
EMPOWERING FPGAS FOR MASSIVELY PARALLEL APPLICATIONS

by

Suhas Ashok Shiddibhavi

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Master of Science in
Electrical and Computer Engineering

Charlotte

2018

Approved by:

Dr. Hamed Tabkhi

Dr. Ron Sass

Dr. Erik Saule

ii

c©2018
Suhas Ashok Shiddibhavi
ALL RIGHTS RESERVED

iii

ABSTRACT

SUHAS ASHOK SHIDDIBHAVI. Empowering FPGAs For Massively Parallel
Applications. (Under the direction of DR. HAMED TABKHI)

The availability of OpenCL High-Level Synthesis (OpenCL-HLS) has made FPGAs an

attractive platform for power-e�cient high-performance execution of massively paral-

lel applications. FPGAs with their customizable data-path, deep pipelining abilities

and enhanced power e�ciency features are the most viable solutions for programming

and integrating them with heterogeneous platforms. At the same time, OpenCL for

FPGAs raises many challenges which require in-depth understanding to better uti-

lize their enormous capabilities. While OpenCL has been mainly practiced for GPU

devices, research is required to further study the e�ciency of OpenCL written codes

on FPGAs and develop a framework which can help categorize OpenCL parallelism

potentials to the fullest. Aim of this work is to identify, analyze and categorize the

semantic di�erences between the OpenCL parallelism and the execution model on

FPGAs. As an end result we propose a generic taxonomy for classifying FPGAs

based on available support from the OpenCL-HLS tool-chain. At the same time, new

design challenges emerge for massive thread-level parallelism on FPGAs. One major

execution bottleneck is the high number of memory stalls exposed to data-path which

overshadows the bene�ts of data-path customization.

We introduce a novel approach for hiding the memory stalls on FPGAs when run-

ning massively parallel applications. The proposed approach is based on sub-kernel

parallelism to decouple the actual computation from memory data access (mem-

ory read/write). This approach overlaps the computation of current threads with

the memory access of future threads (memory pre-fetching at large scale). At the

same time, this work proposes a LLVM-based static analyzer to detect the prefetch-

able data of OpenCL kernels with the capability to be integrated into commercial

iv

OpenCL-HLS tools. This approach leverages the OpenCL pipe semantic to realize

the sub-kernel parallelism. The experimental results of Rodinia benchmarks on Intel

Stratix-V FPGA demonstrate signi�cant performance and energy improvement over

the baseline implementation using Intel OpenCL SDK.

The proposed sub-kernel parallelism achieves more than 2x speedup, with only 3%

increase in resource utilization, and 7% increase in power consumption which reduces

the overall energy consumption more than 40%.

To overcome the bottlenecks observed in the commercial OpenCL-HLS tool we

propose an integrated tool chain for OpenCL-HLS. The new tool-chain is combination

of already existing tool-chains for CPU, GPUs where LLVM acts as an intermediate

machine level representation to translate from OpenCL to RTL. This open source

tool chain is a proposed future extension of our work and we will be releasing it as

an open source tool as a contribution of this thesis.

v

ACKNOWLEDGEMENTS

Here I would like to express my sincere gratitude to my adviser Dr. Hamed Tabkhi

for the continuous support of my master's study and research, for his patience, moti-

vation, enthusiasm and immense knowledge. His guidance helped me in all the time

of research and writing this thesis. I would have not imagined having a better adviser

and mentor for my master's thesis study.

Besides my advisor, I would like to thank rest of my thesis committee: Dr. Ron

Sass and Dr. Erik Saule for their encouragement and insightful comments.

Finally, I would like to thank my parents, my sister, friends and tecsar team for

cheering me up and stood by me through good times and bad.

vi

DEDICATION

This thesis is dedicated to my family who has been constant source of support encour-

agement during the challenges of graduate school and life. I am thankful for having

them in my life whose good examples have taught me to work hard for the things

that I aspire to achieve.

vii

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 2

1.2. Contributions 4

1.3. Thesis Outline 5

CHAPTER 2: BACKGROUND 6

2.1. OpenCL Execution on FPGAs 9

2.2. Experimental Setup 10

CHAPTER 3: Related Work 12

CHAPTER 4: Taxonomy 15

4.1. Single Compute Unit Single Data-Path [SCUSDP] 16

4.2. Single Compute Unit Multiple Data-Path [SCUMDP] 16

4.3. Multiple Compute Unit Single Data-Path [MCUSDP] 17

4.4. Multiple Compute Unit Multiple Data-Path [MCUMDP] 18

4.5. Evaluation 18

4.5.1. Taxonomy performance results 19

4.5.2. FPGA vs GPU comparison results 22

viii

CHAPTER 5: Sub-Kernel Temporal parallelism on FPGA Devices to Hide
Memory Access Latency

30

5.1. SUB-KERNEL PARALLELISM 30

5.1.1. Case Study: Vector Add 33

5.2. LLVM-Based Memory Access Analysis 34

5.2.1. Static Memory Analysis 35

5.2.2. OpenCL-HLS Integration 36

5.3. Summary 37

5.4. Evaluation 38

5.4.1. Performance Evaluation 38

5.4.2. Resource Overhead 40

5.4.3. Power Overhead and Energy Saving 40

5.4.4. Performance per Watt 42

5.4.5. Detailed Evaluation 43

CHAPTER 6: Open Source OpenCL-HLS Tool 46

6.1. LegUP 46

6.2. Portable OpenCL(PoCL) 48

6.3. Integration of LegUP and PoCL 49

6.4. Evaluation 50

CHAPTER 7: CONCLUSIONS and FUTURE WORK 51

7.1. Conclusions 51

7.2. Future Work 52

REFERENCES 53

ix

LIST OF FIGURES

FIGURE 1.1: Memory stalls for Hotspot and BFS applications 2

FIGURE 1.2: bandwidth utilization for Hotspot and BFS applications 3

FIGURE 2.1: OpenCL programming models 6

FIGURE 2.2: OpenCL Platform Model 6

FIGURE 2.3: OpenCL Device Model 7

FIGURE 2.4: OpenCL Compute Unit model 7

FIGURE 2.5: OpenCL Execution Model 8

FIGURE 4.1: Taxonomy Grid 15

FIGURE 4.2: Single Compute Unit Single Data-Path 16

FIGURE 4.3: Single Compute Unit Multiple Data-Path 17

FIGURE 4.4: Multiple Compute Unit Single Data-Path 18

FIGURE 4.5: Multiple Compute Unit Multiple Data-Path 19

FIGURE 4.6: Speed Up of SCUMDP 20

FIGURE 4.7: Speed Up of MCUSDP 21

FIGURE 4.8: Speed Up of MCUSDP for Stream-Cluster 22

FIGURE 4.9: Speed Up of MCUMDP 23

FIGURE 4.10: Bandwidth of SCUMDP 24

FIGURE 4.11: Bandwidth of MCUSDP 25

FIGURE 4.12: Bandwidth of MCUSDP for Stream-Cluster 26

FIGURE 4.13: Bandwidth of MCUMDP 27

FIGURE 4.14: Stalls of SCUMDP 27

x

FIGURE 4.15: Stalls of MCUSDP 28

FIGURE 4.16: Stalls of MCUSDP for Stream-Cluster 28

FIGURE 4.17: Stalls of MCUMDP 29

FIGURE 4.18: FPGA vs GPU Normalized Performance/Watts 29

FIGURE 5.1: OpenCL Pipe semantic 30

FIGURE 5.2: Sub-kernel parallelism 31

FIGURE 5.3: Execution pattern comparison 32

FIGURE 5.4: Sample kernel breakdown 33

FIGURE 5.5: Memory prefetching with Pipes 34

FIGURE 5.6: Temporal parallelism at multiple levels 37

FIGURE 5.7: Performance improvement over the baseline 39

FIGURE 5.8: Memory stalls reduction over the baseline 39

FIGURE 5.9: Memory bandwidth improvement over the baseline 40

FIGURE 5.10: Resource utilization overhead over the baseline 40

FIGURE 5.11: Power overhead over the baseline 41

FIGURE 5.12: Energy saving over the baseline 42

FIGURE 5.13: Normalized Performance/Watts 43

FIGURE 5.14: B+ Tree RangeK performance improvement and memory
stalls over increasing channel depth

43

FIGURE 5.15: B+ Tree RangeK power, energy and clock frequency over
increasing channel depth

44

FIGURE 5.16: Hotspot bandwidth utilization and memory stalls over in-
creasing channel depth

44

xi

FIGURE 5.17: BFS bandwidth utilization and memory stalls over in-
creasing channel depth

45

FIGURE 6.1: Design Flow with LegUP 47

FIGURE 6.2: Design Flow with PoCL 48

FIGURE 6.3: Open Source OpenCL-HLS �ow 49

xii

LIST OF TABLES

TABLE 2.1: System characteristics used for study 10

TABLE 4.1: Number of instructions per application 23

TABLE 5.1: Variable Details 33

xiii

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit.

API Applications Programming Interface.

CPU Central Processing Unit.

CU Compute Unit.

DP Data-Path.

FPGA Field Programmable Gate Array.

GPU Graphical Processing Unit.

HLS High-level synthesis.

HPC High Performance Computing.

ISA Instruction Set Architecture.

LLVM Low Level Virtual Machine.

MCUMDP Multiple Compute Unit Multiple Data-Path.

MCUSDP Multiple Compute Unit Single Data-Path.

OpenCL Open Compute Language.

PE Process Elements.

PoCL Portable OpenCL.

RTL Resister Transistor Logic.

SCUMDP Single Compute Unit Multiple Data-Path.

SCUSDP Single Compute Unit Single Data-Path.

xiv

SDK Software Development Kit.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

CHAPTER 1: INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are one of the major architectures that

can signi�cantly bene�t from Open Computing Language (OpenCL) abstraction and

uni�cation. Open Computing Language (OpenCL) for FPGAs provides an opportu-

nity to execute massively parallel applications on FPGAs with minimum program-

ming e�ort. OpenCL High-Level Synthesis (OpenCL-HLS) enables parallel program-

mers to construct a customized data-path that can best match an application, with-

out getting drowned by implementation details. At the same time, an application

developed in OpenCL can better guide synthesis tools by explicitly exposing paral-

lelism. The two major FPGA companies (Altera and Xilinx) have already released

tool-chains for OpenCL-HLS on FPGAs [1, 2]. We also observe the integration of

FPGAs in many platforms from Amazon cloud web service [3] to Microsoft Brain-

wave project (for real-time AI) [4] down to Xilinx Zynq platforms [5, 6] for real-time

stream processing at the edge.

