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ABSTRACT 

 

 

ROBERT WILLIAM REID. Improving data extraction methods for large molecular 

biology datasets. (Under direction of DR. ANTHONY A. FODOR) 

 

In the past, an experiment involving a pair wise comparison normally involved 

one or a few dependant variables. Now, 1000s of dependent variables can be measured 

simultaneously in a single experiment, be it detecting genes via a microarray experiment, 

sequencing genomes, or detecting microbial species based on DNA fragments using 

molecular techniques. How we analyze such large collections of data will be a major 

scientific focus over the next decade. Statistical methods that were once acceptable for 

comparing a few conditions are being revised to handle 1000‟s of experiments. Molecular 

biology techniques that explored 1 gene or species have evolved and are now capable of 

generating complex datasets requiring new strategies and ways of thinking in order to 

discover biologically meaningful results. The central theme of this dissertation is to 

develop strategies that deal with a number of issues that are present in these large scale 

datasets. In chapter 1, I describe a microarray analytical method that can be applied to 

low replicate experiments. In chapter‟s 2-4, the focus is how to best analyze data from 

ARISA (a PCR based molecular method for rapidly generating a finger print of microbial 

diversity). Chapter 2 focuses on qualifying ARISA data so that data will best represent its 

biological source, prior to further analysis. Chapter 3 focuses on how to best compare 

ARISA profiles to one another. Chapter 4 focuses on developing a software tool that 

implements the data processing and clustering strategies from chapter‟s 2 and 3.  The 

findings described herein provide the scientific community with improved analytical 

strategies in both the microarray and ARISA research areas. 
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SYNOPSIS 

 

 

Microarray analysis often involved comparing multiple arrays between some control 

state and some experimental condition. In instances where the numbers of replicate arrays 

are low (i.e., less than 3 replicates), the analytical options for analysis are often limited. 

In chapter 1, we explored the idea that it should in principle be possible to use the high 

number of probes in each probe set of a microarray experiment to substitute for the lack 

repeat experiments.  That is, instead of using repeated chips to estimate the variance for 

statistical inference, we exploited the existence of multiple probes per probe set to 

estimate variance, thus making it possible to analyze low sample size experiments. 

Previously, Hein and Richardson used a Bayesian hierarchical model (called BGX) that 

estimates gene expression levels from probe level data. Their model enabled comparisons 

between single chip to chip comparisons (i.e., N=1 in each condition) [1]. They compared 

the BGX algorithm to other available methods and demonstrated an increase in 

performance. However, their algorithm is computationally demanding and it appeared 

that a better performance could be achieved with less computational demand. As an 

alternative, we described an algorithm called PINC (PINC is not Cyber-T) based on the 

Cyber-T algorithm first described by Bali and Long[2] and a method we recently 

described for generating accurate p-values[3].  We found that PINC has attractive 

characteristics when compared to BGX, Cyber-T, and other analytical methods when 

inferring gene expression on Affymetrix microarrays at low sample sizes. 

 

Microbial environments in nature are much more diverse and complex than was 

thought even a decade ago [4]. Understanding the nature of microbial environments has 
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often been limited only to species that can be cultured, which may be as low as 1% of the 

species in any given population [5,6]. To gain further understanding of an entire 

microbial community, molecular biology techniques were developed that exploit the 

conserved nature of ribosomal DNA (see [7] for a review). One such technique, ARISA 

(Automated ribosomal intergenic spacer analysis) attempts to identify microbial species 

by determining the sizes of the intergenic DNA fragments between adjacent 16S and 23S 

ribosomal genes [8]. An ARISA experiment yields a dataset consisting of many data 

peaks, derived from fluorescent signal, which correspond with DNA fragments of 

varying sizes. Our primary goal here was to develop data processing and quality control 

methods that assess how well ARISA datasets correspond to known size standards. By 

comparing peaks to known size standards, distinguishing peaks from baseline signal, and 

identifying poor experiments, we were able to accurately estimate DNA fragment size 

and produce cleaner ARISA datasets that were more amenable to cluster analysis.  

 

ARISA can be used as a tool for comparing microbial communities by determining 

the number and size of DNA base pair lengths in a dataset and comparing these 

“fingerprints” to other ARISA experiments [8]. A number of methods have been 

developed to optimize how these comparisons are made, however to date, no rigorous 

examination of all the current methods has been performed. In chapter 3, a number of 

methods described in the literature were implemented and compared using various 

parameters. The clustering methods were applied to a collection of ARISA experiments 

that examined the composition of microbial communities in the human gut over a 60 day 

time course. Fifteen subjects were placed on a strictly controlled diet and microbial 

community composition was determined by both ARISA and by 16S DNA sequencing. 
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The result of 16S DNA sequencing showed that microbial environments perfectly cluster 

by subject over the course of the trial. We then used ARISA results to test different 

clustering strategies to see which parameters would best mirror DNA sequencing.   

Performance was assessed by comparing cluster trees from ARISA to the DNA 

sequencing tree cluster. The findings from chapter 3 show that the current methods in the 

literature fail to perform any better than what would be expected from random chance. 

The more critical parameter that affects clustering performance is the choice of clustering 

method. We show that using the nearest neighbor linkage method fails to correctly cluster 

ARISA compared to Ward‟s and furthest neighbor linkage methods. Overall, most of the 

parameters one can choose when ARISA clustering have a negligible effect on clustering 

performance, with the exception of nearest neighbor linkage, which adversely affects 

performance. 

There is currently a lack of a user friendly software specifically designed for 

visualizing and analyzing data from molecular fingerprinting techniques such as ARISA. 

The purpose of chapter 4 was to design and implement an open source software package 

that will provide biologists and ecologists a tool to simplify the microbial analysis of 

ribosomal genes. The software tool, Peak Studio, was primarily written in Java by Jon 

McCafferty and it provides a graphical users interface (GUI) allowing anyone to quickly 

visualize either ARISA or TRFLP electropherograms. The software is able to perform 

quality control checks (that were developed in chapter 2) on ARISA datasets so that poor 

electropherograms can be flagged and removed. Peak Studio also implements all of the 

cluster comparison methods discussed in chapter 3 resulting in 112 different possible 

analytical combinations. The Peak Studio project was a team project with members 
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focusing on different areas of the software package. My role included contributing to the 

lead design of the software package, implementation of chapter‟s 2 and 3 into the 

software tool and the visualization of the tree clusters. 

 



 

 

 

CHAPTER 1: MICROARRAY ANALYSIS OF SINGLE EXPERIMENTS 

 

 

1.1 Background and significance 

 

In the past decade, there has been an explosion in the technology and 

understanding of microarray research. Since their introduction[9], microarrays originally 

promised to be a paradigm shifting research method that allowed a user to simultaneously 

determine global  gene expression in context of a variety of biological scenarios. To an 

extent microarrays have been able to generate massive quantities of data on gene 

expression and have been instrumental in guiding research. However, a number of issues 

in microarray technology do exist including high background noise[10,11], signal 

inconsistencies[12],  secondary structure probe issues[13] and the lack of agreement in 

the results obtained in different array platforms[14]. One particular issue that arises when 

interpreting microarray results is that the majority of statistical methods require N ≥ 3 in 

each condition to meet the method requirements. However, it is not always possible to 

obtain this sample size. Reasons for small sample sizes include the expense of 

microarrays, experimental imperfections such as poor hybridization [15] and limited 

quantities of available biological sample source. In instances where conditions limit 

experiments to a single treatment versus control result, there are fewer analytical options 

for generating robust differential gene expression lists. Even when there 2 replicates of 

each condition (N = 2), the methods remain limited in applicability.  
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One strategy to overcome the lack of replicates is to exploit the presence of 

multiple probes for each gene present on some types of chips, treating each probe as an 

independent measurement. On an Affymetrix expression array, such as the HG-U133A 

GeneChip, each gene is represented on the array by a number of distinct 25 mer probes 

that correspond to different parts of the gene sequence. Many popular statistical methods 

including MAS5[16], RMA[17] and GCRMA [18] aggregate these 25 probes into a 

single summarized value for the entire probe set before performing statistical inference. 

Using such a single value still requires that there be results for multiple samples since the 

method requirement of (N ≥ 3), remains. There are a number of models that directly 

utilize the measurements from the individual probes rather than summarizing values at 

the probe set level. Logit-T [19], Fisher‟s combined p-value [20], gMOS [21], and multi-

mgMOS [22] all perform inferences on probe measurements, rather than with the 

summarized probe set values; however these methods still require multiple experiments 

(N ≥ 3) in each condition.   

We explored the idea that it should, in principle, be possible to use the high 

number of probes in each probe set to substitute for repeat experiments.  That is, instead 

of using repeated chips to estimate the variance for statistical inference, can we exploit 

the existence of multiple probes per probe set to estimate the variance? Previously, Hein 

et al. have used a Bayesian hierarchical model to estimate expression levels using this 

same probe level approach, allowing for analysis with n=1 in each condition [15]. In their 

algorithm, called BGX, inference is performed at each stage of analysis (background 

correction, gene expression estimation and differential expression) [15]. Because the 

BGX algorithm requires a Markov chain Monte Carlo (MCMC) model at each stage of 
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microarray analysis, it is a very computationally demanding technique. As an alternative, 

we developed an algorithm called PINC (PINC Is Not Cyber-T), based on the Cyber-T 

algorithm first described by Baldi and Long [23] and a method we recently described for 

generating accurate p-values [24]. We show that PINC has attractive characteristics when 

compared to Cyber-T, BGX and other methods of performing inference on Affymetrix 

microarrays at low sample sizes. 

1.1.1 Merits 

The merit of this research is that it provides investigators a superior option for 

analyzing microarray experiments when there are low numbers of replicates. Such sets of 

experiments are unable to be analyzed via the more popular statistical methods. Often 

when generating a ranked list of genes, it is difficult to define a cutoff level to determine 

which genes are truly showing a change of expression. With PINC, low replicate 

experiments can yield a ranked list of differentiated genes with a predicted probability of 

being significant. Such lists are valuable for guiding investigators in choosing what genes 

to pursue in the lab. 

A second benefit is that PINC can be used to estimate chip variability when there 

are multiple experiments. When there are multiple microarray chips used in an 

experiment, PINC can be applied repeatedly to compare chips to one another, generating 

ranked gene lists in each comparison. These gene lists can then be used as indicators of 

variability within the entire experiment as well as identify gene candidates that show 

consistent levels of expression by appearing on each list.    

A third benefit of this work is that PINC provides a measure of variability 

between technical replicates, enabling one to identify when a set of technical replicates 
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fails to be consistent. Klebanov and Yakovlev showed that noise derived from technical 

replicates is generally low [25]. By comparing technical replicates to one another using 

PINC, inconsistent technical replicates can be identified.  

1.1.2 Publishing Summary 

Chapter 1 was completed in the spring of 2008 and accepted for publication in the fall 

of 2008 at BMC Bioinformatics. The publication can be found at: 

  http://www.biomedcentral.com/1471-2105/9/489 

 BMC Bioinformatics 2008, 9:489  

 doi:10.1186/1471-2105-9-489 

 Since first being published online on November 21, 2008, the paper has received a 

“highly accessed” tag on the BMC Bioinformatics website with over 1373 views. 

1.2 Methods and materials 

1.2.1 PINC Details 

PINC harnesses Cyber-T, an algorithm that utilizes a Bayesian probabilistic 

framework to model log-expression values by averaging the canonical variance with a 

local background variance estimated from genes with similar intensities on the array [23].  

The Cyber-T test can be applied to either paired or un-paired samples.  The numerator of 

the Cyber-T test statistic is the same as in a Standard-T test.  The denominator, however, 

has a correction for the local background variance.  For example, an unpaired Standard-T 

test is calculated by:  

 

http://www.biomedcentral.com/1471-2105/9/489
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where n1 is the number of samples in condition 1, n2 is the number of samples in 

condition 2, m1 and m2 are the means of samples 1 and 2 and SD1 and SD2 are the 

standard deviation for samples 1 and 2.  What distinguishes the Cyber-T test from a 

Standard-T test for unequal sample size is that the standard deviations for samples 1 and 

2 are not given by the canonical formula for standard deviation but rather are given by: 
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where n is the sample size (the number of arrays in the condition), SD is the standard 

deviation as it is usually calculated,
WindowSD  is the average of the standard deviation of 

the 100 genes with the average intensity closest to the average intensity of the gene under 

consideration and Conf is an adjustable parameter set to 10 by default in the “v1.0beta” 

of the Cyber-T distribution for R (http://cybert.microarray.ics.uci.edu). In a single chip 

treatment versus control experiment, n1 and n2 are equal to the number of probes for a 

particular gene and m1 and m2 are the averages of each group of probes.  

http://cybert.microarray.ics.uci.edu/
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For Affymetrix arrays, Cyber-T is usually used following summation of the 

probes into a single value for each probeset with an algorithm such as RMA[17] 

(Examples can be seen in [26], [27]).  As an alternative, PINC applies Cyber-T directly to 

probes within a probeset to determine gene expression scores. For a GeneChip such as 

the Affymetrix HG-U133A Array, each probe set contains 11 perfect match probes (we 

ignore mismatch probes). Thus for a single chip experiment (treatment versus control) 

PINC compares 11 probes in each position using the paired Cyber-T test (with n = 11).  

The Cyber-T test generates a p-value for each gene, evaluating the null hypothesis 

that the gene expression is identical in both conditions.  Because the estimate for the 

variance of each gene‟s expression measurements is not independent but is instead 

dependent upon its neighboring gene scores, the authors of the Cyber-T do not expect the 

Cyber-T test to follow a simple t-distribution with n1+n2-2 degrees of freedom.  Instead, 

the Cyber-T test assumes that Cyber-T scores will follow a t-distribution with 2 * 

Conf+n1 +n2 –2 degrees of freedom.  We have previously shown that the p-values 

generated in this way are not very accurate [24].   

To determine which genes are differentially expressed, PINC determines p-values 

by way of “Scheme 4” [24].  Scheme 4 assumes that all the test statistics form a single 

normal distribution and then applies a “Statistical Level Normalization” step which 

corrects for systematic drift in the t-statistic away from a value of zero [24].   

In summary, PINC takes the scores from the paired Cyber-T test at the probe level 

and uses “Scheme 4” to calculate the p-values rather than using the p-values reported by 

the Cyber-T software. In this paper, we refer to "Cyber-T” and “Cyber-T paired” as 
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methods that act on the probe level but do not implement Scheme 4 to generate p-values. 

