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ABSTRACT

MOO NAM KO. User-centric secure cross-site interaction framework for online social
networking services.

(Under the direction of DR. MOHAMED SHEHAB)

Social networking service is one of major technological phenomena on Web 2.0. Hun-

dreds of millions of users are posting message, photos, and videos on their profiles and

interacting with other users, but the sharing and interaction are limited within the same

social networking site. Although users can share some content on a social networking site

with people outside of the social networking sites using a public references to their content,

appropriate access control mechanisms are not supported. In this dissertation, we outline

a cross-site interaction framework and identity mapping approaches that enable social net-

work users to share their content across social networking sites. We propose a cross-site

interaction frameworkx-mngr, allowing users to interact with others on other social net-

working sites, with a cross-site access control policy. We also propose identity-mapping

approaches that map user’s identities across social networking sites. The partial mapping

approach based on a supervised learning mechanism which provides user’s identity map-

ping based on a training set composed of a small subset of the profile mappings. We

provide mechanisms to enable users to fuse identity-mapping decisions that are provided

by their friends or others on the social network. Furthermore, we propose a Game With A

Purpose (GWAP) approach that provides identity-mappings using a social network game.

The proposed framework and game are implemented on real social networking sites such

as Facebook and MySpace. The experiments are performed to evaluate the feasibility of

our approaches. A user study is also performed and the resultis included as part of our



iv

evaluation efforts for the proposed framework.
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CHAPTER 1: INTRODUCTION

With the evolution of the Web, various identity management models and privacy tech-

nologies have been introduced to solve the identity and privacy issues on the Web. In Web

1.0, most identity management system models such as silo model, centralized model, and

federated model are designed from organization’s perspective. In this environment, user’s

privacy concern is focused on how much user’s information isstored by service providers

and how much user’s information is shared with other parties. Moreover, it is difficult for

users to obtain information about actual data practices. Inother words, privacy concern is

raised by storing the user’s information in service providers. To reduce this privacy con-

cern, various privacy technologies such as P3P [20], APPEL [43] and PREP [4] have been

introduced. These technologies describe the service provider’s privacy policy and user’s

privacy preference in a machine-readable form, and providecomparison mechanisms to

help users to be aware of the service provider’s privacy policy practice.

With the introduction of Web 2.0, the digital identity industry recognized that existing

identity management models are designed without consideration of user experience, which

lead the proposal of the user-centric identity management model that allows users to con-

trol their own digital identities in the middle of the transaction between identity providers

and service providers. Therefore, users have more rights and control over their identities.

The users are able to decide which identity attributes they want to share with other service
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providers in the middle of transaction. However, the rapid growth of online social net-

working services in the Web 2.0 changes the user’s privacy game. Hundreds of millions of

users have accounts on social networking sites. Users buildsocial connections with fam-

ilies, friends, and coworkers by sharing various contents via their profile pages. Updating

the user profile pages with attractive content is a form of self-expression that increases the

interactions between friends within the social networkingsites. The posted content on the

user’s profile pages is shared with friends or others in public, but the users are often not

aware of the size of the viewers accessing the content on their profile. The posted con-

tent can be re-distributed by the viewers, and eventually the content can be shared with

unintended users who were not explicitly allowed to view that content. Such open sharing

availability of social networking sites exposes the users to a number of privacy risk [64].

Therefore, how to control the sharing of content with friends on the social networking sites

becomes critical to protect the user’s privacy [22, 47, 52].

Social networking sites provide different sets of services. For example, Facebook and

MySpace provide services that help users to connect with people and share contents (mes-

sages, photos, and videos). On the other hand, LinkedIn provides services that help users

exchange information and opportunities with a broader network of professionals. Depend-

ing on context (i.e. age, gender, location, and interest) and purpose, users select different

social networking services. For instance, major users of MySpace are teenagers, and 61 %

of Facebook users are 35 old or older [59]. From a location perspective, Facebook is the

most popular service in North America and Europe, where Orkut is more common in India

and Brazil [46]. In order to enjoy these different services,users need to create accounts on

different sites and manage their scattered profiles and friends on different social network-
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ing sites. For example, 64 % of Facebook users have MySpace accounts [56]. However,

sharing contents with scattered friends on different social networking sites is a bothersome

task to the users. Current social networking architecture provides limited content sharing

mechanisms across multiple networks. Thus, to be able to share content with friends that

are on different sites, the users have to upload duplicate content and set up their policies on

each site. Moreover, scattered friends do not generally migrate to other social networking

sites from their favorite social networking sites to accessa shared content.

Given these environments, we need to address several challenging questions:

• How to build a cross-site interaction framework that enables users to share the content

with scattered friends on different social networking sites?

• How to provide the cross-site interaction securely?

• How to control the friend’s access across social networkingsites to protect the user’s

privacy?

• How to map friend’s identities across social networking sites effectively?

These are critical questions to be answered to assure the secure content sharing across social

networking sites. Some approaches have been proposed to address the content sharing

issues on Web 2.0 [15, 30, 45, 71, 72, 74]. However, as these approaches do not handle the

content sharing issue between social networking sites, ourstudy clearly indicates that there

is a need to design a secure cross-site interaction framework that is general and flexible

enough to cope with the specific access control requirementsas well as identity mapping

issues associated with the environment. In this dissertation work, we would make one step

towards this direction.
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1.1 Statement of the Hypothesis and Approaches

Therefore, this research hypothesizes that:

Effective identity management and access control are key toenabling cross-site inter-

action framework across the online social networking services.

We first explore the current content sharing mechanisms of social networking sites and

conduct an online survey to understand the users’ content sharing experience. From these

investigation results, we formulated a set of core requirements for the cross-site interac-

tion framework. These requirements are reflected and addressed in our proposed cross-site

interaction frameworkx-mngrthat manages content sharing, identity mapping, and access

control across social networking sites. We present a cross-site policy which enables users

to setup policies that allow/deny access to their shared contents across different social net-

working sites with different policy levels. To enable secure cross-site sharing, we design

thex-mngr to support the principles of secure interoperation. We alsopropose three pol-

icy levels to provide different policy enforcement. In order to evaluate the feasibility and

usability of thex-mngr, we implement a proof-of-concept applicationMyCrossAlbumand

conduct a user study.

We also propose identity-mapping approaches that map user’s identities across social

networking sites. The partial mapping approach based on a supervised learning mecha-

nism provides user’s identity mapping refer to a small subset of the profile mappings. We

provide mechanisms to enable users to fuse identity-mapping decisions that are provided

by their friends or others on the social network. Furthermore, we propose a Game With A

Purpose (GWAP) approach that provides identity-mappings using a social network game.
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The proposed identity mapping approaches are implemented on real social networking sites

such as Facebook, MySpace, and Twitter. The experiments areperformed to evaluate the

feasibility of our approaches.

1.2 Summary of Contributions and Dissertation Organization

The contributions of our cross-site interaction frameworkand identity mapping approaches

are summarized as follows:

• We conduct a survey to investigate users’ social networkingsite experience, privacy

setting, and content sharing experience.

• We formulate a set of core requirements of cross-site interaction framework.

• We propose secure cross-site interaction framework with the cross-site policy and

policy level.

• We evaluate the secure cross-site interaction framework through performing the user

study on our proof-of-concept application.

• We propose the partial mapping approach and mechanisms thatfuse identity-mapping

decisions.

• We propose a Game With A Purpose approach for solving the profile mapping prob-

lem as a game supported by social verification.

• We prove the equilibrium of the game scoring mechanism usinggame theory to en-

sure that rational players will provide accurate profile mappings while playing the

game.
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• We implement our game as an online social networking game in Facebook, MySpace

and Twitter.

The remainder of this dissertation is organized as follows.Chapter 2 reviews digital

identity and privacy management from Web 1.0 to Web 2.0 and discusses the social network

connect services. In Chapter 3, we explore the current content sharing mechanisms of

social networking sites and discuss the survey results. Chapter 4 proposes a cross-site

interaction frameworkx-mngr, introduce a prototype implementation, and discuss the user

study results. Chapter 5 elaborates our partial identity mapping approach. A Game With A

Purpose approach is explained in Chapter 6. Finally, Chapter 7 summarizes this dissertation

and presents some directions for future work.



CHAPTER 2: BACKGROUND INFORMATION

2.1 Definition of Digital Identity

Figure 2.1: Digital Identity: Global Set of Attributes of a User

There are various definitions of digital identity. Depending on organizations, systems,

and contexts, the diverse definitions of digital identity have been created and used. From

our perspective, we define a user’s digital identity as the global set of attributes that make

up an online representation of who and what an entity is. It can include access credentials,

personal attributes and personal references. Over the Internet, a user has numerous access

credentials that are issued from different sites and different or duplicated personal attributes

and references on each site. We believe all of these attributes should be considered as the

user’s digital identity as shown in Figure 2.1. In each site,a user can be represented by

subsets of these attributes. Depending on the situation andthe context, different subsets of

attributes are used to represent the same user’s identity onthe Internet. For example, in an
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auction site, a subset of a user’s attributes such as username, password, shopping history,

and reputation record represent the user’s identity in thissite, while a subset of the user’s

attributes such as a student ID number, class record, and GPAmay represent the user’s

identity in a university site.

2.2 Digital Identity and Privacy on the Web

The rapid changes in the Internet environment have demandedthe development of new

identity management models with privacy technologies thatsupport the new demands of

the continuously evolving Internet environment. In the early stages of the Internet, silo

identity management models were commonly used, where each organization forms its own

identity management domain and has its own way of maintaining user identities that include

employees, customers, and partners. In this environment, it is difficult for users to obtain

information about actual data practices, which leads to online privacy concerns. Although

some organizations post their human-readable privacy policies on their web sites to help

build user confidence and trust in the process of personal information disclosure, it is not

enough to solve the privacy concerns since the user has a lackof knowledge and the privacy

policies can be complex. Moreover, the users must take additional time and effort to un-

derstand the content of the privacy policies to check whether the web site conforms to their

personal privacy preferences. To reduce these efforts, privacy technologies such as Platform

for Privacy Presences (P3P) [20] and P3P Preference Exchange Language (APPEL) [43]

were developed. P3P allows privacy policies to be encoded inthe machine-readable form

and APPEL provides a machine-readable rule set for the user’s privacy preferences. P3P

user agents such as web browsers and AT&T Privacy Bird [21] shows the conformance
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of the service provider’s privacy policy with the user’s privacy presences. These privacy

agents help users to be aware of the web site’s privacy policypractice.

With the evolution of the Internet, centralized identity management and federated iden-

tity management models were introduced as the next step of identity management ap-

proaches among organizations. The centralized identity management model has a single

identity provider that brokers trust to other participating members or service providers in a

circle of trust. A single identity provider has a centralized control over the identity man-

agement task, providing easy access to all service providerdomains with simplicity of

management and control. Hence, this model can reduce the maintenance cost of iden-

tity management systems. The drawback of this model is a single point of failure. If the

single identity provider fails to provide authentication service, the entire systems in the

circle of trust will be affected. User convenience can be also achieved partially in a case

where the single sign-on for users is only effective within service providers in the same

circle of trust. Microsoft Passport is a well-known centralized identity management model.

Federated identity management has multiple identity providers that securely share confi-

dential user identities with trusted organizations withinor across the circle of trust. Every

member agrees to trust user identities vouched from by othermembers of the federation.

It also facilitates single sign-on and trust, thereby allowing businesses to share the identity

management cost with its partners. Liberty Alliance is based on the federated identity man-

agement model. Since identity federation is likely to facilitate the voluminous exchange

of sensitive user information, privacy concerns associated with such exchanges are key

issues in federated identity management which have been addressed by several research

projects [4, 6, 58, 69]. The multi-leveled policy approach [60] is a simplified mechanism
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for handing privacy preference within Liberty Alliance framework using the standardized

policy levels. It allows the reply parties to represent their intended usage for users’ at-

tributes by indicating one of the standardized policy levels. It also allows users to represent

their privacy preferences for their attributes by indicating one of the standardized policy

levels. This approach simplifies policy comparison and conflict resolution. Ahn et al. [2, 4]

proposed a privacy preference expression language called PREP for storing the user’s pri-

vacy preferences with Liberty Alliance enabled attribute providers. The PREP language

enables users to tag their attributes with privacy labels and it facilitates privacy-enhanced

attribute exchange.

Figure 2.2: Trend of Digital Identity Management

In the beginning of Web 2.0, the digital identity industry recognized that existing iden-

tity management systems are designed without consideration of user experience and the

non-interoperability between identity management systems. Silo, centralized and federated

identity management models are designed from organization’s perspective. Users were not

considered carefully in the design stage. It leads users to be the weakest link in digital

identity management systems. The user-centric identity management shifts the control of
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the user digital identities from organizations to users by putting the user into the middle

of transaction between identity providers and relying parties. It allows users to decide

which identity attributes share with other trusted partiesunder what circumstance. Thereby

better protection of the user’s private information is enabled by user. As the users have

more rights and responsibilities over their identity information, user can actively control

their identities. Well-known user-centric identity management systems are OpenID [63]

and MicroSoft CardSpace [10]. In the transaction, the user’s understanding of the privacy

conflict between relying party’s privacy policy and user’s privacy preference is also impor-

tant to help users make a clear decision for the transaction.Ahn [3] proposed two privacy

preference management approaches, category-based privacy preference and claim-based

privacy preference, to the user-centric identity management model. It helps the user’s un-

derstanding for the privacy conflict of the requested claimsby using the different color of

icons on the user interface.