Despite signi�cant potential, OpenCL for FPGAs introduces a set of new design

challenges. The challenges mainly stem up from the fundamental architectural di�er-

ences between CPUs/GPUs and FPGAs. CPUs and GPUs both are Instruction Set

Architecture (ISA) based machines while FPGAs are recon�gurable platforms that

lack ISA level of abstraction. FPGAs in short do not have the concept of program

counter (PC) which is an essential component of CPUs/GPUs. FPGAs e�ciency

stems from a customized data-path, operation-level parallelism and also the ability

to exploit deep pipelining or temporal parallelism. GPUs on the other hand rely on

exploiting concurrent execution of massively parallel threads on many cores or spatial

parallelism. Throughput-oriented platforms (e.g., GPUs) often rely on built-in sched-

2

ulers to manage concurrent thread execution at massive scale (over many cores) thus

hiding memory latency. With lack of run time scheduler, memory stalls on threads

are directly exposed to the execution. As a result, if one thread is waiting for the

memory, all following threads will be stalled until the waiting thread receives the data.

This creates signi�cant data-path under-utilization for complex OpenCL kernels with

high memory access demand. Under utilization of the memory bandwidth is another

side e�ect of these memory stalls. Figure. 1.1 and Figure. 1.2 illustrates the memory

stalls, and memory bandwidth utilization for the Hotspot and BFS applications from

the Rodina benchmark suite [7], running on a Stratix-V FPGA [1]. Overall, 75% of

memory accesses in Hotspot, and 40% in BFS, generate stalls in the pipeline. This

leads to signi�cantly low bandwidth utilization (9% in Hotspot and 7% in BFS). To

enable e�cient execution of massively parallel applications on FPGAs, reducing the

memory bottleneck is paramount.

Figure 1.1: Memory stalls for Hotspot and BFS applications

1.1 Problem Statement

Since OpenCL was developed primarily for GPUs, their has been a lot of focus on

OpenCL tuning for GPUs as these devices have dominated the heterogeneous com-

puting market. In contrast OpenCL support for FPGAs is in its early stages. There

has been little prior work that considers the challenges and potential of the OpenCL

for FPGAs in depth. Now that FPGAs have gained interest in both academia and the

3

Figure 1.2: bandwidth utilization for Hotspot and BFS applications

industry, FPGA programmers and developers are responsible for understanding the

impact of source-level and synthesize decisions on the generated architecture. This

demands for an explicit understanding of the FPGA architecture when mapped to

OpenCL execution model. Along with it a generic framework such as in CPUs/GPUs

[8] is desirable so as to formalize the parallelism potentials of the FPGA.

OpenCL for FPGAs is still in its infancy. Current approaches primarily focus on

optimizing computation-path when running OpenCL kernels on FPGAs [9, 10, 11]. In

particular, we observe application-speci�c optimization (for deep learning and neural

network applications) to achieve the maximum e�ciency and minimize the memory

stalls on FPGAs [12, 13, 14]. However, there is less focus on the major bottleneck of

memory stalls. There is lack of a systematic solution to mitigate or entirely remove

memory stalls when running massively parallel applications on FPGAs.

This work presents a scalable automated mechanism to decouple the memory access

from the actual computation to hide the memory latency of massively parallel appli-

cations running on FPGA devices. In this regard, the work introduces the concept

of sub-kernel parallelism to create concurrency between the computation and mem-

ory access among the OpenCL threads. It breaks down the entire kernel to memory

access and computation sub-kernels communicating through OpenCL "Pipe" con-

struct. The work also proposes a novel LLVM-based static memory access analysis

4

for automatic detection of complex variable access patterns (beyond a constant stride)

and managing the data dependencies across the sub-kernels. LLVM analysis detects

and separates prefetchable data access (can be decoupled from the computation) and

non-prefetchable data access (runtime dependent) patterns. Our experimental results

over eight Rodinia kernels [7] running on Intel Stratix-V FPGA [1] demonstrates 2x

speedup with 40% energy reduction compared to baseline implementation.

To the best of our knowledge, this work, as it stands, is the very �rst approach

that proposes a generic synthesizable solution by introducing LLVM-based sub-kernel

parallelism for decoupling access/execute and thus large-scale prefetching when run-

ning massive parallel applications on FPGAs. In a nutshell, the contributions of this

work are:

1. Introducing sub-kernel temporal parallelism as a new level of parallelism for

OpenCL applications running on FPGAs.

2. A systematic approach for decoupling memory access from computation when

running massively parallel applications on FPGAs.

3. A Novel LLVM-based memory access analysis to extract the memory depen-

dencies and detect the prefetchable data.

1.2 Contributions

The goal of this thesis is to develop a novel design methodology to explore the

execution of massively parallel applications on recon�gurable devices. Here we outline

the contributions of this thesis.

• To explore the impact of source-code decisions we propose a new taxonomy at

OpenCL abstraction for FPGAs execution e�ciency. Here we try to achieve

maximum spatial parallelism potential to inherit the deeply pipelined architec-

ture of FPGAs.

5

• To overcome the bottleneck of memory stalls exposed to data-path we proposed

a novel solution, called sub-kernel parallelism for hiding the memory access

latency on FPGA devices when running massively parallel applications.

• To better explore and understand the execution behavior of FPGA devices and

overcome the bottlenecks of commercial HLS tools we propose an open source

OpenCL-HLS tool, integration of existing tools to produce an OpenCL to RTL

schematic which make use of LLVM compiler as intermediate machine level

representation.

1.3 Thesis Outline

The outline of this thesis is as follows. Chapter 2 reviews the background needed

for this study. It reviews OpenCL execution model on FPGAs. Chapter 3 brie�y

overviews related work in the �eld of OpenCL for FPGA devices. Chapter 4 presents

our �rst contribution for taxonomy of spatial parallelism on FPGAs. Chapter 5

describes the second contribution of sub-kernel temporal parallelism architecture ap-

proach to hide memory access latency of massively parallel applications on FPGA

devices. Chapter 6 chapter proposes open source OpenCL-HLS tool to explore the

architectural behavior of FPGAs in real-time. �nally Chapter 7 concludes thesis and

brief details about future work.

CHAPTER 2: BACKGROUND

The Open Computing Language (OpenCL)Figure. 2.1 is a heterogeneous program-

ming framework to develop applications that execute across various devices from

di�erent vendors [15, 16]. OpenCL provides a promising semantic to capture the par-

allel execution of a massive number of threads, especially when all threads perform a

�xed routine over a large volume of data. OpenCL supports a wide range of levels of

parallelism and e�ciently maps to heterogeneous systems containing CPUs, GPUs,

FPGAs, and other types of accelerators.

Figure 2.1: OpenCL programming models

Figure 2.2: OpenCL Platform Model

7

The OpenCL platform model (see Figure. 2.2) contains a processor, called host,

coordinating the execution of the program, as well as one or more accelerators, called

devices, capable of executing OpenCL C code (called kernel). The host is usually a

x86 CPU, and the devices can be a combination of CPUs, GPUs, and FPGAs. The

host code executes the serial portions of the program. The host is also responsible

for setting up the devices and managing host-to-device and device-to-host communi-

cations. The kernel code is the parallel portion of the program, which executes on

the devices.

Figure 2.3: OpenCL Device Model

Figure 2.4: OpenCL Compute Unit model

Figure. 2.3 shows the internal architecture of OpenCL device. OpenCL device

contains compute units, global memory and constant memory. Each compute unit

internally contains Process Elements(PE) with its own private memory as show in

Figure. 2.4. Local memory is shared across multiple process elements within a com-

pute unit.

Figure. 2.5 represents the OpenCL execution model. The unit of parallelism in

8

Figure 2.5: OpenCL Execution Model

OpenCL is called a work-item. All OpenCL work-items execute the same kernel over

di�erent data. The total number of work-items executing the kernel code is de�ned

by the programmer in the host code and is called an NDRange. The NDRange is an

N-dimensional index space of work-items, where N is one, two, or three. As shown in

Figure. 2.5, the NDRange is divided into work-groups, each of which contains multiple

work-items. The NDRange size (or global size), and the work-group size (called local

size), is de�ned in the host code by the programmer. A block of work-items executing

on the device simultaneously is called a wave-front. The wave-front size is architecture

dependent and is de�ned by the device vendor.

In principle, OpenCL aims to provide a universal programming interface across

many heterogeneous devices. However, OpenCL initially was developed and ported

to GPU platforms to accelerate data-parallel computations. In the past decade, many

papers have studied how best to optimize OpenCL applications on the GPU devices

[17, 18, 19]. With the recent developments on OpenCL-HLS, these applications can be

easily mapped to the FPGA devices with minimal modi�cations. However, to achieve

9

a comparable performance, the OpenCL programs need to be optimized based on the

target platform. To this end, the programmer should be aware of execution model of

FPGA. In the following, we review the OpenCL execution model of FPGA. The aim

is to highlight the impact when developing OpenCL kernels for FPGAs.

2.1 OpenCL Execution on FPGAs

Parallelism concepts on CPUs and GPUs have been extensively studied before

[8, 20, 21]. While these techniques are able to capture instruction and data level par-

allelism, they were developed for ISA speci�c architectures. Recon�gurable platforms

like FPGAs are ISA independent architectures and the same classi�cations cannot

be justi�ably applied on them. Recent improvements in OpenCL-HLS have opened

up new opportunities for the FPGA programmers to work with massively parallel

applications on FPGAs and utilize the capabilities of the FPGAs to their full poten-

tial. While there are quite a few techniques developed to aid the programmer in this

�eld, most of them still lack intuition and a solid understanding for matching such

programming capabilities on the FPGA architecture.

While GPUs o�er massively parallel �xed ALUs, the recon�gurable nature of an

FPGA allows construction of a customized data-path. A customized data-path can

optimize thread execution by removing instruction-fetch, streamlining the execution.

To increase the throughput, the generated data-path can be deeply pipelined. Deep

pipelining enables FPGAs to utilize the temporal parallelism across many hardware

threads while sharing the same data-path. Threads execute in an in-order fashion over

a deeply pipelined data-path. In the ideal situation, when there is no pipeline stall,

one thread (work-item) enters the pipeline per clock cycle, and one thread completes

its execution and exits the pipeline.

Previous studies have proposed OpenCL-HLS tools to execute OpenCL programs

on FPGAs [1, 2, 22, 23]. In our experiments we use ALtera OpenCL SDK, a widely

10

used commercial OpenCL-HLS tool [1]. OpenCL HLS primarily identi�es data level

and task level as the two core parallelism techniques[24]. We go a step further by

formalizing these ideas in the context of FPGAs.

FPGAs Memory wall is one of the primary limitation of �ne-level temporal par-

allelism on FPGAs. With no runtime single-cycle thread scheduling (as in GPUs),

memory stalls are directly exposed to the execution path. FPGAs also lack sophis-

ticated data caching and advanced hardware prefetching (as in CPUs) to reduce or

hide memory access latency. Often, OpenCL-HLS tools add large numbers of delay

bu�ers to partially hide the memory access latency.

One common solution to mitigate memory stalls is to use local memory (similar

to scratchpad memory). With local memory allocation, OpenCL-HLS tools move the

data from global memory (o�-chip) to local memory (on-chip) prior to launching at

workgroup granularity (groups of thread sharing same local memory, similar to thread

block in CUDA programming model). Local memory can potentially reduce the large

number of memory stalls. On the negative side, the memory copy time for moving

the next workgroup data from global memory space to local memory space is directly

exposed to execution.

