
FREEFORM MEASUREMENT WITH STITCHING TALBOT INTERFEROMETER

by

Yasunori Furukawa

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Optical Science and Engineering

Charlotte

2018

 Approved by:

Dr. Angela Davies

Dr. Christopher J. Evans

Dr. Thomas Suleski

ii

© 2018

Yasunori Furukawa
ALL RIGHTS RESERVED

iii

ABSTRACT

YASUNORI FURUKAWA. Freeform measurement with stitching Talbot interferometer.

(Under the direction of DR. ANGELA DAVIES)

Freeform optics are being used in many fields to realize the outstanding

performance due to their high degree of freedom. To realize sufficiently high performance,

it is necessary to manufacture the freeform surface with high accuracy, which requires a

high accurate measurement of the freeform surface. Several methods to measure the

freeform surface have been suggested. However, they are time-consuming, expensive or

their dynamic range is limited. Therefore, we propose a new system that realizes high

dynamic range and rapid freeform measurements of freeform surfaces using a combination

of the Talbot interferometer and the stitching technique. In this thesis, we introduced the

theory and simulation of the Talbot interferometer, and verified that the large reflected

wavefront from a freeform (50 µmPV) can be retrieved from the Talbot image. For the

stitching, we introduce the algorithm and confirm by simulation that alignment errors of

the surface under test can be estimated and reduced. In addition, we estimate the

measurement error of both the Talbot interferometer and stitching. In the experiment, the

Talbot interferometer was assembled using Fizeau interferometer and a displacement

sensor. Furthermore, we suggest a way to assemble the optical system for freeform surface

measurement.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Angela Davies for her inspirational guidance

toward the advancement and completion of the research project. I have learned a lot from

our numerous technical discussions. In addition, I would like to thank Dr. Christopher

Evans not only for his contribution as my co advisor and committee member but also for

his unconditional assistance. I am also thankful to Dr. Jimmie Miller for his thoughtful

contributions and Dr. Thomas J. Suleski for help in understanding diffraction effects of the

grating. I would like to acknowledge the other members of the research team: Marashi

Cameron and Porter Mitchell who contributed significantly to the mechanical design and

assembly of our optical system. I would like to thank the University of North Carolina at

Charlotte, the Department of Physics and Optical Science, and the Department of

Mechanical Engineering.

I would like to thank Canon Inc. and Canon USA Inc. for giving me an opportunity

to study optics in the University of North Carolina at Charlotte. Lastly, I am especially

grateful to my wife, family and my parents for their constant support and encouragement,

and for their genuine interest in my work.

v

TABLE OF CONTENTS
LIST OF TABLES vii

LIST OF FIGURES viii

1. Introduction 1

1.1. Freeform optics 1

1.2. Freeform surface metrology 2

1.2.1. Profilometer 3

1.2.2. CGH interferometer 3

1.2.3. Deflectometry 3

1.2.4. Shearing interferometer 4

1.2.5. Stitching interferometer 5

1.2.6. Tilted wave interferometer 5

1.3. Motivation 6

1.4. Thesis overview 7

2. Freeform measurement system 8

2.1. Principle 8

2.2. Measurement procedure 9

3. Talbot interferometer 11

3.1. Background 11

3.2. Principle 11

3.2.1. Fresnel approximation theory 12

3.2.2. Angular spectrum propagation 13

3.2.3. Five beams interference model 15

3.3. Sheared wavefront retrieval 17

3.3.1. Fourier transform method 18

3.3.2. X y phase shift method 20

3.3.3. Diagonal phase shift method 21

3.3.4. Unwrapping 23

3.4. Two-dimensional integration 23

3.4.1. Fourier transform method 24

3.4.2. Fitting method with sheared wavefront 25

3.4.3. Path integral method 26

3.5. Measurement range 28

3.6. Spatial resolution 29

vi

3.7. Dynamic range of a tilt wavefront 30

3.8. Simulation 31

3.8.1. Angular spectrum propagation 31

3.8.2. Five beams interference 36

4. Stitching 38

4.1. Background 38

4.2. Lattice design 38

4.3. Principle 38

4.4. Simulation 40

5. Error estimate 47

5.1. Talbot interferometer 47

5.1.1. CCD noise 48

5.1.2. Z position error of the grating 49

5.1.3. Tilt error of the grating 52

5.1.4. Rotation error of the grating 55

5.2. Stitching 56

5.2.1. Random error 56

5.2.2. System error 57

5.2.3. Spike noise 58

5.3. Retrace error 59

5.4. Uncertainty 65

6. Assembly and alignment 67

6.1. Talbot interferometer 67

6.2. Optical system 78

7. Conclusion and future work 83

References 84

Appendix A. Calculation of five beams interference 91

Appendix B. MATLAB Code of a Talbot interferometer 95

Appendix C. MATLAB Code of a Talbot interferometer with five beams

 interference 114

Appendix D. MATLAB code of a Talbot interferometer with a tilted grating using

 three beams interference 137

Appendix E. MATLAB code of a stitching simulation 145

vii

LIST OF TABLES

Table 1 Comparison between Fourier transform, phase shift and diagonal phase

 shift method. 18

Table 2 Integration methods. 24

Table 3 Center coordinate of sub-aperture and tip-tilt of the test sample. 42

Table 4 Lens data of the optical system. 61

Table 5 Added system error. 62

Table 6 Error estimation of the freeform measurement. 66

Table 7 CCD specification. 68

viii

LIST OF FIGURES

Figure 1 Alvarez lens surface. 1

Figure 2 Cross-section illustrations of the Alvarez lens. 2

Figure 3 Specification about dynamic range and accuracy. 7

Figure 4 The schematic diagram of the freeform measurement. 9

Figure 5 Measurement flow. 9

Figure 6 Talbot interferometer. 11

Figure 7 Sheared wavefront retrieval flow. 20

Figure 8 Fourier spectrum of irradiance (log of absolute). 22

Figure 9 Filtered Fourier spectrum of irradiance (log of absolute). 22

Figure 10 Irradiance whose y frequency component is filtered. 22

Figure 11 Integration paths. 26

Figure 12 Integration flow. 27

Figure 13 Start location of integration. 27

Figure 14 Fourier spectrum of the Talbot image. 30

Figure 15 Transmittance amplitude of the grating. (a) sinusoidal and (b) rectangle. 31

Figure 16 Irradiance on the x-z plane. (a) sinusoidal transmittance and (b) rectangle

 transmittance 32

Figure 17 Schematic diagram for comparison between retrieved wavefront and

 reference wavefront. 33

Figure 18 Intensity with sinusoidal grating calculated by angular spectrum

 propagation. (a) intensity and (b) magnified intensity. 33

Figure 19 Comparison between retrieved wavefront and reference wavefront. (a)

 reference and retrieved wavefront, (b) difference between reference and

 retrieved wavefront and (c) difference between the reference wavefront

 and the retrieved wavefront with the approximation of Equation (38). 34

Figure 20 Intensity with rectangle grating. (a) intensity and (b) magnified intensity. 34

Figure 21 Comparison between retrieved wavefront with phase shift method and

 reference wavefront. (a) reference and retrieved wavefront and (b)

 difference between reference and retrieved wavefront. 35

Figure 22 Comparison between retrieved wavefront and reference wavefront. (a)

 reference and retrieved wavefront with FT method and (b) difference

 between reference and retrieved wavefront. 35

Figure 23 Irradiance of five beams interference. 36

ix

Figure 24 Wavefront retrieved from the irradiance using FT method. (a) retrieved

 wavefront, (b) reference wavefront and (c) difference between (a) and

 (b). 36

Figure 25 Test shape. (a) nominal shape and (b) error shape. 40

Figure 26 Stitching simulation flow. 41

Figure 27 Lattice design. (a) center position of the sub-aperture and (b) overlap

 number. 41

Figure 28 Sub-aperture shape. 43

Figure 29 Estimation results of the alignment error. (a) x shift error, (b) y shift error,

 (c) z shift error, (d) θx tilt error and (e) θy tilt error. 44

Figure 30 Estimation results of the alignment error difference. (a) x shift error, (b) y

 shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error. 44

Figure 31 Retrieved shape. (a) output error shape, (b) input error shape and (c)

 difference between output and input error shape. 45

Figure 32 Estimation error of the alignment error when stitching twice. (a) x shift

 error, (b) y shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error. 46

Figure 33 Retrieved shape when stitching twice. (a) output error shape, (b) input error

 shape and (c) difference between output and input error shape. 46

Figure 34 Wavefront from the Alvarez surface. (a) wavefront on x-axis, (b) wavefront

 on the diagonal line and (c) input wavefront. 47

Figure 35 Wavefront retrieval error 48

Figure 36 Wavefront error due to CCD noise. (a) 1 %, (b) 3 % and (c) 5 % CCD

 noise. 48

Figure 37 RMS wavefront error due to a CCD noise. 49

Figure 38 Wavefront error due to z error of the grating. (a) -3 µm, (b) -2 µm, (c) -1

 µm, (d) 1 µm, (e) 2 µm and (f) 3 µm z error. 49

Figure 39 RMS wavefront error due to z error of the grating. 50

Figure 40 Irradiance distributions at different positions. The position deviation from

 the half Talbot distance Δz is (a) -3 mm, (b) -1 mm, (c) -0.1 mm, (d) 0 mm,

 (e) 0.1 mm, (f) 1 mm and (g) 3 mm. 51

Figure 41 Retrieved wavefronts from the irradiance distributions at the different

 positions, Δz (a) -3 mm, (b) -1 mm, (c) -0.1 mm, (d) 0 mm, (e) 0.1 mm, (f)

 1 mm and (g) 3 mm. 51

Figure 42 Differences between the reference wavefront and the retrieved wavefront at

 Δz (a) -3 mm, (b) -1 mm, (c) -0.1 mm, (d) 0 mm, (e) 0.1 mm, (f) 1 mm and

 (g) 3 mm. 52

x

Figure 43 The schematic diagram of the optical length with tilted grating. 53

Figure 44 Wavefront error due to the grating tilt. (a) -3 mrad, (b) -1 mrad, (c) 0 mrad,

 (d) 1 mrad and (e) 3 mrad. 54

Figure 45 RMS wavefront error due to the grating tilt. 54

Figure 46 Stitching error due to a random error. 56

Figure 47 Stitching rms error due to a random error. 56

Figure 48 System error. (a) 2.1 nmRMS, (b) 4.6 nmRMS and (c) 9.7 nmRMS. 57

Figure 49 Stitching error due to the system error (Figure 48). 57

Figure 50 Stitching rms error due to a system error. 58

Figure 51 Stitching error due to a spike error. 58

Figure 52 Stitching error due to a spike error. 59

Figure 53 Optical design. (a) optical path from the light source to the test surface 61

Figure 54 Test shape for simulation of calibration. 62

Figure 55 Angle correction table. 63

Figure 56 Retrace error. (a) coordinate error and (b) angle error. 63

Figure 57 Shape error. 64

Figure 58 Shape error when Evans’s method is applied. 64

Figure 59 Shape error when the coordinate error is corrected. 65

Figure 60 The schematic of a cross grating. 67

Figure 61 Image of the cross grating with microscope. (a) transmission image, (b) x

 cross section and (c) y cross section. 67

Figure 62 Image of the cross grating with white light interferometer. (a) image and

 (b) x cross section. 68

Figure 63 Setup for tip-tilt adjustment of the CCD. 69

Figure 64 CCD measurement with Fizeau interferometer. (a) Fringe and (b) form. 69

Figure 65 Setup for rotation and tip-tilt adjustment of the grating. 70

Figure 66 Magnified intensity only in the y direction. 70

Figure 67 Grating measurement with Fizeau interferometer. (a) Fringe and (b) form. 71

Figure 68 Intensity comparison between calculation and experiment with CCD driven

 in the z-direction. 71

Figure 69 Setup for measuring the distance between the grating and the CCD. 72

Figure 70 Experimental result of the tilt wavefront. (a) tilt amount measured by

 Fizeau interferometer and Talbot interferomter, and (b) difference between

 the results of Fizeau interferometer and Talbot interferometer. 73

Figure 71 Model for measuring the distance between a grating and a CCD. 74

Figure 72 Setup to measure the distance between the grating and the CCD. (a) cat’s

xi

 eye position and (b) Lm shift in the z-direction. 76

Figure 73 Experimental result of the spherical wavefront. (a) Coefficient of Zernike

 4-th term and (b) Difference between the results of displacement sensor

 and Talbot interferometer. 76

Figure 74 Experimental result of the spherical wavefront. (a) Coefficient of Zernike

 4-th term and (b) Difference between the results of displacement sensor

 and Talbot interferometer. 77

Figure 75 Variation of measured distance. 77

Figure 76 Talbot interferometer. 78

Figure 77 Tip-tilt adjustment of the Talbot interferometer. 79

Figure 78 Tip-tilt adjustment of the beam splitter. 79

Figure 79 Tip-tilt adjustment of the plane mirror. 80

Figure 80 Alignment of the achromatic lens. 80

Figure 81 Tip-tilt adjustment of the plane mirror. 80

Figure 82 Tip-tilt adjustment of another achromatic lens. 81

Figure 83 Alignment of another achromatic lens. 81

Figure 84 Optical system. 81

1

1. Introduction

1.1. Freeform optics

Freeform optics are optical parts composed of a surface or surfaces that lack

translational or rotational symmetry. Compared with spherical or aspherical optics,

freeform optics offer more design degrees of freedom [1], and this enables reduced system

size [2], low aberration, increased field of view and larger spectral bandwidth. However,

since it is difficult to design, manufacture and measure a freeform surface, they are not yet

commonly incorporated into optical designs. In recent years, with advances in computing

and fabrication [3], freeform optics are being used in various advanced optical products

such as head mount displays [4], laser printers [5], astronomy-based system [6] and

extreme-ultraviolet (EUV) lithography [7].

The Alvarez lens [8] [9]is an example of freeform optics. Its surface is the so-

called ’monkey saddle’ and can be expressed by

 𝑧(𝑥, 𝑦) = 𝐴 ቀ
ଵ

ଷ
𝑥ଷ + 𝑥𝑦ଶቁ, (1)

where (x, y) denote Cartesian coordinates in the plane, and A is the coefficient whose unit

is mm-2. Figure 1 shows the Alvarez lens surface when the coefficient A is 0.0012 mm-2,

and the aperture size is 10 mm.

Figure 1 Alvarez lens surface.

Z [mm]

X [mm]Y [mm]

2

The Alvarez lens is normally used in pairs as is shown in Figure 2.

Figure 2 Cross-section illustrations of the Alvarez lens.

(a) with no offset and (b) lateral displacement.

With a lateral shift of the Alvarez lens by x0 in the x-direction, the surface geometry is

expressed by

𝒛(𝒙 − 𝒙𝟎, 𝒚) = 𝑨 ൜
𝟏

𝟑
(𝒙 − 𝒙𝟎)𝟑 + (𝒙 − 𝒙𝟎)𝒚𝟐ൠ

 = 𝑧(𝑥, 𝑦) − 𝐴𝑥଴(𝑥ଶ + 𝑦ଶ) + 𝐴𝑥଴
ଶ ቀ𝑥 −

ଵ

ଷ
𝑥଴ቁ. (2)

The first term of Equation (2) is the same as the Alvarez lens without shifting. The second

term is a spherical component. The third term shows tilt and piston. Therefore, when a

wavefront passes through two sheared Alvarez lenses, the optical path impact leads to a

change in the wavefront curvature by having a lateral relative shift between the two Alvarez

surfaces in the x-direction. This means the Alvarez lens can control the focus distance with

a compact overall physical system size. For this reason, the Alvarez lens is used for glasses

[10].

The Alvarez lens surface cannot be measured by a conventional interferometer

because of the extreme deviation from a sphere or a plain surface, and the corresponding

steep slopes. Therefore, we chose the measurement of an Alvarez lens to define

measurement specifications of the measurement system proposed in this thesis.

1.2. Freeform surface metrology

The quality of any optical surface effects performance, therefore measuring the

surface is one of the most important steps in the manufacturing process. However,

(b)(a)

3

compared with spherical and aspherical surfaces, which are used in conventional products

and relatively easy to measure, it is much more difficult to measure a freeform surface.

Therefore, the measurement of freeform surfaces is still very challenging. Several methods

have been introduced for measuring freeform surfaces.

1.2.1. Profilometer

A profilometer is widely used to measure the freeform surface. In particular, the

Talysurf series [11], an Ultrahigh accurate 3-D profilometer (UA3P) [12], and MahrSurf

[13] are commonly used in industry. The profilometer uses the stylus to drag along the test

surface and measures its deflection. The profilometer can measure almost arbitrary surface

with high spatial resolution because the height of the surface is measured point by point.

However, measurement time is long, and the stylus often damages the test surface.

1.2.2. CGH interferometer

In a CGH (computer generated hologram) interferometer [14], a CGH is inserted

behind the transmission sphere to form a specified wavefront to match the freeform surface.

Since the incident ray and reflected ray from the test surface are almost normal to the test

surface, the wavefront on the detector is almost flat, and the fringe density is not high,

which realizes a high accuracy measurement. In addition, the measurement time is short.

However, the CGH must be designed and fabricated for each specific freeform surface. It

is time-consuming, and the cost is high. Moreover, it is sensitive to alignment errors of the

CGH and of the test sample [15].

1.2.3. Deflectometry

A deflectometry uses structured light and measures the slope profile of the test

surface by detecting the distortion of a pattern (often a sinusoidal pattern) reflected from

the test surface. As examples of the deflectometry, the technique known as Software

Configurable Optical Test System (SCOTS) [16] [17] was developed at the University of

4

Arizona, and Phase Measuring Deflectometry (PMD) [18] was developed at the University

of Erlangen-Nuremberg. Deflectometry has a relatively high dynamic range, but the

measurement accuracy is not high. In addition, it requires calibration of the projection

screen and, camera, in addition to a geometric calibration of the entire system for

improving the accuracy.

1.2.4. Shearing interferometer

In a shearing interferometer [19], the test wavefront is divided by a beam splitter,

shear plate or grating [20], and an interferogram is formed by overlapping the wavefront

with a small laterally-shifted duplicate of itself. The interferogram is thus a measure of the

sheared wavefront. In this way, the interference signal is self-referencing and therefore a

shearing interferometer does not require a reference wavefront as in conventional

interferometry. Also, it has a large dynamic range due to a low fringe density. Therefore,

shearing interferometry is used extensively in diverse applications such as inspection of a

beam wavefront [21], testing of optical components and systems [22], the beam collimation

check [23] [24] [25] and the study of flow and diffusion phenomena in gases [26]. Low

spatial resolution is one drawback compared to conventional interferometry, and 2-

dimensional integration is necessary, which is sensitive to random noise such as CCD

(charge-coupled device) noise [27]. In addition, when the tilt of a wavefront is to be

measured, the tilt leads to a piston component of the retrieved sheared wavefront, which is

equivalent to the lateral shift of the whole grating in the grating implementation of a

shearing interferometer. Therefore, in the case of applying the FT method (discussed in

Chapter 3.3.1) to retrieve the tilt in the incident wavefront, drift of the grating must be

considered. Also, in the case of using the phase shift method described in Chapter 3.3.2,

prominent position repeatability of the grating is required to measure the tilt in the

wavefront.

5

1.2.5. Stitching interferometer

In conventional interferometry, it is difficult to measure a large test surface

because optics in the interferometer must be similarly large. In addition, it is difficult to

measure a surface with a large deviation from a flat or spherical surface because the fringe

density becomes too high to detect. To overcome these limitations, in stitching

interferometry [28] [29] [30] [31], sub-aperture measurements are taken and the test sample

is translated and tilted between measurements, usually with a common overlap region

between adjacent measurements. The measurements are then connected (stitched together)

by estimating and eliminating alignment errors of the test sample from the difference in the

overlap area of the measurements. Thus, this method can measure large sized flat [32] or

spherical surfaces [33]. However, if we measure the test surface whose deviation from a

flat or sphere is large with a stitching interferometer, the sub-apertures must be small,

meaning the number of measurements must be large. A large number of measurements

increase measurement time and usually measurement error, effectively reducing the

dynamic range. The uncertainty in the data for the overlap regions is reduced by averaging,

but there is an added uncertainty related to the estimation of the alignment error of the test

sample.

1.2.6. Tilted wave interferometer

The tilted wave interferometer (TWI) [34] has been discussed in the literature over

the last few years. The TWI is a Twyman–Green interferometer with a two-dimensional

extended source. An extended source is well modeled as a collection of incoherent point

sources over an array in a plane perpendicular to the optical axis. The light from each point

source gives rise to a tilted wavefront incident to the test surface. The TWI measures only

rays which pass through the beam stop in the Fourier plane of the imaging optics to limit

the fringe density. In other words, the TWI measures only the beam reflecting from the test

surface which shows no tilt with respect to the reference. The measurement is rapid;

6

however, the dynamic range is limited by a maximum slope and maximum aperture size of

the test surface. In addition, calibration of the TWI is very difficult and requires careful

consideration of retrace errors, which occurs when the optical path of the incident ray and

reflected ray from the test surface become significantly different [35] [36].

1.3. Motivation

Compared with these methods, our system provides rapid and flexible (high

dynamic range) freeform measurements. Our method is a combination of the Talbot

interferometry and the stitching technique. A Talbot interferometer is a type of shearing

interferometer that consists of only a grating and a CCD and is thus particularly compact.

The small aperture of our Talbot interferometer and its shearing-based principal mean that

local measurements can be made of relatively extreme freeform surfaces. Our instrument

combines this advantage with stitching to enable full measurements of large extreme

freeform optics. In addition, the compact size of our instrument is compatible with on-

machine metrology and this is highly desirable for freeform surface fabrication where the

loss of coordinate system registration with removal of the part is particularly detrimental.

The stitching aspect adds two important capabilities. First, a maximum measurable

wavefront gradient when restricted to a sub-aperture region means larger freeforms with

more extreme gradients can be measured. Second, high spatial resolution measurements of

large freeforms are possible with a small sensor and a small optical system.

As shown in Figure 3, our measurement system is characterized by high accuracy

and high dynamic range for large components. In addition, the instrument is low cost,

compact, non-contact, and relatively easy to calibrate and characterize. Therefore, our

system is an important contribution to the field of freeform surface metrology.

7

Figure 3 Specification about dynamic range and accuracy.

1.4. Thesis overview

This thesis consists of seven Chapters. Chapter 2 describes the principle of our

measurement system. Chapter 3 describes the theory, sheared wavefront retrieval

methodology, specification, and simulation of the Talbot interferometer. Chapter 4

describes the principle and simulation of the stitching technique. Chapter 5 describes the

uncertainty estimation of the Talbot interferometer, and the stitching process by simulation

with the mathematical software, MATLAB®. The retrace error is also investigated using an

optical design software, Zemax. Chapter 6 describes the assembly and alignment of both

the Talbot interferometer and the full optical system. Finally, conclusions and future works

are given in Chapter 7.

1

Accuracy
[nmRMS]

Deviation [µm]
10 100 1000

1

10

100

1000
Deflectometry

CMM

CGH interferometer

TWI

Shearing
interferometer

Stitching
interferometer

Stitching
shearing
interferometer

8

2. Freeform measurement system

2.1. Principle

The schematic of the freeform measurement system is shown in Figure 4. The

light source is a He-Ne laser whose wavelength is 632.8 nm. A collimated beam is formed

by a collimator lens which is then transferred to the test surface by two relay lenses. The

beam reflected from the test surface passes back through the relay lens pair and is imaged

onto the Talbot interferometer [37]. Here, the test surface and the Talbot interferometer are

conjugates of each other by the two relay lenses. The Talbot interferometer is a wavefront

measurement device which consists of a cross grating and an image detector array such as

a charge-coupled device (CCD). The wavefront can be calculated from the distortion of the

self-image which occurs at constant Talbot distances from the grating. Since the sheared

wavefront is detected, the Talbot interferometer can measure a more steeply sloped

wavefront than a Fizeau interferometer. However, measuring the whole test surface in one-

shot is not possible for freeforms with large slope variation because very large wavefront

gradients lead to dense fringes that become unresolvable on the sensor. Therefore, small

local areas of the test surface are measured with motion between the sampled areas realized

with a 5-axis stage. When the test sample is moved to a new area, it is adjusted with

potentially all 5-axes of the stage so that the wavefront gradients on the Talbot

interferometer are as small as possible. The sub-aperture slope profile of the test surface at

each location is obtained by reverse raytracing with the measured wavefront. In reverse

raytracing, ray tracing is performed from the Talbot interferometer to the test surface using

design values and calibration values of the optical system, and the ray coordinates and the

ray angle or wavefront on the test surface are calculated. The sub-aperture shape is

calculated by integrating the sub-aperture slope profile two-dimensionally. Finally, the full

aperture test shape profile is obtained by connecting the multiple sub-aperture

measurements by estimating and removing the alignment degrees of freedom between sub-

9

aperture measurements.

Figure 4 The schematic diagram of the freeform measurement.

2.2. Measurement procedure

The measurement procedure is shown in Figure 5. The steps are the following:

Figure 5 Measurement flow.

1. Determine sub-aperture measurement layout

Determine the number of measurements, the test sample position, and orientations for

each sub-aperture measurement. The detail is described in Chapter 4.2

2. Move the test sample

determine lattice design

move the test sample

measure the wavefront

reverse raytrace

2D integration

stitching

start

End
measure the whole

surface ?

Yes

No

1

2

3

4

5

6

7

φ

f f ff

φ = 5 mm

φ

f = 125 mm

Test surface

Talbot
interferometer

He-Ne laser

XYZθxθy stage

Y

Z
X

Relay lens

10

Move the test sample with the 5-axis stage following the sub-aperture measurement

layout. For each sub-aperture measurement, tip and tilt the test sample so that the

difference between the measured wavefront and the nominal expected wavefront

(based on ideal surface shape) becomes minimal.

3. Measure the wavefront

Measure the wavefront of the beam reflected from the test surface with the Talbot

interferometer. The detail is described in Chapter 3.

4. Measure the whole surface?

If all sub-apertures have been measured, proceed to the next step. If not, go back to step

2.

5. Reverse raytrace

Reverse raytrace from the Talbot interferometer to test surface is carried out with the

measured wavefront and the optical design of the measurement system using an optical

design software package (Zemax), obtaining the ray coordinate and slope on the test

sample.

6. Two-dimensional integration

At this point, the measured data is the surface slope profile. The shape profile is

calculated by 2-dimensional integration. The detail is described in Chapter 3.4.

7. Stitching

The whole test surface is obtained by stitching together the sub-aperture measurements

with removal of the alignment degrees of freedom in each measurement. Details are

described in Chapter 4.

11

Talbot distance

Grating

Detector

3. Talbot interferometer

3.1. Background

A Talbot interferometer is one kind of shearing interferometers. As is shown in

Figure 6, it is composed of a grating and a photo detector such as a charge-coupled device

(CCD). The incoming wavefront is divided mainly into the 0 and ±1st order diffraction

beams by the grating, and they form an interferogram on a detector array positioned in the

space beyond the grating. In particular, the self-image of the grating occurs at regular

distances called the Talbot distance or the Talbot length behind the grating, which is called

the Talbot effect [38]. If the incoming wave has aberration, the image is distorted from an

exact grating pattern. Therefore, we can obtain the wavefront aberration by analyzing the

distortion of the image. Compared with other shearing interferometers, the Talbot

interferometer is compact, and therefore suitable for sub-aperature measurements of

extreme wavefronts with large slopes.

Figure 6 Talbot interferometer.

3.2. Principle

There are three ways to explain the Talbot interferometer: Fresnel approximation

theory, angular spectrum propagation, and five beams interference model. The Fresnel

approximation theory is the simplest way of theoretically understanding the Talbot

phenomenon. The angular spectrum propagation calculation is not approximate; therefore

12

it is useful for accurate simulation. However, it requires a lot of computational memory.

The five beams interference model is approximate and neglects higher order diffraction

effects. Since it is not computationally challenging, it is suitable for simulating the 2-

dimensional Talbot image. The details of the three theories are discussed below.

3.2.1. Fresnel approximation theory

For simplicity, we assume that the grating has a cosine amplitude transmittance

characteristic with pitch p in the horizontal direction. Assuming the lateral coordinates on

the grating are ξ, η, the amplitude transmittance t0 is expressed by

 𝑡଴(𝜉, 𝜂) =
ଵ

ଶ
ቂ1 + 𝑚𝑐𝑜𝑠 ቀ

ଶగ

௣
𝜉ቁቃ, (3)

where m indicates contrast. According to the Fresnel approximation theory [38], the

electric field E which propagates distance L is calculated by

𝐸(𝑥, 𝑦) =
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
න 𝑡଴(𝜉, 𝜂)𝑒𝑥𝑝 ቄ𝑖

𝜋

𝜆𝐿
[(𝑥 − 𝜉)ଶ + (𝑦 − 𝜂)ଶ]ቅ 𝑑𝜉𝑑𝜂

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
𝑡଴(𝜉, 𝜂)⨂𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃ

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵℱ ቄ𝑡଴(𝜉, 𝜂)⨂𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃቅ

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵ ቄℱ൫𝑡଴(𝜉, 𝜂)൯ℱ ቀ𝑒𝑥𝑝 ቂ𝑖

𝜋

𝜆𝐿
(𝜉ଶ + 𝜂ଶ)ቃቁቅ

=
1

𝑖𝜆𝐿
𝑒

௜
ଶగ
ఒ

௅
ℱିଵ ൜൤

1

2
𝛿൫𝑓௫ , 𝑓௬൯ +

1

4
𝑚𝛿 ൬𝑓௫ −

1

𝑝
, 𝑓௬൰

+
1

4
𝑚𝛿 ൬𝑓௫ +

1

𝑝
, 𝑓௬൰൨ 𝑖

𝜆𝐿

𝜋
𝑒𝑥𝑝ൣ−𝑖𝜋𝜆𝐿൫𝑓௫

ଶ + 𝑓௬
ଶ൯൧ൠ

=
1

𝜋
𝑒

௜
ଶగ
ఒ

௅
൤
1

2
+

1

4
𝑚𝑒𝑥𝑝 ൬

−𝑖𝜋𝜆𝐿

𝑝ଶ
൰ 𝑒𝑥𝑝 ൬

𝑖2𝜋𝑥

𝑝
൰ +

1

4
𝑚𝑒𝑥𝑝 ൬

−𝑖𝜋𝜆𝐿

𝑝ଶ
൰ 𝑒𝑥𝑝 ൬

−𝑖2𝜋𝑥

𝑝
൰൨

13

 =
ଵ

ଶగ
𝑒௜

మഏ

ഊ
௅ ቄቂ1 + 𝑚𝑒𝑥𝑝 ቀ

ି௜గఒ௅

௣మ
ቁ 𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁቃቅ, (4)

where λ is the wavelength, fx, fy are coordinates of the Fourier domain, 𝓕 is the Fourier

transform operator, 𝓕ି𝟏 is the inverse Fourier transform operator, ⨂ expresses

convolution. The irradiance is expressed by

𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 + 2𝑚𝑐𝑜𝑠 ቀ
గఒ௅

௣మ
ቁ 𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁ + 𝑚ଶ𝑐𝑜𝑠ଶ ቀ

ଶగ௫

௣
ቁቃ. (5)

When the distance L is 2𝑛𝑝ଶ 𝜆⁄ (n = 1,2,3 ...), the irradiance is expressed by

 𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 + 𝑚𝑐𝑜𝑠 ቀ
ଶగ௫

௣
ቁቃ

ଶ

. (6)

Equation (6) shows the self-image of the grating. When the distance L is (2𝑛 − 1)𝑝ଶ 𝜆⁄

(n = 1,2,3 ...), the intensity is expressed by

 𝐼(𝑥, 𝑦) = ቀ
ଵ

ଶగ
ቁ

ଶ

ቂ1 − 𝑚𝑐𝑜𝑠 ቀ
ଶగ௫

௣
ቁቃ

ଶ

. (7)

Equation (7) shows the reversed self-image of the grating. As mentioned above, the

phenomena by which the self-image appears at a constant interval is called the Talbot effect.