2.3 Digital Identity and Privacy on Social Networking Services

The trend of social networking services began from the need of reconnecting with lost

classmate. Through the social networking sites, people build their own social graph with

families, friends, and coworkers and share their favorite contents such as videos, photos,

and messages. Generally, social networking systems provide a profile page for each user

to represent themselves. The profile page includes user’s details, friends, groups, photos,

videos, updates, messages, installed applications, and soon. Decorating of profile page

with attractive contents is a form of self-expression whichincreases the interaction between

friends on social networking sites. This made the social networking sites to be popular
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immensely. Various content generated by users and interactions between users increase the

security and privacy risks.

Figure 2.3: User Data on Social Network Service

Figure 2.3 describes the user data of social network services that is composed of three

categories represented as: Identity data, social graph data, and content data. The identity

data presents “who I am", which includes the user’s identifier, profile data, and privacy

policy. The social graph data presents “who I know", which includes friendship connections

and their descriptions such as family, coworker, and friend. The content data presents “what

I have", which includes the user’s messages, photos, and allother data objects created

by user through the social networking activities. In Web 1.0, the user’s privacy concerns

mainly focus on their identity data to protect sensitive user data such as birthday, address,

and social security number. However, this trend of privacy concerns has been changed in

Web 2.0 since all users can easily post content such as message, photo, and video and share

it with other users. Especially, the user should be careful to share the content with friends
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to protect their privacy.

Most social networking sites provide an access control features to protect user data

on social network services. A simple solution is to make profiles either public or private.

Public profile can be viewed by anyone, while only an individual’s friends can access the

private profile. More complex solution is relationship based access control model since

it strikes the best balance between ease-of-use and flexibility. Profile owners can define

access control policy in privacy menu in their profile page. If a profile owner assigns an

appropriate relationship to a content or service, users whohave the assigned relationship

are allowed to access the content or service. For example, ifAlice assigns the friend re-

lationship to her photo album, her friends who have the friend relationship can access the

Alice’s photo album on her profile page.

Some researchers have proposed different access control scheme for social network-

ing services. Kiran et al. [30] presented a social-networking based access control scheme

suitable for online sharing of personal media. The authors consider the user identities as

key pair and social relationship on the basis of social attestations. Access control lists are

employed to define the access lists of users. Barbara et al. [15] proposed a more sophis-

ticated rule-based access control model for social networks. It enforced complex policies

expressed as constraints on the type, depth, and trust levelof existing relationships. The au-

thors also proposed using certificates for granting relationships authenticity, and the client-

side enforcement of access control according to a rule-based approach, where a subject

requesting to access an object must demonstrate that it has the rights of doing that. These

papers focused on access control within a single social networking site and did not consider

the access control for sharing content with outside of social networking sites.
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Figure 2.4: Privacy Setup on Facebook

The architecture of social network service was changed dramatically after launching the

developer’s APIs and application platforms (containers).By allowing third party develop-

ers interact with the social networking sites through exposing web services in the form of

APIs, social networking sites, third party sites, and usersare possible to enjoy the benefit of

APIs. The social network application platforms allow thirdparty developers create appli-

cations that run on the social networking sites. The third party applications usually provide

new services using the social network data and their own data. It helps users to decorate

their profile page with rich contents that encourage the interaction between friends. A

well-known social networking platform is the Facebook Application Platform. Although

the Facebook Application Platform is powerful, other social networking sites could not use

it since this application platform only supports the applications based on Facebook core

technologies such as FBML, XFBML, FQL, FBJS and API. Google and other social net-

working sites introduced OpenSocial that defines a common API for social applications

across multiple websites. It allows one OpenSocial application to be executed on multi-

ple social networking sites. Unlike Facebook application,OpenSocial application uses the

standard technology such as HTML, XML and Javascript. Many social networking sites

including Orkut, MySpace, Hi5, LinkedIn, Netlog, Ning and Yahoo support the OpenSo-
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cial.

In the social application model, the data flow looks like this:

Client Social Networking Site Third Party Site

Figure 2.5: Data flow of Social Application

1. A user invokes a social application in a social networkingsite.

2. The social networking site provides user data such as profiles, social graphs, and their

contents to a third party site.

3. The third party site renders a page for the user and sends itthe social networking site.

4. The social networking site send the created page to the client machine and then it is

showed to the user.

Social application is a big step in the evaluation of social network services in order to

move from the walled garden to open environment. It helps thesocial networking sites

to provide various application services to their users. It also helps the third party sites to

distribute their services rapidly via social networking sites, and keep in touch with their

users via social networking sites again. Moreover, the users can enjoy various applications

with contents on their profile page on social networking sites. For example, Facebook users

can share music with friends, create playlists and get concert alerts on their profile page by

installing the iLike’s music application.



16

These days, major social networking services have launcheda new service such as

Facebook Connect, Google Friend Connect, and MySpaceID. Here, we will call these new

services “Social Network Connect Services". The Google Friend Connect and MySpaceID

use OpenID technology and Facebook Connect use their own technologies. The Social

Network Connect Service enables any web site to extend its services to accommodate social

services without having to either host or build up its own social network. This allows users

to use their social features in other web sites without creating a username, password, filling

out a profile, and re-connecting friends. The user’s Internet activities also can be shared

with friends on social networking sites. Closed social networking sites lock their users

inside of their sites and do not share user’s social web data with others outside the social

networking sites. However, the Social Network Connect Service allows users to interact

with their friends regardless of where they are and where their friends are and take the

advantages of implicit social features in any place. By providing seamless Social Network

Connect Service across the web sites, the social networkingsites become identity providers

in Web 2.0.

Figure 2.6 shows the change of new user’s identity management selection in the reg-

istration process in TypePad during three months [38]. Theyprovide various identity

providers in login and registration page and give a choice totheir users to select their

identity providers. At the beginning, most new users selected the traditional silo identity

management system that is TypePad’s own identity management system. However, this

identity management selection trend was changed from silo to user-centric while the So-

cial Network Connect Service was widely spreading in the web. Three months later, many

new users selected the user-centric identity management systems in the registration pro-
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Figure 2.6: Change of Identity Management Selection by Month

cess. From this trend change, we figure out many Internet users select the major social

networking sites, Facebook, Twitter, Yahoo and MySpace, astheir identity providers.

In the Social Networks Connect Service, the data flow looks like this:

Client Social Networking SiteThird Party Site

Figure 2.7: Data flow of Friend Connect

1. A user invokes a service in a third party site. (Assumption: the user is already regis-

tered with the third party site using Social Networks Connect Service).

2. Third party sites request the user’s data to the social networking site.

3. The social networking site provides requested user’s data to the third party site.

4. The third party site renders a page for the user using the user data.
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5. The third party site sends the created page to the client machine and then it is showed

to the user.



CHAPTER 3: PROBLEM DOMAIN ANALYSIS

Figure 3.1: Member Overlap between Social Networking Services (image source: [56])

Social networking sites, including Tagged, Xanga, Friendster, LiveJournal, MySpace,

Facebook, and LinkedIn have developed on the Internet over the past several years. The

popularity of social networking sites on the Internet introduces the use of mediated-communication

into the relationship development process. According to ComScore Media Metrix, more

teens visit MySpace than Yahoo, MSN, or Electronic Arts gaming site. In addition, more

than half or 55 % of all online teens use social networking sites [39]. Currently, a new

type of communication behavior is emerging among young Internet users as they explore

their identities, experience with behavioral norms, and build friendships. Social networking

sites play a key role in youth culture in cyberspace [34]. Different social networking sites
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provide users with different sets of services, for example,second-Life provides a virtual

3D environment for users to build their own virtual spaces and interact with other users.

Other sites, such as MySpace, do not provide a virtual 3D environment, but at the same

time it hosts the highest number of users. To enjoy these services, users end-up creating

accounts on different sites. Figure 3.1 shows the member overlap at the social networks.

For example, 64 % of Facebook users have Myspace accounts and69 % of Hi5 users have

Myspace accounts [56].

Current social networking architectures do not provide appropriate interaction mecha-

nisms between users on different social networking sites. For instance, a useri who has a

friend relationship with the usera in SNA can not directly access the usera’s photo album

in SNB like Figure 3.2. To share a photo with the useri, the usera have to upload the

same photo album in both sites or the useri have to create an account inSNB and have an

appropriate friend relationship with usera.

Figure 3.2: Limitation of Interaction between Social Networking Sites

Enabling cross-site interaction beyond social networkingsite boundaries is a challeng-
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ing task that is related to both the semantics and the policies of the involved sites. More-

over, user privacy protection should be considered carefully since inappropriate disclosure

of content on social networking sites has led various privacy issues. For instance, peo-

ple have been denied or lost jobs because of their comments onsocial networks [5, 62].

Students were suspended after making derogatory comments on Facebook [16]. Therefore,

when a user shares content across the social networking sites, a cross-site interaction model

must prevent unintentional disclosure of content to an inappropriate user on different social

networking sites.

In order to understand the challenge of cross-site interaction more deeply, we explore

the current content sharing mechanisms of social networking sites and perform an online

survey for users’ social networking experience, privacy preference, and content sharing

experience.

3.1 Sharing Mechanisms on Social Networking Sites

Content sharing on social networking sites can be classifiedinto the internal sharing and

external sharing. Most social networking sites provide similar sharing mechanisms for the

internal sharing. Based on users’ privacy policies, only authenticated and authorized users

are allowed to access shared contents within a social networking site. In Figure 3.3, Alice

is the owner of the content (public photo, private photo) andhas friend relationship with

Bob and Carol. If Alice specifies her privacy policy to allow users who have the friend

relationship with her to access the private photo, only Carol and Bob are able to access

Alice’s private photo album. Ted is not able to access since he does not have the friend

relationship with Alice.
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Figure 3.3: Content Sharing Mechanisms on Social Networking Sites

On the other hand, current social networking sites provide immature sharing mecha-

nisms for the external sharing. One solution is to make the content publicly so that every-

one can access it. Another solution is to send a secret-link of content to friends outside of

a social networking site using email or messenger. As Figure3.3, Kathy is able to access

the private photo from external of the social networking site since she knows the secret-

link. Another newly introduced solution is to connect social networking accounts between

different social networking sites. For example, if users connect Facebook and Twitter ac-

counts for the status update service, their updated statuses are shared between the two sites.

However, these all external sharing mechanisms are not sufficient to users who want to

share content from a favorite social networking site to other social networking sites in a

controlled manner. Making content in public is inadequate to protect a private content. A

secret-link has a usability issue with security concern since users have to send a secret-link
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manually to specific friends via email. Moreover, the secret-link can be forwarded to others

who are unauthorized users. In order to reduce this securityconcern, some sites request lo-

gin to their sites to access the shared content, but it is inconvenient to users who do not have

accounts. Connecting social networking accounts only provide opt-in/out options. Strictly,

connecting social networking accounts is not a sharing mechanism since it posts the same

content across social networking sites. We believe a bettercross-site sharing mechanism is

necessary between social networking sites.

3.2 User Experience Survey for Social Networking Sites

We conducted a survey to understand user’s content sharing experience on social network-

ing sites and identify the necessity of cross-site content sharing1. The survey investigated

users’ social networking experience, privacy setting, andcontent sharing experience. On

users’ social networking experience, we inquired whether participants have accounts in

multiple social networking sites, for what reasons are participants using multiple social net-

working sites, and how often participants access social networking sites. On user’s privacy

setting, we inquired what kinds of relationships are on social networking sites, whether par-

ticipants organize customized group to apply different privacy setting, and whether partici-

pants block or except any friends to protect their privacies. On content sharing experience,

we inquired whether participants have experienced the cross-site content sharing problem,

whether participants like to share a content with a specific list of friends on other social

networking sites, and what content sharing services preferto use. The survey consisted of

a mix of multiple choice questions, yes/no questions, and Likert scale questions. We posted

1IRB Protocol No: 09-03-16, Title: Cross-site Interaction between Social Networks
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advertisements to social networking sites, micro blog sites, and campus to attract our de-

sired demographic of the general class of Internet users. Werecruited 403 participants to

start the survey, of which 306 participants completed the online survey and 97 participants

did not complete the survey. The participants received entry into a drawing for 4 iTunes gift

cards ($15), 30 Osfoora for iPhone APP, and 30 OsfooraHD for iPad APP. We investigated

the survey results of 306 participants who completed the survey.

3.2.1 Survey Results

- Most participants have accounts on multiple social networking sites.

87.6 % of participants reported they have accounts on multiple social networking sites

such as Facebook, MySpace, Orkut, LinkedIn, Twitter, YouTube, and Flickr. They selected

Facebook (82.1 %) and Twitter (81.3 %) as mainly used social networking sites. The

participants also reported the reason of using multiple social networking sites is to get

different services or to meet the scattered friends on different social networking sites (Table

3.1). “Twitter for fun, Facebook to keep in touch with family” one participant noted. In

the question about spending time of social networking services, 40.8 % of participants said

they access their social networking sites a few times a day and 42.8 % of participants said

they access the social networking sites constantly (Table 3.2). It shows most participants’

daily life is connected with their favorite social networking sites. We also asked about their

experience of social applications and social connection services such as Facebook Connect,

MySpaceID, and TwitterID. 67.0 % of participants have used social applications such as

Lockyou and Farmville and 65.0 % of participants have used the social connection services

to register or login to other 3rd party sites.
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Table 3.1: To get different service and meet scattered friends are main reasons to have
accounts in multiple social networking sites. (N=268, multiple responses and manual input
allowed)

For what reasons are you using multiple social networking sites?