2.2 Experimental Setup

Table 2.1: System characteristics used for study

Host Intel(R) Core(TM) i7-7700K
Host clock 4.2 GHz

FPGA Family Stratix-V
FPGA Device 5SGXMA7H2FE35C2

CLBs 234,720
Registers 939K

Block Memory bits 52,428,800
DSP Blocks 256

There are lots of benchmark suites available in market for heterogeneous devices

and we use standard OpenCL kernels from Rodinia benchmarks suite[7]. All the

11

implementations are synthesized on Stratix-V FPGA. Table 2.1 lists the parameters

of our FPGA platform. We use Intel SDK for OpenCL [24] for compiling and syn-

thesizing OpenCL code. We also use Intel SDK-OpenCL(AOCL) pro�ler to obtain

the detailed execution results. AOCL pro�ler collects kernel performance data, band-

width e�ciency of global memory, stalls (Percentage time that memory access caused

the stall in kernel execution).

CHAPTER 3: Related Work

A framework for exploring instruction and data level parallelism on ISA based

architectures i.e, CPUs and GPUs has been proposed long back [8] by Michael J

Flynn. Many other works [20, 21] have also been studied to provide an extension over

Flynn's taxonomy for di�erent multiprocessor architectures. In contrast to existing

categories for ISA based machines, the execution model of FPGAs make them di�erent

which leads to a dire need for a classi�cation of their own. OpenCL-HLS gives the

programmer such �exibility by introducing various optimization techniques. In this

work we formalize these ideas to propose a taxonomy that opens up new opportunities

for the programmer to better utilize parallelism bene�ts on FPGAs.

Performance optimization using OpenCL framework for massively parallel applica-

tions on CPUs/GPUs has become very popular [25, 26, 9]. These approaches primar-

ily focus on the application-speci�c performance optimization techniques [10, 11], or

basically making a performance comparison between FPGAs and GPUs.

The approach of decoupling [27] has been well elaborated by Dr.Smith. Which

is building blocks and has been explored and analyzed more on di�erent variety of

devices [28, 29, 30]. The approach of decoupling has been the major contribution for

understanding the access latency of memory in various model of devices.

The data request in the devices for computation has been major bottleneck as

the cost of data transfer from memory is very expensive. The immediate solution

for this problem is making data available at the time of execution. And simple ap-

proach to furnish this data is called as prefetching [31, 32]. As the name suggests

prior to the requirement understand the behaviour and keep the data available for

device for computation. There has been a lot of research done. Based on the behavior

13

prefetching can be acheived by hardware called as hardware prefetching [33, 34, 35]

or software called as software prefetching [36, 37, 38]. There has been relevant ex-

periments already done to merge both hardware and software prefetching to achieve

maximum performance [39]. Also recently, there has been more focus towards the

cache prefetching approaches [40, 41].

Availability of OpenCL-HLS for FPGAs poses many interesting research questions

to OpenCL-HLS designers and system architects. The energy e�ciency bene�ts of

FPGA devices along with the ability to employ pipelined parallelism properties make

the evaluation of OpenCL kernels on these devices very fascinating [10, 42]. Many

researches [7, 43, 44] have been conducted on OpenCL programming capabilities to

improve FPGAs e�ciency. Further, [45, 46, 47] have worked on exploiting the paral-

lelism on FPGAs with Opencl attributes as well as by suggesting new architectural

modi�cations to improve performance. In particular, we observe a signi�cant inter-

est in accelerating neural networks and deep learning applications on FPGAs using

OpenCL programming abstraction [12, 13, 14, 48, 49].

In the recon�gurable computing community, multi-thread execution on FPGAs is

a very rich topic [50, 51, 52, 53, 54, 55, 56, 57, 58]. The primary focus is on context

switching and partial recon�gurability across multiple applications. Few researchers

have also studied multi-threaded execution on single kernels [59, 60]. However, there

is a less focus on addressing the execution challenges of massively parallel applications

on FPGAs when many threads are sharing same kernel (data-path) over many data

(as in OpenCL).

Overall, despite many interesting researches in the �eld, OpenCL for FPGAs is

still at its early stages. There is a lack of in-depth analysis and generalized solutions

to enhance the OpenCL execution e�ciency on FPGA devices. The major focus

have been on creating an e�cient application-speci�c data-path rather than removing

the bottleneck of memory latency. Here, we propose a generalized design solution

14

(borrowed from throughput-oriented design principles) to overlap memory access and

computation at massive scale to hide memory latency and avoid memory stalls.

CHAPTER 4: Taxonomy

Primary motivation behind this work lies in identifying and classifying the OpenCL

HLS programming techniques and mapping them into a framework which we be-

lieve could provide better programmability to FPGA programmers and help formalize

OpenCL research in near future. To identify all possible spatial parallelism bene�ts

and maximize parallelism potentials on FPGAs we propose a taxonomy that provides

a clear classi�cation based on the type of parallelism that can be employed on the

FPGAs. Our proposed taxonomy is classi�ed into four categories. Figure. 4.1 shows

the grid depicting our taxonomy. OpenCL work-groups typically get mapped to com-

pute unit while work-items get mapped to data-path. We show one through many

compute units on the X-axis of the grid while variation of data-paths are shown on

the Y-axis.

SCUSDP MCUSDP

SCUMDPMCUMDP

Compute
UnitData

Path

Figure 4.1: Taxonomy Grid

The proposed taxonomy is classi�ed into four categories. Figure. 4.2 through Fig-

ure. 4.5 shows all possible classi�cations of OpenCL parallelism that we have proposed

in our work.

16

4.1 Single Compute Unit Single Data-Path [SCUSDP]

The Single Compute Unit Single Data-Path [SCUSDP] is the default synthesis

generated by the HLS tool. We introduce this as a starting point for comparison with

other categories. The SCUSDP which has its own memory, load-store and control

units. SCUSDP does not utilize any spatial parallelism capability when implemented

on the FPGA although the data-path generated across the compute unit does enjoy

temporal pipelining bene�ts.

Global
Memory

Load-
Store
Unit

Thread Dispatcher
Thread 'n’

Local
Memory

Control
Unit Data-Path

Single Compute Unit- Single Data Path
[SCU-SDP]

Data-Path

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Figure 4.2: Single Compute Unit Single Data-Path

4.2 Single Compute Unit Multiple Data-Path [SCUMDP]

The Single Compute Unit Multiple Data-Path [SCUMDP] (Figure. 4.3) is a �ner

grained classi�cation that involves replicating data-paths inside a single compute unit

without replicating the thread dispather and the load/store units. By replicating the

data-path, the CU is able to execute multiple threads at the same time. Semanti-

cally, SCUMDP can be considered similar to the Single Instruction Multiple Threads

(SIMT) model employed in GPUs. This also makes it possible to implement spatial

parallelism on top of the temporal parallelism. Moreover, since the same compute

unit is involved each CU has multiple ALUs to execute the same instruction across

17

multiple threads over multiple data while sharing the same control signals.

One possible downside of SCUMDP is the lock-step execution between the repli-

cated data-paths, which in turn will introduce execution stalls due to the lack of

data. Since replicated data-paths share same control signals, they need to execute in

synchronous lock-step mode. This requires the data for all the threads to be avail-

able, otherwise, all the threads will be stalled. This limits the overall performance

improvement.

Global
Memory

.
Load-
Store
Unit

Ultra Threaded Dispatcher
Thread 'n’ Thread 'n-1’ Thread '0’

Local
Memory

Control
Unit Data-PathData-Path Data-Path

Single Compute Unit- Multiple Data Path [SCU-MDP]

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Figure 4.3: Single Compute Unit Multiple Data-Path

4.3 Multiple Compute Unit Single Data-Path [MCUSDP]

The Multiple Compute Unit Single Data-Path [MCUSDP] (Figure. 4.4) is a coarser

level granularity of implementing spatial parallelism over temporal parallelism. This

approach uses the idea of replicating an entire CU including the entire data-path,

thread dispatcher, and load/store units. The dispatcher splits the workload between

multiple CUs, such that each CU performs the kernel function on a group of threads.

Thus within each CU control signals work independently.

However MCUSDP is not often feasible for complex kernels with large code size due

to limitation placed on FPGA resources. Compared to SCUMDP, MCUSDP is thus

less e�cient in terms of resource utilization. In addition to this, the most important

drawback in MCUSDP is the increased memory pressure on o�-chip memory. In

memory-bound kernels, increasing o�-chip memory accesses degrades the performance

due to the contention between CUs for the limited memory bandwidth on the device.

18

WORK GROUP DISPATCHER

Load-
Store
Unit

Thread Dispatcher
Thread 'n’

Local
Memory

Control
Unit Data-Path

Multiple Compute Unit- Single Data Path [MCU-SDP]

Load-
Store
Unit

Thread Dispatcher
Thread 'n’

Local
Memory

Control
Unit Data-Path

.

Global Memory

Data-Path Data-Path

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Thread
'0’

Thread
'1’

Thread
'2’

Thread
'3’

Figure 4.4: Multiple Compute Unit Single Data-Path

4.4 Multiple Compute Unit Multiple Data-Path [MCUMDP]

Employing multiple compute units leads to contention for global memory which in

turn might lead to undesired memory access patterns a�ecting performance. This be-

havior however can be changed by vectorizing the application along with replicating

CUs. This can be attributed to the fact that vectorizing a kernel gives an oppor-

tunity to the HLS tool to apply memory coalescing [61]. This concept is utilized in

Multiple Compute Unit Multiple Data-Path [MCUMDP] (Figure. 4.5) which is a hy-

brid model developed from the previous two classi�cations. This technique not only

makes use of pipe-lining potentials but also exploits massive parallelism across each

compute unit. This is the maximum parallelism potential that can be exploited on

the FPGAs. MCUMDP strives to o�er a balance between the major bottlenecks of

resource utilization and memory contention in MCUSDP along with stalls observed

due to lock step execution in SCUMDP.

4.5 Evaluation

Spatial Parallelism We used eight standard applications from the Rodinia bench-

mark suite[62] for our experimental evaluation purposes. They namely are Near-

est Neighbors, Srad_base(Srad extract application), Gaussian, B+Tree, Needleman

19

WORK GROUP DISPATCHER

Load-
Store
Unit

Ultra Threaded
Dispatcher

Thread 'n’ Thread 'n-1’ Thread '0’

Local
Memory

Control
Unit

Multiple Compute Unit- Multiple Data Path [MCU-MDP]

Data Path ‘n’

Data Path ‘n-1’

Data Path ‘0’

. . .

Global Memory

. . .

. Load-
Store
Unit

Ultra Threaded
Dispatcher

Thread 'n’ Thread 'n-1’ Thread '0’

Local
Memory

Control
Unit

Data Path ‘n’

Data Path ‘n-1’

Data Path ‘0’

. . .