In addition, since any transmittance functions are a linear combination of harmonic

functions, the Talbot distance does not depend on the spatial frequency of the transmittance

function.

3.2.2. Angular spectrum propagation

 When we know the electric field E(x,y,0) at z = 0, we can calculate the electric

field E(x,y,z) at any z without approximation by the angular spectrum propagation [39].

The theory is described below.

 Using the Fourier transform, the electric field E(x,y,z) is expressed by

 𝐸(𝑥, 𝑦, 𝑧) = ∬ Γ൫𝑓௫ , 𝑓௬; 𝑧൯𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑓௫𝑑𝑓௬ . (8)

where fx, fy are coordinates in the Fourier domain, Γ is a Fourier component of the electric

field E. The electric field E must satisfy the Helmholtz equation,

14

 ∇ଶ𝐸 + kଶ𝐸 = 0. (9)

Substituting Equation (8) into Equation (9), we obtain

డమ୻൫௙ೣ ,௙೤;௭൯

డ௭మ
+ ቄkଶ − (2𝜋𝑓௫)ଶ − ൫2𝜋𝑓௬൯

ଶ
ቅ Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = 0. (10)

When 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

< 0 , Γ which satisfies Equation (10) can be written in the

form

 Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ−𝑘𝑧ට(𝜆𝑓௫)ଶ + ൫𝜆𝑓௬൯
ଶ

− 1቉. (11)

Equation (11) indicates that Γ decays exponentially in the z direction, and this is called the

evanescent field. When 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

> 0, Γ can be written in the form

 Γ൫𝑓௫ , 𝑓௬; 𝑧൯ = Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉. (12)

𝜞൫𝒇𝒙, 𝒇𝒚; 𝟎൯ is expressed by

 Γ൫𝑓௫ , 𝑓௬; 0൯ = ∬ E(𝑥, 𝑦; 0)𝑒𝑥𝑝ൣ𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑥𝑑𝑦. (13)

Therefore, substituting Equations (12) - (13) into Equation (8), the electric field E is

calculated by

𝐸(𝑥, 𝑦, 𝑧) = ඵ Γ൫𝑓௫ , 𝑓௬; 0൯𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ 𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥

+ 𝑓௬𝑦൯൧ 𝑑𝑓௫𝑑𝑓௬

= ඵ ඵ 𝐸(𝑥, 𝑦, 0)𝑒𝑥𝑝ൣ𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧ 𝑑𝑥𝑑𝑦

 𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ 𝑒𝑥𝑝ൣ−𝑖2𝜋൫𝑓௫𝑥 + 𝑓௬𝑦൯൧𝑑𝑓௫𝑑𝑓௬ . (14)

Equation (14) shows that the electric field E(x,y,z) can be calculated by Fourier

transforming E(x,y,0), multiplying by 𝑒𝑥𝑝 ቈ𝑖𝑘𝑧ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ and inverse

Fourier transforming.

 We assume that the light comes to the CCD through the grating. The electric field

E0 on the grating is expressed by

 𝐸଴(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑡(𝑥, 𝑦)𝑒𝑥𝑝[𝑖𝑘𝑊(𝑥, 𝑦)], (15)

where A is the amplitude of the light, t is the transmittance of the grating, k is a wavenumber,

and W is the wavefront of the light. According to Equation (14), the electric field on the

15

plane of distance L from the grating is written as

 𝐸(𝑥, 𝑦, 𝐿) = ℱିଵ ቊℱ൫𝐸଴(𝑥, 𝑦)൯𝑒𝑥𝑝 ቈ−𝑖𝑘𝐿ට1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

቉ቋ, (16)

In Equation (16), the expression inside the square root is physically meaningful for positive

values. A negative value, meaning

 1 − (𝜆𝑓௫)ଶ − ൫𝜆𝑓௬൯
ଶ

< 0. (17)

leads to an amplitude that grows exponentially and this is not physical. Therefore, the value

which satisfies Equation (17) must be zero for simulation before the inverse Fourier

transform is calculated. When the distance L is long, a lot of computational memory is

necessary because the exponential term changes quickly with the Fourier domain

coordinates fx, fy, and high-density sampling is required to capture this detail. Otherwise,

an error due to aliasing occurs in the calculation result. The irradiance I on the plane of L

distance from the grating is calculated by

𝐼(𝑥, 𝑦, 𝐿) = |𝐸(𝑥, 𝑦, 𝐿)|ଶ. (18)

3.2.3. Five beams interference model

Talbot effect using a cross grating can be calculated from the interference of five-

beam (0, ±1 in the x-direction, ±1 in the y-direction order diffraction beams). As first order

diffraction beams are added to a linear phase ∓2πx/p or ∓2πy/p, the electric fields of 0, ±1

order diffraction beams are respectively expressed by

 𝐸଴(𝑥, 𝑦) = 𝐴଴𝑒𝑥𝑝 ൫𝑖𝑘𝑊(𝑥, 𝑦)൯, (19)

𝐸ଵ,଴,௝ೣ
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥 − 𝑎, 𝑦) +

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗௫ቁቅቃ, (20)

𝐸ିଵ,଴,௝ೣ
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥 + 𝑎, 𝑦) −

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗௫ቁቅቃ, (21)

𝐸଴,ଵ,௝೤
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥, 𝑦 − 𝑎) +

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗௬ቁቅቃ, (22)

𝐸଴,ିଵ,௝೤
(𝑥, 𝑦) = 𝐴ଵ𝑒𝑥𝑝 ቂ𝑖𝑘 ቄ𝑊(𝑥, 𝑦 + 𝑎) −

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗௬ቁቅቃ, (23)

16

where jx, jy is an integer which indicates the phase step in the x-direction and y-direction,

respectively, A0, and A1 are the amplitudes of the 0 and ±1st order diffracted beams,

respectively, k is the wave number, W is the wavefront, a is the amount of shear, p is the

pitch of the grating, N is the number of phase shift. Referring to Appendix A, the irradiance

of the five-beam interference is expressed by

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = ห𝐸଴(𝑥, 𝑦) + 𝐸ଵ,଴,௝ೣ

(𝑥, 𝑦) + 𝐸ିଵ,଴,௝ೣ
(𝑥, 𝑦) + 𝐸଴,ଵ,௝ೣ

(𝑥, 𝑦) + 𝐸଴,ିଵ,௝ೣ
(𝑥, 𝑦)ห

ଶ

= 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௫(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௫൨ + 4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௬(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௬൨

+ 2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௫ൠ൨ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௬ൠ൨

+8𝐴ଵ
ଶ𝑐𝑜𝑠 ቀ𝛿𝑊௫(𝑥, 𝑦) +

ଶగ

ே
𝑗௫ቁ 𝑐𝑜𝑠 ቀ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቁ 𝑐𝑜𝑠 ቂ

௞௔మ

ଶ
ቄ

ௗమௐ(௫,௬)

ௗ௫మ
−

ௗమௐ(௫,௬)

ௗ௬మ
ቅቃ ,

 (24)

where

 𝐵௫(𝑥, 𝑦) = 𝐴଴𝐴ଵ cos ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
ቃ, (25)

 𝐵௬(𝑥, 𝑦) = 𝐴଴𝐴ଵ cos ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
ቃ, (26)

 𝛿𝑊௫(𝑥, 𝑦) = 𝑘𝑎 ቄ
ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
ቅ −

ଶగ

௣
𝑥, (27)

 𝛿𝑊௬(𝑥, 𝑦) = 𝑘𝑎 ቄ
ௗௐ(௫,௬)

ௗ௬
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௬య
ቅ −

ଶగ

௣
𝑦. (28)

The first and second terms of Equation (24) are constant, and the coefficients of the third

and fourth term, 4Bx, 4By include the variables x and y, but they are assumed to be constant

because the spatial change is very small. The fifth and sixth terms are twice the frequency

of the third and fourth terms, and unnecessary for the wavefront retrieval. These terms are

removed in the process of the sheared wavefront retrieval described in Chapter 3.3.

Focusing on the x-shear wavefront, the intensity is expressed by

17

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = 4𝑐𝑜𝑠 ൤𝛿𝑊௫(𝑥, 𝑦) +

2𝜋

𝑁
𝑗௫൨ {𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}

. +2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ2 ቄ𝛿𝑊௫(𝑥, 𝑦) +

ଶగ

ே
𝑗௫ቅቃ + 𝐼௒(𝑥, 𝑦), (29)

where

𝐶(𝑥, 𝑦) = 2𝐴ଵ
ଶ𝑐𝑜𝑠 ቀ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቁ 𝑐𝑜𝑠 ቂ

௞௔మ

ଶ
ቄ

ௗమௐ(௫,௬)

ௗ௫మ
−

ௗమௐ(௫,௬)

ௗ௬మ
ቅቃ, (30)

𝐼௒(𝑥, 𝑦) = 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ൤𝛿𝑊௬(𝑥, 𝑦) +
2𝜋

𝑁
𝑗௬൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ2 ቄ𝛿𝑊௬(𝑥, 𝑦) +

ଶగ

ே
𝑗௬ቅቃ. (31)

The 𝜹𝑾𝒙(𝒙, 𝒚) in the argument of the first cosine term in Equation (29) is obtained by

the sheared wavefront retrieval method described in Chapter 3.3.

3.3. Sheared wavefront retrieval

There are three methods to retrieve the sheared wavefront from the Talbot image:

the Fourier transform method [40] [41], the x y phase shift method [42] [43] and the

diagonal phase shift method. As is shown in Table 1, the Fourier transform method retrieves

the sheared wavefront from only one image. Therefore, it is fast, robust against vibration

and drift, and an actuator is not necessary. However, the high spatial frequency component

of the wavefront cannot be obtained because it is filtered in the process of the wavefront

retrieval. The x y phase shift method enables us to obtain the high frequency component of

the wavefront, but the grating must be moved tens of microns in the x and y direction,

respectively. Thus, it requires two actuators, is time-consuming, and is sensitive to external

vibration and drift. In the diagonal phase shift method, the grating is moved in the diagonal

direction (45 degree from the x-direction). Compared with the x y phase shift method, it

requires only one actuator, and the wavefront is retrieved from fewer images, but the spatial

resolution is a little worse. Other features are similar to the x y phase shift method. Table

18

1 shows the pros and cons of each method.

Table 1 Comparison between Fourier transform, phase shift and diagonal phase

shift method.

These three methods are described below. In addition, the data obtained by these methods

must be unwrapped because it is wrapped 2π. Unwrapping is described in Chapter 3.3.4.

3.3.1. Fourier transform method

 The Fourier transform (FT) method was published by Takeda [40] [41], and

enables us to retrieve the wavefront from a single fringe pattern. Therefore, the

configuration of the measurement system becomes simpler because the actuator to move

the reference part or grating is not necessary. The FT method is widely applied to fringe

analysis such as ultrashort pulse analysis [44], thin film thickness measurements [45] and

evaluation of imaging optics for EUV lithography [46]. On the other hand, the Fourier

transform method has a drawback in that the high frequency component of the wavefront

is filtered.

When ∆𝑊௫(𝑥, 𝑦) is expressed by

 ∆𝑊௫(𝑥, 𝑦) =
ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
, (32)

from Equation(29), the interferogram including aberration is expressed by

Fourier transform
method

X y phase shift
method

Diagonal phase shift
method

Pros
- Fast
- Simple design
- Not sensitive to vibration

Can obtain high frequency
component

Can obtain high frequency
component

Cons
High frequency
component is filtered

- Time-consuming
- Sensitive to vibration
- Requires two actuators

- Time-consuming
- Sensitive to vibration
- Requires an actuator

19

𝐼଴,଴(𝑥, 𝑦)~2A଴Aଵ ቈ𝑒
௜୩൜∆ௐೣ (௫,௬)ୟି

஛
୮

୶ൠ
+ 𝑒

ି௜୩൜∆ௐೣ (௫,௬)ୟି
஛
୮

୶ൠ
቉ {𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}

 +Aଵ
ଶ ൤𝑒

௜ଶ୩ቄ∆ௐೣ (௫,௬)ୟି
ಓ

౦
୶ቅ

+ 𝑒
ି௜ଶ୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

൨ + 𝐼௒(𝑥, 𝑦). (33)

Taking the Fourier transform of both side, we have

ℱ൛𝐼଴,଴(x, y)ൟ~I଴δ(𝑓௫) + 2A଴Aଵ𝐵௫(𝑥, 𝑦) ∫ 𝑒
௜ଶగቄ

భ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

భ

౦
ା௙ೣ ቁ୶ቅ

+

𝑒
ି௜ଶగቄ

భ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

భ

౦
ି௙ೣ ቁ୶ቅ

dx + 2A଴Aଵℱ ൜𝐶(𝑥, 𝑦) ൤𝑒
௜୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

+

𝑒
ି௜୩ቄ∆ௐೣ (௫,௬)ୟି

ಓ

౦
୶ቅ

൨ൠ + Aଵ
ଶ ∫ 𝑒

௜ଶగቄ
మ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

మ

౦
ା௙ೣ ቁ୶ቅ

+ 𝑒
ି௜ଶగቄ

మ

ಓ
∆ௐೣ (௫,௬)ୟିቀ

మ

౦
ି௙ೣ ቁ୶ቅ

dx +

ℱ{𝐼௒(𝑥, 𝑦)}. (34)

The data near the frequency x/p is filtered and then shifted to the center of the Fourier plane.

We then obtain Г(fx,fy) as

 Γ൫𝑓௫ , 𝑓௬൯ = 2A଴Aଵ𝐵௫(𝑥, 𝑦) ∫ 𝑒
௜ଶగቄ

ೌ

ಓ
∆ௐೣ (௫,௬)ି௙ೣ ୶ቅ

𝑑𝑥. (35)

The inverse Fourier-transformed signal of Г(fx,fy) can be expressed as

ℱିଵ൛Γ൫𝑓௫ , 𝑓௬൯ൟ = 2A଴Aଵ𝐵௫(𝑥, 𝑦) 𝑒
௜ଶగቄ

ೌ

ಓ
∆ௐೣ (௫,௬)ቅ. (36)

Next, ∆𝑊௫(𝑥, 𝑦) is calculated by

 ∆𝑊௫(𝑥, 𝑦) =
ఒ

ଶగ௔
𝑎𝑡𝑎𝑛 ൬

ூ௠ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧

ோ௘ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧
൰, (37)

where Im[] indicates the imaginary part, Re[] indicates the real part. Assuming the

following equation is true,

ௗௐ(௫,௬)

ௗ௫
≫

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
, (38)

the sheared wavefront is obtained by

ୢ୛(୶,୷)

ୢ୶
=

ఒ

ଶగ௔
𝑎𝑡𝑎𝑛 ൬

ூ௠ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧

ோ௘ൣℱషభ൛୻൫௙ೣ ,௙೤൯ൟ൧
൰, (39) Figure 7Figure 7 shows the

above procedure of the sheared wavefrront retrieval using simulation data.

20

Figure 7 Sheared wavefront retrieval flow.

3.3.2. X y phase shift method

 The x y phase shift can be implemented by shifting the grating in both the x and y

directions. Although the Talbot image includes twice the frequency of the self-image as is

shown in the second term of Equation (29), it cancels in the calculation process of the

wavefront retrieval. For example, the four step wavefront retrieval is calculated by

21

𝐼ଷ,଴ − 𝐼ଵ,଴ = 4 ൜𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +
3

4
2𝜋൰ − 𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +

1

4
2𝜋൰ൠ {𝐵௫(𝑥, 𝑦)

+ 𝐶(𝑥, 𝑦)}+2𝐴ଵ
ଶ ൜𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

3

4
2𝜋ൠ൨

− 𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +
1

4
2𝜋ൠ൨ൠ

 = 8𝑠𝑖𝑛൫𝛿𝑊௫(𝑥, 𝑦)൯{𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}. (40)

𝐼ଶ,଴ − 𝐼଴,଴ = 4 ൜𝑐𝑜𝑠 ൬𝛿𝑊௫(𝑥, 𝑦) +
2

4
2𝜋൰ − 𝑐𝑜𝑠൫𝛿𝑊௫(𝑥, 𝑦)൯ൠ {𝐵௫(𝑥, 𝑦)

+ 𝐶(𝑥, 𝑦)}+2𝐴ଵ
ଶ ൜𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫(𝑥, 𝑦) +

2

4
2𝜋ൠ൨ − 𝑐𝑜𝑠[2{𝛿𝑊௫(𝑥, 𝑦)}]ൠ

 = −8𝑐𝑜𝑠൫𝛿𝑊௫(𝑥, 𝑦)൯{𝐵௫(𝑥, 𝑦) + 𝐶(𝑥, 𝑦)}. (41)

 −
ூయ,బିூభ,బ

ூమ,బିூబ,బ
= 𝑡𝑎𝑛{𝛿𝑊௫(𝑥, 𝑦)}. (42)

From Equations (40) - (42), we can see that the twice frequency terms of the self-image

cancel. Since 𝛿𝑊௫ is expressed by Equation (27), the sheared wavefront is calculated by

ௗௐ(௫,௬)

ௗ௫
~

ௗௐ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయௐ(௫,௬)

ௗ௫య
=

ଵ

௔௞
atan ൬

ூయ,బିூభ,బ

ூమ,బିூబ,బ
൰ +

ఒ௫

௔௣
. (43)

Except for N = 3, the double–frequency term disappears. Therefore, the error due to it is

small. Similarly, the y-shear wavefront is also retrieved.

3.3.3. Diagonal phase shift method

 When the grating is shifted in the diagonal direction, the irradiance is

approximately expressed by

𝐼௝,௝(𝑥, 𝑦)~𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫(𝑥, 𝑦)𝑐𝑜𝑠 ቆ𝑘𝑝
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
−

2𝜋

𝑝
𝑥 +

2𝜋

𝑁
𝑗ቇ

+4𝐵௬(𝑥, 𝑦)𝑐𝑜𝑠 ቀ𝑘𝑝
ௗௐ(௫,௬)

ௗ௬
−

ଶగ

௣
𝑦 +

ଶగ

ே
𝑗ቁ, (44)

where j is an integer that represents the phase step. A Fourier transform of the irradiance

22

gives the result shown in Figure 8. The Fourier spectrum except for the signal regarding

the x-shear wavefront is substituted zero as is shown in Figure 9. When it is inverse Fourier

transformed, the cosine of x is obtained as shown in Figure 10..

Figure 8 Fourier spectrum of irradiance (log of absolute).

Figure 9 Filtered Fourier spectrum of irradiance (log of absolute).

Figure 10 Irradiance whose y frequency component is filtered.

 When the same processing is applied to all the phase shifted irradiance images,

the x-sheared wavefront is obtained using the same equation as the phase shift method in

23

Chapter 3.3.2. Also, y-shear wavefront is obtained in the analogous way. Compared with

the Fourier transform method, the diagonal phase shift method enables us to obtain higher

frequency component of the wavefront. Compared with the phase shift method, the

diagonal phase shift method requires fewer irradiance images, and only one direction shift

of the grating.

3.3.4. Unwrapping

 Many unwrapping algorithms have been developed [47] [48]. In our research, a

complicated algorithm is not necessary because the measured wavefront will be smooth,

meaning there are no vortices or discontinuities. Therefore, we apply the simple unwrapping

method called the flood-fill algorithm [49].

3.4. Two-dimensional integration

 What we directly obtain from the Talbot interferometer is the sheared wavefront

or sheared shape. Therefore, 2-dimensional integration is necessary to obtain the wavefront

or shape of the test surface. As is shown in Table 2, three methods of integration have been

explored in this work: a Fourier transform method, a fitting method with the sheared

wavefront and a path integral method. In the Fourier transform method [50], integration is

done by Fourier transforming twice. It can retrieve high frequency wavefront, but the

boundary condition affects the result because the sheared wavefront is often non-

contiguous near the boundary. The fitting method [51] [52] [53] is called modal method.

The sheared wavefront is integrated by making many functions and fitting the measured

sheared wavefront with functions. This method is fast, and robust to noise. But it has the

drawback that the wavefront except for functions cannot be retrieved. In addition, it

requires a lot of computational memories. The path integral method [54] [55] is called zonal

method. The integration is implemented by keeps adding adjacent data. This method takes

24

time, and is sensitive to the noise, but the high frequency component of wavefront can be

retrieved. Table 2 shows the pros and cons of three methods.

Three methods are explained below.

3.4.1. Fourier transform method

 For simplicity, consider one dimension. The sheared wavefront Wm measured by

Talbot interferometer is expressed by

 𝑊௠(𝑥) = 𝑊(𝑥 + 𝑎) − 𝑊(𝑥), (45)

where W is the incident wavefront, and a is the amount of shear. To obtain the incident

wavefront W, Fourier transform is implemented.

ℱ{𝑊௠(𝑥)} = න 𝑊(𝑥 + 𝑎)𝑒ି௜ଶగ௙ 𝑑𝑥 − ℱ{𝑊(𝑥)}

= න 𝑊(𝑥 + 𝑎)𝑒ି௜ଶగ (௫ା௔)𝑑𝑥𝑒௜ଶగ௙௔ − ℱ{𝑊(𝑥)}

= න 𝑊(𝑥)𝑒ି௜ଶగ௙ 𝑑𝑥𝑒௜ଶగ௙௔ − ℱ{𝑊(𝑥)}

 = ൫𝑒௜ଶగ௙௔ − 1൯ℱ{𝑊(𝑥)}. (46)

From Equation (46), the Fourier transform of the incident wavefront W is expressed

by.

 ℱ{𝑊(𝑥)} =
ℱ{ௐ೘(௫)}

൫௘೔మഏ೑ೌିଵ൯
. (47)

Finally, the incident wavefront W is obtained by inverse Fourier transforming Equation

Table 2 Integration methods.

Fourier transform
method

Fitting method
(modal method)

Path integral method
(zonal method)

Pros
- Fast

- High spatial resolution
- Fast

- Robust to noise
High spatial resolution

Cons
Boundary condition

affects the result

- Low spatial resolution
- Requires a lot of

memories

- Time-consuming
- sensitive to noise

25

(47).

 𝑊(𝑥) = ℱିଵ ൜
ℱ{ௐ೘(௫)}

൫௘೔మഏ೑ೌିଵ൯
ൠ. (48)

The Fourier transform method is fast, but the boundary condition of the data often leads to

errors. This is because the wavefront is not continuous on the boundary of the data, and

errors appear in the high frequency component due to the boundary discontinuity.

3.4.2. Fitting method with sheared wavefront

 This is called the modal method. First, the basic functions of the sheared wavefront

are chosen and calculated. For example, when using Fringe Zernike polynomials [56] as

the basis set, the x-shear wavefront Zxs and y-shear wavefront Zys are given by

𝑍௫௦(𝑥, 𝑦, 𝑗) = 𝑍௝(𝑥 + 𝑎, 𝑦) − 𝑍௝(𝑥, 𝑦),

 𝑍௬௦(𝑥, 𝑦, 𝑗) = 𝑍௝(𝑥, 𝑦 + 𝑎) − 𝑍௝(𝑥, 𝑦), (49)

where j is a positive integer, Zj is jth Fringe Zernike polynomials, a is the amount of shear.

Second, the measured x-shear wavefront Wx, and y-shear wavefront Wy are expressed with

sheared Zernike polynomials Zxs and Zys by

 ൤
𝑊௫(𝑥, 𝑦)

𝑊௬(𝑥, 𝑦)
൨ = ∑ 𝐶௝ ൤

𝑍௫௦(𝑥, 𝑦, 𝑗)

𝑍௬௦(𝑥, 𝑦, 𝑗)
൨ே

௝ୀଵ , (50)

where C is the coefficients of both the x-shear wavefront Zxs and the y-shear wavefront Zys,

and N is the number of Zernike polynomials considered for the fit. The coefficients C of

the sheared Zernike polynomials are calculated by fitting the measured x-shear wavefront

Wx, and y-shear wavefront Wy with the sheared Zernike polynomials Zxs and Zys. The

coefficients C are normally obtained by least square method or singular value

decomposition [57].

 Finally, the wavefront W is retrieved by

 𝑊(𝑥, 𝑦) = ∑ 𝐶௝𝑍(𝑥, 𝑦, 𝑗)ே
௝ୀଵ . (51)

This method is robust against the irregular (spike) error and a random noise due to a CCD

26

noise. The drawbacks are that the high spatial frequency components of the wavefront are

difficult to represent because this method would require a fit out to very high order. By the

way, as the wavefront obtained from the Talbot image is expressed by Equation (32),

Equation (52) will be better regarding x-shear wavefront Zxs and y-shear wavefront Zys in

Equation (49).

𝑍௫௦(𝑥, 𝑦, 𝑗) =
ௗ௓ೕ(௫,௬)

ௗ௫
+

௔మ

଺

ௗయ௓ೕ(௫,௬)

ௗ௫య
,

 𝑍௬௦(𝑥, 𝑦, 𝑗) =
ௗ௓ೕ(௫,௬)

ௗ௬
+

௔మ

଺

ௗయ௓ೕ(௫,௬)

ௗ௬య
. (52)

Although the third-order term can be ignored when solving for a low-amplitude wavefront,

it is necessary to take this term into account in the case of a large wavefront, which is

usually the case on a freeform surface.

3.4.3. Path integral method

 Path integral method is one kind of zonal methods [54] [55]. Integration starts

from arbitrary point on 2-dimensional grid data and keeps adding adjacent data. As an

example, let us think it starts from point A in Figure 11, and we calculate the integral value

on point B.

Figure 11 Integration paths.

There are different multiple paths. To reduce the integration error, it is obtained by

calculating the average of integral value of different multiple paths. In addition, since this

way is not enough to reduce the integration error, the start location is dispersed, and the

A

B

Shear wavefront

27

Figure 12 Integration flow.

average of their integral values is taken as the final integral value. A concrete flow is shown

in Figure 12. In step 1, start location is dispersed so that they are not located on the vertical

or horizontal line each other, and they separate each other as far as possible like Figure 13.

In step 2, the integral value is calculated by averaging the integral value of all shortest paths.

Then we repeat the integration with changing the start location. In step 4, final integral

value is obtained by averaging the integral value calculated in step 2.

Figure 13 Start location of integration.

Determine start location

Integration

Start

End

complete the whole
satrt point ?

Yes

No

average

Start location

Shear wavefront

28

 Local integration is implemented by calculating the difference between adjacent

integral values. Specifically, first, for each of three adjacent sheared wavefronts dW(x1),

dW(x2), dW(x3), fitting is performed with a following quadratic polynomial f(x) of lateral

coordinate x to calculate coefficients a2, a1, a0.

 𝑓(𝑥) = 𝑎ଶ𝑥ଶ + 𝑎ଵ𝑥 + 𝑎଴. (53)

Integral value F(x) of Equation (53) is expressed by

 𝐹(𝑥) =
ଵ

ଷ
𝑎ଶ𝑥ଷ +

ଵ

ଶ
𝑎ଵ𝑥ଶ + 𝑎଴𝑥. (54)

The difference D(x) between adjacent integral values is calculated by

 𝐷(𝑥ଵ) = 𝐹(𝑥ଶ) − 𝐹(𝑥ଵ).

 𝐷(𝑥ଶ) = 𝐹(𝑥ଷ) − 𝐹(𝑥ଶ). (55)

After calculating the whole difference D(x) in measured sheared wavefront, integration is

implemented by sequentially adding this difference D(x) along the path shown in

Figure 11. The sheared wavefront is approximated as being a quadratic function in

Equation (53) and integrated, which is called Simpson’s rule [58].

3.5. Measurement range

 The distortion of the fringe is proportional to the sheared wavefront. Therefore,

measurement range is approximately limited by the second derivative of the wavefront. We

explain it with equations as below.

 The fringe of the Talbot image is expressed by Equation (29), and its phase of

forth term ψ is expressed by

 Ψ = 2𝑘 ቄ
ௗௐ(௫)

ௗ௫
𝑎 +

௔య

଺

ௗయௐ(௫)

ௗ௫య
+

ఒ

௣
𝑥ቅ

 ~2𝑘 ቄ
ௗௐ(௫)

ௗ௫
𝑎 +

ఒ

௣
𝑥ቅ, (56)

According to the sampling theory, the following equation must be satisfied.

29

2 ቚ𝑘𝑎
ௗ୛(୶೙శభ,୷)

ୢ୶
−

ଶగ

௣
x௡ାଵ − ቀ𝑘𝑎

ௗ୛(୶೙,୷)

ୢ୶
−

ଶగ

௣
x௡ቁቚ < π,

 ቚ
௔

ఒ
ቀ

ௗ୛(୶೙శభ,୷)

ୢ୶
−

ௗ୛(୶೙,୷)

ୢ୶
ቁ −

௤

௣
ቚ <

ଵ

ସ
, (57)

where q is a CCD pixel size, xn (n=1,2,3…) is x-coordinate of n-th CCD pixel. Substituting

the following approximation,

ௗ୛(୶೙శభ,୷)

ୢ୶
−

ௗ୛(୶೙,୷)

ୢ୶
~𝑞

ௗమ୛(୶೙,୷)

ୢ௫మ
, (58)

the measurement range is expressed by

 ቚ
ௗௐమ(௫,୷)

ୢ௫మ
ቚ <

ఒ

௔௤
ቀ

ଵ

ସ
−

௤

௣
ቁ. (59)

As an example, substituting a = p = 80 µm, q = 4.6 µm, λ= 0.6328 µm, the right side is 0.33

mm-1. This value is bigger than the maximal second derivative wavefront reflected from the

Alvarez surface shown in Figure 1. Therefore, this Talbot interferometer can measure the

Alvarez surface.

