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ABSTRACT 
 
 

CHRISTOPH ANDREAS JOHANN KOSSACK. Friction Measurement during free 
vibration. (Under the direction of DR. TONY SCHMITZ) 

 
 

 Friction is a key consideration in the behavior of many dynamic systems. However, 

modeling friction behavior accurately remains an engineering challenge. Current friction 

measurement approaches are limited to application specific tests that attempt to mimic 

physical situations. Furthermore, these tests are typically accompanied by large 

uncertainties (approximately parts in 102).  

 This research presents a new approach to determine friction behavior that uses 

velocity measured during free vibration to quantify the energy dissipation in sliding friction 

contacts. A flexure based friction measuring machine (FMM) was used to conduct friction 

tests at multiple initial energy input levels. A single parameter Coulomb friction model was 

used to determine the average dynamic coefficient of friction for a friction contact pair 

consisting of a polytetrafluouroethylene (PTFE) pin and a polished steel counterface. 

 The FMM data was also used to study other friction behaviors that have been 

experimentally observed in prior work, including the Stribeck effect and non-reversible 

friction. A three parameter dynamic friction model was used to demonstrate the nonlinear 

dependence of friction on velocity as a system transitions from the stick to slip regimes 

(Stribeck effect). The presence of non-reversible friction behavior was tested by sectioning 

the single dynamic coefficient of friction into two components, one for increasing velocity 

and one for decreasing velocity. Results showed that the friction coefficient was larger for 

accelerating motion than for decelerating motion. 
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CHAPTER 1: INTRODUCTION 

 
 Although friction is a key consideration in many engineering systems, it remains 

only partially understood. Friction plays an important role in the performance of many 

dynamic systems, but measuring and modeling friction behavior accurately remains an 

engineering challenge. This is due, in part, to the fact that current friction measurement 

tests are typically accompanied by large uncertainties (approximately parts in 102 [1]). 

Force based tribometers rely on precise angular alignment of the applied normal force. 

Even small misalignments can result in significant errors when determining friction 

coefficients. Furthermore, these tests are dependent on the accuracy and repeatability of a 

continuous input force that needs to be applied to create the normal force and sliding 

motion. It is common practice to build application specific tests that measure the friction 

behavior for a contact pair at specific velocities. This requires constant velocity conditions. 

The friction behavior for instantaneous changes in velocity or directional changes are 

therefore often not quantified.   

 This research analyzes the effectiveness of a new friction measurement approach 

that parameterizes friction models using the friction energy dissipation of a freely 

oscillating system. A friction measuring machine (FMM) that provides linear motion 

between a pin and a counterface was designed and built. The FMM uses four leaf springs 

in a parallelogram leaf-type structure arrangement to provide the relative motion for the 

contact pair. By commanding an initial displacement from equilibrium to the FMM the leaf 

springs are loaded with the potential energy that results in motion upon release. Once the 

FMM is released, a laser vibrometer is used to measure velocity as the FMM oscillates 
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freely until it comes to rest. There is no additional force applied to the system during 

oscillation. 

 The modal parameters for the FMM were determined by analyzing velocity data 

from free vibration tests with no a friction contact. The energy dissipation rate caused by 

the friction contact pair is quantified by comparing the free vibration to friction contact 

results. Furthermore, this measurement technique provides data for all friction regimes: 

acceleration/deceleration, static/sliding friction, and the transition from static to sliding 

friction (Stribeck effect). 

 A single parameter Coulomb friction model was used to demonstrate how the 

vibrometer velocity data can be used to determine the average coefficient of friction for the 

contact pair. Based on this friction model a Monte Carlo simulation was performed to 

determine the sensitivities and uncertainty contributions for the modal parameters (mass, 

stiffness, and viscous damping). Acceleration dependent and Stribeck effect friction 

models were also studied using the FMM data. 
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CHAPTER 2: LITERATURE REVIEW 

 “Energy loss due to friction and the failure of equipment due to wear represent a 

considerable percentage of every modern economy” [4] and “it is estimated that one-third 

to one-half of the world’s energy production is wasted through friction” [24]. Considering 

the enormous impact that friction has on dynamic systems, it is apparent that the ability to 

model and predict friction behavior is critical. This remains an engineering challenge, 

however, because friction behavior is not yet completely understood.  

 The abundance of different friction models can make the selection of the 

appropriate model for an application a challenging task. It is common practice to build 

application specific friction tests that attempt to mimic the dynamic system as closely as 

possible. Tribological tests are typically classified “according to their degree of realism, 

i.e. how closely they imitate the conditions of a real application.” [10]. The need to design, 

build and test a new friction measuring machine for every new application requires 

significant time and money and is, therefore, not a preferred solution. 

 Standard tests exist in the form of tribometers, such as pin-on-disk geometries. 

These tests suffer from large uncertainties, however. Normal and tangential force 

components as well as surface velocities must be applied and measured accurately. 

“Misalignments between the force measurement axis and the directions axes and the 

directions normal (N) and tangent (T) to the reciprocating or rotating surface constitute one 

of the most significant contributors to friction coefficient measurement errors.” [21]. It is 

the goal of this research to develop a new friction measurement technique that will reduce 

these uncertainties and then determine the appropriate friction model to quantify test 

results. 
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 Modeling friction is a challenging process. There are a multitude of parameters that 

need to be considered, depending on the selection model. “Experiments indicate a 

functional dependence upon a large variety of parameters, including sliding speed, 

acceleration, critical sliding distance, temperature, normal load, humidity, surface 

preparation, and material combination” [11]. Contamination of the friction contact pair 

interface adds additional complexity because, even the presence of small particles, 

additional forces are present that can alter friction coefficient results [12].  

 One of the most difficult parameters to determine is the break-away coefficient of 

friction, also known as the static coefficient of friction. Determining a single static 

coefficient of friction for a contact pair can prove difficult, as demonstrated in experiments 

performed by Li [20] while attempting to obtain the static friction coefficient for an 

aluminum and glass contact pair. Li found that there were variations in the measured static 

coefficient of friction and noted that complications caused by “reactions between surfaces, 

interlocking surface features” [20] and other sources were the cause of this problem.  

 This “multi-valued friction at zero relative velocity” [11] problem stems from the 

fact that the true surface contact area between two samples is never exactly the same. 

Surfaces are never completely smooth and thus have perturbing features called asperities 

and it is the contact points of these asperities that define the true surface contact area 

[4,10,13]. Therefore, when one material surface slides across the surface of the other to a 

new position, the number of surface asperities in contact between materials changes. By 

extension, the size and stiffness of the new contact asperities has also changed, altering the 

overall sticking force between the surfaces. This phenomenon causes challenges when 

trying to identify a single static coefficient of friction. An additional consideration is dwell 
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time between surfaces, or the time that a contact pair is at zero relative velocity. Increases 

in dwell time can cause surfaces to sink further into one another and becoming more locked 

together. This also causes inconsistencies when determining static friction 

forces.[11,4,2,14]. This problem was encountered in this research when the initial Coulomb 

friction model included a static friction coefficient, µs, along with the dynamic friction 

coefficient, µd. The fitting results for µd were consistent for multiple tests at a specific 

initial displacement, yet µs would be so random that its standard deviation was as much as 

100% of its mean. For this reason, a single parameter Coulomb friction model was adopted 

to determine the average dynamic coefficient of friction. 

 The challenges of determining static friction coefficients lead to another friction 

modeling obstacle: pre-sliding displacement. As mentioned before, the surface contact area 

consists of a large number of asperities in contact with one another. These asperities have 

an associated stiffness and they are the reason that “friction behaves like a spring if the 

applied force is less than the break-away force” [2]. This means that once force is applied, 

there is a region of motion as the spring-like asperities are bent before any sliding motion 

begins. “There is a displacement (presliding displacement) which is an approximately 

linear function of the applied force, up to a critical force, at which breakaway occurs” [4]. 

Friction models such as the Dahl [3] and LuGre [6,15,19] models account for this by adding 

a spring like effect into the friction model. This is done by assuming that the asperities are 

a large array of bristles with an average spring stiffness. These models include parameters 

that need to be experimentally determined using constant velocity tests and were therefore 

not included in the selection of friction models studied in this research. With the addition 
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of constant velocity data for the contact pair, however, these models could be applied to 

the FMM data. 

 Another friction behavior component is the non-reversibility of friction force. 

“Hysteretic characteristics of friction can also be observed during regressive (two-way) 

oscillations with macroscopic sliding. Some experimental and analytical studies confirm 

the existence of different slopes of friction force for the acceleration and deceleration 

phases” [14]. This is especially true around zero velocity. The friction coefficient is 

therefore a function of both relative velocity and acceleration. This friction behavior was 

examined in this research by determining two dynamic friction coefficients for the 

oscillating FMM: one for the accelerating phases and one for the decelerating phases. The 

results confirmed “observations of friction loops in which friction is a function of sliding 

acceleration as well as sliding velocity” [11]. 

 The Stribeck effect is a friction component that is a large contributor to the friction 

forces in the FMM. “Stribeck’s work has shown a nonlinear transition from stick to slip” 

[14]. Each velocity data set obtained from the FMM features numerous passes through zero 

velocity and therefore provides sliding behavior data for this transition phase. There have 

been many attempts to model the Stribeck effect and this research applies some of the 

resulting Stribeck functions to determine friction coefficients. A modified version of a 

continuously differentiable friction model [1], a three parameter velocity dependent model 

[11], and new friction functions were tested in an attempt to model the decaying behavior 

observed in the oscillating FMM data.  
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CHAPTER 3: FRICTION MEASURING MACHINE 

3.1 FMM Components 

 The FMM was designed so that it provides linear motion between a pin and a 

counterface for friction contact tests. Four leaf springs that are arranged in a parallelogram 

leaf-type flexure configuration provide the nominally linear motion, as can be seen in 

Figure 1. The horizontal oscillation of the leaf springs provides the motion for the system, 

eliminating the need for any external input forces.  

 
Figure 1 Friction measuring machine and measurement components 

 
 One end of the leaf springs is clamped to the base of the assembly which is rigidly 

mounted to a vibration isolated table. The other end is clamped to an aluminum faceplate 

to which the motion platform is attached. The motion platform is attached to the center of 
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the faceplate and extends back towards the base. The counterface for the friction contact 

pair is mounted on the motion platform at the midpoint between the faceplate and the base. 

 Two air bearings are attached to the base directly above the center of the 

counterface when the FMM is in its equilibrium position. The air bearings hold the vertical 

shaft in place, which is used for the application of the normal load for friction tests. The 

bottom end of the vertical shaft has a removable sample holder attached to it. A small 

cylindrical pin of a sample material can be loaded into the holder and the holder can then 

be attached to the bottom of the vertical shaft. The testing sample is then lowered onto the 

counterface to complete the friction contact pair. The top end of the vertical shaft is 

threaded so that different masses can be attached to it. Masses can be added to alter the 

normal load for friction tests. The forces resulting from the masses of the vertical shaft, 

sample holder and additional weights are the only contributing factors to the normal load 

for the tests. 

3.2 FMM Operation 

 An electromagnet is used to move the FMM to the desired initial testing 

displacement. A MATLAB code was created to move the electromagnet to the motion 

platform and then pull it back to the input initial displacement. By cutting the power to the 

electromagnet the FMM is released and allowed to oscillate freely. As soon as the FMM is 

released the electromagnet is retracted further to ensure that it does not interfere with the 

oscillating structure. 

3.3 FMM Measurement Devices 

 A laser vibrometer is used to gather velocity data during the tests. The vibrometer 

is positioned on the opposite side of the electromagnet and takes data at the location of the 
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friction contact pair interface. SpinScope is used to continuously acquire the laser 

vibrometer voltage output. In addition to the vibrometer, a capacitance sensor is used to 

monitor the parasitic motion of the motion platform. The laser vibrometer only measures 

linear velocity so the capacitance sensor is used to measure the motion normal to the 

vibrometer measurements. As shown in Chapter 4, the parasitic motion is small enough to 

be ignored   
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CHAPTER 4: FMM STRUCTURE CALCULATIONS 

4.1 Maximum Allowable Deflection 

 The range of allowable initial displacements for the FMM were determined to 

ensure that the structure was not plastically deformed during testing. This was done using 

Equation 4.1 [23]. The maximum stress in the parallelogram, leaf-type flexure at a specific 

deflection is calculated with Equation 4.2. 

 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑦𝑦𝐿𝐿
3𝐸𝐸𝐸𝐸

          (4.1) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝐸𝐸𝐸𝐸𝛿𝛿𝑥𝑥
𝑏𝑏𝐸𝐸2

             (4.2) 

In Equation 4.1, δmax is the maximum allowable deflection of the structure, t is the thickness 

of the flexure, L is the length, and σy and E are the yield strength and Youngs modulus of 

the flexure material (steel), respectively. In Equation 4.2, b is the width of the flexure, σmax 

is the maximum stress, and δx is the deflection. Results showed that the maximum 

allowable deflection for the FMM is 134 mm. To ensure that there is no plastic deformation 

a factor of safety of six was used to determine the maximum test deflection. From Equation 

4.2 it was determined that the maximum allowable stress for this factor of safety is 70.4 

MPa, which resulted in a maximum allowable deflection of 22 mm. 

4.2 Parasitic Motion 

 The FMM was designed to eliminate rotations at the friction contact pair interface. 

This is why the structure utilizes four leaf springs instead of two. By leaving a gap between 

two leaf springs it is possible to apply the displacement force at the midpoint of the leaf 

springs, which is crucial for these experiments and displayed in Figure 2.  
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Figure 2 Diagram of the FMM with force input location 

 
When the force is applied as shown in Figure 2, the faceplate, and, by extension, 

the motion platform, moves parallel to the base. The vibrometer takes velocity 

measurements in the x-direction only. However, there also exists some motion in the y- 

direction, which is considered the parasitic motion of the system. The parasitic motion can 

be calculated using Equation 4.3 [23]. 

𝛿𝛿𝑦𝑦 = −3𝛿𝛿𝑥𝑥2

5𝐿𝐿
           (4.3) 

 The relationship between parasitic motion and linear deflection is quadratic. The 

chosen testing range is 4 mm to 22 mm. For a 4 mm test the maximum parasitic motion is 

17.4 µm, which is 230 times smaller than the linear displacement. At 22 mm displacement 

the parasitic motion increases to 500 µm. However, this is still over an order of magnitude 

lower than the linear displacement, which is 42 times greater. Even at the maximum 

displacement of 22 mm the parasitic motion has little impact on the testing results, which 
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will be demonstrated at the end of this section after the parasitic motion calculations have 

been validated. 