. . .
Figure 4.5: Multiple Compute Unit Multiple Data-Path

Wunsch(NW), Breadth First Search(BFS), Hotspot and Stream cluster. We have

used the Intel SDK for OpenCL[24] based on OpenCL version 1.0 for compiling the

OpenCL code. Our FPGA implementations are synthesized on the Stratix-V FPGA

while we have used the AMD Firepro W7100 device for our GPU implementation.

Table 2.1 shows the system parameters of our FPGA and GPU platform in more

detail.

4.5.1 Taxonomy performance results

In our experiments we used the OpenCL attributes to set the number of compute

units and data-paths along with sizing the work group dimensions for the purpose

of our design. For the SCUSDP and the MCUSDP con�gurations we were able

to synthesize all eight selected applications. On the other hand for SCUMDP and

MCUMDP classi�cations we could synthesize only four applications namely, NN,

Srad_base, Gaussian and B+Tree. The use of multiple data-path that is common to

both these categories su�ers from an inherent disadvantage of requirement of lock-

step execution pattern that limits the data-path replication to be applied to simple

kernels with no data dependent or conditional branches. The OpenCL-HLS tool fails

to vectorize such applications.

Figure. 4.6 through Figure. 4.9 show the performance improvement(increase in

20

Figure 4.6: Speed Up of SCUMDP

times speedup over baseline) for each of the taxonomy categories for every single

application. Legends of SCUMDP and MCUMDP indicate the number of data-paths

from '2' through '16' while that of MCUSDP indicates number of compute units

from '2' through '8'. The graphs for compute units and data-paths labels marked

'asterisk(*)' are the ones which could not be compilable due to FPGA resources

reaching its maximum possible capacity.

Speed up due to SCUMDP can be attributed to two basic reasons:- 1. Vectorizing

the kernel allows the creation of multiple data-paths that can execute in a single

instruction multiple thread (SIMT)fashion. 2. It also avails an opportunity for the

HLS tool to introduce memory coalescing to further increase e�ciency. On the other

hand performance either saturates or decreases owing to the increase in number of

stalls with every additional data-path due to lock step execution model. Apart from

this the application itself can e�ect the parallelism potential.

SCUMDP in Figure. 4.6 shows a maximum speed up of 5.6X over baseline for

nearest neighbor application when employing '8' data-paths while saturating for '16'

data-paths. The speed up for Srad_base and B+Tree show similar trends as well.

21

Figure 4.7: Speed Up of MCUSDP

The Gaussian application on the contrary shows reducing trends, this is due to the

fact that low temporal locality hinders its ability to take full advantage of memory

coalescing thereby reducing its overall performance despite employing data-path par-

allelism. Figure. 4.10 and Figure. 4.14 show a similar correlation between the results

obtained. While bandwidth utilization tends to improve with increasing number of

data-paths(maximum being at 10.2X for Srad base with 16 data-paths) the e�ect

is more or less limited to increase in stalls due to lock step execution observed in

SCUMDP.

MCUSDP in Figure. 4.7 shows a maximum speed up of 6.7X over baseline for

srad_base application after replicating '8' compute units. The speed up however

isn't that e�ective for all other applications maintaining an average of about 1.5X

speed up. Overall more resource utilization in MCUSDP accounts for more memory

contention leading to reduced performance for most of the benchmarks. Figure. 4.11

and Figure. 4.15 provide similar characteristics with increasing number of compute

units however with more number of stall percentage compared to SCUMDP attributed

to memory contention.

22

Figure 4.8: Speed Up of MCUSDP for Stream-Cluster

The stream cluster application for MCUSDP in Figure. 4.8 o�ered negligible im-

provements at low number of compute units while showing a considerable improve-

ment only on increasing the number of CUs from 10 through 40 while achieving a

maximum speed up of 2.89X over baseline before getting limited by resources.

Figure. 4.9 shows the performance improvement of MCUMDP. In this case we could

experiment with two compute units and a maximum data-path of four. Anything over

this was not compilable due to the major bottleneck of FPGA resources. However,

the performance improvement observed is once again a trade-o� between stalls (Fig-

ure. 4.17) due to memory contention(MCUSDP) and lockstep execution(SCUMDP).

We attained a maximum speed up of 5.6x for the srad_base application using this

approach.

4.5.2 FPGA vs GPU comparison results

The following two-fold approach was used to quantify and compare the perfor-

mance of FPGA and GPU in terms of normalized performance/watt. 1. We used the

PIN Tracer tool[63] to �nd the total number of instructions, memory accesses and

branch accesses per application. We then calculated the total number of instructions

23

Figure 4.9: Speed Up of MCUMDP

utilized for computation related access as in Equation (4.1). Table 4.1 gives us a

comprehensive idea of all the instruction accesses.

Table 4.1: Number of instructions per application

Application Instructions
Memory Access Branch Access Computation

NN 971583 842826 2825645
Srad_extract 2534227 1613410 4149347

B+Tree 791962001 1431982510 2990223309
NW 37965825 12701717 63215476
BFS 131783847 99622929 135156055

HotSpot 9599430 5732485 9888922
Streamcluster 1086883070 561570230 2041351051

No. of computation access instructions = No. of total instructions−

(No. of memory access instructions+No. of Branch access)

(4.1)

2. Next, we used the CodeXL Power Pro�ler version 2.5 [64] to give us the GPU

24

Figure 4.10: Bandwidth of SCUMDP

power consumption per application. For the FPGA power we used the Intel SDK-

OpenCL(AOCL) pro�ler to collect kernel stalls(%) information and bandwidth(MBs)

utilization. We then used the Stratix R© IV and Stratix R© V PowerPlay Early Power

Estimator tool to �nd the total thermal power consumption(Watts) of the device. The

Total thermal power of the device is calculated as a sum of the Static Power(PSTATIC),

Dynamic Power(PDYNAMIC) and I/O Power [61]. Static power is the leakage power

dissipated from the chip and independent of user clocks. The I/O power is the DC

bias power and transceiver DC bias power. The Dynamic power is calculated from

internal nodes changing logic levels internal to the device in the form of equivalent

lumped capacitance's, it is given as below:-

DynamicPower = V CCINT ×
∑

ICCINT(LE/ALM,RAM,

DSP, PLL,Clocks,HSDI,Routing)

(4.2)

where power is calculated from dynamic power dissipated across each of Adaptive

Logic Modules(ALMs), RAMBlocks(RAM), DSP blocks(DSP), Phase Lock loops(PLLs),

25

Figure 4.11: Bandwidth of MCUSDP

Clock, High Speed Di�erential I/Os(HSIO) and associated routing modules.

Performance/Watt =
No.ofcomputationaccessinstructions/sec

Powerconsumption(Watts)
(4.3)

From these results we �nally calculate the Performance/Watt for every individual

application as shown in Equation (4.3). We believe that Performance/Watt is an

ideal standard for comparing FPGAs vs GPUs on the same scale. We normalize the

values obtained for curve �tting purposes. Figure. 4.18 shows a comparison between

Baseline FPGA vs Best FPGA performance obtained after applying our taxonomy vs

GPU. We observe that after using our taxonomy we get improved FPGA performance

as against baseline FPGA for all the cases. However the FPGA performs fairly better

than GPU only for three applications which have more number of regular accesses

and are embarrassingly parallel. NN, Srad base and NW exhibit such properties.

B+Tree, BFS, Hotspot and Streamcluster on the other hand have a large number

of random accesses and su�er from stalls due to unavailability of data a�ecting the

26

Figure 4.12: Bandwidth of MCUSDP for Stream-Cluster

entire FPGA pipeline. Such applications although do perform better after applying

the taxonomy, they cannot compare to the level of performance of GPUs.

27

Figure 4.13: Bandwidth of MCUMDP

Figure 4.14: Stalls of SCUMDP

28

Figure 4.15: Stalls of MCUSDP

Figure 4.16: Stalls of MCUSDP for Stream-Cluster

29

Figure 4.17: Stalls of MCUMDP

Figure 4.18: FPGA vs GPU Normalized Performance/Watts

CHAPTER 5: Sub-Kernel Temporal parallelism on FPGA Devices to Hide Memory

Access Latency

5.1 SUB-KERNEL PARALLELISM

To address memory stalls in OpenCL kernels running on FPGAs, this paper sug-

gests sub-kernel temporal parallelism to overlap memory access and thread execution

at runtime.

we use the OpenCL Pipe semantic to realize sub-kernel temporal parallelism. The

pipe semantic was introduced in OpenCL 2.0 and later integrated to the Altera (now

Intel) OpenCL 1.0 environment. It creates an e�cient data communications model

(with built-in synchronization) for OpenCL kernels exchanging data in a producer-

consumer fashion.

Producer
Kernel

Pipe Memory Buffer

Consumer
Kernel

Tid_0 Tid_1 Tid_n.

Write to Pipe Read from Pipe

Intermediate Data Buffer

Figure 5.1: OpenCL Pipe semantic

Figure. 5.1 shows a basic pipe structure. It contains pipe memory bu�er to store

the inter-kernel communication data and an intermediate bu�er to synchronize data

communication with respect to the threads id. OpenCL-HLS often synthesis the pipe

semantic in two ways: (1) Pointer-based, and (2) Channel. Pointer-based creates

the actual Pipe construct in the global memory space (o�-chip). In contrast, Chan-

nel creates an on-chip Pipe construct, assuming the availability of FPGA resources.

Channel is an e�cient way to keep the inter-kernel data communication on-chip, re-

31

moving on-chip memory access between kernels communicating through the OpenCL

pipe.

Global
Memory

Work
Group

Dispatcher

Compute
Unit 0

Compute
Unit 1

Compute
Unit ‘n’

Memory
Interface

Unit

FPGA

Thread Level
Dispatcher

Customized
Data-Path

Load/Store
Unit

Read
Kernel

Compute
Kernel

Write Back
Kernel

From
Load

To Store

Pipes

Figure 5.2: Sub-kernel parallelism

The key insight is to decouple the memory access (read and write) from the actual

computation. While some of the sub-kernels are only responsible for memory accesses,

others sub-kernels perform the computation. The sub-kernel temporal parallelism

requires a formalized data communication and synchronization model across the sub-

kernels. To maintain the current in-order thread execution model on FPGAs, we

restrict the sub-kernel parallelism to producer-consumer model.

Figure. 5.2 shows a conceptual architecture model of sub-kernel parallelism. We

propose to divide the kernel running per each Compute Unite (CU) to three major

sub-kernels: (1) Read kernel, (2) Compute kernel, (3) Write-back kernel. The kernels

execute concurrently but in an asynchronous fashion. The Read and Write back

kernels are responsible for loading from and storing to the global memory while the

Compute kernel only deals with computation.

For the data-communication and synchronization across the sub-kernels, we suggest

32

using the OpenCL Pipe construct as in Figure. 5.1. To maintain the data commu-

nicating across the sub-kernels on-chip, we use the Channel implementation of Pipe

construct. The memory accesses are issued in parallel with the computation kernel,

exchanging the data through channels. As long as the channels are not empty, the

sub-kernels execute concurrently across multiple threads.

The sub-kernel parallelism provides an opportunity to overlap the memory access

of future threads (memory read sub-kernel) with the execution of current threads

(compute sub-kernel). This o�ers memory prefetching at a massive scale. Sub-kernel

parallelism also hides the write back latency to the memory.