3.6. Spatial resolution

 In case of wavefront retrieval using the phase shift method, the spatial resolution

of Talbot interferometer is equal to the amount of shear a. Using FT method, the spatial

resolution becomes worse because many data in the Fourier domain is filtered. Specifically,

Fourier spectrum shown in Figure 14 is obtained by Fourier transforming the Talbot image.

As expressed in Equation (29), there are signals at 0, 1/p (=1/80 = 0.0125 µm-1) and 2/p (=

0.025 µm-1).

30

Figure 14 Fourier spectrum of the Talbot image.

In the FT method, wavefront is retrieved by cutting the Fourier spectrum data surrounded

by the red dotted line in Figure 14. If the cutting area is large, wavefront retrieval error

becomes large because the tails of the signal of frequency 0 and 2/p are included. Therefore,

the cutting range is at most half the length between two signals, which means the maximum

measurable frequency is 1/(2p). Thus, the spatial resolution with FT method is 2p (160 µm).

3.7. Dynamic range of a tilt wavefront

 From Equation (24), the intensity of the Talbot interferogram is approximately

expressed by

 𝐼(𝑥) ~ 𝑐𝑜𝑠 ቂ𝑘𝑎
ௗ

ௗ௫
𝑊(𝑥) −

ଶగ

௔
𝑥ቃ. (60)

Assuming the tilt wavefront is tx, the intensity is expressed by

 𝐼(𝑥)~𝑐𝑜𝑠 ቂ𝑘𝑎𝑡 −
ଶగ

௔
𝑥ቃ. (61)

Equation (61) shows that the tilt wavefront occurs lateral shift of the Talbot image. When

the amount of the lateral shift is longer than half of the grating pitch (a/2 = 40 µm), we

cannot distinguish between plus tilt and minus tilt. Therefore, dynamic range of the tilt

wavefront is expressed by

 |𝑘𝑎𝑡| < 𝜋. (62)

 |𝑡| <
ఒ

ଶ௔
. (63)

Substituting λ = 632.8 nm, a = 80 µm, we obtain

 |𝑡| < 3.95 × 10ିଷ. (64)

-0.05 -0.025 0 0.025 0.05
fx [µm -1]

31

This Talbot interferometer can measure the tilt wavefront less than 4 mrad.

3.8. Simulation

3.8.1. Angular spectrum propagation

 We programed the angular spectrum propagation with MATLAB® to simulate the

Talbot interferometer. MATLAB code is written in Appendix B. We did only one-

dimension (x) because two-dimensional simulation (x, y) requires many memories and

calculation time.

 The electric field E0 on the grating is expressed by

 𝐸଴(𝑥) = 𝐴(𝑥)𝑡(𝑥)𝑒𝑥𝑝[𝑖𝑘𝑊(𝑥)], (65)

where W is the wavefront of the light, A is the amplitude, and t is transmittance of the

grating. In case of rectangle, the transmittance is expressed as

 𝑡(𝑥) = ∏ ቀ
௫

ଶ௣
ቁ ⨂𝐼𝐼𝐼 ቀ

௫

௣
ቁ, (66)

where ⨂ indicates convolution, and it is shown in Figure 15 (a). In case of sinusoidal, the

transmittance is expressed as

 𝑡(𝑥) =
ଵ

ଶ
+

ଵ

ଶ
𝑐𝑜𝑠 ቀ

ଶగ௫

௣
ቁ, (67)

and shown in Figure 15 (b).

Figure 15 Transmittance amplitude of the grating. (a) sinusoidal and (b) rectangle.

Figure 16Figure 16 shows the intensity on the x-z plane calculated using Equation (16).

We assumed that the grating pitch p was 80 µm, wavelength λ was 632.8 nm and wavefront

p
t

x

p
t

x
(a) (b)

32

was constant (plane wave). As can be seen in Figure 16, the self-imaging takes place at the

Talbot distance

Figure 16 Irradiance on the x-z plane. (a) sinusoidal transmittance and (b) rectangle
transmittance

𝐿 =
ଶ௡௣మ

ఒ
, 𝑛 = 1,2,3, … , and reversed self-image takes place at the distance 𝐿 =

(ଶ௡ିଵ)௣మ

ఒ
, 𝑛 = 1,2,3, …..

 In addition, we implemented the simulation to make sure the wavefront retrieval

from Talbot image. In the same as above condition, we input the wavefront Win on the

grating, and calculated the intensity I on the plane (CCD) at the distance L= p2/λ = 10.114

mm using the angular spectrum propagation. We calculated intensity four times with

shifting the grating by 20 µm in the x-direction. Then, the wavefront Wout was retrieved

from four intensities by four step phase shift method (Equations. (40) - (43)) and path

integration method described in Chapter 3.4. To evaluate the retrieved wavefront, we

calculated the electric field Eref by propagating the wavefront to the CCD without the

grating, and reference wavefront Wref on the CCD was calculated by

 𝑊௥௘௙ = 𝑎𝑡𝑎𝑛 ൜
ூ௠௔௚(ாೝ೐೑)

௥௘௔௟(ாೝ೐೑)
ൠ. (68)

As is shown in Figure 17, we compared the retrieved wavefront Wout with the reference

wavefront Wref.

33

Figure 17 Schematic diagram for comparison between retrieved wavefront and

reference wavefront.

The intensity is shown in Figure 18. The Talbot image is distorted a little by input wavefront

Win.

Figure 18 Intensity with sinusoidal grating calculated by angular spectrum
propagation. (a) intensity and (b) magnified intensity.

Figure 19 (a) shows the reference wavefront Wref and wavefront Wout retrieved from four

intensities using phase shift method. Difference between them is shown in Figure 19 (b).

Win

Wref

Intensity I

Wout

Electric field E

Propagation

Wout

Werr = Wout - Wref

grating

CCD

Win

(a) (b)
x [mm] x [mm]

34

Figure 19 Comparison between retrieved wavefront and reference wavefront. (a)
reference and retrieved wavefront, (b) difference between reference and retrieved
wavefront and (c) difference between the reference wavefront and the retrieved

wavefront with the approximation of Equation (38).

As you can see from Figure 19 (a) and (b), the wavefront can be retrieved accurately. Figure

19 (c) is the difference between the reference wavefront and the retrieved wavefront with

the approximation of Equation (38). The retrieval error was 13.3 nmPV. This error is caused

by ignoring the third-order differentiation term in the wavefront retrieval calculation.

 Similarly, we calculated the intensity with the rectangle grating as is shown in Figure

20. High-order diffraction occurs at the edge of the rectangle grating, and the sharp

rectangle irradiance boundary cannot be obtained [59]. Figure 21 (a) shows the reference

wavefront Wref and retrieved wavefront Wout from four intensities using phase shift method.

Difference between them is shown in Figure 21 (b).

Figure 20 Intensity with rectangle grating. (a) intensity and (b) magnified intensity.

-2 0 2
0

500

1000

1500

1.5 1.6 1.7
0

200

400

600

800

1000

(a) (b)
x [mm] x [mm]

x [mm]

[µm]

x [mm]

[nm]

(a) (b) (c)

x [mm]

[nm]

35

Figure 21 Comparison between retrieved wavefront with phase shift method and
reference wavefront. (a) reference and retrieved wavefront and (b) difference

between reference and retrieved wavefront.

The retrieved wavefront is not accurate. It will be because intensity is not sinusoidal shape,

but the phase shift method assumes that the intensity is sinusoidal. Next, the results of the

wavefront retrieved from the intensity shown in Figure 20 using FT method is shown in

Figure 22.

 The accuracy is better than that of the phase shift method. It is thought that the

higher order diffraction from the edge of the rectangle grating occurs the intensity

turbulence of high frequency, however it is filtered in the Fourier domain.

x [mm]

[µm]

x [mm]

[nm]

(a) (b)

-2 0 2

-10

0

10

x [mm]

[µm]

x [mm]

[nm]

(a) (b)
Figure 22 Comparison between retrieved wavefront and reference wavefront. (a)

reference and retrieved wavefront with FT method and (b) difference between
reference and retrieved wavefront.

36

3.8.2. Five beams interference

 Unlike the angular spectrum propagation, five beams interference does not

consume a lot of computational memories. Therefore, it is possible to calculate the

irradiance two-dimensionally. MATLAB code is written in Appendix C. Regarding the

specific calculation, first, the wavefront on the CCD is set, and the electric field E00 is

calculated with the wavefront using Equation (19). Second, we calculated four electric

fields E10, E-10, E01, E0-1 with wavefront which is shifted by ±80 µm (grating pitch) in the

x and y direction using Equations (20) - (23), respectively. Third, we calculated the

intensity by adding five electric fields and squaring the absolute of them. As an example,

the intensity when astigmatism is included is shown in Figure 23.

Figure 23 Irradiance of five beams interference.

Irradiance is distorted a little by input wavefront. The wavefront is retrieved from this

intensity using FT method explained in Chapter 3.3.1. The results are shown in Figure 24.

Figure 24 Wavefront retrieved from the irradiance using FT method. (a) retrieved

wavefront, (b) reference wavefront and (c) difference between (a) and (b).

37

As can be seen in Figure 24, the wavefront is retrieved accurately. The high frequency error

seen in Figure 24 (c) is considered to be caused by the fact that the tail of the signal of

frequency 0 and 2/p is in the cut range of Fourier domain.

38

4. Stitching

4.1. Background

 When the size of a test surface is larger than the sensor size or the detected

wavefront is too large to measure in one-shoot, it can be measured by dividing and

measuring it with the partial area of the test surface or wavefront and connecting them,

which is called stitching [29]. To do that, the test sample or the sensor must be moved

multiple times, and it leads to the (positional) alignment errors in measured wavefront,

such as pitching, rolling, and shifting. In stitching, their alignment errors are estimated by

the difference in the overlapped measurement data and removed. The principle is explained

below.

4.2. Lattice design

 To determine lattice design is to determine the location of the sub-aperture and

tip-tilt amount of the test sample. The necessary conditions are to make sub-apertures

overlap each other and cover the whole test sample with sub-apertures. The larger the

overlapping area, the better the accuracy is because it is easier to estimate the alignment

error of the test sample. However, this will increase the number of measurements and

measurement time. After determining the location of the sub-aperture, we determine the

amount of tip and tilt of the test sample so that the detected wavefront becomes minimal.

4.3. Principle

 The measured shape z’ including alignment errors is expressed as

 𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) + ∑ 𝑎௜௡𝑓௜௡(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ହ
௡ୀଵ , (69)

where i is the number of sub-aperture, xi, yi are the central location of the i-th sub-aperture,

zi is the test shape of the i-th sub-aperture, fi1, fi2, fi3, fi4, fi5 indicate z error, x-tilt error, y-

tilt error, x-shift error, y-shift error of the i-th sub-aperture measurement, respectively,

39

which are expressed as

𝑓௜ଵ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 1, (70)

𝑓௜ଶ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑥 − 𝑥௜, (71)

𝑓௜ଷ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑦 − 𝑦௜, (72)

𝑓௜ସ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ + ∆𝑥, 𝑦 − 𝑦௜) − 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜), (73)

𝑓௜ହ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) = 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜ + ∆𝑦) − 𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜), (74)

ain are coefficients of alignment errors of the i-th sub-aperture measurement. To minimize

the difference between each sub-aperture measurement in the overlapped area, the

following equation must be satisfied.

 𝛿 = ∑ே
௜ୀଵ ෍ ∩௜௝ ൛𝑧௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) − 𝑧௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ൟ

ଶ
= 𝑚𝑖𝑛

ே

௝ୀଵ
, (75)

where ∩ij indicates the summation of the overlapped area of i-th and j-th sub-aperture. To

obtain the coefficients ain, the following equation must be satisfied

డఋ

డ௔೔೙
= 0. (76)

Equation (76) is a matrix expressed by

 𝑃 = 𝐹𝐴, (77)

where

 𝑃 = ൥
∆Pଵ

⋮
∆Pே

൩, (78)

∆P௜ = ∑ ∩௜௝
ே
௝ୀଵ ቎

൛𝑧′௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ − 𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ൟ𝑓௜ଵ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)

⋮
൛𝑧′௝൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ − 𝑧′௜(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)ൟ𝑓௜ହ(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)

቏,(79)

 𝐹 =

⎣
⎢
⎢
⎡

𝐹ଵ,ଵ −𝐹ଵ,ଶ ⋯ −𝐹ଵ,ே

−𝐹ଶ,ଵ 𝐹ଶ,ଶ

⋮ ⋱
−𝐹ே,ଵ 𝐹ே,ே ⎦

⎥
⎥
⎤

, (80)

where Fij is 5 × 5 matrix, and s row t column component (1 ≤ s, t ≤ 5) is expressed by

40

𝐹௜,௝(𝑠, 𝑡) =∩௜௝ 𝑓௜௦(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)𝑓௝௧൫𝑥 − 𝑥௝ , 𝑦 − 𝑦௝൯ (i = j), (81)

𝐹௜,௜(𝑠, 𝑡) = ∑ ∩௜௞
ே
௞ஷ௜ 𝑓௜௦(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜)𝑓௜௧(𝑥 − 𝑥௜ , 𝑦 − 𝑦௜) (i ≠ j), (82)

 𝐴 = ൥
Aଵ

⋮
Aே

൩, (83)

 A௜ = ൥

a௜ଵ

⋮
a௜ହ

൩, (84)

The unknown coefficients a in Equation (69) can be obtained by least-squares solution as

follow

 𝑎 = (𝐴்𝐴)ିଵ𝐴். (85)

We can subtract the alignment errors with coefficients a from each sub-aperture data.

Finally, the whole surface is obtained by averaging the sub-aperture data in the overlapped

area.

4.4. Simulation

 To make sure the above principle, we implemented the stitching simulation using

MATLAB®. The code is written in Appendix E. The shape of the test sample and its error

shape were assumed to be the Alvarez surface and the spherical error shown in

Figure 25 (a) and (b), respectively. Here, the size of the test sample is 10 × 10 mm2.

Figure 25 Test shape. (a) nominal shape and (b) error shape.

The simulation flow is shown in Figure 26.

41

Figure 26 Stitching simulation flow.

 In step 1, the lattice design is determined as is shown in Figure 27. We assumed

the sub-aperture size was 4.2 mm × 3 mm rectangle, and the number of measurements was

12. The overlapping ratio of each sub-aperture is approximately 30%, and it becomes

difficult to estimate the alignment error of the test sample when it is less than 30%. When

the center position of the sub-aperture is displayed in Figure 27 (a), the overlap number is

expressed in

Figure 27 Lattice design. (a) center position of the sub-aperture and (b) overlap

number.

Determine lattice design

Calculate the
sub-aperture shape

Add alignment error and
system error

Inverse coordinate
transformation

Stitch

Calculate the sample
shape

Start

End

complete the whole
sub-aperture ?

Yes

No

Evaluate the results

Coordinate
transformation

1

2

3

4

6

7

8

9

5

x [mm] x [mm]
(a) (b)

y [mm]y [mm]

42

Figure 27 (b). For example, since four sub-apertures are overlapped in six small yellow

squares, their area is measured four times. The center coordinates of the sub-aperture and

tip-tilt (θx, θy) of the test sample are shown in Table 3.

Table 3 Center coordinate of sub-aperture and tip-tilt of the test sample.

Here z0, θx, θy are calculated by fitting the nominal shape of the test sample shown in Figure

25 (a) with Equations (70)-(72).

 In step 2, according to the lattice design, we calculated the sample shape of every

sub-aperture on the global coordinate (x, y, z). In step 3, we transformed it from global

coordinate to measurement coordinate (x’, y’, z’) using Equation (86).

൭
𝑥′
𝑦′

𝑧′

൱ = ൥

1 0 0
0 𝑐𝑜𝑠θ௫ −𝑠inθ௫

0 𝑠𝑖𝑛θ௫ 𝑐𝑜𝑠θ௫

൩ ቎

𝑐𝑜𝑠θ௬ 0 𝑠𝑖𝑛θ௬

0 1 0
−sinθ௬ 0 𝑐𝑜𝑠θ௬

቏ ൭

𝑥 − 𝑥଴

𝑦 − 𝑦଴

𝑧 − 𝑧଴

൱. (86)

 In step 4, we added the alignment error (x, y, z shift, tip-tilt) of the test sample.

Measurement shape of each sub-aperture including alignment error is shown in Figure 28.

x0 [mm] y0 [mm] z0 [mm] θx [rad] θy [rad]
1 -2.9 3.5 -0.060 -0.024 -0.027
2 0 3.5 0.000 0.000 -0.017
3 2.9 3.5 0.060 0.024 -0.027
4 -2.9 1.17 -0.022 -0.008 -0.014
5 0 1.17 0.000 0.000 -0.004
6 2.9 1.17 0.022 0.008 -0.014
7 -2.9 -1.17 -0.022 0.008 -0.014
8 0 -1.17 0.000 0.000 -0.004
9 2.9 -1.17 0.022 -0.008 -0.014

10 -2.9 -3.5 -0.060 0.024 -0.027
11 0 -3.5 0.000 0.000 -0.017
12 2.9 -3.5 0.060 -0.024 -0.027

43

Figure 28 Sub-aperture shape.

After repeating step 2-4 until whole sub-aperture were calculated, we transformed from

measurement coordinate to global coordinate using Equation (87).

 ቆ
𝑥
𝑦
𝑧

ቇ = ቎

𝑐𝑜𝑠θ௬ 0 −𝑠𝑖𝑛θ௬

0 1 0
𝑠𝑖𝑛θ௬ 0 𝑐𝑜𝑠θ௬

቏ ൥

1 0 0
0 𝑐𝑜𝑠θ௫ 𝑠inθ௫

0 −𝑠𝑖𝑛θ௫ 𝑐𝑜𝑠θ௫

൩ ൭
𝑥′
𝑦′

𝑧′

൱ + ൭

𝑥଴

𝑦଴

𝑧଴

൱. (87)

 In step 6, the alignment errors are estimated by stitching described in Chapter 4.3,

and removed them from sub-aperture shape. In step 7, whole sample shape was calculated

by averaging the sub-aperture shape. Finally, we evaluated the stitching result by

comparing it with input shape. The alignment error estimated by stitching is shown in

Figure 29. x-axis is the number of the sub-aperture.

44

Figure 29 Estimation results of the alignment error. (a) x shift error, (b) y shift error,

(c) z shift error, (d) θx tilt error and (e) θy tilt error.

As you can see, the alignment error can be estimated. The difference between the input and

output alignment errors is shown in Figure 30.

Figure 30 Estimation results of the alignment error difference. (a) x shift error, (b) y

shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error.

It is found from Figure 30 that the estimation of the alignment error was not high accurate.

From examining the simulation, the reasons are considered interpolation error and non-

linearity. In step 6 in Figure 26, the cubic interpolation is applied to coordinate

Sub-aperture number Sub-aperture number Sub-aperture number

Sub-aperture number Sub-aperture number

[µm] [µm] [nm]

[nm] [nm]

(a) (b) (c)

(d) (e)

Sub-aperture number Sub-aperture number Sub-aperture number

Sub-aperture number Sub-aperture number

[nm] [nm] [nm]

[nm] [nm]

(a) (b) (c)

(d) (e)

45

transformation. As the shape of the submillimeter is evaluated on the nanometer order, the

interpolation error cannot be ignored. As for the non-linearity, when the test sample has a

large shape error or the alignment error is large, and coordinate transformation is carried

out, such errors are not linear to the basic function like Zernike function. As a result, the

estimation error of stitching becomes large too. Figure 31 (a), and (b) show the retrieved

sample error shape with stitching and input sample error shape, respectively. The stitching

error which is difference between Figure 31 (a) and (b) is shown in Figure 31 (c).

Figure 31 Retrieved shape. (a) output error shape, (b) input error shape and (c)

difference between output and input error shape.

 The stitching error depends on the alignment errors of the test sample, and its error

shown in Figure 31 (c) is 0.76 nmRMS. This result is not bad; however, it is thought that

the stitching error becomes smaller by stitching again after subtracting the alignment errors

obtained by stitching because the interpolation error and the non-linear error becomes small.

The estimation error of the alignment error when stitching twice is shown in Figure 32.

You can see that the error is small.

46

Figure 32 Estimation error of the alignment error when stitching twice. (a) x shift

error, (b) y shift error, (c) z shift error, (d) θx tilt error and (e) θy tilt error.

The retrieved sample shape with stitching twice is shown in Figure 33 (a).

Figure 33 Retrieved shape when stitching twice. (a) output error shape, (b) input

error shape and (c) difference between output and input error shape.

As you can see from Figure 33 (c), the stitching error becomes considerably small (0.01

nmRMS).

Sub-aperture number Sub-aperture number Sub-aperture number

Sub-aperture number Sub-aperture number

[nm] [nm] [nm]

[nm] [nm]

(a) (b) (c)

(d) (e)

47

5. Error estimate

5.1. Talbot interferometer

 We calculated the error sensitivity of a CCD noise, and setting error (∆z, ∆θy, ∆θz)

of the grating. The error sensitivity depends on the incoming wavefront. Therefore, it is

important to decide how large wavefront should be input.

 To assume the actual wavefront in the experiment, we decided the input wavefront

Win the twice sag of the Alvarez surface on the average of the diagonal line (45 degree from

x-axis) and x-axis. And we added the tilt to reduce the absolute wavefront. Specifically, the

wavefront from the Alvarez surface on the x-axis, and on the diagonal line is expressed by

 𝑊௫ି௔௫௜ (𝑥) =
ଶ୅

ଷ
(𝑥 − 5 + 𝑅)ଷ − 𝑎ଵ𝑥 − 𝑎଴, (88)

 𝑊ௗ௜௔௚(𝑥) =
ଶ√ଶ୅

ଷ
൫𝑥 − 5√2 + 𝑅൯

ଷ
− 𝑏ଵ𝑥 − 𝑏଴, (89)

where R is a radius of a sub-aperture, a1, b1 are coefficients of tilts, a0, b0 are piston. The

input wavefront Win is expressed by

 𝑊௜௡(𝑥) =
ଵ

ଶ
ቀ𝑊௫ି௔௫௜ (𝑥) + 𝑊ௗ௜௔௚(𝑥)ቁ. (90)

Each wavefront is shown in Figure 34.

Figure 34 Wavefront from the Alvarez surface. (a) wavefront on x-axis, (b)

wavefront on the diagonal line and (c) input wavefront.

The wavefront error was estimated by the same method as Chapter 3.8.1. We assumed that

the grating is rectangular, and sub-aperture radius is 2 mm. First, we calculated the

wavefront retrieval error by input the wavefront shown in Figure 34 (c) without additional

x [mm]

Wx-axis [µm]

x [mm] x [mm]

Wdiag [µm] Win [µm]

(a) (b) (c)

48

error. The result is shown in Figure 35.

Figure 35 Wavefront retrieval error

Wavefront retrieval error is 4.34 nmPMS, and the shape error is 2.17 nmRMS.

5.1.1. CCD noise

 To calculate the wavefront error sensitivity due to a CCD noise, we added the

random error whose amplitude is 1, 3, and 5 % of the intensity to the intensity calculated

by the angular spectrum propagation described in Chapter 3.2.2. Figure 36 shows

wavefront error due to a CCD noise.

Figure 36 Wavefront error due to CCD noise. (a) 1%, (b) 3 % and (c) 5 % CCD

noise.

RMS wavefront error 𝝈𝒏𝒐𝒊𝒔𝒆 due to a CCD noise is calculated by

 𝜎௡௢௜௦௘(𝑖) = ඥ𝜎(𝑖)ଶ − 𝜎(0)ଶ, (91)

where i indicates the percentage of the CCD noise, σ is RMS wavefront error.

x [mm]

∆W [nm]

(a) (b) (c)
x [mm]x [mm]x [mm]

∆W [nm] ∆W [nm] ∆W [nm]

49

Figure 37 RMS wavefront error due to a CCD noise.

The wavefront error sensitivity due to a CCD noise was estimated to be 0.77 nmRMS / %

from Figure 37, and the test shape error sensitivity was estimated to be 0.385 nmRMS / %.

It is small because a CCD noise is high frequency error, which is filtered in the process of

the wavefront retrieval (FT method).

5.1.2. Z position error of the grating

 We estimated the wavefront error when the grating is set with shifting ∆z in the z-

direction from the half Talbot distance. Figure 38 shows the wavefront error when the

grating is shifted -3 µm - 3 µm from the half Talbot distance.

Figure 38 Wavefront error due to z error of the grating. (a) -3 µm, (b) -2 µm, (c) -1
µm, (d) 1 µm, (e) 2 µm and (f) 3 µm z error.

0

1

2

3

4

0 2 4 6
CCD noise [%]

σnoise [nmRMS]

(a) (b) (c)

(d) (e) (f)

∆W [nm]

x [mm]

50

As the z error gets smaller, the wavefront error gets smaller. It is because there is a spherical

wavefront error even if there is no z error. Therefore, when there is a z error of the grating

in the minus direction, the wavefront error is canceled and it is reduced by chance. Figure

39 shows RMS wavefront error calculated with Equation (91). Here since the wavefront

error with minus z error happened to be smaller than that with no z error, it was not shown.

Figure 39 RMS wavefront error due to z error of the grating.

From Figure 39, the wavefront error sensitivity due to z error of the grating was estimated

to be 2 nmRMS / µm, which means the test shape error sensitivity is 1 nmRMS / µm. Note

that the grating position does not need to be exactly at the Talbot distance, but we need

know the distance between the grating and the CCD. Assuming that the grating location

from the half Talbot distance is Δz, the amount of shear a is calculated by

 a = p ቀ1 +
∆௭

௅೅
ቁ, (92)

where p is a grating pitch, LT is the half Talbot distance. The wavefront can be retrieved by

the methods described in Chapter 3.3 substituting in Equation (92). Figure 40, Figure 41

and Figure 42 show the simulation result. Assuming the sinusoidal grating shown in Figure

15 (a), Figure 40 shows the calculated irradiance distributions at the position deviations

from the half Talbot distance using the Angular spectrum propagation described in Chapter

3.2.2. Figure 41 shows the retrieved wavefronts from the irradiance distributions shown in

Figure 40, and Figure 42 shows the difference between the reference wavefront and the

retrieved wavefront.

0

2

4

6

0 1 2 3
Z error [µm]

σz_err [nmRMS]

51

Irradiance [unit arb.]

(c)x [mm](a) (d)(b)

(e) (f) (g)

Figure 40 Irradiance distributions at different positions. The position deviation from
the half Talbot distance Δz is (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f)

1mm and (g) 3mm.

W [µm]

(c)x [mm](a) (d)(b)

(e) (f) (g)
Figure 41 Retrieved wavefronts from the irradiance distributions at the different
positions, Δz (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f) 1mm and (g)
3mm.

52

 We can see that when the position deviation from the half Talbot distance of the

grating is large, the contrast of the irradiance distribution is low, and the wavefront retrieval

error is large. However, when the deviation (Δz) is about 0.1 mm, the contrast is reasonable

and the wavefront retrieval error is almost the same as that of no position error. From these

results, we realized that it is not necessary to set the grating accurately at the half Talbot

distance, but to know the distance between the grating and the CCD. We also checked that

the same results were obtained when we calculated using the rectangle grating shown in

Figure 15 (b).

5.1.3. Tilt error of the grating

 In the Talbot interferometer with two gratings, Patorski [60] [61] and Liu and

Ohba [62] [63] have shown that fringe formation is sensitive to tilt errors between the

gratings. We estimated the measurement wavefront error when the grating was set inclined

to the CCD. The MATLAB code is shown in Appendix D. Since it was difficult to model

the tilted grating in the angular spectrum propagation, we applied the three beams

interference model. To calculate the wavefront at the sensor when the wavefront is incident

ΔW [nm]

(c)x [mm](a) (d)(b)

(e) (f) (g)

Figure 42 Differences between the reference wavefront and the retrieved wavefront at
Δz (a) -3mm, (b) -1mm, (c) -0.1mm, (d) 0 mm, (e) 0.1mm, (f) 1mm and (g) 3mm.

53

on the tilted grating, it is sufficient to calculate the optical path length geometrically. We

explain the specific calculation method below using Figure 43. We assumed that the grating

was tilted θ, the interval between the grating and CCD was L.

Figure 43 The schematic diagram of the optical length with tilted grating.

Wavefront W and the incident ray angle α have a relation as

ௗௐ(௫బ)

ௗ௫బ
= 𝑠𝑖𝑛൫𝛼(𝑥଴)൯, (93)

where x0 is the x coordinate on the grating without tilt. According to Bragg's law, the

diffraction angle β - θ satisfies Equation (94).

 𝑝{𝑠𝑖𝑛(𝛽 − 𝜃) − 𝑠𝑖𝑛(𝛼 − 𝜃)} = 𝑚𝜆, (94)

where p is a grating pitch, m is diffraction number. In addition, since the phase shift occurs

when the ray is diffracted, the following integration value is added.

 𝑊ௗ௜௙ = ∫ 𝑠𝑖𝑛(𝛼 − 𝜃) − 𝑠𝑖𝑛(𝛽 − 𝜃)𝑑𝑥ଵ/𝑐𝑜𝑠 (𝜃). (95)

Assuming that the ray passes through the point R, the coordinates (x1, z1) of the intersection

Q with the grating are expressed by

 𝑥ଵ =
௫బ

ଵା௧௔௡(ఈ)௧௔௡(ఏ)
. (96)

 𝑧ଵ = 𝑥ଵ𝑡𝑎𝑛(𝜃). (97)

The x coordinate x2 of the ray on the CCD when there is no grating is calculated by

 𝑥ଶ = 𝑥଴ + 𝐿𝑡𝑎𝑛(𝛼). (98)

Light diffracted by the grating passes through the x coordinate x3 on the CCD which is

grating

wavefront

θ

𝑧 = −
𝑥 − 𝑥଴

𝑡𝑎𝑛 𝛼

𝑧 = 𝑥𝑡𝑎𝑛 𝜃α

βR(x0,0)

Q(x1, z1)W(x0)

S(x2, -L) T(x3, -L)

L

P

1st order
0 order

CCD

54

expressed by

 𝑥ଷ = 𝑥ଵ + (𝐿 + 𝑧ଵ)𝑡𝑎𝑛(𝛽). (99)

The optical path lengths of PQ and QT are expressed by

 𝑊௉ொ = 𝑊(𝑥଴) − ඥ(𝑥ଵ−𝑥଴)ଶ + 𝑦ଵ
ଶ. (100)

 𝑊ொ் =
(௅ା௬భ)

௖௢௦(ఉ)
. (101)

Finally, the wavefront Wm of the 0, ±1st order diffraction ray on the CCD is calculated by

 𝑊௠(𝑥ଷ, −𝐿) = 𝑊௉ொ + 𝑊ொ் + 𝑊ௗ௜௙, (102)

where m is diffraction number. We calculated the intensity of three beams interference

using wavefront W-1, W0, W1, and retrieved the wavefront by FT method. Figure 44 shows

the wavefront error when the tilts of the grating are from -3 mrad to 3 mrad,

Figure 44 Wavefront error due to the grating tilt. (a) -3 mrad, (b) -1 mrad, (c) 0

mrad, (d) 1 mrad and (e) 3 mrad.