In our study, PINC is the only algorithm that has p-values generated by Scheme 4. 

1.2.2 FDR and Family-Wise Error Rate algorithms 

 For the purposes of this analysis, we determined which genes were differentially 

expressed by either applying a 10% cut off rate via false discovery rates or performed 

multiple experiment correction via Holm‟s step down method [28] (p-value cutoff = 

0.05). 

 

The Benjamini and Hochberg algorithm (hereafter BH FDR) [29] yields a predicted False 

Discovery Rate (FDR) for a given gene in a gene list ordered by statistic p-value: 

 

 

 

 

k / p(k)*N  (1.3) 

 

where N is the number of genes in the list and p(k) is the p-value produced by the test 

statistic under the null hypothesis of no differential expression for gene k in the list. The 

more conservative Benjamini and Yekutieli FDR algorithm [30] (hereafter BY FDR) 

relaxes the assumption that the intensities of the genes on the array are independent.  The 

BY FDR for a given gene k in a list of N genes is: 

 

 

k  / *p(k)*N* 
i

1N

1i

 (1.3) 
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1.2.3 Other statistical tests 

At the probe level, we applied the student‟s Standard-T test (paired and unpaired), 

and Wilcoxon Rank Sum test. The BGX algorithm [15] was also applied to the different 

datasets as a benchmark comparison. 

For the Cyber-T and BGX calculations we used an implementation in R from the 

Bioconductor package. All other statistical tests were implemented in Java (code 

available at http://www.afodor.net). Results for the Wilcoxon nonparametric test were 

generated from Java source code made publicly available by D. A. Nix 

(http://rana.lbl.gov/~nix). 

1.2.4 Datasets 

To assess the effectiveness of PINC, the HG-U133A Latin Square dataset was 

downloaded from Affymetrix [21]. Two Probe sets with a number of probes other than 11 

probes were discarded. For the Latin Square data sets, probesets 209374_s_at, 

205397_x_at and 208010_s_at were excluded for all analyses as instructed by the HG-

U133A_tag_Latin_Square.xls spreadsheet.  We also excluded any probeset not in the 

spike-in probesets that started with AFFX-.  This resulted in 42 true positives and 22,181 

true negatives used for assessing effectiveness. The Affymetrix Latin Square dataset was 

analyzed using N=1 for all 14 2X fold conditions taking the first experiment (i.e., the 

CEL file ending in R1) for each condition.  For the multiple experiment comparisons in 

Figure 1-5 (when N > 1) probe values were averaged into a single consensus value and 

then analyzed. CEL files from all datasets were normalized using quantile normalization 

from dCHIP [31] (except for the BGX algorithm which performs its own normalization).  
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1.3 Results and discussion  

1.3.1 The Performance of Test Statistics in ranking genes on a control data set at n=1. 

On the Affymetrix Latin Square HG-133A dataset, there are 11 probes per 

probeset.  Given 11 independent measures in two samples, there are a variety of statistical 

tests available to evaluate the null hypothesis for each gene that the expression observed 

in each sample is identical.  These include the Standard-T test, a paired t test (which is 

equivalent to a two way ANOVA in which the independent variables are probe and 

sample) and the Wilcoxon test (a non-parametric equivalent to a paired-T test).  In 

addition to these canonical statistical tests, there are variants of the t-test specifically 

designed for microarrays.  These include the paired and unpaired Cyber-T tests [23] in 

which the variance for each gene is an estimate based on an average of the canonical 

variance for that gene and a background variance of other genes with similar intensities 

on each array (see methods).    

We applied these different statistical measures to the Affymetrix Latin Square 

HG-133A dataset, which consists of 14 conditions of 3 replicates each. Each condition 

has 42 known genes spiked in at different concentrations that are true positives while the 

remaining 22,181 probe sets on the chip are true negatives. We examined the first 

replicate from each of the 14 experiments and compared experiments where there is a 2-

fold change in spiked in concentration resulting in 13 separate comparisons (Exp 1 vs. 

Exp 2, Exp 2 vs. Exp 3, etc.).  Applying the test statistics to these datasets yields for each 

statistic a gene list ranked according to the calculated scores.  For each of these 13 

comparisons, we can generate an ROC curve of the number of true positives [11] versus 

false positives (FP) at each possible cutoff for these gene lists with n=1 in each condition.  
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Figure 1.1A shows the average of these 13 ROC curves in which the x-axis displays all 

22,181 true negatives.  At this scale, it is immediately obvious that the BGX and 

Wilcoxon tests underperform the other statistics.  The differences between the other 

statistics are more subtle with perhaps a slight advantage going towards the unpaired 

Cyber-T test. 

While the data in Figure 1.1A give a broad overview of how the algorithms 

perform, the scale of the x-axis does not represent a biologically useful signal.  For 

example, at a false positive rate of 0.05, where the unpaired Cyber-T test has a slight 

advantage over the other test statistics, a gene list for the HG-133A microarray would 

have over 1,000 false positives.  Clearly such a gene list is not that useful.  To better 

explore a more biologically relevant cutoff, in which a gene list consists of mostly true 

positives, Figure 1.1B shows the same data as in Figure 1.1A, but with the x-axis scaled 

to show only gene lists that include a small number of false positives.  Figure 1.1C shows 

the number of true positives captured at a cutoff of n=4 false positives (Figure 1.1B 

dashed vertical line) for all 13 comparisons. At this more stringent cutoff the paired and 

unpaired Cyber-T tests clearly outperform the other statistics. 
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FIGURE 1.1:  Average ROC curves for 13 Latin Square experiments. The performance 

of ranking true and false positives for pairs of N=1 experiments are depicted. The first 

experiment from 13 2X Latin Square experiments was selected for analysis.  For each of 

the 13 comparisons, an ROC curve was generated.  Shown is the average of all 13 ROC 

curves.  Figure 1.1A shows the full-scale performance for all false positives.  Figure 1.1B 

is a zoomed in view of 1.1A with the x and y-axes zoomed to show detail of restrictive 

cutoffs with few false positives. Figure 1.1C is a box plot of the number of TP detected at 

an arbitrary cut off level of 4 FP (vertical dashed line in 1B). 
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1.3.2 The Performance of Test Statistics in Providing Accurate p-Values for Inference 

ROC curves rank all of the genes in an experiment but generating a gene list in a 

“real” experiment also requires choosing a cutoff point.  That is, it is not enough to rank 

genes into an ordered list, one must know how many genes to consider significant from 

the list; each test statistic generates a score for each gene and we wish to determine the 

threshold score above which genes are considered to be significantly differentially 

expressed. This has proven to be a challenging problem [32]. In the microarray literature 

it is generally accepted that family-wise error rates, such as Bonferroni correction, are too 

conservative in an effort to prevent type-I errors thereby producing an abundance of type-

II error  [33], [34]. The use of false discovery rates (FDR) has become a popular 

alternative for controlling error rates (for a review, see [33]) .  However, the use of false 

discovery rates has not been without controversy [35]. 

In this study, we evaluated the performance of different test statistics using two 

different FDR cutoff levels described by Benjamini et al. [29] (see methods), as well as 

the Holm‟s step down method, a more conservative family wise error rate correction 

algorithm ([28] and see methods). For the FDR algorithms, we set the cutoff level at 

10%, i.e., we are willing to accept that 10% of the genes considered to be significant will 

be false positives. For the Holm‟s step down FWER, we set a cutoff level of 0.05 divided 

by N (22,223) for the highest scoring gene pair. Then for each subsequent gene, the 

cutoff is recalculated as 0.05 divided by the number of remaining genes. Figure 1.2 

shows the sensitivity and specificity for the 13 n=1 comparisons we performed on the 

Latin Square dataset for p-values produced by various methods under a 10% BH and BY 

FDR cutoff and a 0.05 Holmes step down cutoff. We define sensitivity as the number of 
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true positives recovered at each threshold divided by the total number of true positives in 

the Latin Square data set. We define specificity as the number of true positives recovered 

at each threshold divided by the total number of genes above the threshold cutoff.  An 

algorithm that generates p-values that are too large would be inappropriately conservative 

and not consider enough genes significantly differentially expressed.  Such an algorithm 

would yield results with poor sensitivity but high specificity.  Under all 3 cutoff schemes, 

this describes the Wilcoxon non-parametric test, which failed to detect any genes above 

our cutoff threshold (sensitivity = 0) and is therefore not included in Figure 1.2 or in 

further analyses. 

Because of the poor performance (Figure 1) and high computational cost of the 

BGX algorithm, it too was not included in this analysis.  Of the remaining algorithms, we 

see that the unpaired Cyber-T and paired and unpaired Standard-T tests also produce p-

values that are too large as they yield nearly perfect specificity but poor sensitivity.  By 

contrast, an algorithm that produces p-values that are too small will yield results with 

high sensitivity but poor specificity.   We see that under the BH and BY FDR schemes, 

this describes the paired Cyber-T test; with a 10% FDR threshold, we would expect a 

specificity of 0.9 (red lines in Figure 1.2). While the paired Cyber-T test is able to detect 

a large number of the true positives (highest sensitivity), it also incorrectly detects 

numerous false positives, resulting in a specificity measure well below the expected level 

of 0.9. We can say therefore that the paired Cyber-T test has failed to control false 

discovery rate under BH and BY FDR.  
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FIGURE 1.2: Sensitivity and specificity for different algorithms applied to the 13 N=1 

2X Comparisons from the Latin Square dataset. Left panels are sensitivity scores at 

different p-value cut off levels and panels on the right are specificity scores. The red lines 

in the top 2 right panels represent the predicted FDR cutoff value at 10%.  
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We have previously shown that, when applied at the probeset level, p-values 

produced by canonical statistics and the unpaired Cyber-T test are not very accurate on 

control Affymetrix datasets [24].  We proposed as a simple alternative, a method that 

assumes that all the background values on a microarray form a single distribution ([24] 

and see methods). We describe a new algorithm PINC (PINC Is Not Cyber-T), which is 

the paired Cyber-T test performed at the probe level in which the p-values provided by 

the Cyber-T test are replaced with p-values generated by this assumption of a single 

background distribution.  Applying the PINC algorithm yields a list in which the rank 

order is identical to the paired Cyber-T test (and therefore would have the same ROC 

profile in Figure 1) but the p-values differ.  In Figure 1.2, we see that p-values generated 

by PINC do a better job of controlling FDR under both BH and BY FDR; the sensitivity 

of PINC is nearly as good as the sensitivity shown by Cyber-T paired, but the specificity 

is much closer to the expected level of 0.9.  Indeed, no matter which of the three cutoff 

schemes we used to determine the threshold p-value of significance, the PINC algorithm 

nicely balanced sensitivity and specificity, picking up a substantial fraction of true 

positives with a minimal number of false positives (Figure 1.2). All other algorithms 

perform poorly on either sensitivity or specificity suggesting that p-values calculated with 

these algorithms are either inappropriately large or inappropriately small. We conclude 

that when compared to other algorithms, the p-values produced by the PINC algorithm 

lead to inference that is less susceptible to bias introduced by the method of determining 

the threshold cutoff.  That is, we argue that the p-values produced by PINC are more 

robust than p-values produced by the Cyber-T software or by canonical statistical tests. 
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1.3.3 Consistency in technical and biological replicates 

Our results suggest that, at least on the technical replicates of the Latin Square 

experiment, the PINC statistic produces p-values that allow for correct inference in 

discriminating true and false positives.  The question remains, however, are n=1 

experiments generally a good idea? For tightly controlled datasets such as the Latin 

Square dataset, the performance of the PINC algorithm at n=1 is clearly acceptable 

(Figure 1.2). However, what happens when we examine biological datasets in which 

biological noise, by necessity absent from the technical replicates that make up control 

datasets, makes up a significant component of the measured signal? 

To begin to examine this question we first ask, what are the consequences in the 

Latin Square experiment of increasing sample size? We applied the PINC algorithm to 

technical replicates in the Latin Square dataset by analyzing N=1, N =2 and N =3 

(conditions 1, 2 and 3 in Figure 1.3). For N=2 and N=3, we determined the average value 

for each probe and then applied PINC in a pairwise probe to probe comparison similar to 

when N=1.  By contrast, in most microarray experiments an analysis is performed at the 

probeset level; that is, an algorithm such as RMA is applied to produce for each probeset 

on each array a single value and a test statistic is then applied to these values[17].  We 

therefore included a comparison of PINC to a probeset level analysis, in this case using 

Cyber-T (not paired as the microarrays in the Latin Square experiment do not have a 

paired relationship). Condition 4 in Figure 1.3 shows the results of using quantile-

quantile normalization and RMA summation[17] to power an analysis with Cyber-T an 

N=3. 
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Figure 1.3 shows the results of these analyses of different sample sizes on the 13 

Latin Square 2X comparisons.  Figure 1.3A shows the number of true positives that can 

be recovered at an arbitrary cutoff of four false positives (similar to Figure 1.2C).  Figure 

1.3B shows the results of sensitivity and specificity after applying a BH-FDR cutoff of 

10% (similar to Figure 1.2A).  We see very similar results no matter if we use 1, 2 or 3 

microarrays ( conditions 1-3) or use a probeset analysis at N=3 (condition 4).  This 

confirms the observation of Klebanov and Yakovlev that noise derived from technical 

replicates is generally low [36] and that PINC can yield results similar to a popular 

probeset algorithm such as Cyber-T despite the use of only one microarray. 

We next applied PINC to a series of biological replicates with varying degrees of 

biological noise. We chose to analyze an Affymetrix dataset from a cell line study 

(Accession: NCBI Entrez Geo GDS756) that explored changes in gene expression of 

SW480, a primary colon cancer cell line [37] and an experiment extracted from human 

tissue with multiple human donors (Accession: GDS2191) that explores the regulation of 

the ubiquitin cycle in bipolar disorder [16]. We reasoned that the biological noise in the 

human tissue dataset would be higher than the biological noise from the cell lines, while 

the cell lines would in turn have more noise than the technical replicates of the Latin 

Square experiment. These datasets are summarized in supplemental Table 1. The 

experiments we chose all met the following criteria; the number of paired datasets needed 

to be at least N =3, the datasets needed to be a control versus treatment type of design, the 

datasets needed to be Affymetrix HG-U133A datasets and the CEL files available. 

