y.^2)/(Lx/2)^2+1);  % error shape [nm] 

% ferr(outa) = 0; 

% figure,imagesc(X,-Y,ferr);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -Ly/2 

Ly/2])    

Az = f+1e-6*ferr;                               % sample shape [mm] 

%% 3. Determine lattice design 

spx = lattice_design_func( Nsx,slx,Lx ); 

spy = -lattice_design_func( Nsy,sly,Ly ); 

% disp_lattice_design_func( spx,spy,slx,sly,Lx,Ly,0 ); 

[ mxyz,th ] = calc_stitch_move_func( spx,spy,slx,sly,Lx,Ly,0);  % amount of move 

%% 4. System error coefficient 

if syserrflag == 0 || syserrflag == 2  

    Csys = 40*rand(1,49);Csys(1:3) = 0; 

    Xa = -slx/2:0.1:slx/2; 

    Ya = -sly/2:0.1:sly/2; 

    [xa,ya] = meshgrid(Xa,Ya);ya = -ya; 

    Zq = make_Z_DZ_func(xa(:),ya(:),Znin,rr,1);  

    sys_err = Zq(:,Nset+1:Znin)*Csys(Nset+1:Znin)'; 

    tmp = reshape(sys_err,size(xa,1),size(ya,2)); 

    rms = std(tmp(:)) 

    PV = max(tmp(:))-min(tmp(:)); 

    figure,imagesc(Xa,-Ya,tmp,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis 

xy;axis([-slx/2 slx/2 -sly/2 sly/2]) 

    title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

else 

    Csys = zeros(1,49); 

end 
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%% Alignment error coefficient 

rand('twister',2'); 

Cset = (rand(1,N*Nset)-0.5)*2*1200*1/2 ;            % z, thetax, thetay error [nm] 

Cset(4:6:end) = 0; 

if shftflag == 0 

    Cset(5:6:end) = (rand(1,N)-0.5)*2*10*1e3;       % x shift error [nm] 

    Cset(6:6:end) = (rand(1,N)-0.5)*2*10*1e3;       % y shift error [nm] 

else 

    Cset(5:6:end) = 0;       % x shift error [nm] 

    Cset(6:6:end) = 0;       % y shift error [nm] 

end 

rand('twister',sum(100*clock)) ; 

%% 5. Calculate sub-aperture shape  

k = 1; 

px = zeros(N,2);py = px; 

Dflag  = false(Ncy,Ncx,N); 

Qx = zeros(Ncy,Ncx,N) ;Qy = zeros(Ncy,Ncx,N) ;Qz = zeros(Ncy,Ncx,N); 

if mtrx_flag == 1 

    MtxZ = zeros(Ncy,Ncx,N,Zn) ; 

end 

for i = 1:Nsx 

    for j = 1:Nsy 

        perc = (k-1)/N*100 ; 

       %% local sample coordinate?isame interval?j 

        [ ~,ix ] = min(abs(X-mxyz(k,1))) ;                     % center coordinate 

of sub-aperture (x)[pix] 

        [ ~,iy ] = min(abs(-Y-mxyz(k,2))) ;                    % center coordinate 
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of sub-aperture (y)[pix] 

        if mod(Ncx,2) == 0 

            px(k,1) = ix-Ncx/2 ;    px(k,2) = ix+Ncx/2-1 ; 

        else 

            px(k,1) = ix-(Ncx-1)/2 ;    px(k,2) = ix+(Ncx+1)/2-1 ; 

        end 

        if mod(Ncy,2) == 0 

            py(k,1) = iy-Ncy/2 ;    py(k,2) = iy+Ncy/2-1 ; 

        else 

            py(k,1) = iy-(Ncy-1)/2 ;    py(k,2) = iy+(Ncy+1)/2-1 ; 

        end 

        tx = x(py(k,1):py(k,2),px(k,1):px(k,2)); 

        ty = y(py(k,1):py(k,2),px(k,1):px(k,2)); 

        tz = f(py(k,1):py(k,2),px(k,1):px(k,2));           % designed shape in sub-

aperture [mm] 

        Tz = Az(py(k,1):py(k,2),px(k,1):px(k,2));          % designed and error 

shape in sub-aperture[mm] 

 

        pos = find(abs(tx) > Lx/2+0.5 | abs(ty) > Ly/2+0.5); 

        tx(pos) = NaN;ty(pos) = NaN;tz(pos) = NaN; 

        Dflag(:,:,k) = abs(tx-mxyz(k,1)) <= slx/2 & abs(ty-mxyz(k,2)) <= sly/2 & abs(tx) 

<= Lx/2 & abs(ty) <= Ly/2; 

%% drive sample shift,tip,tilt), from local sample to CCD coordinate (non-equal pitch) 

        [ qx,qy,qz ] = trans_func( mxyz(k,:),th(k,:),1,tx,ty,tz);  

%         figure;imagesc(qz);colorbar% designed value 

        [ Qx(:,:,k),Qy(:,:,k),Qz(:,:,k) ] = 

trans_func( mxyz(k,:),th(k,:),1,tx,ty,Tz );     % error shape 
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       %% create Zernike polynomials (on local sample coordinate, equal pitch)[um] 

        if mtrx_flag == 1 

            [ MtxZ(:,:,k,:) ] = make_stitchZ_func(mxyz(k,:),th(k,:),rr,Zn,qx,qy,qz,flag);               

        end 

       %% add alignment error and system error 

        xxq = Qx(:,:,k);yyq = Qy(:,:,k); 