To get different services 76.5 %

(Facebook: fun, LinkedIn: professional)

Friends are scattered 51.1 %

(College friends: facebook, Indian friends: orkut)

To meet others who have similar hobbies 24.3 %

For curiosity 26.5 %

Other 6.0 %

Table 3.2: 91 % of participants access their social networking sites at least one time a day
(N=306)

How often do you access social networking sites?

Constantly 42.8 %

A few times a day 40.8 %

One a day 7.5 %

Once or twice a week 6.9 %

Once a month or less 1.0 %

No answer 1.0 %
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- Some participants organized friends using the Friend Listto apply different privacy

settings.

Participants described their friendship mainly consistedof family, school friends, co-workers,

and acquaintance. 92.2 % of participants who had accounts onmultiple social networking

sites reported they used similar privacy setting between social networking sites. 35 % of

participants stated they organized their friends using theFriend List to apply different pri-

vacy settings. Their average number of Friend List is 4-6 Friend Lists (σ = 0.78). They

generally categorized their friends based on friends’ affiliation and friendship (Table 3.4).

90.7 % of them agreed that the Friend List is helpful to protect privacy on social networking

sites. We also asked to the participants who were not using the Friend List about the rea-

son why they were not using the Friend List. The participantsmentioned various reasons.

30.8 % of participants said they did not know about the FriendList. 30.8 % of participants

said they did not have many friends to use the Friend List. 22.7 % of participants said

they wanted to use it, but they were lazy. Other participantsmentioned that they did not

need it. These results showed participants who concerned about their privacies on social

networking sites organized friends into different Friend Lists and applied different privacy

setting. In addition, 67.3 % of participants reported they had blocked someone on social

networking sites to protect their privacy.

- Social networking services become major content sharing tool.

For sharing content such as photo, video, and others, we found social networking services

to be the most common route (Table 3.5). 46.1 % of participants reported they preferred to

use social networking sites for sharing content. It showed social networking services were

closely connected the daily life of participants and they preferred to use it as a sharing tool



27

Table 3.3: Most participants have similar relationships with friends (N=306, multiple re-
sponses and manual input allowed)

What kind of relationships are between you and your friends

on social networking sites?

Family 86.9 %

School friends 84.9 %

Co-workers 78.1 %

Acquaintance 68.0 %

Neighbor 23.9 %

Other 11.1 %

Table 3.4: Most participants categorize their friends based on affiliation and friendship
(N=108, multiple responses allowed)

How do you categorize your friends into friend lists?

Based on friends’ affiliation 60.2 %

(same school or same company)

Based on friendship 63.0 %

(best friends or just friends (acquaintance))

Based on location or nationality 6.5 %

Based on common interest 33.3 %

Based on common features 11.1 %

(gender, religious, or relationship status)
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Table 3.5: Most participants prefer to use social networking service for sharing content
(N=306)

When you share a content such as photo, video, and others

with friends, what service do you prefer to use?

Social network services such as Facebook and MySpace 46.1 %

Content sharing services such as Flickr and Youtube 16.3 %

Email Services such as Hotmail and gmail 9.1 %

Micro blog service such Twitter 26.8 %

Personal blog services such as LiveJournal and Blogger 1.6 %

than other sharing methods.

- A content sharing service between social networking sitesis necessary.

44.4 % of participants had the same experience that they posted same content different

social networking sites to share it with scatted friends. Weasked participants’ opinion

about the necessity of a content sharing service between social networking sites. It was

measured on a Likert scale (5 point rating scale, where 1 = Strongly Disagree and 5 =

Strongly Agree). Participants took positive attitudes toward the content sharing service

between social networking sties was necessary (M = 3.58, SD = 1.03). We also asked

participant’s opinion about the sharing content with a specific Friend List on other social

networking sites using the same Liker scale. Participants also took positive attitudes toward

the Friend List (M= 3.55,SD= 0.98). These results suggested us to share content from one

social networking site with specific Friend Lists or friendson other social networking sites.

To illustrate our challenge, we will use the following scenario throughout this disserta-
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tion.

“Alice’s high school friends and music club friends are mainly using the social networking

site B (SNB), and her college friends and coworkers are using the socialnetworking site

A (SNA). To maintain online friendship with them Alice has accounts on SNA and SNB.

Her friends on two social networking sites don’t want to migrate or access other social

networking site, so Alice has uploaded same content to both sites whenever she would like

to share some content with them. One day, Alice wants to shareher wedding album with

high school friends in SNB and college friends in SNA. However, she does not want to share

the wedding album with her ex-boyfriend Bob.”



CHAPTER 4: CROSS-SITE INTERACTION FRAMEWORK

4.1 User Profile on Social Networking Site

Users and relationships between users are the core components of social networks. Each

user manages an online profile, which usually includes information such as the user’s name,

birth date, address, contact information, emails, education, interests, photos, music, videos,

blogs, and many other items. Each userui ∈V maintains a profile, which is composed ofN

profile attributes,{Ai
1, . . . , Ai

N}. Each attribute is a name-value pair(an,av), wherean and

av represent name and value respectively. For example, a Facebook user profile includes

attributes such as birthday, location, gender, religion, etc. Users are also able to post objects

such as photos, videos, and statuses to their profiles to share with other users.

Users are connected to a set of friends, using this notion a social network can be mod-

eled as an undirected graphG(V,E), where the set of verticesV is the set of users, and the

set of edgesE is the set of friendship relationships between users. The edge(ui,u j)∈E im-

plies that usersui andu j are friends. Using the graph-based model for social networks, we

leverage the node network structural properties to provideadditional user attributes. These

attributes include several small world network metrics such as node degree centrality, be-

tweenness, hit rate, eigen values [12, 50]. Each metric provides a different indicator about

the user, for example the degree shows how popular is a user, Short et al [68] used the cen-

trality measures of degree and betweenness to analyse relationships between street gangs
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members. For a userui , we are able to computeM network metricsBi = {Bi
1, . . . ,B

i
M}. Each

metric provides a different indicator about users in a givensocial network [51, 50, 36]. Each

userui in a social networking site maintains a collection of user profile attributes and a set

of user friendships of which social network metrics are computed,Pi = {Ai ,Bi}. The neigh-

borhood of useru is the subgraphNu = (Vu,Eu), whereVu = {v|v∈ V,(u,v) ∈ E}∪{u},

Eu = {(x,y)|x,y∈Vu,(x,y) ∈ E}.

4.2 Cross-Site Interaction Framework

We propose thex-mngr framework for managing content sharing and access control be-

tween social networking sites. Thex-mngrputs the content owners in the middle of the

content sharing process between social networking sites. It gives the content owners the

right to select a policy level for sharing content to enforcethe different levels of policy. The

x-mngroperates under the principles of secure interoperation. The details of thex-mngr

framework are discussed in subsequent sections.
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32

4.2.1 Architecture

As shown in Figure 4.1, thex-mngris located between social networking sites. The social

networking sites manage their own users, contents, and local policies. We refer to the

SNB that hosts the shared content as thetarget site, and theSNA that accesses the shared

content as theviewer site. We assume that a trusted party operates thex-mngr between

the social networking sites. Thex-mngrmanages user’s identity mapping across the social

networking sites. The user identity mapping includes the content owner’s identity mapping

and friends’ identity mapping. Each user’s identities are mapped by a unique identifier in

thex-mngr. For example, Bob’s user id is (U1) onSNA and (U10) onSNB, and it is mapped

by user id (UID1) on thex-mngr. The x-mngr also manages the cross-site policies that

control access across social networking sites and the policy levels for the shared content.

All cross-site sharing states are recorded in the Sharing State. It is used to help the content

owners to maintain awareness about what they have shared andwith who, which policy

level is enforced, and who has accessed it.

4.2.2 Local Policy

In each social networking site, a user posting an object (content)O on her profile is allowed

to setup an access control policy to specify which friends are allowed/denied access to the

posted object within each social networking site. We named this access control policy

LocalPolicy. The local policy is managed and stored by each social networking site. We

define the local policy as:

Definition 1 (Local Policy) Given a social networking site, the local policy P of an object

O is defined using two access control lists, namely the allow list ACL+ and the exception
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list ACL−, which are sets of the allowed and the denied users or groups respectively. Access

control follows the closed world assumption, where if access is not explicitly specified it is

assumed to be not accessible. For an object O given ACL+ and ACL−, a user u is given

access to O with allowed operation OP iff u∈ ACL+ and u 6∈ ACL−, or in compact form

u∈ (ACL+ \ACL−). The full format of local policy is(O,ACL+,ACL−,OP).

The role ofACL+ is to enumerate the friends or groups who are allowed to access the

content with allowed operation. On the other hand, the role of ACL− is to enumerate the

friends or groups who are not allowed to access the content even if they hold an appropriate

group relationship to access the content. For example, inSNB the user Alice would like all

her high school friends (GroupG1) and music club friends (GroupG2) to be able to access

her posted wedding photo album except her friend Bob (UserU1) refer to Figure 4.1 .

Accordingly, for this photo albumACL+ = {G1,G2}, ACL− = {U1}, and access is only

given to users in{G1,G2}\{U1}. This exception based group approach(ACL+,ACL−) is

commonly adopted by the state of the art of social networkingsites such as Facebook.

4.2.3 Cross-Site Policy

The x-mngr manages access control policy for shared content across social networking

sites. We named this policyCross-Site Policy. The cross-site policy is defined as follows:

Definition 2 (Cross-Site Policy). Given aviewersite SNA and a target site SNB, the cross-

site policy PA→B specifies the access control list(O,ACL+,ACL−,OP) w.r.t subjects from

the viewer site SNA and objects from the target site SNB.

For instance, Alice posted her wedding album in the siteSNB. Alice would like to share

the wedding album in siteSNB with her college friends (GroupG5) in the siteSNA. The cor-
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responding cross-site policy for Alice’s wedding album isPA→B=(ACL+= {SNA.G5},ACL−=

{}). Figure 4.2 shows that the sitesSNA andSNB manage the local policyPA andPB respec-

tively and thex-mngrmanages the cross-site policyPA→B.

<crosssitepolicy>
<content>

<aid>12345</aid>
                 <type>album</type>
                 <url>http://photo.SNB.com/...<url>

        <owner><uid>U7</uid></owner>
                <site><sid>SNB</sid></site>
                <policylevel>strict</policylevel>

</content>
<acl>

                <allow>
     <site>

                            <sid>SNA</sid>
           <user></user>
           <group><gid>G5</gid></group>

                      </site>
</allow>

        <deny>
     <site>

                            <sid>SNA</sid>
   <user></user>
   <group></group>

                      </site>
</deny>

</acl>
        <permission>read</permission>
</crosssitepolicy>

Figure 4.2: The XML format ofCross-Site Policy

The cross-site policy includes content information, access control list, and permission

elements as described in the XML representation in Figure 4.2. The content information

includes details of shared object such as content id, type, url, owner, site, and policy level.

The access control list information includes the users and groups who are assigned toACL+

and ACL− respectively. The permission includes the allowed permissions. The default

permission is read.
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4.2.4 Secure Interoperation

From the background investigation in Chapter 3, we found thecurrent content sharing

mechanisms on social networking sites are not enough to meetthe desire of the current

social networking users who have accounts on multiple social networking sites. The users

have the willingness to share their contents from a favoritesocial networking site with

scattered friends on other social networking sites in a controlled manner. We also found

the Friend List is useful to organize friends and apply different policies. From those results,

we formulate a set of core requirements ofx-mngras follows:

• R1. The content owner should be able to share contents from his/her favorite social

networking site to other social networking sites.

• R2. Friends on the viewer sites do not need to create accounts on the target site.

Friends are able to access the shared content from their favorite viewer sites.

• R3. The content owner should be able to set up access control policies for sharing

contents across sites. The content owner should be able to specify the policies using

Friend Lists or friends.

• R4. Shared content should not be accessed by unintended friendsacross sites. For

example, if Alice blocks Bob to access her wedding album on one social networking

site, Bob must be blocked for accessing the shared wedding album from other social

networking sites.

• R5. The content owner should be able to know which content is being access by who,

when, and where, and be able to revoke an authorization at anytime if necessary.



36

• R6. The content owner should be able to select a different policyenforcement for

sharing content based on her privacy concern for sharing content.

In addition to the core requirements, thex-mngrshould maintain both the autonomy and

security principles of secure interoperation [31, 32, 66].The autonomy principle requires

that any access permitted within an individual site must also be permitted in the same site

under secure interoperation. The security principle requires that any access not permitted

within an individual site must also be denied under secure interoperation.

Definition 3 (Safe). The x-mngr issafeif it does not deny legal requests or permit illegal

requests from a viewer site to a target site.