Figure 45 RMS wavefront error due to the grating tilt.

From Figure 45, the wavefront error sensitivity due to the grating tilt was estimated to be

2.4 nmRMS / mrad, which means the test shape error sensitivity is 1.2 nmRMS / mrad.

x [mm]

∆W [nm]

(a) (b) (c) (d) (e)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

-4 -3 -2 -1 0 1 2 3 4

θ [mrad]

σtilt_err [nmRMS]

55

5.1.4. Rotation error of the grating

 We estimated the wavefront error when the grating is rotated φ radian with respect

to the CCD. In this case, the retrieved x-shear wavefront error δWx,φ is expressed by

𝛿𝑊௫,ఝ(𝑥, 𝑦) ≈ 𝑊(𝑥 + a × cos(𝜑) , 𝑦 + a × sin(𝜑)) − 𝑊(𝑥, 𝑦)

≈ 𝑎
𝜕𝑊(𝑥, 𝑦)

𝜕𝑥
cos(𝜑) + 𝑎

𝜕𝑊(𝑥, 𝑦)

𝜕𝑦
sin(𝜑)

 ≈ 𝑎
డௐ(௫,௬)

డ௫
−

௔

ଶ

డௐ(௫,௬)

డ௫
𝜑ଶ + 𝑎

డௐ(௫,௬)

డ௬
𝜑 (103)

where a is the amount of shear, and the following approximations are applied.

 𝑐𝑜𝑠(𝜑) ≈ 1 − 𝜑ଶ (104)

 sin(𝜑) ≈ 𝜑 (105)

The wavefront measurement error ∆Wφ obtained by integrating Equation (103) is

expressed by

 ∆𝑊ఝ(𝑥, 𝑦) = −
ଵ

ଶ
𝜑ଶ𝑊(𝑥, 𝑦) + 𝜑 ∫

డௐ(௫,௬)

డ௬
𝑑𝑥 (106)

If the rotation error φ is small enough, the first term is negligible. Assuming the wavefront

reflected from the Alvarez surface, wavefront measurement error ∆Wφ is calculated by

∆𝑊ఝ(𝑥, 𝑦) ≈ 𝜑 න
𝜕

𝜕𝑦
൜2𝐴 ൬

1

3
𝑥ଷ + 𝑥𝑦ଶ൰ − 𝑐ଵ𝑥 − 𝑐ଶ𝑦ൠ 𝑑𝑥

= 𝜑 න 4𝐴𝑥𝑦 − 𝑐ଶ𝑑𝑥

 = 𝜑(2𝐴𝑥ଶ𝑦 − 𝑐ଶ𝑥), (107)

where c1, c2 are the coefficients of tip-tilt. Assuming the area of x > 1 and y > 1, which is

4 × 4 mm2 at the corner of the Alvarez surface, RMS wavefront error of Equation (107)

∆𝑊ఝ,௥௠௦ becomes

 ∆𝑊ఝ,௥௠௦ = 4.4 × 10ସ𝜑, (108)

where the unit is nmRMS, the unit of φ is radian. To make the RMS wavefront error less

than 6 nmRMS, rotation error of the grating must be less than 0.14 mrad.

56

5.2. Stitching

 In stitching, there are some errors due to a random error, a system error, and a

spike error. Each wavefront error is estimated by simulation below.

5.2.1. Random error

 The wavefront measured by the Talbot is considered to have a random error due

to a CCD noise and so on. Therefore, we estimated the stitching error due to a random error

by adding it to every sub-aperture data and stitching them. We calculated rms error of the

test surface in stitching five times. Figure 46 shows the stitching error when 2, 6, and 10

nmPV random noise are added, respectively.

Figure 46 Stitching error due to a random error.

(a) 2 nmPV, (b) 6 nmPV and (c) 10nmPV.

Figure 47 shows stitching rms error σrandom_err due to a random error calculated by average

of five results rms error.

Figure 47 Stitching rms error due to a random error.

0
1
2
3
4
5

0 2 4 6 8 10
Random error [nmPV]

σrandom_err [nmRMS]

57

The stitching error sensitivity due to a random error was estimated to be 0.50 nmRMS /

nmPV.

5.2.2. System error

 Since there are errors in the Talbot interferometer and the optical system, there is

also an error in the measured wavefront. Therefore, we added the error as a system error to

each sub-aperture data and estimated by simulation how the system error affected the result

of stitching. Figure 48 shows the system error, and Figure 49 shows stitching shape error

due to the system error.

Figure 48 System error. (a) 2.1 nmRMS, (b) 4.6 nmRMS and (c) 9.7 nmRMS.

Figure 49 Stitching error due to the system error (Figure 48).

Figure 49 indicates the stitching RMS error is larger than the input system RMS error. This

is thought to be because the system error is overcorrected as an alignment error, thereby

increasing the stitching error. Figure 50 shows stitching RMS error σsys_err due to the system

error.

58

Figure 50 Stitching rms error due to a system error.

The stitching error sensitivity due to a system error was estimated to be 5.6 nmRMS /

nmRMS.

5.2.3. Spike noise

 Assuming that there is a spike error on the measured shape (wavefront), an error

of 0.36 mm square was randomly added to each sub-aperture to estimate the stitching error.

Figure 51 shows stitching shape error due to the spike error.

Figure 51 Stitching error due to a spike error.

(a) 10 nm, (b) 20 nm and (c) 30 nm.

Figure 52 shows stitching RMS error σspike_err due to a spike error calculated by average of

five results RMS error.

0

20

40

60

80

0 3 6 9 12

System error [nmRMS]

σsys_err [nmRMS]

59

Figure 52 Stitching error due to a spike error.

The stitching error sensitivity due to a spike error was estimated to be 0.41 nmRMS / nm.

5.3. Retrace error

 As shown in Figure 4, the optical system consists mainly of two achromatic lenses

of the same design and a beam splitter. These optical products have wavefront aberrations

due to the alignment error, homogeneity, and the surface shape error. The retrace error is

an error generated due to the influence of the above error caused by the ray reflected by the

test sample passing through a different optical path from the outgoing path. The retrace

error is divided into a coordinate error and an angle error. The coordinate error is that the

ray coordinates on the sample are different from the ray coordinates on the sensor. As the

sensor and the sample are conjugate with each other, the coordinate error should be small

when the test sample is not deviated largely from the flat plane. However, when the

deviation of the test sample from the flat plane is large, the coordinate error is not negligible.

The angle error is an error that the ray angle reflected by the test sample does not coincide

with the angle incident on the sensor. Raytracing is a direct solution to correct the retrace

error. The sample shape is obtained by calculating the ray angle from the wavefront

measured by the sensor, raytracing from the sensor to the test sample through the optical

system, calculating the ray angle (slope) and the coordinate on the sample surface, and

integrating the ray slope. However, this method requires all the parameters of the optical

0

5

10

15

0 10 20 30

Spike error [nm]

σspike_err [nmRMS]

60

system including the error, which is almost impossible. Since it is difficult to know all the

parameters, it is also difficult to reduce the retrace error enough. On the other hand, a

calibration method of measuring the reference surface is also conceivable. By measuring

the plain or spherical reference surface which has already been measured with other method

and subtracting it from the measurement data of the test sample, the system error is

calibrated. However, it is valid only when the test sample shape is close to the reference

surface shape because the optical path is different and the wavefront error is also different

if the test sample and the reference are different. Hence several calibration methods are

known for these retrace errors [64]. Evans [65] proposed a correction method with multiple

measurements of a tilted flat. Although this method may be simple, the coordinate error

cannot be calibrated. Murphy [66] proposed a calibration method with the third-order

aberration theory. It becomes difficult to characterize the optical system error when there

are many lenses in the optical system. The calibration method with the perturbation theory

is presented by Osten [35]. The optical system is characterized by the perturbation based

on priori measurements with the reference surface at various locations. Limitation of this

method is mechanical stability. Greivenkamp [67] supposed reverse optimization that the

optical system was optimized by iterative raytracing calculation so that it is consistent with

multiple priori measurements.

 We verified how much the retrace error can be reduced by raytracing and Evans’s

method using the optical design software Zemax. As shown in Figure 53 and Table 4, an

optical system consisting of a beam splitter and two achromatic lenses was designed.

Design values of achromatic lenses, which we purchased, were downloaded from the

website [68].

61

Figure 53 Optical design. (a) optical path from the light source to the test surface
and (b) optical path from the test surface to the sensor.

Table 4 Lens data of the optical system.

The test shape f is the Alvarez lens, which is expressed by a white line in Figure 54. It is

expressed by

 𝑓(𝑥) =
஺√ଶ

ଷ
(𝑥 + 4.23)ଷ − 𝑥𝑡𝑎𝑛(

ଶ.଴ଽ

ଵ଼଴
), (109)

where A is 0.0012 mm-2, the second term indicates the tilt of the test sample in stitching.

62

Figure 54 Test shape for simulation of calibration.

We calculated the ray coordinate X0 and angle θ0 on the sensor by raytracing. Next, some

errors as shown in Table 5 were added to this optical system, and the ray coordinate Xa and

angle θa on the sensor were calculated by raytracing similarly.

Table 5 Added system error.

A plane was tilted from -3.8 degrees to 3.8 degrees in increments of 0.1 degree to

implement raytracing, and a table for correcting the angle error was prepared by Equation

(110) .

 𝑄൫𝑋, 𝜃௙௟௔௧൯ = 𝜃௙௟௔௧(𝑋)/2 − 𝜑, (110)

where X is the ray coordinate on the detector, φ indicates the tilt angle of the flat plane, and

number Error
2 ∆z = 0.01 mm

4
∆x = 0.02 mm

∆θy = 0.005 deg

5 ∆z = - 0.02 mm
6 ∆z = 0.4 mm

7
∆x = - 0.04 mm

∆θy = 0.01 deg

8 ∆z = 0.7 mm
14 ∆z = - 0.7 mm

15
∆x = - 0.04 mm

∆θy = 0.01 deg

16 ∆z = -0.4 mm
17 ∆z = 0.02 mm

18
∆x = 0.02 mm

∆θy = 0.005 deg

20 ∆z = - 0.01 mm

63

θflat is the ray angle on the detector. The angle correction table is shown in Figure 55.

Figure 55 Angle correction table.

The coordinate error ∆X and angle error ∆θ are expressed by

 ∆X = 𝑋௔ − 𝑋଴, (111)

 ∆𝜃(𝑋௔) = 𝜃(𝑋௔) − 𝜃଴(𝑋଴), (112)

where Xa and X0 are ray coordinates on the detector when the optical system has no error

and the error of Table 5, θ and θ0 are ray angles on the detector when the optical system

has no error and the error of Table 5. The coordinate error ∆X and angle error ∆θ are shown

in Figure 56.

Figure 56 Retrace error. (a) coordinate error and (b) angle error.

As shown in Figure 56, the coordinate error is larger than 40 µm. We calculated the shape

error ∆z (difference from the nominal shape) from the ray coordinate Xa and ray angle θ by

X [mm]

∆ X [μm]

X [mm]

∆ θ [mrad]

(b)(a)

64

Equation (113) after calculating the ray angle at coordinate X0 using interpolation.

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃(𝑋଴; 𝑥) − 𝜃଴(𝑋଴; 𝑥)}/2]𝑑𝑥, (113)

The shape error ∆z is shown in Figure 57.

Figure 57 Shape error.

The shape error due to the retrace error is about 3.3 μmPV. Next, the angle error was

corrected by Evans’s method. The Figure 58 shows the shape error when the ray angle is

calibrated by Equation (114) using the correction table shown in Figure 55. It is to be noted

that the shape error can be calculated by Equation (115) after calculating the ray angle at

coordinate X0 using interpolation in the same way as before.

 𝜃′(𝑋଴) = 𝜃(𝑋଴) − 𝑄(𝑋଴, 𝜃), (114)

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃′(𝑋଴; 𝑥) − 𝜃(𝑋଴; 𝑥)}/2]𝑑𝑥, (115)

Figure 58 Shape error when Evans’s method is applied.

x [mm]

∆ z [μm]

x [mm]

∆ z [μm]

65

The shape error is slightly improved. This result indicates it is not enough to calibrate only

the angle error. Figure 59 shows the shape error when the coordinate error is assumed to

be corrected by some method. It is calculated by

 ∆𝑧(𝑥) = ∫ 𝑠𝑖𝑛[{𝜃"(𝑥) − 𝜃(𝑋଴; 𝑥)}/2]𝑑𝑥, (116)

where θ” is a ray angle on the sensor calculated by interpolation at the ray coordinate x on

the test sample.

Figure 59 Shape error when the coordinate error is corrected.

The shape error was improved but not enough. From above calculation results, it was found

that in this optical system, the coordinate error affects the measurement shape error more

than the angle error, and a method for calibrating the coordinate error is necessary. To

develop the method is a future task.

5.4. Uncertainty

 Using the results obtained in Chapters 5.1 and 5.2, the measurement error estimate

without the retrace error is shown in Table 6.

x [mm]

∆ z [μm]

66

Table 6 Error estimation of the freeform measurement.

The measurement error of the freeform surface excluding the retrace error was estimated

to be 19.6 nmRMS when we assumed that there were errors shown in Table 6.

Error factor Sensitivity Error
Measurement

error
Wavefront retrieval error 2.2 nmRMS

CCD noise 0.39 nmRMS / % 3% 1.2 nmRMS
Z error of the grating 1 nmRMS / μm 4 μm 4 nmRMS

Tilt error of the grating 1.2 nmRMS / mrad 2 mrad 2.4 nmRMS
Rotation error of the grating 22 nmRMS / mrad 0. 25 mrad 5.5 nmRMS

Random error 0.5 nmRMS / nmPV 10 nmPV 5 nmRMS
System error 5.6 nmRMS / nmRMS 3 nmRMS 16.8 nmRMS
Spike error 0.41 nmRMS / nm 10 nm 4.1 nmRMS

Total 19.6 nmRMS

Talbot
interferometer

Stitching

67

6. Assembly and alignment

6.1. Talbot interferometer

 We requested the company whose name is ‘PhotomaskPortal’ to make a cross

grating shown in Figure 60. The substrate is a fused silica, and the grating is made from

composition of Cr and CrO3, whose optical density is 0.2. In addition, we requested the

company whose name is ‘ios Optics’ to coat anti-reflection (R < 0.5% at 633 nm)

membrane on the other side of Chrome to avoid the stray beam. Dr. Robert A. Hudgins

diced the fused silica to 2 inches square.

Figure 60 The schematic of a cross grating.

The image of the cross grating with microscope is shown in Figure 61. The x and y mean

pitch of the grating are 80.08 µm, and 79.99 µm, respectively.

Figure 61 Image of the cross grating with microscope. (a) transmission image, (b) x

cross section and (c) y cross section.

The picture with white light interferometer (Newview, Zygo corporation) is shown in

Figure 62. As you can see, the thickness of the Chrome is 55 nm. Both Figure 61 and Figure

Cr and CrO3

Fused silica

80 µm

Anti- Reflection
coating at 633 nm

3 mm

50.8 mm

50.8 mm

68

62 were captured by Gregory W. Caskey.

Figure 62 Image of the cross grating with white light interferometer. (a) image and

(b) x cross section.

As a cover glass in front of the CCD to avoid the dust affects the measurement accuracy,

we used a cover glassless 1/2-inch CCD camera whose product name is DMK 41BU02.H

made by ‘The Imaging Source’. A CCD chip named ICX205AL is made by ‘Sony

corporation’. The main specification is shown in Table 7.

Table 7 CCD specification.

From the error estimate shown in Table 6, the grating tilt error with response to the CCD

must be less than 2 mrad, and the rotation error of the grating must be less than 0.28 mrad.

Furthermore, the interval between grating and CCD must be set within 10.114 mm ± 2 µm.

To realize this condition, we assembled them using Fizeau interferometer (Verifire AT 1000,

Zygo corporation). The assembly procedure is (1) tip-tilt adjustment of the CCD, (2)

rotation adjustment of the grating, (3) tip-tilt adjustment of the grating, (4) z position

adjustment of the grating. Regarding tip-tilt adjustment of the CCD, as is shown in Figure

63, we set the CCD in the collimated beam from the Fizeau interferometer and adjusted the

tip-tilt of the CCD so that the fringe number of the interferogram was small.

x [µm]x [µm]

y [µm]

39.8

39.4 39.5

39.6 39.6

z [nm][nm]

(b) (a)

Pixel number H: 1,280 px, V: 960 px
Pixel size H: 4.65 µm, V: 4.65 µm
Chip size H: 7.6 mm, V: 6.2 mm
Dynamic range 8 bit

69

Figure 63 Setup for tip-tilt adjustment of the CCD.

The fringe and form of the CCD obtained at that time are shown in Figure 64.

Figure 64 CCD measurement with Fizeau interferometer. (a) Fringe and (b) form.

The tilt amount of the CCD form is 800 nmPV, which is 0.14 mrad when it is converted

into an angle. It is much lower than the error budget (2 mrad) shown in Table 6. You can

see from Figure 64 (b) the CCD has a waviness of about 1.5 µmPV.

 Regarding (2) rotation adjustment of the grating, as is shown in Figure 65. the

grating mounted by 3-axis adjuster (50/50.8 mm Sq. Kinematic Mount, 3 Screws, Edmund

Optics Inc) was set in front of the CCD, and the θz (φ) rotation angle of the grating was

adjusted several times by looking at the image of the CCD so that the angular deviation

with respect to the CCD became smaller.

CCD

Fizeau
Interferometer

70

Figure 66 shows the magnified intensity of the CCD only in the y direction. The grating

(Talbot) image is seen.

Since the grating image is shifted by about 1 pixel from the left side to the right side, the

rotation angle θz is calculated by

 𝜃௭ =
ଵ

ଵଶ଴଴
= 0.83 mrad. (117)

The rotation angle θz was larger than the error budget (0.14 mrad). However, we will make

it smaller than 0.14 mrad by repeating more trial and error or using a rotation stage of high

resolution.

 Regarding (3) tip-tilt adjustment of the grating, we similarly adjusted tip–tilt of

the grating by looking at the fringe of the Fizeau interferometer as is shown in Figure 65.

The interference fringe and form of the grating are shown in Figure 67. The waviness of

the CCD can be seen in Figure 67 (a) despite measuring a grating because the light passes

Grating

Fizeau
Interferometer

CCD

Figure 65 Setup for rotation and tip-tilt adjustment of the grating.

Figure 66 Magnified intensity only in the y direction.

71

Figure 67 Grating measurement with Fizeau interferometer. (a) Fringe and (b)

form.

through the grating. Since the length of the diagonal in Figure 67 is longer than 8 mm and

the form is 250 nmPV, the inclination angle of the grating is calculated by 250 nm / 8 mm

= 31 µrad, which is much less than error budge (2 mrad) shown in Table 6.

 Regarding (4) z position adjustment of the grating, intensities when the CCD is

driven in the -z direction every 1/4 inch are shown in Figure 68 together with the calculation

result using the angular spectrum propagation described in Chapter 3.2.2.

Figure 68 Intensity comparison between calculation and experiment with CCD
driven in the z-direction.

72

We see the clear grating image when the distance between the grating and the CCD is 10.16

mm which is the half Talbot distance, and it collapses as the grating is moved away from

the position. In addition, the calculation and experiment correspond to each other very well.

These results show that the grating quality is reasonable and is creating the expected

diffraction patterns.

 We tried three methods to measure the distance between the grating and the CCD.

One is the method using wavelength-shifting interferometer (VerifireTM MST, Zygo

corporation). In MST, by acquiring a plurality of interference data by sweeping the

wavelength and Fourier transforming data on each pixel with respect to three-dimensional

interference data (z is a wavelength), it is possible to simultaneously measure the intervals

of a plurality of planes aligned in the optical axis direction. We thought that this method

was best because it was a direct solution, but the signal from the CCD was too weak to

measure the interval. We used the Fizeau interferometer in the second method. As shown

in Figure 69, first, the CCD and the grating were tilted together, then the reflected light was

measured with Fizeau interferometer to obtain the amount of tilt, and the Talbot image was

captured with CCD. Finally, the amount of tilt of the wavefront was calculated from the

Talbot image. Since the wavefront by the Talbot interferometer is proportional to the shear

amount and the shear amount is proportional to the distance between the grating and CCD,

the distance can be obtained by comparing the amount of tilt obtained by the Fizeau

interferometer and the Talbot interferometer.

Grating

Fizeau
Interferometer

CCD

Figure 69 Setup for measuring the distance between the grating and the CCD.

73

Figure 70 shows the experimental results of the tilt θy calculated from the measured

wavefront. Tilt amount of the Talbot image is calculated assuming the distance between the

grating and the CCD is half Talbot distance.

Figure 70 (a) presents that the amount of tilt of the Fizeau interferometer and the Talbot

interferometer are roughly coincident, which means that the distance between the grating

and the CCD is close to a half Talbot distance. Figure 70 (b) shows the difference between

the tilt amount of Fizeau interferometer and the Talbot interferometer. They differ more

than 1 %, which means more than 100 µm error. This error is much larger than the error

budget (4 µm). Since this main cause is considered to be air fluctuation, it is expected that

it can be reduced by increasing the number of measurement with Fizeau interferometer.

However, as we thought the measurement error would be still large, we tried the third

method.

 The third method uses both Fizeau interferometer and a laser displacement sensor

(Agilent 5529A Dynamic Calibrator, Agilent technology). Regarding the principle, as

shown in Figure 71, it can be considered that there is a point light source at the position of

the cat's eye, and the wavefront W on the CCD is expressed by Equation (118) using the

distance Lm between the cat's eye and the grating, and the distance LT +∆L between the

grating and the CCD.

W(𝑥, 𝑦) = ඥ𝑥ଶ + 𝑦ଶ + (𝐿௠ + 𝐿் + ∆𝐿)ଶ − (𝐿௠ + 𝐿் + ∆𝐿)

[mrad] [mrad]

(a) (b)
Figure 70 Experimental result of the tilt wavefront. (a) tilt amount measured by

Fizeau interferometer and Talbot interferomter, and (b) difference between the results
of Fizeau interferometer and Talbot interferometer.

74

≈
𝑥ଶ + 𝑦ଶ

2(𝐿௠ + 𝐿் + ∆𝐿)

 ≈
௫మା௬మ

ଶ(௅೘ା௅೅)
ቀ1 −

∆௅

(௅೘ା௅೅)
ቁ, (118)

where LT is a half Talbot distance, 10.114 mm. In the Talbot interferometer, the wavefront

is retrieved by modal method described in Chapter 3.4.2. using Fringe Zernike polynomial.

The fourth term Z4 of the Fringe Zernike polynomial is expressed by

 𝑍ସ(𝑥, 𝑦) = 2
௫మା௬మ

ோమ
− 1, (119)

where R is an analysis radius. When the distance between the grating and the CCD is

shifted by ∆L, the shear amount becomes p(Lt+∆L)/Lt. Therefore, assuming the obtained

coefficient of the Fringe Zernike polynomial is Cm, the coefficient Ca of the true value is

represented by

Figure 71 Model for measuring the distance between a grating and a CCD.

𝐶௔ = 𝐶௠ ൬
𝐿்

𝐿் + ∆𝐿
൰

= 𝐶௠ ൬
1

1 + ∆𝐿/𝐿்
൰

 ≈ 𝐶௠ ቀ1 −
∆௅

௅೅
ቁ. (120)

If the distance Lm between the cat’s eye and the grating is known, the distance ∆L is

Lm

Grating

LT+∆L

CCD

Cat’s eye

75

obtained by comparing the theory (Equation (118)) with measured coefficient (Eqs. (119)

- (120)). Concretely, as we move the Talbot interferometer multiple times, which is

represented by number i, we can obtain ∆L that minimizes Equation (121).

෍ ቊ
1

2൫𝐿௠,௜ + 𝐿்൯
ቆ1 −

∆𝐿

൫𝐿௠,௜ + 𝐿்൯
ቇ −

2𝐶௠,ସ,௜

𝑅ଶ
൬1 −

∆𝐿

𝐿்
൰ቋ

ଶ

௜

= ෍ ൝
1

2(𝐿௠.௜ + 𝐿்)
−

2𝐶௠,ସ,௜

𝑅ଶ
− ൭

1

2൫𝐿௠,௜ + 𝐿்൯
ଶ −

2𝐶௠,ସ,௜

𝐿்𝑅ଶ
൱ ∆𝐿ൡ

ଶ

௜

 ∑ {𝐴௜ − 𝐵௜∆𝐿}ଶ
௜ → 𝑚𝑖𝑛. (121)

where

 𝐴௜ =
ଵ

ଶ(௅೘.೔ା௅೅)
−

ଶ஼೘,ర,೔

ோమ
. (122)

 𝐵௜ = ൬
ଵ

ଶ൫௅೘,೔ା௅೅൯
మ −

ଶ஼೘,ర,೔

௅೅ோమ
൰. (123)

In order to minimize Equation (121), it suffices that the partial differential with ∆L is zero,

so that ∆L can be obtained by

 ∆𝐿 =
∑ ஺೔஻೔೔

∑ ஻೔
మ

೔
. (124)

In the experiment, as is shown in Figure 72, we measured the distance ∆L by measuring

the distance Lm with the laser displacement sensor and the spherical wavefront with Talbot

interferometer. Transmission sphere lens whose F number is 3.5 was used for making

spherical wavefront. The grating is attached on the bread board, and CCD is attached on

the z-stage on the bread board. As is shown in Figure 72 (a), the grating was set at the cat’s

eye position by moving the bread board so that the fringe of the Fizeau interferometer

became null. Next, the corner cube reflector was attached to the Talbot interferometer (z-

stage) and prepared so that the driving amount in the z-direction could be measured with a

laser displacement sensor. After that, we moved the Talbot interferometer (bread board) in

the z-direction multiple times and measured the driving amount with the laser displacement

sensor, and the spherical wavefront with the Talbot interferometer. The measurement result

76

Figure 72 Setup to measure the distance between the grating and the CCD. (a) cat’s

eye position and (b) Lm shift in the z-direction.

is shown in Figure 73 (a). The x-axis is moving amount Lm of the Talbot interferometer,

which is measured with the laser displacement sensor, and the y-axis is the coefficient of

Zernike 4-th term whose analysis radius is 2 mm. The blue line is a value converted into

the coefficient of Zernike 4-th term from the distance Lm.

Figure 73 Experimental result of the spherical wavefront. (a) Coefficient of Zernike
4-th term and (b) Difference between the results of displacement sensor and Talbot

interferometer.

Figure 73 (b) shows the difference between the results of the Talbot interferometer and the

C4 [µm]

Lm [mm]

ΔC4 [µm]

Lm [mm]

(a) (b)

CCD

Grating

Fizeau
Interferometer

(a)

Corner cube reflector

He-Ne laser

(b)

Lm

77

displacement sensor. Calculating Equation (124), we obtained the result that ΔL was

+190.9 µm. Therefore, we moved the CCD by 190 µm and brought it closer to the grating.

We repeated the measurement and move several times, we finally obtained the results

shown in Figure 74.

Calculating Equation (124) from the results of Figure 74 (a), we obtained the result that ΔL

was – 7.0 µm. This value is still larger than the error budget, but it is not necessary to set

the distance between the grating and CCD to the exact half Talbot distance. If the distance

ΔL is known, the wavefront can be obtained accurately by changing the amount of shear.

Figure 75 shows the variation of measured distance δΔL when ΔL is taken into

consideration.

C4 [µm]

Lm [mm]

ΔC4 [µm]

Lm [mm]
(a) (b)

Figure 74 Experimental result of the spherical wavefront. (a) Coefficient of Zernike
4-th term and (b) Difference between the results of displacement sensor and Talbot

interferometer.

Lm [mm]

δΔL [µm]

Figure 75 Variation of measured distance.

78

 The variation of measured distance is 13.8 µmRMS, which is larger than the error budget

(4 µm). This main reason is thought to be the Abbe error because we moved the Talbot

interferometer manually without z-stage due to poor stroke, and the corner cube reflector

could not be set on the line of the Talbot interferometer. The Abbe error can be estimated

from the geometry. The corner cube reflector and the laser displacement sensor are 1 m

apart, and the reflected beam can be detected even if the beam deviates by about 2.5 mm.

Therefore, the maximum inclination error over the z motion range is 1.25 mrad. Since the

CCD and the corner cube reflector are 20 mm apart, the Abbe error is the product of this

distance and the angle, resulting in a measurement error of 25 µm at most. It will be more

accurate if the Abbe error is reduced by using a long stroke stage and setting the corner

cube reflector on the line of the Talbot interferometer.

 The picture of the Talbot interferometer is shown in Figure 76.

6.2. Optical system

 The optical system shown in Figure 4 is mainly composed of a cube beamsplitter

and two same achromatic lenses. There is an anti-reflective coating on each surface to avoid

the stray light. In this Chapter, we introduce how to assemble the optical system. The

procedure is described below.

 First, as is shown in Figure 77, the tip-tilt of the Talbot interferometer is adjusted

so that the fringe of Fizeau interferometer is null. Then, as is shown in Figure 78, the tip-

Figure 76 Talbot interferometer.

79

tilt of the beam splitter is adjusted so that the fringe of Fizeau interferometer is null. Here

both beams from the front surface and the back surface of the beam splitter is observed.

Since the ray from the test sample does not pass the front surface of the beam splitter, we

can adjust it with the beam from the back surface. We can recognize which beam comes

from the back surface because its power is weaker than another in the Alignment mode of

the Fizeau interferometer.

Next, as is shown in Figure 79, the tip-tilt of the beam splitter and the Talbot interferometer

are adjusted by looking at the interference fringe between the reflected light from the

grating and the reference light. And a plane mirror is set up, and tip-tilt is adjusted by

looking at the interference fringes of the reflected light from the plane mirror and the

reference light. Next, as shown in Figure 80, the tip-tilt of the achromatic lens is adjusted

by looking at the interference fringe between the reflected light from the plain mirror and

the reference light. Z position of the achromatic lens is adjusted so that the beam is focused

on the CCD, and XY position is adjusted so that the beam comes to the center of the CCD.

Figure 77 Tip-tilt adjustment of the Talbot interferometer.

Figure 78 Tip-tilt adjustment of the beam splitter.