        Zq = make_Z_DZ_func(xxq(:),yyq(:),Znin,rr,1);  

        if k == 1 

            set_err = 0; 

        else 

            set_err = 1e-6*(Cset((k-1)*Nset+1)*Zq(:,1)+Cset((k-1)*Nset+2)*Zq(:,2)+ 

Cset((k-1)*Nset+3)*Zq(:,3)+ Cset((k-1)*Nset+4)*Zq(:,4)*0); 

            set_err = reshape(set_err,Ncy,Ncx);   % alignment error [mm] 

        end 

        sys_err = Zq(:,Nset+1:Znin)*Csys(Nset+1:Znin)';         

        sys_err = reshape(sys_err,Ncy,Ncx); 

        sys_err = sys_err*1e-6;               % system error [mm] 

        noise = Cnoise*1e-6*(rand(Ncy,Ncx)-0.5)*2; 

        spike_noise = zeros(Ncy,Ncx); 

        if spike_noise_flag == 1 

            qp = round((Ncx-40)*rand(1,2))+20; 

            spike_noise(qp(1)-3:qp(1)+3,qp(2)-3:qp(2)+3) = 10*1e-6; 

        end 

        tmp = rot90(Qz(:,:,k),2); 

        figure(4),imagesc(cX,-cY,-2*tmp,[-0.1 0.1]);  

        axis equal;axis tight xy;colorbar;axis([-slx/2 slx/2 -sly/2 sly/2]);  

        Qz(:,:,k) = Qz(:,:,k)+(set_err+sys_err)+noise+spike_noise; 
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        tmp = Qz(:,:,k).*Dflag(:,:,k);tmp(isnan(tmp)) = 0; 

        figure(4),imagesc(cX,-cY,tmp,[-0.05 0.05]);axis equal;axis tight 

xy;colorbar;title([num2str(k)]);ylim([-1.75 1.75]) 

        k = k+1; 

        pause(ptime); 

    end 

end 

if mtrx_flag == 0 

    load('matrixZ.mat'); 

elseif mtrx_flag == 1 

    save('matrixZ','MtxZ');     

end 

clear Zt xxq yyq M 

%% 6. Coordinate transform before stitching 

k = 1; 

wz = zeros(Ncy,Ncx,N); 

for i = 1:Nsx 

    for j = 1:Nsy 

       %% Coordinate transform (cx?¨x, CCD coor?¨local sample coor?iNon-equal 

pitch)        

        if k ==1 

            [ qx2,qy2,qz2 ] = trans_func( mxyz(k,:),th(k,:),-

1,Qx(:,:,k),Qy(:,:,k),Qz(:,:,k));       

        else 

            [ qx2,qy2,qz2 ] = trans_func( mxyz(k,:),th(k,:),-1,Qx(:,:,k)+Cset((k-

1)*Nset+5)/1e6,Qy(:,:,k)+Cset((k-1)*Nset+6)/1e6,Qz(:,:,k));       

        end 
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        wz(:,:,k) = 1e3*(qz2-surface_func( qx2,qy2,flag ));     % subtract designed 

shape [um] 

        tmp = wz(:,:,k);tmp(isnan(tmp)) = 0;  

        qx2(isnan(qx2)) = 10;qy2(isnan(qy2)) = 10; 

        wz(:,:,k) = 

griddata(qx2,qy2,tmp,x(py(k,1):py(k,2),px(k,1):px(k,2)),y(py(k,1):py(k,2),px(k,1):px(k,2

)),'cubic');  

        wz(:,:,k) =  wz(:,:,k) + 0*noise; 

        %% calculate sample shape on local sample coordinate (equal pitch) 

        tmp = wz(:,:,k).*Dflag(:,:,k); 

        tmp(isnan(tmp)) = 0; 

        figure(5),imagesc(tmp,[-0.5 0.5]);axis equal;axis tight;colorbar;title(['stitch data 

[um] ',num2str(k)]);% err+sys+align 

        k = k+1; 

        pause(ptime); 

    end 

end 

if shftflag ~= 0 

    MtxZ(:,:,:,5) = 0; 

    MtxZ(:,:,:,6) = 0; 

end 

if syserrflag ~= 0; 

 MtxZ(:,:,:,Nset+1:Nsys) = 0; 

end 

%% 7. Stitching --------------------------------------------- 

tic 

[ W,Cset_out,Csys_out ] = stitching_func(wz,Dflag,N,Nset,Nsys,MtxZ,px,py,Nx,Ny,0) ; 
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toc 

Cset_out = 1e3*Cset_out;    % from [um] to [nm] 

Cset_out(5:Nset:end) = 10*Cset_out(5:Nset:end); 

Cset_out(6:Nset:end) = 10*Cset_out(6:Nset:end); 

Csys_out = 1e3*Csys_out; % from [um] to [nm] 

%% 8. Evaluate results 

wn = Nset+1; 

figure ; plot(wn:Zn,Csys(wn:Zn),'--o',(wn:Zn),Csys_out,'--rs') ; 

grid;title('system error [nm]');xlim([wn Zn]) 

figure ; plot(Cset(wn:end),'--o');hold on  

plot(Cset_out,'--rs') ;hold off;grid;title('alignment error [nm]') 

figure ; plot(wn:Zn,Csys_out-Csys(wn:Zn),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10) ; 

grid;title('system error difference [nm]');xlim([wn Zn]) 

figure ; plot(Cset_out-Cset(wn:end),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10); 

grid;title('alignment error difference [nm]') 

%% 9. Calculate stitch shape 

W(isnan(W)) = 0; 

st_fig = zeros(Ny,Nx) ;st_fig2 = zeros(Ny,Nx) ; 

num_flag = zeros(Ny,Nx) ;           % overlapping number 

for j = 1:N 

    st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) = st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) + 

W(:,:,j).*Dflag(:,:,j) ; 

    temp_W = false(Ny,Nx) ; 

    temp_W(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ; 

    num_flag = num_flag + temp_W ; 
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end 

ins = num_flag > 0; 

st_fig(ins) = st_fig2(ins)./num_flag(ins); 

figure,imagesc(X,-Y,1e3*st_fig);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -

Ly/2 Ly/2]) 

clear st_fig2 

% save('output.mat','Cset_out','Csys_out','st_fig'); 

%% 10. Evaluate the error shape 

dif = zeros(Ny,Nx);                       %  

dif(ins) = 1e3*st_fig(ins)-ferr(ins);   % difference [nm] 

tmp = dif(ins); 

rms = std(tmp); 

PV = max(tmp)-min(tmp); 

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 

Lx/2 -Ly/2 Ly/2]) 

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

%% 11. Estimate the stitching error from difference between overlapped data 

W2 = NaN(Ny,Nx,N); 

for j = 1:N 

    W2(py(j,1):py(j,2),px(j,1):px(j,2),j) = W(:,:,j).*Dflag(:,:,j); 

end 

W2(W2==0) = NaN; 

[ dev,sgma ] = stitch_err_func(W2,num_flag,st_fig);% um  

dev = 1e3*dev;sgma = 1e3*sgma; 

figure,imagesc(X,-Y,dev,[0 5*sgma]);axis equal;axis tight;colorbar;axis xy    

axis([-Lx/2 Lx/2 -Ly/2 Ly/2]) 

title(['stitch error ' ,num2str(sgma,3),'nmRMS']) 
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[ st_fig4 ] = Alignment_remove_func( 1e3*st_fig,f,x,y,ins ); 

dif = zeros(Ny,Nx);                       %  

dif(ins) = st_fig4(ins)-ferr(ins);   % difference [nm] 

dif(ins) = dif(ins) - mean(dif(ins)); 

tmp = dif(ins); 

rms = std(tmp); 

PV = max(tmp)-min(tmp); 

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 

Lx/2 -Ly/2 Ly/2]) 

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

 

loop_stitch.m 

 

%% --------------------------------------------------------- 

%% stitch again 

%% --------------------------------------------------------- 

close all 

k = 1; 

for i = 1:Nsx 

    for j = 1:Nsy 

        % display bar 

        perc = (k-1)/N*100 ; 

       %% local sample coordinate?isame interval?j 

        tx = x(py(k,1):py(k,2),px(k,1):px(k,2)); 

        ty = y(py(k,1):py(k,2),px(k,1):px(k,2)); 

        tz = f(py(k,1):py(k,2),px(k,1):px(k,2));           % designed shape in sub-
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aperture [mm] 

        Tz = Az(py(k,1):py(k,2),px(k,1):px(k,2));          % designed and error 

shape in sub-aperture[mm] 

 

        pos = find(abs(tx) > Lx/2+0.5 | abs(ty) > Ly/2+0.5); 

        tx(pos) = NaN;ty(pos) = NaN;tz(pos) = NaN; 

        %% subtract alignment error and system error 

        xxq = Qx(:,:,k);yyq = Qy(:,:,k); 

        Zq = make_Z_DZ_func(xxq(:),yyq(:),Zn,rr,1);  

        if k == 1 

            set_err2 = 0; 

        else 

            set_err2 = 1e-6*(Cset_out((k-2)*Nset+1)*Zq(:,1)+Cset_out((k-

2)*Nset+2)*Zq(:,2)+ Cset_out((k-2)*Nset+3)*Zq(:,3)+ Cset_out((k-

2)*Nset+4)*Zq(:,4)*0); 

            set_err2 = reshape(set_err2,Ncy,Ncx);   % alignment error [mm] 

        end 

        sys_err2 = Zq(:,Nset+1:Zn)*Csys_out(1:Zn-Nset)';         

        sys_err2 = reshape(sys_err2,Ncy,Ncx); 

        sys_err2 = 1*sys_err2*1e-6;               % system error [mm] 

        Qz(:,:,k) = Qz(:,:,k)-(set_err2+sys_err2); 

        if k ~= 1 

            Qx(:,:,k) = Qx(:,:,k)+(Cset((k-1)*Nset+5)-Cset_out((k-2)*Nset+5))/1e6; 

            Qy(:,:,k) = Qy(:,:,k)+(Cset((k-1)*Nset+6)-Cset_out((k-2)*Nset+6))/1e6; 

        end     

        figure(1),imagesc(Qz(:,:,k).*Dflag(:,:,k),[-0.3 0.3]);axis equal;axis 

tight;colorbar;title(['measurement ',num2str(k)]) 
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        pause(ptime); 

        [ qx2,qy2,qz2 ] = trans_func( mxyz(k,:),th(k,:),-1,Qx(:,:,k),Qy(:,:,k),Qz(:,:,k));       

        wz(:,:,k) = 1e3*(qz2-surface_func( qx2,qy2,flag ));     % subtract designed 

shape [um] 

        tmp = wz(:,:,k);tmp(isnan(tmp)) = 0;  

        qx2(isnan(qx2)) = 10;qy2(isnan(qy2)) = 10; 

        wz(:,:,k) = 

griddata(qx2,qy2,tmp,x(py(k,1):py(k,2),px(k,1):px(k,2)),y(py(k,1):py(k,2),px(k,1):px(k,2

)),'cubic');  

        tmp = wz(:,:,k).*Dflag(:,:,k); 

        tmp(isnan(tmp)) = 0; 

        figure(2),imagesc(tmp,[-0.6 0.6]);axis equal;axis tight;colorbar;title(['stitch data 

[um] ',num2str(k)]);% err+sys+align 

        k = k+1; 

        pause(ptime);        

    end 

end 

tic 

[ W2,Cset_out2,Csys_out2 ] = 

stitching_func(wz,Dflag,N,Nset,Nsys,MtxZ,px,py,Nx,Ny,0) ; 

toc 

Cset_out2 = 1e3*Cset_out2;    % [um]?¨[nm] 