 The measured parasitic motion was used to validate the results of Equation 4.3. 

Consider Figure 3, which displays vibrometer and capacitance sensor data for a 6 mm test. 

 
Figure 3 Velocity and capacitance sensor data for a 6 mm initial displacement test 

 
 The velocity data was integrated to obtain the position of the FMM during the test. 

The position vector was then used as the x-deflection input, δx, for Equation 4.3, to obtain 

a position vector that represents the analytical parasitic motion. This vector was then 

plotted and superimposed on the measured parasitic motion as can be seen in Figure 4. The 

calculated displacement closely matches the displacement measured by the capacitance 
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sensor. The relationship between parasitic motion, ∆y, and linear motion, ∆x, is displayed 

in Figure 5 for one oscillating cycle. 

 
Figure 4 Measured parasitic motion and calculated parasitic motion of the FMM 

 
Figure 5 Single cycle comparison between analytical and measured parasitic motion 
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 After the parasitic motion equation was validated, it was used to demonstrate the 

impact that the parasitic motion magnitude has on the velocity magnitude. The velocity 

data for a 22 mm test was used for this demonstration. The velocity data was integrated to 

obtain a position vector and the parasitic displacement was calculated from the position 

vector. The parasitic displacement along with the time step from the sampling frequency 

was then used to create a parasitic velocity vector. The linear velocity vector and the 

parasitic velocity vector were then combined to obtain a resultant velocity vector. Figure 6 

displays a comparison between the linear velocity and parasitic velocity (top) as well as 

the resultant velocity vector superimposed on the linear velocity vector (bottom). 

 
Figure 6 Comparison between linear velocity measured by vibrometer and parasitic 

motion (top) and linear velocity compared to resultant velocity including both parasitic 
velocity and linear velocity 
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the parasitic motion can be ignored when analyzing the velocity data in the friction 

calculations. 

4.3 Vertical Shaft Tilt 

 In addition to the parasitic motion, attention must be payed to the potential tilt of 

the vertical shaft during friction contact tests. Even with the two air bearings holding the 

vertical shaft in place there could still be a tilt in the shaft while the FMM is in motion and 

the friction force changes direction. This could cause the surfaces of the contact pair to not 

remain in full contact with each other. To test the shaft tilt, two capacitance sensors were 

attached to the base and pointed at two locations on the shaft. A friction contact was applied 

and the FMM was pulled back to an initial displacement of 12 mm and then released. Figure 

7 shows the displacement results for the two capacitance sensors performing measurements 

on the shaft. 

 
Figure 7 Capacitance sensor displacement data for shaft angular deflection 

 

0 0.2 0.4 0.6 0.8 1

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
is

pl
ac

em
en

t (
m

)

10 -6

Top Cap

Bottom Cap



16 
 

 The maximum horizontal difference between the top and bottom capacitance sensor 

is 1.6 µm. At a capacitance sensor spacing of 10.8 cm this gives a maximum angular tilt of 

8.5 x 10-4 degrees or 3.1 arcseconds, which is small enough to allow for the assumption 

that the interface contact area remains unchanged during testing.  
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CHAPTER 5: FMM MODAL PARAMETERS 

5.1 Nonlinear Least Squares Fitting 

 The FMM dynamic characteristics were determined by analyzing free vibration 

velocity data when no friction contact was present. It was previously shown that the 

parasitic motion of the FMM is negligible and therefore the machine was analyzed as a 

single degree of freedom spring-mass-damper system with an equation of motion in the 

form of Equation 5.1 

      𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 0         (5.1) 

where m, c and k are the modal mass, damping coefficient and stiffness of the FMM, 

respectively. The parameters were found by writing a MATLAB code 

[Free_Vibration_No_Friction_Fitting.m] that implemented a nonlinear least-squares 

fitting algorithm to fit the equation of motion to velocity test data. The free vibration, no 

friction velocity data used for this fitting process included data from tests with initial 

displacements,x0, ranging from 4 mm to 22 mm, in increments of 2 mm (zero initial 

velocity). Five tests were performed at each increment. For each test, the electromagnet 

was used to move the motion platform to the desired initial displacement and then the 

vibrometer was used to collect the velocity data upon release. The motion platform was 

allowed to oscillate freely for 45 seconds. The visually approximated natural frequency of 

the structure was about 2 Hz and therefore a sampling frequency of 1000 Hz was selected. 

 The residual effects of the electromagnet after release were also taken into account. 

Upon release of the FMM the electromagnet was retracted rapidly as to not interfere with 

the motion of the FMM. To account for residual magnetism and attractive force, the first 

five cycles of motion were removed from the data. The fitting algorithm was then applied 

to the remaining data. The function that was used was the MATLAB nonlinear least squares 
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fitting function lsqnonlin. This function applies a trust region reflective fitting approach. 

For each iteration Euler integration was performed to create simulated velocity data and 

then that data was subtracted from the measured velocity to determine the error. The code 

altered m, c and k and repeated the process until the error is at or below an acceptable level. 

Figure 8 shows an example of the velocity data fitting results for a complete data set and 

Figure 9 shows a close up view of the results for a three cycle window. 

 
Figure 8 Free vibration, no friction velocity fitting results for a complete test 

 
Figure 9 Close up view of fitting results for a three cycle window 
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 Table 1 displays all free vibration fitting results (no friction contact). The velocity 

in column two is the mean maximum velocity for each of the five tests at a specific initial 

displacement. Columns three to five represent the mean for each displacement increment. 

Table 2 displays the accompanying standard deviations. 

              Table 1 Free vibration modal fitting results (no friction contact) 
x0 

(mm) 
Velocity 
(mm/s) 

 Mass 
(kg) 

Stiffness 
(N/m) 

Damping 
(N·s/m) 

4 50  10.394 1981 0.222 
6 76  10.395 1981 0.235 
8 103  10.393 1981 0.245 
10 129  10.397 1982 0.256 
14 181  10.392 1982 0.278 
16 207  10.389 1983 0.288 
18 233  10.389 1984 0.299 
20 258  10.385 1984 0.313 
22 283  10.382 1984 0.327 

 
                      Table 2 Mean and standard deviation of modal parameters 

Modal Parameters m (kg) k (N/m) c (N·s/m) 

Mean 10.391 1982 0.275 
Standard Deviation 0.0049 1.3 0.0341 

 
 As seen in Table 1, there is an increasing trend in the damping coefficient with 

increasing initial displacement (and corresponding maximum velocity). Table 2 shows that 

the damping coefficient’s standard deviation is 12 % of its mean. It was discovered that 

there is a direct linear relationship between velocity and damping; this is presented in 

section 5.4. 

5.2 Log Decrement Damping Analysis 

 The influence of initial displacement and velocity on the damping coefficient was 

further investigated. The first step in checking for a correlation between velocity and the 

damping coefficient was performed by examining the log decrement from cycle to cycle 

for the data. The FMM was allowed to oscillate for 80 seconds while velocity was 
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measured. MATLAB code [Log_Dec_No_Friction.m] was then created to find peaks and 

apply the log decrement to determine the damping coefficient for each cycle. The 

maximum velocity for each cycle was also determined and recorded with the damping 

coefficient. The results are presented in Figure 10 and clearly demonstrate that an 

approximately linear relationship exists between velocity and damping coefficient. 

 
Figure 10 Damping coefficient results from logarithmic decrement method 

 
 Initially it was assumed that this change in damping was caused by a drag force 

from the large leaf springs swinging through the air. A drag term was added to the equation 

of motion and the fitting routine was repeated. This did improve the fit slightly but offered 

no change in damping coefficient sensitivity to velocity and was therefore discarded. 

5.3 Monte Carlo Simulation 

 An uncertainty analysis was performed to determine the influence of the modal 

parameters on the single parameter Coulomb friction model. This was done by creating a 

Monte Carlo simulation in a MATLAB code 

[Monte_Carlo_Single_Parameter_Friction_Model.m]. For the simulation, a perfect data 
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set was artificially created and used as the fitting objective for the modified Euler 

integration. Equation 5.2 is the modified equation of motion for the system when friction 

is added. The friction force is the product of the normal force, N, and the dynamic 

coefficient of friction, µd: Ff = N·µd 

        
𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝐹𝐹𝑓𝑓 = 0, �̇�𝑥 > 0
𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 0, �̇�𝑥 = 0

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 − 𝐹𝐹𝑓𝑓 = 0, �̇�𝑥 < 0
       (5.2) 

 The Monte Carlo simulation consisted of four separate analyses. A normal 

distribution was created for each of the three system parameters based on the test data 

displayed in Table 2. These distributions were randomly sampled 100,000 times and used 

for the fitting algorithm to determine the resulting dynamic friction coefficient, µd. Three 

of the analyses fixed two modal parameters and randomly sampled the distribution of the 

third. The fourth analysis sampled the normal distributions of all three modal parameters 

at the same time. For the artificially created perfect data set a µd value of 0.15 was assumed. 

Table 3 displays the results of the simulations. Column three lists the standard deviation 

when the selected modal parameter was varied. Column four shows the sensitivity to each 

modal parameter which was determined using Equation 5.3. Column five represents the 

products on the right hand side of Equation 5.4.  

            𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚,𝑘𝑘,𝑐𝑐 = 𝜎𝜎(𝜇𝜇𝑑𝑑)
𝜎𝜎(𝑚𝑚,𝑘𝑘,𝑐𝑐)

         (5.3) 

Table 3 Monte Carlo simulation results 
Dynamic friction coefficient, µd 

System parameter Mean Standard deviation Sensitivity Product of standard 
deviation and sensitivity 

m 0.150015 6.39x10-5 3.12x10-7 1.99x10-11 
k 0.150018 2.09x10-5 2.64x10-5 5.52x10-10 
c 0.150001 2.36x10-4 8.04x10-6 1.90x10-9 

ALL 0.150021 2.48x10-4 - - 
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 The law of propagation of uncertainty, represented in Equation 5.4 for this system, 

was used to determine the combined standard uncertainty for the friction coefficient due to 

variation in the modal parameters. This equation should yield the same result as the fourth 

Monte Carlo simulation, when sampling all three modal parameter normal distributions at 

the same time. Equation 5.4 resulted in uc = 2.45x10-4 and the combined Monte Carlo 

simulation result was uc =  2.48x10-4. Figure 11 displays the probability density function 

for µd when all three system parameters were randomly sampled during the same 

simulation.  

          𝑢𝑢𝑐𝑐2(𝜇𝜇𝑑𝑑) = �𝜕𝜕𝜇𝜇𝑑𝑑
𝜕𝜕𝑚𝑚

�
2
𝑢𝑢2(𝑚𝑚) + �𝜕𝜕𝜇𝜇𝑑𝑑

𝜕𝜕𝑘𝑘
�
2
𝑢𝑢2(𝑘𝑘) + �𝜕𝜕𝜇𝜇𝑑𝑑

𝜕𝜕𝑐𝑐
�
2
𝑢𝑢2(𝑐𝑐)       (5.4) 

 

 
Figure 11 Probability density function for µd when all three modal parameters were 

randomly sampled during the Monte Carlo simulation 
 

 Table 3 demonstrates that damping plays a significant role in identifying the friction 

coefficient. The column five entry is 3.44 times larger than the next largest entry (stiffness). 

This is not surprising since both viscous damping and Coulomb friction are responsible for 

energy dissipation in the dynamic system. For this reason, the damping results were further 

analyzed. 
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5.4 Linear Viscous Damping Coefficient 

 The relationship between velocity and viscous damping was quantified by 

reexamining the original free vibration data from the tests presented in Table 1. This time, 

however, only five cycles at a time were considered when determining the modal 

parameters. This ensured that for each sample range, the velocity had not decayed 

significantly, which made it possible to link the peak cycle velocity to the modal parameters 

that are identified by the fitting algorithm. It was discovered that there was a linear 

relationship between peak velocity and the viscous damping coefficient. This relationship 

is shown in Figure 12 and is expressed in Equation 5.5. 

                𝑐𝑐 = 0.437�̇�𝑥 + 0.2005                    (5.5) 

 
Figure 12 Linear fit of damping coefficient as a function of peak velocity 

 
 The linear fit has an R2 value of 0.997. The most likely source for this phenomenon 

are the clamps that hold the leaf springs to the base. There could be significant losses in 

kinetic energy as the leaf springs rub across the clamped surface during oscillation. Several 

other damping models were tested as well, including Zaitsev’s [17] nonlinear damping in 

double clamped beams model and Elliot and Tehrani’s [16] model for nonlinear damping 
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in single degree of freedom systems, but none provided consistent results for the FMM 

system. 
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CHAPTER 6: FRICTION ENERGY DISSIPATION 

 When a friction contact is added to the FMM, the energy dissipation rate increases 

dramatically. The difference in FMM energy rate between data sets with and without a 

friction contact can be used to determine the friction force caused by the contact pair at a 

specific velocity. A simulation [Energy_Analysis.m] was created to illustrate how the 

difference in energy rate can be used to determine the friction force and friction coefficient. 

The simulation assumes that the friction force is caused by a constant dynamic coefficient 

of, µd, which yields the friction force when multiplied by the normal load, N. This is the 

same assumption made when the Monte Carlo simulation was performed in section 5.1 and 

used the equation of motion provided in Equation 5.2.  

 For this analysis, the perfect data set for friction contact was created by assuming 

µd = 0.25 and N = 7 N. Both the free vibration and friction contact simulations had an initial 

displacement of 10 mm. Euler integration was used to create two data sets. Figure 13 shows 

the difference in velocity between the free vibration (no friction) and friction contact (with 

friction) cases. 
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Figure 13 Time dependent velocity for the two cases 

 The impact that the friction contact has on the energy dissipation rate is easily 

observable by comparing the velocities in Figure 13. The energy in the system at each 

time step can be best illustrated as a plot of the kinetic, potential, and total energies. 

Figure 14 displays the simulation data when converted into energy components. The 

kinetic and potential energies were calculated using Equation 6.1 and Equation 6.2. The 

total energy is simply the sum of the two. 