Within each dataset, samples for analysis were randomly chosen using a random number 

selection program (http://www.random.org). 

http://www.random.org/
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FIGURE 1.3: The effect of sample size on sensitivity and specificity for the 13 Latin 

Square 2X comparisons.  (A) The number of true positives captured at an arbitrary cutoff 

of four false positives.  Sensitivity (B) and Specificity (C) at a cutoff defined by 10% 

BH-FDR. 
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Datasets were first analyzed using “Scheme 4” as described previously, which 

compares datasets at the probeset level using Cyber-T and then calculates p-values by 

assuming a single background distribution [24].  Scheme 4 and a gene list of significant 

results were determined using BH-FDR at 10% FDR. We call these gene results the 

“Scheme 4 N=3 probeset results” (condition 1 in Figure 1.4).  Next, using the 6 arrays (3 

of condition 1 X 3 of condition 2), we generated 9 different lists of differentiated genes 

by performing all 9 possible comparisons using PINC under 10% BH-FDR (condition 2 

in Figure 1.4).  

 

 

FIGURE 1.4: Venn diagram depicting how genes from each type of analysis are 

compared in Figure 1.5. If biological variability is low, then the majority of genes 

detected will be common to both methods of analysis.   
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We then compared these 9 results to the “Scheme 4 N=3 probeset results” to determine 

how consistent the gene selection process was. Figure 1.4 depicts a Venn diagram of how 

these results are interpreted. 

Boxplots showing the results of these 9 analyses for each dataset are shown in 

Figure 1.5.  In the Latin Square experiments, genes detected by the 9 different PINC 

comparisons are in good agreement with the n=3 gene list (average number of consensus 

genes found via 1X1 comparisons ≈ 88% retained, panel A, Figure 1.5). As we proceed 

to the more diverse biological datasets, gene list agreement decreases to 68% and 32% 

for the cell culture experiment and tissue experiment respectively (panels B and C, Figure 

1.5). For the human tissue experiment, the gene lists generated from the 9 different 1 to 1 

comparisons show the highest level of variability (panel C, Figure 1.5).  This is consistent 

with other tissue microarray experiments we analyzed (data not shown). While this is not 

a surprise, it does emphasize the danger of analyzing tissue samples via microarray when 

sample size is low. The extent of variability suggests that when designing a microarray 

experiment, selection of sample size should reflect the noise of the biological source.  

These results suggest that a “one-size-fits-all” rule of microarray experimental design 

(such as always have N = 5) is not always the best use of experimental resources. When 

biological noise is very low, a single microarray may suffice; when biological noise is 

high, many microarrays may not capture all of the variability in the system under study. 
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FIGURE 1.5: Comparison of different biological sources using probe-set analytical 

methods at N=3 and PINC. (A) Latin Square dataset – majority of significant genes are 

common to both methods. (B) Human cell culture dataset – majority of genes still in 

agreement, although with an increase in variability. (C) Human tissue dataset – very 

small selection of genes common to both and a large degree of variability in the 1 to 1 

comparison group.  
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1.3.4 Biological confirmations of PINC predictions: Confirmation by qPCR 

 PINC was applied to a set of Drosophila microarray experiments, obtained from 

Dr.Julie Goodliffe in a study exploring gene expression at different stages of fly 

development. For every condition in this particular experiment, there were 2 microarray 

replicates. This means that there were an insufficient number of replicates for probeset 

comparisons. Using PINC, we were able to generate gene expression predictions for each 

of the experimental conditions. For each comparison, we generated a set of 4 predictions 

(2 experiments X 2 experiments, creating 4 possible 1:1 comparisons). We then grouped 

genes that showed a consistent pattern of expression across all 4 comparisons. A select 

number of these genes were then chosen and confirmed via qPCR analysis.    

1.4 Conclusions 

Experiments with few numbers of repeats are ineligible for analysis via most 

published microarray analytical methods. We have shown that when applying analysis at 

a probe level using PINC, we are able to generate reasonable results on control datasets at 

N=1 in each condition. For paired single microarrays, PINC outperforms both canonical 

statistics and a recently published method [15] while offering conceptually simple 

statistics and fast run-times.  Because the p-values are derived from a distribution 

estimated from all of the genes on the array, PINC also avoids the large p-values usually 

associated with low sample size microarray experiments.  This allows for the possibility 

of using a more conservative cut off criterion such as family wise error rate, as an 

alternative to false discovery rate when selecting a p-value cutoff for selecting 

differentiated genes (Figure 1.2). 
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 The success of the PINC algorithm in performing accurate inference on the Latin 

Square dataset at N=1 suggests that there is little benefit to performing additional 

technical replicates with a non-existent or exactly common background.  This is 

consistent with previous literature [36] as is our observation that one gets largely similar 

results whether one uses n = 1, n = 2 or n = 3 in ranking the 2X Latin Square experiments 

(Figure 1.3).  The ability to analyze single Affymetrix experiments in a statistically 

rigorous way opens up the possibility of interesting analyses even for experiments in 

which samples from multiple biological samples are collected.  For example, in a cancer 

study in which cancer tissue is compared against non-cancer tissue from the same patient, 

we could generate gene lists consisting of genes that are differentially expressed at a 

given cutoff threshold for every patient in the study.  This may yield very different 

insights than the usual practice of averaging the samples together and performing a single 

analysis to generate a single gene list.  We know that diseases like cancer are very diverse 

with many different molecular mechanisms presenting similar clinical diagnostics. The 

ability to evaluate each patient individually in a statistically rigorous way may improve 

our understanding of the diverse causes of diseases such as cancer and may allow for 

better use of microarrays in personalized medicine.



 

 

CHAPTER 2: QUALITY CONTROL METHOD DEVELOPMENT FOR ARISA 

ANALYSIS 

 

 

2.1 Background and significance 

Multiple comparison experiments do not only exist in the microarray world of 

gene expression. Many molecular based techniques have been developed to help identify 

and characterize living matter in different environments around us. As in the microarray 

world, surveys of complex microbial communities involve low sample replicate sizes and 

simultaneous measurements that have many dependent variables.   Solving the 

complexity of these types of experiments will better enable us to identify how these 

communities function. 

One of the goals in biology is to identify the microbial taxa that exist within a 

given habitat. Knowing what taxa are present is a crucial step in ecology for controlling 

pollution [38], [39], [40],  determining soil composition [7], in biogeochemical cycles[7], 

assessing disease (e.g. [41]), regulating the composition of the atmosphere and recycling 

nutrients, and global nitrogen utilization[42]. The field of metagenomics, first defined by 

Handelsman et al. is the study of genetic material extracted directly from a natural 

environment[43]. Since the vast majority of microbial species within a given environment 

are not amenable to cell culture[44,45,46], DNA sequencing in addition to molecular 

techniques based on DNA/RNA properties [47] have been developed to identify taxa 

based on genetic makeup of shared elements, alleviating the need to cultivate microbes 

[7,48]. A recent focus has been to utilize deep DNA sequencing to identify the microbial 
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diversity of the available genetic material. Kunin et al. provide an excellent review of role 

of DNA sequencing in the field of metagenomics [49]. DNA sequencing alone is not the 

final answer, however, as the need for better pipeline analyses and bioinformatics is 

required to properly cleanse the data and to avoid misidentifying taxa within microbial 

communities. For example, Sogin et al. used sequencing to show that microbial diversity 

is much more complex than previously thought, underestimating the numbers of 

microbial species by several orders of magnitude [50], indicating the presence of a 

biosphere of rare, unknown species. However, more recent publications have questioned 

such conclusions, showing that these early findings are perhaps nothing more than 

sequencing error [51,52].   

Though DNA sequencing costs continue to decrease, the costs of performing such 

DNA sequencing studies remain prohibitively high for the majority of scientists.  Figure 

2.1 summarizes the currently available sequencing strategies for characterizing microbial 

communities. Untargeted sequencing generates information about all of the genomes of 

all species in a DNA extraction product. A large number of sequences in such 

experiments  fail to match DNA in public databases. Assembly of these DNA sequences 

(< 500 nt reads) also remains a difficult problem. As an alternative, techniques that 

exploit conserved regions of RNA/DNA genes can be used. That is, rather than sampling 

randomly from an entire DNA extraction product, we can focus on characterizing just the 

16S rDNA (small subunit ribosomal RNA genes) regions, which is cheaper, and yields 

data for which there is a very large comparative set, allowing us to make the best 

available characterization for microbial taxa (middle paragraph of figure 2.1). Even 
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cheaper and quicker than sequencing are the many molecular fingerprinting techniques 

that allow us to make a general snapshot of the community.  

 

 

FIGURE 2.1: Techniques used to characterize microbial communities. 

 

There are many published examples of assays using molecular techniques that target the 

highly conserved 16S rRNA gene region in bacteria. For example, in a technique called 

terminal restriction fragment length polymorphisms (T-RFLP), fluorescently labeled 

primers bind to a conserved 16S rDNA region which is amplified prior to restriction 

endonuclease digestion of the PCR product [53,54].  These size differentiated DNA 

products are the basis for identifying what species are present within the microbial 

community. Other similar techniques include ARDRA[55], DGGE[56], 2D-PAGE[57] 

and ARISA[8].  

 The technique that is the focus of Chapter‟s 2, 3 and 4 is the automated method of 

ribosomal intergenic spacer analysis (ARISA)[8] which is an automated modification of 
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the molecular biology technique RISA, first described by Borneman and Triplett [58]. 

García-Martínez  et al. provide an excellent overview of the RISA process [59]. In 

prokaryotes, genes encoding for 16S and 23S RNA subunits have been largely conserved 

throughout the course of evolution and most often these genes are located in close 

proximity to one another. However, the intergenic region between the 2 ribosomal genes 

does not display the same level of conservation (upper panel, Figure 2.2). As a result the 

intergenic region varies widely across species in terms of composition and size [59]. 

These size differences in the intergenic region are what ARISA identifies in order to 

identify taxa and establish a profile within a given ecosystem. 

Isolation of the intergenic region begins with the selection of fluorescent DNA 

primers that target the end regions of the anchoring conserved genes: 16S (3 primed end) 

and 23S genes (5 primed end). Like T-RFLP, a PCR amplification step then increases the 

quantity of the targeted section of the DNA. In T-RFLP, different sized DNA fragments 

are created by way of a restriction enzyme. For ARISA the fragments consist of the 

complete intergenic sequence plus the 2 ends of 16S and 23S genes. The amplified DNA 

product(s) is then run on a separation matrix, so that if multiple species are present they 

will be discriminated by length. The end result is an electropherogram in which each 

DNA species is characterized by a length and fluorescent intensity. 
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FIGURE 2.2: Intergenic region between the 16S and 23S genes of DNA sequences. A 

single species may have multiple copies of 16S and 23S genes with intergenic lengths of 

varying size (upper panel) and different species often have different intergenic lengths 

(lower panel). 16S and 23S genes are highly conserved (red boxes) while the intergenic 

region (yellow box) is more variable in length and in composition. The blue and green 

boxes represent the primer binding sites on the 16S and 23S genes used for PCR 

amplification.   
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Figure 2.3 shows an example of an electropherograms, in which the axes are 

fluorescent intensity versus time to the detector (a proxy for the DNA length). Adding 

known DNA size standards allows for the estimation of size for each DNA fragment (in 

DNA nucleotide space), using one of several interpolation algorithms. Estimates of the 

number of different species are then made based on the number of intergenic lengths 

(peaks) observed. Taxa calling can also be attempted based on the presence or absence of 

these same peaks [8], [60]. 

The ARISA method is subject to several limitations, the first of which is the 

assumption that the regions of the 16S and 23S genes against which primer have been 

designed have been conserved and the second is that they are in close enough proximity 

that the PCR conditions allow product amplification. There are known instances in which 

the 16S and 23S genes are thousands of base pairs apart due to insertion or DNA 

rearrangement events. For example, the species Thermoplasma Volcanium has an 

intergenic distance of 155,293 base pairs between the 16S and 23S genes. Species such as 

this are undetectable via ARISA. 
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FIGURE 2.3: Example of an ARISA electropherogram. Red lines represent fluorescent 

signal generated from labeled DNA fragments. Light blue lines represent signal from 

known DNA size standards which are used to estimate the size of DNA fragment peaks.   

 

 In addition, instances are known where duplication events have resulted in multiple 

copies of 16S and 23S in one genome, which leads to multiple intergenic lengths for a 

single species. For example, Vibrio Vulnificus has 4 separate copies of 16S and 23S 

genes, all of which have different intergenic lengths (421, 508, 665, and 742 nucleotides 

(NT)). The presence of this one species alone should yield 4 distinct peaks in an 

electropherogram. 

Any intergenic region that is larger than 1200 base pairs will be difficult to detect 

using ARISA. The largest size standards included in sequencing are around 1200 

nucleotides, so lengths beyond 1200 nt cannot be accurately determined. Also, there are 

PCR related difficulties when amplifying larger DNA fragments; together these factors 
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render data in these regions of an electropherogram inconsistent. To estimate how much 

of a problem this might be, Fisher and Triplett determined that 85-90% of the intergenic 

distances in bacterial genomes available in GenBank fell within the range of 150 to 600 

base pairs[8].    ARISA fragments include both the intergenic region and parts of the 16S 

and 23S genes (primer to primer distance), so the smallest lengths are around 400 base 

pairs. Given these constraints, this leaves approximately an 800 base pair window in 

which to resolve a microbial footprint. Because all of the DNA amplicons in a sample are 

labeled with the same primers, when multiple species share the same ARISA length there 

is no way to distinguish between them. 

The selection of primers for PCR can significantly affect the outcome. For 

example, Maggi and Breitschwerdt describe how primer selection changes the accuracy 

in detecting Bartonella sp using ARISA [61]. Also, Jones et al. showed that using 2 

different primer sets results in differences in bacterial profiles [62]. 

Despite these limitations, ARISA has found functionality as a fingerprinting technique 

allowing comparisons between microbial communities. Within a given community the 

electropherogram produced is unique and can be considered a “molecular fingerprint”. 

These fingerprints are worthwhile in a number of scenarios including: tracking changes to 

environmental microbial samples over time, monitoring gut micro biota amongst healthy 

and diseased specimens, or comparing geographically distinct soil samples. The original 

ARISA paper by Fisher and Triplett [8] has been cited 260 times. 