Cset_out2(5:Nset:end) = 10*Cset_out2(5:Nset:end); 

Cset_out2(6:Nset:end) = 10*Cset_out2(6:Nset:end); 

Csys_out2 = 1e3*Csys_out2; % 

[um]?¨[nm] 

Csys_out = Csys_out+Csys_out2; 
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Cset_out = Cset_out+Cset_out2; 

 

wn = Nset+1; 

figure ; plot(wn:Zn,Csys(wn:Zn),'--o',(wn:Zn),Csys_out,'--rs') ; 

grid;title('system error [nm]');xlim([wn Zn]) 

figure ; plot(Cset(wn:end),'--o');hold on  

plot(Cset_out,'--rs') ;hold off;grid;title('alignment error [nm]') 

figure; plot(wn:Zn,Csys_out-Csys(wn:Zn),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10) ; 

grid;title('system error difference [nm]');xlim([wn Zn]) 

figure; plot(Cset_out-Cset(wn:end),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10); 

grid;title('alignment error difference [nm]') 

%% stitch shape 

W2(isnan(W2)) = 0; 

st_fig = zeros(Ny,Nx) ;st_fig2 = zeros(Ny,Nx) ; 

num_flag = zeros(Ny,Nx) ;           % overlapping number 

for j = 1:N 

    st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) = st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) + 

W2(:,:,j).*Dflag(:,:,j) ; 

    temp_W = false(Ny,Nx) ; 

    temp_W(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ; 

    num_flag = num_flag + temp_W ; 

end 

ins = num_flag > 0; 

st_fig(ins) = st_fig2(ins)./num_flag(ins); 

clear st_fig2 
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%% Evaluate 

dif = zeros(Ny,Nx); 

dif(ins) = 1e3*st_fig(ins)-ferr(ins);   % difference [nm] 

tmp = dif(ins); 

rms = std(tmp); 

PV = max(tmp)-min(tmp); 

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal tight xy;colorbar; axis([-Lx/2 Lx/2 -

Ly/2 Ly/2]) 

title(['stitch error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

%% 11. Estimate the stitching error from difference between overlapped data 

W3 = NaN(Ny,Nx,N); 

for j = 1:N 

    W3(py(j,1):py(j,2),px(j,1):px(j,2),j) = W2(:,:,j).*Dflag(:,:,j); 

end 

W3(W3==0) = NaN; 

[ dev,sgma ] = stitch_err_func(W3,num_flag,st_fig);% um  

dev = 1e3*dev;sgma = 1e3*sgma; 

figure,imagesc(X,-Y,dev,[0 2*sgma]);axis equal tight xy;colorbar; axis([-Lx/2 Lx/2 -Ly/2 

Ly/2]) 

title(['stitch error ' ,num2str(sgma,3),'nmRMS']) 

 

[ st_fig4 ] = Alignment_remove_func( 1e3*st_fig,f,x,y,ins ); 

dif = zeros(Ny,Nx);                       %  

dif(ins) = st_fig4(ins)-ferr(ins);   % difference [nm] 

dif(ins) = dif(ins) - mean(dif(ins)); 

tmp = dif(ins); 

rms = std(tmp); 
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PV = max(tmp)-min(tmp); 

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 

Lx/2 -Ly/2 Ly/2]) 

title([num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']) 

 

function [ W ] = Alignment_remove_func( W,f,x,y,ins ) 

%% remove the alignment component 

% W     : wavefront or surface [nm] 

% f     : nominal shape [mm] 

% x,y   : lateral coordinate [mm] 

% ins   : fitting area 

%% ------------------------------------- 

N = size(find(ins),1); 

A = zeros(N,5); 

A(:,1) = 1; 

A(:,2) = x(ins); 

A(:,3) = y(ins); 

 

tmpx = zeros(size(x)); 

tmpx(:,1:end-1) = f(:,2:end) - f(:,1:end-1); 

tmpy = zeros(size(x)); 

tmpy(2:end,:) = f(1:end-1,:) - f(2:end,:); 

A(:,4) = tmpx(ins); 

A(:,5) = tmpy(ins); 

 

[U,S,V] = svd(A,0); 
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for j = 1:size(S,1) 

    if S(j,j) < 2 

        S(j,j) = 0; 

    else 

        S(j,j) = 1/S(j,j); 

    end 

end 

C = V*S*U'*W(ins); 

tmp = W(ins)-A*C; 

W = zeros(size(x)); 

W(ins) = tmp; 

end 

 

function [ move_xyz,th ] = calc_stitch_move_func( px,py,sx,sy,Lx,Ly,flag) 

% ----------------------------------------------------------------- 

%% Calculate the amount of moving 

 

% move_xyz      : amount of moving (x,y,z) [mm] 

% th            : theta (x,y) [rad] 

 

% px,py         : center position of the sub-aperture [mm] 

% sx,sy         : size of the sub-aperture [mm] 

% Lx,Ly         : size of the sample [mm] 

% flag          : 0 = Alvarez lens 

% ----------------------------------------------------------------- 

 

Nx = size(px,2);    Ny = size(py,2); 



163 
 

% create sub-aperture coordinate 

N = 50*4;                                     % sampling number 

X = (-N/2:N/2-1)/(N/2)*sx/2; 

Y = (-N/2:N/2-1)/(N/2)*sy/2; 

[x,y] = meshgrid(X,Y); y = -y;              % sub-aperture coordinate 

 

move_xyz = zeros(Nx*Ny,3); 

th = zeros(Nx*Ny,2); 

 

num = 1; 

for i = 1:Ny 

    for j = 1:Nx 

        xt = x+px(j);                       % sample coordinate (x) 

        yt = y+py(i);                       % sample coordinate (y) 