 
                   𝐾𝐾𝐾𝐾 = 1

2
𝑚𝑚�̇�𝑥2                    (6.1) 

 
                  𝑃𝑃𝐾𝐾 = 1

2
𝑘𝑘𝑥𝑥2         (6.2) 

 
  

0 0.5 1 1.5

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

V
el

oc
ity

 (m
/s

)

Velocity - no friciton

Velocity - with friction



27 
 

 
Figure 14 System energy versus time for free vibration with and without friction contact 

 
 The energy rate for the system velocities can now be calculated. This was done 

using Equation 6.3. The energy rate is tabulated at each velocity and plotted; see Figure 

15. 

 
    𝐾𝐾𝑠𝑠𝑠𝑠𝐸𝐸𝐸𝐸𝑠𝑠 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = �̇�𝑥 ∙ [𝑚𝑚�̈�𝑥 + 𝑘𝑘𝑥𝑥]        (6.3) 
 

 
Figure 15 Energy rate for free vibration and friction contacts 
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 To obtain the difference between the two energy rates, two tables were created. The 

free vibration energy data was input in a two column matrix along with its corresponding 

velocity data and the matrix was sorted according to velocity, from smallest to largest. The 

same was done for the friction contact energy rate and velocity data. The absolute value of 

the magnitudes for the end points of the friction contact data are smaller than those for 

friction free data and, therefore, the friction contact data lies within the free vibration 

velocity range. The code creates an energy difference matrix to determine the difference in 

energy rate at each of the friction contact velocities. The FMM has very low damping and 

therefore its free vibration energy dissipation is very low, which can be seen by the nearly 

horizontal blue line in Figure 15. Therefore, the difference in energy rate for the simulation 

looks like the inverse of the friction contact red line in Figure 15. The energy rate difference 

for the simulation is displayed in Figure 16. 

 

 
Figure 16 Energy rate difference versus velocity 
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  When dividing the energy rate difference by the velocity it returns a vector 

with values of -1.75 for all entries when velocity is negative and 1.75 for all values where 

velocity is positive. This is the force that friction adds to the system at every velocity. 

Checking against the friction contact simulation: Ff = µd·N = 0.25·7 = 1.75, it can be seen 

how this approach works when applied to actual data. 

 The main challenge in applying this method is the fact that only velocity data (not 

position) is measured by the vibrometer. Therefore, the displacement and acceleration need 

to be obtained by integrating and differentiating the velocity, respectively. This causes an 

increase of noise to be present in the acceleration data. For friction contact data, this is a 

significant problem because the function to be integrated and differentiated is 

discontinuous. Adding smoothing functions can reduce this noise, but also makes it more 

difficult to obtain accurate results when all three components of motion are combined. An 

example is presented in Figure 17.  

 
Figure 17 Energy rate calculated from measured data 
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CHAPTER 7: FRICTION COEFFICIENT FITTING 

7.1 Friction Tests 

 The friction contact pair for the friction tests consisted of a polytetrafluouroethylene 

(PTFE) pin and a polished steel counterface, which was attached to the motion platform. 

The PTFE pin was loaded into the sample holder and then attached to the vertical shaft. 

Four hundred grit sandpaper was placed on the counterface and the pin was lowered on top 

of it. The sample was then moved back and forth until the surfaces of the pin and 

counterface appeared to be parallel. The debris was removed with compressed air and then 

the process was repeated with 1,000 grit sandpaper and then 2,000 grit sandpaper. This was 

done to ensure that the surfaces were smooth and parallel. 

 The normal force for these tests was 14 N. The force was determined by measuring 

the mass of the vertical shaft, sample holder, and added mass and multiplying this mass by 

the gravitational constant (9.81 m/s2). Wear is a common side product of friction. Because 

the friction coefficient results depend on a consistent surface interface, the FMM was 

checked for repeatability by conducting numerous tests at specific initial displacements. 

These results were then compared to determine if there was any change in system response 

as the number of tests increased. Figure 18 displays an example of the velocity data for five 

tests at the same initial displacement and demonstrates good repeatability. This type of data 

comparison was performed for all tests prior to the application of the friction fitting code. 

Friction contact tests were performed at 15 different initial displacements. These tests 

ranged from 8 mm to 22 mm in 1 mm increments. 
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Figure 18 Repeatability test with friction contact 

7.2 Single Parameter Coulomb Friction 

 A single parameter Coulomb friction model was selected as the primary friction 

response model for this research. This model assumes that friction force is solely a function 

of normal force and applies a dynamic friction coefficient, µd. The friction force is therefore 

a constant quantity, independent of velocity and acceleration, and always opposes the 

motion of the system. 

 For this simplistic model, the friction force, Ff, in Equation 5.2 is replaced by the 

product of normal force, N, and µd: Ff = N•µd. The MATLAB code 

[Friction_fitting_single_parameter.m] was used for fitting Equation 5.2 to the velocity 

data. The velocity data was first filtered using the MATLAB smooth function which used 

a moving average filter with a default span of 5 samples. The maximum velocity of the 

data was determined and used as the starting point for the fitting algorithm. This was done 

for two reasons: to minimize the residual effect of the electromagnet and because at 

maximum velocity the position of the FMM is at its equilibrium, or zero, displacement. 

The latter is of particular importance because the initial position is the starting point for the 
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Euler integration used in the fitting code. For this reason the fitting code has two variables 

to identify: µd and x0f, which are the dynamic friction coefficient and the initial fitting 

position, respectively. The Euler integration steps are displayed in Equation 7.1              

    �̈�𝑥(𝑛𝑛+1) = −𝜇𝜇𝑑𝑑𝑁𝑁−𝑐𝑐�̇�𝑚(𝑛𝑛)−𝑘𝑘𝑚𝑚(𝑛𝑛)

𝑚𝑚
  

                                                �̇�𝑥(𝑛𝑛+1) = �̇�𝑥(𝑛𝑛) + �̈�𝑥(𝑛𝑛+1) ∙ 𝑑𝑑𝑠𝑠          (7.1) 

     𝑥𝑥(𝑛𝑛+1) = 𝑥𝑥(𝑛𝑛) + �̇�𝑥(𝑛𝑛+1) ∙ 𝑑𝑑𝑠𝑠 

where x, �̇�𝑥, and �̈�𝑥 are position, velocity, and acceleration, respectively. The variable n is an 

index used to denote the time step number for the variable and dt represents the time step. 

The constants m, k and c are the modal parameters that were determined during the free 

vibration analysis with no friction. The velocity data being fit ranges from maximum 

velocity until the motion comes to a stop. For example, in the case of the data in Figure 18, 

the fitting range is from 0 to 1.3 seconds. 

 The fitting results for the initial displacement tests are summarized in Figure 19 and 

Table 4 (results for µd from each initial displacement). 

 
Figure 19 Fitting result example for a single parameter friction model 
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 Table 4 Dynamic coefficient of friction results 
 Linear c Mean c 

x0(mm) µd vmax(m/s) µd vmax(m/s) 
8 0.217 0.086 0.217 0.086 
9 0.225 0.100 0.224 0.100 
10 0.228 0.114 0.228 0.114 
11 0.232 0.128 0.231 0.128 
12 0.236 0.141 0.235 0.141 
13 0.244 0.155 0.239 0.155 
14 0.247 0.168 0.247 0.168 
15 0.248 0.182 0.248 0.182 
16 0.252 0.196 0.252 0.196 
17 0.254 0.209 0.254 0.209 
18 0.261 0.223 0.261 0.223 
19 0.265 0.237 0.265 0.237 
20 0.264 0.251 0.264 0.251 
21 0.265 0.265 0.265 0.265 
22 0.267 0.280 0.267 0.280 

 
 Fitting was performed for both viscous damping models: the constant mean 

damping coefficient used in the Monte Carlo simulations and the linear damping 

coefficient from Equation 5.3. The results for the two approaches are virtually identical. 

The single friction coefficient shows a dependence on initial displacement. The Dahl and 

LuGre [3,6,11,15,19] model bristle effect discussed in the literature review states that the 

pre-sliding displacement caused by the spring like effect of the contact asperities can result 

in different required break away forces, which would impact the friction behavior around 

zero velocity. The velocity dependence of friction is well documented in most friction 

models, especially in the transition phase. The velocities of the FMM are low, with a 

maximum peak velocity of 0.267 m/s for the largest initial displacement test. It is therefore 

possible that the entire motion regime lies solely inside the Stribeck effect, never reaching 

the constant Coulomb dynamic friction coefficient. To establish a relationship between 

velocity and µd the maximum velocity for each initial displacement test was recorded and 

is presented in Table 2. This relationship is represented in Figure 20. The relationship 

between the dynamic friction coefficient and velocity in this case is not linear and is best 
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represented as part of a power function. The resulting power law fit is displayed in Equation 

7.2. 

 
Figure 20 Dynamic friction coefficient variation with peak velocity 

 
                𝜇𝜇𝑑𝑑 = 0.311�̇�𝑥0.2116 + 0.03148        (7.2) 

 The results show that the data collected with the FMM can be used to determine 

the average friction coefficient for a contact pair. In this research a single sliding friction 

coefficient model was implemented, but other models could be applied as well to study the 

transition phase phenomena. 

7.3 Acceleration Dependent Friction Model 

 There are an abundance of friction models in existence. An interesting friction 

model was proposed by Wojewoda and Stefanski [14] and has been experimentally 

evaluated by many. Their model suggests that the magnitude of the friction force is 

dependent on acceleration. It states that the friction force is larger when the sliding velocity 

is increasing than when it is decreasing in magnitude, which leads to a hysteretic effect 

around zero velocity. The FMM is never at a constant velocity and therefore is continuously 

accelerating in one direction or another. The acceleration dependent friction model was 
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tested in a separate simulation by adding a constraint to the fitting algorithm, as seen in 

Equation 7.3. The modified code determined the acceleration at each time step and applied 

the corresponding component of Equation 7.3. In Equation 7.3, µd1 represents the friction 

coefficient for the case when velocity is increasing in magnitude and µd2 is the friction 

coefficient for the case when velocity is decreasing in magnitude. An example of the fitting 

results is presented in Figure 21.  

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝜇𝜇𝑑𝑑1𝑁𝑁 = 0,      �̇�𝑥 > 0 , �̈�𝑥 > 0 
     �̇�𝑥 < 0 , �̈�𝑥 < 0 
            (7.3) 
𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝜇𝜇𝑑𝑑2𝑁𝑁 = 0, �̇�𝑥 > 0 , �̈�𝑥 < 0 
    �̇�𝑥 < 0 , �̈�𝑥 > 0    
 

 
Figure 21 Fitting results for acceleration dependent friction coefficient model 
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Figure 22 Dynamic friction coefficient for increasing velocity, µd1, and decreasing 

velocity, µd2 for different peak velocities 

 Figure 22 displays the results for multiple initial displacement tests. The results 

corroborate the theory of acceleration dependent friction. The friction coefficient has a 

different magnitude depending on whether the sliding velocity was increasing or 

decreasing. An increasing velocity magnitude always corresponds to a higher friction 

coefficient. These results also led to an investigation of work done by Den Hartog and 

Burdekin [14] on an irreversible friction effect model. Instead of constant values for µd1 

and µd2 in Equation 7.3, the coefficients were replaced by two exponential functions of 

velocity. Fitting results were excellent, but the results for most tests were inconsistent and 

simply confirmed that the coefficient of friction is larger for increasing velocity magnitude 

than for decreasing velocity magnitude as previously shown. 

7.4 Velocity Dependent Three Parameter Friction Model 

 The transition phase from stick to slip is a component of friction behavior that is 

yet to be completely successfully modeled. A simple and often used friction model for 

dynamic systems is presented by Berger in [11]. The model assumes that the friction force 
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weakens monotonically as the system goes from stick to slip. This is a three parameter 

model for the coefficient of friction and is presented in Equation 7.4 

                𝜇𝜇(𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟; 𝜇𝜇0, 𝜇𝜇1,𝛼𝛼) = 𝜇𝜇0 + 𝜇𝜇1 ∙ exp (−𝛼𝛼|𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟|)      (7.4) 

where vrel is the velocity, µ0 is a coefficient that governs large velocity behavior, µ1 is a 

coefficient that controls low velocity behavior, and α controls the rate of change of friction. 

At zero velocity, the sum of µ0 and µ1 represent the static coefficient of friction. As velocity 

increases the model converges to a constant dynamic coefficient of friction, in this case µd 

= µ0. The constant α is responsible for the rate of the transition from stick to slip and 

resembles the Stribeck effect. MATLAB code [Friction_fitting_three_parameter.m] was 

created to implement this friction model. New tests were performed from 10 mm to 16 mm 

in 1 mm increments. Five tests were performed at each initial displacement. Figure 23 

displays an example fit for a 16 mm initial displacement test and Figure 24 displays the 

resulting velocity dependent friction coefficient. 
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Figure 23 Velocity dependent three parameter friction model 

 
Figure 24 Coefficient of friction versus velocity for three parameter dynamic friction 

model 

 The results displayed in Figure 24 predict a static coefficient of friction of around 
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also represents the predicted coefficient of friction for velocities larger than the test 

velocities. The complete results are displayed in Table 5, where the mean of each 

coefficient at each initial displacement increment is shown. 

Table 5 Three parameter friction model results 
Initial Displacement (mm) Peak Velocity (m/s) µ0 µ1 α 

10 0.114 0.210 0.238 5.605 
11 0.127 0.216 0.244 5.140 
12 0.141 0.217 0.259 4.865 
14 0.169 0.223 0.250 3.211 
15 0.182 0.220 0.260 3.034 
16 0.196 0.228 0.261 2.852 

 

 Even this model displays an increase in dynamic friction coefficient with increasing 

peak velocity. The static coefficient of friction also increased with the initial displacement. 

This is most likely due to the varying break-away force discussed in the literature review, 

which depends on the rate of the increase of the force when moving from stick to slip. The 

larger the displacement the more tangential force is being applied by the flexures. The 

model does manage to predict the friction behavior for the displacement test ranges that 

were performed, however. 

 
7.5 Continuously Differentiable Friction Model 

 An interesting model that encapsulates all components of friction was developed 

by Dixon et al. in the form of a continuously differentiable friction model with a friction 

coefficient that is a function of velocity [1]. This model captures every aspect of friction 

behavior: static coefficient, the Stribeck effect, viscous dissipation, and coulombic friction. 

The model is presented in Equation 7.5. 