The x-mngrhas no control on enforcing the local policy on local sites. For example,

the local policyPB is controlled and enforced by siteSNB irrespective of thex-mngrde-

cisions. It implies that theautonomy principleis obeyed. The challenge is to enforce the

security principleas it requires thex-mngrto deny access to objects that would have been

denied by the target site’s local policyPB. For an objectO ∈ SNB with a local policyPB

defined asPB.ACL+ andPB.ACL−, and a cross-site policyPA→B defined byPA→B.ACL+

andPA→B.ACL−, a useru from the viewer siteSNA is given access to objectO∈ SNB if all

the below conditions are satisfied:

• C1. u∈ PA→B(ACL+ \ACL−)

• C2. MA→B(u) 6∈ PB(ACL−)

The condition (C1) ensures that the requesting useru∈ SNA from the viewer site is per-

mitted access via the cross-site policyPA→B. The condition (C2) involves the user identity
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mapping functionMA→B : u→ v, whereu∈ SNA andv∈ SNB, which maps a useru from a

viewer site to a corresponding userv from the target site. The mapped userv= MA→B(u)

is checked againstPB(ACL−) to ensure that this user is not explicitly denied access by be-

ing in the exception access list in thetargetsiteSNB. The condition (C2) ensures that the

exception list of thetargetsite is respected, and it is not violated when requests are made

through thex-mngrframework.

4.2.5 Policy Levels

In subsession 4.2.4, the condition C1 and C2 are only appliedwhen a viewer has accounts

on bothSNA andSNB and the content owner has specified thePB.ACL−. Depending on the

state of viewer’s accounts and the privacy sensitivity of the shared content, the condition

C1 and C2 vary. For example, some viewers only have accounts on the viewer site, whereas

other have accounts in both sites. Some contents are very private, so it might be shared with

a specific friend group on the viewer sites. To support various cross-site sharing cases, we

formulate three different policy levels as Figure 4.3 describes.

• StrictLevel: The first condition (C1) ensures that a vieweru∈ SNA from the viewer

site is permitted access via the cross-site policyPA→B. The second condition (C2)

ensures that the mapped userMA→B(u) is not explicitly denied by the local policy

PB(ACL−). If the vieweru has accounts on both the viewer site and the target site,

the viewer must satisfy the condition (C2), but if the vieweru only has an account on

the viewer site, the condition (C2) is not enforced. The strict policy level fits to the

content owners who want to share a private content, and have blocked friends on the

target site.
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Figure 4.3: Policy Levels

• GeneralLevel: it focuses on the cross-site policy. The first condition (C1) ensures

that the vieweru ∈ SNA from the viewer site is permitted access via the cross-site

policyPA→B. The second condition (C2) is not considered since the viewer u only has

account on the viewer site. This policy level is suitable forgeneral content sharing

between social networking sites.

• PublicLevel: The cross-site policy is setup asPA→B

(ACL+{ALL}). By adding ALL value toACL+, any vieweru∈ SNA from the viewer

site can access the shared content. The second condition (C2) is not considered since

the viewer only has an account on the viewer site.

Depending on sensitivity of sharing content and local policy, the content owners are

able to assign three different policy levels to the sharing content. It will give the content
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owners more flexibility in policy enforcement for sharing content.

4.3 Implementation ofx-mngr

As a proof of concept, we provided an implementation ofx-mngrframework between Face-

book and MySpace. We developed a social application namedMyCrossAlbumthat enables

users to share photos with their friends between Facebook and MySpace. TheMyCrossAl-

bumapplication is built by Adobe Flex 4.0 to provide a rich user experience. By using

the Facebook Connect and MySpaceID, the users are able to connect their accounts on the

MyCrossAlbumapplication. The Facebook Graph API and MySpace RESTful APIwere

used to access the owner’s profiles, Friend Lists, and friends’ profiles in both Facebook and

MySpace. Thex-mngrsite is developed using PHP and MySQL technologies. It manages

user’s identity mapping, cross-site policies, and shared state. It provides APIs to theMy-

CrossAlbumapplication in order to exchange these data. We assumed thex-mngrsite is

a trusted party between involved social networking sites, and the local policy is stored in

each social networking site1.

Our prototype version ofMyCrossAlbumhas several menus such asabout, Sharing

Photos, My Photos, Friends’ Photos, Friend Mapping, andSharing State. Theaboutmenu

provide a brief introduction of the application, and Facebook connect and MySpaceID to

help the owner to connect their accounts. TheSharing Photosmenu enables the owner

to add a photo toMyCrossAlbumand specify the cross-site policy with policy level. The

MyCrossAlbumsends the sharing photo and policy information thex-mngr via API call.

The My Photosmenu displays owner’s shared photos.Friends’ Photosmenu helps the

1Since current social networking sites do not allow 3rd partysites to access user’s local policy
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Figure 4.4:MyCrossAlbumApplication on Facebook

content owner to explore friend’s shared photo. TheFriend Mappinghelps users to manage

friends’ identity mapping based on the recommendation mapping and manual mapping.

The last menuSharing Statehelps user to manage the cross-site policy and know who have

accessed photos and from which site. It helps the content owner to get a clear understanding

of content sharing state.

4.4 User Study

To evaluate the approach, we processed a usability user study for the MyCrossAlbum ap-

plication that is a prototype implementation of thex-mngrframework.

We conducted a user study to assess participants understanding of thex-mngr frame-
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work and usability of theMyCrossAlbuminterfaces. We recruited 13 participants from a

university community. At first we conducted a similar surveythat we used in the section 3.2

to understand the participants social networking experience, privacy concern, and content

sharing experience. After the survey, we showed an animatedvideo describing the con-

cept ofx-mngrand process of content sharing between two social networking sites. The

animated video took approximately 2 minutes to view. After watching the video, the partic-

ipants answered questions about thex-mngrframework. Then, we gave a description of the

policy levels that explains the purpose of policy levels andhow it works. The participants

also answered questions about the policy levels. After that, we conducted usability test for

the MyCrossAlbuminterfaces. The purpose of this usability test is to measurehow well

the participants specify the cross-site policy on the cross-site policy interface, and to asses

the awareness of the participants on the state of the sharingcontent via the state of sharing

photo interface. In the usability test of cross-site policyinterface, we gave a mission on the

top of the interface and asked the participants to completedthe mission using the cross-site

policy interface. The mission included assigning a policy level, adding a Friend List with

excepting one of members, and adding a friend to the policy. We set up the interface to

show a mock Friend Lists, friends and a photo based on the scenario in the Chapter 3. We

also recorded the participant’s interactions on our server. In the usability test of the state

of sharing photo interface, we setup a mock sharing state that shows several sharing photos

with cross-site policy and policy level, and access historyas Figure 4.5 shows. We gave

several questions to the participants and asked them to figure out the answers using the state

of sharing photo interface. The survey and questions consisted of a mix of multiple-choice

questions, yes/no questions, true/false quizzes and Likert scales. The participants received
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entry into a drawing for 5 iTunes gift cards ($10).

(a) The Cross-Site Policy Panel (b) The Access History Panel

Figure 4.5: The State of Sharing Photo Interfaces

4.4.1 User Study Results

We asked two true/false quizzes about thex-mngr framework after watching the video.

One quiz is “Thex-mngr framework helps the user to share content with friends between

different social networking sites". All participants answered correctly. We also measured

the usefulness and preference of thex-mngrframework. It was measured on a Likert scale

(5 point rating scale, where 1 = Strongly Disagree and 5 = Strongly Agree). The partic-

ipants indicated that the content sharing across social networking sites using thex-mngr

framework is useful (M = 4.34, SD = 0.87), and they have the willingness to use it (M=

3.92, SD = 1.19). An independent-samples t-test was conducted to compare the willingness

between the participants (N=9), who have accounts on multiple social networking sites and
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the participants (N=4) who have an account on a single socialnetworking site. There was

no different for the willingness between the participants who have accounts on multiple

social networking sites (M=4.11, SD=1.36) and the participants who have accounts on a

single social networking site (M=3.5, SD=0.57) conditions: t(11)=0.85, p=0.42. The dif-

ficulty of understanding and usefulness for the privacy level was measured on the Likert

scale. The question is “The concept of policy level is difficult to understand". The partici-

pants disagreed on the question (M=2.46, SD=1.05) and agreed the policy level is a useful

way to control the policy enforcement for sharing content across social networking sites

(M=4.00, SD=0.58). These results showed the participants understood thex-mngrframe-

work and policy level before we conducted the usability test. In addition, the participants

had a positive attitude for thex-mngrframework and the policy level.

In the usability test of the cross-site policy interface, weassigned the participants the

following task: “Alice wants to share her wedding photo withthe college Friend List ex-

cept John. Alice also wants to share the photo with Mary. Alice wants to enforce local

policy and cross-site policy together". The task measures whether the participants are able

to select right policy level, add right Friend List and except John, and add Mary on the

cross-site policy interface. The participants spent average 63 seconds to read and complete

the task. Six participants completed the task correctly. Three participants made a mistake

on the policy level. Four participants failed the task. After testing the interface, the par-

ticipants indicated that the cross-site policy interface is easy to use (M=3.69, SD=0.95).

However, we would like to know the reason why the participants failed or made mistakes.

After finishing all user study, we had an interview with the participants who failed or made

mistakes on the task. The participants who failed the task said they did not read the task and
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they just tested the interface. The participants who made a mistake on the policy level said

they did not recognize the policy level, since they focused to specify the cross-site policy

using the drag and drop. From these results, we found out the participants who read the

task carefully completed the task easily, and few participants forget to change the policy

level. In order to reduce the mistake in the policy level change, one possible solution is to

ask the content owner to select a policy level after specifying the cross-site policy.

In the usability test of the state of sharing photo interface, we asked four questions

that measure whether the participants can figure out the allowed Friend List and friends,

the excepted friend on a Friend List, the accessed friends, and current policy level. One

example question is “Who can not access the friends photo in the college Friend List”. All

participants reported the correct answers for all questions. The participants indicated that

the state of sharing photo interface is easy to use to figure out the current sharing state of

photos (M=4.31, SD=0.63), and the state of sharing photo interface is useful to trace access

history, and modify the cross-site policy (M=4.38, SD=0.65). These results show the state

of sharing photo interface is useful to know the current sharing state of photo and modify

the cross-site policy.



CHAPTER 5: PARTIAL IDENTITY MAPPING

To support the condition (C2) in the secure interoperation,the x-mngrneeds acomplete

identity mapping mechanism that provides a complete set of user friends’ identity map-

pings between the viewer site and target site. Requiring a complete set of user identity

mappings is not realistic as it will require all users explicitly and truthfully to specify all

their accounts in different sites. We explored several identity mapping solutions. One so-

lution is to ask the content owners to indicate all their friends’ identity mappings between

the target site and viewer site. It might work if the content owners have a small number of

friends and have a willingness to provide friend’s identitymappings correctly. However,

if the friend size is big, it would end up being a very tedious and time-consuming task.

Another solution is to compare profiles of all friends between the viewer site and target

site. The quality of profile attributes might be one issue forthis solution due to deception,

errors, or missing attribute. According to [73], 94.9 % of Facebook users and 62 % of

MySpace users use their real name on their profiles. It means the quality of user attributes

is varying depending on each social networking site. The other solution is to compare email

hash values. This solution is only possible when the social networking sites provide user’s

email hash values to thex-mngr. It might generate high accuracy of mapping results when

the users use the same email across social networking sites.If users use different email

addresses across sites, the email hash based mapping can notmap them. The last solu-
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tion is to use identity management systems such as federatedidentity management systems

(Liberty [41], Shibboleth [67], or SAML [65]) or user-centric identity management system

(OpenID [53]). In order to use federate identity managementsystem, social networking

sites need to agree to use a federated identity manage systembetween them, but it is not

realistic. Moreover, many Internet users still do not know what is OpenID even though they

already have an OpenID1.

5.1 Supervised Learning

In machine learning literature, a learning model is a function f that takes as an input a set

of attributes and returns a label or classification. For example, a function that takes the

user’s age, sex, credit rating and job status and generates arecommendation to either grant

a loan or no. A supervised learning mechanism uses previous cases or training dataΘ to

learn the functionf , which we refer to asfΘ.

Taking a simple user centric approach to address the profile-matching problem would

require that each focus user (content owner) manually provides mappings between all simi-

lar profiles of his friends on different social networking sites. Usually, this is a tedious task,

and the user will end up ignoring this task. Furthermore, while users can limit access of

their profiles via privacy setting, user’s perceptions of visibility do not always match with

reality [13], let alone managing cross-site policies. Instead, the approach we adopt is an

adapted user centric approach, where the focus user requires only to provide a small subset

(α) of the profile mappings. These example mappings are used to compose a training setΘ

for the supervised learning algorithm. Basically, we attempt to learn the mapping function

1Major Internet sites such as Google, Yahoo, and MySpace provide an openID to their users [53]
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fΘ : X → Y , where:

1. X is a set of attributes describing the profile difference vector (discussed in the next

subsection).

2. Y is a set of labels{y0, . . . ,ym}, in our case it is{match,no−match}, representing

match or no-match respectively.

3. Θ is the training set, which is a set of composed of example matching and no-

matching friends’ profile pairs.

Our goal is to learn the functionfΘ based on the provided datasetΘ. OncefΘ is learned,

we can automatically decide if a given pair of user profilesPi ∈SNA andPj ∈SNB are owned

by the same user or no. This learning mechanism is a supervised learning [42] as it requires

an example dataset to train and guide the generation of the mapping function fΘ. Given

a pair of friendsup and uq belonging to the social networkSNA and SNB respectively,

the classifierfΘi for userui assigns the labelyl to this user pair(up,uq) provided that

this label maximizes the classifier’s confidence or probability measureP((up,uq)→ yl |Θi)

based on the training setΘi. For more information about supervised learning algorithms

the interested reader is referred to [42, 77].