        [ f ] = surface_func( xt,yt,flag ); % sample shape [mm] 

        ins = abs(xt) < Lx/2 & abs(yt) < Ly/2;          % area in the sample 

        [ a ] = linear_Fit2D_func(f(ins),x(ins),y(ins));% coefficient 

        f = f - a(1)-a(2)*x-a(3)*y; 

        move_xyz(num,1) = px(j); 

        move_xyz(num,2) = py(i); 

        move_xyz(num,3) = a(1); 

        th(num,1) = atan(a(2)); 

        th(num,2) = atan(a(3)); 

        num = num+1; 

    end 

end 

end 



164 
 

%% end of this function 

% programed by Yasunori Furukawa in Dec.5,2016 

 

function disp_lattice_design_func( px,py,lx,ly,Lx,Ly,flag ) 

% ----------------------------------------------------------------- 

%% display the lattice design 

% px,py         : center position of the sub-aperture 

% lx,ly         : size of the sub-aperture 

% Lx,Ly         : size of the sample 

% flag          : select the type of the sample figure 

%               : 0 = rectangular 

%               : 1 = circle 

% ----------------------------------------------------------------- 

 

Nx = size(px,2);    Ny = size(py,2); 

%% display the overlapped sub-aperture 

nn = 100; 

X = (-nn/2:nn/2-1)/(nn/2)*1.2*Lx/2; 

Y = (-nn/2:nn/2-1)/(nn/2)*1.2*Ly/2; 

[x,y] = meshgrid(X,Y);y = -y;  

over_flag = zeros(size(x));                         % overlapp number 

if flag == 0 

    for i = 1:Nx 

        for j = 1:Ny 

            ins = find(abs(x-px(i)) < lx/2 & abs(y-py(j)) < ly/2);  % area of sub-

aperture 

            over_flag(ins) = over_flag(ins)+1;    % add 1  
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        end 

    end 

elseif flag == 1 

end 

over_flag(abs(x) > Lx/2 & abs(x) < Lx/2+0.1 & abs(y) < Ly/2+0.1) = -1;% draw the rim 

of the sample 

over_flag(abs(y) > Ly/2 & abs(y) < Ly/2+0.1 & abs(x) < Lx/2+0.1) = -1;% draw the rim of 

the sample 

 

figure,imagesc(X,-Y,over_flag);title('overlap number'); 

colorbar;axis equal xy tight; 

%% display the center position of the sub-aperture 

figure; 

for i = 1:Nx 

    for j = 1:Ny 

        plot(px(i),py(j),'ko');hold on    

    end 

end 

plot([-Lx/2 Lx/2 Lx/2 -Lx/2 -Lx/2],[-Ly/2 -Ly/2 Ly/2 Ly/2 -Ly/2],'g') % draw the rim of 

the sample 

axis([-Lx/2*1.2 Lx/2*1.2 -Ly/2*1.2 Ly/2*1.2]);title('center position') 

axis square; 

hold off 

end 

%% end of this function 

% programed by Yasunori Furukawa  Dec.5,2016 
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function [ pos ] = lattice_design_func( N,h,L ) 

% ----------------------------------------------------------------- 

%% determine the lattice design(sub-aperture location)  

% pos       : center position of the sub-aperture 

 

% N         : number of stitching 

% h         : size of sub-aperture 

% L         : size of sample 

% ----------------------------------------------------------------- 

 

pos = zeros(1,N); 

pos(1) = (-L+h)/2;  pos(N) = -pos(1); 

if N == 3 

    pos(2) = 0;      

elseif N == 4 

    pos(2) = (-L+h)/6;  pos(3) = -pos(2);     

elseif N == 5 

    pos(2) = (-L+h)/4;  pos(3) = 0;     pos(4) = -pos(2); 

end 

%% end of this function 

% programed by Yasunori Furukawa  Dec.5,2016 

 

function [ Z ] = make_stitchZ_func(mxyz,th,rr,Zn,qx,qy,qz,flag  ) 

% ------------------------------------------------- 

%% Calculate the Zernike polynomials on the local sample coordinate 

 

% Z             : Zernike function [um] 
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% mxyz          : amount of move [mm] 

% th            : theta x,y [rad] 

% rr            : [mm] 

% Zn            : max number of Zernike (9,16,25,36 ...etc) 

% qx,qy,qz      : CCD cordinate [mm] 

% flag          : 

 

% ------------------------------------------------- 

 

[ n1,n2 ] = size(qx); 

Z = zeros(n1,n2,Zn); 

Zt = Z; 

%% Zernike on the CCD coordinate 

Ztmp = make_Z_DZ_func(qx(:),qy(:),Zn,rr,1); 

for j = 1:Zn 

    Zt(:,:,j) = reshape(Ztmp(:,j),n1,n2); 

end 

Zt(:,:,5) = 0;Zt(:,:,6) = 0; 

%% Zernike on the local sample coordinate 

for j = 1:Zn      

    if j == 5  

        [ xa,ya,~ ] = trans_func( mxyz,th,-1,qx,qy,qz ); 

        [ xx,yy,zz ] = trans_func( mxyz,th,-1,qx+1e-2,qy,qz ); % 10um x-shift 

    elseif j == 6         

        [ xa,ya,~ ] = trans_func( mxyz,th,-1,qx,qy,qz ); 

        [ xx,yy,zz ] = trans_func( mxyz,th,-1,qx,qy+1e-2,qz ); % 10um y-shift 
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    else 

        [ xx,yy,zz ] = trans_func( mxyz,th,-1,qx,qy,qz+1e-3*Zt(:,:,j) ); 

    end     

    if j == 5 || j == 6 

        xx = xx(isfinite(xx));yy = yy(isfinite(yy));zz = zz(isfinite(zz)); 

        ina = isfinite(xa);        