Global
Memory

Work
Group

Dispatcher

Compute
Unit 0

Compute
Unit 1

Compute
Unit ‘n’

Memory
Interface

Unit

FPGA

Thread Level
Dispatcher

Customized
Data-Path

Load/Store
Unit

Read
Kernel

Compute
Kernel

Write Back
Kernel

From
Load

To Store

Pipes

Figure 5.3: Execution pattern comparison

Figure. 5.3 provides further insight on hiding the memory latency with sub-kernel

temporal parallelism. It plots an abstract execution model of one OpenCL workgroup

for three scenarios: (1) baseline (generated by OpenCL-HLS), (2) baseline with local

memory, and (3) sub-kernel parallelism. In the baseline model (1), all memory stalls

directly exposed to execution. In the local memory model (2), the number of actual

memory stalls exposed to execution path can reduce noticeably. However, the latency

of memory copy operations, to copy the next workgroup data from global space (o�-

chip) to local space (on-chip), are directly exposed to the execution. In contrast,

sub-kernel parallelism model (3) provides the opportunity to overlap memory access

33

Global Memory

Load/Store Unit

A
D

D
ER

READ A

READ B

WRITE C

Compute KernelRead Kernel

Channel A

Channel B

Channel C

Global Memory

Load/Store Unit

A
D

D
ER

READ A

READ B

WRITE C

Compute KernelRead Kernel

Channel A

Channel B

Channel C

Global Memory

Load/Store Unit

A
D

D
ER

READ A

READ B

WRITE C

Compute KernelRead Kernel
Write back

Kernel

Channel A

Channel B

Channel C

Global Memory

Load/Store Unit

A
D

D
ER

READ A

READ B

WRITE C

Compute KernelRead Kernel
Write back

Kernel

Channel A

Channel B

Channel C

Figure 5.4: Sample kernel breakdown

latency and computation by decoupling and concurrent running of both processes.

With a massive number of threads and su�cient Channel depth size, the sub-kernel

parallelism can remove most of the memory stalls from execution.

5.1.1 Case Study: Vector Add

Figure. 5.4 shows the sub-kernel execution model of Vector Add. Read sub-kernel

access the vector data from global memory and copies them into channels A and

B. The compute kernel reads input channels and performs vector addition. Con-

currently, it passes the results to channel C. Write back kernel reads results from

channel C and write back them to global memory. All three kernels work in a parallel

(producer/consumer fashion) while synchronization managed by the channels. We

consider a dedicated channel per each variable. The threads in compute sub-kernel

will start the execution when all input channels have the data associated with its

thread ID.

Table 5.1: Variable Details

Benchmarks Number of Threads
Prefetchable Non-Prefetchable

Prefetchable(%)
Size per Thread(Bytes) Total Size(Bytes) Size per Thread(Bytes) Total Size(Bytes)

B+ Tree FindK 65536 12 786432 8 524288 60
B+ Tree RangeK 65536 20 1310720 0 0 100
Gaussian 65536 12 786432 0 0 100
HotSpot 16384 12 196608 0 0 100
BFS 1048576 8 8388608 12 12582912 40
NN 42764 8 342112 0 0 100
Srad Extract 65536 4 262144 0 0 100
LUD Diagonal 4096 4 16384 0 0 100

34

5.2 LLVM-Based Memory Access Analysis

The promise of sub-kernel parallelism is prefetching at massive scale by overlapping

the data access latency of future threads with the execution of current threads. The

major restriction for sub-kernel parallelism is uncertainty about variables addresses

when the address of the variables are not identi�ed prior to the computation.

To formalize the restriction of sub-kernel parallelism, we classify the global vari-

ables, based on their memory access pattern, into two major categories: (1) prefetch-

able and (2) non-prefetchable. A global variable which is statically predictable is

categorized as 'Prefetchable'. The examples of prefetchable variables are streaming

pixels or algorithm-intrinsic variables with �xed strides such as Gaussian coe�cients.

Reversely, a variable is 'Non-Prefetchable' if its address is runtime dependent. Ex-

ample of non-prefetchable data is the next data index in quicksort algorithm.

Consequently, in the underlying sub-kernel parallelism,. Figure. 5.5 shows the

architecture realization model. Prefetchable data are accessed and written back by

the read and write sub-kernels while the non-prefetchable data are directly accessed

by the compute kernel. Therefore, some of the memory stalls would be still exposed

to the execution path.

Load/Store
Unit

Read
Kernel

Write back
Kernel

Prefetchable
Data

Prefetchable
Data

Non-
Prefetchable

Data

Compute
Kernel

Global Memory

Figure 5.5: Memory prefetching with Pipes

Overall, the e�ciency of sub-kernel parallelism depends on amount and ratio of

prefetchable variables over non-prefetchable variables. Our experimental analysis

35

shows that the prefetchable variables often dominate the global memory access in

massively parallel applications.

5.2.1 Static Memory Analysis

This part presents our proposed static analysis approach to automatically identify

the prefetchable variables for the purpose of sub-kernel parallelism.

Algorithm 1 LLVM Analyzer

1: function addressAnalysis(FILE)
2: for each memAccess ∈ FILE do

3: kern← memAccess.kernel
4: reg ← memAccess.regOperation
5: ptr ← memAccess.pointer
6: indices← memAccess.indices
7: if ptr ∈ pointerList then
8: ptrList[ptr].indices← indices
9: if areV ariable(indices) then

10: if indices 6= ptrList[ptr].indices[0] then
11: ptrList[ptr].pref ← FALSE

12: end if

13: end if

14: else

15: ptrList.addPointer(ptr, indexes)
16: end if

17: ptrList[ptr].pref ← prefetch(reg)
18: end for

19: print to �le ptrList
20: end function

21: function prefetch(destRegister)
22: for each index ∈ destRegister do
23: if resolved(index) then
24: return ptrList[ptr].pref and TRUE

25: else if resolvable(index) then
26: return ptrList[ptr].pref and prefetch(index)
27: else

28: return FALSE

29: end if

30: end for

31: end function

Abstractions introduced by high-level languages like OpenCL often hide the details

of memory address calculations from the end user. To get more insight into address

calculations, we move to the lower level abstraction of LLVM. LLVM is a target-

independent programming abstraction that provides a view of an application at the

36

level of micro-ops, without a limitation on the number of available registers. This

allows for easy identi�cation of memory accesses, as well as insight into how array

indexes change during execution. To simplify this exploration, we developed a C++

based tool that automatically parses LLVM to identify prefetchable variables.

Algorithm 1 presents our proposed static memory access analysis. Memory address

calculations are captured in LLVM with the getelementptr operation (line 3 to line

16). This command is composed of a destination register, the pointer being accessed,

and the indexes of the pointer. We use this information to build a list of every pointer

access within a kernel. Each new variable is initially viewed as prefetchable. Every

time a new memory address is calculated, the PREFETCH function is called (line

17).

The PREFETCH function recursively traces the indexes of this access to de-

termine if they can be predicted statically, or not. If an index cannot be resolved

to a constant or OpenCL index (e.g., the thread ID), the entire memory access is

marked as NON-PREFETCHABLE. Similarly, if a new access to a previously identi-

�ed variable is found, we check to see if this new access could lead to an inter-thread

dependence. If an inter-thread dependence is found, the variable is marked as NON-

PREFETCHABLE. In both cases, the the PREFETCH function returns FALSE

(line 28). Otherwise, if the variable index is resolved to a constant or OpenCL index,

it marks as PREFETCHABLE, and the PREFETCH function returns TRUE (line

24). Once the tool has identi�ed the prefetchability of every variable, it will output

the results to a �le, giving the user a simpli�ed overview of memory accesses and

prefetchability (line 19).

5.2.2 OpenCL-HLS Integration

We proposed a design methodology for sub-kernel parallelism as well as static

LLVM-memory access analysis to guide the access/execution decoupling. At this

stage, we guided the OpenCL-HLS tool to create a sub-kernel execution model by

37

leveraging OpenCL pipe semantic. The design and automation principles introduced

in this paper can be easily integrated to the commercial OpenCL-HLS tools. However,

such integration requires access to the internal structure of commercial OpenCL-HLS

tools.

5.3 Summary

Overall, sub-kernel temporal parallelism introduces a new level of parallelism for

OpenCL applications when running on FPGAs. The recon�gurability of FPGA plat-

forms provide the opportunity to exploit the temporal parallelism at multiple levels

with respect to computation and memory access patterns. Figure. 5.6 classi�es the

possible levels of temporal parallelism for OpenCL abstraction on FPGA devices.

Thread-level parallelism, on the right side, is constructed by OpenCL-HLS through a

deeply pipelined data-path. Kernel-level parallelism, on the left side, is often created

by the OpenCL programmer to e�ciently construct larger applications out of multiple

kernels working in a producer and consumer fashion.

OpenCL
Temporal

Parallelism

Kernel Level Sub-Kernel
Level

Producer-
Consumer

Fashion
Split Kernel-

Our Approach

Prefetching
based on
static
analysis of a
program.

Thread Level

HLS Tool
generated
data path

Figure 5.6: Temporal parallelism at multiple levels

The sub-kernel parallelism, in the middle, introduces a new level of parallelism

for running massively parallel applications on FPGAs. In this paper, we use sub-

kernel parallelism to decouple memory access from actual computation and hiding

the latency of memory stalls. At this stage, we guided the OpenCL-HLS tool to

create a sub-kernel execution model by leveraging OpenCL pipe semantic. However,

the design and automation principles introduced in this paper can be easily integrated

38

to the commercial OpenCL-HLS tools.

5.4 Evaluation

This section presents our experimental results for evaluating the e�ciency of sub-

kernel parallelism.

For the experiments, �rst, we leveraged our proposed LLVM analyzer tool (pre-

sented in Algorithm 1) to identify prefetchable variables per kernel. the number of

prefetchable and non-prefetchable variables for each kernel. Table 5.1 lists the results

of our static LLVM analysis per each OpenCL kernel. It presents the parallelism size

(number of threads per each kernel), size of the prefetchable and non-prefetchable

variables per thread for each kernel. It also lists the overall amount of prefetchable

and non-prefetchable data size in bytes per each kernel. Overall, most of the variables

are prefetchable (suitable for decoupled memory access). Only two kernels contain

non-prefetchable variables: B+ Tree FindK and BFS. Please note that the table only

shows the global memory access demand per each thread. OpenCL-HLS tools au-

tomatically allocate on-chip memory for local variables (private memory in OpenCL

semantic).

5.4.1 Performance Evaluation

Figure. 5.7 shows the relative performance improvement of benchmarks (with sub-

kernel temporal parallelism) over the baseline implementation. It also reports the

relative improvement of local memory approach over the baseline implementation.

Overall, sub-kernel parallelism achieves up to 2x performance improvement over base-

line implementation. It also achieves the maximum performance improvement of 4.6x

for hotspot benchmark. In contrast, local memory approach is only able to achieve

1.27x speedup over baseline implementation.