             𝑓𝑓(�̇�𝑥) = 𝛾𝛾1(tanh(𝛾𝛾2�̇�𝑥) − tanh(𝛾𝛾3�̇�𝑥)) − 𝛾𝛾4tanh(𝛾𝛾5�̇�𝑥)         (7.5) 
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where γ1 to γ5 are scaling coefficients. The sum of γ1 and γ4 gives the static friction 

coefficient. Coulomb friction is represented with the γ4tanh(γ5�̇�𝑥) term. The Stribeck effect 

is captured by the tanh(γ2�̇�𝑥)-tanh(γ3�̇�𝑥) component of Equation 7.5. 

 The problem with this model is that it passes through zero and it was therefore 

altered as follows. The fitting algorithm attempts to find γ1 through γ5 using the same 

nonlinear least squares approach as in previous tests. At each iteration, a velocity vector is 

created and a friction coefficient vector is calculated using Equation 7.5. The second 

derivative of Equation 7.5 is then used to determine where the function becomes concave 

up. The friction coefficient vector is shifted to zero from that point. The friction vector is 

now combined with the velocity vector to create a table that is used to interpolate friction 

coefficients at different velocities. Figure 25 displays the modification steps. The circles 

represent the determined points of inflection and from those two points the plot is shifted 

toward the vertical axis. The resulting friction coefficient versus velocity function shape 

can be seen in Figure 26. The data from this graph is used to interpolate the friction 

coefficient at a specific velocity. 
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Figure 25 Modification steps of Equation 7.5 

 
Figure 26 Friction coefficient versus velocity from modified Equation 7.5 

 
 It is the shape of the transition phase as well as the magnitudes of the static and 

sliding coefficients of friction that are of interest in this approach. MATLAB code 

[Tanh_Modified_Fitting_Model.m] was created to implement the modified continuously 

differentiable friction model in the fitting algorithms. Figure 27 displays an example of the 
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friction fit results and Figure 28 displays the resulting coefficient of friction as a function 

of velocity. 

 
Figure 27 Equation 7.5 friction model fitting results for a 22 mm initial displacement test 

 

 
Figure 28 Friction coefficient versus velocity for the fitting results from figure 27 

 According to this model, the static and dynamic coefficients of friction were 0.63 

and 0.24, respectively. Even though this model was able to find a good fit for all initial 
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displacement tests, the results varied considerably across the tests. However, the model 

provides an interesting method to approximate friction behavior. 

7.6 Discussion 

The friction models that were applied in this chapter differ greatly from one 

another, yet each one manages to provide a good fit to the measured data. The full range 

of motion data that the FMM provides is beneficial for studying the friction behavior in the 

stick to slip transition phase. The main goal of this research was to develop a new method 

for measuring friction for low velocity applications and has been achieved. 
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CHAPTER 8: FREQUENCY RESPONSE FUNCTION ANALYSIS 

8.1 Frequency Response Function 

 In all previous experiments the input energy to produce FMM motion was supplied 

by moving the machine from its equilibrium position to a specific initial displacement and 

then releasing it. All subsequent analyses were performed in the time domain. In this 

chapter, impact tests are performed, where the energy input is a short duration impact, to 

obtain the FMM frequency response function (FRF). This enabled the structural dynamics 

of a system with a sliding contact to be studied in the frequency domain. Velocity and 

impact force data were transformed into the frequency domain via the discrete Fourier 

transform. The FMM’s mobility and receptance were then calculated as the ratio of the 

response of the force input. The nonlinearity of a system with a sliding friction contact was 

observed by performing the impact tests at three different force levels. The previously 

presented single parameter friction fitting MATLAB code was modified by replacing the 

initial condition of displacement with that of an impact force. A single sliding (Coulomb) 

friction coefficient was determined for all impact force levels by fitting the simulated FRF 

to the experimental FRF. 

 
8.2 Experimental Setup 

 For the purposes of this study, the input energy was supplied by the hammer impact 

which was applied to the motion platform at the middle of the leaf spring length to 

minimize platform rotation. The electromagnet was removed from the previous 

experimental setup to make room for the impact tests; see Figure 29. 
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Figure 29 Photograph of FMM. The key components are identified. 

 
 The FMM friction contact for FRF testing was produced between the pin and 

counterface. The normal force between the pin and counterface was provided by a mass 

attached to the top of the vertical shaft. The mass for the tests completed in this study was 

0.680 kg (normal force of 6.67 N). 

 For the tests performed here, the contact pair consisted of a 

polytetrafluouroethylene (PTFE) pin on a polished steel counterface. The interface was 

lubricated using CRC Ultra Lite 3-36 Ultra Thin Non Staining Lubricant. The lubrication 

was applied to ensure that each impact force level selected for testing would result in a 

sufficient number of oscillations during the decaying motion. 

 Three impact force ranges were applied to the FMM using the impact hammer. 

Since the impact hammer is a manual device and repeating the same force level with each 

impact was not possible, a tolerance of ±50 N was selected for impact acceptance. The 

nominal impact force levels were 450 N (low), 1000 N (medium), and 1450 N (high). The 

impact force was applied using a PCB 086D05 modally tuned hammer with added mass 
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and a rubber tip. The corresponding velocity was measured using a Polytec OFV-5000 

laser vibrometer. The sampling time for each test was selected to be 33 s to ensure adequate 

frequency resolution for the FRFs. The sampling frequency was 10 kHz. The FMM was 

impacted by the hammer 10 times for each nominal force level. Between each impact, the 

CRC Ultra Lite 3-36 was reapplied to the counterface to ensure a consistent lubrication 

condition. 

 
8.3 Experimental Results 

 The measured time domain force and velocity signals were imported into MATLAB 

for analysis. Figure 30 displays the impact force and velocity data for 10 trials at the 

medium impact level. 

 

 
Figure 30 (Top) Time domain force, 𝑓𝑓, for 1000 N (medium) level. (Bottom) Time 

domain velocity, �̇�𝑥, due to force input. Note the change in time scale between the top and 
bottom panels. 
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 For each of the three force levels, the impulse was calculated (i.e., the area under 

the time domain force profile). It was determined using the trapezoid rule with a step size 

of 1×10-4 s (i.e., the sampling period). Figure 31 displays the results. For the right panel, 

the mean impulse value at each force level is shown with an error bar that represents ±1 

standard deviation over the 10 trials. 

 

 
Figure 31 (Left) Three impact force levels. (Right) Impulse values for the three force 

levels. 

 
 The FRFs for the three force levels were determined by converting the time domain 

force and velocity signals into the frequency domain using the discrete Fourier transform. 

The mobility for each data set was then calculated by dividing the frequency domain 

velocity by the frequency domain force. Figure 32 displays the real and imaginary parts of 

the mobility for 10 trials at the medium force level. To convert to receptance, the mobility 

FRF was divided by 𝑠𝑠𝑖𝑖. This follows from an assumption of harmonic motion, where 𝑥𝑥 =

𝑋𝑋𝑠𝑠𝑖𝑖𝑖𝑖𝐸𝐸 and �̇�𝑥 = 𝑠𝑠𝑖𝑖𝑋𝑋𝑠𝑠𝑖𝑖𝑖𝑖𝐸𝐸. The corresponding receptance is shown in Figure 33. 
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Figure 32 (Top) Real part of mobility FRF for 10 trials at the 1000 N (medium) force 

level. (Bottom) Imaginary part of mobility FRF for 10 trials 

 

 
Figure 33 (Top) Real part of receptance FRF for 10 trials at the 1000 N (medium) force 

level. (Bottom) Imaginary part of receptance FRF for 10 trials. 
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 The receptances are next compared for the three force levels. Figure 34 displays the 

mean FRF magnitudes for the low, medium, and high levels (10 trials each, averaged in 

the frequency domain). Figure 35 shows the impulse versus receptance magnitude for the 

three force levels (mean impulse values of 0.98 N-s, 1.42 N-s and 1.64 N-s), where the + 

symbol identifies the mean of 10 trials at each level. A linear trend is observed with an R2 

value very close to unity. 

 

 
Figure 34 Mean receptance magnitude at three force levels. The magnitude increases with 

force for the FMM with friction contact. 
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Figure 35 Impulse versus receptance magnitude for the three force levels. 

 
 Next, Equation 7.1 was modified to include structural damping for the FMM as 

shown in Equation 8.1. Equation 8.1 was solved by fixed time step numerical integration 

and the friction coefficient was identified to provide a best fit to the measured mobility 

FRFs. The measured force from the impact hammer, 𝑓𝑓, was used as input to Equation 8.1 

to avoid introducing errors due to approximations of the excitation force. Because the 

sampling frequency for the measured force was 10 kHz, the numerical integration time step 

was 1×10-4 s. 

 

           
𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝐹𝐹𝑓𝑓 = 𝑓𝑓, �̇�𝑥 > 0
𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑓𝑓, �̇�𝑥 = 0

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 − 𝐹𝐹𝑓𝑓 = 𝑓𝑓, �̇�𝑥 < 0
        (8.1) 

 
 A result for the 450 N (low) force level is shown in Figure 36. The measured force 

is displayed in the top panel, while the simulated (solid line) and measured (dotted line) 

velocity are displayed in the bottom panel. The friction coefficient is 0.113. Figure 37 
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shows the corresponding mobility FRF. The 1000 N (medium) force levels results are 

provided in Figure 38 and Figure 39. The 1450 N (high) force level results are shown in 

Figure 40 and Figure 41. The friction coefficient is 0.113 in all cases. 

 

 
Figure 36 (Top) Low force level (450 N) input. (Bottom) Simulated (solid) and measured 
(dotted) velocity for 0.113 friction coefficient. Note that the top and bottom panels have 

different time scales 

 

 
Figure 37 (Top) Real part of simulated (solid) and measured (dotted) mobility FRF for 

the low (450 N) force level with a friction coefficient of 0.113. (Bottom) Imaginary part 
of simulated and measured mobility FRFs. 
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Figure 38 (Top) Medium force level (1000 N) input. (Bottom) Simulated (solid) and 

measured (dotted) velocity for 0.113 friction coefficient. Note that the top and bottom 
panels have different time scales 

 

 
Figure 39 (Top) Real part of simulated (solid) and measured (dotted) mobility FRF for 

the medium (1000 N) force level with a friction coefficient of 0.113. (Bottom) Imaginary 
part of simulated and measured mobility FRFs. 
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Figure 40 (Top) High force level (1450 N) input. (Bottom) Simulated (solid) and 

measured (dotted) velocity for 0.113 friction coefficient. Note that the top and bottom 
panels have different time scales 

 

 
Figure 41 (Top) Real part of simulated (solid) and measured (dotted) mobility FRF for 

the high (1450 N) force level with a friction coefficient of 0.113. (Bottom) Imaginary part 
of simulated and measured mobility FRFs 

 
 The frequency range for the medium force level result is extended to 20 Hz in 

Figure 42. Interestingly, it is seen that odd multiples (3, 5, 7, 9, …) of the 2.2 Hz natural 
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frequency appear in both the simulated and measured mobility FRFs. This result was 

observed at all three force levels. 

 

 
Figure 42 Logarithmic magnitude of simulated (solid) and measured (dotted) mobility 

FRF for the medium (1000 N) force level with a friction coefficient of 0.113. 
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CHAPTER 9: CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

 Free vibration (no friction contact) velocity data from the FMM was used to obtain 

the modal parameters for the system. It was shown that the FMM design produced 

negligible parasitic motion and enabled the structure to be modeled as a single degree of 

freedom spring-mass-damper system. The goal of this research was to show that the FMM 

could be used to determine friction coefficients using oscillating motion. Friction tests 

using a PTFE-polished steel contact pair were performed for a range of different initial 

displacements. A single parameter Coulomb friction model was used to demonstrate how 

it is possible to use the measured velocity data to determine the dynamic friction coefficient 

for the selected contact pair. These results also showed that friction is indeed a function of 

velocity, as many current friction models in practice have theorized.  

 Several additional friction models were applied to the FMM data. By separating the 

dynamic friction coefficient into two coefficients depending on acceleration it was 

discovered that there is a correlation between acceleration and friction coefficients, as 

experimentally observed in prior work. The dynamic friction coefficient was found to be 

larger when the magnitude of the velocity was increasing than when it was decreasing. The 

Stribeck effect was also modeled by applying a three parameter dynamic friction model 

[11] and a hyperbolic tangent function suggested by [1]. Both models were able to provide 

an excellent fit for the measured velocity and showed the existence of a nonlinear velocity 

dependence of the friction coefficient for the stick-to-slip transition phase. 

 Impact tests were performed on the structure with a friction contact and frequency 

response functions were obtained. This was done for a range of different impulses. The 

nonlinearity caused by the inclusion of a friction contact was confirmed. By calculating the 
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magnitude of the receptance of the system and applying an impulse simulation fitting code 

it was possible to determine the dynamic friction coefficient for the structure. 

9.2 Future Work 

The development and application of different friction models to study the transition 

phase of friction behavior is one of the most exciting aspects of future work. The FMM 

data could offer a great insight into this friction regime. If low constant velocity friction 

tests can be performed for the contact pair then more advanced models like the LuGre or 

Maxwell slip models could be used to further analyze friction behavior. 

The analysis of different friction contact pairs would also be of great interest. It 

would be interesting to see if the friction response patterns discovered in this research for 

the PTFE-polished steel pair are present for different combinations of material as well. 

 The impact of the clamps on the damping coefficient and on the resulting friction 

coefficients is another FMM research task. “One of the key roles for friction at a contact 

interface is to provide passive damping to the structure, and this performance issue has 

serious implications in, for example, large space structures and other built-up structures 

whose inherent damping may be low… design of nominally stationary joints – bolted or 

riveted connections, clamped boundaries, etc. – requires careful consideration of friction 

modeling”[11]. There is a possibility that the velocity dependent damping in the system is 

the cause of friction result irregularities.  

Work done by Further, Beards and Woohat shows that clamp force influences the 

dynamic characteristics of a frame by significantly altering its natural frequencies and 

mode shapes [11]. Tests could be performed on the FMM altering the clamp force holding 

the leaf springs in place to see if this significantly alters the natural frequency of the 
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structure. A comparison of damping in two similar structures, one monolithic and one 

assembled with clamped boundary conditions, would also aid in this analysis. Two scaled 

down versions of the FMM have been partially constructed; see Figure 43. Tests at different 

initial displacements could be performed on both structures to determine if increases in 

velocity also increase the viscous damping coefficient. If this is the case for only the 

assembled structure then the impact the clamps have on the damping coefficient can be 

confirmed. 