The steps involved in the learning based profile matching process are described in Fig-

ure 5.1. The step 1 is a data collection stage in which thex-mngrretrieves the focus user

friends’ profile and network attributes from sitesSNA andSNB. In the step 2, thex-mngr

presents the focus user with her friends fromSNA andSNB, and requests the user to indicate

at leastα users in both sites. A mapping between userup ∈ SNA and useruq ∈ SNB is the

pair(up,uq), indicating that userup anduq belong on the same user. A training set is gener-
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Data Collection (Site SNA) 
• Friends’ Profile Attributes. 
• Friends’ Network Attributes.  

Data Collection (Site SNB) 
• Friends’ Profile Attributes. 
• Friends’ Network Attributes.  

User Example Matches 
• Get user matching examples. 
• Handle missing data attributes. 
• Compute profile difference attributes. 
• Build training set. 

Build and Compare Different Matching Classifiers 
• Generate a set of different classifiers on the collected training data. 
• Compare classifiers and choose the best based on error thresholds. 

Step 1 

Step 2 

Step 3 

Classifier Selection and Fusion 
• Select � users that are neighboring the focus user and provide the best matching 

similarity based on the focus user’s provided training set. 
• Fuse the decisions provided by the � users with the focus user decisions to enhance 

the matching accuracy. 
• Compute profile difference attributes 

Step 4 

Decide Exception List (ACL-) Membership 
• Given the members of the group ACL- and the best computed fusion 

based classifier, decide whether or not a user u from a viewer site 
belongs to ACL-. 

Step 5 

Figure 5.1: Steps in Generating the User-centric Match Classifier.

ated using all theα mapping pairs(up,uq). In the step 3, the generated training setΘ can be

used directly to train a classifier. However, there are several classifiers algorithms and it is

crucial to select classifier that is most suited for this specific user instance. The mechanism

we adopt is to train and tune several classifiers, then compare their performance based on

standard cross validation methods such as n-fold cross validation [77]. Givenm classifiers

{ f 1
Θ, . . . , f k

Θ}, the classifier with the lowest error rate is selected, whichis denoted asf ∗Θ.

In the step 4, the knowledge accumulated by other users in thesocial network can

be utilized further to enhance the classifier accuracy. It isimportant in this step to seek

classification advice from other users who are able to map users similar to the focus user.

This is referred to as the selection process whereβ other user classifiers are selected based
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on their accuracy in labeling the focus user’s training set.The decisions of the selectedβ

classifiers are fused with the focus user’s classifier to generate the focus user’s mapping

functionM̃A→B.

Finally, in the step 5, the selected mapping functionM̃A→B is used to decide if a user

from siteSNA maps to a user in the target siteSNB local policy exception listPB.ACL−. The

details of this approach are discussed in the following section.

5.1.1 Training Set Generation

Given two usersui ∈ SNA andu j ∈SNB, with profile attributes and network metrics{Ai ,Bi}

and{A j ,B j} respectively, we define the distance vector as follows:

D(i, j) = [d(Ai,A j),d(Bi,B j)]

= [d(a1
i ,a

1
j ), . . . ,d(a

N
i ,a

N
j ),d(b

1
i ,b

1
j ), . . . ,d(b

M
i ,bM

j )]

The distance functiond(., .)∈R
+ is dependent on the data attribute domain, whered(a,a)=

0. The distance value of each profile attribute and network attribute is considered together

in the classification process to decide the matched profiles.Figure 5.2 describes the dis-

tance computation. Assume the focus user hasRandSfriends inSNA andSNB respectively,
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with a user-mapping(i, j) this providesR+S−1 classified mappings namely:

“Match” (ui,u j)

“No-Match” ∀(ui,us) whereus∈ SNB∧us 6= u j

“No-Match” ∀(ur ,u j) whereur ∈ SNA∧ur 6= ui

By explicitly indicating the match(ui ,u j), the focus user is implicitly indicating that userui

is not same to all other friends inSNB and similarly useru j is not same to all other users in

SNA. The distance vector is computed for both the explicit matchand implicit no-matches,

then used as the training setΘ.
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Figure 5.3: Training Set Generation.

5.1.2 Attribute and Network Distances

In order to measure the similarity value of each attribute pair, we consider different simi-

larity methods for different attribute types. In case of string attributes such as school name,
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last name and first name, these attributes are tokenized and normalized before computing

the distances. Through the tokenization process, the string attribute value is divided into

tokens by converting a sequence of characters into a sequence of tokens. For example,

if the attribute value of school name is “UNC Charlotte”, it generates (“UNC”, “Char-

lotte”) as tokens. Then the normalization process, the process of canonicalizing token,

matches the semantically equivalent token despite superficial differences in the character

sequences. For instance, “UNC" and “University of North Carolina” should be considered

as the matched token. In case of attribute value of first name,“joe" and “Joseph" is also

considered as the matched token via normalization process.This normalization process in-

creases the accuracy of similarity score for the different format of string attributes. Figure

5.4 describes both the tokenization and normalization process.

 

Tokenization 

Attribute UNC Charlotte 

Normalization 

UNC Charlotte 

university carolina of north charlotte 

Figure 5.4: Tokenization and Normalization Process

After the tokenization and normalization, we apply the Levenshtein Distance [40] that

is a metric for measuring the amount of difference between two strings attributes. For nu-

meric attributes such as age, we use the square Euclidian distance. For address attributes,

we first perform the geocoding process of converting the addresses into their geographic

coordinates represented as latitude and longitude, then wecompute the distance between

the two geocoded addresses [33]. The table 5.1 below describes the possible distance mea-



52

sures for the different attribute domains.

Table 5.1: Distance Measures

Attribute Distanced(., .)

age ‖agei −agej‖
2

address ‖geo(addressi)−geo(addressj)‖2

name lev(namei,namej)

degree ‖norm(degreei)−norm(degreej)‖2

The network metrics are numeric attributes. When comparingmetrics computed from

different graphs the varying size of the graphs presents a challenge. For example, a user

in Facebook might have 300 friends while in MySpace could have only 100 friends, due

to the different network sizes the metrics computed will differ considerably. To enable the

comparison of metrics computed from different graphs we adopt the approach presented

by D. Koschützki et al. [14], which normalizes each network metric based on a specific

normalization factor. Then the Euclidian distance is used to compute the distance between

the normalized metrics from different social networks.

5.1.3 Classifier Selection and Fusion

The inherent advantage of social networks is the ease of sharing of news, photos, videos

and several other data objects among users. We extend this sharing to include the accom-

modation of user experiences by leveraging their trained match classifiers, where useru j is
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able to share his/her matching functionfΘ j with other users. Assume a userui would like

to leverage the experience of other users in the social network to improve their matching

function fΘi . In this section, we usefΘk to refer to the best match classifierf ∗Θk
for user

uk. Given a userui and a set of usersS= {u1, . . . ,un}, the setS can be chosen from the

neighboring trusted friends or other experienced users in the social network. Each useruk

in the setSis willing to share their matching functionfΘk to improve the matching function

of userui . As indicated in Figure 5.5, this translates into two sub-steps: (1) The selection

of β users from the setSthat are best fit to help userui in computing an improved matching

function, (2) The fusion of the differentfΘk functions provided by theβ users with the

focus user’s functionfΘi .

Definition 4 (Selection) Given a user ui , a set of user trained classifier functions fS =

{ fΘ1, . . . , fΘn}, the training setΘi for user ui , and a classifier fitness functionΦ : fΘk×Θi →

ℜ, select the bestβ classifiers based on the fitness function.

The selection process is based on the fitness function as defined in Def. 4. The fitness

function is a mechanism to rank the classifiers infSbased on their similarity to the decisions

taken by the classifier of userui. The fitness function tests each classifierfΘk by labeling the

tuples in the training setΘi and computing the vector[TP,TN,FP,FN]T , where TP = True

Positive, TN = True Negative, FP = False Positive, and FN = False Negative. The fitness

of fΘk is based on the classifier accuracy of recall and precision [8, 57]. Theβ classifiers

with the highest fitness are selected and are denoted by the set Sβ = { fΘ1, . . . , fΘβ }.

Given theβ classifiers, the next step involves fusing the decisions of these classifiers

and the decisions generated by the focus user’s classifier (fΘi ) to improve the classification
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Figure 5.5: Classifier Selection and Fusion

result. We adopt the most relevant classifier fusion algorithms [35]: group voting, group

confidence productandmost confident. The group voting mechanism is based on selecting

the label (e.g., match or not-match) which receives the largest number of votes by theβ

classifiers. Given a user pair(up,uq), whereup∈SNA anduq∈SNB, the labelwl is assigned

to this user pair ifwl receives votes as follows:

β

∑
k=1

δ l
k(up,uq) = max

r=1,...,m

β

∑
k=1

δ r
k(up,uq)

where

δ r
k(up,uq) =















1 if fΘk(up,uq) = wr

0 otherwise

The group confidence product mechanism is based on selectingthe label that maximizes

the product of the confidence of all theβ classifiers. For a user pair(up,uq), the labelwl is
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selected if group confidence product ofwl is as follows:

Πβ
k=1P((up,uq)→ wl |Θk) =

max
r=1,...,m

Πβ
k=1P((up,uq)→ wr |Θk)

The most confident mechanism is based on selecting the class that gets the highest con-

fidence from any of theβ classifiers. This approach fuses the different classifier confidence

and adopts only the label provided by the most confident classifier. For a user pair(up,uq),

the labelwl is selected if the confidence ofwl is as follows:

max
k=1,...,β

P((up,uq)→ wl |Θk) =

max
k=1,...,β

max
r=1,...,m

P((up,uq)→ wr |Θk)

After β classifiers with the highest fitness are selected, an appropriate fusion algorithm

(of the three listed above) is chosen to fuse the results of the fΘk functions producing a

predicted label, i.e., match or no-match. This final fused classifier represents the identity

mapping functionM̃A→B between users in siteSNA andSNB.

5.2 Implementation of experimental site

We implemented an experimental site namelyProfileMapping. We designed thePro-

fileMappingsite to collect identity mapping data from the social networking users who

have accounts on Facebook and MySpace. We retrieved user data and friend data using the

Social Network Connect Service [37].

The data collection was processed in 7 steps. The step 1 and 2 are the login process



56

Figure 5.6: Friend Mapping Process

of MySpace and Facebook. The step 3 provides a profile comparing page of participant.

The step 4 provides the recommended friend mapping. The participants are able to review

the recommended mapping result and make a decision for each mapping result. The step

5 is the manual friend mapping, where the participants search a friend who has accounts

on Facebook and MySpace. This was implemented using the jQuery package to enable

the user to easily map users by typing a few characters of the friend’s name in a text box

placed beside each friend profile photo, (See Figure 5.6(b)). The step 6 is the confirmation

process, where the participants review all mapping resultsbefore submit them. Finally,

the step 7 is the last process, where we provide friends’ location on the Google map and

finished experiment.

5.3 Experimental Results

In order to investigate the effectiveness of the proposed partial mapping approach, we per-

formed an extensive experimental evaluation on the collected data. Especially, we assessed
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how different classifiers perform on our data, training set,classifier fusion mechanisms in-

fluence to classification results. In order to collect data for this study, we invited 5000 users

who have accounts in both Facebook and MySpace to map their friends on theProfileMap-

ping site. 100 users completed the registration and mapping process successfully. The

users’ profiles, friend’s list, friend of friend’s lists andprofiles were collected. The users

were required to provide mappings between their friends between Facebook and MyS-

pace. We collected 5695 profiles in Facebook, 9274 profiles inMySpace, and 960 profiles

mappings from the participants. For each user, we accumulated the profile attributes and

computed the network metrics. The following profile attributes that were obtained were:

First Name, Last Name, Gender, Location, Date of Birth, and Education. In addition, each

user’s social graph was built and a series of network metricswere computed which include,

degree, HUBS, authority, betweenness, closeness, PageRank, Eigenvector, and number of

common friends.

The collected data was used to train 7 classifiers namely, AD Tree, BayesNet, Naive-

Bayes, NBTree, RandomForest, RBFNetwork, and Ridor. The true positive, true negative,

false positive, and false negatives for each classifier wererecorded. Figure 5.7 (a-b) shows

the accuracy and precision results generated byx-mngrfor a training set ofα =20%, for the

7 different classifiers and 10 friends selected for fusion(β = 10). Furthermore, Figure 5.7

(a-b) shows the results obtained by the different classifiers for the fusion mechanisms, and

from the figure it is evident that our fusion approach improves the classification result with

the voting based approach leading. Our approach consistently provides a classification ac-

curacy of 99 % using any of the fusion approaches. Using the RandomForest Classifier,

we are able to generate classifications with a high precisionas 98 %, which implies that
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our classifier is able correctly to locate the positive matching profiles in our dataset. This

implies that relative to our propose framework, the proposed mapping approach presents a

high accuracy for mapping the focus user’s friends in both social networking sites.

Figure 5.7 (c-d) presents and experiment conducted using the RandomForest classifier

while varying the training setα from 10 % up to 60 %. The accuracy and precision were

computed and as indicated in the figures our fusion-based approach leads the no fusion

approach in all metrics. As expected, the classifier accuracy and precision increase as more

user-mappings are provided for training. Note that, our fusion based approach is able to

maintain a matching accuracy of 99.8 % and a precision of 85 % at a training size of

only 10 %, which means we require the focus user to label only 10 % of his matching

friends. To investigate the effect of the size of selected fusion classifiers(β ) we conducted

experiments holding all parameters constant (RandomForest classifier,α = 20%) while

varyingβ . Figure 5.7 (e-f) depicts the accuracy and precision of the fused classifiers and

the best classifier of the focus user (no fusion) for the different β values (10-40). Note

that as we increaseβ the accuracy and precision remain within acceptable bounds. For

example, using fusion our approach maintains an accuracy of99 % and precision around

95 %.