The question remains, how does one best use these “ARISA fingerprints” to 

compare and distinguish microbial environments from one another? Similar microbial 

communities would be expected to cluster together based on similar ARISA fingerprint 
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profiles. In order to compare these profiles, all peaks within an electropherogram must be 

accurately identified and the corresponding nucleotide length that each peak represents 

must be precisely determined. The purpose of the remainder of chapter 2 is to describe 

data processing and the QC filtering techniques that we have implemented to achieve 

these goals. Here, we describe how ARISA peaks are identified and how size standards 

are used in assigning NT length; in addition we describe filtering techniques that identify 

poor experiments.  By developing these data processing techniques, we establish a 

framework for comparing microbial communities in chapter 3. 

 

2.2 Experimental approach 

2.2.1 Merits 

The development of quality control methods is a critical step prior to performing 

comparative analyses. When comparing ARISA profiles, clustering errors can arise if 

there is a lack in technical consistency, i.e., 2 highly similar ARISA profiles (e.g. 

technical replicates) could fail to group together if there is an error in any of the steps. 

This is obviously undesirable. The methods described here will aid in minimizing some 

types of errors though they do not eliminate all errors. The biological noise inherent in 

these types of experiments contributes to the complexity of ARISA results. 

Poor experiments can result from many sources including: poor sequencing 

separation runs, poor reagents, PCR failure and operator error. In order to compare 

microbial environments (chapter 3) accurately, we must include only results that best 

represent their biological source. We devised the following strategy to identify good 

quality ARISA experiments. First we applied a linear interpolation scheme to identify 
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peaks within the spectra. Peaks were identified by determining patterns in which signal 

increases with a positive slope, has an inflection point and then has a negative slope. 

Upon identifying peaks, size estimates are made by assigning known length values to 

peaks in the size standard and then using the function to assign nucleotide sizes to each 

peak in the ARISA elements of the electropherogram. Once peaks have been assigned a 

nucleotide length, ARISA experiments are tested for technical replicate consistency, 

followed by a novel QC step that assesses how size standards are allocated. At each step 

in the process, poor experiments are flagged, leaving a subset of ARISA experiments that 

are better suited for comparative analyses.   

 

2.2.2 Linear interpolation 

 

One of our first data processing steps is to apply a linear interpolation scheme to 

distinguish peak signal from baseline data and to accurately identify each of the size 

standards. We simply cannot proceed without first correctly identifying each of the size 

standard peaks in the electropherogram. Dr. Anthony Fodor wrote a peak calling and 

linear interpolation algorithm, in java, for processing ARISA and T-RFLP fragment data 

to replace our previous ARISA processing method, in which we identified peaks by 

identifying upward slopes between consecutive data points. This linear interpolation 

algorithm identifies peaks based on a number of configurable parameters including: slope 

distances, inter peak distances, intra peak distances, peak lengths, peak heights relative to 

background, and so forth.  These parameters can be adjusted such that, for the majority of 

electropherograms in a dataset, the size standard peaks are correctly identified.  
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For a given spectrum, the linear interpolation algorithm begins by traversing 

across the spectra, identifying the slope at each data point by calling a linear regression 

function that uses neighboring data points (the number of which can be configured in the 

Peak Studio in chapter 4). Each data point is assigned to one of four „phases‟: a nonpeak 

phase, an upslope phase, an inter peak phase or a down slope phase (Figure 2.4). Starting 

in a nonpeak phase, each data point is checked to see if the slope at that location is 

greater than a pre defined threshold. If so, then the data point is labeled as being part of 

an upslope phase.  The slope threshold is a configurable parameter that can be adjusted. 

Subsequent data points are identified as part of the upslope phase until a slope change 

equals 0 or less, at which point the phase changes to the inter-peak phase (i.e., the 

inflection point at which the peak no longer rises but begins to level off) . The slopes for 

each peak in the inter- peak phase are determined until a negative slope is identified that 

surpasses another pre defined threshold, at which point data points are defined as being in 

the down slope phase. The algorithm continues to traverse down the slope until a data 

point produces a slope = 0, at which point the phase reverts back to being a nonpeak 

phase (right side of Figure 2.4).  
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FIGURE 2.4: Example of the 4 phases of peak identification in the linear interpolation 

algorithm. Linear interpolation and peak calling algorithm designed and written by Dr. 

Anthony Fodor. 
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FIGURE 2.5: Two examples of peak identification of size standards from linear 

interpolation. Blue data points have been identified as part of a peak, while red data 

points represent baseline signal. Panel A shows a close up of an electropherogram where 

the expected size standard peaks were correctly identified. Panel B shows a case where 

the chosen parameters fail to identify the appropriate number of peaks. In this case, it is 

also difficult to manually identify what constitutes a size standard peak.  
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Once all of the data points in a scan have been identified as one of the 4 phases in 

Figure 2.4, peaks and non peak regions can be identified. A peak is identified as starting 

at beginning of an upslope phase and ending at the end of the down slope phase. For each 

peak, the height is determined by taking the difference between the highest and lowest 

data point within the peak region. If the peak height fails to surpass an adjustable height 

threshold, the peak is relabeled as a non peak region. An additional parameter was 

implemented to improve peak identification including a parameter that tests the proximity 

from one peak to the next. 

After linear interpolation, all data is identified as either peak or baseline signal 

(i.e., nonpeak phase). After the linear interpolation step we can assign a value 

(corresponding to the known length) to each peak in the size standard set. Since the 

number of peaks in the size standard spectra is known, all of the parameters in the linear      

interpolation algorithm can be adjusted to optimize the identification of the size standard 

peaks. Figure 2.5 shows an example of good size standard signal (panel A) and poor size 

standard signal (panel B). In panel B, it is difficult to reliably identify size standards due 

to inherent noise.  

 

 

 



38 

 

 

FIGURE 2.6: Example of peak identification from linear interpolation where 1 peak fails 

to correctly be identified as a size standard peak (shown as the red peak, second to last 

from the right). Blue data points have been identified as part of a peak, while red data 

points represent non peak signal. The second to last size standard peak fails to be 

accurately identified as a peak.   

 

When many size standards fail to be identified, these experiments are examined 

visually and possibly flagged for removal. In cases where an experiment misidentifies 

only a handful of the size standards, we can manually correct for this in the code by 

adding or removing peaks. Figure 2.6 shows an experiment in which one of the size 

standard peaks failed to be identified using a given set of parameters in the linear 

interpolation code. In this instance, the peak was manually added into the code and the 

experiment did not need to be discarded. From these steps, a subset of ARISA 

experiments can be identified for further QC analysis. 
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2.2.3 Technical replicate consistency 

 

Upon correctly identifying each of the size standards in an ARISA experiment, 

there still remains the possibility that while the size standard spectrum is good, the 

ARISA signal is poor. We apply the peak calling parameters used in linear interpolation 

to identify ARISA signals. If some error arises in the ARISA signal (such as sample 

loading error, lack of fluorescent tagging, PCR error), a poor result could occur that is not 

reflective of the microbial environment. ARISA reactions are often run twice per DNA 

sample, creating a technical replicate to confirm PCR and fragment separation 

consistency. Using such replicates, we determined the Pearson‟s correlation coefficient 

(after assigning the nucleotide length) for the data from each corresponding pair. That is, 

we bin neighboring data points into bins of 1 NT in length and then run the correlations. 

Generally, technical replicates should show a high degree of reproducibility. Experiments 

with a correlation below a specified threshold (0.85 is the threshold shown), were 

excluded from further analysis. Figure 2.7 shows 2 pairs of replicates, one with a poor 

correlation between the replicates and one with a good correlation. 
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FIGURE 2.7: Zoomed in regions of electropherograms that demonstrate QC correlation 

Performance: A&B: Low correlating pair of technical replicates (r
2
 = 0.04) where the top 

spectra has shifted and been stretched relative to the lower panel producing a poor match. 

C&D: High correlating pair of technical replicates r
2
 = 0.99). 

 

Technical replicate consistency is fairly effective at identifying where technical 

replicates fail to correlate; a likely cause in this instance is degradation of the capillary 

quality of the genetic analyzer. This is helpful for troubleshooting the source of error 

(platform behavior versus sample preparation steps). If the ARISA experiments are run 

only as pairs and the two paired experiments fail to correlate with each other, we are 

forced to throw both experiments away since there is no way to determine which 

experiment failed to run correctly. 

 In order to save a good experiment when the technical replicate correlation is 

low, we correlated each ARISA experiment to all the other experiments within a given 

dataset, i.e., not just to its replicate partner. If there is a reasonable expectation that 

profiles will be largely similar then this is a defensible approach. In chapter 3 we 
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demonstrate with Sanger and 454 sequencing that in a human subject experiment the 

similar ARISA profiles also show similar sequence profiles. That is, for a well-designed  

and conducted ARISA experiment, some portion of the results should correlate highly 

with others in that dataset. The likelihood is that a poor technical replicate will fail to 

correlate with any of the other results, barring a consistent error. By generating 

correlations in an “All versus All” result matrix, we were able to retain 21 ARISA 

datasets that we otherwise would have thrown away had we used only technical replicate 

correlations.   

2.2.4 Assessment of size standard assignments 

 

In addition to establishing precision through a technical replicate QC step, we 

need to ensure that, when we assign a length to an ARISA peak, it is as accurate as 

possible. Inconsistencies in assigning size standard lengths skew the sizing of ARISA 

data peaks. To ensure consistency, we developed a QC method where we assign 

nucleotide lengths to the ARISA spectra but rather than using the entire size standard list 

(e.g. 68 size standards), we only use every second size standard (i.e., only using half the 

size standards, e.g. 34 size standards). At each spectra location where the size standard is 

skipped, we get a predicted value at that location that is determined by the neighboring 

size standards. Our predicted value can then be compared to the size we would have 

assigned had we used the size standard at that location. The differences between the 

predicted size (predictedSize) and the actual observed size (observedSize) are determined 

for each skipped size standard and the absolute sum of these differences is used to define 

a QC score (with a lower score being better).   
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Experiments with high QC scores are then discarded from further analysis. Figure 2.8 

shows a poorly performing experiment (high QC score) compared to a better performing 

experiment. In the top panel of figure 2.8, the noise present in the standard signal 

electropherogram is evident in the latter half as the size standard intensities dramatically 

decrease and the ability to qualitatively identify the peaks becomes difficult. In this 

instance, using the “every second size standard” QC method results in a higher QC score 

(~2.6). This QC method is redundant for obviously poor results such as in the top panel 

of Figure 2.8; however it does have the advantage of rapidly assessing an entire dataset 

without having to manually visualize each dataset and then decide whether or not the size 

standards are poor.  
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FIGURE 2.8: QC results showing differences in good and poor size standards. Top Panel 

(red) depicts the ARISA spectra (size standards only, not raw ARISA data) for a poor QC 

result (QC score = 2.6) from a human subject sample. The expected 68 standards peaks 

are difficult to resolve (black arrow, top panel). Bottom Panel (blue) depicts the spectra 

of size standards of a typical experiment with a better performing QC result from the 

same subject (QC score = 0.2). The size standards are easily defined and spaced apart as 

expected.    

 

2.2.5 QC comparison to ABI‟s GeneMapper software 

 The ARISA experiments used in our analysis were produced from an Applied 

Biosystems 3130 genetic analyzer to produce data files in .fsa format. We compared our 

QC methods to the default settings in ABI‟s GeneMapper® Software v.4.0 to determine 

how well the QC methods agree with one another. GeneMapper provides researchers 

with the ability to size DNA fragments based on size standards and offers QC tests that 

estimate the integrity of the DNA sizing. Samples that fail to meet the QC criteria are 

flagged and are not available for size calling or for further downstream analysis. 
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 We tested 214 ARISA experiments using both our QC methods and GeneMapper. 

Figure 2.9 depicts a Venn diagram showing the number of ARISA experiments that pass 

the various QC checks. Of the 214 ARISA experiments, 110 experiments passed QC 

checks using both our QC checks and GeneMapper. For GeneMapper, over half of 

experiments were in agreement with our QC methods while GeneMapper found an 

additional 50 that we excluded using our QC methods. 

We tested 2 additional parameters found in GeneMapper so see what effect there 

was on identifying QC experiments. The first parameter was GeneMapper‟s size calling 

methods of which there are 5: 2nd order least squares, 3rd order least squares, cubic 

spline interpolation, local Southern method and Global Southern method. Details about 

these sizing methods are available in the GeneMapper Software User Guide. Regardless 

of which of these size calling methods is selected, the same experiments were identified 

as being poor. The second parameter was GeneMapper‟s data smoothing option. Users 

can choose between light, heavy or no smoothing. Figures 2.9 (no data smoothing) and 

2.10 (heavy smoothing) show that using the smoothing option greatly effects the number 

of experiments that will pass the QC test. By applying the heavy smoothing option we get 

128 experiments that agree with our QC results. From these comparisons alone, we 

cannot say whether one QC method is more valid than the other, only that there are 

different results depending on which parameters are selected. 
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FIGURE 2.9: Venn diagram comparing QC results to GeneMapper without using 

GeneMapper‟s data smoothing option. Of 214 experiments, our QC results identified 146 

suitable for further analysis, while GeneMapper identified 160 experiments that meet 

their criteria. For GeneMapper, 2 different size calling methods (2
nd

 order least squares 

and local Southern method) identified the same sets of experiments as being poor. 

 

In Figure 3.15 (chapter 3) we explored how well data generated by GeneMapper 

could cluster a set of ARISA results and found that GeneMapper derived clusters failed to 

match what was expected. Data generated by our QC methods and peak calling matched 

almost perfectly. In addition, GeneMapper does not allow a user to perform an entire 

pipeline of analysis but instead needs to export the data for further analysis, while our 

methods allow for 1 continuous pipeline with little user intervention. For experiments 

that GeneMapper determines to be poor, there is no option allowing for export, making it 
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difficult to recover data that might have only minor errors identifying size standards. Our 

code allows us to manually add or remove peaks in the pipeline that the peak caller 

misses.  

 

 

FIGURE 2.10: Venn diagram depicting the number of successful ARISA experiments 

using our QC methods and GeneMapper using “Heavy” smoothing option. Using heavy 

smoothing, GeneMapper identified 181 experiments that meet their criteria. All 5 of the 

GeneMapper size calling methods (2nd order least squares, 3rd order least squares, cubic 

spline interpolation, local Southern method and Global Southern method) resulted in the 

same number experiments being identified as poor. 