 
Figure 43 Scaled down version of the FMM: Monolithic (top) and assembled (bottom) 
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APPENDIX 

A1 Free_Vibration_no_friction_fitting.m 

 
clc;close all;clear all; 
  
plotNo = 1; 
testend = 5e3;                 % length of time to be fit 
  
% ******************** SETUP ****************************************** 
  
% ************************************************************** Test 1 
load('NF20mm1'); 
time1 = NF20mm1(:, 1);             
velocity1 = NF20mm1(:, 2);        
  
index = find(velocity1 == max(velocity1)) 
index(1) 
time1 = time1(index(1) - 2010 : length(time1)); 
velocity1 = velocity1(index(1) - 2010 : length(velocity1)); 
time1 = time1 - time1(1); 
  
velocity1 = smooth(velocity1); 
index = find(velocity1 == max(velocity1)); 
index = index(1) - 2000; 
  
offset = mean(velocity1(index:index+1000)); 
velocity1 = velocity1 - offset; 
plot(time1,velocity1) 
index = find(velocity1 == max(velocity1)); 
  
index = index(1) + 12000; 
time1 = time1(index:length(time1)); 
velocity1 = velocity1(index:length(velocity1)); 
  
index = find(velocity1 == max(velocity1)); 
time1 = time1(index:length(time1)); 
time1 = time1 - time1(1); 
velocity1 = velocity1(index:length(velocity1)); 
  
time1 = time1(1:testend); 
velocity1 = velocity1(1:testend); 
  
clear NF20mm1; 
  
% ************************************************************** Test 2 
load('NF20mm2'); 
time2 = NF20mm2(:, 1);             
velocity2 = NF20mm2(:, 2);  
  
index = find(velocity2 == max(velocity2)); 
time2 = time2(index - 2500 : length(time2)); 
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velocity2 = velocity2(index - 2500 : length(velocity2)); 
time2 = time2 - time2(1); 
  
velocity2 =smooth(velocity2); 
index = find(velocity2 == max(velocity2)); 
index = index(1) - 2000; 
  
offset = mean(velocity2(index:index+1000)); 
velocity2 = velocity2 - offset; 
  
index = find(velocity2 == max(velocity2)); 
  
index = index(1) + 12000; 
time2 = time2(index:length(time2)); 
velocity2 = velocity2(index:length(velocity2)); 
  
index = find(velocity2 == max(velocity2)); 
time2 = time2(index:length(time2)); 
time2 = time2 - time2(1); 
velocity2 = velocity2(index:length(velocity2)); 
  
time2 = time2(1:testend); 
velocity2 = velocity2(1:testend); 
  
clear NF20mm2 
% ************************************************************** Test 3 
load('NF20mm3'); 
time3 = NF20mm3(:, 1);             
velocity3 = NF20mm3(:, 2);        
  
index = find(velocity3 == max(velocity3)); 
time3 = time3(index - 2500 : length(time3)); 
velocity3 = velocity3(index - 2500 : length(velocity3)); 
time3 = time3 - time3(1); 
  
velocity3 =smooth(velocity3); 
index = find(velocity3 == max(velocity3)); 
index = index(1) - 2000; 
  
offset = mean(velocity3(index:index+1000)); 
velocity3 = velocity3 - offset; 
  
index = find(velocity3 == max(velocity3)); 
  
index = index(1) + 12000; 
time3 = time3(index:length(time3)); 
velocity3 = velocity3(index:length(velocity3)); 
  
index = find(velocity3 == max(velocity3)); 
time3 = time3(index:length(time3)); 
time3 = time3 - time3(1); 
velocity3 = velocity3(index:length(velocity3)); 
  
time3 = time3(1:testend); 
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velocity3 = velocity3(1:testend); 
  
clear NF20mm3 
% ************************************************************** Test 4 
load('NF20mm4'); 
time4 = NF20mm4(:, 1);             
velocity4 = NF20mm4(:, 2); 
  
index = find(velocity4 == max(velocity4)); 
time4 = time4(index - 2500 : length(time4)); 
velocity4 = velocity4(index - 2500 : length(velocity4)); 
time4 = time4 - time4(1); 
velocity4 =smooth(velocity4); 
  
index = find(velocity4 == max(velocity4)); 
index = index(1) - 2000; 
offset = mean(velocity4(index:index+1000)); 
velocity4 = velocity4 - offset; 
  
index = find(velocity4 == max(velocity4)); 
  
index = index(1) + 12000; 
time4 = time4(index:length(time4)); 
velocity4 = velocity4(index:length(velocity4)); 
  
index = find(velocity4 == max(velocity4)); 
time4 = time4(index:length(time4)); 
time4 = time4 - time4(1); 
velocity4 = velocity4(index:length(velocity4)); 
  
time4 = time4(1:testend); 
velocity4 = velocity4(1:testend); 
  
clear NF20mm4 
% ************************************************************** Test 5 
load('NF20mm5'); 
time5 = NF20mm5(:, 1);             
velocity5 = NF20mm5(:, 2);        
  
index = find(velocity5 == max(velocity5)); 
time5 = time5(index - 2500 : length(time5)); 
velocity5 = velocity5(index - 2500 : length(velocity5)); 
time5 = time5 - time5(1); 
  
velocity5 = smooth(velocity5); 
  
index = find(velocity5 == max(velocity5)); 
index = index(1) - 2000; 
  
offset = mean(velocity5(index:index+1000)); 
velocity5 = velocity5 - offset; 
  
index = find(velocity5 == max(velocity5)); 
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index = index(1) + 12000; 
time5 = time5(index:length(time5)); 
velocity5 = velocity5(index:length(velocity5)); 
  
index = find(velocity5 == max(velocity5)); 
time5 = time5(index:length(time5)); 
time5 = time5 - time5(1); 
velocity5 = velocity5(index:length(velocity5)); 
  
time5 = time5(1:testend); 
velocity5 = velocity5(1:testend); 
  
clear NF20mm5 
% ************************************************************** Test 6 
load('NF20mm6'); 
time6 = NF20mm6(:, 1);             
velocity6 = NF20mm6(:, 2);        
  
index = find(velocity6 == max(velocity6)); 
time6 = time6(index - 2500 : length(time6)); 
velocity6 = velocity6(index - 2500 : length(velocity6)); 
time6 = time6 - time6(1); 
  
velocity6 = smooth(velocity6); 
  
index = find(velocity6 == max(velocity6)); 
index = index(1) - 2000; 
offset = mean(velocity6(index:index+1000)); 
velocity6 = velocity6 - offset; 
  
index = find(velocity6 == max(velocity6)); 
  
index = index(1) + 12000; 
time6 = time6(index:length(time6)); 
velocity6 = velocity6(index:length(velocity6)); 
  
index = find(velocity6 == max(velocity6)); 
time6 = time6(index:length(time6)); 
time6 = time6 - time6(1); 
velocity6 = velocity6(index:length(velocity6)); 
  
time6 = time6(1:testend); 
velocity6 = velocity6(1:testend); 
  
clear NF20mm6 
% ************************************************************** Test 7 
load('NF20mm7'); 
time7 = NF20mm7(:, 1);             
velocity7 = NF20mm7(:, 2);        
  
index = find(velocity7 == max(velocity7)); 
time7 = time7(index - 2500 : length(time7)); 
velocity7 = velocity7(index - 2500 : length(velocity7)); 
time7 = time7 - time7(1); 
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velocity7 = smooth(velocity7); 
  
index = find(velocity7 == max(velocity7)); 
index = index(1) - 2000; 
offset = mean(velocity7(index:index+1000)); 
velocity7 = velocity7 - offset; 
  
index = find(velocity7 == max(velocity7)); 
  
index = index(1) + 12000; 
time7 = time7(index:length(time7)); 
velocity7 = velocity7(index:length(velocity7)); 
  
index = find(velocity7 == max(velocity7)); 
time7 = time7(index:length(time7)); 
time7 = time7 - time7(1); 
velocity7 = velocity7(index:length(velocity7)); 
  
time7 = time7(1:testend); 
velocity7 = velocity7(1:testend); 
  
clear NF20mm7 
% ************************************************************** Test 8 
load('NF20mm8'); 
time8 = NF20mm8(:, 1);             
velocity8 = NF20mm8(:, 2);        
  
index = find(velocity8 == max(velocity8)); 
time8 = time8(index - 2500 : length(time8)); 
velocity8 = velocity8(index - 2500 : length(velocity8)); 
time8 = time8 - time8(1); 
  
velocity8 = smooth(velocity8); 
  
index = find(velocity8 == max(velocity8)); 
index = index(1) - 2000; 
offset = mean(velocity8(index:index+1000)); 
velocity8 = velocity8 - offset; 
  
index = find(velocity8 == max(velocity8)); 
  
index = index(1) + 12000; 
time8 = time8(index:length(time8)); 
velocity8 = velocity8(index:length(velocity8)); 
  
index = find(velocity8 == max(velocity8)); 
time8 = time8(index:length(time8)); 
time8 = time8 - time8(1); 
velocity8 = velocity8(index:length(velocity8)); 
  
time8 = time8(1:testend); 
velocity8 = velocity8(1:testend); 
  
clear NF20mm8 
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% ************************************************************** Test 9 
load('NF20mm9'); 
time9 = NF20mm9(:, 1);             
velocity9 = NF20mm9(:, 2);        
  
index = find(velocity9 == max(velocity9)); 
time9 = time9(index - 2500 : length(time9)); 
velocity9 = velocity9(index - 2500 : length(velocity9)); 
time9 = time9 - time9(1); 
  
velocity9 = smooth(velocity9); 
  
index = find(velocity9 == max(velocity9)); 
  
index = index(1) - 2000; 
  
offset = mean(velocity9(index:index+1000)); 
velocity9 = velocity9 - offset; 
index = find(velocity9 == max(velocity9)); 
  
index = index(1) + 12000; 
time9 = time9(index:length(time9)); 
velocity9 = velocity9(index:length(velocity9)); 
  
index = find(velocity9 == max(velocity9)); 
time9 = time9(index:length(time9)); 
time9 = time9 - time9(1); 
velocity9 = velocity9(index:length(velocity9)); 
  
time9 = time9(1:testend); 
velocity9 = velocity9(1:testend); 
  
clear NF20mm9 
% ************************************************************** Test 
10 
load('NF20mm10'); 
time10 = NF20mm10(:, 1);             
velocity10 = NF20mm10(:, 2);        
  
index = find(velocity10 == max(velocity10)); 
time10 = time10(index - 2500 : length(time10)); 
velocity10 = velocity10(index - 2500 : length(velocity10)); 
time10 = time10 - time10(1); 
  
velocity10 = smooth(velocity10); 
  
index = find(velocity10 == max(velocity10)); 
index = index(1) - 2000; 
offset = mean(velocity10(index:index+1000)); 
velocity10 = velocity10 - offset; 
  
index = find(velocity10 == max(velocity10)); 
  
index = index(1) + 12000; 
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time10 = time10(index:length(time10)); 
velocity10 = velocity10(index:length(velocity10)); 
  
index = find(velocity10 == max(velocity10)); 
time10 = time10(index:length(time10)); 
time10 = time10 - time10(1); 
velocity10 = velocity10(index:length(velocity10)); 
  
time10 = time10(1:testend); 
velocity10 = velocity10(1:testend); 
  
clear NF20mm10 
% ***************** END SETUP 
******************************************** 
  
figure(plotNo) 
plot(time1,velocity1,time2,velocity2,time3,velocity3,time4,velocity4,..
. 
    time5,velocity5,time6,velocity6,time7,velocity7,time8,velocity8,... 
   time9,velocity9,time10,velocity10) 
plotNo = plotNo + 1; 
  
Results_20mm = zeros(10,5); 
  
for test = 1:10 
  
if test == 1 
    dx=velocity1(1); 
    velocity = velocity1; 
    time = time1; 
end 
  
if test == 2 
    dx=velocity2(1); 
    velocity = velocity2; 
    time = time2; 
end 
  
if test == 3 
    dx=velocity3(1); 
    velocity = velocity3; 
    time = time3; 
end 
  
if test == 4 
    dx=velocity4(1); 
    velocity = velocity4; 
    time = time4; 
end 
  
if test == 5 
    dx=velocity5(1); 
    velocity = velocity5; 
    time = time5; 
end 
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if test == 6 
    dx=velocity6(1); 
    velocity = velocity6; 
    time = time6; 
end 
  
if test == 7 
    dx=velocity7(1); 
    velocity = velocity7; 
    time = time7; 
end 
  
if test == 8 
    dx=velocity8(1); 
    velocity = velocity8; 
    time = time8; 
end 
  
if test == 9 
    dx=velocity9(1); 
    velocity = velocity9; 
    time = time9; 
end 
  
if test == 10 
    dx=velocity10(1); 
    velocity = velocity10; 
    time = time10; 
end 
  
if test ==1 
    m = 14.4;       % guess for mass in kg 
    k = 1980;       % guess for stiffness in N/m 
    c1 = 0.27;      % guess for damping N·s/m 
    dista = 1e-3;   % guess for position at t0 
else 
    m = x(1); 
    k = x(2); 
    c1 = x(3); 
    dista = x(4); 
end 
  
x0 = [m k c1 dista]; 
  
LB = [1      0    0   -12e-3 ]; 
UB = [100  3000  100   12e-3 ]; 
  
options = optimset('Display', 'iter', 'MaxIter', 2000, 'MaxFunEvals', 
5000); 
[x, resnorm, residual, exitflag, output] = lsqnonlin(@fit_func_Vmax, 
x0, LB, UB, options,time,velocity,plotNo); 
  
 Results_20mm(test,1) = x(1);Results_20mm(test,2) = x(2); 
Results_20mm(test,3) = x(3); 
 Results_20mm(test,4) = x(4); 
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 plotNo = plotNo + 1; 
  
 end 
 
function [PI] = fit_func_Vmax(x,time,velocity,plotNo) 
  
dx = velocity(1); 
  
m = x(1); 
k = x(2); 
c1 = x(3); 
dista = x(4); 
  
dt = time(2) - time(1); 
steps = length(time) - 1; 
vel_f = zeros(length(time),1); 
vel_f(1,1)=dx; 
distance(1) = dista; 
  
for cnt = 1:steps 
  
        dx_previous = dx; 
        if dx_previous > 0      % velocity is positive 
            ddx = ( - c1*dx - k*dista)/m;         % m/s^2 
            dx = dx + ddx*dt;                     % m/s 
            dista = dista + dx*dt;                % m 
            vel_f(cnt+1,1) = dx; 
            distance(cnt+1)= dista; 
        else         % velocity is negative 
            ddx = ( - c1*dx - k*dista)/m;         % m/s^2 
            dx = dx + ddx*dt;                     % m/s 
            dista = dista + dx*dt;                % m 
            vel_f(cnt+1,1) = dx; 
            distance(cnt+1)= dista; 
        end 
  
end 
  
Actual(1,:) = velocity(1:length(velocity)); 
Simulation(1,:) = vel_f(1:length(vel_f)); 
  
vel_diff = Actual - Simulation; 
  