        Ztmp = 1e3*(zz-surface_func( xx,yy,flag )); %[um] 

        tmp2 = griddata(xx,yy,Ztmp,xa(ina),ya(ina),'cubic'); 

        tmp = NaN(size(qx)); 

        tmp(ina) = tmp2; 

        tmp(isnan(tmp)) = 0; 

        Z(:,:,j) = tmp; 

    else 

        Z(:,:,j) = 1e3*(zz-surface_func( xx,yy,flag )); %[um] 

    end 

end 

Z(:,:,4) = 0; 

end 

%% end of this function 

% programed by Yasunori Furukawa in Dec.9,2016 

 

function [ dev,sgma ] = stitch_err_func(W,flag,Q) 

% ------------------------------------------------------------------------- 

%% compare the stitch data with the sub-aperture data 

 

% W     : wavefront at sub-aperture [n1,n2 n] 

% flag  : overlap number [n1,n2] 
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% Q     : stitch data [n1,n2] 

% ------------------------------------------------------------------------- 

 

n = size(W,3);                       

dev = zeros(size(flag)); 

Ni = max(max(flag));                % maximum overlap number  

 

for i = 2:Ni 

    ins = flag == i;             % 

choose the overlapped area  

    for j = 1:n 

        tmp = W(:,:,j); 

        ing = isfinite(tmp);         

        inb = ins & ing; 

        dev(inb) = dev(inb)+(tmp(inb)-Q(inb)).^2/i; 

    end 

end 

dev = sqrt(dev); 

ins = flag > 1; 

sgma = mean(dev(ins)); 

 

%% end of this function 

 

 

function [W,Cset,Csys] = stitching_func(W,Dflag,Nf,Nset,Nsys,Zin,px,py,Nx,Ny,ip_flag)  

% ------------------------------------------------------------------ 

%% stitching 
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% W         : wavefront that alignment error and system error are removed 

% Cset      : coefficient of alignment error 

% Csys      : coefficient of system error 

 

% W         : sub-aperture shape 

% Dflag     : 1 = effective,0 = non-effective 

% Nf        : data number 

% Nset      : alignment error Zernike number 

% Nsys      : system error Zernike number 

% Zin       : Zernike polynomial [Nky,Nkx,Nf,Zn] [mm] 

% px,py       : center position of sub-aperture [Nf,2] 

% Nx,Ny : pixel number of sample coordinate 

% ------------------------------------------------------------------ 

 

DeltaPhi = zeros(Nset,Nf) ;         % DeltaPhi(4,i) 

Zij = zeros(Nset,Nset,Nf,Nf) ;      % Zij(4,4,i,j) 

DeltaE = zeros(Nsys-Nset,1) ;       % DeltaE(i,j,4) 

S = zeros(Nsys-Nset,Nsys-Nset) ; % 

S(32,32,i) 

Si = zeros(Nset,Nsys-Nset,Nf) ;     % Si(4,32,i) 

 

handle1 = waitbar(0,'Stitching status','Name','Stitching calculation') ; 

for i = 1:Nf 

    flag1 = false(Ny,Nx) ; 

    flag1(py(i,1):py(i,2),px(i,1):px(i,2)) = Dflag(:,:,i) ; 

 

    W_i = zeros(Ny,Nx) ; 
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    W_i(py(i,1):py(i,2),px(i,1):px(i,2)) = W(:,:,i) ; % substitute sub-aperture data 

    for j = 1:Nf 

        perc = ((i-1)*Nf+j)/Nf^2*100 ; 

        pec_str = strcat(num2str(perc,'%5.1f'),' % finished.') ; 

        waitbar(perc/100,handle1,pec_str) ; 

        if i == j 

            for k = 1:Nf  

                if i ~= k 

                    flag2 = false(Ny,Nx) ; 

                    flag2(py(k,1):py(k,2),px(k,1):px(k,2)) = Dflag(:,:,k) ; 

                    flag_tmp = and(flag1,flag2) ; 

                   % figure(1),imagesc(flag_tmp);axis equal 

                    W_flag = flag_tmp(py(i,1):py(i,2),px(i,1):px(i,2)) ; 

                    Zij(:,:,i,j) = Zij(:,:,i,j) + 

calc_Zii_Dphi_func(Nset,0,W_flag,Zin(:,:,i,:),1) ; 

                end 

            end 

        else 

            flag2 = false(Ny,Nx) ; 

            flag2(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ; 

 

            W_j = zeros(Ny,Nx) ; 

            W_j(py(j,1):py(j,2),px(j,1):px(j,2)) = W(:,:,j) ;  

         

            W_flag = and(flag1,flag2) ; 

            flagi = W_flag(py(i,1):py(i,2),px(i,1):px(i,2)) ; 

            flagj = W_flag(py(j,1):py(j,2),px(j,1):px(j,2)) ; 
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            if max(max(flagi)) > 0  

                dif_tmp = W_j - W_i ;             

                difW = dif_tmp(py(i,1):py(i,2),px(i,1):px(i,2)) ; 

                DeltaPhi(:,i) = DeltaPhi(:,i) + 

calc_Zii_Dphi_func(Nset,difW,flagi,Zin(:,:,i,:),2) ; 

                if j > i 

                    Zij(:,:,i,j) = 

calc_matrix_func(Nset,0,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),1) ; 

                    Zij(:,:,j,i) = Zij(:,:,i,j).' ; 

                end 

                DeltaE = DeltaE + 

calc_matrix_func(Nset,Nsys,difW,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),2) ; 

                S(:,:) = S(:,:) + 

calc_matrix_func(Nset,Nsys,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),3) ; 

                Si(:,:,i) = Si(:,:,i) + 

calc_matrix_func(Nset,Nsys,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),4) ; 

            end 

        end 

    end 

end 

S = -0.5*S ; 