 

 There are some favorable attributes to GeneMapper. GeneMapper allows for a 

rapid visualizations and comparisons between ARISA experiments. The QC threshold 

levels are configurable and users can rapidly assess the quality of their ARISA 

experiments qualitatively. However GeneMapper is not freely available. Therefore, we 

developed a java based ARISA viewer that also allows for the rapid viewing and 

comparison of ARISA spectra but is free to the research community (chapter 4).  
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2.3 Quality Control Summary 

 

QC steps were applied to an ARISA dataset that explored the microbial 

community of the human gut in an effort to filter poor experiments from subsequent 

analysis. First we applied the peak calling and linear interpolation scheme to distinguish 

peak signal from baseline data. We adjusted a number of parameters so that the majority 

of standard peaks could be identified.  We discarded experiments that failed to identify 

the majority of size standards and retained experiments where all size standards could be 

easily identified by visual inspection. We then applied the technical replicate correlation 

QC filter, followed by the size standard assessment allocation QC filter. Upon applying 

these QC filtering methods, we removed 68 of 214 ARISA experiments to produce 146 

experiments suitable for clustering and for the comparison study in Chapter 3.  



 

 

 

CHAPTER 3: A COMPARISON OF ARISA CLUSTERING METHODS 

 

 

3.1 Background, merits and significance 

Chapter 3 continues the focus on the automated method of ribosomal intergenic 

spacer analysis (ARISA) [8,39], a  molecular biology technique derived from RISA, first 

described by Borneman and Triplett [58]. ARISA determines the structure of the 

microbial community by PCR amplifying the intergenic region between the 16S and 23S 

genes. ARISA can provide a rapid profile of an entire microbial community at a very low 

cost compared to DNA sequencing.  In the generation of an ARISA profile, DNA from a 

community is isolated and the intergenic regions are PCR amplified. The resulting DNA 

fragments are separated via a genetic analyzer according to size, and each fragment 

length can be estimated from known size standards that are concurrently run along with 

the DNA fragments.  

 When distinguishing different microbial communities via ARISA, there are many 

choices during data processing and clustering that can potentially influence the results. 

We compared different parameters involved in ARISA data processing, in an effort to 

understand which had the most influence on differentiating one microbial environment 

from another. A common analytical strategy is to group neighboring data signals into bins 

and assign an appropriate nucleotide length to the bin based on a function fit using size 

standards. The sizes of these bins can vary, and there have been numerous binning 
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strategies reported in the literature (Table 3.1). To date there has been no systematic 

exploration comparing these different binning strategies.  

In addition to bin size and strategy, we explored how technical replicates affected 

clustering performance. ARISA experiments often use technical replicates to identify 

poor experiments and ensure fragment pattern consistency. For each intergenic fragment, 

technical replicates can be used to estimate the average size and, if a sufficient number of 

replicates are run, the variance [63,64].   

To test the various parameters, we used ARISA data from a human subject time 

course study, for which the microbial community composition has been confirmed 

independently, using DNA sequencing. It was shown that the microbial community 

present in the human gut is clearly unique to each subject, over a time course of 60 days. 

Given this baseline we were able to test for those parameters that yielded the best 

congruence between the ARISA and DNA sequencing results.  Of the parameters 

influencing the clustering of ARISA data, it was the clustering method itself that most 

affected the outcome.  
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Table 3.1: Summary of recent articles and the variety of bin sizes used in analysis. 

Article Bin Size (NT = nucleotide) 

Soo et al., 2009[65] Simple bin of 2 NT 

Popa et al., 2009[63] 

Calculated fragment length based on 

average and variability of technical 

replicates 

Li et al., 2008[64] 
Calculated fragment length based on 

average of 3 technical replicates 

Ramette, 2009[66] Shifting bin method [67] 

Denman et al., 2008[68] Simple bin of 2 NT 

Wood et al., 2008[69] Simple bin of 2 NT 

Wood et al., 2008[70] Simple bin of 3 NT 

Lear et al., 2008[71] Simple bin of 1 NT 

 

3.2 Materials & Methods 

3.2.1 Sample preparation 

 

Microbial community analyses were performed as part of an ongoing NIH 

research (DK55965) study exploring the effects of common genetic polymorphisms that 

confer susceptibility to choline depletion.  Stool samples were collected from fifteen 

human female subjects, who were hospitalized at the General Clinical Research Center 

(GCRC) of the UNC at Chapel Hill over a 60 day time course.  The experimental design 

included placing subjects on diets that were strictly controlled and monitored for fat, 
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carbohydrate and protein calories and for nutrients. Five to six fecal samples per subject 

were obtained at specific intervals during the study . 

After human fecal samples were collected and then shipped, on dry ice, to UNC 

Charlotte.  DNA extraction from human fecal samples was performed using the Qiagen 

Stool Mini Prep kits.  Approximately 180 to 220mg of human stool was measured for 

each patient per time point and bacterial DNA was extracted according to the Qiagen 

protocol. Approximately 180 to 220mg of fecal matter was measured for each patient per 

time point and bacterial DNA was extracted according to the manufacturer supplied 

protocol and then stored at -20 ºC until use.   

3.2.2 ARISA Preparation 

 

ARISA PCR was performed using universal bacterial primers 1406F-FAM 

(FAM+TGY ACA CAC CGC CCG T) and 125R (GGG TTB CCC CAT TCR G).  

Reactions were set up using 50ng of template DNA, estimated using to a NanoDrop ND-

1000 spectrophotometer (Thermo Fisher).  Thermal cycling  as follows: An initial 

denaturation step at 94°C for 2 minutes was followed by 35 cycles of 94°C for 25 

seconds; 56.5°C for 30 seconds; 72°C for 60 seconds.  Finally, an extension was carried 

out at 72°C for 5 minutes.  Samples were loaded on an Applied Biosystems 3130 or 

3130XL genetic analyzer.  Applied Biosystems GeneScan™ 1200 LIZ® size standard 

was used to determine sizing up to 1200 nucleotides in length. 

3.2.3 454 DNA Sequencing  

 

The PCR products for 454 tagged sequencing were prepared with primers, 

reaction conditions,  and thermal cycling parameters as described in Fierer et al. [72]. 
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 The 454 Life Sciences primer B with a “TC” linker and bacterial 27F primer (5‟-

GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3‟) and 454 Life 

Sciences primer A with a “CA” linker, 12 mer barcode and bacterial primer 338R (5‟-

GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT

-3‟) were used to target the V1-V2 variable regions of the 16S rRNA gene.  PCR 

reactions used Platinum Taq DNA polymerase (Invitrogen) according to the supplier‟s 

protocol, with 100ng of bacterial genomic DNA as a template.  Each reaction template 

was quantified using a PicoGreen assay (Invitrogen/Molecular Probes) on a NanoDrop 

ND-3300 fluorospectrometer (Thermo Fisher).  Samples were pooled in equimolar 

amounts and concentrated in a vacuum centrifuge before being submitted for 454 

sequencing. 

3.2.4 Quality Control (QC) to identify poor ARISA experiments 

 

ARISA experiments were performed on aliquots of the same DNA used to 

generate samples submitted for 454 DNA sequencing. A total of 214 ARISA results were 

generated including technical replicates. In analyzing these data, we used the simple 

linear interpolation method described in chapter 2 to identify peak size in the spectra. We 

applied the QC filtering methods from chapter 2 and removed 61 of the 214 ARISA 

experiments, leaving 153 sample results available for clustering. Of these 153 samples, 

71 were chosen because they matched the 71 conditions used in 454 DNA sequencing 

experiment. When choosing between replicates, we chose the experiment with the better 

QC score.  
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3.2.5 Clustering methods 

 

Four different clustering methods were applied to assess binning performance 

(average distance (UPGMA), nearest neighbors, furthest neighbors and the Wards 

clustering method [73]. The average distance method is the simplest way to generate 

distance measures between 2 clusters. The distance (d), is determined by taking the 

absolute difference between each data point bin xi and bin yi (for each bin across the 

spectra). 

 

 

 

 

 (3.1) 

The average of all the distances is then determined (average distance = ). 

In nearest neighbors clustering, the differences between cluster‟s x and y are again 

calculated, but the smallest distance between xi and yi is determined and used as the 

distance. Furthest neighbor clustering (also referred to as complete linkage clustering) 

[74] is identical to nearest neighbor, except that the largest distance between xi and yi  is 

used for a distance. 

Wards clustering method uses an analysis of variance approach to minimize the 

squared differences where (d) is calculated with an additional squaring step.  
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The values nx and ny represent the number of branches at the cluster levels x and y. The 

purpose of Ward‟s is akin to ANOVA where the smallest distance is determined by 

minimizing the sum of the squared distances (delta centroid). The clustering methods 

were implemented in java using a heavily modified version of ClusterLib, an open source 

implementation by Schulte et al. [75].  

3.2.6 Cluster Scoring Strategy 

 

How each bin is quantified is a choice that requires consideration. When defining 

the signal for every nucleotide, the data signal can be defined as the sum of all data points 

within that particular range. Or the data signal could be defined as the signal of the 

largest peak, i.e., the largest signal observed within that bin range. Other options include 

using the mean or median signal within a given region. We briefly explored 4 choices in 

bin scoring (taking the sum of all signals, maximum peak calling, median and mean) to 

see whether any have a pronounced effect on clustering performance. We found that, 

regardless of which one is chosen, the clustering outcomes were practically identical. 

Due to bias in the  PCR step of ARISA, the magnitude of fluorescent signal for a 

given intergenic fragment does not always correspond with concentration of species 

living in a given biological sample, i.e., the signal does not always match the relative 

abundance of species. To deal with this, it is has been suggested that bin scoring not be 

centroid
i

yx 2)(
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subject to the size of the signal but rather simply to whether or not a signal is present. The 

Jaccard index is a binary scoring method (present versus absent) that can be used in lieu 

of the other scoring methods such as peak calling, sum, or median determination [67,76].  
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The Jaccard index is equal to W, the number of shared bins between 2 populations, 

divided by the number of bins in each population (a1 and a2) that differ. The advantage 

to this is there is no less of a concern about bin scoring strategy. One still needs to 

determine the presence or absence of a peak by setting a threshold for detection. If a 

threshold is set too high, false negatives will occur (intergenic regions that are actually 

present will fail to be detected) and if the threshold is set too low, false positives will 

result.   

 

DNA deep-sequencing results provide an independent, frequency-based measure 

of organism presence. If the sequencing is of 16S rDNA there is a natural connection to 

the ISSR fragments used in ARISA. The frequencies can be used as scoring metrics, to 

assess the influence of various ARISA parameters on the accuracy of the clustering 

results. UniFrac is a software tool that compares microbial communities based on 

phylogenetic differences, and determines if the communities are significantly different  

[77] [78].  Given a phylogenetic tree and an environmental condition for each leaf of the 

tree, UniFrac tests the null hypothesis that the pair wise comparisons between all 
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environments represented in the input phylogenetic tree are not significantly different.  

While UniFrac is usually performed on trees derived from 16S rRNA sequences, the 

statistic can be applied to a phylogenetic tree derived from any phenotype, including 

binned ARISA results.  

However, we also attempted to implement two additional tree comparison metrics 

in order to not rely on just one way of scoring. The second metric tested was TreeDist, 

which computes distances between trees by calculating a “Branch Score Distance” and 

incorporates branch length into the calculations [79]. The third metric tested was 

GeoMeTree, a tree comparison algorithm similar to TreeDist, that attempts to calculate a 

geodesic distance between weighted trees[80]. The differences in the scoring metrics are 

attributable to how each algorithm handles tree branch lengths in the dendrograms. 

 For large clusters, the GeoMeTree implementation could not fully implement its 

own algorithm and therefore required us to use an approximated scoring scheme that 

produced results virtually identical to TreeDist (Figure 3.1). Therefore, GeoMeTree 

offered no additional information to TreeDist, and was removed from further 

investigation.  TreeDist had to be abandoned for the purposes of our testing because of 

how TreeDist handles its branch lengths. In order to use TreeDist, the datasets in question 

need to be the same size in order to be a valid comparison. Figure 3.2 shows how 

TreeDist scores are affected by different bin sizes and the number of total bins present in 

each experiment. In the case of Simple Bin 1, there are 800 data points (i.e., 800 bins), 

while Simple Bin 10 has only 80 data points due to the larger bin size. We observed that 

the TreeDist scores were a reflection of the total number of data points in each bin as 

represented by the red line (log of number of bins for each binning method) in Figure 3.2. 
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Decisions made during the generation of the dendrograms, such as how one defines 

branch lengths, over shadows the subtle differences seen between the various binning 

methods. Because of this, we excluded TreeDist comparison from the final analysis. 
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FIGURE 3.1: A comparison of scores generated by TreeDist (panel A) and GeoMeTree 

(panel B). For 14 binning methods and 20 iterations of random binning, scores from each 

metric were nearly the same.  
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Upon excluding TreeDist, UniFrac was the only remaining metric available as a 

scoring metric. For testing communities of unknown composition, using UniFrac is ideal 

since one can predict an outcome and then can compare ARISA clusters to the prediction 

without having to generate weights in their prediction. The other two scoring metrics 

required a weighted tree for comparison, which wasn‟t suited for our application. In 

addition, UniFrac‟s simple web interface made it an easier implementation and attractive 

option for analysis without fear of bias due to branch weighting.   

 

 

FIGURE 3.2: A comparison of Bin size and the effect of total number of bins on TreeDist 

scores. Black bars represent TreeDist scores for each of the binning methods. Red line 

represents the log of the number of bins for each binning method.  
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3.2.7 Software development 

 

The code developed for analysis was written in Java 6.0.  Each of the binning 

methods used was implemented in Java 6.0.  Clusterlib was modified to analyze ARISA 

datasets (open source software available upon request). Tree viewing of clusters was 

performed using Archaeopteryx (http://phylosoft.org/archaeopteryx) [81], an open source 

phylogenetic tree viewer written in Java. UniFrac analyses were performed using a 

modified version of the UniFrac software [77,78] written in Python. All code used is 

available upon request and is available at afodor.net (http://afodor.net).  

To compare ARISA clustering methods, all existing methods from the literature have 

been rewritten in java. This is a step that allows for quicker comparisons and ensures that 

the methods are correctly implemented and robust. The dynamic programming binning 

method by Ruan et al. [82] involves a greater degree of complexity and it‟s source code is 

freely available in R. However, the code as given is not user friendly and as written is 

specific to the original author‟s experiments. A fair amount of recoding would be 

required to adapt it to our experimental design. For example, the code works on small 

clusters (N < 12) but breaks on larger clustering datasets. For this reason, the dynamic 

programming binning method was implemented in java, based on the algorithm described 

in the original manuscript. For other methods such as the shifting bin method described 

by Hewson and Fuhrman [67], the algorithm was implemented as an Excel macro 

(AAAray), comparisons are made using a commercial product XLStat (by Addinsoft 

SARL) and neither are freely available. My revision of the above methods into java 

makes them now freely available to the research community via Peak Studio (chapter 4).    
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3.3 Results  

 

A common use of ARISA is to cluster the ARISA fingerprints to determine 

similarities between different microbial communities.   Figure 3.3 summarizes choices 

that can be made during the workflow for a set of ARISA experiments highlighting 

options (ovals) that can be made during analysis. We evaluated each of the options within 

an oval to determine how these choices affect the performance of clustering algorithms.  