% Performance index, PI, is the objective function to minimize 
PI = abs(vel_diff)*1e3; 
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A2 Log_Dec_No_Friction.m 

clc; 
clear all; 
close all; 
  
% Load data 
load('Vib10mm80sec'); 
  
m = 10.415;     % kg 
k = 1982.17;    % N/m 
  
% ************** 10 ************ 
time = Vib10mm80sec(:, 1); 
velocity = Vib10mm80sec(:, 2); 
  
index = find(velocity == max(velocity)); 
time = time(index:length(time)); 
time = time-time(1); 
velocity = velocity(index:length(velocity)); 
velocity = movmean(velocity,15); 
  
plot(time,velocity); 
  
[pks_find ,locs_find]=findpeaks(velocity); 
  
cnt3=1; 
  
for i = 3 : length(pks_find) 
  
    if pks_find(i) > 0 
        pks_2(cnt3) = pks_find(i); 
        zero_locs_2(cnt3) = locs_find(i); 
        cnt3=cnt3+1;         
    else 
    end 
     
end 
  
cnt3 = 1; 
  
for i = 2: length(zero_locs_2) 
     
    difference(i-1) = zero_locs_2(i) - zero_locs_2(i-1); 
     
    if difference(i-1) > 400 
         
        pks(cnt3) = pks_2(i); 
        zero_locs(cnt3) = zero_locs_2(i); 
        cnt3 = cnt3+1; 
  
    end 
end 
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for i = 2 : length(zero_locs) 
     
    cycles_test(i-1) = i-1; 
    difference2(i-1) = zero_locs(i) - zero_locs(i-1); 
     
end 
  
for i = 2 : length(pks)     
  
    gamma = log(pks(i-1)/pks(i)); 
     
    zeta = (gamma)/(sqrt((4*pi^2+gamma^2))); 
     
    c_log_dec (i-1) = zeta * 2*sqrt(k*m); 
    v0_cycle(i-1) = pks(i-1); 
    cycle(i-1)=i-1; 
end 
  
figure(2) 
plot(v0_cycle,c_log_dec,'LineWidth',1) 
xlabel('Peak Cycle Velocity (m/s)');ylabel('c (N\cdots/m)'); 
set(gca,'FontSize',16); 
axis([0.05 0.14 0.21 0.32]) 
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A3 Monte_Carlo_single_parameter_friction_model.m 

clc;close all;clear all; 
  
load('Results_6mm'); load('Results_8mm'); load('Results_10mm'); 
% Results_Xmm Columns: 1.) m , 2.) k, 3.) c , 4.) A , 5.) d0  
  
%%      Combining all displacement fit results for m,k,c,A,d0 vectors 
  
m_combined(1:10) = Results_6mm(:,1); 
m_combined(11:20) = Results_8mm(:,1); 
m_combined(21:30) = Results_10mm(:,1); 
  
k_combined(1:10) = Results_6mm(:,2); 
k_combined(11:20) = Results_8mm(:,2); 
k_combined(21:30) = Results_10mm(:,2); 
  
c_combined(1:10) = Results_6mm(:,3); 
c_combined(11:20) = Results_8mm(:,3); 
c_combined(21:30) = Results_10mm(:,3); 
  
A_combined(1:10) = Results_6mm(:,4); 
A_combined(11:20) = Results_8mm(:,4); 
A_combined(21:30) = Results_10mm(:,4); 
  
d0_combined(1:10) = Results_6mm(:,5); 
d0_combined(11:20) = Results_8mm(:,5); 
d0_combined(21:30) = Results_10mm(:,5); 
  
%%      Mean and Standard Deviation for system components 
  
m_mean = mean(m_combined); 
m_stdev = std(m_combined); 
  
k_mean = mean(k_combined); 
k_stdev = std(k_combined); 
  
c_mean = mean(c_combined); 
c_stdev = std(c_combined); 
  
A_mean = mean(A_combined); 
A_stdev = std(A_combined); 
  
d0_mean = mean(d0_combined); 
d0_stdev = std(d0_combined); 
  
%%     Create normal distribution for variable being tested  
%      and pick 100,000 random samples 
  
n=100000;                                                          
x1_dist=makedist('Normal','mu',m_mean,'sigma',m_stdev); 
x1=random(x1_dist,n,1); 
x1_stats= [mean(x1) std(x1) var(x1)]; 
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figure(1) 
histogram(x1,100,'Normalization','probability'); 
title('m random sample histogram')                 
  
n=100000; 
x2_dist=makedist('Normal','mu',k_mean,'sigma',k_stdev); 
x2=random(x2_dist,n,1); 
x2_stats= [mean(x2) std(x2) var(x2)]; 
  
figure(2) 
histogram(x1,100,'Normalization','probability'); 
title('k random sample histogram')          
  
n=100000; 
x3_dist=makedist('Normal','mu',c_mean,'sigma',c_stdev); 
x3=random(x3_dist,n,1); 
x3_stats= [mean(x3) std(x3) var(x3)]; 
  
figure(3) 
histogram(x1,100,'Normalization','probability'); 
title('c random sample histogram')                 
  
n=100000; 
x4_dist=makedist('Normal','mu',A_mean,'sigma',A_stdev); 
x4=random(x4_dist,n,1); 
x4_stats= [mean(x4) std(x4) var(x4)]; 
  
figure(4) 
histogram(x1,100,'Normalization','probability'); 
title('A random sample histogram')               
  
  
%%                                                            Set 
Constants 
plotNo = 5; 
mud = 0.15; 
v0 = 0.101; 
dista = 0; 
t = 0:0.001:1.5; 
N = 7.2; 
  
%%   Call function to create "data" at selected µ 
  
velocity_sim_data = create_data(m_mean,k_mean,c_mean,N,A_mean,dista,... 
    v0,t,mud); 
  
%%  Loop that takes each random sample and runs nonlinear least squares 
fit to "data"  
Results = zeros(n,2); 
  
    for test = 1:length(x1) 
    
        % model parameters 
        m = x1(test);     % kg 
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        k = x2(test);     % N/m                  CHANGE DESIRED 
VARIABLE HERE 
        c = x3(test);     % N-s/m 
        A = x4(test);    
  
        dista = 0.0001; 
        x0 = [mud dista]; 
  
        LB = [0.1 -0.003 ]; 
        UB = [1    0.003 ]; 
  
        options = optimset('Display', 'iter', 'MaxIter', 2000, ... 
            'MaxFunEvals', 5000); 
        [x, resnorm, residual, exitflag, output] = ... 
            lsqnonlin(@fit_func_friction_monte, x0, LB, UB, 
options,t,... 
            velocity_sim_data,m,k,c,A,N,plotNo); 
  
        Results(test,1) = x(1); 
        Results(test,2) = x(2);  
          
    end 
   
%%   Mean and Standard Deviation for µ from fit results 
mud_mean = mean(Results(:,1)); 
mud_stdev = std(Results(:,1)); 
   
mud_mean_ALL_variable = mean(Results(:,1)); 
mud_stdev_ALL_variable = std(Results(:,1)); 
   
%%   Normal Probability Density Function Plot 
H = mud_mean-4*mud_stdev:1e-6:mud_mean+4*mud_stdev;   
G = normpdf(H,mud_mean,mud_stdev); 
  
figure(plotNo) 
plot(H,G) 
xlabel('mud') 
ylabel('probability density') 
title('µ-NPDF w/ ALL PARAMETERS VARIABLE') % CHANGE TITLE depending on 
test 
plotNo = plotNo+1; 
 
function [ velocity_sim_data ] = create_data( m,k,c,N,A,dista,v0,t,mud 
) 
  
% This function creates "data" for a specific selected mud value using 
% the mean values for the system dynamics found via free vibration fit 
  
dx_previous = v0; 
mus = mud; 
dx = v0; 
dt = t(2)-t(1); 
vel_f(1) = dx; 
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for cnt = 1:length(t)-1 
    % friction 
    if dx*dx_previous > 0   % velocity is not zero 
        dx_previous = dx; 
        if dx_previous > 0  % velocity is positive 
            ddx = (-mud*N - c*dx -A*dx^2- k*dista)/m;       
            dx = dx + ddx*dt;                    
            dista = dista + dx*dt;                       
            pos_f(cnt) = dista; 
            vel_f(cnt+1) = dx; 
            acc_f(cnt) = ddx; 
            Friction(cnt) = -mud*N; 
        else   % velocity is negative 
            ddx = (mud*N - c*dx +A*dx^2 - k*dista)/m;        
            dx = dx + ddx*dt;                    
            dista = dista + dx*dt;                       
            pos_f(cnt) = dista; 
            vel_f(cnt+1) = dx; 
            acc_f(cnt) = ddx; 
            Friction(cnt) = mud*N; 
        end 
    else % velocity is zero (passed through zero) 
         
        dx_previous = dx; 
        if dista < mus*N/k && dista > -mus*N/k       
            ddx = 0; 
            dx = 0; 
            pos_f(cnt) = dista; 
            vel_f(cnt+1) = dx; 
            acc_f(cnt) = ddx; 
            Friction(cnt) = k*dista; 
  
        else    % motion continues 
            if dista > 0 
                ddx = (mus*N - c*dx + A*dx^2- k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                  
                pos_f(cnt) = dista; 
                vel_f(cnt+1) = dx; 
                acc_f(cnt) = ddx; 
                Friction(cnt) = mus*N; 
            else 
                ddx = (-mus*N - c*dx - A*dx^2- k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                pos_f(cnt) = dista; 
                vel_f(cnt+1) = dx; 
                acc_f(cnt) = ddx; 
                Friction(cnt) = -mus*N; 
            end 
        end 
    end    
end 
velocity_sim_data = vel_f; 
  
end 
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A4 Friction_Fitting_Single_Parameter.m 

clc;close all;clear all; 
  
load('PS18mm1'); load('PS18mm2'); load('PS18mm3');  
load('PS18mm4'); load('PS18mm5'); load('PS18mm6');  
load('PS18mm7'); load('PS18mm8'); load('PS18mm9');  
load('PS18mm10');  
  
plotNo = 1; 
testend = 1750; 
  
% ******************** SETUP ****************************************** 
  
% ************************************************************** Test 1 
  
time1 = PS18mm1(:, 1);             
velocity1 = PS18mm1(:, 2);        
  
velocity1 =smooth(velocity1); 
  
index = find(velocity1 == max(velocity1)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity1(index:index+824)); 
velocity1 = velocity1 - offset; 
  
index = find(velocity1 == max(velocity1)); 
time1 = time1(index:length(time1)); 
time1 = time1 - time1(1); 
velocity1 = velocity1(index:length(velocity1)); 
  
time1 = time1(1:testend); 
velocity1 = velocity1(1:testend); 
  
plot(time1,velocity1); 
  
% ************************************************************** Test 2 
  
time2 = PS18mm2(:, 1);             
velocity2 = PS18mm2(:, 2);        
  
velocity2 =smooth(velocity2); 
  
index = find(velocity2 == max(velocity2)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity2(index:index+824)); 
velocity2 = velocity2 - offset; 
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index = find(velocity2 == max(velocity2)); 
time2 = time2(index:length(time2)); 
time2 = time2 - time2(1); 
velocity2 = velocity2(index:length(velocity2)); 
  
time2 = time2(1:testend); 
velocity2 = velocity2(1:testend); 
  
plot(time2,velocity2); 
% ************************************************************** Test 3 
  
time3 = PS18mm3(:, 1);             
velocity3 = PS18mm3(:, 2);        
  
velocity3 =smooth(velocity3); 
  
index = find(velocity3 == max(velocity3)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity3(index:index+824)); 
velocity3 = velocity3 - offset; 
  
index = find(velocity3 == max(velocity3)); 
time3 = time3(index:length(time3)); 
time3 = time3 - time3(1); 
velocity3 = velocity3(index:length(velocity3)); 
  
time3 = time3(1:testend); 
velocity3 = velocity3(1:testend); 
  
plot(time3,velocity3); 
% ************************************************************** Test 4 
  
time4 = PS18mm4(:, 1);             
velocity4 = PS18mm4(:, 2);        
  
velocity4 =smooth(velocity4); 
  
index = find(velocity4 == max(velocity4)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity4(index:index+824)); 
velocity4 = velocity4 - offset; 
  
index = find(velocity4 == max(velocity4)); 
time4 = time4(index:length(time4)); 
time4 = time4 - time4(1); 
velocity4 = velocity4(index:length(velocity4)); 
  
time4 = time4(1:testend); 
velocity4 = velocity4(1:testend); 
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plot(time4,velocity4); 
% ************************************************************** Test 5 
  
time5 = PS18mm5(:, 1);             
velocity5 = PS18mm5(:, 2);        
  
velocity5 =smooth(velocity5); 
  
index = find(velocity5 == max(velocity5)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity5(index:index+824)); 
velocity5 = velocity5 - offset; 
  
index = find(velocity5 == max(velocity5)); 
time5 = time5(index:length(time5)); 
time5 = time5 - time5(1); 
velocity5 = velocity5(index:length(velocity5)); 
  
time5 = time5(1:testend); 
velocity5 = velocity5(1:testend); 
  
plot(time5,velocity5); 
  
% ************************************************************** Test 6 
  
time10 = PS18mm10(:, 1);             
velocity10 = PS18mm10(:, 2);        
  
velocity10 =smooth(velocity10); 
  
index = find(velocity10 == max(velocity10)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity10(index:index+824)); 
velocity10 = velocity10 - offset; 
  
index = find(velocity10 == max(velocity10)); 
time10 = time10(index:length(time10)); 
time10 = time10 - time10(1); 
velocity10 = velocity10(index:length(velocity10)); 
  
time10 = time10(1:testend); 
velocity10 = velocity10(1:testend); 
  
plot(time10,velocity10); 
  