Grating

Fizeau
Interferometer

Beam splitter
CCD

Grating

Fizeau
Interferometer

CCD

80

As is shown in Figure 81, a plane mirror is set up, and tip-tilt is adjusted by looking at the

interference fringe between the reflected light from the plane mirror and the reference light.

As is shown in Figure 82, another achromatic lens is set up and tip-tilt is adjusted by

looking at the interference fringe between the reflected light from the plane mirror and the

Figure 79 Tip-tilt adjustment of the plane mirror.

Achromatic lens

Figure 80 Alignment of the achromatic lens.

Plane mirror

Figure 81 Tip-tilt adjustment of the plane mirror.

Plane mirror

81

reference light.

As is shown in Figure 83, the plane mirror is removed, and the XYZ position of the

achromatic lens is adjusted by looking at the interference fringe between the reflected light

from the grating and the reference light.

The picture of the optical system is shown in Figure 84.

Achromatic lens

Figure 82 Tip-tilt adjustment of another achromatic lens.

Figure 83 Alignment of another achromatic lens.

Figure 84 Optical system.

82

The variable aperture is used for rough alignment of the test sample. It is because as

discussed in Chapter 3.7, this Talbot interferometer cannot measure the wavefront whose

tilt is more than 4 mrad, and it is difficult to align the test sample roughly. A variable

aperture is placed in front of the grating, and the aperture size is reduced in the case of

alignment. It enables us to align the test sample by detecting the position of the transmitted

light with CCD, which is similar to Alignment mode in Fizeau interferometer.

83

7. Conclusion and future work

 In this thesis, we proposed a system for measuring freeform surface by combining

the Talbot interferometer and the stitching technique and verified its feasibility by

simulation. For the Talbot interferometer, theory was introduced, and simulation was

performed to confirm that the wavefront can be retrieved from the Talbot image. We also

clarified the specifications and accuracy with error estimation. For the stitching technique,

simulation was performed, and it was confirmed that even if there was an alignment error

of the test sample in sub-aperture measurement, it could be estimated and reduced.

Assuming the Alvarez lens with the shape of 400 μmPV, we estimated the measurement

error of both the Talbot interferometer and the stitching, which was 19.6 nmRMS except

for the retrace error. The stitching error due to the system error is the dominant source of

error. It may be improved by changing the lattice design. Otherwise, it is necessary to

develop more robust stitching algorithm.

 We investigated the retrace error by simulation using the optical design software

Zemax and tried the Evans’s method to reduce the retrace error, however, it turned out to

be difficult to make the retrace error small. In particular, it was found that some method to

reduce the coordinate error is necessary.

 In the experiments, the cross grating and the windowless CCD were accurately

placed using the Fizeau interferometer and a displacement sensor, and a Talbot

interferometer was assembled. In addition, we suggested the way to assemble the optical

system using Fizeau interferometer. It is a future work to measure the Alvarez lens surface

which is one of freeform surfaces, and to verify measurement accuracy.

 Since this system is high dynamic range, fast, compact, and ease to use, it will be

beneficial to inspect various freeform optics.

84

References

1 F. Duerr, Y. Meuret, and H. Thienpont, 'Potential benefits of free-form optics in on-

axis imaging applications with high aspect ratio,' Optics Express 21 (25), 31072-

31081 (2013).

2 K. Wang, F. Chen, Z. Liu, X. Luo, and S. Liu, 'Design of compact freeform lens for

application specific lightemitting diode packaging,' Optics Express 18 (2), 413-425

(2010).

3 T. Blalock, K. Medicus, and J. D. Nelson., 'Fabrication of freeform optics,' Proc.

SPIE 9575 (2015).

4 O. Cakmakcia, K. Thompsona, P. Valleeb, J. Coteb, and J. P. Rollandc, 'Design of

a Freeform Single-Element Head-Worn Display,' Proc. SPIE 7618, 761803 (2010).

5 S. Minami, K. Minoura, and H. Yamamoto, 'Scanning Optical System Of The Canon

Laser Beam Printer,' Proc. SPIE 741, 118-139 (1987).

6 Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H.

Schnetler, L. Venema, L. Mosoni, D. L. Mignant, M. Ferrari, and J. Cuby, 'Design

and development of a freeform active mirror for an astronomy application,' Proc.

SPIE 53 (3), 031311 (2014).

7 J. P. Lormeau, C. Supranowitz, P. Dumas, T. Nitzsche, and R. Jenkins, 'Field proven

technologies for fabrication of high-precision aspheric and freeform optical

surfaces,' Proc. SPIE 9442 (2015).

8 P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, 'Design

and characterization of an infrared Alvarez lens,' Proc. SPIE 51, 13006 (2012).

9 James Babington, 'Alvarez Lenses: Theory and Applications,' Proc. SPIE 9626,

962615 (2015).

10 S. Barbero and J. Rubinstein, 'Adjustable-focus lenses based on the Alvarez

principle,' Journal of Optics 13 (12), 125705 (2011).

85

11 AMETEK Inc, 'Optics PGI,' http://www.taylor-hobson.com/products/surface-

profilers/optics-pgi.

12 H. Tsutsumi, K. Yoshizumi, and H. Takeuchi, 'Ultrahighly accurate 3D

profilometer,' Proc. SPIE 5638, 387-394 (2005).

13 Mahr GmbH, 'MarSurf,' https://www.mahr.com/en/Services/Production-

metrology/Products/MarSurf---Automatic-Roughness-and-Contour-Measuring-

Systems/.

14 H. Shen, R. Zhu, Z. Gao, E. Y. B. PUN, W. H. Wong, and X. Zhu, 'Design and

fabrication of computer-generated holograms for testing optical freeform surfaces,'

Chinese Optics Letters 11 (3), 032201 (2013).

15 S. Scheiding, M. Beier, U. Zeitner, S. Risse, and A. Gebhardt, 'Freeform mirror

fabrication and metrology using a high performance test CGH and advanced

alignment features,' Proc. SPIE 8613 (2013).

16 P. Su, Y. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, 'Non-null full field X-ray

mirror metrology using SCOTS: a reflection deflectometry approach,' Optics

Express 20 (11), 12393-12406 (2012).

17 P. Su, M. A. H. Khreishi, T. Su, R. Huang, M. Z. Dominguez, A. Maldonado, G.

Butel, Y. Wang, R. E. Parks, and J. H. Burge, 'Aspheric and freeform surfaces

metrology with software configurable optical test system a computerized reverse

Hartmann test,' Proc. SPIE 53 (3), 031305 (2014).

18 M. C. Knauer, J. Kaminski, and G. Hausler, 'Phase measuring deflectometry: a new

approach to measure specular free-form surfaces,' Proc. SPIE 5457, 366-376

(2004).

19 D. Malacara, 'Lateral Shear Interferometers,' Optical Shop Testing Third Edition,

122-185 (1978).

20 G. W. R. Leibbrandt, G. Harbers, and P. J. Kunst, 'Wave-front analysis with high

accuracy by use of a double-grating lateral shearing interferometer,' Applied

86

Optics 35 (31), 6151-6161 (1996).

21 M. E. Riley and M. A. Gusinow, 'Laser beam divergence utilizing a lateral shearing

interferometer,' Applied Optics 16 (10), 2753-2756 (1977).

22 D. Nyyssonen and J. M. Jerke, 'Lens Testing with a Simple Wavefront Shearing

Interferometer,' Applied Optics 12 (9), 2061-2070 (1973).

23 M. E. Riley and M. A. Gusinow, 'Laser beam divergence utilizing a lateral shearing

interferometer,' Applied Optics 16 (10), 2753-2756 (1977).

24 R. S. Sirohi and M. P. Kothiyal, 'Double wedge plate shearing interferometer for

collimation test,' Applied Optics 26 (19), 4054-4056 (1987).

25 W. Yi, Z. Hongchen, S. Jutamulia, and M. Guoguang, 'Collimation test of a

corrected laser diode beam using lateral shearing interferometer,' Optics

Communications 274 (2), 412-416 (2007).

26 W. Merzkirch, 'Generalized Analysis of Shearing Interferometers as Applied for

Gas Dynamic Studies,' Applied Optics 13 (2) (1974).

27 Y. Dong, Z. Hosseinimakarem, A. Davies, and C. J. Evans, 'Spurious mid-spatial

frequency structure on optical surfaces reconstructed from surface slope

measurements,' Proc. SPIE 9203, 7 (2014).

28 M. Bray, 'Stitching interferometer for large plano optics using a standard

interferometer,' 3134, 39-50 (1997).

29 P. E. Murphy, J. Fleig, G. Forbes, D. Miladinovic, G. DeVries, and S. O'Donohue,

'Subaperture stitching interferometry for testing mild aspheres,' Proc. SPIE 6293,

62930J (2006).

30 M. Bray, 'Stitching Interferometry: The practical side of things,' Proc. SPIE 7426,

74260Q (2009).

31 K. K. Pant, D. R. Burada, M. Bichra, M. P. Singh, A. Ghosh, G. S. Khan, S.

Sinzinger, and C. Shakher, 'Subaperture stitching for measurement of freeform

wavefront,' Applied Optics 54 (34), 7 (2015).

87

32 M. Otsubo, K. Okada, and J. Tsujiuchi, 'Measurement of large plane surface shapes

by connecting small-aperture interferograms,' Optical Engineering 33 (2), 608-613

(1994).

33 Paul Murphy, Greg Forbes, Jon Fleig, Paul Dumas, and Marc Tricard, 'Stitching

Interferometry: A Flexible Solution for Surface Metrology,' Optics and Photonics

News 14 (5), 38-43 (2003).

34 C. Pruss, G. Baer, J. Schindler, W. Osten, and J. Siepmann, 'Flexibility and Rapid

Measurement: Asphere and Freeform Metrology with Tilted Wave Interferometry,'

Optik & Photonik 4, 61-64 (2013).

35 E. Garbusi and W. Osten, 'Perturbation methods in optics: application to the

interferometric measurement of surfaces,' Journal of the Optical Society of America

A: Optics and Image Science, and Vision 26 (12), 2538-2549 (2009).

36 G. Baer E. Garbusi, W. Osten, 'Advanced studies on the measurement of aspheres

and freeform surfaces with the Tilted-wave Interferometer,' Proc. SPIE 8082,

80821F (2011).

37 H. Kaijun, J. Jahns, and A. W. Lohmann, 'Talbot interferometry with a vibrating

phase object,' Optics Communications 45 (5), 295-300 (1983).

38 J. W. Goodman, 'Fresnel Diffraction by a Sinusoidal Amplitude Grating - Talbot

Images,' Introduction to Fourier Optics, second ed., 87-89 (1968).

39 J. W. Goodman, 'The Angular Spectrum of Plane Waves,' Introduction to Fourier

Optics, second ed., 55-61 (1968).

40 H. Ina M. Takeda, S. Kobayashi, 'Fourier-transform method of fringe-pattern

analysis for computer-based topography and interferometry,' Journal of the Optical

Society of America 72, 156-160 (1982).

41 M. Takeda and K. Mutoh, 'Fourier transform profilometry for the automatic

measurement of 3-D object shapes,' Applied Optics 22, 3977–3982 (1983).

42 S. Mirza and C. Shakher, 'Surface profiling using phase shifting Talbot

88

interferometric technique,' Proc. SPIE 44, 013601 (2005).

43 Y. Zhu, S. Odate, A. Sugaya, K. Otaki, K. Sugisaki, C. Koike, T. Koike, and K.

Uchikawa, 'Method for designing phase-calculation algorithms for two-

dimensional grating phase-shifting interferometry,' Applied Optics 50 (18), 2815-

2822 (2011).

44 C. Iaconis and I. A. Walmsley, 'Spectral phase interferometry for direct electric-

field reconstruction of ultrashort optical pulses,' Optics letters 23, 792–794 (1998).

45 C. Karaalioglu and Y. Skarlatos, 'Fourier transform method for measurement of thin

film thickness by speckle interferometer,' Optical Engineering 42, 1694–1698

(2003).

46 C. Ouchi, S. Kato, M. Hasegawa, T. Hasegawa, H. Yokota, K. Sugisaki, M. Okada,

K. Murakami, J. Saito, M. Niibe, and M. Takeda, 'EUV wavefront metrology at

EUVA,' Proc. SPIE 6152 (2006).

47 D. C. Ghiglia and M. D. Pritt, 'Two-dimensional phase unwrapping: theory,

algorithms, and software,' (1998).

48 X. Su and W. Chen, 'Reliability-guided phase unwrapping algorithm: a review,'

Optics and Lasers in Engineering 42 (3), 245-261 (2004).

49 A. Asundi and Z. Wensen, 'Fast phase-unwrapping algorithm based on a gray-

scale mask and flood fill,' Applied Optics 37 (23), 5416-5416 (1998).

50 P. Liang, J. Ding, Z. Jin, C. Guo, and H. Wang, 'Two-dimensional wave-front

reconstruction from lateral shearing interferograms,' Optics Express 14 (2), 625-

634 (2006).

51 D. L. Fried, 'Least-square fitting a wave-front distortion estimate to an array of

phase-difference measurements,' Journal of the Optical Society of America 67,

370–375 (1977).

52 R. Cubalchini, 'Modal wave-front estimation from phase derivative measurements,'

Journal of the Optical Society of America 69, 972–977 (1979).

89

53 G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, 'Analysis of lateral shearing

interferograms by use of Zernike polynomials,' Applied Optics 35 (31), 6162-6172

(1996).

54 W. H. Southwell, 'Wave-front estimation from wave-front slope measurements,'

Journal of the Optical Society of America 70, 998–1006 (1980).

55 F. Dai, F. Tang, X. Wang, and O. Sasaki, 'Generalized zonal wavefront

reconstruction for high spatial resolution in lateral shearing interferometry,'

Journal of the Optical Society of America A 29 (9), 2038-2047 (2012).

56 J. C. Wyant, 'Zernike polynomials and phase-shifting interferometry,'

http://wyant.optics.arizona.edu.

57 G. Gbur, 'Singular value decomposition,' Mathematical Methods for Optical

Physics and Engineering, 146-153 (2011).

58 P. J. Davis and P. Rabinowitz, 'APPROXIMATE INTEGRATION OVER A FINITE

INTERVAL,' Methods of Numerical Integration, Chapter 2 (2007).

59 K. lizuka, 'Engineering Optics Third Edition,' 63-71 (2007).

60 K. Patorski, 'Talbot interferometry with increased shear,' Applied Optics 24, 4448–

4453 (1985).

61 K. Patorski, 'Talbot interferometry with increased shear: further considerations,'

Applied Optics 25, 1111–1116 (1986).

62 Q. Liu and R. Ohba, 'Effects of unparallel grating planes in Talbot interferometry,'

Applied Optics 38, 4111–4116 (1999).

63 Q. Liu and R. Ohba, 'Effects of unparallel grating planes in Talbot interferometry

II,' Applied Optics 39, 2084–2090 (2000).

64 T. Shi, D. Liu, Y. Zhou, T. Yan, Y. Yang, L. Zhang, J. Bai, Y. Shen, L. Miao, and W.

Huang, 'Practical retrace error correction in non-null aspheric testing: A

comparison,' Optics Communications 383, 378-385 (2017).

65 C. J. Evans and J. B. Bryan, 'Compensation for Errors Introduced by Nonzero

90

Fringe Densities in Phase-Measuring Interferometers,' CIRP Annals -

Manufacturing Technology 42 (1), 577-580 (1993).

66 P. E. Murphy, T. G. Brown, and D. T. Moore, 'Measurement and calibration of

interferometric imaging aberrations,' Applied Optics 39 (34), 6421-6429 (2000).

67 R. O. Gappinger and J. E. Greivenkamp, 'Iterative reverse optimization procedure

for calibration of aspheric wave-front measurements on a nonnull interferometer,'

Applied Optics 43 (27), 5152-5161 (2004).

68 Newport, 'Visible Achromatic Doublet Lens, 25.4 mm, 125 mm EFL, 430-700 nm,'

https://www.newport.com/p/PAC055AR.14.

91

Appendix A. Calculation of five beams interference

 When the electric fields of 0, ±1 order diffraction beams are respectively

expressed by Eqs. (19) - (23), the intensity of their five beams interference I(x,y) is

calculated by

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = ቚ𝐸଴(𝑥, 𝑦) + 𝐸1,0,𝑗𝑥

(𝑥, 𝑦) + 𝐸−1,0,𝑗𝑥
(𝑥, 𝑦) + 𝐸0,1,𝑗𝑥

(𝑥, 𝑦) + 𝐸0,−1,𝑗𝑥
(𝑥, 𝑦)ቚ

ଶ

= 𝐴଴
ଶ+4𝐴ଵ

ଶ + 2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥 − 𝑎, 𝑦) −
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥 + 𝑎, 𝑦) +
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) −
𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) +
𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥 + 𝑎, 𝑦) +

2𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥, 𝑦 − 𝑎) − 𝑊(𝑥, 𝑦 − 𝑎) +

2𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) +

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 − 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) +

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 + 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 − 𝑎) −

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤𝑘 ൜𝑊(𝑥 + 𝑎, 𝑦) − 𝑊(𝑥, 𝑦 + 𝑎) −

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁൠ൨

92

~𝐴଴
ଶ+4𝐴ଵ

ଶ + 2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 −

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ

−
𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
−

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎 −

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝑘 ቊ
𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−2𝑎 ቆ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
+

𝑎ଶ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
ቇ +

2𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁቋ቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−2𝑎 ቆ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
+

𝑎ଶ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
ቇ +

2𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
+

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
+

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
−

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
−

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
+

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ +

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝑘 ቊ

𝑑𝑊(𝑥, 𝑦)

𝑑𝑥
𝑎 +

𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑥ଷ
+

𝑑𝑊(𝑥, 𝑦)

𝑑𝑦
𝑎

−
𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

𝑎ଷ

6

𝑑ଷ𝑊(𝑥, 𝑦)

𝑑𝑦ଷ
−

𝜆

𝑝
ቀ𝑥 −

𝑝

𝑁
𝑗

𝑥
ቁ −

𝜆

𝑝
ቀ𝑦 −

𝑝

𝑁
𝑗

𝑦
ቁቋ቉

93

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቂ𝑘 ቄ

ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
−

ௗௐ(௫,௬)

ௗ௬
𝑎 −

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
−

ఒ

௣
ቀ𝑥 −

௣

ே
𝑗

𝑥
ቁ +

ఒ

௣
ቀ𝑦 −

௣

ே
𝑗

𝑦
ቁቅቃ, (125)

where jx, jy indicate the number of the phase shift in the x-direction and y-direction,

respectively. On the way to develop the above equations, the following approximations are

used.

 𝑊(𝑥 + 𝑎, 𝑦)~𝑊(𝑥, 𝑦) +
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
, (126)

𝑊(𝑥 − 𝑎, 𝑦)~𝑊(𝑥, 𝑦) −
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
, (127)

𝑊(𝑦 + 𝑎, 𝑦)~𝑊(𝑥, 𝑦) +
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
+

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
, (128)

𝑊(𝑥 − 𝑎, 𝑦)~𝑊(𝑥, 𝑦) −
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
−

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
. (129)

We assume

 𝐵௫ = 𝐴଴𝐴ଵ𝑐𝑜𝑠 ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௫మ
ቃ, (130)

 𝐵௬ = 𝐴଴𝐴ଵ𝑐𝑜𝑠 ቂ
௞௔మ

ଶ

ௗమௐ(௫,௬)

ௗ௬మ
ቃ, (131)

 𝛿𝑊௫ = 𝑘 ቄ
ௗௐ(௫,௬)

ௗ௫
𝑎 +

௔య

଺

ௗయௐ(௫,௬)

ௗ௫య
ቅ −

ଶగ

௣
𝑥, (132)

 𝛿𝑊௬ = 𝑘 ቄ
ௗௐ(௫,௬)

ௗ௬
𝑎 +

௔య

଺

ௗయௐ(௫,௬)

ௗ௬య
ቅ −

ଶగ

௣
𝑦. (133)

The intensity of five beams interference I(x,y) is expressed by

𝐼௝ೣ,௝೤
(𝑥, 𝑦) = 𝐴଴

ଶ + 4𝐴ଵ
ଶ

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௫ −
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

2𝜋

𝑁
𝑗

𝑥
቉

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௫ +
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
+

2𝜋

𝑁
𝑗

𝑥
቉

94

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௬ −
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

2𝜋

𝑁
𝑗

𝑦
቉

+2𝐴଴𝐴ଵ𝑐𝑜𝑠 ቈ𝛿𝑊௬ +
𝑘𝑎ଶ

2

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
+

2𝜋

𝑁
𝑗

𝑦
቉ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫ +
2𝜋

𝑁
𝑗

𝑥
ൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬ +

2𝜋

𝑁
𝑗

𝑦
ൠ൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ−𝛿𝑊௫ + 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ −

2𝜋

𝑁
𝑗

𝑥
+

2𝜋

𝑁
𝑗

𝑦
቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ−𝛿𝑊௫ − 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ −

2𝜋

𝑁
𝑗

𝑥
−

2𝜋

𝑁
𝑗

𝑦
቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝛿𝑊௫ + 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ +

2𝜋

𝑁
𝑗

𝑥
+

2𝜋

𝑁
𝑗

𝑦
቉

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ቈ𝛿𝑊௫ − 𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ +

2𝜋

𝑁
𝑗

𝑥
−

2𝜋

𝑁
𝑗

𝑦
቉

= 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫𝑐𝑜𝑠 ൤𝛿𝑊௫ +
2𝜋

𝑁
𝑗

𝑥
൨ + 4𝐵௬𝑐𝑜𝑠 ൤𝛿𝑊௬ +

2𝜋

𝑁
𝑗

𝑦
൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫ +

2𝜋

𝑁
𝑗

𝑥
ൠ൨ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬ +
2𝜋

𝑁
𝑗

𝑦
ൠ൨

+4𝐴ଵ
ଶ𝑐𝑜𝑠 ൬𝛿𝑊௫ +

2𝜋

𝑁
𝑗

𝑥
൰ 𝑐𝑜𝑠 ቈ+𝛿𝑊௬ +

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ +

2𝜋

𝑁
𝑗

𝑦
቉

+4𝐴ଵ
ଶ𝑐𝑜𝑠 ൬𝛿𝑊௫ +

2𝜋

𝑁
𝑗

𝑥
൰ 𝑐𝑜𝑠 ቈ+𝛿𝑊௬ −

𝑘𝑎ଶ

2
ቊ

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑥ଶ
−

𝑑ଶ𝑊(𝑥, 𝑦)

𝑑𝑦ଶ
ቋ +

2𝜋

𝑁
𝑗

𝑦
቉

= 𝐴଴
ଶ + 4𝐴ଵ

ଶ + 4𝐵௫𝑐𝑜𝑠 ൤𝛿𝑊௫ +
2𝜋

𝑁
𝑗

𝑥
൨ + 4𝐵௬𝑐𝑜𝑠 ൤𝛿𝑊௬ +

2𝜋

𝑁
𝑗

𝑦
൨

+2𝐴ଵ
ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௫ +

2𝜋

𝑁
𝑗

𝑥
ൠ൨ + 2𝐴ଵ

ଶ𝑐𝑜𝑠 ൤2 ൜𝛿𝑊௬ +
2𝜋

𝑁
𝑗

𝑦
ൠ൨

+8𝐴ଵ
ଶ𝑐𝑜𝑠 ൬𝛿𝑊௫ +

2𝜋

𝑁
𝑗

𝑥
൰ 𝑐𝑜𝑠 ൬𝛿𝑊௬ +

2𝜋

𝑁
𝑗

𝑦
൰

 𝑐𝑜𝑠 ቂ
௞௔మ

ଶ
ቄ

ௗమௐ(௫,௬)

ௗ௫మ
−

ௗమௐ(௫,௬)

ௗ௬మ
ቅቃ (134)

95

Appendix B. MATLAB Code of a Talbot interferometer

Talbot_sim.m

% ---

%% Talbot simulation (one dimension)

% ---

clear ;close all

path(path,'.¥module')

rad = pi/180;

%% condition ---

% phase

A = 0.5; % coefficient of the input wavefront [um]

ZZ = 16;%-1; % Zernike number of the input wavefront

 % -1 : Alvarez surface

lamb = 0.6328; % lambda[um]

H = 64*1;

n = 4096;

N = n*H; % sampling number

Lp = 80; % lattice pitch of the grating [um]

p = Lp/8/H/2; % sampling pitch [um]

span = N*p; % width of calculation [um]

x = (-N/2:N/2-1)*p; % coordinate[um]

gzi = (-N/2:N/2-1)/span; % Fourier coordinate

Nz = 1; % Z sampling number

pz = 500; % Z pitch [um]

Ns = 4; % number of phase shift

Lflag = 0; % 0 : cosine transmittance of the grating

96

 % 1 : rectangle transmittance of the grating

noise_flag = 0; % 0 : No noise

 % 1 : add noise

Anoise = 0.0; % noise coefficient [%]

Zerror = 0; % Z setting error of the grating [um]

shft_error = zeros(1,Ns);

R0 = 2000; % analyzation radius [um]

R1 = 500; % extra radius [um]

k = 2*pi/lamb; % wavenumber

X = x/1e3; % x coordinate [mm]

RR = (R0+R1)/1e3;

Nt = 1; % Talbot number

 % 1 : half Talbot distance

Zp = Nt*Lp^2/lamb+Zerror; % Z position to calculate [um]

Zp0 = Nt*Lp^2/lamb; % Z position of the reference [um]

xshr = Nt*Lp; % amount of shear [um]

ins = abs(x) < R0; % analyzation region

%% grating ---

if Lflag == 0 % cosine

 for j = 1:Ns

 tmp = 1/2+1/2*cos(2*pi*(x-j*Lp/Ns-shft_error(j))/Lp+eps);

 Amp(j,:) = tmp;%

 end

 clear tmp

elseif Lflag == 1 % rectangle

 Amp = ones(Ns,N);

 nnp = Lp/p/2;

97

 for i = 1:Ns

 for j = 1:N/(2*nnp)-1

 Amp(i,1+((j-1)+i/Ns)*2*nnp:((j-1)+i/Ns)*2*nnp+nnp) = 0;

 end

 end

end

%% Input wavefront

phase = sperical_Zernike_function(x/R0,ZZ,A);

% calculate the wavefront outside R0

ff = sperical_Zernike_function((R0+R1)/R0,ZZ,A);

dff = (sperical_Zernike_function((R0+R1+0.1)/R0,ZZ,A)-ff)/0.1;

[f] = mild_curve_func(x,ff,dff,R0+R1,100);

% figure;plot(x,f)

if ZZ ~= -1

 if ZZ ~= 0

 phase(abs(x) > R0+R1) = f(abs(x) > R0+R1) ;

 end

 if ZZ == 2

 phase(x < -(R0+R1)) = -phase(x < -(R0+R1));

 end

else

 [W1] = Alvarez_phase_func(R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3 ,0);

 [W2] = Alvarez_phase_func(R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3 ,1);

 phase = (W1+W2)/2;

 figure;plot(x*1e-3,phase-8.75);xlim([-R0*1e-3 R0*1e-3]);grid;title('phase[um]')

end

for j = 1:Ns

98

 Ea(j,:) = Amp(j,:).*exp(1i*k*phase); % Ea: electric field on the grating

end

E0 = exp(1i*k*phase); % E0: electric field of the reference

on the grating

clear Amp phase

%%

if Nz == 1

 z = Zp; % z position [um]

else

 z = transpose(Zp+(-Nz/2:Nz/2-1)*pz); % z position [um]

end

%% Angular spectrum propagation --------------------------------------

for j = 1:Ns

 FT(j,:) = fftshift(fft(fftshift(Ea(j,:))))/N;

end

FT0 = fftshift(fft(fftshift(E0)))/N;

clear Ea E0 f

% figure,plot(gzi,abs(FT(j,:)),'.-')

if Nz == 1

 kernel = k*z*sqrt(1-(lamb*gzi).^2); % exponential part

 for j = 1:Ns

 FTa(j,:) = FT(j,:).*exp(1i*kernel); % Angular spectrum

 end

 kernel = k*Zp0*sqrt(1-(lamb*gzi).^2);

 FTa0 = FT0.*exp(1i*kernel);

else

 for j = 1:Nz

99

 kernel = k*z(j)*sqrt(1-(lamb*gzi).^2); % exponential part

 FTa(j,:) = FT(1,:).*exp(1i*kernel); % Angular spectrum

 end

 FTa0 = FT0.*exp(1i*kernel);

end

clear FT FT0 kernel

%% Selection of evanescent or propagating component

select = find((1-(lamb*gzi).^2) <= 0); % select whether propagating<= or

evanescent>

if Nz == 1

 for j = 1:Ns

 tmp = FTa(j,:);

 tmp(select) = 0;

 FTa(j,:) = tmp;

 end

 FTa0(select) = 0;

 % figure,imagesc(x,z(:,1),abs(FTa)),xlabel('x [¥mum]'),ylabel('z [¥mum]');axis tight

 Et = zeros(Ns,N); % Et:

 for j = 1:Ns

 Et(j,:) = fftshift(ifft(fftshift(FTa(j,:))))*N; % FFT at the each z position

 end

 Et0 = fftshift(ifft(fftshift(FTa0)))*N; % FFT at the each z position

else

 Et = zeros(Nz,N);

 for j = 1:Nz

 tmp = FTa(j,:);

 tmp(select) = 0;

100

 Et(j,:) = fftshift(ifft(fftshift(tmp)))*N; % FFT at the each z position

 end

 clear FTa

 FTa0(select) = 0;

 Et0 = fftshift(ifft(fftshift(FTa0)))*N; % FFT at the each z position

end

phasd = atan2(imag(Et),real(Et)); % phase

Iout = Et.*conj(Et); % intensity

figure;plot(x*1e-3,1e3*Iout(1,:));xlim([-R0/1e3 R0/1e3]);grid

xlim([1.5 1.76])

%% reference wavefront

phas0 = atan2(imag(Et0),real(Et0)); % wrapped reference wavfront

[phas0] = unwrap1d_func(phas0)/k; % unwrapping

phas0 = phas0-mean(phas0(ins));

figure;plot(x/1e3,phas0)

clear tmp tmp1

%% shear wavefront

dphas0 = zeros(1,N);

dphas0(1:N-1) = (phas0(2:N)-phas0(1:N-1))/p;

% figure;plot(x,dphas0);

%% noise ---------------------------

maxI = max(Iout(1,N*3/8:N*5/8));

Iout = Iout/maxI*1024;

if noise_flag == 1

 for i = 1:Ns

 noise = 0;

 for j = 1:10

101

 noise = noise+1024*Anoise.*rand(size(Iout(1,:)))/0.5773;

 end

 Iout(i,:) = Iout(i,:) + noise/10;

 end

 clear noise

end

%% wavefront retrieval --

if Ns == 1

 fI = fftshift(fft(fftshift(Iout(1,:))));

 % figure;plot(real(fI));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]);

 figure;plot(log10(abs(fI)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]);

 % cut the FT data --

 ff = zeros(1,N);

 nr = 128; % radius of cutting [pix]

 nc = N/2+1+round(n*H/(Lp/p)); % location of cutting [pix]

 ff(N/2+1-nr:N/2+1+nr) = fI(nc-nr:nc+nr);

 figure;plot(log10(abs(ff)));title('cut Fourier Spectrum');xlim([N/2-1000 N/2+1000]);

 tmp = fftshift(ifft(fftshift(ff)));

 dpha = -atan2(imag(tmp),real(tmp));

 dpha((abs(x)) > R0+R1) = 0;

 figure;plot(X,dpha);xlim([-RR RR]);title('wrapped phase[rad]')

 if dpha(N/2+1) < -pi+0.2

 dpha(N/2+1) = dpha(N/2+1)+2*pi;

 end

 [dpha] = unwrap1d_func(dpha);% unwrapping

 dpha((abs(x)) > R0+R1) = 0;

 if Lflag == 0

102

 pstn = -0.003955;

 else

 pstn = -0.0019735-1.26e-7;

 end

 dpha = dpha/k/Lp+pstn;

 [ph] = intg1D_func(x,dpha); % integration

 tmp = ph-phas0;

 pst = mean(tmp(abs(x) < R0));

 ph = ph-pst;

else

 if Ns == 3

 rdph = atan2(sqrt(3)*(Iout(2,:)-Iout(3,:)),-2*Iout(1,:)+Iout(2,:)+Iout(3,:));

 elseif Ns == 4

 rdph = -atan2(Iout(4,:)-Iout(2,:),Iout(3,:)-Iout(1,:));

 elseif Ns == 6

 rdph = -atan2(sqrt(3)*(Iout(2,:)+Iout(3,:)-Iout(5,:)-Iout(6,:)),...