3.3.1 DNA sequencing 

 

An ideal evaluation of algorithms that cluster ARISA data would utilize a dataset 

in which the expected outcome is known. In this paper, we take advantage of a large 

dataset of human gut microbiome samples for which we have both the ARISA results and 

the 16s rRNA sequences generated from 454 sequencing. This dataset was generated as 

part of a choline depletion study where patients were placed on a tightly controlled diet 

over a 60 day time course to study the effects of choline depletion on the body (paper in 

submission).   All subjects within the study were placed on identical diets, stool samples 

were periodically collected and DNA was extracted, and 16S rRNA DNA sequencing 

was performed to determine how gut microbial communities are influenced by diet.  

Multiple time points were taken over the course of the study, before choline depletion, 

during and after repletion. Both ARISA and DNA sequencing results were obtained for 

each time point for each patient in the study.  
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FIGURE 3.3: Workflow for ARISA clustering. DNA is first extracted from the sample in 

question, PCR amplified, and then fragments are separated on a genetic analyzer. QC 

filtering techniques can be applied to identify poorly run experiments. Data signals are 

converted into nucleotide length, and then converted into fractions of total intensity or 

binary format. Technical replicates are handled prior to binning peaks via three different 

strategies. Binned datasets are compared via a clustering method and dendrograms are 

created. Each cluster is compared to the model cluster based on 16S ribosomal gene 

region DNA sequencing using UniFrac. Each of the steps (ovals) has multiple options, 

which in this paper were tested for clustering performance.  
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 Sequencing for all time points for each patient was undertaken using 454 

sequencing technology. Primers were selected to target the V1 region of the 16S 

ribosomal gene, ~200,000 DNA sequences were collected and assigned to an OTU 

(operational taxonomic unit) with 97% similarity. The top 200 most commonly occurring 

OTUs were selected across the entire sequencing dataset for comparing time points and 

patients. For each individual time point, the number of sequence reads for each of the 200 

OTUs was tabulated.  All time points across all patients are then correlated with one 

another and clustered via Wards clustering method, in order to classify profiles and 

determine which time points have similar OTU profiles. Figure 3.4 depicts the results of 

the hierarchical clustering procedure, for all of the time points within the choline 

depletion study. Each time point clusters by subject and not by experimental condition. It 

was expected that a well run set of ARISA experiments on the same samples should 

match the cluster in Figure 3.4 where the time points cluster by patient.  

 In addition to the 454 pyrosequencing, a small subset of samples was analyzed 

via Sanger sequencing targeting the 16S ribosomal gene and the resulting DNA 

sequences were again clustered based on OTUs.  The Sanger sequencing OTUs confirm 

the 454 sequencing results, in that the microbial communities so identified cluster by 

patient and not by experimental condition over the 60 day time course (Figure 3.5).  
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FIGURE 3.4: Hierarchical Cluster of V1 region from 16S ribosomal genes in microbial 

gut of human subjects via 454 sequencing.  Hierarchical clustering of the top 200 

Operational taxonomic units (OTUs) of DNA sequences. Clustering method = Wards. 
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FIGURE 3.5: Hierarchical Cluster of a subset of human subject samples using Sanger 

sequencing:  A perfect separation occurs by subject.    

 

3.3.2 Technical Replicate Selection 

 

For purposes of quality control, ARISA experiments are often run as technical 

replicates in which the same DNA is input into separate PCR reactions. By running 

replicates one can ensure technical consistency and if there are enough replicates, one can 

estimate the amount of variability involved in defining the intergenic fragment sizes. But 

it is not immediately clear how to use technical replicates in clustering analysis. Including 

all technical replicates can skew downstream analyses by violating the assumption of 

independence.  For example, if a statistic is evaluating a null hypothesis that two 

environments have different ARISA profiles, that null hypothesis would likely be 

erroneously rejected if all technical replicates were included as independent samples.  

Treating technical replicates as an explicit factor in linear models would of course solve 

this problem, but in most studies, only two technical replicates are run per sample and 

this is an insufficient sample size to accurately estimate the within-group variance of 
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technical replicates. For these reasons, therefore, it is often desirable to choose just one of 

the technical replicates to include in further analyses.  We explored three different 

strategies for producing a single profile from multiple technical replicates. The first 

strategy involves selecting the best replicate based on QC score. The second strategy 

averages two or more replicates together into one measurement prior to clustering, while 

the third strategy randomly selects one of the two technical replicates. We compared each 

of the three strategies by clustering the choline depletion study dataset using a bin size = 

1, Ward‟s clustering method and each signal normalized as fraction of total signal 

intensity. Figure 3.6 shows the UniFrac distant scores for the three different strategies. 

Choosing a technical replicate based on the best QC score or by averaging together two 

technical replicates offers no performance improvement over randomly picking a 

technical replicate for this dataset. 
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FIGURE 3.6: Comparing technical replicate strategies, using fraction of total signal 

intensity and Wards method and bin filling using bin sizes = 1. Error bars on the random 

picking strategy represent standard deviation of ten iterations of randomly picking a 

technical replicate. There is no significant difference between the first two strategies and 

randomly picking (P > 0.4). UniFrac score is based off the ideal clustering environment 

where each time clusters by patient. 
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based on size standards (method 1 in Figure 3.7). Each bin represents different sized 

nucleotide fragments. Figure 3.8 depicts a tree generated using a bin size of 3 nucleotides 

using Wards clustering and normalizing the bins as fractions of total signal intensity.  

 

 

FIGURE 3.7: Depiction of various binning methods used in ARISA cluster analysis. 
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FIGURE 3.8:  Hierarchical cluster using Ward‟s clustering method on 71 ARISA 

experiments from human gut micro biome (value is fraction of total intensity, bin size = 

3). The ARISA cluster profile resembles the DNA sequencing OTU cluster in Figure 3.4 

with a few exceptions.  

 



70 

 

A possible issue with this “simple bin” binning strategy is that electropherograms 

are often observed to have minor shifts in the relative position of peaks when compared 

to one another. This can result in bin mismatches that should otherwise be the same, 

especially when bin sizes are smaller. Fisher and Triplett observed size variations of 1-2 

NT for fragments less than 1000 base pairs long and variations up to 13 NT for larger 

DNA fragments [8]. To address these inconsistencies, larger bin sizes have been used to 

accommodate separation medium variability and loss of precision with larger 

fragments[8]. A bin size of 3 base pairs or larger can accommodate small shifts across the 

range of the electropherograms. We will refer to all methods which use a constant bin 

size across the electropherogram as “simple bins”. A potential downside to these 

strategies is that as the bin size increases, there is a danger of grouping multiple peaks 

into a single bin (thereby losing resolution) and therefore we evaluated simple bin sizes 

ranging from 1 to 10 NT in length.  

A variation on simple binning is to expand bin sizes for the larger DNA fragments 

to accommodate the loss of reproducibility in separation (method 2, Figure 3.7). Since 

there is greater accuracy for smaller fragment lengths it has been suggested that bin size = 

3 NT for DNA fragments less than 500 NT, and bin size = 7 NT for DNA lengths greater 

than 500 [83] is a good compromise. Abdo et al. further suggest bin sizes of 3 NT from 

400-700, 5 NT from 700-1000 and a bin size equal to 10 NT from 1000-1200 base pairs 

[84]. In both methods larger bin sizes are used for longer DNA base pair lengths. These 

larger bins accommodate the more pronounced drift observed with longer DNA 

fragments, while still allowing high resolution for the smaller base pair lengths.  
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Since technical replicates are commonly run as a quality control test, a further 

attempt to improve upon previous binning strategies was suggested by Hewson and 

Fuhrman [67] utilizing the technical replicates. They used a shifting bin strategy to 

minimize the differences observed in replicate experiments (method 3 in Figure 3.7) 

where an entire set of bins are shifted one nucleotide at a time and tested for similarity 

between replicates. Each replicate pair is compared by determining a distance metric 

where the differences within each bin are scored. Similar scoring bins will have smaller 

differences and therefore smaller overall distance scores. The bin shifting technique then 

shifts the data of one of the two replicates by a single nucleotide and then recalculates 

distance score for the replicate pair. This method repeats this shifting step for as many 

times as there are nucleotides in the largest bin, each time calculating scores until the best 

shift is found that that minimize the distance score between the replicates. Once the best 

shift for each technical replicate pair is determined, the most commonly occurring best 

shift among all pairs is then applied to the entire dataset prior to clustering. A potential 

weakness of this method stems from this last step where the most common best 

performing shift is applied to all the datasets. The shift could adversely affect a small 

subset of the experiments that would have benefited from a different shift or no shift at 

all.   

A more recently published ARISA clustering method implements a dynamic 

programming strategy for binning [82]. Instead of bins of a set size, Ruan et al., attempt 

to dynamically allocate the bin sizes across a set of experiments. This is done again by 

comparing replicate experiments to one another and selecting criteria that will yield the 

most similar results between the 2 replicates. For dynamic programming, bin sizes are 
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varied on a per bin basis (ranging in bin sizes from 3 to 10 nt) for each replicate pair. The 

best bin size is determined for every base pair position along the electropherogram (again 

determined by minimized scoring distance between replicate pairs). An ideal set of bin 

sizes is then selected by tracing back through the best bins.  The dynamic programming 

portion of the algorithm involves determining bin scores that minimizes the Euclidian 

distance between 2 replicates and the subsequent trace back [82]. Method 4 in Figure 3.7 

summarizes the dynamic programming binning method. Once the best bin sizes are 

determined for each replicate pair, a single composite profile of the most commonly 

occurring bin sizes in base pair space is then applied to all the experiments in the dataset.    

To assess how well the different binning strategies perform, we developed a 

random binning strategy that creates a series of random bin sizes between 1 and 10 

nucleotides in length (method 5 in Figure 3.7). This single set of randomly generated bins 

is then applied to the entire set of experiments and clustering performance is assessed. 

Unlike other binning methods discussed here, this method can be run multiple times, 

generating a new set of bins each time that is then applied across all datasets. We ran 

each random binning method 20 times per condition and compared the results to the other 

binning methods.    

Each of the different bin assignment methods described above was used to obtain 

a vector of values used as input for clustering the 71 ARISA experiments. Figure 3.9 

summarizes the effect of bin size on clustering performance using Ward‟s clustering 

method. Scoring was determined by UniFrac, assigning a distance score based on how 

well the ARISA results match DNA sequencing clustering (score of 1 = perfect match to 

DNA sequencing results while a score approaching 0 represents what one would expect 
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from random clustering). The random bin sizing method was performed 50 times and the 

average score and standard deviation was calculated (far right box plot on panel‟s A and 

B, Figure 3.9). All binning methods were then compared to the random binning scores. In 

panel A, when data is normalized as fractions of total fluorescent signal, no binning 

method scored significantly better or worse than random binning (P > 0.0019, Bonferroni 

corrected). When converting data to binary scoring (panel B, Figure 3.9), a slight increase 

in variability is seen amongst the various binning methods but again no method was 

significantly better or worse than random binning. Of the 71 ARISA results, we counted 

the number of cluster experiments (branches) that failed to group with at least one other 

member in their expected environment. The smallest number of mistakes ranged from 

four (simple bin sizes 1 and 3) to at worst six (simple bin 5, 6 and10), meaning that at 

least 84% of the experimental time points clustered as expected and that the differences 

between the various binning methods were minor.  
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FIGURE 3.9:  Ward‟s hierarchical cluster on 71 samples (Panel A = fraction of total 

intensity, Panel B = binary format). None of the 13 binning methods was significantly 

better than random bin sizing (Bonferroni corrected, P > 0.0019). Random binning was 

repeated 50 times to generate the box plot on the far right in panel‟s A and B. 
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3.3.4 Clustering methods 

 

We tested 3 additional clustering methods on the 71 ARISA experiments 

(Average distance, nearest neighbor, furthest neighbor in addition to Wards). Regardless 

of bin size chosen, the nearest neighbor algorithm performed poorly when compared to 

the other 3 clustering methods (Figures 3.10, 3.11 and 3.12). The furthest neighbor and 

Wards methods produced consistently higher scores regardless of binning method. The 

average distance method was worse across all binning methods when using a fraction of 

total signal intensity but did show better scores when using binary format and larger bin 

sizes. However for random binning, the average distance method produced lower scores 

when using binary format (Figure 3.12).    
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FIGURE 3.10: Comparison of different clustering methods using UniFrac. Four 

clustering methods were compared using non Binary format across different binning 

methods. Using the UniFrac metric, Wards cluster method performs best for the majority 

of binning methods, with furthest neighbor also performing well in most instances. 

Nearest Neighbor clustering method performs poorly regardless of bin size.  
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FIGURE 3.11: Comparison of different clustering methods using UniFrac. Four 

clustering methods were compared using Binary format across different binning methods.  
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FIGURE 3.12: Comparison of different clustering methods using UniFrac. For 20 

iterations of random binning, average distance and nearest neighbor methods clearly yield 

poorer UniFrac distance scores with binary formatting contributing to a further decrease 

compared to the non binary format. 

 

 

 

 

 

 

W
ard

s 
False

W
ard

s 
Tru

e

Furth
est

 N
eighbor F

alse

Furth
est

 N
eighbor T

ru
e

Avg
 D

ist
ance

 F
alse

Avg
 D

ist
ance

 T
ru

e

Neare
st

 N
eighbor F

alse

Neare
st

 N
eighbor T

ru
e

U
n

iF
ra

c
 D

is
ta

n
c
e

 S
c
o

re

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C

Random binning, N = 20



79 

 

3.4 Discussion 

3.4.1 Parameters influence on ARISA performance 

 

 In this study we generated over 360 tree dendrograms (4 clustering methods * 2 

formatting methods * 13 bin strategies + 260 random binning trials) using 71 ARISA 

experiments and a variety of different parameters, in an effort to create a tree that 

matches the result obtained by DNA sequencing. Using 454 DNA sequencing, the 

microbial communities are distinguishable between subjects with perfect separation 

(Figure 3.4). In the ARISA experiments, none of the clustering results completely 

recapitulated this perfect separation of the subjects. For some of the analysis paths the 

ARISA results did come reasonably close. Considering that ARISA is currently much 

less expensive than sequencing, it remains a viable option for analysis; however ARISA 

does not provide the same amount of resolution. We have demonstrated that the choices 

in parameters for an ARISA analysis can matter.      