%************************************************************** Test 7 
  
time6 = PS18mm6(:, 1);             
velocity6 = PS18mm6(:, 2);        
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velocity6 =smooth(velocity6); 
  
index = find(velocity6 == max(velocity6)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity6(index:index+824)); 
velocity6 = velocity6 - offset; 
  
index = find(velocity6 == max(velocity6)); 
time6 = time6(index:length(time6)); 
time6 = time6 - time6(1); 
velocity6 = velocity6(index:length(velocity6)); 
  
time6 = time6(1:testend); 
velocity6 = velocity6(1:testend); 
  
plot(time6,velocity6); 
% ************************************************************** Test 8 
  
time7 = PS18mm7(:, 1);             
velocity7 = PS18mm7(:, 2);        
  
velocity7 =smooth(velocity7); 
  
index = find(velocity7 == max(velocity7)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity7(index:index+824)); 
velocity7 = velocity7 - offset; 
  
index = find(velocity7 == max(velocity7)); 
time7 = time7(index:length(time7)); 
time7 = time7 - time7(1); 
velocity7 = velocity7(index:length(velocity7)); 
  
time7 = time7(1:testend); 
velocity7 = velocity7(1:testend); 
  
plot(time7,velocity7); 
% ************************************************************** Test 9 
  
time8 = PS18mm8(:, 1);             
velocity8 = PS18mm8(:, 2);        
  
velocity8 =smooth(velocity8); 
  
index = find(velocity8 == max(velocity8)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity8(index:index+824)); 
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velocity8 = velocity8 - offset; 
  
index = find(velocity8 == max(velocity8)); 
time8 = time8(index:length(time8)); 
time8 = time8 - time8(1); 
velocity8 = velocity8(index:length(velocity8)); 
  
time8 = time8(1:testend); 
velocity8 = velocity8(1:testend); 
  
plot(time8,velocity8); 
% ************************************************************** Test 
10 
  
time9 = PS18mm9(:, 1);             
velocity9 = PS18mm9(:, 2);        
  
velocity9 =smooth(velocity9); 
  
index = find(velocity9 == max(velocity9)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity9(index:index+824)); 
velocity9 = velocity9 - offset; 
  
index = find(velocity9 == max(velocity9)); 
time9 = time9(index:length(time9)); 
time9 = time9 - time9(1); 
velocity9 = velocity9(index:length(velocity9)); 
  
time9 = time9(1:testend); 
velocity9 = velocity9(1:testend); 
  
plot(time9,velocity9); 
  
% ***************** END SETUP 
******************************************** 
  
figure(plotNo) 
plot(time1,velocity1,time2,velocity2,time3,velocity3,time4,velocity4,..
. 
    time5,velocity5,time6,velocity6,time7,velocity7,time8,velocity8,... 
    time9,velocity9,time10,velocity10) 
plotNo = plotNo + 1; 
  
Results_PS_18mm = zeros(10,2); 
  
load('SystemParameters') 
  
for test = 1:10 
  
% model parameters 
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m = SystemParameters(1);      % kg 
k = SystemParameters(2);      % N/m 
c = SystemParameters(3);      % N-s/m 
N = 0.8771*9.81;          % N 
A = SystemParameters(4); 
dista = 1e-4; 
mud = 0.1; 
  
if test == 1 
    dx=velocity1(1); 
    velocity = velocity1; 
    time = time1; 
end 
  
if test == 2 
    dx=velocity2(1); 
    velocity = velocity2; 
    time = time2; 
end 
  
if test == 3 
    dx=velocity3(1); 
    velocity = velocity3; 
    time = time3; 
end 
  
if test == 4 
    dx=velocity(1); 
    velocity = velocity4; 
    time = time4; 
end 
  
if test == 5 
    dx=velocity(1); 
    velocity = velocity5; 
    time = time5; 
end 
  
if test == 6 
    dx=velocity(1); 
    velocity = velocity6; 
    time = time6; 
end 
  
if test == 7 
    dx=velocity(1); 
    velocity = velocity7; 
    time = time7; 
end 
  
if test == 8 
    dx=velocity(1); 
    velocity = velocity8; 
    time = time8; 
end 
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if test == 9 
    dx=velocity(1); 
    velocity = velocity9; 
    time = time9; 
end 
  
if test == 10 
    dx=velocity(1); 
    velocity = velocity10; 
    time = time10; 
end 
  
x0 = [mud dista]; 
  
LB = [0  -2e-3 ]; 
UB = [1   2e-3 ]; 
  
 options = optimset('Display', 'iter', 'MaxIter', 2000, 'MaxFunEvals', 
5000); 
 [x, resnorm, residual, exitflag, output] = 
lsqnonlin(@fit_func_friction_1mud,... 
     x0, LB, UB, options,time,velocity,m,k,c,A,N,plotNo); 
  
 FOO(test,1) = output.firstorderopt; 
  
 plotNo = plotNo + 2; 
  
 Results_PS_18mm(test,1) = x(1); 
 Results_PS_18mm(test,2) = x(2);  
  
end 
 
function [PI] = fit_func_friction_1mud(x,t,velocity,m,k,c,A,N,plotNo); 
  
dx=velocity(1); 
  
mud = x(1); 
dista = x(2); 
  
dt=1e-3; 
steps=length(t)-1; 
  
vel_f = 0*t; 
  
vel_f(1)=dx; 
time_sim(1) = 0; 
  
dx_previous = 1; % set to negative velocity for positive initial 
displacement to start simulation 
for cnt = 1:steps 
    % friction 
    if dx*dx_previous > 0   % velocity is not zero 
        dx_previous = dx; 
        if dx_previous > 0  % velocity is positive             
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            ddx = (-mud*N - c*dx - A*dx^2- k*dista)/m;        
            dx = dx + ddx*dt;                                
            dista = dista + dx*dt;                           
            vel_f(cnt+1) = dx; 
             
        else   % velocity is negative 
             
            ddx = (mud*N - c*dx +A*dx^2 - k*dista)/m;        
            dx = dx + ddx*dt;                                
            dista = dista + dx*dt;                       
            vel_f(cnt+1) = dx;          
  
        end 
    else % velocity is zero (passed through zero) 
         
        dx_previous = dx; 
        if dista < (mud)*N/k && dista > -(mud)*N/k       
            ddx = 0; 
            dx = 0; 
            vel_f(cnt+1) = dx; 
  
        else    % motion continues 
            if dista > 0                 
                ddx = (mud*N - c*dx + A*dx^2- k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            else 
  
                ddx = (-mud*N - c*dx - A*dx^2- k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            end 
        end 
    end 
     
    time_sim(cnt+1) = time_sim(cnt)+dt; 
     
end 
  
figure(plotNo) 
plot(t,velocity,time_sim,vel_f) 
drawnow 
  
vel_diff = velocity - vel_f; 
  
% Performance index, PI, is the objective function to minimize 
PI = abs(vel_diff)*1e3; 
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A5 Friction_fitting_three_parameter.m 

clc;close all;clear all; 
  
load('PS22mm1'); load('PS22mm2'); load('PS22mm3');  
load('PS22mm4'); load('PS22mm5'); 
load('PS22mm6'); load('PS22mm7'); load('PS22mm8');  
load('PS22mm9'); load('PS22mm10'); 
  
plotNo = 1; 
testend = 1750; 
  
% ******************** SETUP ****************************************** 
  
% ************************************************************** Test 1 
  
time1 = PS22mm1(:, 1);             
velocity1 = PS22mm1(:, 2);        
  
velocity1 =smooth(velocity1); 
  
index = find(velocity1 == max(velocity1)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity1(index:index+824)); 
velocity1 = velocity1 - offset; 
  
index = find(velocity1 == max(velocity1)); 
time1 = time1(index:length(time1)); 
time1 = time1 - time1(1); 
velocity1 = velocity1(index:length(velocity1)); 
  
time1 = time1(1:testend); 
velocity1 = velocity1(1:testend); 
  
plot(time1,velocity1); 
  
% ************************************************************** Test 2 
  
time2 = PS22mm2(:, 1);             
velocity2 = PS22mm2(:, 2);        
  
velocity2 =smooth(velocity2); 
  
index = find(velocity2 == max(velocity2)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity2(index:index+824)); 
velocity2 = velocity2 - offset; 
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index = find(velocity2 == max(velocity2)); 
time2 = time2(index:length(time2)); 
time2 = time2 - time2(1); 
velocity2 = velocity2(index:length(velocity2)); 
  
time2 = time2(1:testend); 
velocity2 = velocity2(1:testend); 
  
plot(time2,velocity2); 
% ************************************************************** Test 3 
  
time3 = PS22mm3(:, 1);             
velocity3 = PS22mm3(:, 2);        
  
velocity3 =smooth(velocity3); 
  
index = find(velocity3 == max(velocity3)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity3(index:index+824)); 
velocity3 = velocity3 - offset; 
  
index = find(velocity3 == max(velocity3)); 
time3 = time3(index:length(time3)); 
time3 = time3 - time3(1); 
velocity3 = velocity3(index:length(velocity3)); 
  
time3 = time3(1:testend); 
velocity3 = velocity3(1:testend); 
  
plot(time3,velocity3); 
% ************************************************************** Test 4 
  
time4 = PS22mm4(:, 1);             
velocity4 = PS22mm4(:, 2);        
  
velocity4 =smooth(velocity4); 
  
index = find(velocity4 == max(velocity4)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity4(index:index+824)); 
velocity4 = velocity4 - offset; 
  
index = find(velocity4 == max(velocity4)); 
time4 = time4(index:length(time4)); 
time4 = time4 - time4(1); 
velocity4 = velocity4(index:length(velocity4)); 
  
time4 = time4(1:testend); 
velocity4 = velocity4(1:testend); 
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plot(time4,velocity4); 
% ************************************************************** Test 5 
  
time5 = PS22mm5(:, 1);             
velocity5 = PS22mm5(:, 2);        
  
velocity5 =smooth(velocity5); 
  
index = find(velocity5 == max(velocity5)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity5(index:index+824)); 
velocity5 = velocity5 - offset; 
  
index = find(velocity5 == max(velocity5)); 
time5 = time5(index:length(time5)); 
time5 = time5 - time5(1); 
velocity5 = velocity5(index:length(velocity5)); 
  
time5 = time5(1:testend); 
velocity5 = velocity5(1:testend); 
  
plot(time5,velocity5); 
  
% ************************************************************** Test 6 
  
time6 = PS22mm6(:, 1);             
velocity6 = PS22mm6(:, 2);        
  
velocity6 =smooth(velocity6); 
  
index = find(velocity6 == max(velocity6)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity6(index:index+824)); 
velocity6 = velocity6 - offset; 
  
index = find(velocity6 == max(velocity6)); 
time6 = time6(index:length(time6)); 
time6 = time6 - time6(1); 
velocity6 = velocity6(index:length(velocity6)); 
  
time6 = time6(1:testend); 
velocity6 = velocity6(1:testend); 
  
plot(time6,velocity6); 
  
% ************************************************************** Test 7 
  
time7 = PS22mm7(:, 1);             
velocity7 = PS22mm7(:, 2);        
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velocity7 =smooth(velocity7); 
  
index = find(velocity7 == max(velocity7)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity7(index:index+824)); 
velocity7 = velocity7 - offset; 
  
index = find(velocity7 == max(velocity7)); 
time7 = time7(index:length(time7)); 
time7 = time7 - time7(1); 
velocity7 = velocity7(index:length(velocity7)); 
  
time7 = time7(1:testend); 
velocity7 = velocity7(1:testend); 
  
plot(time7,velocity7); 
% ************************************************************** Test 8 
  
time8 = PS22mm8(:, 1);             
velocity8 = PS22mm8(:, 2);        
  
velocity8 =smooth(velocity8); 
  
index = find(velocity8 == max(velocity8)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity8(index:index+824)); 
velocity8 = velocity8 - offset; 
  
index = find(velocity8 == max(velocity8)); 
time8 = time8(index:length(time8)); 
time8 = time8 - time8(1); 
velocity8 = velocity8(index:length(velocity8)); 
  
time8 = time8(1:testend); 
velocity8 = velocity8(1:testend); 
  
plot(time8,velocity8); 
% ************************************************************** Test 9 
time9 = PS22mm9(:, 1);             
velocity9 = PS22mm9(:, 2);        
  
velocity9 =smooth(velocity9); 
  
index = find(velocity9 == max(velocity9)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity9(index:index+824)); 
velocity9 = velocity9 - offset; 
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index = find(velocity9 == max(velocity9)); 
time9 = time9(index:length(time9)); 
time9 = time9 - time9(1); 
velocity9 = velocity9(index:length(velocity9)); 
  
time9 = time9(1:testend); 
velocity9 = velocity9(1:testend); 
  
plot(time9,velocity9); 
% ************************************************************** Test 
10 
  
time10 = PS22mm10(:, 1);             
velocity10 = PS22mm10(:, 2);        
  
velocity10 =smooth(velocity10); 
  
index = find(velocity10 == max(velocity10)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity10(index:index+824)); 
velocity10 = velocity10 - offset; 
  
index = find(velocity10 == max(velocity10)); 
time10 = time10(index:length(time10)); 
time10 = time10 - time10(1); 
velocity10 = velocity10(index:length(velocity10)); 
  
time10 = time10(1:testend); 
velocity10 = velocity10(1:testend); 
  
plot(time10,velocity10); 
  
% ***************** END SETUP 
******************************************** 
  
figure(plotNo) 
plot(time1,velocity1,time2,velocity2,time3,velocity3,time4,velocity4,..
. 
    
time5,velocity5,time6,velocity6,time7,velocity7,time8,velocity8,time9,v
elocity9,... 
    time10,velocity10) 
plotNo = plotNo + 1; 
  
Results_PS_22mm = zeros(10,4); 
  
load('SystemParameters') 
  
for test = 1:10 
  
% model parameters 
m = SystemParameters(1);      % kg 
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k = SystemParameters(2);      % N/m 
c = SystemParameters(3);     % N-s/m 
N = 0.8771*9.81;         % N 
dista = 1e-4; 
mud0 = 0.2; 
mud1 = 0.2; 
alpha = 5;  
  
if test == 1 
    dx=velocity1(1); 
    velocity = velocity1; 
    time = time1; 
end 
  
if test == 2 
    dx=velocity2(1); 
    velocity = velocity2; 
    time = time2; 
end 
  
if test == 3 
    dx=velocity3(1); 
    velocity = velocity3; 
    time = time3; 
end 
  
if test == 4 
    dx=velocity4(1); 
    velocity = velocity4; 
    time = time4; 
end 
  
if test == 5 
    dx=velocity5(1); 
    velocity = velocity5; 
    time = time5; 
end 
if test == 6 
    dx=velocity6(1); 
    velocity = velocity6; 
    time = time6; 
end 
  
if test == 7 
    dx=velocity7(1); 
    velocity = velocity7; 
    time = time7; 
end 
  
if test == 8 
    dx=velocity8(1); 
    velocity = velocity8; 
    time = time8; 
end 
if test == 9 
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    dx=velocity9(1); 
    velocity = velocity9; 
    time = time9; 
end 
  
if test == 10 
    dx=velocity10(1); 
    velocity = velocity10; 
    time = time10; 
end 
  
x0 = [mud0 mud1 alpha dista]; 
  