 2*Iout(1,:)+Iout(2,:)-Iout(3,:)-2*Iout(4,:)-Iout(5,:)+Iout(6,:));

 else

 phshft = 2*pi/Ns;

 tmp1 = 0;

 tmp2 = 0;

 for j = 1:Ns

 tmp1 = tmp1+Iout(j,:)*sin(phshft*j);

 tmp2 = tmp2+Iout(j,:)*cos(phshft*j);

 end

 rdph = atan2(-tmp1,tmp2);

103

 clear tmp1 tmp2

 end

 [rdph] = unwrap1d_func(rdph);

 if Lflag == 0

 pistn = -0.0019775;

 else

 pistn = 3.85*1e-6;

 end

 rdph = 1/xshr*(lamb/Lp*x+1/k*rdph)+pistn;

 rdph(abs(x) > R0+R1) = 0;

 rdph = sin(atan(rdph));

 %% integral

 [ph] = intg1D_func(x,rdph);

 ph = ph - mean(ph(ins));

end

%% diplay output

figure;plot(X,phas0,X,ph,'--r');

title('wavefront[um]');

xlim([-R0/1e3 R0/1e3]);grid;hold off

dif = 1e3*(ph-phas0); % difference [nm]

dif = dif-mean(dif(ins));

[PV,rms,maxh,minh] = PV_rms_func(dif(ins));

figure;plot(X,dif);

xlim([-R0/1e3 R0/1e3]);grid;hold off

title([num2str(PV,3) ' nmPV, ' num2str(rms,3) ' nmRMS']);ylim([-10 10])

tmp = compensate_wavefront_func(ph,Lp,x);

104

figure;plot(x/1e3,tmp);xlim([-R0/1e3 R0/1e3]);

ph2 = ph-tmp;

figure;plot(x/1e3,phas0,x/1e3,ph2);

title('wavefront[um]')

xlim([-R0/1e3 R0/1e3]);grid;hold off

dif = 1e3*(ph2-phas0);

dif = dif-(max(dif(ins))+min(dif(ins)))/2;

[PV,rms,maxh,minh] = PV_rms_func(dif(ins));

figure;plot(x/1e3,dif); % difference of output

xlim([-R0/1e3 R0/1e3]);grid;hold off;ylim([-15 015])

title([num2str(PV,3) ' nmPV, ' num2str(rms,3) ' nmRMS']);

%% end of this file

% programed by Yasunori Furukawa in 2017.06.07

function [W] = Alvarez_phase_func(R0,x,x0,x1,flag)

%% ---

% Output the wavefront reflected from the Alvarez surface in stitching

% W : wavefront [um]

% R0 : analyzation radius [mm]

% x : x coordinate [mm]

% x0 : minimum analyzation coordinate [mm]

% x1 : maximum analyzation coordinate [mm]

% flag : 0 = wavefront on x axis

105

% 1 = wavefront on diagonal direction

%% ---

lamb0 = 15; % length of the edge [mm];

v = 1; % magnification

shx = v*R0; % amount of shear [mm]

A = 0.0012; % coefficient [mm-1]

% wavefront

if flag == 0

 RR = 5; % radius [mm]

 B = 1e3*2/3*A; % coefficient

 W = B*(v*x+RR-shx).^3;

elseif flag == 1

 RR = 5*sqrt(2); % radius [mm]

 B = 1e3*2*sqrt(2)/3*A; % coefficient

 W = B*(v*x+RR-shx).^3;

end

ins = abs(x) < R0;

% remove piston and tilt

n = 1;

p = polyfit(x(ins),W(ins),n);

for j = 1:n+1

 W = W-p(j)*x.^(n-j+1);

end

% calculate the wavefront outside the analyzation area with smooth

W0 = B*(v*x0+RR-shx).^3-p(1)*x0-p(2);

106

dW0 = 3*B*(v*x0+RR-shx).^2*v-p(1);

g0 = dW0*lamb0/2/pi*sin((x-x0)*2*pi/lamb0)+W0;

W1 = B*(v*x1+RR-shx).^3-p(1)*x1-p(2);

dW1 = 3*B*(v*x1+RR-shx).^2*v-p(1);

lamb1 = 1/dW1*(-lamb0*dW0+2*pi*(W0-W1));

g1 = dW1*lamb1/2/pi*sin(2*pi*(x-x1)/lamb1)+W1;

% substitute the wavefront outside the analyzation area

W(x < x0) = g0(x < x0);

W(x < x0-lamb0/4) = -dW0*lamb0/2/pi+W0;

W(x > x1) = g1(x > x1);

W(x > x1+lamb1/4) = -dW0*lamb0/2/pi+W0;

% figure;plot(x,W)

end

%% end of this function

function cW = compensate_wavefront_func(W,p,x,y)

%% --

% compansate the wavefront of Talbot interferometer

% cW : compensated wavefront [um]

% W : wavefront [um]

% p : pitch [um]

% x : x coordinate [um]

%% --

[n1,n2] = size(W);

if n1 == 1 || n2 == 1

 W1 = interp1(x,W,x-p,'PCHIP');

107

 W3 = interp1(x,W,x+p,'PCHIP');

 Wdd = W3+W1-2*W; % second derivative wavefront

else

 W1 = interp2(x,y,W,x-p,y,'cubic');

 W3 = interp2(x,y,W,x+p,y,'cubic');

 Wdd = W3+W1-2*W;

 W1 = interp2(x,y,W,x,y-p,'cubic');

 W3 = interp2(x,y,W,x,y+p,'cubic');

 Wdd = Wdd+W3+W1-2*W;

end

cW = 1/6*Wdd; % compansated wavefront [um]

%% end of this function

% programed by Yasunori Furukawa on Sep. 26, 2016

function [intg_data] = intg1D_func(x,dWx)

% --

% Integrate the shear wavefront in one-dimension

% intg_data : wavefront [um]

% x : x coordinate [um]

% dWx : shear wavefront

% --

[n1,n2] = size(dWx);

NaNflag = zeros(n1,n2); % NaN data

108

NaNflag(isnan(dWx)) = 1;

%%

warning off

Dx = CalcDelta(dWx, x, 2); % difference between two

data

%% integration

intg_data = Integral_func(Dx);

intg_data = intg_data-mean(intg_data(NaNflag==0));

intg_data(NaNflag==1) = NaN;

warning on

function [data] = Integral_func(Dx)

% --

% data : integrated data

% Dx : difference between two data

% --

[row, col] = size(Dx);

data = zeros(row, col);

cx = col/2+1;

% add Dx to right half data

for j = cx+1:col

 data(j) = data(j-1)+Dx(j-1);

end

% add Dx to left half data

for j = cx-1:-1:1

 data(j) = data(j+1)-Dx(j);

end

109

function [delta] = CalcDelta(diff, crd, dim)

% --

% calculate the integrated difference between two data

% diff : local shear wavefront

% crd : x coordinate [um]

% dim : 2 when data size is [1,3]

% --

if dim == 2 % transpose

 diff = diff.';

 crd = crd.';

end

[row, col] = size(diff);

delta = zeros(row, col);

for j = 1:col

 for i = 1:row-2

 x = crd(i:i+2,j);

 y = diff(i:i+2,j);

 if sum(isnan(y)) == 0

 A = [x.^2 x ones(3,1)];

 p = A¥y;

 Q = p(1)/3*x.^3+p(2)/2*x.^2+p(3)*x; % integrated data

 if i == 1

 delta(i,j) = Q(2)-Q(1);

 else

 if isnan(delta(i,j))

110

 delta(i,j) = Q(2)-Q(1);

 else

 delta(i,j) = (delta(i,j)+(Q(2)-Q(1)))/2;

 end

 end

 delta(i+1,j) = Q(3)-Q(2);

 else % when there is NaN data

 if i == 1

 delta(i,j) = 0;

 else

 if isnan(delta(i,j))

 delta(i,j) = 0;

 end

 end

 if i == row-2

 delta(i+1,j) = 0;

 else

 delta(i+1,j) = NaN;

 end

 end

 end

end

if dim == 2 % transpose

 delta = delta.';

end

%% end of this function

111

function [g] = mild_curve_func(x,f,df,h,d)

% g : wawvefront outside the analyzation area [um]

% x : x coordinate [um]

% f : wavefront at R0 [um]

% df : slope wavefront at R0 [um]

% h : extra coordinate [um]

% d : width [um]

k = 2*pi/(4*d);

g = f+df/k*sin(k*(abs(x)-h));

g(abs(x) > h+d) = f+df/k;

g(abs(x) < h) = f;

end

function [PV,rms,maxh,minh] = PV_rms_func(data)

% ---

% output PV and rms value

% PV : peak to valley

% rms : rms

% maxh, minh : max and min value

% data : data (only effective)

% ---

maxh = max(max(data));

112

minh = min(min(data));

PV = maxh-minh;

rms = std(data);

end

%% end of this function

function W = sperical_Zernike_function(r,Zn,A)

% W : wavefront [um]

% r : normalized coordinate [um]

% Zn : number of Fringe Zernike

% A : coefficient

switch Zn

 case 1

 W = ones(size(r));

 case 2

 W = r;

 case 4

 W = 2*r.^2-1;

 case 9

 W = 6*r.^4-6*r.^2+1;

 case 16

 W = 20*r.^6-30*r.^4+12*r.^2-1;

 case 25

 W = 70*r.^8-140*r.^6+90*r.^4-20*r.^2+1;

113

 otherwise

 W = 0;

end

W = A*W;

end

function [unwrapped_data] = unwrap1d_func(data)

% unwrap from center

[n1,n2] = size(data);

if n1 == 1

 N = n2;

else

 N = n1;

end

unwrapped_data = zeros(n1,n2);

tmp = unwrap(data(N/2+1:N));

tmp1 = flip(unwrap(flip(data(1:N/2+1))));

unwrapped_data(N/2+1:N) = tmp;

unwrapped_data(1:N/2) = tmp1(1:N/2);

end

114

Appendix C. MATLAB Code of a Talbot interferometer with five beams

interference

five_beams_interferogram.m

%% Five beams interference

% one-shoot measurement

clear;close all

path(path,'.¥module')

%% condition

lamb = 0.6328; % wavelenth [um]

shr = 80; % amount of shear [um]

Mag = 1; % magnification

R = 2.5*1e3; % radius [um]

Rx = 2.5*1e3; % analyzation radius x [um]

Ry = Rx; % analyzation radius y [um]

xd = -0*2.4*1e3;yd = 2.4*1e3; % center position of the test surface [mm]

flag = 0; % 0 : Alvarez surface

 % 1 : other surface

nx = 820;%640; % CCD pixel number (x)

ny = nx;%480; % CCD pixel number (y)

p = 7.4; % CCD pixel pitch [um]

X = (-nx/2:nx/2-1)*p+1e-10;

Y = (-ny/2:ny/2-1)*p+1e-10;

[x,y] = meshgrid(X,Y); y = -y; % lateral coordinate [um]

fX = (-nx/2:nx/2-1)/(nx*p); % Fourier coordinate

fY = (-ny/2:ny/2-1)/(ny*p);

115

k = 2*pi/lamb; % wavenumber

xq = x+xd;yq = y+yd;

ins = find(x.^2+y.^2 < R^2); % analyzation area

ins2 = find(abs(x) < Rx+shr & abs(y) < Ry+shr);

A = 0.0012; % coefficient of the test surface [mm-2]

%% interference

W = zeros(ny,nx,4);

if flag == 0

 W0 = 1e3*2*A*(1/3*(xq*1e-3).^3+(xq*1e-3).*(yq*1e-3).^2); % test surface[um]

 [a] = linear_Fit2D_func(W0(ins),x(ins),y(ins));

 W0 = W0 - a(1)-a(2)*x-a(3)*y;

 W(:,:,1) = interp2(x,y,W0,x-shr,y,'cubic');% -1st order x [um]

 W(:,:,2) = interp2(x,y,W0,x+shr,y,'cubic');% 1st order x [um]

 W(:,:,3) = interp2(x,y,W0,x,y-shr,'cubic');% -1st order y [um]

 W(:,:,4) = interp2(x,y,W0,x,y+shr,'cubic');% 1st order y [um]

else

 [W0] = surf_func(x,y,A,R,flag);

 W(:,:,1) = surf_func(x-shr,y,A,R,flag);

 W(:,:,2) = surf_func(x+shr,y,A,R,flag);

 W(:,:,3) = surf_func(x,y-shr,A,R,flag);

 W(:,:,4) = surf_func(x,y+shr,A,R,flag);

end

tmp = zeros(ny,nx);

tmp(ins) = W0(ins);

figure;imagesc(X/1e3,-Y/1e3,tmp);colorbar;axis equal xy tight;

clear W0x W0y r2 tmp xx yy xq yq

116

%% Intensity

E0 = exp(1i*k*W0); % 0 order

Ex1 = 0.3*exp(1i*k*(lamb/shr*x+W(:,:,1))); % -1st order x

Ex2 = 0.3*exp(1i*k*(-lamb/shr*x+W(:,:,2))); % 1st order x

Ey1 = 0.3*exp(1i*k*(lamb/shr*y+W(:,:,3))); % -1st order y

Ey2 = 0.3*exp(1i*k*(-lamb/shr*y+W(:,:,4))); % 1st order y

E = E0+Ex1+Ex2+Ey1+Ey2;

Iout = real(E.*conj(E)); % irradiance

tmp2 = Iout(:,:,1);

tmp = zeros(ny,nx);

tmp(ins) = tmp2(ins);

figure;imagesc(tmp);colormap('gray');axis equal off

figure;imagesc(tmp(183:220,183:220));colormap('gray');axis equal tight off

%% wavefront retrieval (FT method)

Iout(isnan(Iout)) = 0;

FT = ifftshift(fft2(fftshift(Iout)));

% figure;imagesc(fX,-fY,log(abs(FT)));axis xy equal tight;colormap('gray');

fshftx = round(p*nx/shr); % shift length(x)

fshfty = round(p*ny/shr); % shift length(y)

mdftx = p*nx/shr-fshftx; % remainder (x)

mdfty = p*ny/shr-fshfty; % remainder (y)

if mod(fshftx,2) == 0

 fRx = fshftx/2; % size of cutting (x)

else

 fRx = fshftx/2+0.5;

117

end

if mod(fshfty,2) == 0

 fRy = fshfty/2; % size of cutting (y)

else

 fRy = fshfty/2+0.5;

end

tmpx = zeros(ny,nx);

tmpx(ny/2+1-fRy:ny/2+1+fRy,nx/2+1-fRx:nx/2+1+fRx) = ...

 FT(ny/2+1-fRy:ny/2+1+fRy,nx/2+1+fshftx-fRx:nx/2+1+fshftx+fRx); % cut and

paste to the center(x)

% figure;imagesc(fX,-fY,log(abs(tmpx)));axis xy equal tight;colorbar;

tmpy = zeros(ny,nx);

tmpy(ny/2+1-fRy:ny/2+1+fRy,nx/2+1-fRx:nx/2+1+fRx) = ...

 FT(ny/2+1-fRy-fshfty:ny/2+1+fRy-fshfty,nx/2+1-fRx:nx/2+1+fRx); % cut and paste

to the center(y)

% figure;imagesc(fX,-fY,log(abs(tmpy)));axis xy equal tight;colorbar;

tmpx = ifftshift(ifft2(fftshift(tmpx)));

tmpy = ifftshift(ifft2(fftshift(tmpy)));

% figure;imagesc((abs(tmpx)));axis equal;colorbar;

tmpx = atan2(imag(tmpx),real(tmpx));

tmpy = atan2(imag(tmpy),real(tmpy));

% figure;imagesc(X*1e-3,-Y*1e-3,tmpx);axis xy equal tight;colorbar;

% figure;imagesc(X*1e-3,-Y*1e-3,tmpy);axis xy equal tight;colorbar;

tmp = zeros(ny,nx);

tmp(ins) = tmpy(ins);

figure;imagesc(X*1e-3,-Y*1e-3,tmp);axis xy equal tight;colorbar;

118

clear Iout

tmp = zeros(ny,nx);

tmp(ins2) = 1;

tmp(:,end) = 0;tmp(end,:) = 0;

%% unwrapping

[phx] = unwrap_func(tmpx,tmp,pi/3,0.001,ny/2,nx/2);

[phy] = unwrap_func(tmpy,tmp,pi/3,0.001,ny/2+10,nx/2);

phx = -(phx-2*pi/shr*mdftx/(fshftx+mdftx)*x)/shr/k;

tmpx = zeros(ny,nx);

tmpx(ins) = phx(ins);

phy = -(phy-2*pi/shr*mdfty/(fshfty+mdfty)*y)/shr/k;

tmpy = zeros(ny,nx);

tmpy(ins) = phy(ins);

[ph] = intg_func(x,y,phx,phy,400);

ph = ph-mean(ph(ins));

[K] = linear_Fit2D_func(ph(ins),x(ins),y(ins));

ph = ph-K(1)-K(2)*x-K(3)*y;

tmp = zeros(ny,nx);

tmp(ins) = ph(ins);

figure;imagesc(X/1e3,-Y/1e3,tmp);axis equal tight xy;colorbar;title('recovered

wavefront[um]')

Ttmp = zeros(ny,nx);

Ttmp(ins) = W0(ins)-mean(W0(ins));

figure;imagesc(Ttmp);axis equal tight;colorbar;title('input wavefront[um]')

phc = compensate_wavefront_func(ph,shr,x,y);

119

tmp = zeros(size(phc));

tmp(ins) = phc(ins);

figure;imagesc(tmp);axis equal tight;colorbar;title('cwavefront[um]')

ph = ph-phc;

dif = (ph-Ttmp);

[K] = linear_Fit2D_func(dif(ins),x(ins),y(ins));

ph = ph-K(1)-K(2)*x-K(3)*y;

dif = 1e3*(ph-Ttmp);

dif = dif-mean(dif(ins));

tmp = zeros(ny,nx);tmp(ins) = dif(ins); dif = tmp;

figure;imagesc(dif,[-10 10]);axis equal tight;colorbar;title('difference[nm]')

[PV,rms,maxh,minh] = PV_rms_func(dif(ins));

figure;imagesc(X/1e3,-Y/1e3,dif);axis equal tight xy;colorbar;title('difference[nm]')

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

beep

%% end of this file

% programed by Yasunori Furukawa in 12/3/2016

function [intg_data] = intg_func(x,y,dWx,dWy,R)

%% ------------------------------------

% integrate the sheared or slope data

% x,y : coordinate [mm]

% dWx,dWy : slope

% R : radius of the start position [pix]

%% ------------------------------------

120

[n1,n2] = size(dWx);

intg_data = 0;

NaNflag = zeros(n1,n2);

NaNflag(isnan(dWx) | isnan(dWy)) = 1;

%% decide the start position

N = 60; % number of the start position

if N == 1

 tate = n1/2+1;yoko = n2/2+1;

else

tate = zeros(1,N);yoko = tate;

rad = pi/180;

nk = 360/30*rad;

for j = 1:30

 tate(j) = round(n1/2+R*sin(j*nk+10*rad));

 yoko(j) = round(n2/2+R*cos(j*nk+10*rad));

end

nk = 360/15*rad;

for j = 1:15

 tate(j+30) = round(n1/2+0.8*R*sin(j*nk+20*rad));

 yoko(j+30) = round(n2/2+0.8*R*cos(j*nk+20*rad));

end

nk = 360/7*rad;

for j = 1:7

 tate(j+45) = round(n1/2+0.6*R*sin(j*nk+30*rad));

 yoko(j+45) = round(n2/2+0.6*R*cos(j*nk+30*rad));

121

end

nk = 360/5*rad;

for j = 1:5

 tate(j+52) = round(n1/2+0.4*R*sin(j*nk+40*rad));

 yoko(j+52) = round(n2/2+0.4*R*cos(j*nk+40*rad));

end

nk = 360/3*rad;

for j = 1:3

 tate(j+57) = round(n1/2+0.2*R*sin(j*nk+50*rad));

 yoko(j+57) = round(n2/2+0.2*R*cos(j*nk+50*rad));

end

if sum(isnan(tate)) > 0 || sum(isnan(yoko)) > 0

 disp('Decrease R of start position')

else

 tmp = 0;

 for j = 1:N

 tmp = tmp+dWx(tate(j),yoko(j));

 end

 if isnan(tmp) == 1

 disp('There are NaN data at the start position')

 end

end

end

% figure,plot(tate,yoko,'.');axis square

%% Differenciation

Dx = CalcDelta(dWx, x, 2);

Dy = CalcDelta(dWy, y, 1);

122

%% Keep adding Dx and Dy from different start positions

for j = 1:N

 data = Integral_func(Dx,Dy,tate(j),yoko(j));

 intg_data = intg_data + data;

end

intg_data = intg_data/N; % average

intg_data = intg_data-mean(intg_data(NaNflag==0)); % remove piston

intg_data(NaNflag==1) = NaN;

function [data] = Integral_func(Dx,Dy,cy,cx)

%% integration

% Dx,Dy : differenciation

% cy,cx : coordinate number

%%

[row, col] = size(Dx);

data = zeros(row, col);

flag = zeros(row, col);

if Dx(cy,cx) == 0

 disp('startˆÊ’u‚ªNaN‚Å‚·?BR‚Ì’l‚ð?¬‚³‚-‚µ‚Ä‰º‚³‚¢');

end

%%

% +X

for j = cx+1:col

 data(cy,j) = data(cy,j-1)+Dx(cy,j-1);

end

% -X

for j = cx-1:-1:1

123

 data(cy,j) = data(cy,j+1)-Dx(cy,j);

end

% +Y

for j = cy-1:-1:1

 data(j,cx) = data(j+1,cx)-Dy(j,cx);

end

% -Y

for j = cy+1:row

 data(j,cx) = data(j-1,cx)+Dy(j-1,cx);

end

flag(:,cx) = 1;flag(cy,:) = 1;

%%

for ix = cx+1:col

 for iy = cy-1:-1:1

 if Dy(iy,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy,ix-1)+Dx(iy,ix-1);

 flag(iy,ix) = flag(iy,ix-1);

 elseif Dx(iy,ix-1) == 0 % if there is NaN

 data(iy,ix) = data(iy+1,ix)-Dy(iy,ix);

 flag(iy,ix) = flag(iy+1,ix);

 else

 data(iy,ix) = (flag(iy+1,ix)*(data(iy+1,ix)-Dy(iy,ix))+...

 flag(iy,ix-1)*(data(iy,ix-1)+Dx(iy,ix-1)))/(flag(iy+1,ix)+flag(iy,ix-1));

 flag(iy,ix) = flag(iy+1,ix)+flag(iy,ix-1);

 if flag(iy,ix) > 1e15

 flag(iy,ix) = 1e15;

 end

124

 end

 end

end

%%

for ix = cx+1:col

 for iy = cy+1:row

 if Dy(iy-1,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy,ix-1)+Dx(iy,ix-1);

 flag(iy,ix) = flag(iy,ix-1);

 elseif Dx(iy,ix-1) == 0 % if there is NaN

 data(iy,ix) = data(iy-1,ix)+Dy(iy-1,ix);

 flag(iy,ix) = flag(iy-1,ix);

 else

 data(iy,ix) = (flag(iy-1,ix)*(data(iy-1,ix)+Dy(iy-1,ix))+...

 flag(iy,ix-1)*(data(iy,ix-1)+Dx(iy,ix-1)))/(flag(iy-1,ix)+flag(iy,ix-1));

 flag(iy,ix) = flag(iy-1,ix)+flag(iy,ix-1);

 if flag(iy,ix) > 1e15

 flag(iy,ix) = 1e15;

 end

 end

 end

end

%%

for ix = cx-1:-1:1

 for iy = cy-1:-1:1

 if Dy(iy,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy,ix+1)-Dx(iy,ix);

125

 flag(iy,ix) = flag(iy,ix+1);

 elseif Dx(iy,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy+1,ix)-Dy(iy,ix);

 flag(iy,ix) = flag(iy+1,ix);

 else

 data(iy,ix) = (flag(iy+1,ix)*(data(iy+1,ix)-Dy(iy,ix))+...

 flag(iy,ix+1)*(data(iy,ix+1)-Dx(iy,ix)))/(flag(iy+1,ix)+flag(iy,ix+1));

 flag(iy,ix) = flag(iy+1,ix)+flag(iy,ix+1);

 if flag(iy,ix) > 1e15

 flag(iy,ix) = 1e15;

 end

 end

 end

end

%%

for ix = cx-1:-1:1

 for iy = cy+1:row

 if Dy(iy-1,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy,ix+1)-Dx(iy,ix);

 flag(iy,ix) = flag(iy,ix+1);

 elseif Dx(iy,ix) == 0 % if there is NaN

 data(iy,ix) = data(iy-1,ix)+Dy(iy-1,ix);

 flag(iy,ix) = flag(iy-1,ix);

 else

 data(iy,ix) = (flag(iy-1,ix)*(data(iy-1,ix)+Dy(iy-1,ix))+...

 flag(iy,ix+1)*(data(iy,ix+1)-Dx(iy,ix)))/(flag(iy-1,ix)+flag(iy,ix+1));

 flag(iy,ix) = flag(iy-1,ix)+flag(iy,ix+1);

126

 if flag(iy,ix) > 1e15

 flag(iy,ix) = 1e15;

 end

 end

 end

end

function [delta] = CalcDelta(diff, crd, dim)

%%

% diff : slope data

% crd : coordinate

% dim : 1: colum; 2: row

if dim == 2

 diff = diff.';

 crd = crd.';

end

[row, col] = size(diff);

delta = zeros(row, col);

%%

for j = 1:col

 for i = 1:row-2

 x = crd(i:i+2,j);

 y = diff(i:i+2,j);

 if sum(isnan(y)) == 0 % if there is not NaN

 A = [x.^2 x ones(3,1)];

 G = inv_matrix_func(A); % 3*3‚ inverse matrix

127

 p = G*y;

 Q = p(1)/3*x.^3+p(2)/2*x.^2+p(3)*x; % integration

 if i == 1

 delta(i,j) = Q(2)-Q(1);

 else

 if isnan(delta(i,j))

 delta(i,j) = Q(2)-Q(1);

 else

 delta(i,j) = (delta(i,j)+(Q(2)-Q(1)))/2;

 end

 end

 delta(i+1,j) = Q(3)-Q(2);

 else % if there is NaN

 if i == 1

 delta(i,j) = 0;

 else

 if isnan(delta(i,j))

 delta(i,j) = 0;

 end

 end

 if i == row-2

 delta(i+1,j) = 0;

 else

 delta(i+1,j) = NaN;

 end

 end

 end

128

end

if dim == 2

 delta = delta.';

end

function G = inv_matrix_func(A)

%% calculate inverse matrix(3*3)

% A : 3*3 matrix

G = zeros(size(A));

detA = A(1,1)*A(2,2)*A(3,3)+A(2,1)*A(3,2)*A(1,3)+A(3,1)*A(1,2)*A(2,3)-

A(1,1)*A(3,2)*A(2,3)-...

 A(3,1)*A(2,2)*A(1,3)-A(2,1)*A(1,2)*A(3,3);

G(1,1) = A(2,2)*A(3,3)-A(3,2)*A(2,3);

G(2,1) = A(2,3)*A(3,1)-A(2,1)*A(3,3);

G(3,1) = A(2,1)*A(3,2)-A(2,2)*A(3,1);

G(1,2) = A(1,3)*A(3,2)-A(1,2)*A(3,3);

G(2,2) = A(1,1)*A(3,3)-A(1,3)*A(3,1);

G(3,2) = A(1,2)*A(3,1)-A(1,1)*A(3,2);

G(1,3) = A(1,2)*A(2,3)-A(1,3)*A(2,2);

G(2,3) = A(1,3)*A(2,1)-A(1,1)*A(2,3);

G(3,3) = A(1,1)*A(2,2)-A(1,2)*A(2,1);

G = G/detA;

%% end of this function

% programed by Yasunori Furukawa in 2016.04.04

function [a] = linear_Fit2D_func(f,x,y)

%% ------------------------------

% Fit f with x, y and piston

% input one-dimensional f,x,y

129

% a(1) : constant

% a(2) : x tilt

% a(3) : y tilt

%% ------------------------------

[n1,n2] = size(f);

if n1 == 1

 N = n2;

elseif n2 ==1

 N = n1;

end

M12 = sum(x);

M13 = sum(y);

M22 = sum(x.^2);

M23 = sum(x.*y);

M33 = sum(y.^2);

M = [N M12 M13;

 M12 M22 M23;

 M13 M23 M33];

a = M¥[sum(f); sum(f.*x); sum(f.*y)];

end

function [Z,DZx,DZy] = make_Z_DZ_func(x,y,Zn,maxr,flag)

% --

%% calculate Zernike or derivative Zernike function

130

% Z : Zernike function

% DZx,DZy : derivative Zernike function

% x,y : coordinate [mm] (one-dimension)

% Zn : maximum number of Zernike (16,25,36....)