In order to provide further insight regarding the source of speedup, Figure. 5.8 and

Figure. 5.9 reveal the percentage of memory stalls reduction and memory bandwidth

39

B
+T

re
e
Fin

dK

B
+T

re
e
R

an
ge

K

G
au

ss
ia

n

H
ot

Spot
B
FS

N
N

Sra
d

L
U

D
 D

ia
go

nal

A
ve

ra
ge

0

1

2

3

4

5

S
p

ee
d

U
p

Local Memory

Sub-Kernel

Figure 5.7: Performance improvement over the baseline

Figure 5.8: Memory stalls reduction over the baseline

improvement over baseline implementation, respectively 1. On average, we observe

26% of stalls reduction over baseline. We also observe 2x improvement in bandwidth

utilization on average. As an example, srad benchmark has low stalls reduction (only

18%) and small amount of prefetchable data (re�ected in Table 5.1). This leads to

a very low performance improvement, only 1.03x. In contrast, hotspot benchmark

has higher stalls reduction of 38% and more prefetchable data (as re�ected in Ta-

ble 5.1). This gives a higher performance improvement of 4.6x times over baseline.

Two other benchmarks namely B+ Tree Find K and BFS do not achieve compara-

ble speedup since they have more number of non-prefetchable variables which a�ects

their percentage of stall reduction.

Please note that, the local memory approach is also able to achieve the comparable

reduction in the memory stalls (26% over baseline). However, due to the fact that the

memory copies, from global to local space, are directly exposed to execution path, it

achieves very limited performance improvement.

1In Figure. 5.8, no improvement in memory stalls are shown by asterisk

40

B
+T

re
e
Fin

dK

B
+T

re
e
R

an
ge

K

G
au

ss
ia

n

H
ot

Spot
B
FS

N
N

Sra
d

L
U

D
 D

ia
go

nal

A
ve

ra
ge

0

1

2

3

4

B
a
n

d
W

id
th

 I
n

cr
ea

se

Local Memory

Sub-Kernel

Figure 5.9: Memory bandwidth improvement over the baseline

5.4.2 Resource Overhead

This section brie�y presents the e�ect of our proposed sub-kernel parallelism on

power, energy and resources utilization. Figure. 5.10 shows the percentage of re-

source overhead over baseline 2. The resource overhead is mainly introduced due to

additional register blocks, memory block and combinational logic which are required

for constructing the pipe (channel) semantic. On average we observe 3% increase in

register blocks, 4% increase in memory blocks and 3% increase in combinatorial logic.

Figure 5.10: Resource utilization overhead over the baseline

5.4.3 Power Overhead and Energy Saving

This section presents power overhead caused by increase in FPGAs resource uti-

lization. To calculate the power overhead, we used the Stratix V PowerPlay Early

Power Estimator tool. Total thermal power is calculated as a sum of the Static

Power(PSTATIC), Dynamic Power(PDYNAMIC) and I/O Power[61]. Static power is the

leakage power dissipated from the chip independent of user clocks. The I/O power

2In Figure. 5.10, zero resource overhead are shown by asterisk

41

B+Tre
e F

in
dK

B+Tre
e R

angeK

G
auss

ia
n

H
otS

pot
BFS

N
N

Sra
d

LU
D

 D
ia

gonal

A
ver

age
0

2

4

6

8

10

12

14

P
o
w

er
 O

v
er

h
ea

d
 (

%
)

Figure 5.11: Power overhead over the baseline

is the DC bias transceiver DC bias power. The Dynamic power is calculated from

internal nodes changing logic levels internal to the device in the form of equivalent

lumped capacitance's, it is given as below:-

DynamicPower = V CCINT ×
∑

ICCINT(LE/ALM,RAM,

DSP, PLL,Clocks,HSDI,Routing)

(5.1)

Here dynamic power dissipated is measured across each of Adaptive Logic Mod-

ules(ALMs), RAM Blocks(RAM), DSP blocks(DSP), Phase Lock loops(PLLs), Clock,

High Speed Di�erential I/Os (HSIO) and associated routing modules.

Figure. 5.11 and Figure. 5.12 presents the relative power overhead and energy

saving over the baseline implementation. On average, we observe 7% increase in

power consumption over baseline implementation. In contrast, we observe overall 40%

energy saving compared to the baseline implementation. The energy saving stems

from signi�cant speedup and reduction in overall execution time. The maximum

power overhead of 13% is obtained for b+tree rangek benchmark (due to its relatively

noticeable resource overhead, presented in Figure. 5.10). This results in only 19%

of energy saving for b+tree rangek benchmark. On the other hand, we observe only

2% power overhead for gaussian benchmark (due to its low resource overhead). The

results also show 65% energy saving for gaussian.

42

B+Tre
e F

in
dK

B+Tre
e R

angeK

G
auss

ia
n

H
otS

pot
BFS

N
N

Sra
d

LU
D

 D
ia

gonal

A
ver

age
0

20

40

60

80

E
n

er
g
y
 S

a
v
in

g
s

(%
)

Figure 5.12: Energy saving over the baseline

5.4.4 Performance per Watt

In this section, we present Performance per watt as an evaluation metric to compare

the combined performance power e�ciency of our proposed approach. To calculate

Performance per watt, we need to capture actual computation demand (arithmetic

operations) per each kernel. To derive computation demand, we pro�led the kernels,

using the PIN PYtracer tool[63], and extract the total number of instructions, memory

and branch accesses per kernel. We then estimated the total computation demand

per kernel based on Equation (5.2).

#ComputeOps = #TotalInstructions−

(#MemoryInstructions+#BranchInstructions)

(5.2)

Perf/Watt =
#ComputeInstructions/sec

Powerconsumption(Watts)
(5.3)

Equation (5.3) shows the Performance/Watt per OpenCL kernel. The Figure. 5.13

shows a comparison between Baseline FPGA performance vs Local Memory version

vs Sub-kernel version. We normalize the values obtained with respect to our proposed

sub-kernel parallelism approach. We clearly see our approach beating baseline and lo-

43

cal memory versions for all kernels, except LUD. The highest performance/Watt was

achieved for Hotspot (with 5x improvement over the baseline) and B+Tree Range K

(with more than 20x improvement over the baseline). The improvement stems from

combined e�ect of large size of prefetchable variables(Table 5.1), signi�cant reduction

in memory stalls(Figure. 5.8) and considerable improvement in performance (Fig-

ure. 5.7), against marginal power overhead (Figure. 5.11) due to increase in resources

(Figure. 5.10) for implementing the pipe.

Figure 5.13: Normalized Performance/Watts

5.4.5 Detailed Evaluation

To provide more insights on our proposed approach, this section brie�y studies

the impact of the Pipe size (channel depth) on the sub-kernel temporal parallelism.

As an example, we choose b+tree rangek for the exploration. We allocate separate

channels for each global variable that is statically prefetchable. The private variables

that are internal to each kernel are part of the data-path. These variables are not

exposed to the memory fetch overhead. For each of the global variables we increase

4 8 16 32 64 128 256

Channel Depth

10

15

20

25

30

35

40

S
p

ee
d

 U
p

 (
%

)

2.6

2.7

2.8

2.9

3

S
ta

ll
s

(%
)

SpeedUp (%)

Stalls (%)

Figure 5.14: B+ Tree RangeK performance improvement and memory stalls over
increasing channel depth

44

4 8 16 32 64 128 256

Channel Depth

220

222

224

226

F
re

q
u

en
cy

 (
M

H
z)

4 8 16 32 64 128 256

Channel Depth

2.5

2.51

2.52

P
o
w

er
 (

W
a
tt

s)

0.032

0.034

0.036

0.038

E
n

er
g
y
 (

J
o
u

le
s)

Power

Enegry

Figure 5.15: B+ Tree RangeK power, energy and clock frequency over increasing
channel depth

the pipe depths from 4 to 256 thereby increasing the channel bu�er size per variable.

Figure. 5.14 shows the percentage of performance improvement (compared to the

baseline implementation) as well as the percentage of overall memory stalls over an

exponentially increasing channel depth. We observe a gradual increase in performance

improvement (with peak improvement at the channel depth of 64). The channel

depth of 64 also results in minimum memory stalls (2.65% of total memory stalls).

We observe a reduction in performance improvement after the channel depth of 64

which is due to the propagation latency of the larger channel depth.

Figure. 5.15 plots the absolute power and energy consumption over varying channel

depth for B+ Tree RangeK. We almost observe the similar pattern of performance im-

provement and memory stalls. Interestingly, the channel depth of 64 results the lowest

frequency (221MHz) lower power consumption (2.5Watts) and energy consumption

(0.0315 Joules).

0 4 8 16 32 64 128 256
Channel Depth

9

10

11

12

13

14

15

B
an

dw
id

th
 U

ti
liz

at
io

n
(%

)

40

50

60

70

80

M
em

or
y

St
al

ls
 (

%
)

Bandwidth Utilization (%)
Memory Stalls (%)

Figure 5.16: Hotspot bandwidth utilization and memory stalls over increasing channel
depth

As additional examples, Figure. 5.16 and Figure. 5.17 present the impact on mem-

45

0 4 8 16 32 64 128 256
Channel Depth

6

8

10

12

14

16

B
an

dw
id

th
 U

ti
liz

at
io

n
(%

)

37

38

39

40

41

M
em

or
y

St
al

ls
 (

%
)

Bandwidth Utilization (%)
Memory Stalls (%)

Figure 5.17: BFS bandwidth utilization and memory stalls over increasing channel
depth

ory bandwidth utilization and memory stalls over increasing depth of pipe for Hotspot

and BFS kernels. The pipe depth zero re�ects the baseline implementation (no sub-

kernel parallelism). We observe a signi�cant reduction in memory stalls and increase

in memory bandwidth for both applications. In both kernels, we observe a huge reduc-

tion in memory stalls even with very small pipe depth (the depth of 4). For Hotspot,

the maximum bene�ts appear in the pipe size of 16. For BFS, the maximum bene-

�ts appear in the pipe size of 64. Overall, the results show a variation for optimum

channel depth size across the OpenCL kernels. This brings an interesting research

question about optimum channel depth for our sub-kernel temporal parallelism.

CHAPTER 6: Open Source OpenCL-HLS Tool

Primary focus of this work is to propose a novel OpenCL-HLS optimization method

to remove few of bottlenecks observed at comercial OpenCL-HLS compiler tool such

as

• Expand Sub-Kernel parallelism to multiple compute units

• Integrating the results of analysis(Taxonomy) to the OpenCL-HLS

In this project we combine the collected insights of previous two projects to develop

novel integrated architecture and EDA tools.

• Create open source OpenCL-HLS tool

• Create run-time OpenCL thread scheduling at FPGAs similar to GPUs

Previously, there has been a lot of research going on in the feild of compiler de-

velopment for GPUs or for CPUs[65, 66, 67]. We make use of few of the existing

open source tool chains and merge them to produce the OpenCL-HLS tool chain. We

explore LegUp and Pocl tool chains to obtain OpenCL-HLS compiler.