The effectiveness ofx-mngrdepends on whether users are given the right access permis-

sions in the cross-site policy, and whether they are correctly identified in the target social

site local policy exception list. In order to investigate the effect ofthe exception listACL−

on the mapping process, we randomly generated differentACL− sets and tested different

mapping functions based on the trained classifiers. The experiments were repeated mul-

tiple times and averaged over all runs. Figure 5.8 (a-b) shows the accuracy and precision
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results obtained while using all the 7 classifiers, fixing thetraining set toα = 20%, and

|ACL−|= 2 to represent small exception lists. As depicted in Figure 5.8 (a-b), the results in

the fusion based approach maintain an accuracy between 96-98 % and a precision of about

98 %. With Random Forest classifier, our approach was able to identify all the viewer users

in theACL− with an accuracy of 97.4 % and precision of 99 %. Figure 5.8 (c-d) presents the

accuracy and precision for the Random Forest classifier while varying the training set size

α from 10 % to 60 %, and fixing|ACL−| to 2. The results show that the fusion approach

perform better than the non fusion approach and the performance increase as we increase

the training size, but even with a training set of 20 % we stillget a reasonable result of

97.4 % accuracy and 99 % precision. To investigate the effectof the exception list size

|ACL−| on the accuracy and precision of the approach, we conducted experiments holding

all parameters constant (RandomForest classifier,α = 20%) while varying|ACL−|. Figure

5.8 (e-f) depicts the accuracy and precision of the fused classifiers and the best classifier of

the focus user (no fusion) for the different|ACL−| values (2-50). Note that as we increase

ACL− the accuracy and precision drop, this is because as the size of ACL− increases there

is a higher probability of false matches which affects both the accuracy and precision. Note

that even though the accuracy and precision drops as|ACL−| increases the fusion based

classifier still consistently performs better than the no fusion classifier, and maintains a

less steeper decent in accuracy and precision. Furthermore, our fusion based approach still

maintains an accuracy of 98.5 % and precision of 98 % for anACL− of size 50.

Through the presented experimental results we demonstrated the high accuracy and pre-

cision attained by our supervised base approach in user-mapping. Our supervised learning

approach shows an accuracy of 99.86 % and a precision of 98 % atthe use of 20 % as train-
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ing set from the mapped friends. Thus, demonstrates the applicability and suitability of our

cross-site frameworkx-mngr for enabling secure cross-site interaction between different

social networks.
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Figure 5.7: User-Mapping Experimental Results
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Figure 5.8: Exception List Experimental Results



CHAPTER 6: IDENTITY MAPPING USING GAMES

In this chapter, we propose a Game With A Purpose approach to solve the identity map-

ping problem in a new way. The proposed approach leverages the game appeal and social

community to generate the identity mappings. We designed and implemented an online so-

cial networking game (GameMapping), the game is fun and is based on human verification.

GameMappingtakes advantage of people’s existing perceptual abilitiesand desire to be en-

tertained. The game will present the player with a user from one social network, and a set of

friends from another social network, which represent theset of mapping recommendations.

The friend’s information is summarized in a profile card, which includes the profile photo,

name, age, location, etc. The player gets a small number of points for choosing one of the

provided mappings, this reinforces a sense ofincremental individual successin the game.

The game also rewardssocial successby awarding the player a large number of bonus

points when other users or friends agree to the player’s provided mappings. This proposed

mechanism is similar to social buying, where buyers are offered discounts discount deals

(bonus) if they sign up for a deal in large masses [55]. Users will be allowed to invite their

friends to play the game in the hope of gaining the large bonuspoints. Similar games with

a purpose have been successfully proposed to aid in labelingand tagging images over the

web [75]. We describe details in the rest of sessions.
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6.1 Game with a Purpose

Games with a Purpose (GWAP)is a form of human computation [75, 76], which gets

humans to play enjoyable games that are also productive tools. These games are used

in tasks that are hard for computers but easy for humans. For example, the ESP game

[75] is a two-player game used for labeling and tagging images over the web, the game is

setup to reward players providing the same labels by giving them bonus points if their tags

match. Our goal is to design a GWAP to solve the profile mappingproblem between social

networks, by asking players to map their friends in the different social networks. One

of the main challenges is the design of a points system that rewards correctly identified

profile mappings and to maximize the reward for truthful rational players, and minimize

the reward of irrational players. Gaming on social network platforms is becoming very

popular with games such as FarmVille in Facebook [27] hosting over 62 million monthly

active users. Our proposed game can easily be deployed on social networking sites as an

online game, and if it is popular we estimate that most of the account mappings can be

properly discovered in a matter of weeks.

6.2 Definition of Profile Mapping

The global profile mapping is defined as follows:

Definition 5 (Profile Mapping Problem). Given social networks SNA and SNB, with social

graphs GA = (VA,EA) and GB = (VB,EB) respectively, find the set of profile mappings M of

the form(ui,u j) ∈ M where ui ∈VA and uj ∈VB belonging to the same user in both social

graphs GA and GB.
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The problem of mapping data concepts between different sites or platforms has been ap-

plied to multiple areas, such as: database schema matching [44, 61], web search [11, 24],

ontology mapping [23] and visualization [26, 78]. The graphisomorphism is an NP-

Complete problem which involves finding one to one mappings between vertices and edges

of a pair of graphs [9, 29]. The subgraph isomorphism graph matching problems has been

proven to be NP-complete [28]. Furthermore, the inexact graph matching problem, where

|VA| ≤ |VB|, the complexity is proved in [1] to be NP-complete. Several attribute, model,

object recognition, and network based techniques were proposed to provide heuristic ap-

proaches to solving graph matching problems [7, 18, 19], these approaches are computa-

tionally expensive, and require the knowledge of the complete graphsGA andGB. In this

dissertation, we propose solving the profile mapping problem by using human computation

in the form of an online game. This approach has been used in [75, 76] to map tags to

images effectively. The main assumption is that with the correct set of incentives, users

would enjoy playing a game and at the same time contribute to mapping profiles between

users in different networks.

Definition 6 (Local Profile Mapping Problem) Given a user u who has identities ui and

u j on social network SNA and SNB respectively, and user’s local neighborhoodsN A
ui

, N B
u j

find the set of mappings Mu ⊆ M mappings between profiles inNui andNu j .

Our proposed approach will leverage the individual and social knowledge of social network

users to provide mappings, and to provide mapping verifications which can be then used

to solve the local profile mapping problem. The local profile mapping problem does not

require knowledge of the whole social network graph, instead it only requires knowledge
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of the neighborhood network. Providing incentives to ensure the wide spread adoption of

the game would allow solving a large number of local profile mappings, which enables the

mapping of all similar profiles in large social networks. In fact, this is equivalent to the

generalization of the sub-graph isomorphism mappings of local networks to the maximum

number of common sub-graph problem in the global networks [79].

6.3 General Game Description

Our proposed game is calledGameMapping. The basic idea is that players gain points by

providing mappings of their friends’ profiles on different social networks.GameMapping

allows players to map Facebook and MySpace profiles, or Facebook and Twitter profiles.

In order to play the game, the player needs to complete an authentication stage that

involves two social networking sites. We implement Facebook Connect, MySpaceID, and

TwitterID to enable users to authenticate into the corresponding social networking sites,

and to authorize the GameMapping site to access their profiles and friends list. It enables

the GameMapping site to retrieve the user’s profile and neighborhood social graph data

which includes last name, first name, gender, age, country, profile picture, friends list and

mutual friendships. These data enable our system to computethe local neighborhood for

the current player (N A
u ,N

B
u ). A user profile referred to as the focus useruf is picked

from smaller neighborhood. Without loss of generality assume the focus user profileuf

is selected from neighborhoodN A
u , the game then computes the recommended mappings

profilesR from neighborhoodN B
u based on attribute and network distance metric. The

focus user and the computed recommendations are then presented to the player. Figure 6.1,

shows a screen shot of the game, where the focus user is in the center surrounded by his
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possible best recommended mappings displayed in a random order. The users’ profile

pictures are shown along with their profile information which include, age, gender, and

location. Information about the recommended mappings is presented to the user when the

mouse is moved over the photo. The player should decide either to map the focus user

to one of the recommended profiles or to skip if no map is present. The player is given

40 seconds to make a decision about the presented game dataset, then a new game dataset

is presented. The game also presents top 10 players ordered by the points earned. To

Figure 6.1: The GameMapping Screen Shot

motivate players into making correct decisions of either mapping or skipping, the game

awards the player 10 points for any provided map, 100 bonus points if the provided map is

confirmed by another player, and 30 bonus points if a skip is confirmed by another player.
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In order to maximize the points (reward), a player should focus on providing the mappings

that will most probably be confirmed by other players. When a player starts the game, the

player first plays the game with the player own network dataset. In other words, the player

maps friend’s profiles. After the player is done mapping his local network, the player plays

the game with a game dataset that is randomly selected. It ensures that players provide

mappings towards multiple local profile mappings and at the same time ensure the game

continuity.

6.4 Recommendation Generation

Given a playeru who owns profilesui andu j , and the neighborhoodsN A
u andN

B
u the

focus useruf is selected randomly from the neighborhood that has the smaller number of

nodes, which we refer to as the focus network. This design choice was made as the max-

imum number of possible mappings is equal tomin(|VA
u |, |V

B
u |). Figure 6.2 shows both

neighborhoods and the focus useruf . Lets assume the focus useruf is selected fromN A
u .

 

�� 

�� �� 

�� �� 

Figure 6.2: Neighborhood and Focus User Recommendations.

Given the focus user the mapping recommendation is generated by ranking the user profiles

in N B
u based on their similarity to the focus user. The similarity between two profiles is
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computed as a weighted sum of distances between the different user profile and network

attributes. The profile attributes include first name, last name, gender, age and address.

The network attributes include the centrality, betweenness, hit rate, degree and eigen val-

ues [12, 51]. We investigated several vector distances which include the Chebychev and

Minkowski distance for numerical attributes, Cosine and Levenshtein distance for nominal

attributes, and the Euclidian distance for the numerical attributes (i.e. age) and the Leven-

shtein distance for nominal attributes (i.e. gender, name)[42]. The weight of each attribute

was computed based on a linear regression classifier trainedusing the knowledge collected

from our initial experiments [77]. The recommendation setR is the sorted list of proposed

user profiles based on their computed similarities with the focus user. As indicated in Fig-

ure 6.1, the game presents the user with the top 12 recommended mappings select from the

recommendation setR following the Top-k Fagin’s algorithm [25]. The selected recom-

mendations are shuffled randomly then displayed in a clock-wise fashion around the focus

user. This randomization is required to ensure that playersput some effort in finding the

possible profile mapping among the displayed 12 recommendations. Moreover, by ran-

domizing the recommendation setR this would avoid possible collusion between different

players as each player is presented with the same 12 recommendations but not in the same

location on the screen.

6.5 Game Theoretic Analysis

In this game, the players do not communicate and each player does not know the action

taken by the other players. The game can be modeled as a two player extensive game with

incomplete information. In this game the players are provided with a focus useruf and a
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set of recommended mappingsR= {u1, . . . ,un,φ}. Each player has a set ofn+1 actions

of the formak = map(uf ,uk) whereuk ∈ R. Note, the actionan+1 = map(uf ,φ), which is

equivalent to theskip(uf ). The set of actionsA1 = A2 = A, and the utility(δi) of playeri

is selected to satisfy the following conditions:

• δ1 = δ2 = δ ,

• δ (ai ,a j) = δ (a j ,ai),

• δ (ai ,ai)> δ (ai ,a j) for all i 6= j,

• δ (ai ,ai)> δ (an+1,an+1) for all 1≤ i ≤ n
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Figure 6.3: Game Tree with Imperfect Information.

Figure 6.3 shows the extensive game tree, where nodes represent players and edges repre-

sent player actions. The payoffs for players 1 and 2 are shownat the terminal nodes. The

values ofh and l are chosen such thath > l , this ensures thatu(ai,ai) > u(ai,a j) for all

i 6= j. This game is a coordination game in which the each player is trying to make the

same choice as the other players to maximize their utility.
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Rational players intend to maximize their expected game payoff. Note that the payoff

from agreeing on a map is higher than the payoff from agreeingon a skip(h > l), this

motivates rational players to try to find possible maps between the focus user and one of

the recommendations and to skip if they can not find a suitablemap. The Nash equilibrium

is a commonly used equilibrium notion that provides an equilibria such that no player can

profitably deviate from and enhance their payoff with the belief that other players will not

deviate [54]. Referring to the game representation in tableform in Figure 6.4, The game

hasn+1= |A| pure Nash equilibria represented by the setSwhereS= {(ai,ai) : ai ∈ A},

that is the strategy that would result in maximizing the userpayoff is when both users make

the same action.
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Figure 6.4: Game Nash Equilibria Indicated in Grey

Since the game has multiple equilibria, it is still not clearwhat action strategy with a

rational player act upon. Given that each player does not know the action taken by the

other player, the question that each player asks themselvesis that given{uf ,R} “what

would other players do if they are presented with the same{uf ,R} ?” and by the theory of

focal points [48] players will usually coordinate at pointsthat in some sense stick out from
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the others (focal points). A player game strategy can be described based on the probability

of selecting an actionai from the action setA given the focus user and recommendation set

{uf ,R}. The probabilityp(ai |{uf ,R}) represents the probability of choosing an actionai

conditioned on the game parameters{uf ,R}, which can be represented asp(ai |{uf ,R}) =

p(ai)× r(ai ,{uf ,R}). Wherer(ai,{uf ,R}) =
p(ai ,{uf ,R})

p(ai)×p({uf ,R})
is the relevance of actionai

to the set{uf ,R}. According to the focal point analysis, a rational player would choose

the action that maximizes thep(ai |{uf ,R}) which is the action that is most relevant to the

current{uf ,R} set, which is described as follows:

a∗ = argmax
ai∈A

p(ai)× r(ai,{uf ,R})

By choosing actiona∗ players maximize their chance of being matched by other players in

the system and ultimately gaining the payoffδ (a∗,a∗).