DeltaE = 0.5*DeltaE ; 

waitbar(1,handle1,'Making the stitching equation.') ; 

%%  Stitching equation  

baseN = 1 ; 

Phi_Mtx = zeros(Nset*(Nf-1)+Nsys-Nset,1) ; 

Z_Mtx = zeros(Nset*(Nf-1)+Nsys-Nset) ; 
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% Phi   

Nt = 1:Nf ; 

Nt(baseN) = [] ; 

for i = 1:Nf-1 

    Phi_Mtx((i-1)*Nset+1:i*Nset) = DeltaPhi(:,Nt(i)) ; 

end 

Phi_Mtx(Nset*(Nf-1)+1:Nset*(Nf-1)+Nsys-Nset) = DeltaE ; 

for i = 1:Nf-1 

    for j = 1:Nf-1 

        if i == j 

            Z_Mtx((i-1)*Nset+1:i*Nset,(j-1)*Nset+1:j*Nset) = Zij(:,:,Nt(i),Nt(j)) ; 

        else 

            Z_Mtx((i-1)*Nset+1:i*Nset,(j-1)*Nset+1:j*Nset) = -Zij(:,:,Nt(i),Nt(j)) ; 

        end 

    end 

end 

for i = 1:Nf-1 

    Z_Mtx((i-1)*Nset+1:i*Nset,(Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset)) = -

Si(:,:,Nt(i)) ; 

    Z_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset),(i-1)*Nset+1:i*Nset) = 

Si(:,:,Nt(i)).' ; 

end 

Z_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset),(Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-

Nset)) = S ; 

%% solve the matrix problem, and obtain the alignment error and system error 

waitbar(1,handle1,'SVD.') ; 

% [Usvd,Ssvd,Vsvd] = svd(Z_Mtx) ; 
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% svd_eigv_th = max(max(Ssvd)) * 1.0e-10 ; 

% Ssvd(Ssvd<svd_eigv_th) = 1.0e21 ; 

% Sisvd = 1./diag(Ssvd) ; 

% Sisvd(abs(Sisvd)<1.0e-20) = 0 ; 

% Sisvd = diag(Sisvd) ; 

% CZ_Mtx = Vsvd*Sisvd*Usvd'*Phi_Mtx ; 

% difg = g(2:end)-g(1:end-1); 

[U,S,V] = svd(Z_Mtx,0); 

g = log10(diag(S)); 

figure,plot(g,'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);grid 

dif_g = g(1:end-1)-g(2:end); 

dif_g(end-3:end) = 0; 

% figure,plot(dif_g,'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);grid 

[ ~,pos ] = max(dif_g); 

 

% if ip_flag == 0 

%     limN = 1e-10;    % •âŠÔ‚È‚µ‚Ì‚Æ‚« 

%     % num = rank(Z_Mtx); 

% else 

%   %  num = rank(Z_Mtx); 

%     limN = 1e-4;   % 10^(-1.8);%•âŠÔ‚ ‚è‚Ì‚Æ‚« 

% end 

% pos = 48;% 

for j = 1:size(S,1) 

    if j > pos  
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    %if abs(S(j,j)) < limN  

        S(j,j) = 0; 

    else 

        S(j,j) = 1/S(j,j); 

    end 

end 

CZ_Mtx = V*S*U'*Phi_Mtx; 

%% 

Cset = -CZ_Mtx(1:(Nf-1)*Nset)' ;                       % coefficient of alignment 

error [um] 

Csys = -CZ_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+Nsys-Nset)' ; % coefficient of system 

error[um] 

waitbar(1,handle1,'Removing the system error and setting error.') ; 

%% alignment error removal 

for i = 1:Nf-1 

    for j = 1:Nset 

        W(:,:,Nt(i)) = W(:,:,Nt(i))-Cset((i-1)*Nset+j)*Zin(:,:,Nt(i),j); 

    end 

end 

%% sysetm error removal 

for i = 1:Nf 

    sys_err = zeros(size(Zin(:,:,1,1))) ; 

    for j = 1:Nsys-Nset         

        sys_err = sys_err + Csys(j)*Zin(:,:,i,j+Nset) ; 

    end 

    W(:,:,i) = W(:,:,i) - sys_err ; 

    W(:,:,i) = W(:,:,i).*Dflag(:,:,i) ; 
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end 

close(handle1) ; 

%% end of this function 

% programed by Yasunori Furukawa Dec. 10, 2016 

function [ Q ] = calc_Zii_Dphi_func(Nset,dif_W,W_flag,Zin,flag) 

% -------------------------------------------------------------- 

 

% Q         : flag:1 = Zii,2 = DeltaPhi 

 

% Nset      : number of alignment error 

% dif_W     :  

% W_flag    : [Ny,Nx] 

% Zin       : Zernike polynomial [Nky,Nkx,1,Nset] 

% flag      : 1 = Zii,2 = DeltaPhi 

 

% -------------------------------------------------------------- 

cut = find(W_flag == true) ;% obtain overlapped data 

%% 

Zi =  zeros(size(cut,1),Nset) ; 

for i = 1:Nset 

    tmp = Zin(:,:,i); 

    Zi(:,i) = tmp(cut); 

end 

if flag == 1        % Zii 

    Q = Zi'*Zi; 

elseif flag == 2    % DeltaPhi 

    tmp = dif_W(cut); 
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    tmp(isnan(tmp)) = 0; 

    Q = Zi'*tmp; 

end 

function [ Q ] = calc_matrix_func(Nset,Nsys,dif_W,flagi,flagj,Zini,Zinj,flag)  

% ----------------------------------------------------------- 

% Q             : flag : 1 = Zij,2 = E, 3 = S, 4 = Si 

 