% maxr : normalization value [mm]

% flag : 1 = Zernike, 2 = derivative Zernike

% --

nnum = sqrt(Zn)-1;

[ang,R] = cart2pol(x,y);

nn = size(x,1);

Z = zeros(nn,Zn);DZx = Z;DZy = Z;

R = R/maxr; % normalization

%% Zernike

if flag == 1

 for n = 0:nnum

 for m = nnum :-1:0

 for k = 0:1 % sin / cos

 Znum = (n+1)^2-2*m + k;

 if (n >= m) && (m>=k)

 Z(1:nn,Znum) = 0;

 for s = 0:n-m

 Z(:,Znum) = Z(:,Znum) +(-1)^s*(prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:n-m-s).*R.^2.^(n-m-s)) ;

 end

131

 if k == 0

 Z(:,Znum) = Z(:,Znum).* R.^m.*cos(m*ang);

 elseif k == 1

 Z(:,Znum) = Z(:,Znum).*R.^m.*sin(m*ang);

 end

 end

 end

 end

 end

 Z(:,1) = ones(nn,1);

 DZx = 0;DZy = 0;

%% derivative Zernike

else

 for n = 0:nnum

 for m = nnum:-1:0 % for the right order

 for k = 0:1 % cos or sin x = R*cos(ang) , y = R*sin(ang)

 Zj = (n+1)^2-2*m+k;

 if n == 0 && m == 0

 elseif (n >= m) && (m >= k)

 Z(:,Zj) = 0;DZx(:,Zj) = 0; DZy(:,Zj) = 0;

 for s = 0:n-m

 N = n-m-s;

 Z(:,Zj) = Z(:,Zj)+(-1)^s * prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*N) ;

 DZx(:,Zj) = DZx(:,Zj)+(-1)^s*prod(1:2*n-m-

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*(N-1))*N*2.*x/maxr^2 ;

 DZy(:,Zj) = DZy(:,Zj)+(-1)^s*prod(1:2*n-m-

132

s)/prod(1:s)/prod(1:n-s)/prod(1:N)*R.^(2*(N-1))*N*2.*y/maxr^2 ;

 end

 if k == 0 % cos

 DZx(:,Zj) = (DZx(:,Zj).*R.^m.*cos(m*ang)+Z(:,Zj)

*m.*R.^(m-2)/maxr^2.*(x.*cos(m*ang)+y.*sin(m*ang)));

 DZy(:,Zj) = (DZy(:,Zj).*R.^m.*cos(m*ang)+Z(:,Zj)

*m.*R.^(m-2)/maxr^2.*(y.*cos(m*ang)-x.*sin(m*ang)));

 elseif k == 1 % sin

 DZx(:,Zj) = (DZx(:,Zj).*R.^m.*sin(m*ang)+Z(:,Zj)

*m.*R.^(m-2)/maxr^2.*(x.*sin(m*ang)-y.*cos(m*ang)));

 DZy(:,Zj) = (DZy(:,Zj).*R.^m.*sin(m*ang)+Z(:,Zj)

*m.*R.^(m-2)/maxr^2.*(y.*sin(m*ang)+x.*cos(m*ang)));

 end

 end

 end

 end

 end

end

%% end of this function

function [z] = surf_func(x,y,A,R0,flag)

% z : surface [um]

% x,y : coordinate[um]

% A : coefficient [um]

% R0 : radius [um]

% flag : 0 = Z25

133

% 1 = Z16

r2 = x.^2+y.^2;

if flag == 0

elseif flag == 1

 z = A*(20*r2.^3/R0^6-30*r2.^2/R0^4+12*r2/R0^2-1);

elseif flag == 2

 z = A*(1./(r2*1e-6/2+1));

end

function [ph2] = unwrap_func(ph,data,change,limit,x_start,y_start)

% ---

% unwrap data

% ph2 : unwrapped data

% ph : wrapped phase data

% data : irradiance

% change : threshold of change per 1 pixel phase

% intense_limit : threshold of the irradiance

% x_start and y_start : start position of unwrap

% ---

%% parameter setting

[n1,n2] = size(ph); % n1 * n2 pixel

flag = zeros(n1,n2); % for judge

ph2 = ph ;

first_pos = (y_start-1)*n1+x_start;

flag(first_pos) = 1;

134

ph2(first_pos) = ph(first_pos); % insert the data of start position

% about flag

% 3 means Not unwrapping

% 1 means boundary , 2 means unwrapped already ,

% 0 means still not unwrapping

%% unwrapping

flag(data < limit) = 3; % except for the region of low amplitude

nn = 1;

n_right = first_pos;n_left = []; n_up = []; n_down = [];

while isempty(nn) ~= 1 % if nn is empty ,it finished

 nn = [n_right n_left n_up n_down];

 %right

 n_right = nn + n1 ;

 n_right = n_right(n_right < n1*n2 + 1);

 n_right = n_right(flag(n_right) == 0);

 n_right = n_right(((abs(ph(n_right) - ph(n_right - n1)) < change) | ... %

if change is too high,do not unwrap

 (abs(ph(n_right) - ph(n_right - n1) + 2*pi)<change) |...

 (abs(ph(n_right) - ph(n_right - n1)-2*pi)<change)));

 ph2(n_right) = ph(n_right)-ph(n_right-n1)+ph2(n_right-n1)-2*pi*fix((ph(n_right)-

ph(n_right-n1))/pi);

 flag(n_right) = 1;

 %left

 n_left = nn - n1 ;

 n_left = n_left(n_left > 1);

 n_left = n_left(flag(n_left) == 0);

135

 n_left = n_left(((abs(ph(n_left) - ph(n_left + n1)) < change) | ...

 (abs(ph(n_left) - ph(n_left + n1) + 2*pi) < change) |...

 (abs(ph(n_left) - ph(n_left + n1) - 2*pi) < change)));

 ph2(n_left) = ph(n_left) - ph(n_left + n1) + ph2(n_left + n1) - 2*pi*fix((ph(n_left) -

ph(n_left + n1))/pi);

 flag(n_left) = 1;

 %up

 n_up = nn - 1 ;

 n_up = n_up(n_up > 1);

 n_up = n_up(mod(n_up,n1) ~= 0 & flag(n_up) == 0);

 n_up = n_up(((abs(ph(n_up) - ph(n_up + 1)) < change) | ...

 (abs(ph(n_up) - ph(n_up + 1) + 2*pi) < change) |...

 (abs(ph(n_up) - ph(n_up + 1) - 2*pi) < change)));

 ph2(n_up) = ph(n_up) - ph(n_up + 1) + ph2(n_up + 1) - 2*pi*fix((ph(n_up) - ph(n_up

+ 1))/pi);

 flag(n_up) = 1;

 %down

 n_down = nn + 1 ;

 n_down = n_down(n_down < n1*n2 + 1);

 n_down = n_down(mod(n_down,n1) ~= 1 & flag(n_down) == 0);

 n_down = n_down(((abs(ph(n_down) - ph(n_down - 1)) < change) | ...

 (abs(ph(n_down) - ph(n_down - 1) + 2*pi) < change)

|...

 (abs(ph(n_down) - ph(n_down - 1) - 2*pi) < change)));

 ph2(n_down) = ph(n_down) - ph(n_down - 1) + ph2(n_down - 1) -

2*pi*fix((ph(n_down) - ph(n_down - 1))/pi);

 flag(n_down) = 1;

136

 flag(nn) = 2;

end

%% end of this function

137

Appendix D. MATLAB code of a Talbot interferometer with a tilted

grating using three beams interference

three_interferogram_with_tilted_grating.m

%% Three beams interferogram with tilted grating

clear;close all

path(path,'.¥module')

%% condition

rad = pi/180;

lamb = 0.6328; % wavelength [um]

k = 2*pi/lamb; % wavenumber

R0 = 2.0*1e3; % analyzation radius [um]

Lp = 80; % grating pitch [um]

L = Lp^2/lamb; %

distance of propagation [um]

Ns = 1; % phase shift number

gamma = -0.000; % angle of grating [rad]

Af = 1; % coefficient

xshr = Lp; % amount of shear [um]

N = 2^13*1; % sampling number

p = (R0+10*Lp)/(N/2); % pixel pitch [um]

x = (-N/2:N/2-1)*p; % x coordinate [um]

ref_pist = -2.60516586238; % piston phase of the reference [rad]

if Ns == 1

 zero_pist = -0.02684914; % piston phase when input wavefront is zero,

elseif Ns == 3

138

 zero_pist = 3.115;

elseif Ns == 4

 zero_pist = 3.112713048;

end

flag = -1;

dx = 1e-4; % [um]

R1 = 10*Lp;

W1 = 1*Alvarez_phase_func(R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,0); %

wavefront on x-axis

W2 = 1*Alvarez_phase_func(R0*1e-3,x*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,1); %

wavefront on diagonal

W = Af*(W1+W2)/2;clear W1 W2

Ws1 = 1*Alvarez_phase_func(R0*1e-3,(x-dx)*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,0);%

shifted wavefront on x-axis

Ws2 = 1*Alvarez_phase_func(R0*1e-3,(x-dx)*1e-3,-(R0+R1)*1e-3,(R0+R1)*1e-3,1);%

shifted wavefront on diagonal

Ws = Af*(Ws1+Ws2)/2;clear Ws1 Ws2

dW = (W-Ws)/dx;

% figure;plot(x,W);xlim([-R0 R0])

alfa = asin(dW); % incident ray angle [rad]

%% wavefront without grating (reference)

Wt = W+L./cos(alfa)-L;

xt = x+L*tan(alfa);

Wt = interp1(xt,Wt,x,'spline');

clear xt

%%

x1 = x./(1+tan(alfa)*tan(gamma)); % x coordinate on the grating

139

y1 = tan(gamma)*x1; % y coordinate on the grating

nega = y1 < 0;

ph1 = W-sqrt((x-x1).^2+y1.^2);

ph1(nega) = W(nega)+sqrt((x(nega)-x1(nega)).^2+y1(nega).^2);

clear nega

%% diffraction angle

m = 0; % 0 order

ang = asin(sin(alfa-gamma)+m*lamb/Lp);

beta = gamma+ang;

ph2 = (L+y1)./cos(beta);

W20 = ph1+ph2-L;

x2 = x1+(L+y1).*tan(beta);

W0 = interp1(x2,W20,x,'spline');

m = 1; % 1 order

ang = asin(sin(alfa-gamma)+m*lamb/Lp);

beta = gamma+ang;

ph2 = (L+y1)./cos(beta);

[diffr_ph] = intg1D_func(x1/cos(gamma),sin(beta)-sin(alfa));

W21 = ph1+ph2+1*m*diffr_ph-L;

x21 = x1+(L+y1).*tan(beta);

W1 = interp1(x21,W21,x,'spline')+lamb/2;

m = -1; % -1 order

ang = asin(sin(alfa-gamma)+m*lamb/Lp);

beta = gamma+ang;

ph2 = (L+y1)./cos(beta);

[diffr_ph] = -intg1D_func(x1/cos(gamma),sin(beta)-sin(alfa));

W2n1 = ph1+ph2+1*m*diffr_ph-L;

140

x2n1 = x1+(L+y1).*tan(beta);

Wn1 = interp1(x2n1,W2n1,x,'spline')+lamb/2;

%% irradiance

E0 = exp(1i*k*W0);

Iout = zeros(Ns,N);

for j = 1:Ns

 E1 = sqrt(0.3)*exp(1i*(k*W1-2*pi/Ns*(j-1)));

 E2 = sqrt(0.3)*exp(1i*(k*Wn1+2*pi/Ns*(j-1)));

 E = E0+E1+E2;

 Iout(j,:) = E.*conj(E);

end

figure;plot(x,Iout(1,:))

if Ns == 3

 Wsh = atan2(sqrt(3)*(Iout(2,:)-Iout(3,:)),-2*Iout(1,:)+Iout(2,:)+Iout(3,:));

elseif Ns == 4

 Wsh = -atan2(Iout(4,:)-Iout(2,:),Iout(3,:)-Iout(1,:));

elseif Ns == 6

 Wsh = -atan2(sqrt(3)*(Iout(2,:)+Iout(3,:)-Iout(5,:)-Iout(6,:)),...

 2*Iout(1,:)+Iout(2,:)-Iout(3,:)-2*Iout(4,:)-

Iout(5,:)+Iout(6,:));

end

if Ns > 1

 Wsh = Wsh-zero_pist;

 if Wsh(N/2+1) < -pi

 Wsh = Wsh+ 2*pi;

 end

141

 Wsh = unwrap1d_func(Wsh); % unwrap

 Wsh = 1/xshr*(lamb/Lp*x+1/k*Wsh);

 Wt2 = interp1(x,Wt,x+Lp,'spline');

 figure;plot(x,(Wt2-Wt)/Lp,x,Wsh,'--'),title('slope');grid

 %% integral

 [ph] = intg1D_func(x,Wsh);

 ins = abs(x) < R0;

 ph = ph-mean(ph(ins)-Wt(ins));

 figure;plot(x,Wt,x,ph,'--'),title('wavefront [um]');xlim([-R0 R0])

 figure;plot(x,1e3*(ph-Wt)),title('difference [nm]');xlim([-R0 R0])

 Wc = compensate_wavefront_func(ph,Lp,x);

 figure;plot(x,Wc);xlim([-R0 R0])

 figure;plot(x,1e3*(ph-Wt-Wc+mean(Wc(ins)))),title('error [nm]');xlim([-R0 R0])

 ph = ph-Wc;

 if flag == -1

 dif = ph-Wt;

 n = 1;

 p = polyfit(x(ins),dif(ins),n);

 for j = 1:n+1

 ph = ph-p(j)*x.^(n-j+1);

 end

 dif = ph-Wt;

 figure;plot(x,Wt,x,ph,'--'),title('[um]')

 [PV,rms,maxh,minh] = PV_rms_func(1e3*dif(ins));

 figure;plot(x*1e-3,1e3*(dif)), title(['error ',num2str(PV,3),'nmPV,

',num2str(rms,3),'nmRMS']);%ylim([-10 10])

 xlim([-R0*1e-3 R0*1e-3])

142

 end

else % FFT method

 %% phase recovery --

 fI = fftshift(fft(fftshift(Iout(1,:))));

 figure;plot(log10(abs(fI)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]);

 % cut the FFT data --

 ff = zeros(1,N);

 fshftx = round(p*N/xshr); % shift length(x)

 mdftx = p*N/xshr-fshftx; % remainder (x)

 if mod(fshftx,2) == 0

 fRx = fshftx/2; % size of cutting (x)

 else

 fRx = fshftx/2+0.5;

 end

 fRx = fRx-7;

 ff(N/2+1-fRx:N/2+1+fRx) = fI(N/2+1+fshftx-fRx:N/2+1+fshftx+fRx); % cut(x)

 nc = N/2+1+round(N/(Lp/p));

 figure;plot(real(ff));title('cut Fourier Spectrum');xlim([N/2-1000 N/2+1000]);

 % figure;plot(log10(abs(ff)));title('Fourier Spectrum'); xlim([N/2-1000 N/2+1000]);

 tmp = fftshift(ifft(fftshift(ff)));

 Wsh = -atan2(imag(tmp),real(tmp))-zero_pist;

 RR = R0+R1;

 Wsh((abs(x)) > RR) = 0;

 figure;plot(x,Wsh);xlim([-RR RR]);title('wrapped phase[rad]')

 if Wsh(N/2+1) > pi

 Wsh = Wsh-2*pi;

 end

143

 [Wsh] = unwrap1d_func(Wsh); % unwrap

 Wsh((abs(x)) > RR) = 0;

 Wsh = Wsh/k/Lp;

 figure;plot(x,Wsh);title('unwrapped subtraction phase');xlim([-RR RR])

 [W] = intg1D_func(x,Wsh); % integration

 tmp = compensate_wavefront_func(W,Lp,x);

 ph2 = W-tmp;

 dif = ph2-Wt;

 tmp = mean(dif(abs(x) < R0));

 dif = 1e3*(dif-tmp);

 ph2 = ph2-tmp;

 figure;plot(x/1e3,Wt,x/1e3,ph2,'--');

 title('wavefront[um]')

 xlim([-R0/1e3 R0/1e3]);grid;hold off

 [PV,rms,maxh,minh] = PV_rms_func(dif(abs(x) < R0));

 figure;plot(x/1e3,dif); % difference of output

 xlim([-R0/1e3 R0/1e3]);grid;hold off

 title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']);ylim([-10 10])

 %% remove piston and tilt

 ins = abs(x) < R0;

 n = 1;

 p = polyfit(x(ins),dif(ins),n);

 for j = 1:n+1

 dif = dif-p(j)*x.^(n-j+1);

 end

 [PV,rms,maxh,minh] = PV_rms_func(dif(abs(x) < R0));

144

 figure;plot(x/1e3,dif); % difference of output

 xlim([-R0/1e3 R0/1e3]);grid;hold off

 title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS']);ylim([-10 10])

end

% save('dif_noerror','dif')

145

Appendix E. MATLAB code of a stitching simulation

stitch_sim.m

%% ---

%% stitch simulation

% 1. Set parameters

% 2. Create error shape

% 3. Determine lattice design

% 4. Assume alignment error and system error

% 5. Calculate sub-aperture shape

% 6. Coordinate transform before stitching

% 7. Stitching

% 8. Evaluate coefficients

% 9. Calculate stitch shape

% 10. Evaluate the error shape

% 11. Estimate the stitching error from difference between overlapped data

%% ---

clear;close all

path(path,'.¥module')

path(path,'..¥module')

%% 1. Set parameter

Q = 4;

Ncx = 640/Q; % CCD pixel number (x)

Ncy = 640/Q; % CCD pixel number (y)

146

cp = 0.0074*Q; % CCD pixel pitch [mm]

flag = 0; % 0 = Alvarez surface

mtrx_flag =0; % 0 = load Zernike function

 % 1 = calculate Zernike function which

expresses alignment error and system error stitching

shftflag = 0; % 0 = estimate shift error

 % 1 = Not estimate shift error

syserrflag = 1; % 0 = estimate sysyem error

 % 1 = Not estimate sysyem error

 % 2 = Not estimate, but input sysyem error

spike_noise_flag = 0; % 0 = Not add spike noise

 % 1 = add spike noise

Cnoise = 0; % noise [Cnoise*2 nmPV]

ptime = 0.2; % pause time[s]

Lx = 10; % sample size (x) [mm]

Ly = 10; % sample size (y) [mm]

pp = 0.0074*7; % sample pixel pitch [mm]

Nx = 320; % sample pixel number (x)

Ny = 320; % sample pixel number (y)

Nset = 6;

Nsys = 16;

Zn = 16;

Znin = 16;

slx = 4.2; % length(x) of sub-aperture [mm]

sly = 3; % length(y) of sub-aperture [mm]

147

Nsx = 3; % number of stitching (x)

Nsy = 4; % number of stitching (y)

N = Nsx*Nsy; % total number of stitching

rr = sqrt((Lx/2).^2+(Ly/2).^2);

% CCD coordinate [mm]

Ncx = round(Ncx*cp/pp);

Ncy = round(Ncy*cp/pp);

if mod(Ncx,2) == 0

 cX = (-Ncx/2:Ncx/2-1)*pp;

else

 cX = (-(Ncx-1)/2:(Ncx+1)/2-1)*pp;

end

if mod(Ncy,2) == 0

 cY = (-Ncy/2:Ncy/2-1)*pp;

else

 cY = (-(Ncy-1)/2:(Ncy+1)/2-1)*pp;

end

% global coordinate [mm]

X = (-Nx/2:Nx/2-1)*pp ;

Y = (-Ny/2:Ny/2-1)*pp ;

[x,y] = meshgrid(X,Y) ;y = -y;

%% 2. Create error shape

f = surface_func(x,y,flag); % design shape [mm]

% outa = abs(x) > Lx/2 | abs(y) > Ly/2;

% f(outa) = 0;

% figure,imagesc(X,-Y,f);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -Ly/2

Ly/2])

148

ferr = 45*(6*(x.^2+y.^2).^2/(Lx/2)^4-6*(x.^2+y.^2)/(Lx/2)^2+1); % error shape [nm]

% ferr(outa) = 0;

% figure,imagesc(X,-Y,ferr);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -Ly/2

Ly/2])

Az = f+1e-6*ferr; % sample shape [mm]

%% 3. Determine lattice design

spx = lattice_design_func(Nsx,slx,Lx);

spy = -lattice_design_func(Nsy,sly,Ly);

% disp_lattice_design_func(spx,spy,slx,sly,Lx,Ly,0);

[mxyz,th] = calc_stitch_move_func(spx,spy,slx,sly,Lx,Ly,0); % amount of move

%% 4. System error coefficient

if syserrflag == 0 || syserrflag == 2

 Csys = 40*rand(1,49);Csys(1:3) = 0;

 Xa = -slx/2:0.1:slx/2;

 Ya = -sly/2:0.1:sly/2;

 [xa,ya] = meshgrid(Xa,Ya);ya = -ya;

 Zq = make_Z_DZ_func(xa(:),ya(:),Znin,rr,1);

 sys_err = Zq(:,Nset+1:Znin)*Csys(Nset+1:Znin)';

 tmp = reshape(sys_err,size(xa,1),size(ya,2));

 rms = std(tmp(:))

 PV = max(tmp(:))-min(tmp(:));

 figure,imagesc(Xa,-Ya,tmp,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis

xy;axis([-slx/2 slx/2 -sly/2 sly/2])

 title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

else

 Csys = zeros(1,49);

end

149

%% Alignment error coefficient

rand('twister',2');

Cset = (rand(1,N*Nset)-0.5)*2*1200*1/2 ; % z, thetax, thetay error [nm]

Cset(4:6:end) = 0;

if shftflag == 0

 Cset(5:6:end) = (rand(1,N)-0.5)*2*10*1e3; % x shift error [nm]

 Cset(6:6:end) = (rand(1,N)-0.5)*2*10*1e3; % y shift error [nm]

else

 Cset(5:6:end) = 0; % x shift error [nm]

 Cset(6:6:end) = 0; % y shift error [nm]

end

rand('twister',sum(100*clock)) ;

%% 5. Calculate sub-aperture shape

k = 1;

px = zeros(N,2);py = px;

Dflag = false(Ncy,Ncx,N);

Qx = zeros(Ncy,Ncx,N) ;Qy = zeros(Ncy,Ncx,N) ;Qz = zeros(Ncy,Ncx,N);

if mtrx_flag == 1

 MtxZ = zeros(Ncy,Ncx,N,Zn) ;

end

for i = 1:Nsx

 for j = 1:Nsy

 perc = (k-1)/N*100 ;

 %% local sample coordinate?isame interval?j

 [~,ix] = min(abs(X-mxyz(k,1))) ; % center coordinate

of sub-aperture (x)[pix]

 [~,iy] = min(abs(-Y-mxyz(k,2))) ; % center coordinate

150

of sub-aperture (y)[pix]

 if mod(Ncx,2) == 0

 px(k,1) = ix-Ncx/2 ; px(k,2) = ix+Ncx/2-1 ;

 else

 px(k,1) = ix-(Ncx-1)/2 ; px(k,2) = ix+(Ncx+1)/2-1 ;

 end

 if mod(Ncy,2) == 0

 py(k,1) = iy-Ncy/2 ; py(k,2) = iy+Ncy/2-1 ;

 else

 py(k,1) = iy-(Ncy-1)/2 ; py(k,2) = iy+(Ncy+1)/2-1 ;

 end

 tx = x(py(k,1):py(k,2),px(k,1):px(k,2));

 ty = y(py(k,1):py(k,2),px(k,1):px(k,2));

 tz = f(py(k,1):py(k,2),px(k,1):px(k,2)); % designed shape in sub-

aperture [mm]

 Tz = Az(py(k,1):py(k,2),px(k,1):px(k,2)); % designed and error

shape in sub-aperture[mm]

 pos = find(abs(tx) > Lx/2+0.5 | abs(ty) > Ly/2+0.5);

 tx(pos) = NaN;ty(pos) = NaN;tz(pos) = NaN;

 Dflag(:,:,k) = abs(tx-mxyz(k,1)) <= slx/2 & abs(ty-mxyz(k,2)) <= sly/2 & abs(tx)

<= Lx/2 & abs(ty) <= Ly/2;

%% drive sample shift,tip,tilt), from local sample to CCD coordinate (non-equal pitch)

 [qx,qy,qz] = trans_func(mxyz(k,:),th(k,:),1,tx,ty,tz);

% figure;imagesc(qz);colorbar% designed value

 [Qx(:,:,k),Qy(:,:,k),Qz(:,:,k)] =

trans_func(mxyz(k,:),th(k,:),1,tx,ty,Tz); % error shape

151

 %% create Zernike polynomials (on local sample coordinate, equal pitch)[um]

 if mtrx_flag == 1

 [MtxZ(:,:,k,:)] = make_stitchZ_func(mxyz(k,:),th(k,:),rr,Zn,qx,qy,qz,flag);

 end

 %% add alignment error and system error

 xxq = Qx(:,:,k);yyq = Qy(:,:,k);

 Zq = make_Z_DZ_func(xxq(:),yyq(:),Znin,rr,1);

 if k == 1

 set_err = 0;

 else

 set_err = 1e-6*(Cset((k-1)*Nset+1)*Zq(:,1)+Cset((k-1)*Nset+2)*Zq(:,2)+

Cset((k-1)*Nset+3)*Zq(:,3)+ Cset((k-1)*Nset+4)*Zq(:,4)*0);

 set_err = reshape(set_err,Ncy,Ncx); % alignment error [mm]

 end

 sys_err = Zq(:,Nset+1:Znin)*Csys(Nset+1:Znin)';

 sys_err = reshape(sys_err,Ncy,Ncx);

 sys_err = sys_err*1e-6; % system error [mm]

 noise = Cnoise*1e-6*(rand(Ncy,Ncx)-0.5)*2;

 spike_noise = zeros(Ncy,Ncx);

 if spike_noise_flag == 1

 qp = round((Ncx-40)*rand(1,2))+20;

 spike_noise(qp(1)-3:qp(1)+3,qp(2)-3:qp(2)+3) = 10*1e-6;

 end

 tmp = rot90(Qz(:,:,k),2);

 figure(4),imagesc(cX,-cY,-2*tmp,[-0.1 0.1]);

 axis equal;axis tight xy;colorbar;axis([-slx/2 slx/2 -sly/2 sly/2]);

 Qz(:,:,k) = Qz(:,:,k)+(set_err+sys_err)+noise+spike_noise;

152

 tmp = Qz(:,:,k).*Dflag(:,:,k);tmp(isnan(tmp)) = 0;

 figure(4),imagesc(cX,-cY,tmp,[-0.05 0.05]);axis equal;axis tight

xy;colorbar;title([num2str(k)]);ylim([-1.75 1.75])

 k = k+1;

 pause(ptime);

 end

end

if mtrx_flag == 0

 load('matrixZ.mat');

elseif mtrx_flag == 1

 save('matrixZ','MtxZ');

end

clear Zt xxq yyq M

%% 6. Coordinate transform before stitching

k = 1;

wz = zeros(Ncy,Ncx,N);

for i = 1:Nsx

 for j = 1:Nsy

 %% Coordinate transform (cx?¨x, CCD coor?¨local sample coor?iNon-equal

pitch)

 if k ==1

 [qx2,qy2,qz2] = trans_func(mxyz(k,:),th(k,:),-

1,Qx(:,:,k),Qy(:,:,k),Qz(:,:,k));

 else

 [qx2,qy2,qz2] = trans_func(mxyz(k,:),th(k,:),-1,Qx(:,:,k)+Cset((k-

1)*Nset+5)/1e6,Qy(:,:,k)+Cset((k-1)*Nset+6)/1e6,Qz(:,:,k));

 end

153

 wz(:,:,k) = 1e3*(qz2-surface_func(qx2,qy2,flag)); % subtract designed

shape [um]

 tmp = wz(:,:,k);tmp(isnan(tmp)) = 0;

 qx2(isnan(qx2)) = 10;qy2(isnan(qy2)) = 10;

 wz(:,:,k) =

griddata(qx2,qy2,tmp,x(py(k,1):py(k,2),px(k,1):px(k,2)),y(py(k,1):py(k,2),px(k,1):px(k,2

)),'cubic');

 wz(:,:,k) = wz(:,:,k) + 0*noise;

 %% calculate sample shape on local sample coordinate (equal pitch)

 tmp = wz(:,:,k).*Dflag(:,:,k);

 tmp(isnan(tmp)) = 0;

 figure(5),imagesc(tmp,[-0.5 0.5]);axis equal;axis tight;colorbar;title(['stitch data

[um] ',num2str(k)]);% err+sys+align

 k = k+1;

 pause(ptime);

 end

end

if shftflag ~= 0

 MtxZ(:,:,:,5) = 0;

 MtxZ(:,:,:,6) = 0;

end

if syserrflag ~= 0;

 MtxZ(:,:,:,Nset+1:Nsys) = 0;

end

%% 7. Stitching ---

tic

[W,Cset_out,Csys_out] = stitching_func(wz,Dflag,N,Nset,Nsys,MtxZ,px,py,Nx,Ny,0) ;

154

toc

Cset_out = 1e3*Cset_out; % from [um] to [nm]

Cset_out(5:Nset:end) = 10*Cset_out(5:Nset:end);

Cset_out(6:Nset:end) = 10*Cset_out(6:Nset:end);

Csys_out = 1e3*Csys_out; % from [um] to [nm]

%% 8. Evaluate results

wn = Nset+1;

figure ; plot(wn:Zn,Csys(wn:Zn),'--o',(wn:Zn),Csys_out,'--rs') ;

grid;title('system error [nm]');xlim([wn Zn])

figure ; plot(Cset(wn:end),'--o');hold on

plot(Cset_out,'--rs') ;hold off;grid;title('alignment error [nm]')

figure ; plot(wn:Zn,Csys_out-Csys(wn:Zn),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10) ;

grid;title('system error difference [nm]');xlim([wn Zn])

figure ; plot(Cset_out-Cset(wn:end),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);

grid;title('alignment error difference [nm]')

%% 9. Calculate stitch shape

W(isnan(W)) = 0;

st_fig = zeros(Ny,Nx) ;st_fig2 = zeros(Ny,Nx) ;

num_flag = zeros(Ny,Nx) ; % overlapping number

for j = 1:N

 st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) = st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) +

W(:,:,j).*Dflag(:,:,j) ;

 temp_W = false(Ny,Nx) ;

 temp_W(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ;

 num_flag = num_flag + temp_W ;

155

end

ins = num_flag > 0;

st_fig(ins) = st_fig2(ins)./num_flag(ins);

figure,imagesc(X,-Y,1e3*st_fig);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2 Lx/2 -

Ly/2 Ly/2])

clear st_fig2

% save('output.mat','Cset_out','Csys_out','st_fig');