6.1 LegUP

LegUp is an open source high-level synthesis tool being developed at the University

of Toronto. The LegUp framework allows researchers to improve C to Verilog synthesis

without building an infrastructure from scratch. Our long-term vision is to make

FPGA programming easier for software developers. LegUp accepts a standard C

program as input and automatically compiles the program to a hybrid architecture

47

Figure 6.1: Design Flow with LegUP

containing an FPGA-based MIPS soft processor and custom hardware accelerators

that communicate through a standard bus interface.

The LegUp design �ow comprises �rst compiling and running a program on a

standard processor, pro�ling its execution, selecting program segments to target to

hardware, and then re-compiling the program to a hybrid hardware/software system.

Figure. 6.1 illustrates the detailed �ow. Referring to the labels in the �gure, at step

1, a C compiler compiles a program to a binary executable. At step 2, the executable

runs on an FPGA-based MIPS processor. At step 3 LegUp is invoked to compile

these segments to synthesizeable Verilog RTL. LegUp's hardware synthesis and soft-

ware compilation are part of the same compiler framework. Presently, LegUp HLS

operates at the function level: entire functions are synthesized to hardware from the

C source. The RTL produced by LegUp is synthesized to an FPGA implementation

using standard commercial tools at step 4. In step 6, the C source is modi�ed such

that the functions implemented as hardware accelerators are replaced by wrapper

functions that call the accelerators (instead of doing computations in software). This

new modi�ed source is compiled to a MIPS binary executable. Finally, in step 6 the

hybrid processor/accelerator system executes on the FPGA.

48

6.2 Portable OpenCL(PoCL)

PoCL is a portable open source synthesis tool developed by MIT. PoCL is imple-

mentation of the OpenCL standard (1.2 with some 2.0 features supported). In addi-

tion to producing an easily portable open-source OpenCL implementation, another

major goal of this tool is improving performance portability of OpenCL programs

with the kernel compiler and the task runtime, reducing the need for target-dependent

manual optimizations.

Figure 6.2: Design Flow with PoCL

pocl shown in Figure. 6.2 uses Clang as an OpenCL C frontend and LLVM for

kernel compiler implementation, and as a portability layer. Thus, if your desired

target has an LLVM backend, it should be able to get OpenCL support easily by

using pocl.

Figure. 6.2 is illustration of pocl's kernel compilation chain. The source code of the

kernel is read by Clang which produces an LLVM IR for the single work-item kernel

description. Alternatively, a pre-built SPIR bitcode binary can be used as an input.

49

The OpenCL C built-in functions are linked at the LLVM IR level to the kernel after

which the optional work-group function generation is done. In case the target can

execute the SPMD single work-item kernel description directly for all work-items in

the work-group (as is the case with most GPUs), or the local size is one, this step is

skipped. The work-group function generation is the last responsibility of the pocl's

kernel compiler; it helps the later target-speci�c passes (such as vectorization) by

creating parallel work-item loops which are annotated using LLVM metadata.

pocl currently has backends supporting many CPUs, ASIPs (TCE/TTA), NVIDIA

GPUs (via CUDA), HSA-supported GPUs and multiple private o�-tree targets.

In addition to providing an open source implementation of OpenCL for various

platforms, an additional purpose of the project is to serve as a research platform for

issues in parallel programming of heterogeneous platforms.

6.3 Integration of LegUP and PoCL

OpenCL
library

CLang

HLS

RTL

CLang

Leg UP Toolflow
*University of

Toronto

Portable Kernel
Compiler(POCL)

*MIT

C code

LLVM

OpenCL
code

LLVM

GPUCPU

FPGA

Bridge

OpenCL Specific
Information

Figure 6.3: Open Source OpenCL-HLS �ow

This section gives brief description of how the open source OpenCL-HLS is inte-

grated as show Figure. 6.3 keeping PoCL and LegUP as base synthesis tools. We make

use of PoCL for OpenCL kernel to produce LLVM generated code. The LLVM code

will also have meta data related to OpenCL constructs such as Barrier, local id, global

id and more. Then in second part we integrate LegUP to use the populated LLVM

50

from PoCL and generate the RTL which can be used to execute on FPGAs to ana-

lyze the metrics such as performance improvements, Stalls, Bandwidth, Power/watts,

Energy consumption, resource utilization.

6.4 Evaluation

This section gives the explanation for results of Open source OpenCL-HLS tool.

This work is still in progress.

CHAPTER 7: CONCLUSIONS and FUTURE WORK

7.1 Conclusions

This research explores and studies various programming decisions that can im-

prove the thread-level utilization, performance and occupancy on FPGAs, as well

as decisions that result in a more e�cient data-path. The focus of our study is to

identify the granularity of OpenCL threads that can exploit spatial parallelism on

top of temporal parallelism on FPGAs. The work primarily focuses on proposing a

new taxonomy based on the correlation between OpenCL parallelism abstraction and

execution semantic of FPGAs. The aim is to provide an early insight to formalize

OpenCL written codes on FPGAs in order to enhance their e�ciency guiding both

OpenCL programmers and OpenCL synthesis tools.

Several challenges were however observed in the process of carrying out various

experiments on our FPGA board. One key issue faced is hardware limitation due to

unavailability of resources when increasing the number of compute units and data-

paths for our taxonomy categories. Another key limitation occurs during data-path

replication in SCUMDP and MCUMDP where applications that have complex kernels

containing conditional branches cannot be vectorizable. This is a limitation of the

HLS tool.

Overall, taxonomy results on eight applications of rodinia benchmark indicate that

FPGA-aware OpenCL written codes can achieve up to 6.7X maximum throughput

and perform consistently for various classi�cations. Furthermore, OpenCL source-

code decisions that can exploit spatial and temporal parallelism will be able to hide

the memory access latency and thus result in a higher speedup.

52

The proposed sub-kernel temporal parallelism to hide the memory latency of mas-

sively parallel applications running on FPGA devices provides the opportunity to

prefetch the data of future threads concurrent with the execution of current threads

by creating a concurrency execution model between the computation and memory

access among the OpenCL threads. This proposed approach uses OpenCL Pipe se-

mantic to realize sub-kernel parallelism, and LLVM static analysis to identify the

statically prefetchable data. Our experimental results over eight Rodinia kernels run-

ning on Intel Stratix-V FPGA demonstrates 2x speedup with 40% energy reduction

and minimum resource utilization overhead compared to baseline implementation.

7.2 Future Work

As a future work we will be working on the development of open source Open-

HLS compiler development. This work is the integration of di�erent already existing

tool-chains such as LegUP and PoCL. In this work we mainly focus on the OpenCL

attributes which need to handled in the Backend. The front-end of the Integrator will

be the libclc or PoCL which converts OpenCL kernel into a Low Level intermediate

representation LLVM. which has been already implemented. Next step will be to

develop a back-end tool to convert LLVM to RTL design for FPGA devices. For which

we will be using LegUP as the base which supports c to RTL and give support for

OpenCL attributes. The whole motivation behind the development of this integrator

is to help in simulation of FPGA devices and understand new architecture exploration.

53

REFERENCES

[1] �Altera sdk for opencl.� http://www.altera.com/literature/

lit-opencl-sdk.jsp, 2015.

[2] �Xilinx opencl.� http://www.xilinx.com/products/design-tools/

software-zone/sdaccel.html, 2015.

[3] �Fpga developer ami.� https://aws.amazon.com/marketplace/pp/

B06VVYBLZZ, 2015.

[4] �Project brainwave for real-time ai,� 2017.

[5] J. Müller, J. Müller, and R. Tetzla�, �A new high-speed real-time video pro-
cessing platform,� in 2014 14th International Workshop on Cellular Nanoscale
Networks and their Applications (CNNA), 2014.

[6] T. Kryjak, M. Komorkiewicz, and M. Gorgon, �Real-time hardware�software
embedded vision system for its smart camera implemented in zynq soc,� Journal
of Real-Time Image Processing, 2016.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S.-H. Lee, and K. Skadron,
�Rodinia: A benchmark suite for heterogeneous computing,� in Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC),
IISWC '09, 2009.

[8] M. J. Flynn, �Some computer organizations and their e�ectiveness,� IEEE Trans.
Comput., pp. 948�960, Sept. 1972.

[9] D. Chen and D. P. Singh, �Fractal video compression in opencl: An evaluation of
cpus, gpus, and fpgas as acceleration platforms,� in 18th Asia and South Paci�c
Design Automation Conference, 2013.

[10] J. Andrade, G. Falcão, V. Silva, and K. Kasai, �Flexible non-binary ldpc de-
coding on fpgas,� in IEEE International Conf. on Acoustics, Speech, and Signal
Processing - ICASSP, vol. 1, pp. 1�5, 2014.

[11] Q. Gautier, A. Shearer, J. Matai, D. Richmond, P. Meng, and R. Kastner, �Real-
time 3d reconstruction for fpgas: A case study for evaluating the performance,
area, and programmability trade-o�s of the altera opencl,� in International Con-
ference on Field-Programmable Technology (FPT), 2014.

[12] U. Aydonat, S. O'Connell, D. Capalija, A. C. Ling, and G. R. Chiu, �An
opencl(tm) deep learning accelerator on arria 10,� CoRR, 2017.

[13] A. Putnam, A. M. Caul�eld, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. R. Larus, E. Peterson,

http://www.altera.com/literature/lit-opencl-sdk.jsp
http://www.altera.com/literature/lit-opencl-sdk.jsp
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ

54

S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, �A recon�gurable fabric
for accelerating large-scale datacenter services,� Commun. ACM, 2016.

[14] Z. Wang, B. He, W. Zhang, and S. Jiang, �A performance analysis framework for
optimizing opencl applications on fpgas,� in 2016 IEEE International Symposium
on High Performance Computer Architecture, HPCA 2016, Barcelona, Spain,
March 12-16, 2016, 2016.

[15] K. O. W. Group et al., �The opencl speci�cation,� Version, vol. 1, no. 29, p. 8,
2008.

[16] C. Grozea, Z. Bankovic, and P. Laskov, �Fpga vs. multi-core cpus vs. gpus: hands-
on experience with a sorting application,� in Facing the multicore-challenge,
pp. 105�117, Springer, 2010.

[17] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, �Accelerating computer vi-
sion algorithms using opencl framework on the mobile gpu-a case study,� in
2013 IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pp. 2629�2633, IEEE, 2013.

[18] T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, �Fast calculation
of computer-generated-hologram on amd hd5000 series gpu and opencl,� Optics
Express, vol. 18, no. 10, pp. 9955�9960, 2010.

[19] P. Mistry, Y. Ukidave, D. Schaa, and D. Kaeli, �Valar: a benchmark suite to
study the dynamic behavior of heterogeneous systems,� in Proceedings of the
6th Workshop on General Purpose Processor Using Graphics Processing Units,
pp. 54�65, ACM, 2013.

[20] D. B. Skillicorn, �A taxonomy for computer architectures,� Computer, Nov. 1988.