Using the UniFrac distance metric, we found that the random bin sizing method 

consistently approximated the DNA sequencing cluster while no other binning method 

performed significantly better. For a few of the binning methods, the increased 

computational cost and implementation time do not appear to be worth the effort. For the 

shifting bin method, it scored similar to the expanding bin method but requires an 

additional computation step to define a consensus shift. The expanding bin strategy 

tended to score the same as simple bin sizes that are 5 or 6 NT big.  We only explored 

one type of expanding strategy (bin sizes of 3, 5 and 10 for specific sizes of ARISA 

fragments), but we expect other expanding strategies would fare about the same. For the 

dynamic programming algorithm, that is most computationally demanding and difficult 
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to implement, we observed that larger bins tended to get selected during the dynamic 

phase of the algorithm and as a result the dynamic programming algorithm yielded 

performance scores similar to a bin size of 10.  

From these results it appears that the differences that might arise due to one 

binning method versus another are negligible. If all binning methods are generally in 

agreement then one can easily select the smallest binning method that will accommodate 

the variability seen amongst the technical replicates. With the current sequencing 

technology, resolution of a single base pair is highly feasible depending on the method to 

separate fragments (i.e., ABI genetic analyzer, or similar instrument). And for technical 

replicates, as long as a rigorous QC process has been used to identify poor experiments, it 

should make no difference how one proceeds in handling replicates.     

Similar to the bin sizes, the use of binary scoring makes only minor differences to 

the outcome, whether one is normalizing to signal intensity or using the binary method to 

define the presence / absence of peaks. The binary method contains the same information 

as the fractional intensity method but does not take into account peak size, and that may 

have contributed to its poor performance when using the average distance and nearest 

neighbor clustering methods. If one has an interest in particular microbial species within 

a community that is known to have good amplification efficiency during the PCR 

process, then using signal intensity might be more appropriate. 

Of all the decision parameters for this dataset, choice in clustering method has the 

most drastic impact. The Wards clustering method was the overall top performer here. 

Our Ward‟s implementation has performance similar to the findings of Mangiameli et al. 

where Ward‟s cluster outperformed the majority of other hierarchical clustering methods 
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tested [85]. The nearest neighbor clustering method showed degraded clustering 

performance, producing up to 13 mis-categorized branches within the tree, depending on 

the binning method (data not shown). Of all the parameters tested, the nearest neighbor 

clustering method was the poorest overall choice for ARISA clustering.  

3.4.2 Clustering performance with increased noise 

 

It has been suggested that observed performance of Ward‟s clustering method 

may not hold true for datasets that have greater noise. Milligan showed that different 

sources of noise and error can greatly affect the clustering performance and that Ward‟s 

clustering can be “strongly affected” by outliers in the data while a method like single 

linkage suffers no such influence [86]. To test the robustness of the Ward‟s clustering 

algorithm, we tested the four different clustering algorithms on the same 71 ARISA 

experiments while adding various levels of background noise. 

The 71 ARISA experiments from the choline depletion study were used as a 

template to create simulated datasets with greater varying levels of background noise. For 

each experiment, background noise was increased using a pseudo randomly generated 

number between -0.5 and 0.5 (provided by java‟s Math.random class, uniform 

distribution). This pseudo random number was amplified by some constant noise 

multiplier (ranging from 10 to 5000) to generate a new dataset. For each new noise 

multiplier, a new set of pseudo randomly generated numbers were generated and a new 

dataset was generated. As the noise multiplier increases so does the background noise 

level. Cluster performance was assessed by calculating p-values derived from the 

UniFrac distance metric.  
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 Figures 3.13 and 3.14 summarize how the 4 different clustering strategies score 

as noise increases. We used p-values generated from UniFrac and analyzed data as 

fractions of total fluorescent intensity. We used 6 binning methods to cover both large 

bins (simple bins 9, 10 and dynamic programming) and small bins (simple bins 1, 2 and 

3). The influence of bin size did not appear to have any pronounced effect on UniFrac 

performance. 

 



83 

 

 
FIGURE 3.13: UniFrac P-values when adding Gaussian noise to the choline depletion 

ARISA dataset (Wards and Nearest Neighbor). Clustering performance was assessed 

using 4 separate clustering methods based on UniFrac P-value with the addition of 

Gaussian noise (binary format). No single binning method shows any sort of consistent 

performance change with the addition of noise.    
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FIGURE 3.14: UniFrac P-values when adding Gaussian noise to the choline depletion 

ARISA dataset (Average Distance and Nearest Neighbor). Clustering performance was 

assessed using 4 separate clustering methods based on UniFrac P-value with the addition 

of Gaussian noise (binary format). No single binning method shows any sort of consistent 

performance change with the addition of noise.    
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3.4.3 CABS, the post binning correction method  

 

One of the goals of this dissertation was to attempt to improve on existing 

methods. We tried to improve hierarchical clustering performance by including an 

additional “post bin” shifting step. In hierarchical clustering, each experiment is 

compared to all other experiments and their similarities are determined via Pearson 

correlation. After binning, an additional step was added that attempted to maximize the 

correlation within each experiment versus experiment comparison. We called this method 

the “Correlation Adjusting Bin Shifting” method or CABS method for short. The CABS 

method is similar to Hewson‟s binning technique (method 4 in Figure 3.7) except that we 

no longer applied the most common shift across all experiments but rather apply the best 

shift for every 2 experiments that are to be compared in a clustering process (not just 

technical replicates). Using any of the existing binning methods, CABS takes 2 binned 

ARISA datasets and shifts the entire experiment in relation to the other by 1 unit (or bin). 

Correlation between the 2 experiments was then recalculated and the best correlation is 

kept. This process was repeated, each time shifting one additional unit (or bin). Figure 

3.14 summarizes how CABS was implemented. This process was repeated for each 

experiment to experiment comparison and the results are fed directly into the hierarchical 

clustering algorithm. 
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FIGURE 3.14: Summary of CABS. For the 2 ARISA results to be compared, CABS 

shifts the data for experiment 2 by 1 data point (or bin) and recalculates the correlation 

between the 2 experiments. The process is reiterated until all plausible shifts are tested 

and the best correlation is determined.    

 

We expected that the CABS method should improve upon the current methods 

used. However, in the tests that we ran using CABS, there was a decrease in clustering 

performance in every instance that CABS was implemented. In addition there is a 

computational cost as CABS requires many correlation calculations for each experiment, 

therefore more processing time. We therefore abandoned the CABS method from further 

investigation. 
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3.4.5 Clustering using ABI‟s GeneMapper output 

 In chapter section 2.5.5, we showed that using GeneMapper identified good and 

bad experiments differently than our QC methods and that the parameter choices greatly 

influenced the results. We attempted to test how well the GeneMapper peak calling 

method works by exporting data from GeneMapper after size calling and binning the 

GeneMapper output as single bins for each of the 71 experiments used in the above 

analysis. 

 Of the 71 experiments used in the analysis, GeneMapper identified 15 

experiments as poor and was unable to call peak sizes for these experiments. We 

clustered the output from the remaining 56 experiments to determine how well the 

experiments cluster by subject. Figure 3.15 shows a hierarchical cluster of the 

GeneMapper output using Ward‟s clustering method. Using the peaks generated and 

exported from GeneMapper, no clustering by subject is observed regardless of the 

clustering method used. This shows that our QC methods and peak calling are better for 

generating datasets as our results can closely approximate the DNA sequencing results. In 

contrast, using the default settings in GeneMapper yields a dataset that shows no 

similarity to the DNA sequencing results. In addition, GeneMapper failed to accept 15 

experiments that in our hands clustered very well. 

 One of the possible reasons for the differences in clustering is that GeneMapper 

identifies a greater number of peaks in the ARISA spectra when using the default 

settings. The average number of peaks per spectra is 40 ± 10 for GeneMapper while our 

peak calling algorithm identified 32 ±10 peaks on average. The additional peaks 
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identified by GeneMapper might be contributing to the poor clustering outcome. Exactly 

how GeneMapper identifies peaks ultimately remains a mystery, as the code is not 

available for examination. There are clear descriptions and references in the user manual 

outlining how the various options work but there is no way of knowing exactly what 

happens to the data without some amount of reverse engineering. More thorough testing 

of our analytical methods versus GeneMapper would be a worthwhile future step as we 

expect that our methods will more accurately capture the biology behind the ARISA 

experiments, as we have seen in the choline depletion study.    
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FIGURE 3.15: Hierarchical cluster of 56 ARISA experiments from human gut micro 

biome using the exported data from GeneMapper. No obvious separation by subject (i.e., 

by number) is observed regardless of clustering method or use of binary method (data not 

shown).  

 

 



90 

 

3.5 Summary 

 

We explored a number of different choices one can make when clustering ARISA 

datasets and demonstrated that ARISA can distinguish human gut microbial communities 

nearly as well DNA sequencing. No set of ARISA parameters selected, however, led to 

the perfectly separated environment by subject clusters achieved using sequence data. We 

showed that bin size, for our dataset, is not an important factor and that randomly 

choosing different sized bins often does as well or better than previously described 

methods. Choices in dealing with technical replicates, and adding a post bin optimization 

step to the data processing pipeline, also appear to have little influence, while choices of 

clustering method have the most pronounced effects on clustering outcome.   

   

 

 

 

 



 

 

 

 

CHAPTER 4: A SOFTWARE TOOL TO VISUALIZE AND SIMPLIFY ARISA 

ANALYSIS 

 

 

 Chapter 3 explored different strategies used for clustering ARISA experiments. In 

order to compare the various binning methods reported in the literature, it was necessary 

to implement each of the methods described in Figure 3.7. The process of so doing was 

time consuming and would be beyond the technical scope of many labs engaged in 

metagenomics research. We identified a need in the research community for a simple way 

to analyze ARISA experiments so that they can be visualized quickly and analyzed 

easily. Chapter 4 describes the team development and implementation of an open source 

software package, called PEAK Studio, which provides biologists and ecologists with a 

software tool to simplify ARISA analysis. 

4.1 Merits 

Because Peak Studio is designed for use by Biologists and not Computer 

Scientists, it is imperative that the tool be functional while remaining simple to install and 

use. The goal was to develop software that an end user can run by simply downloading 

the software, launching the program and selecting the data they wish to analyze. Our 

primary goal was to combine simplicity and functionality when viewing and analyzing 

ARISA data. This software package is an open source project written in java and made 

freely available online. The development of the code was a team effort within the Fodor 

lab, with Jon McCafferty and this author being the primary developers. My primary role 
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in the project was the overall project design and the integration of the analytical tools for 

clustering into the software package.   

4.2 Outline and preliminary data 

4.2.1 Design Document 

One of the first steps in the Peak Studio development process was to create a 

design document that governed the layout and defined the desired features of the software 

tool. This document defined the scope of the project and identified key components that 

were to be added in the first phase of the project. Features and attributes were identified 

and classified into 1 of 2 categories. The most critical aspects of Peak Studio were 

included in phase 1 and future desirable features were to be added later. The components 

described in this dissertation were all part of phase 1. At the end of phase 1, Peak Studio 

would be a fully operational ARISA viewer with the added ability to cluster many spectra 

using the options defined in Chapter 3. Prior to the start of phase 2, an application note 

will be submitted for publication that describes Peak Studio, with Jon McCafferty as 

primary author.  Since this project was a collaborative effort, the design document aided 

in maintaining team member focus and allowed each individual contributor to know what 

they were responsible for so that no overlap in coding would occur.   

4.2.2 Use Case Diagram 

Figure 4.1 shows a use case diagram with many of the features currently 

implemented in Peak Studio. My contribution to the project involved each of the red 

ovals in Figure 4.1.  The majority of my work focused on implementing the cluster 

analysis for ARISA experiments. A user can load the ARISA files in the .fsa binary file 

that is generated by the ABI genetic analyzer. They can then view the electropherograms, 
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check their QC status, based on size standards, and decide which experiments to use for 

clustering. The user can then select one of the 112 different ARISA cluster parameter 

combinations from a user friendly dialog box and rapidly perform a hierarchical cluster 

using ClusterLib[75] with a simple click of a button. From each clustering result, the user 

gets a tree output file in Newick format and can view a visual representation via the 

Archaeopteryx software package (which is incorporated into Peak Studio) [81,87]. The 

user can then export either the ARISA spectra or tree cluster results as images. Peak 

Studio also provides the user with the option to launch Archaeopteryx directly in order to 

view previously generated trees.      

 

4.2.3 Data input 

 

The primary data input are .fsa binary files generated from the Applied Biosystems 

sequencing software suite (AB DNA Sequencing Analysis Software V 5.2). The end user 

can opt to choose a single file, or multiple files. Sample binary files will be provided as 

part of the software download package. Other formats are not currently incorporated 

within the scope of the project but may be added later if need or demand warrants it.  

Upon selecting the files, the user needs to select an appropriate size standard text 

file that corresponds to the size standards used in the ARISA experiment (large red 

arrow, Figure 4.2). The size standard text file lists each of the size standards in ascending 

order and is used to assign a DNA length to each spectral peak in the size standard 

electropherograms (such as the peaks in panel B of Figure 4.3).   

 

 



94 

 

 

FIGURE 4.1: Use Case Diagram for Peak Studio. Black ovals represent Peak Studio 

components that were implemented by Jon McCafferty.  Red ovals depict components of 

Peak Studio implemented by Rob Reid. *Numerous other details are featured in Peak 

studio but not depicted here.    
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FIGURE 4.2: A depiction of the file selection menu of PeakStudio. Designed and written 

in java by Jon McCafferty. Each fsa input file has an .fsa extension and is the binary 

output file from the ABI sequencer. An “import size standard” option is available for the 

end user to choose an appropriate standards file that corresponds to the files selected (red 

arrow).  