Assuming players are rational, and they will choose the action that is most relevant for

the given focus user and recommendation set, a dominant strategy that ensure that players

coordinate and maximize their expected utility is attainedwhen players follow the same

actions selection probabilityp(ai |{uf ,R}) [70]. This implies that players will be motivated

to provide a map when they recognize a map and will prefer to choose skip if a map does

not exist.

6.6 Implementation Details

The game is implemented as an online game1. The game server is responsible for retriev-

ing user profiles from social networking sites, generating focus user and recommendation

1Visit at http://liispapps.uncc.edu/gamemapping

http://liispapps.uncc.edu/gamemapping
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datasets, and storing all the mapping information. To support these features, we imple-

mented social web application tools and APIs in the game server.

GameMapping 
Server

Client

Social Network Sites

AJAX call to  

Game Server API

 XML

HTTPrequest to API

XML or JSON

OAuth based Authentication 

& Authorization

Figure 6.5: The Architecture of GameMapping

Figure 6.5 depicts the architecture of our system. The game server connects to the each

social networking site using social web application tools such as Facebook Connect, MyS-

paceID, and TwitterID. These tools allow our game server to interact with the APIs of each

social networking site on behalf of game players. Facebook Connect is based on OAuth 2.0

specification while MySpaceID and TwitterID are based on OAuth 1.0a specification. We

also implemented social plugins such as Like Button and Invitation to enhance the popu-

larity and adoption of our game through the friend of friend invitations and word of mouth.

We implemented a polling mechanism to enable the retrieval of user’s profile information

that is based on both server and client technologies (Ajax).

6.6.1 Collusion and Irrational Behavior

It is possible that some players map different profiles intentionally. Based on the game

theoretical discussion in Section 6.5, rational users are able to maximize their payoff by

selecting the correct actions (map or skip). Irrational players are players who attempt to

play the game and provide inaccurate mappings in the hope of gaining high points or simply
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affecting our mapping accuracy. Although our game system does not provide a chatting

feature, players might collude using another communication channel such as AIM or MSN

chat, in order to provide same inaccurate mappings to the game. To prevent collusion

among players, our game displays randomly selected datasets to different players, who

are allowed to play each game dataset only once. Another irrational behavior is a player

providing inaccurate mappings continuously by guessing, and gettingl points for each

provided map or skip. The game scoring mechanism ensures that rational players converge

to a high score faster than guessing players.

In addition, we insert detection datasets into the normal game datasets to detect the

irrational players. The detection game datasets are normaldataset that do not contain any

correct mapping. If a player provides many mappings for the detection game dataset, there

is a high probability the player is an irrational player. We also recorded the amount of

time taken by players in making each mapping to detect the irrational players and robots.

If a player is an irrational player or a robot, the player might spend less time in each

single mapping than rational players since the irrational players might provide mappings

without comparing profiles. The game provides a CAPTCHA if the response rate is above

the normal rate to prevent robots from playing the game. Finally, we applied mapping

confirmation strategy. If an irrational player provides inaccurate mappings, there is a low

chance the inaccurate mapping gets a confirming map from other rational players.

6.7 Experiments

To evaluate our approach, we recruited participants who have accounts in multiple social

networks by inviting users from MySpace, Twitter, and Facebook. As an incentive to play
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the game, we held a two week game competition to encourage people to participate in our

research and distributed 10 iTunes gift cards to the top 10 players and an iPod Nano to the

top player. One hundred and twenty-four players agreed to play the game, of which 80

where male, 32 female and 12 did not indicate their gender. There were two kinds of game

the Facebook-MySpace (FB-MS) game for mapping user profilesbetween Facebook and

MySpace and the Facebook-Twitter (FB-TW) game to map Facebook to Twitter. The FB-

MS game was played by 30 players, and 94 players registered and played the FB-TW game.

Perhaps users favored playing the FB-TW game due to the increasing popularity of both

Facebook and Twitter. During the two weeks game competition, we collected 38,532 Face-

book profiles, 8,452 MySpace profiles, 11,775 Twitter profiles and 7,411 profile mappings

between user profiles. The collected profiles were used to generate the game datasets which

were presented to the players to provide mappings between profiles in different networks.

We manually verified all the profile mappings results. We designed a simple web tool

that generates a comparison result of two mapped profiles. The tool compares the last

name, first name, age, and gender automatically and requeststhe inspectors to input a

comparison result for profile pictures and countries as Figure 6.6. For each profile mapping,

we compared the profile pictures and categorized them into one of 5 types which include,

Same, Similar, Different, Picture present only in one site,and None (picture is not present).

In case of address and location information, geocoding distances were used to compare

both profiles. If the profile information was not enough to make a decision, the inspectors

visited profile page in each social networking site to compare both profiles.
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Figure 6.6: The Verification Tool for Profile Mappings

6.7.1 Evaluation of Mapping Results

We analyzed the number of player confirmations required for accurate profile mappings and

skippings by comparing the mappings provided by the playerswith the mappings verified

manually. Figure 6.7(a) presents the mapping accuracy for different number of confir-

mations for both kinds of games (FB-MS and FB-TW), as shown the mapping accuracy

increases as the number of confirmations increase. Note that, the mapping confirmation

plateau’s at 100 % after 3 confirmations, which indicates that we need at least 3 confir-

mations to support 100 % accuracy and 2 confirmations for 95 % mapping accuracy. Fig-

ure 6.7(b) presents the skipping accuracy, which follows a similar pattern as the mapping

accuracy as it also plateau’s at 100 % accuracy after 3 playerconfirmations for both FB-

MS and FB-TW games. The FB-MS mapping and skipping results show a higher accuracy
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Figure 6.7: Accuracy of Mapping Results.
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when compared to the FB-TW case. We believe the reason is the FB-MS dataset provides

more user profile information to the player such as gender, age, address and other attributes.

It may help players in easily locating similar profiles accurately. Figure 6.7(c) shows the

over all confirmation accuracy for both the map and skip cases, which also plateau’s at 3

confirmations. Figure 6.8(a) depicts the contribution of each profile attribute in verified

FB-MS mapping results. Six attributes such as profile picture, first name, last name, gen-

der, age, and country were used in comparing the profiles in the game. Note that, only

5.6 % of users post the same profile picture and 96.4 % of users do not use a same profile

picture (48.7 % use similar pictures, 31.6 % use different pictures, 13.7 % of users have a

profile picture in only one site, and 0.4 % of the users do not have profile pictures). This

shows that players mapped the same profiles based on other knowledge such as friendship

information even if the two profiles did not use the same profile pictures. Last name and

first name are important attributes in attribute based mapping. Our results show that 74.4

% of the users have the same last name, and 72.8 % users have thesame first name. Which

indicates that if the profile mapping is performed by comparing the name attributes, we

expect about 73 % matching accuracy. In other words, our gamebased mapping approach

with confirmation is able to detect profile mappings for none matching profile names and

provide a 27 % improvement over name based mapping. If genderand age are considered

in attribute based mapping, the mapping result is not expected to increase as this usually

missing or is low quality. Figure 6.8(b) depicts the contribution of each attribute in the veri-

fied FB-TW profile mapping results. In Twitter, only four attributes are used to compare the

profiles in the game which include, profile picture, first name, last name, and country. The

game datasets are generated from the player’s network, Friend of Friend (FOF) network,
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Figure 6.8: Attribute Similarity of Mapping Results
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Figure 6.9: Accuracy for Different Networks

and other user’s network data. Figure 6.9 depicts the average accuracy of mapping results

for different network types. For both FB-MS and FB-TW games,the results show that the

accuracy of player network is lower than the accuracy of FOF network. The results did

not meet our expectation that the accuracy of player networkis higher than the accuracy

of FOF network, which would be in turn higher than the accuracy of other network, since

the players have more knowledge about their friends. We investigated the whole process

of the game to answer the question why the accuracy of player network is lower than the

accuracy of FOF network. First, we found that most players did not watch the video tutorial

that is on the game homepage before they started the game. It made the players start the

game without the knowledge about the game. Second, the players first played the game for

their network dataset. Therefore, the players learned how to play the game while they were

making incorrect or correct mappings on their network dataset. Then, they were able to

play better when they played on the FOF network or other user’s network game datasets.
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Figure 6.10: Accuracy of Knowledgeable Players

To confirm our discovered cause, we also investigated the mapping data. Figure 6.10

depicts the accuracy of knowledgeable players who knew how to play the game before

starting the game. The knowledgeable players provided 100%accuracy on their network,

96.5% accuracy on FOF network, and 95.5% accuracy on other networks. It shows the

players’ friend relation influence on the accuracy of mapping results. The players provided

higher accuracy on their friend profile mappings than unknown people’s profile mappings.

To understand how other network based approaches perform inmatching the collected

profile data. We used the similarity flooding graph matching approach [49], which matches

profiles based on both profile attributes and network neighborhood similarity. The algo-

rithm takes two labeled graphs (game datasets) as input and produces as output a mapping

between matching profiles. We applied the collected game datasets to the similarity flood-

ing algorithm and the generated an average matching accuracy of 47 %. This result is far

less than our proposed game mapping approach. The low accuracy generated by the similar-
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ity flooding approach could be attributed to the nature of ourdataset. As indicated in Figure

6.8(a) and 6.8(b) profile attributes used in different social networks have a low degree of

similarity, users do not always provide correct data or datais missing, attribute similarity

is important in similarity flooding as it is used in initialization and flooding phases of the

similarity flooding algorithm. In addition, the neighborhood graph information for users

in different social networks do not have considerable similarity in friendship connections

and neighborhoods which tends to reduce the effectiveness of the flooding based similarity.

On the other hand, our proposed approach provides higher accuracy due to the fact that

player’s map profiles not only based on the profile attributesbut also based on the player’s

implicit knowledge about the profiles.

In the presented experimental results, we show that the gamebased profile mapping

approach is able to generate over 25 % improved profile mapping results when compared

to attribute based profile mapping approaches. Moreover, weshow that with 3 or more

mapping confirmations we are able to generate 100 % accurate profile mappings. Friend

relation knowledge influences on the accuracy of mappings for different network types.

Our approach shows that human computation and wisdom of crowds can generate accurate

user profile mappings across social networking sites.

6.7.2 Evaluation of Irrational Player Detection

In the initial stage of game design, we considered the irrational players and designed pre-

vention and detection strategies as described in Section 6.6.1. To identify the irrational

players, we calculated the mapping accuracy distribution of players as presented in Fig-

ure 6.11.
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Figure 6.11: Accuracy Distribution of Players.

In our game period, 69 players provide over 90 % mapping accuracy (18 players pro-

vided 100 % mapping accuracy), and 8 players provided less than 10 % mapping accuracy.

We classify irrational players as either passive or active irrational players. A passive irra-

tional player is a player that provides a small number of mapping, which is lower than the

average mapping of all the game players (105 mappings), and has an accuracy of 20 % or

less. On the other hand, an irrational player is considered active if he provides more than

the average number of mappings and has 20 % accuracy or less. Based on this classifi-

cation, we discovered 12 irrational players, with 9 passiveand 3 active irrational players.

The passive irrational players provided 14 mappings on average, which implies that most

passive irrational players did not spend much time in playing the game and left it shortly

after their registration stage. There might be several reasons behind the reason for their low

accuracy. One possible reason is that they did not understand the game and decided to test
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it out by providing random mappings. Table 6.1 show a summaryof the results extracted

from the 3 active irrational players.

Table 6.1: Active Attackers

Active Mapping Accuracy Average Detection

irrational players Time game sets

Player 1 130 6.15 % 7 sec. played

Player 2 551 3.62 % 0.55 sec. played

Player 3 2643 1.05 % 1.65 sec. played

The player 1 spent on average 7 seconds to map each profile and provided 130 mappings

with 6.15 % accuracy. The player 2 spent 0.55 seconds to map each profile and provided

551 mappings with 3.62 % accuracy. Both players have low accuracy, and it is evident

that player 2 did not review the focus user data or the recommend user profiles instead

he preferred to randomly map or skip the presented user. All the three players played the

detection game. They provided mappings randomly for the detection game. Therefore,

all the above 3 players were detected by the detection game strategy. Another detection

strategy was based on comparing the average mapping time, where the average mapping

time of the players who have accuracy above 90 % was 6.7 seconds. On the other hand, the

average mapping time for the irrational players was 3 seconds. This implies that rational

players spend more time to map profiles when compared to irrational players. Moreover,

most mapping results from the irrational players did get a few confirmations, and they were
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not in the top 10 players.