%% 10. Evaluate the error shape

dif = zeros(Ny,Nx); %

dif(ins) = 1e3*st_fig(ins)-ferr(ins); % difference [nm]

tmp = dif(ins);

rms = std(tmp);

PV = max(tmp)-min(tmp);

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2

Lx/2 -Ly/2 Ly/2])

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

%% 11. Estimate the stitching error from difference between overlapped data

W2 = NaN(Ny,Nx,N);

for j = 1:N

 W2(py(j,1):py(j,2),px(j,1):px(j,2),j) = W(:,:,j).*Dflag(:,:,j);

end

W2(W2==0) = NaN;

[dev,sgma] = stitch_err_func(W2,num_flag,st_fig);% um

dev = 1e3*dev;sgma = 1e3*sgma;

figure,imagesc(X,-Y,dev,[0 5*sgma]);axis equal;axis tight;colorbar;axis xy

axis([-Lx/2 Lx/2 -Ly/2 Ly/2])

title(['stitch error ' ,num2str(sgma,3),'nmRMS'])

156

[st_fig4] = Alignment_remove_func(1e3*st_fig,f,x,y,ins);

dif = zeros(Ny,Nx); %

dif(ins) = st_fig4(ins)-ferr(ins); % difference [nm]

dif(ins) = dif(ins) - mean(dif(ins));

tmp = dif(ins);

rms = std(tmp);

PV = max(tmp)-min(tmp);

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2

Lx/2 -Ly/2 Ly/2])

title(['error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

loop_stitch.m

%% ---

%% stitch again

%% ---

close all

k = 1;

for i = 1:Nsx

 for j = 1:Nsy

 % display bar

 perc = (k-1)/N*100 ;

 %% local sample coordinate?isame interval?j

 tx = x(py(k,1):py(k,2),px(k,1):px(k,2));

 ty = y(py(k,1):py(k,2),px(k,1):px(k,2));

 tz = f(py(k,1):py(k,2),px(k,1):px(k,2)); % designed shape in sub-

157

aperture [mm]

 Tz = Az(py(k,1):py(k,2),px(k,1):px(k,2)); % designed and error

shape in sub-aperture[mm]

 pos = find(abs(tx) > Lx/2+0.5 | abs(ty) > Ly/2+0.5);

 tx(pos) = NaN;ty(pos) = NaN;tz(pos) = NaN;

 %% subtract alignment error and system error

 xxq = Qx(:,:,k);yyq = Qy(:,:,k);

 Zq = make_Z_DZ_func(xxq(:),yyq(:),Zn,rr,1);

 if k == 1

 set_err2 = 0;

 else

 set_err2 = 1e-6*(Cset_out((k-2)*Nset+1)*Zq(:,1)+Cset_out((k-

2)*Nset+2)*Zq(:,2)+ Cset_out((k-2)*Nset+3)*Zq(:,3)+ Cset_out((k-

2)*Nset+4)*Zq(:,4)*0);

 set_err2 = reshape(set_err2,Ncy,Ncx); % alignment error [mm]

 end

 sys_err2 = Zq(:,Nset+1:Zn)*Csys_out(1:Zn-Nset)';

 sys_err2 = reshape(sys_err2,Ncy,Ncx);

 sys_err2 = 1*sys_err2*1e-6; % system error [mm]

 Qz(:,:,k) = Qz(:,:,k)-(set_err2+sys_err2);

 if k ~= 1

 Qx(:,:,k) = Qx(:,:,k)+(Cset((k-1)*Nset+5)-Cset_out((k-2)*Nset+5))/1e6;

 Qy(:,:,k) = Qy(:,:,k)+(Cset((k-1)*Nset+6)-Cset_out((k-2)*Nset+6))/1e6;

 end

 figure(1),imagesc(Qz(:,:,k).*Dflag(:,:,k),[-0.3 0.3]);axis equal;axis

tight;colorbar;title(['measurement ',num2str(k)])

158

 pause(ptime);

 [qx2,qy2,qz2] = trans_func(mxyz(k,:),th(k,:),-1,Qx(:,:,k),Qy(:,:,k),Qz(:,:,k));

 wz(:,:,k) = 1e3*(qz2-surface_func(qx2,qy2,flag)); % subtract designed

shape [um]

 tmp = wz(:,:,k);tmp(isnan(tmp)) = 0;

 qx2(isnan(qx2)) = 10;qy2(isnan(qy2)) = 10;

 wz(:,:,k) =

griddata(qx2,qy2,tmp,x(py(k,1):py(k,2),px(k,1):px(k,2)),y(py(k,1):py(k,2),px(k,1):px(k,2

)),'cubic');

 tmp = wz(:,:,k).*Dflag(:,:,k);

 tmp(isnan(tmp)) = 0;

 figure(2),imagesc(tmp,[-0.6 0.6]);axis equal;axis tight;colorbar;title(['stitch data

[um] ',num2str(k)]);% err+sys+align

 k = k+1;

 pause(ptime);

 end

end

tic

[W2,Cset_out2,Csys_out2] =

stitching_func(wz,Dflag,N,Nset,Nsys,MtxZ,px,py,Nx,Ny,0) ;

toc

Cset_out2 = 1e3*Cset_out2; % [um]?¨[nm]

Cset_out2(5:Nset:end) = 10*Cset_out2(5:Nset:end);

Cset_out2(6:Nset:end) = 10*Cset_out2(6:Nset:end);

Csys_out2 = 1e3*Csys_out2; %

[um]?¨[nm]

Csys_out = Csys_out+Csys_out2;

159

Cset_out = Cset_out+Cset_out2;

wn = Nset+1;

figure ; plot(wn:Zn,Csys(wn:Zn),'--o',(wn:Zn),Csys_out,'--rs') ;

grid;title('system error [nm]');xlim([wn Zn])

figure ; plot(Cset(wn:end),'--o');hold on

plot(Cset_out,'--rs') ;hold off;grid;title('alignment error [nm]')

figure; plot(wn:Zn,Csys_out-Csys(wn:Zn),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10) ;

grid;title('system error difference [nm]');xlim([wn Zn])

figure; plot(Cset_out-Cset(wn:end),'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);

grid;title('alignment error difference [nm]')

%% stitch shape

W2(isnan(W2)) = 0;

st_fig = zeros(Ny,Nx) ;st_fig2 = zeros(Ny,Nx) ;

num_flag = zeros(Ny,Nx) ; % overlapping number

for j = 1:N

 st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) = st_fig2(py(j,1):py(j,2),px(j,1):px(j,2)) +

W2(:,:,j).*Dflag(:,:,j) ;

 temp_W = false(Ny,Nx) ;

 temp_W(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ;

 num_flag = num_flag + temp_W ;

end

ins = num_flag > 0;

st_fig(ins) = st_fig2(ins)./num_flag(ins);

clear st_fig2

160

%% Evaluate

dif = zeros(Ny,Nx);

dif(ins) = 1e3*st_fig(ins)-ferr(ins); % difference [nm]

tmp = dif(ins);

rms = std(tmp);

PV = max(tmp)-min(tmp);

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal tight xy;colorbar; axis([-Lx/2 Lx/2 -

Ly/2 Ly/2])

title(['stitch error ',num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

%% 11. Estimate the stitching error from difference between overlapped data

W3 = NaN(Ny,Nx,N);

for j = 1:N

 W3(py(j,1):py(j,2),px(j,1):px(j,2),j) = W2(:,:,j).*Dflag(:,:,j);

end

W3(W3==0) = NaN;

[dev,sgma] = stitch_err_func(W3,num_flag,st_fig);% um

dev = 1e3*dev;sgma = 1e3*sgma;

figure,imagesc(X,-Y,dev,[0 2*sgma]);axis equal tight xy;colorbar; axis([-Lx/2 Lx/2 -Ly/2

Ly/2])

title(['stitch error ' ,num2str(sgma,3),'nmRMS'])

[st_fig4] = Alignment_remove_func(1e3*st_fig,f,x,y,ins);

dif = zeros(Ny,Nx); %

dif(ins) = st_fig4(ins)-ferr(ins); % difference [nm]

dif(ins) = dif(ins) - mean(dif(ins));

tmp = dif(ins);

rms = std(tmp);

161

PV = max(tmp)-min(tmp);

figure,imagesc(X,-Y,dif,[-3*rms 3*rms]);axis equal;axis tight;colorbar;axis xy;axis([-Lx/2

Lx/2 -Ly/2 Ly/2])

title([num2str(PV,3),'nmPV, ',num2str(rms,3),'nmRMS'])

function [W] = Alignment_remove_func(W,f,x,y,ins)

%% remove the alignment component

% W : wavefront or surface [nm]

% f : nominal shape [mm]

% x,y : lateral coordinate [mm]

% ins : fitting area

%% -------------------------------------

N = size(find(ins),1);

A = zeros(N,5);

A(:,1) = 1;

A(:,2) = x(ins);

A(:,3) = y(ins);

tmpx = zeros(size(x));

tmpx(:,1:end-1) = f(:,2:end) - f(:,1:end-1);

tmpy = zeros(size(x));

tmpy(2:end,:) = f(1:end-1,:) - f(2:end,:);

A(:,4) = tmpx(ins);

A(:,5) = tmpy(ins);

[U,S,V] = svd(A,0);

162

for j = 1:size(S,1)

 if S(j,j) < 2

 S(j,j) = 0;

 else

 S(j,j) = 1/S(j,j);

 end

end

C = V*S*U'*W(ins);

tmp = W(ins)-A*C;

W = zeros(size(x));

W(ins) = tmp;

end

function [move_xyz,th] = calc_stitch_move_func(px,py,sx,sy,Lx,Ly,flag)

% ---

%% Calculate the amount of moving

% move_xyz : amount of moving (x,y,z) [mm]

% th : theta (x,y) [rad]

% px,py : center position of the sub-aperture [mm]

% sx,sy : size of the sub-aperture [mm]

% Lx,Ly : size of the sample [mm]

% flag : 0 = Alvarez lens

% ---

Nx = size(px,2); Ny = size(py,2);

163

% create sub-aperture coordinate

N = 50*4; % sampling number

X = (-N/2:N/2-1)/(N/2)*sx/2;

Y = (-N/2:N/2-1)/(N/2)*sy/2;

[x,y] = meshgrid(X,Y); y = -y; % sub-aperture coordinate

move_xyz = zeros(Nx*Ny,3);

th = zeros(Nx*Ny,2);

num = 1;

for i = 1:Ny

 for j = 1:Nx

 xt = x+px(j); % sample coordinate (x)

 yt = y+py(i); % sample coordinate (y)

 [f] = surface_func(xt,yt,flag); % sample shape [mm]

 ins = abs(xt) < Lx/2 & abs(yt) < Ly/2; % area in the sample

 [a] = linear_Fit2D_func(f(ins),x(ins),y(ins));% coefficient

 f = f - a(1)-a(2)*x-a(3)*y;

 move_xyz(num,1) = px(j);

 move_xyz(num,2) = py(i);

 move_xyz(num,3) = a(1);

 th(num,1) = atan(a(2));

 th(num,2) = atan(a(3));

 num = num+1;

 end

end

end

164

%% end of this function

% programed by Yasunori Furukawa in Dec.5,2016

function disp_lattice_design_func(px,py,lx,ly,Lx,Ly,flag)

% ---

%% display the lattice design

% px,py : center position of the sub-aperture

% lx,ly : size of the sub-aperture

% Lx,Ly : size of the sample

% flag : select the type of the sample figure

% : 0 = rectangular

% : 1 = circle

% ---

Nx = size(px,2); Ny = size(py,2);

%% display the overlapped sub-aperture

nn = 100;

X = (-nn/2:nn/2-1)/(nn/2)*1.2*Lx/2;

Y = (-nn/2:nn/2-1)/(nn/2)*1.2*Ly/2;

[x,y] = meshgrid(X,Y);y = -y;

over_flag = zeros(size(x)); % overlapp number

if flag == 0

 for i = 1:Nx

 for j = 1:Ny

 ins = find(abs(x-px(i)) < lx/2 & abs(y-py(j)) < ly/2); % area of sub-

aperture

 over_flag(ins) = over_flag(ins)+1; % add 1

165

 end

 end

elseif flag == 1

end

over_flag(abs(x) > Lx/2 & abs(x) < Lx/2+0.1 & abs(y) < Ly/2+0.1) = -1;% draw the rim

of the sample

over_flag(abs(y) > Ly/2 & abs(y) < Ly/2+0.1 & abs(x) < Lx/2+0.1) = -1;% draw the rim of

the sample

figure,imagesc(X,-Y,over_flag);title('overlap number');

colorbar;axis equal xy tight;

%% display the center position of the sub-aperture

figure;

for i = 1:Nx

 for j = 1:Ny

 plot(px(i),py(j),'ko');hold on

 end

end

plot([-Lx/2 Lx/2 Lx/2 -Lx/2 -Lx/2],[-Ly/2 -Ly/2 Ly/2 Ly/2 -Ly/2],'g') % draw the rim of

the sample

axis([-Lx/2*1.2 Lx/2*1.2 -Ly/2*1.2 Ly/2*1.2]);title('center position')

axis square;

hold off

end

%% end of this function

% programed by Yasunori Furukawa Dec.5,2016

166

function [pos] = lattice_design_func(N,h,L)

% ---

%% determine the lattice design(sub-aperture location)

% pos : center position of the sub-aperture

% N : number of stitching

% h : size of sub-aperture

% L : size of sample

% ---

pos = zeros(1,N);

pos(1) = (-L+h)/2; pos(N) = -pos(1);

if N == 3

 pos(2) = 0;

elseif N == 4

 pos(2) = (-L+h)/6; pos(3) = -pos(2);

elseif N == 5

 pos(2) = (-L+h)/4; pos(3) = 0; pos(4) = -pos(2);

end

%% end of this function

% programed by Yasunori Furukawa Dec.5,2016

function [Z] = make_stitchZ_func(mxyz,th,rr,Zn,qx,qy,qz,flag)

% ---

%% Calculate the Zernike polynomials on the local sample coordinate

% Z : Zernike function [um]

167

% mxyz : amount of move [mm]

% th : theta x,y [rad]

% rr : [mm]

% Zn : max number of Zernike (9,16,25,36 ...etc)

% qx,qy,qz : CCD cordinate [mm]

% flag :

% ---

[n1,n2] = size(qx);

Z = zeros(n1,n2,Zn);

Zt = Z;

%% Zernike on the CCD coordinate

Ztmp = make_Z_DZ_func(qx(:),qy(:),Zn,rr,1);

for j = 1:Zn

 Zt(:,:,j) = reshape(Ztmp(:,j),n1,n2);

end

Zt(:,:,5) = 0;Zt(:,:,6) = 0;

%% Zernike on the local sample coordinate

for j = 1:Zn

 if j == 5

 [xa,ya,~] = trans_func(mxyz,th,-1,qx,qy,qz);

 [xx,yy,zz] = trans_func(mxyz,th,-1,qx+1e-2,qy,qz); % 10um x-shift

 elseif j == 6

 [xa,ya,~] = trans_func(mxyz,th,-1,qx,qy,qz);

 [xx,yy,zz] = trans_func(mxyz,th,-1,qx,qy+1e-2,qz); % 10um y-shift

168

 else

 [xx,yy,zz] = trans_func(mxyz,th,-1,qx,qy,qz+1e-3*Zt(:,:,j));

 end

 if j == 5 || j == 6

 xx = xx(isfinite(xx));yy = yy(isfinite(yy));zz = zz(isfinite(zz));

 ina = isfinite(xa);

 Ztmp = 1e3*(zz-surface_func(xx,yy,flag)); %[um]

 tmp2 = griddata(xx,yy,Ztmp,xa(ina),ya(ina),'cubic');

 tmp = NaN(size(qx));

 tmp(ina) = tmp2;

 tmp(isnan(tmp)) = 0;

 Z(:,:,j) = tmp;

 else

 Z(:,:,j) = 1e3*(zz-surface_func(xx,yy,flag)); %[um]

 end

end

Z(:,:,4) = 0;

end

%% end of this function

% programed by Yasunori Furukawa in Dec.9,2016

function [dev,sgma] = stitch_err_func(W,flag,Q)

% ---

%% compare the stitch data with the sub-aperture data

% W : wavefront at sub-aperture [n1,n2 n]

% flag : overlap number [n1,n2]

169

% Q : stitch data [n1,n2]

% ---

n = size(W,3);

dev = zeros(size(flag));

Ni = max(max(flag)); % maximum overlap number

for i = 2:Ni

 ins = flag == i; %

choose the overlapped area

 for j = 1:n

 tmp = W(:,:,j);

 ing = isfinite(tmp);

 inb = ins & ing;

 dev(inb) = dev(inb)+(tmp(inb)-Q(inb)).^2/i;

 end

end

dev = sqrt(dev);

ins = flag > 1;

sgma = mean(dev(ins));

%% end of this function

function [W,Cset,Csys] = stitching_func(W,Dflag,Nf,Nset,Nsys,Zin,px,py,Nx,Ny,ip_flag)

% --

%% stitching

170

% W : wavefront that alignment error and system error are removed

% Cset : coefficient of alignment error

% Csys : coefficient of system error

% W : sub-aperture shape

% Dflag : 1 = effective,0 = non-effective

% Nf : data number

% Nset : alignment error Zernike number

% Nsys : system error Zernike number

% Zin : Zernike polynomial [Nky,Nkx,Nf,Zn] [mm]

% px,py : center position of sub-aperture [Nf,2]

% Nx,Ny : pixel number of sample coordinate

% --

DeltaPhi = zeros(Nset,Nf) ; % DeltaPhi(4,i)

Zij = zeros(Nset,Nset,Nf,Nf) ; % Zij(4,4,i,j)

DeltaE = zeros(Nsys-Nset,1) ; % DeltaE(i,j,4)

S = zeros(Nsys-Nset,Nsys-Nset) ; %

S(32,32,i)

Si = zeros(Nset,Nsys-Nset,Nf) ; % Si(4,32,i)

handle1 = waitbar(0,'Stitching status','Name','Stitching calculation') ;

for i = 1:Nf

 flag1 = false(Ny,Nx) ;

 flag1(py(i,1):py(i,2),px(i,1):px(i,2)) = Dflag(:,:,i) ;

 W_i = zeros(Ny,Nx) ;

171

 W_i(py(i,1):py(i,2),px(i,1):px(i,2)) = W(:,:,i) ; % substitute sub-aperture data

 for j = 1:Nf

 perc = ((i-1)*Nf+j)/Nf^2*100 ;

 pec_str = strcat(num2str(perc,'%5.1f'),' % finished.') ;

 waitbar(perc/100,handle1,pec_str) ;

 if i == j

 for k = 1:Nf

 if i ~= k

 flag2 = false(Ny,Nx) ;

 flag2(py(k,1):py(k,2),px(k,1):px(k,2)) = Dflag(:,:,k) ;

 flag_tmp = and(flag1,flag2) ;

 % figure(1),imagesc(flag_tmp);axis equal

 W_flag = flag_tmp(py(i,1):py(i,2),px(i,1):px(i,2)) ;

 Zij(:,:,i,j) = Zij(:,:,i,j) +

calc_Zii_Dphi_func(Nset,0,W_flag,Zin(:,:,i,:),1) ;

 end

 end

 else

 flag2 = false(Ny,Nx) ;

 flag2(py(j,1):py(j,2),px(j,1):px(j,2)) = Dflag(:,:,j) ;

 W_j = zeros(Ny,Nx) ;

 W_j(py(j,1):py(j,2),px(j,1):px(j,2)) = W(:,:,j) ;

 W_flag = and(flag1,flag2) ;

 flagi = W_flag(py(i,1):py(i,2),px(i,1):px(i,2)) ;

 flagj = W_flag(py(j,1):py(j,2),px(j,1):px(j,2)) ;

172

 if max(max(flagi)) > 0

 dif_tmp = W_j - W_i ;

 difW = dif_tmp(py(i,1):py(i,2),px(i,1):px(i,2)) ;

 DeltaPhi(:,i) = DeltaPhi(:,i) +

calc_Zii_Dphi_func(Nset,difW,flagi,Zin(:,:,i,:),2) ;

 if j > i

 Zij(:,:,i,j) =

calc_matrix_func(Nset,0,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),1) ;

 Zij(:,:,j,i) = Zij(:,:,i,j).' ;

 end

 DeltaE = DeltaE +

calc_matrix_func(Nset,Nsys,difW,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),2) ;

 S(:,:) = S(:,:) +

calc_matrix_func(Nset,Nsys,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),3) ;

 Si(:,:,i) = Si(:,:,i) +

calc_matrix_func(Nset,Nsys,0,flagi,flagj,Zin(:,:,i,:),Zin(:,:,j,:),4) ;

 end

 end

 end

end

S = -0.5*S ;

DeltaE = 0.5*DeltaE ;

waitbar(1,handle1,'Making the stitching equation.') ;

%% Stitching equation

baseN = 1 ;

Phi_Mtx = zeros(Nset*(Nf-1)+Nsys-Nset,1) ;

Z_Mtx = zeros(Nset*(Nf-1)+Nsys-Nset) ;

173

% Phi

Nt = 1:Nf ;

Nt(baseN) = [] ;

for i = 1:Nf-1

 Phi_Mtx((i-1)*Nset+1:i*Nset) = DeltaPhi(:,Nt(i)) ;

end

Phi_Mtx(Nset*(Nf-1)+1:Nset*(Nf-1)+Nsys-Nset) = DeltaE ;

for i = 1:Nf-1

 for j = 1:Nf-1

 if i == j

 Z_Mtx((i-1)*Nset+1:i*Nset,(j-1)*Nset+1:j*Nset) = Zij(:,:,Nt(i),Nt(j)) ;

 else

 Z_Mtx((i-1)*Nset+1:i*Nset,(j-1)*Nset+1:j*Nset) = -Zij(:,:,Nt(i),Nt(j)) ;

 end

 end

end

for i = 1:Nf-1

 Z_Mtx((i-1)*Nset+1:i*Nset,(Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset)) = -

Si(:,:,Nt(i)) ;

 Z_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset),(i-1)*Nset+1:i*Nset) =

Si(:,:,Nt(i)).' ;

end

Z_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-Nset),(Nf-1)*Nset+1:(Nf-1)*Nset+(Nsys-

Nset)) = S ;

%% solve the matrix problem, and obtain the alignment error and system error

waitbar(1,handle1,'SVD.') ;

% [Usvd,Ssvd,Vsvd] = svd(Z_Mtx) ;

174

% svd_eigv_th = max(max(Ssvd)) * 1.0e-10 ;

% Ssvd(Ssvd<svd_eigv_th) = 1.0e21 ;

% Sisvd = 1./diag(Ssvd) ;

% Sisvd(abs(Sisvd)<1.0e-20) = 0 ;

% Sisvd = diag(Sisvd) ;

% CZ_Mtx = Vsvd*Sisvd*Usvd'*Phi_Mtx ;

% difg = g(2:end)-g(1:end-1);

[U,S,V] = svd(Z_Mtx,0);

g = log10(diag(S));

figure,plot(g,'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);grid

dif_g = g(1:end-1)-g(2:end);

dif_g(end-3:end) = 0;

% figure,plot(dif_g,'--

rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10);grid

[~,pos] = max(dif_g);

% if ip_flag == 0

% limN = 1e-10; % •âŠÔ‚È‚µ‚Ì‚Æ‚«

% % num = rank(Z_Mtx);

% else

% % num = rank(Z_Mtx);

% limN = 1e-4; % 10^(-1.8);%•âŠÔ‚ ‚è‚Ì‚Æ‚«

% end

% pos = 48;%

for j = 1:size(S,1)

 if j > pos

175

 %if abs(S(j,j)) < limN

 S(j,j) = 0;

 else

 S(j,j) = 1/S(j,j);

 end

end

CZ_Mtx = V*S*U'*Phi_Mtx;

%%

Cset = -CZ_Mtx(1:(Nf-1)*Nset)' ; % coefficient of alignment

error [um]

Csys = -CZ_Mtx((Nf-1)*Nset+1:(Nf-1)*Nset+Nsys-Nset)' ; % coefficient of system

error[um]

waitbar(1,handle1,'Removing the system error and setting error.') ;

%% alignment error removal

for i = 1:Nf-1

 for j = 1:Nset

 W(:,:,Nt(i)) = W(:,:,Nt(i))-Cset((i-1)*Nset+j)*Zin(:,:,Nt(i),j);

 end

end

%% sysetm error removal

for i = 1:Nf

 sys_err = zeros(size(Zin(:,:,1,1))) ;

 for j = 1:Nsys-Nset

 sys_err = sys_err + Csys(j)*Zin(:,:,i,j+Nset) ;

 end

 W(:,:,i) = W(:,:,i) - sys_err ;

 W(:,:,i) = W(:,:,i).*Dflag(:,:,i) ;

176

end

close(handle1) ;

%% end of this function

% programed by Yasunori Furukawa Dec. 10, 2016

function [Q] = calc_Zii_Dphi_func(Nset,dif_W,W_flag,Zin,flag)

% --

% Q : flag:1 = Zii,2 = DeltaPhi

% Nset : number of alignment error

% dif_W :

% W_flag : [Ny,Nx]

% Zin : Zernike polynomial [Nky,Nkx,1,Nset]

% flag : 1 = Zii,2 = DeltaPhi

% --

cut = find(W_flag == true) ;% obtain overlapped data

%%

Zi = zeros(size(cut,1),Nset) ;

for i = 1:Nset

 tmp = Zin(:,:,i);

 Zi(:,i) = tmp(cut);

end

if flag == 1 % Zii

 Q = Zi'*Zi;

elseif flag == 2 % DeltaPhi

 tmp = dif_W(cut);

177

 tmp(isnan(tmp)) = 0;

 Q = Zi'*tmp;

end

function [Q] = calc_matrix_func(Nset,Nsys,dif_W,flagi,flagj,Zini,Zinj,flag)

% ---

% Q : flag : 1 = Zij,2 = E, 3 = S, 4 = Si

% Nset : alignment error number

% Nsys : system error number

% dif_W : [Nky Nkx]

% flagi : [Nky Nkx]

% flagj : [Nky Nkx]

% Zini : [Nky Nkx 1 NN]

% Zinj : [Nky Nkx 1 NN]

% flag : 1 = Zij,2 = E, 3 = S, 4 = Si

% ---

if flag == 1

 NN = Nset;

else

 NN = Nsys;

end

[n1,n2] = size(Zini(:,:,1));

tmp = reshape(Zini(:,:,1,1:NN),n1*n2,NN);

Zi = tmp(flagi,:) ;

tmp = reshape(Zinj(:,:,1,1:NN),n1*n2,NN);

178

Zj = tmp(flagj,:) ;

%% calculate matrix

if flag == 1 % Zij

 Q = Zi'*Zj;

elseif flag == 2 % E

 tmp = dif_W(flagi);

 tmp(isnan(tmp)) = 0;

 Q = (Zj(:,Nset+1:Nsys)-Zi(:,Nset+1:Nsys))'*tmp;

elseif flag == 3 % S

 Q = (Zj(:,Nset+1:Nsys) - Zi(:,Nset+1:Nsys))'*(Zj(:,Nset+1:Nsys) -

Zi(:,Nset+1:Nsys));

elseif flag == 4 % Si

 Q = Zi(:,1:Nset)'*(Zj(:,Nset+1:Nsys) - Zi(:,Nset+1:Nsys));

end

function [f] = surface_func(x,y,flag)

% ---

%% Output the test surface

% f : test surface [mm]

% x,y : coordinate [mm]

% flag : 0 = Alvarez lens

% ---

if flag == 0

 A = 0.0012;

 f = A*(1/3*x.^3+x.*y.^2);

end

179

end

%% end of this function

% programed by Yasunori Furukawa Dec.5,2016

function [qx,qy,qz] = trans_func(mxyz,th,flag,x,y,z)

% --

%% transform the coordinate

% qx,qy,qz : coordinate after transform [mm]

% mxyz : amount of shift (x,y,z) [mm]

% th : amount of rotation (thx, thy) [rad]

% flag : 1 = transform from local sample coord to CCD coord

% : -1 = transform from CCD coord to local sample coord

% x,y,z : coordinate before transform [mm]

% --

if flag == 1

 [x,y,z] = Shift_samp_func(-mxyz,x,y,z); % XYZ shift

 [x,y,z] = Rot_samp_func(-th(1),0,x,y,z); % theta x rotation

 [qx,qy,qz] = Rot_samp_func(-th(2),1,x,y,z); % theta y rotation

elseif flag == -1

 [x,y,z] = Rot_samp_func(th(2),1,x,y,z); % theta y rotation

 [x,y,z] = Rot_samp_func(th(1),0,x,y,z); % theta x rotation

 [qx,qy,qz] = Shift_samp_func(mxyz,x,y,z); % XYZ shift

end

% if flag == 1

% [x,y,z] = Shift_samp_func(mxyz,x,y,z); % XYZ shift

180

% [x,y,z] = Rot_samp_func(th(1),0,x,y,z); % theta x rotation

% [qx,qy,qz] = Rot_samp_func(th(2),1,x,y,z); % theta y rotation

% elseif flag == -1

% [x,y,z] = Rot_samp_func(-th(2),1,x,y,z); % theta y rotation

% [x,y,z] = Rot_samp_func(-th(1),0,x,y,z); % theta x rotation

% [qx,qy,qz] = Shift_samp_func(-mxyz,x,y,z); % XYZ shift

% elseif flag == 0

% [x,y,z] = Shift_samp_func(-mxyz,x,y,z);

% [x,y,z] = Rot_samp_func(-th(1),0,x,y,z);

% [qx,qy,qz] = Rot_samp_func(-th(2),1,x,y,z);

% end

end

function [xo,yo,zo] = Shift_samp_func(mxyz,x,y,z)

% --

%% Shift the sample

% xo,yo,zo : coordinate after shifting [mm]

% mxyz : amount of shift (x,y,z) [mm]

% x,y,z : coordinate before shifting [mm]

% --

xo = x + mxyz(1) ;

yo = y + mxyz(2) ;

zo = z + mxyz(3) ;

end

function [xo,yo,zo] = Rot_samp_func(th,flag,x,y,z)

% --

181

%% Rotate the sample thetax or thetay

% xo,yo,zo : coordinate after rotation [mm]

% th : Rotation angle x,y [rad]

% flag : 0 = theta x, 1 = theta y

% x,y,z : coordinate before rotation [mm]

% --

if flag == 0

 xo = cos(th)*x-sin(th)*z;

 yo = y;

 zo = sin(th)*x+cos(th)*z;

elseif flag == 1

 xo = x;

 yo = cos(th)*y-sin(th)*z;

 zo = sin(th)*y+cos(th)*z;

end

end

%% end of this function

% programed by Yasunori Furukawa in Dec.8,2016