 

4.2.4 Visualization 

 

Figure 4.3 shows an example of the GUI interface in Peak Studio. Spectra of three 

ARISA experiments show how one can rapidly compare and contrast experiments. The 

viewer has a number of features including zooming, changing color, resizing and 

displaying size standard spectra. The user has the option to toggle the visibility any of the 

experiments and can view both the ARISA data spectra (panel A, Figure 4.3) and the size 
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standard spectra (panel B, Figure 4.3). The user can also rapidly identify the lengths of 

prominent speaks by mousing over the region of interest.  

As part of visualization, the ARISA viewer is able to zoom into and out of regions 

of interest. The user will have the option of saving a screen capture of the visualization in 

a number of popular image formats. From the table in the bottom panel of Peak Studio, 

one selects the desired experiments that are to be used for ARISA cluster analysis.  

4.2.5 Clustering 

 

 Once the experiments are chosen, a cluster analysis can be executed. The user 

chooses “Analysis” from the top menu and selects the “ARISA_Cluster” option. This 

opens the ARISA Cluster Options dialog box where the user chooses which options they 

want for clustering (Figures 4.4 and 4.5).      
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FIGURE 4.3: Depiction of Peak Studio. Designed and written in java by Jon McCafferty. 

(A) ARISA spectra from a human microbial community are superimposed and color 

coded. Options include custom colorization, toggling ability to display individual graphs, 

and the option to toggle size standard spectra. For a given spectra, peak and background 

can be distinguished by different colors. (B) Display of size standard spectra for 1 of the 

ARISA experiments.   

 

A 

B 
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FIGURE 4.4: Dialog box for ARISA cluster analysis. Each of the options is broken down 

into tabs for easier selection. Step 1 involves choosing 1 of the 5 different binning 

methods.     
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FIGURE 4.5: Different views of each tab for the ARISA cluster analysis dialog box. The 

upper, middle and lower panels show the various options involved at each step of the 

process.  
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 In Figure 4.4, the first tab shows where the user chooses a binning method to use 

for analysis. The upper panel of Figure 4.5 shows the second tab where the user selects 

the type of clustering method. By default, the choice is Ward‟s clustering, based on the 

results from Chapter 3. The middle panel of Figure 4.5 allows the user to choose whether 

or not to use binary format, in addition to some bin size options. If the user has chosen 

simple bins, here they choose what size bin to use. If using random binning, the user can 

choose how many random bin runs they want to run. Boxes that are not relevant to the 

binning method chosen are grayed out and not selectable. As can be seen in the middle 

panel of Figure 4.5, the random binning selection is not available because random 

binning was not selected as the binning method. The lower panel of Figure 4.5 shows the 

last tab of the ARISA cluster dialog. Here the user can start the analysis, make changes to 

some of the parameter settings, edit the size standard settings, and select the output 

directory for the Newick tree output. If an insufficient number of experiments are chosen, 

the “Launch Cluster” button is grayed out and unavailable until the proper number of 

experiments is chosen. The pink text box summarizes the binning choices made and 

shows the number of experiments to be clustered. Once the desired choices are made, and 

a sufficient number of experiments are chosen, cluster analysis can be launched and a tree 

file in Newick format is made.  

4.2.6 Tree cluster visualization via Archaeopteryx 

 

 Upon clustering ARISA spectra, it is preferable to visualize the dendrogram as 

well as provide the data. For visualization, I implemented Archaeopteryx, an open source 

freely distributable java package that is designed for visualizing and annotating 

phylogenetic trees [81,87]. Archaeopteryx is an adaptation of a class of libraries known 
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as Forester, which was a java based tool first developed for visualizing complex 

phylogenetic trees [81]. The authors of Forester have been granted permission to use and 

modify the code so long as we adhere to the licensing agreement, not use the code for 

commercial gain and make the source code accessible.   

 Archaeopteryx reads in tree cluster files in the Newick format and then generates 

a customizable visualization of the tree with numerous options. In Figure 4.6, a 

dendrogram is depicted using a subset of the human subject ARISAs described in chapter 

3. We chose a  customized color setting of a blue tree on white background with the 

option of branch lengths being drawn according to length. For the 3 subjects in Figure 

4.6, we can clearly see three distinct clusters without any further need to tweak any of the 

available options. Archaeopteryx also provides a number of export options that we get for 

free, including the export of PDFs, jpegs, PNGs, GIFs and BMPs.         
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FIGURE 4.6: Depiction of Peak Studio‟s implementation of Archaeopteryx. We fail to 

utilize much of Archaeopteryx‟s phylogenetic functionality but do make it available for 

users if they so desire.     
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4.2.7 Quality Control 

 

A quality control check was implemented in Peak Studio that attempts to identify 

whether the appropriate conditions are met for further analysis. Assuming a user has 

selected a size standard file to associate with the uploaded file or files, Peak Studio 

checks that the number of expected size standard peaks matches the actual number. In 

order to do so, all of the peaks need to be distinguished from background noise. For each 

potential size standard peak in the spectra, a number of parameters need to be satisfied in 

order for it to be labeled as a size standard peak. These parameters include: meeting a 

minimum height threshold, having appropriate rising and descending slopes and ensuring 

that the rising slope and falling slope of the peak are within a specified distance of each 

other. If the number of peaks identified fails to match the expected number of size 

standards, a warning window is displayed as in the left panel of Figure 4.7. The QC status 

in the data table will then reflect the error (right panel, Figure 4.7).  

 

             

FIGURE 4.7: Example of Peak Studio output when failing QC check. Left Panel: A 

warning message is displayed when a loaded file fails to match the parameter settings. 

Right Panel: The QC status in the table displays a short message pertaining to the QC 

status of the loaded file. The file can still be viewed in the viewer but no further analysis 

is possible. 
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 The Quality Control section was created by Anthony Fodor, Jon McCafferty and 

this author. The quality control check of each peak was written by Anthony Fodor, while 

Jon McCafferty and this author integrated the QC code into Peak Studio and tested. 

4.2.8 User Access 

 

 The development of Peak Studio has approached the end of phase 1 in the 

development cycle and is fully functional.  The package has been released to the public in 

its current form under the GNU license. The code is available for use and for further 

development at the SVN repository located at:  

 

https://peakstudio.svn.sourceforge.net/svnroot/peakstudio 

 

The repository is part of the Peak Studio project hosted by sourceforge.net at: 

 

http://peakstudio.sourceforge.net/ 

 

Users are currently welcome to download the Peak Studio jar file, test it out or run their 

own set of data. Developers are also welcome to join in the Peak Studio development.  

4.3 Summary 

 

 Our goal with Peak Studio was to provide an easy to use software package that 

allows users to fully visualize ARISA data and generate hierarchical clusters. Peak Studio 

provides users with the ability to simultaneously view many ARISA spectra and easily 

produce hierarchical clusters with many cluster options. Users can cluster data using a 

choice of binning strategies and different clustering methods, as well as rapidly view the 

https://peakstudio.svn.sourceforge.net/svnroot/peakstudio
http://peakstudio.sourceforge.net/
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results of these clusters. Now that Peak Studio is accessible to the public, the benefits of 

the ARISA implementations from chapter‟s 2 and 3 are immediately accessible for all to 

use. These implementations have taken the better part of 2 years and specialized expertise 

to develop, therefore they are beyond the capabilities of many research labs. This 

contribution to the research community hopefully will aid many scientists in the ARISA 

analytical process. 
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4.4 Conclusions and suggestions for further work 

 

The central theme of this dissertation was to solve problems that arose from 

complex and large datasets. In chapter 1, we described PINC, a microarray analytical 

method that can be applied to low replicate experiments. Microarray experiments can 

produce many 1000s of results, but are not necessarily performed with many replicates 

due to significant costs. PINC is particularly useful when microarray experiments have 

less than 3 replicates. The majority of other analytical methods are based on assumptions 

that require larger sample sizes, while, for the methods that do allow smaller numbers of 

replicates, they failed to perform as well as PINC. An additional benefit of PINC is that 

we were able to develop a way to estimate biological noise in microarrays, because PINC 

allows us to do single chip to chip comparisons. By performing many of these single chip 

comparisons and using the knowledge that technical replicates tend to be consistent, we 

can identify where variability is most likely caused by biological sources.  

Future work in microarrays would involve expanding the PINC‟s functionality to 

multiple microarray platforms. Currently, the PINC software package is only suited for a 

small range of Affymetrix gene expression chips, limiting its scope of application. In 

addition, PINC is not as user friendly as it could be. PINC requires a user to manipulate 

properties files, install the R statistical software package and have some knowledge of 

how to install packages in R.  

Shifting away from microarrays, chapter‟s 2-4 focused on how to best analyze 

data from ARISA, the molecular marker technique that produces highly reproducible, 

DNA fragments. ARISA is used to identify the length of DNA fragments extending 

between the 16S and 23S gene regions for all bacterial members of a microbial 
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community meeting primer sequence compatibility and PCR product efficiency 

conditions. One of ARISA‟s primary uses has been to compare communities to one 

another, often by way of hierarchical clustering.  While less complex than microarray 

output, ARISA experiments produce a large volume of multidimensional data, which 

often raises questions about how to best go about analyzing and comparing ARISA 

experiments. In the literature, multiple methods have been described to process and 

explain ARISA results, but there has not been a systematic, standardized comparison 

between these methods to determine which perform best. We therefore, opted to explore 

a number of these different ARISA analytical methods in the context of clustering 

performance.  

Chapter 2 focused on the processing of ARISA data so that spectral peaks in an 

experiment can be accurately identified and sized. By doing so, the sample peaks in a 

spectrum, (which each correspond to one or more DNA intergenic fragments, from which 

we infer the presence of some microbial species) are reliably identified and therefore 

more likely to represent a real characteristic of their biological source. This was primarily 

done via a linear interpolation method, to determine peak size, and a custom peak calling 

method to distinguish peaks from background noise. 

 Chapter 3 built on the processing methods developed in chapter 2 and focused on 

clustering ARISA experiments using a variety of methods. We chose to assess clustering 

performance by comparing the results to those obtained when clustering sequences from 

454 sequencing of 16S rDNA sequencing. Using a cluster structure derived from a DNA 

sequencing experiment, we tested various ARISA clustering methods to see how well 

they matched. We discovered that many of the binning strategies discussed in the 
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literature yielded no appreciable benefit to clustering performance, while choices in 

clustering methods (such as Wards or Furthest neighbor clustering) did produce a benefit. 

We also observed that the data processing pipeline that we developed performed 

considerably better than when processing data via ABI‟s GeneMapper, albeit with default 

parameters. A future topic of focus would be to test out many of the GeneMapper options 

to see for which parameters each method prevails. For many researchers, exporting data 

from GeneMapper to a second program is their only option. If our peak calling and QC 

methods are superior, this will provide a tremendous benefit to the research committee 

and the software to carry out this action is already developed and available. Other 

commercial software solutions do exist (such as GelCompar II from the AppliedMaths) 

but they are expensive and not widely employed, so they do not represent benchmarks we 

must meet.     

Chapter 4 focused on the development of Peak Studio, a software tool that 

incorporates the data processing and clustering strategies described in chapter‟s 2 and 3. 

Peak Studio includes a graphical user interface intended to make it simple for a user to 

select data, methods and parameters to accomplish ARISA analysis, in particular, the 

ability to view ARISA spectra and produce ARISA clusters. Peak Studio is publicly 

available and downloadable online for use or further development. A number of useful 

extensions have been suggested for improvements to Peak Studio. User feedback at this 

point will be the largest determining factor for what features Peak Studio should 

incorporate next. One suggestion put already put forth is to allow a user a way to tag 

individual peaks in the electropherogram with information such as taxa, fragment length 

or a species ID. A second suggestion is to associate the peaks in the ARISA with an 
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intergenic DNA fragment database so that each peak would potentially identify a list of 

possible species that match a peak of that particular size.  

Peak Studio will be expanded to provide support for T-RFLP data. The code has a 

number of implementations already in place so that .fsa files from T-RFLP data can 

loaded and viewed. T-RFLP clustering has also been implemented, and follows the same 

general principles as ARISA analyses. In fact, any type of spectrum-based data (e.g., 

HPLC, LC, MS, GC, and capillary electrophoresis) could be viewed using the 

visualization component of Peak Studio once the appropriate parsers are written. Peak 

Studio is based on a flexible model and thus can be readily adapted to different data sets; 

it is hoped that it will provide great benefit to the research community. 

 To conclude, the findings of this dissertation provide the scientific community 

with improved analytical strategies in microarray and ARISA research, as well as provide 

open source software packages to aid in these types of analysis.            
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APPENDIX 

 

 

Aims Summary 

Sub aims of Aim #1 

Implement existing methods capable of analyzing single microarray methods in Java – 

(COMPLETED) 

Student‟s T-test (paired and unpaired)  

Wilcoxon non parametric test (paired and unpaired) 

BGX algorithm (implemented in R) 

CyberT algorithm (paired and unpaired 

Implement PINC and compare to previous methods – (COMPLETED) 

Test methods on Affymetrix Latin Square microarrays to determine sensitivity and 

specificity – (COMPLETED) 

 Test PINC on technical replicates – (COMPLETED) 

Apply PINC to larger experiments of different biological sources to assess PINC‟s ability 

to determine variability – (COMPLETED) 

Submit paper for publication – (COMPLETED)   

 

 

Sub aims of Aim #2 

Write parser to convert binary data from sequencer into base pair space based on size 

standards (majority of this work completed by Melanie Spencer) –(COMPLETED) 

Implement correlation method to compare pairs of technical replicates –(COMPLETED) 

Implement ½ Size standard Assessment method to assess base pair assignment –

(COMPLETED) 

Implement a size standard peak height detection method–(COMPLETED) 

 

Sub aims of Aim #3 

Implement existing binning methods in the literature (methods depicted in Figure 2-3)  -

(COMPLETED) 

Develop random binning technique -(COMPLETED) 

Develop CABS, the post binning correction step -(COMPLETED and abandoned) 

Decide on a scoring metric to determine how well each binning method performs -

(COMPLETED) 

Compare binning methods using small and large datasets to determine Binning 

performance -(COMPLETED) 

Submit paper for publication -(COMPLETED) 

 

 

Sub aims of Aim #4 

Write a Design document to govern the scope of the project -(COMPLETED) 
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Develop a visual component of the software tool allowing the display of single or 

multiple ARISA experiments -(COMPLETED) 

Implement QC steps from Aim #2 into software tool -(COMPLETED) 

Implement Binning methods from  Aim #3 -(COMPLETED) 

Design and generate code to export results in user friendly formats  -(COMPLETED) 
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