Figure 6.12: Example Matched Network
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(a) An Example of Similar Profile Pictures

(b) An Example of Different Profile Pictures

(c) An Example of Same Profile Pictures

Figure 6.13: GameMapping Experimental Results.



CHAPTER 7: CONCLUDING REMARKS

7.1 Summary

In this research, we proposed a new cross-site interaction framework that manages resource

sharing and access control across social networking sites.We provided a cross-site ac-

cess control policy, which enables users to specify policies that allow/deny access to their

shared contents across social networking sites. We also proposed the policy levels to pro-

vide more flexible choice of cross-site policy enforcement to the content owner. Moreover,

we demonstrated the feasibility of thex-mngr framework by implementing a photo shar-

ing applicationMyCrossAlbumbetween Facebook and MySpace. The user study results

show that the participants had a positive attitude for thex-mngr framework, specified the

cross-site policy easily, and understood the sharing status well using theMyCrossAlbum

interfaces.

We also propose identity-mapping approaches that map usersidentities across social

networking sites. The partial mapping approach based on a supervised learning mechanism

provides users identity mapping refer to a small subset of the profile mappings. We provide

mechanisms to enable users to fuse identity-mapping decisions that are provided by their

friends or others on the social network. The experimental results show that the proposed

partial mapping approach provides both high accuracy and precision in performing profile

and exception list matching. Furthermore, we propose a GameWith A Purpose (GWAP)
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approach that provides identity-mappings using a social network game. We provide two

types of games: Facebook-MySpace (FB-MS) game and Facebook-Twitter (FB-TW) game.

To detect irrational player who provide incorrect mapping intentionally, we also designed

and applied an irrational player detection strategies to our game system. In our experiments,

the proposed detection strategies detected irrational players effectively. It discovers the

active irrational player spent 50 % less time than rational players for mapping, and their

most mapping results did not get the agreement from other players. The evaluation of

mapping results shows our proposed mapping approach generate higher mapping accuracy

(FB-MS: 27 % improvement, FB-TW: 25 % improvement) than the name based mapping

results. We also observed that users are able to map their friends, friend of friend, and other

network profiles accurately. Finally, we showed that accurate mappings could be concluded

if 3 or more rational players agree on it.

7.2 Future Work

This section outlines possible future research directionsbased on this dissertation.

7.2.1 Assertion Based Cross-Site Interaction Framework

The current proposed framework allows users to share their content with friends on other

social networks viax-mngr. To implement this framework, it needs a trusted third partythat

operates thex-mngrbetween different social networking sites. Another possible cross-site

interaction framework model is an assertion based cross-site interaction model. Different

social networking sites directly interact with each other without a trust third party that oper-

ates thex-mngr. A social networking site issues an assertion about their user’s relationship

and other social networking sites make an access control decision based on the issued asser-
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tion. For instance, a user in Facebook want to interact with her friends that have accounts

in MySpace can use the fact that they are friends on Facebook to access their resources on

MySpace.

Figure 7.1: Assertion based Cross-Site Interaction

Figure 7.1 shows the social relationships established between users inSNA andSNB

respectively. Although useri does not have an account inSNB, the assertion based cross-site

interaction model will allow useri in SNA to access usera’s profile inSNB using an assertion

issued fromSNA. The challenging task of this model is to design the SAML assertion

or equivalent functions on the REST services that are used bymost social networking

sites. Generally, the SAML assertion standard is designed to operate on the SOAP web

service. There is no current specification that describes how to add SAML to REST web

services. According to [17], theoretically sending SAML assertion on the REST services is

possible but parsing or validating the SAML response is not guaranteed since each vendor

adopts custom limits on URL length and this will result in truncating long SAML responses.

Therefore, designing an assertion based framework on the REST web services is challenge.
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7.2.2 Portable Social Graph with Policy

In Web 2.0, various identity management architectures are coexistent, and many websites

allow users to select their preferring identity providers in login and registration process.

Based on user’s preference, each user can select their identity providers such as Facebook,

Twitter, Yahoo, Google and MySpace. Although each identityprovider uses different iden-

tity management technologies such as OpenID and OAuth, theyput the user in the middle

of the transaction, and allow the user to control their identities. In such competitive environ-

ment, several social networking sites have become major identity providers. For instance,

the number of new users who select Facebook and Twitter as their identity providers in

registration of TypePed had risen rapidly from June 2009 to September 2009, refer to Fig-

ure 7.2. Several social networking sites are becoming majoridentity providers enabling

Figure 7.2: Trend of Identity Provider Selection(image source: [38])

users to manage their profile, friends, contents and privacysetting in one place. More-

over, users are able to reuse these social features in other sites via Social Network Connect
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Service. However, there are no appropriate privacy protectmechanisms between social

networking sites and other sites. For example, users can export their friends from a social

networking site to other sites and re-connect friends but can not export the privacy setting

with their friends. Exporting a well-managed social graph with its privacy settings will pro-

vide better privacy protect to users across the sites because a consistent privacy setting for

the same friends is applied across the sites. Therefore, we will investigate a group based

access control model that allows the user to craft differentprivacy settings for different

groups of friends and export group of friends with privacy setting together across sites.
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APPENDIX A: SURVEY RESPONSE

The results consist of 306 responses provided between June 23, 2010 and August 12,

2010.

Part 1. Tell us about your self

Are you male or female?

Female (64) 20.9 %

Male (242) 79.1 %

(N=306, one response allowed)

What is your age range?

under 18 year old (14) 4.5 %

20-29 year old (108) 35.3 %

30-39 year old (90) 29.4 %

40-49 year old (57) 18.6 %

50-59 year old (28) 9.2 %

over 60 year old (9) 2.9 %

(N=306, one response allowed)
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What is the highest level of education you have completed?

Less than High School (8) 2.6 %

High School (42) 13.7 %

2 year College (44) 14.4 %

4 year College (99) 32.4 %

Master’s Degree (76) 24.8 %

Doctoral Degree (26) 8.5 %

Other (11) 3.6 %

(N=306, one response allowed)
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Part 2. Social networking site experience

Do you have accounts in multiple social networking sites?

Yes- I have accounts in several social networking sites

such as Facebook, MySpace and so on (268) 87.6 %

No- I have an account in only one social networking site (36) 11.8 %

No- I don’t use social networking sites (2) 0.7 %

(N=306, one response allowed)

For what reasons are you using multiple social networking sites?

To get different services (205) 76.5 %

(Facebook: fun, LinkedIn: professional)

Friends are scattered (137) 51.1 %

(College friends: Facebook, Indian friends: Orkut)

To meet others who have similar hobbies (65) 24.3 %

For curiosity (71) 26.5 %

Other (16) 6.0 %

(N=268, multiple responses and manual input allowed)
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Please select two(2) social networking sites that you are

mainly using.

Facebook (220) 82.1 %

Myspace (14) 5.2 %

Orkut (11) 4.1 %

LinkedIN (41) 15.3 %

Twitter (218) 81.3 %

Youtube (25) 9.3 %

Flickr (12) 4.5 %

Other (8) 3.0 %

(N=268, multiple responses and manual input allowed)

How often do you access social networking sites?

Constantly (131) 42.8 %

A few times a day (125) 40.8 %

One a day (23) 7.5 %

Once or twice a week (21) 6.9 %

Once a month or less (3) 1.0 %

No answer (3) 1.0 %

(N=306, one response allowed)
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What percentage of your friends is duplicated between

two social networking sites that you selected in the prior

question?

0 % duplicated friends (24) 9.0 %

10 % duplicated friends (107) 39.9 %

20 % duplicated friends (40) 14.9 %

30 % duplicated friends (40) 14.9 %

40 % duplicated friends (10) 3.7 %

50 % duplicated friends (17) 6.3 %

60 % duplicated friends (5) 1.9 %

70 % duplicated friends (12) 4.5 %

80 % duplicated friends (5) 1.9 %

90 % duplicated friends (3) 1.1 %

100 % duplicated friends (5) 1.9 %

(N=268, one response allowed)

Have you ever used any social applications in

social networking sites?

Yes (205) 67.0 %

No (101) 33.0 %

(N=306, one response allowed)
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Have you ever used Facebook Connect, MySpaceID,

or OpenID to register or login to other 3rd party sites?

Yes (199) 65.0 %

No (107) 35.0 %

(N=306, one response allowed)

When you register for a new site, do you like to use

social connect services (Facebook Connect, MySpaceID,

or OpenID) or fill up a registration form and create

an account?

I’d like to use the connect service (121) 60.8 %

I’d like to fill up the form and create an account (78) 39.2 %

(N=199, only answer this question if answered "Yes"

to the previous question)
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Part 3. Privacy preference

What kinds of relationships are between you and

your friends on social networking sites?

Family (266) 86.9 %

School friends (260) 84.9 %

Co-workers (239) 78.1 %

Acquaintance (208) 68.0 %

Neighbor (73) 23.9 %

Other (34) 11.1 %

(N=306, multiple responses and manual input allowed)
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How do you set up your privacy settings on

the social networking site that you mostly use.

MyStatus and profile picture

Everyone (126) 41.2%

Friends of friends (38) 12.4 %

Friends only (138) 45.4 %

Myself (4) 1.3 %

Bio

Everyone (84) 27.5 %

Friends of friends (46) 15.0 %

Friends only (165) 53.9 %

Myself (11) 3.6 %

Photo album and video

Everyone (40) 13.1 %

Friends of friends (44) 14.4 %

Friends only (200) 65.4 %

Myself (22) 7.2 %

Birthday

Everyone (50) 16.3 %

Friends of friends (39) 12.7 %

Friends only (174) 56.9 %

Myself (43) 14.1 %
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Family and relationship

Everyone (40) 13.1 %

Friends of friends (32) 10.5 %

Friends only (191) 62.4 %

Myself (43) 14.1 %

Email address or IM

Everyone (31) 10.1 %

Friends of friends (26) 8.5 %

Friends only (189) 61.8 %

Myself (60) 19.6 %

Phone number and address

Everyone (14) 4.6 %

Friends of friends (19) 6.2 %

Friends only (144) 47.1 %

Myself (129) 42.2 %

(N=306, one response allowed)
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Do you use similar privacy settings for

other social networking sites?

Yes (247) 92.2 %

No (21) 7.8 %

(N=268, one response allowed)

Do you organize your friends into customized

groups (Friend Lists) to apply different privacy settings?

Yes (108) 35.3 %

No (198) 64.7 %

(N=306, one response allowed)

Why don’t you organize your friends into groups and

apply different privacy policy?

I don’t know this group function (61) 30.8 %

I want to use it but I’m lazy (45) 22.7 %

My friends are not many so I don’t need it (61) 30.8 %

Other (31) 15.7 %

(N=198, only answer this question if answered "No"

the previous question)
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How many customized groups do you have for

managing your friends?

0 group (3) 2.8 %

1 - 3 groups (52) 48.1 %

4 - 6 groups (34) 31.5 %

7 - 10 groups (18) 16.7 %

11 - 15 groups (1) 0.9 %

(N=108, only answer this question if grouped friends)

How do you categorize your friends into

groups (Friend List)?

Based on friends’ affiliation (65) 60.2 %

(same school or same company)

Based on friendship (68) 63.0 %

(best friends or just friends (acquaintance))

Based on location or nationality (7) 6.5 %

Based on common interest (36) 33.3 %

Based on common features (12) 11.1 %

(gender, religious, or relationship status)

(N=108, multiple responses and manual input allowed)
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Do you think customized groups help your

privacy protection on social networking sites?

Yes (98) 90.7 %

No (10) 9.3 %

(N=108, only answer this question if grouped friends)

Do you block any people on social networking sites?

Yes (206) 67.3 %

No (100) 32.7 %

(N=306, one response allowed)

Have you ever excepted some friends when you

share a content on social networking site?

Yes, I have excepted some friends (121) 39.5 %

No, I have not excepted some friends (126) 41.2 %

I know it but I have not used it (59) 19.3 %

(N=306, one response allowed)
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Part 4. Content sharing experience

Have you ever uploaded a same content to

multiple social networking sites to share it with

scattered friends?

Yes (136) 44.4 %

No (170) 55.6 %

(N=306, one response allowed)

I think a content sharing service between

social networking sites is necessary

Strongly Agree (56) 18.3 %

Agree (118) 38.6 %

Neither Agree nor Disagree (91) 29.7 %

Disagree (28) 9.1 %

Strongly Disagree (13) 4.2 %

(N=306, one response allowed)
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I want to share content with a specific

group of friends on other social networking sites

Strongly Agree (50) 16.3 %

Agree (118) 38.6 %

Neither Agree nor Disagree (97) 31.7 %

Disagree (33) 10.8 %

Strongly Disagree (8) 2.6 %

(N=306, one response allowed)

Have you ever used any sharing services to share your

favorite content such as videos, articles, and photos

with your friends?

Yes (232) 75.8 %

No (74) 24.2 %

(N=306, one response allowed)
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When you share a content such as photo, video, and others

with friends, what service do you prefer to use?

Social network services such as Facebook and MySpace (141) 46.1 %

Content sharing services such as Flickr and Youtube (50) 16.3 %

Email Services such as Hotmail and Gmail (28) 9.1 %

Micro blog service such Twitter (82) 26.8 %

Personal blog services such as LiveJournal and Blogger (5) 1.6 %

(N=306, one response allowed)
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