[21] C. D. C. Ralph Duncan, �A survev of parallel computer architectures,� IEEE
Computer Society, Feb. 1990.

[22] P. O. Jäskeläinen, S. Carlos, P. Huerta, and J. H. Takala, �Opencl-based design
methodology for application-speci�c processors,� in Embedded Computer Systems
(SAMOS), 2010 International Conference on, pp. 223�230, IEEE, 2010.

[23] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, �Synthesis of plat-
form architectures from opencl programs,� in Field-Programmable Custom Com-
puting Machines (FCCM), 2011 IEEE 19th Annual International Symposium on,
pp. 186�193, IEEE, 2011.

[24] �Intel sdk for opencl applications,� 2017.

[25] J. He, M. Lu, and B. He, �Revisiting Co-Processing for Hash Joins on the Coupled
CPU-GPU Architecture,� ArXiv e-prints, July 2013.

55

[26] J. He, S. Zhang, and B. He, �In-cache query co-processing on coupled CPU-GPU
architectures,� PVLDB, vol. 8, no. 4, pp. 329�340, 2014.

[27] J. E. Smith, �Decoupled access/execute computer architectures,� in 25 Years
ISCA: Retrospectives and Reprints, pp. 231�238, ACM, 1998.

[28] T. Chen and G. E. Suh, �E�cient data supply for hardware accelerators with
prefetching and access/execute decoupling,� in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-49, (Piscataway, NJ,
USA), pp. 46:1�46:12, IEEE Press, 2016.

[29] S. Cheng and J. Wawrzynek, �Architectural synthesis of computational pipelines
with decoupled memory access,� in FPT, pp. 83�90, IEEE, 2014.

[30] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, �A recon�gurable com-
puting approach for e�cient and scalable parallel graph exploration,� in 23rd
IEEE International Conference on Application-Speci�c Systems, Architectures
and Processors, ASAP 2012, Delft, The Netherlands, July 9-11, 2012, 2012.

[31] S. P. Vanderwiel and D. J. Lilja, �Data prefetch mechanisms,� 2000.

[32] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti, �E�ciently prefetching complex address patterns,� in Proceedings of
the 48th International Symposium on Microarchitecture, MICRO-48, 2015.

[33] B. Panda and S. Balachandran, �Hardware prefetchers for emerging parallel ap-
plications,� in Proceedings of the 21st International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT '12, 2012.

[34] T. Kim, D. Zhao, and A. V. Veidenbaum, �Multiple stream tracker: A new hard-
ware stride prefetcher,� in Proceedings of the 11th ACM Conference on Comput-
ing Frontiers, CF '14, 2014.

[35] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, �E�ective
stream-based and execution-based data prefetching,� in Proceedings of the 18th
Annual International Conference on Supercomputing, ICS '04, 2004.

[36] D. Bernstein, D. Cohen, and A. Freund, �Compiler techniques for data prefetch-
ing on the powerpc,� in Proceedings of the IFIP WG10.3 Working Conference on
Parallel Architectures and Compilation Techniques, PACT '95, 1995.

[37] G. Marin, C. McCurdy, and J. S. Vetter, �Diagnosis and optimization of appli-
cation prefetching performance,� in Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS '13, 2013.

[38] A. C. Klaiber and H. M. Levy, �An architecture for software-controlled data
prefetching,� SIGARCH Comput. Archit. News, 1991.

56

[39] D. F. Zucker, R. B. Lee, and M. J. Flynn, �Hardware and software cache prefetch-
ing techniques for mpeg benchmarks,� IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2000.

[40] N. P. Jouppi, �Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch bu�ers,� in [1990] Proceedings. The
17th Annual International Symposium on Computer Architecture, 1990.

[41] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen,
�The performance of runtime data cache prefetching in a dynamic optimization
system,� in Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

[42] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka, �Evalu-
ating and optimizing opencl kernels for high performance computing with fpgas,�
in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November
13-18, 2016, 2016.

[43] O. Segal, N. Nasiri, M. Margala, and W. Vanderbauwhede, �High level program-
ming of fpgas for HPC and data centric applications,� in IEEE High Performance
Extreme Computing Conference, HPEC 2014, Waltham, MA, USA, September
9-11, 2014, 2014.

[44] S.-D. W. Tahsin Turker Mutlugun, �OpenCL computing on FPGA using multi-
ported,� 2015.

[45] D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. B. Tahoori, �Energy ef-
�cient scienti�c computing on fpgas using opencl,� in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA 2017, Monterey, CA, USA, February 22-24, 2017, 2017.

[46] Y. Ukidave, C. Kalra, D. R. Kaeli, P. Mistry, and D. Schaa, �Runtime support
for adaptive spatial partitioning and inter-kernel communication on gpus,� in
26th IEEE International Symposium on Computer Architecture and High Per-
formance Computing, SBAC-PAD 2014, Paris, France, October 22-24, 2014,
2014.

[47] A. Momeni, H. Tabkhi, Y. Ukidave, G. Schirner, and D. R. Kaeli, �Exploring
the e�ciency of the opencl pipe semantic on an FPGA,� SIGARCH Computer
Architecture News, 2015.

[48] J. Zhang and J. Li, �Improving the performance of opencl-based FPGA acceler-
ator for convolutional neural network,� in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA 2017,
Monterey, CA, USA, February 22-24, 2017, 2017.

57

[49] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,
�Automated systolic array architecture synthesis for high throughput CNN infer-
ence on fpgas,� in Proceedings of the 54th Annual Design Automation Conference,
DAC 2017, Austin, TX, USA, June 18-22, 2017, 2017.

[50] M. Z. Hasan and S. G. Sotirios, �Customized kernel execution on recon�gurable
hardware for embedded applications,� Microprocessors and Microsystems, 2009.

[51] E. Nurvitadhi, J. C. Hoe, S.-L. L. Lu, and T. Kam, �Automatic multithreaded
pipeline synthesis from transactional datapath speci�cations,� in Proceedings of
the 47th Design Automation Conference, DAC '10, ACM, 2010.

[52] M. Tan, B. Liu, S. Dai, and Z. Zhang, �Multithreaded pipeline synthesis for data-
parallel kernels,� in Proceedings of the 2014 IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD '14, 2014.

[53] R. J. Halstead, J. Villarreal, and W. Najjar, �Exploring irregular memory ac-
cesses on fpgas,� in Proceedings of the 1st Workshop on Irregular Applications:
Architectures and Algorithms, IA3 '11, ACM, 2011.

[54] R. J. Halstead and W. Najjar, �Compiled multithreaded data paths on fpgas
for dynamic workloads,� in Proceedings of the 2013 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES '13, 2013.

[55] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, �Elastic�ow: A complexity-
e�ective approach for pipelining irregular loop nests,� in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, ICCAD '15,
2015.

[56] K. Turkington, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, �Outer
loop pipelining for application speci�c datapaths in fpgas,� IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2008.

[57] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao, �Single-
dimension software pipelining for multi-dimensional loops,� in Code Generation
and Optimization, 2004. CGO 2004. International Symposium on, 2004.

[58] M. Z. Hasan and S. G. Ziavras, �Customized kernel execution on recon�gurable
hardware for embedded applications,� Microprocessors and Microsystems - Em-
bedded Hardware Design, 2009.

[59] E. Nurvitadhi, J. C. Hoe, S. Lu, and T. Kam, �Automatic multithreaded pipeline
synthesis from transactional datapath speci�cations,� in Proceedings of the 47th
Design Automation Conference, DAC 2010, Anaheim, California, USA, July
13-18, 2010, 2010.

58

[60] R. J. Halstead and W. A. Najjar, �Compiled multithreaded data paths on fpgas
for dynamic workloads,� in International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems, CASES 2013, Montreal, QC, Canada,
September 29 - October 4, 2013, 2013.

[61] �Intel powerplay early power estimator user guide,� 2017.

[62] �Rodinia:accelerating compute-intensive applications with accelerators.� https:
//www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:

Accelerating_Compute-Intensive_Applications_with_Accelerators.

[63] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, �Pin: A binary instrumen-
tation tool for computer architecture research and education,� in Proceedings of
the 2004 Workshop on Computer Architecture Education: Held in Conjunction
with the 31st International Symposium on Computer Architecture, 2004.

[64] �Amd. codexl 3.1 edition,� 2017.

[65] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and
H. Berg, �pocl: A performance-portable opencl implementation,� International
Journal of Parallel Programming, vol. 43, no. 5, pp. 752�785, 2015.

[66] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson, �Legup: An open-source high-level synthesis tool
for fpga-based processor/accelerator systems,� 2013.

[67] J. H. Song Ruiling, �Beignet: Intel opensource project,� 2017.

https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators

59

VITA

SUHAS ASHOK SHIDDIBHAVI

EDUCATION:

Master of Science, Computer Engineering at University of North Carolina at

Charlotte, August 2016 - Present. Thesis Title: "FPGAs for Massively Parallel

Applications."

Bachelor of Engineering, Electronics & Communication Engineering at

Visvesvaraya Technological University (VTU), India, June 2010 - May 2014.

ACADEMIC EMPLOYMENT:

Graduate Teaching Assistant, Department of Electrical and Computer

Engineering, University of North Carolina at Charlotte, May 2017 - August 2017,

Responsibilities include: assisting professors with the preparation and presentation

of undergraduate courses, grading, and tutoring.

Graduate Research Assistant to Dr Hamed Tabkhi, Department of Electrical

and Computer Engineering, University of North Carolina at Charlotte, January

2017 - present.

PUBLICATIONS and ACHIVEMENTS:

Submitted a System on Chip Conference paper 2018 on "Taxonomy of Spatial

parallelism on FPGAs for Massively Parallel Applications."

60

Submitted a International Conference on Computer-Aided Design paper 2018 on

"LLVM-Based OpenCL Sub-Kernel Parallelism for Automated

Decoupled Memory Access on FPGAs."

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem Statement
	Contributions
	Thesis Outline

	BACKGROUND
	OpenCL Execution on FPGAs
	Experimental Setup

	Related Work
	Taxonomy
	Single Compute Unit Single Data-Path [SCUSDP]
	Single Compute Unit Multiple Data-Path [SCUMDP]
	Multiple Compute Unit Single Data-Path [MCUSDP]
	Multiple Compute Unit Multiple Data-Path [MCUMDP]
	Evaluation
	Taxonomy performance results
	FPGA vs GPU comparison results

	Sub-Kernel Temporal parallelism on FPGA Devices to Hide Memory Access Latency
	SUB-KERNEL PARALLELISM
	Case Study: Vector Add

	LLVM-Based Memory Access Analysis
	Static Memory Analysis
	OpenCL-HLS Integration

	Summary
	Evaluation
	Performance Evaluation
	Resource Overhead
	Power Overhead and Energy Saving
	Performance per Watt
	Detailed Evaluation

	Open Source OpenCL-HLS Tool
	LegUP
	Portable OpenCL(PoCL)
	Integration of LegUP and PoCL
	Evaluation

	CONCLUSIONS and FUTURE WORK
	Conclusions
	Future Work

	REFERENCES