% Nset          : alignment error number 

% Nsys          : system error number 

% dif_W         : [Nky Nkx] 

% flagi         : [Nky Nkx] 

% flagj         : [Nky Nkx] 

% Zini          : [Nky Nkx 1 NN] 

% Zinj          : [Nky Nkx 1 NN] 

% flag          : 1 = Zij,2 = E, 3 = S, 4 = Si 

 

% ----------------------------------------------------------- 

 

if flag == 1 

    NN = Nset; 

else 

    NN = Nsys; 

end 

[n1,n2] = size(Zini(:,:,1)); 

tmp = reshape(Zini(:,:,1,1:NN),n1*n2,NN); 

Zi = tmp(flagi,:) ; 

tmp = reshape(Zinj(:,:,1,1:NN),n1*n2,NN); 
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Zj = tmp(flagj,:) ; 

%% calculate matrix 

if flag == 1 % Zij 

    Q = Zi'*Zj; 

elseif flag == 2 % E 

    tmp = dif_W(flagi); 

    tmp(isnan(tmp)) = 0; 

    Q = (Zj(:,Nset+1:Nsys)-Zi(:,Nset+1:Nsys))'*tmp; 

elseif flag == 3 % S   

    Q = (Zj(:,Nset+1:Nsys) - Zi(:,Nset+1:Nsys))'*(Zj(:,Nset+1:Nsys) - 

Zi(:,Nset+1:Nsys)); 

elseif flag == 4 % Si 

    Q = Zi(:,1:Nset)'*(Zj(:,Nset+1:Nsys) - Zi(:,Nset+1:Nsys)); 

end 

 

function [ f ] = surface_func( x,y,flag ) 

% ----------------------------------------------------------------- 

%% Output the test surface 

% f             : test surface [mm] 

 

% x,y           : coordinate [mm] 

% flag          : 0 = Alvarez lens 

% ----------------------------------------------------------------- 

if flag == 0 

    A = 0.0012; 

    f = A*(1/3*x.^3+x.*y.^2); 

end 
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end 

%% end of this function 

% programed by Yasunori Furukawa  Dec.5,2016 

 

function [ qx,qy,qz ] = trans_func( mxyz,th,flag,x,y,z ) 

% ---------------------------------------------------- 

%% transform the coordinate 

% qx,qy,qz      : coordinate after transform [mm] 

 

% mxyz          : amount of shift (x,y,z) [mm] 

% th            : amount of rotation (thx, thy) [rad] 

% flag          : 1 = transform from local sample coord to CCD coord 

%               : -1 = transform from CCD coord to local sample coord  

% x,y,z         : coordinate before transform [mm] 

% ---------------------------------------------------- 

 

if flag == 1     

 [ x,y,z ] = Shift_samp_func(-mxyz,x,y,z);         % XYZ shift 

 [ x,y,z ] = Rot_samp_func(-th(1),0,x,y,z);     % theta x rotation 

    [ qx,qy,qz ] = Rot_samp_func(-th(2),1,x,y,z);     % theta y rotation 

elseif flag == -1 

    [ x,y,z ] = Rot_samp_func(th(2),1,x,y,z);       % theta y rotation 

    [ x,y,z ] = Rot_samp_func(th(1),0,x,y,z);    % theta x rotation 

    [ qx,qy,qz ] = Shift_samp_func(mxyz,x,y,z);     % XYZ shift 

end 

% if flag == 1     

%  [ x,y,z ] = Shift_samp_func(mxyz,x,y,z);         % XYZ shift 
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%  [ x,y,z ] = Rot_samp_func(th(1),0,x,y,z);     % theta x rotation 

%     [ qx,qy,qz ] = Rot_samp_func(th(2),1,x,y,z);     % theta y rotation 

% elseif flag == -1 

%     [ x,y,z ] = Rot_samp_func(-th(2),1,x,y,z);       % theta y rotation 

%     [ x,y,z ] = Rot_samp_func(-th(1),0,x,y,z);    % theta x rotation 

%     [ qx,qy,qz ] = Shift_samp_func(-mxyz,x,y,z);     % XYZ shift 

% elseif flag == 0 

%     [ x,y,z ] = Shift_samp_func(-mxyz,x,y,z); 

%     [ x,y,z ] = Rot_samp_func(-th(1),0,x,y,z);  

%     [ qx,qy,qz ] = Rot_samp_func(-th(2),1,x,y,z); 

% end 

end 

function [xo,yo,zo] = Shift_samp_func(mxyz,x,y,z) 

% ---------------------------------------------------------------------- 

%%  Shift the sample  

% xo,yo,zo  : coordinate after shifting [mm] 

 

% mxyz      : amount of shift (x,y,z) [mm] 

% x,y,z     : coordinate before shifting [mm] 

% ---------------------------------------------------------------------- 

 

xo = x + mxyz(1) ; 

yo = y + mxyz(2) ; 

zo = z + mxyz(3) ; 

end 

function [ xo,yo,zo ] = Rot_samp_func(th,flag,x,y,z) 

% ---------------------------------------------------------------------- 
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%%  Rotate the sample thetax or thetay 

% xo,yo,zo  : coordinate after rotation [mm] 

 

% th        : Rotation angle x,y [rad] 

% flag      : 0 = theta x, 1 = theta y 

% x,y,z     : coordinate before rotation [mm] 

% ---------------------------------------------------------------------- 

 

if flag == 0 

    xo = cos(th)*x-sin(th)*z; 

    yo = y; 

    zo = sin(th)*x+cos(th)*z;    

elseif flag == 1 

    xo = x; 

    yo = cos(th)*y-sin(th)*z; 

    zo = sin(th)*y+cos(th)*z;  

end 

end 

%% end of this function 

% programed by Yasunori Furukawa in Dec.8,2016 

  

 