LB = [0    0     0     -2e-3 ]; 
UB = [1    1    1e6    2e-3 ]; 
  
 options = optimset('Display', 'iter', 'MaxIter', 2000, 'MaxFunEvals', 
5000); 
 [x, resnorm, residual, exitflag, output] = 
lsqnonlin(@fit_func_friction_exp,... 
     x0, LB, UB, options,time,velocity,m,k,N,plotNo); 
  
 plotNo = plotNo + 2; 
  
 Results_PS_22mm(test,1) = x(1); 
 Results_PS_22mm(test,2) = x(2);  
 Results_PS_22mm(test,3) = x(3); 
 Results_PS_22mm(test,4) = x(4); 
  
end 
 
function [PI] = fit_func_friction_exp(x,t,velocity,m,k,N,plotNo); 
  
dx=velocity(1); 
  
mud0 = x(1); 
mud1 = x(2); 
alpha = x(3); 
dista = x(4); 
  
dt=1e-3; 
steps=length(t)-1; 
  
vel_f = 0*t; 
  
vel_f(1)=dx; 
time_sim(1) = 0; 
  
FN = N; 
  
dx_previous = 1; % set to negative velocity for positive initial 
displacement to start simulation 
for cnt = 1:steps 
    % friction 
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    if dx*dx_previous > 0   % velocity is not zero 
        dx_previous = dx; 
        if dx_previous > 0  % velocity is positive             
            f = mud0 + mud1*exp(-alpha*abs(dx)); 
            ddx = ( - (0.437*abs(dx) + 0.2005)*dx - FN*f - k*dista)/m;        
            dx = dx + ddx*dt;                                
            dista = dista + dx*dt;                           
            vel_f(cnt+1) = dx; 
             
        else   % velocity is negative 
            f = mud0 + mud1*exp(-alpha*abs(dx)); 
            ddx = ( - (0.437*abs(dx) + 0.2005)*dx + FN*f - k*dista)/m;        
            dx = dx + ddx*dt;                                
            dista = dista + dx*dt;                       
            vel_f(cnt+1) = dx;          
  
        end 
    else % velocity is zero (passed through zero) 
         
        dx_previous = dx; 
        if dista < (mud0 + mud1)*N/k && dista > -(mud0+mud1)*N/k   
            ddx = 0; 
            dx = 0; 
            vel_f(cnt+1) = dx; 
  
        else    % motion continues 
            if dista > 0          
                f = mud0 + mud1*exp(-alpha*abs(dx)); 
                ddx = ( - (0.437*abs(dx) + 0.2005)*dx + FN*f - 
k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            else 
                f = mud0 + mud1*exp(-alpha*abs(dx)); 
                ddx = ( - (0.437*abs(dx) + 0.2005)*dx - FN*f - 
k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            end 
        end 
    end 
     
    time_sim(cnt+1) = time_sim(cnt)+dt; 
     
end 
  
figure(plotNo) 
plot(t,velocity,time_sim,vel_f) 
drawnow 
  
dx_friction_plot = 0:0.001:10; 
for i = 1:length(dx_friction_plot) 
    f_plot(i) = mud0 + mud1*exp(-alpha*abs(dx_friction_plot(i))); 
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end 
figure(plotNo + 1) 
plot(dx_friction_plot,f_plot) 
  
vel_diff = velocity - vel_f; 
  
% Performance index, PI, is the objective function to minimize 
PI = abs(vel_diff)*1e3; 
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A6 Tanh_Modified_fitting_model.m 

clc;close all;clear all; 
  
load('PS22mm1'); load('PS22mm2'); load('PS22mm3');  
load('PS22mm4'); load('PS22mm5'); load('PS22mm6');  
load('PS22mm7'); load('PS22mm8'); load('PS22mm9');  
load('PS22mm10'); 
  
testend = 1840; 
plotNo = 1; 
% ******************** SETUP ****************************************** 
  
% ************************************************************** Test 1 
  
time1 = PS22mm1(:, 1);             
velocity1 = PS22mm1(:, 2);        
  
velocity1 =smooth(velocity1); 
  
index = find(velocity1 == max(velocity1)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity1(index:index+824)); 
velocity1 = velocity1 - offset; 
  
index = find(velocity1 == max(velocity1)); 
time1 = time1(index:length(time1)); 
time1 = time1 - time1(1); 
velocity1 = velocity1(index:length(velocity1)); 
  
plot(time1,velocity1) 
  
time1 = time1(1:testend); 
velocity1 = velocity1(1:testend); 
  
% ************************************************************** Test 2 
  
time2 = PS22mm2(:, 1);             
velocity2 = PS22mm2(:, 2);        
  
velocity2 =smooth(velocity2); 
  
index = find(velocity2 == max(velocity2)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity2(index:index+824)); 
velocity2 = velocity2 - offset; 
  
index = find(velocity2 == max(velocity2)); 
time2 = time2(index:length(time2)); 
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time2 = time2 - time2(1); 
velocity2 = velocity2(index:length(velocity2)); 
  
time2 = time2(1:testend); 
velocity2 = velocity2(1:testend); 
  
plot(time2,velocity2); 
% ************************************************************** Test 3 
  
time3 = PS22mm3(:, 1);             
velocity3 = PS22mm3(:, 2);        
  
velocity3 =smooth(velocity3); 
  
index = find(velocity3 == max(velocity3)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity3(index:index+824)); 
velocity3 = velocity3 - offset; 
  
index = find(velocity3 == max(velocity3)); 
time3 = time3(index:length(time3)); 
time3 = time3 - time3(1); 
velocity3 = velocity3(index:length(velocity3)); 
  
time3 = time3(1:testend); 
velocity3 = velocity3(1:testend); 
  
plot(time3,velocity3); 
% ************************************************************** Test 4 
  
time4 = PS22mm4(:, 1);             
velocity4 = PS22mm4(:, 2);        
  
velocity4 =smooth(velocity4); 
  
index = find(velocity4 == max(velocity4)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity4(index:index+824)); 
velocity4 = velocity4 - offset; 
  
index = find(velocity4 == max(velocity4)); 
time4 = time4(index:length(time4)); 
time4 = time4 - time4(1); 
velocity4 = velocity4(index:length(velocity4)); 
  
time4 = time4(1:testend); 
velocity4 = velocity4(1:testend); 
  
plot(time4,velocity4); 
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% ************************************************************** Test 5 
  
time5 = PS22mm5(:, 1);             
velocity5 = PS22mm5(:, 2);        
  
velocity5 =smooth(velocity5); 
  
index = find(velocity5 == max(velocity5)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity5(index:index+824)); 
velocity5 = velocity5 - offset; 
  
index = find(velocity5 == max(velocity5)); 
time5 = time5(index:length(time5)); 
time5 = time5 - time5(1); 
velocity5 = velocity5(index:length(velocity5)); 
  
time5 = time5(1:testend); 
velocity5 = velocity5(1:testend); 
  
plot(time5,velocity5); 
  
% ************************************************************** Test 6 
  
time10 = PS22mm10(:, 1);             
velocity10 = PS22mm10(:, 2);        
  
velocity10 =smooth(velocity10); 
  
index = find(velocity10 == max(velocity10)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity10(index:index+824)); 
velocity10 = velocity10 - offset; 
  
index = find(velocity10 == max(velocity10)); 
time10 = time10(index:length(time10)); 
time10 = time10 - time10(1); 
velocity10 = velocity10(index:length(velocity10)); 
  
time10 = time10(1:testend); 
velocity10 = velocity10(1:testend); 
  
plot(time10,velocity10); 
  
%************************************************************** Test 7 
  
time6 = PS22mm6(:, 1);             
velocity6 = PS22mm6(:, 2);        
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velocity6 =smooth(velocity6); 
  
index = find(velocity6 == max(velocity6)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity6(index:index+824)); 
velocity6 = velocity6 - offset; 
  
index = find(velocity6 == max(velocity6)); 
time6 = time6(index:length(time6)); 
time6 = time6 - time6(1); 
velocity6 = velocity6(index:length(velocity6)); 
  
time6 = time6(1:testend); 
velocity6 = velocity6(1:testend); 
  
plot(time6,velocity6); 
% ************************************************************** Test 8 
  
time7 = PS22mm7(:, 1);             
velocity7 = PS22mm7(:, 2);        
  
velocity7 =smooth(velocity7); 
  
index = find(velocity7 == max(velocity7)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity7(index:index+824)); 
velocity7 = velocity7 - offset; 
  
index = find(velocity7 == max(velocity7)); 
time7 = time7(index:length(time7)); 
time7 = time7 - time7(1); 
velocity7 = velocity7(index:length(velocity7)); 
  
time7 = time7(1:testend); 
velocity7 = velocity7(1:testend); 
  
plot(time7,velocity7); 
% ************************************************************** Test 9 
  
time8 = PS22mm8(:, 1);             
velocity8 = PS22mm8(:, 2);        
  
velocity8 =smooth(velocity8); 
  
index = find(velocity8 == max(velocity8)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity8(index:index+824)); 
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velocity8 = velocity8 - offset; 
  
index = find(velocity8 == max(velocity8)); 
time8 = time8(index:length(time8)); 
time8 = time8 - time8(1); 
velocity8 = velocity8(index:length(velocity8)); 
  
time8 = time8(1:testend); 
velocity8 = velocity8(1:testend); 
  
plot(time8,velocity8); 
% ************************************************************** Test 
10 
  
time9 = PS22mm9(:, 1);             
velocity9 = PS22mm9(:, 2);        
  
velocity9 =smooth(velocity9); 
  
index = find(velocity9 == max(velocity9)); 
  
index = index(1) - 1900; 
  
offset = mean(velocity9(index:index+824)); 
velocity9 = velocity9 - offset; 
  
index = find(velocity9 == max(velocity9)); 
time9 = time9(index:length(time9)); 
time9 = time9 - time9(1); 
velocity9 = velocity9(index:length(velocity9)); 
  
time9 = time9(1:testend); 
velocity9 = velocity9(1:testend); 
  
plot(time9,velocity9); 
  
% ***************** END SETUP 
******************************************** 
  
figure(plotNo) 
plot(time1,velocity1,time2,velocity2,time3,velocity3,time4,velocity4,..
. 
    time5,velocity5,time6,velocity6,time7,velocity7,time8,velocity8,... 
    time9,velocity9,time10,velocity10) 
plotNo = plotNo + 1; 
  
  
Results_PS_22mm = zeros(10,2); 
  
load('SystemParameters') 
  
for test = 1:10 
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% model parameters 
m = SystemParameters(1);      % kg 
k = SystemParameters(2);     % N/m 
c = SystemParameters(3);       % N-s/m 
N = 0.8771*9.81;                        % MEASURED MASS into Force 
A = SystemParameters(4); 
dista = 1e-4; 
gamma1 = 0.25; 
gamma2 = 100; 
gamma3 = 10; 
gamma4 = 0.1; 
gamma5 = 100; 
  
if test == 1 
    dx=velocity1(1); 
    velocity = velocity1; 
    time = time1; 
end 
  
if test == 2 
    dx=velocity2(1); 
    velocity = velocity2; 
    time = time2; 
end 
  
if test == 3 
    dx=velocity3(1); 
    velocity = velocity3; 
    time = time3; 
end 
  
if test == 4 
    dx=velocity(1); 
    velocity = velocity4; 
    time = time4; 
end 
  
if test == 5 
    dx=velocity(1); 
    velocity = velocity5; 
    time = time5; 
end 
  
if test == 6 
    dx=velocity(1); 
    velocity = velocity6; 
    time = time6; 
end 
  
if test == 7 
    dx=velocity(1); 
    velocity = velocity7; 
    time = time7; 
end 
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if test == 8 
    dx=velocity(1); 
    velocity = velocity8; 
    time = time8; 
end 
  
if test == 9 
    dx=velocity(1); 
    velocity = velocity9; 
    time = time9; 
end 
  
if test == 10 
    dx=velocity(1); 
    velocity = velocity10; 
    time = time10; 
end 
  
x0 = [gamma1 gamma2 gamma3 gamma4 gamma5 dista]; 
  
LB = [-1e15 -1e15 -1e15 -1e15 -1e15 -2e-3]; 
UB = [1e15 1e15 1e15 1e15 1e15 2e-3]; 
  
 options = optimset('Display', 'iter', 'MaxIter', 2000, 'MaxFunEvals', 
5000); 
 [x, resnorm, residual, exitflag, output] = lsqnonlin(@fit_func_tanh, 
x0, LB, UB, options,time,velocity,m,k,c,A,N,plotNo); 
  
 plotNo = plotNo + 2; 
  
 Results_PS_22mm(test,1) = x(1); 
 Results_PS_22mm(test,2) = x(2);  
 Results_PS_22mm(test,3) = x(3); 
 Results_PS_22mm(test,4) = x(4);  
 Results_PS_22mm(test,5) = x(5); 
 Results_PS_22mm(test,6) = x(6);  
  
end 
 
function [PI] = fit_func_tanh(x,time,velocity,m,k,c,A,N,plotNo) 
  
dx = velocity(1); 
  
dx_max = max(velocity)*10;      % set up bounds for interpolation table 
  
dx_fric = 0:1e-3:dx_max; 
  
% Initial conditions 
y = 0; 
dy = velocity(1); 
  
gamma1 = x(1); 
gamma2 = x(2); 
gamma3 = x(3); 
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gamma4 = x(4); 
gamma5 = x(5); 
dista = x(6); 
  
Fric_Coeff=gamma1*(tanh(gamma2*dx_fric)-
tanh(gamma3*dx_fric))+gamma4*tanh(gamma5*dx_fric); 
  
cnt=1; 
for i = 0:1e-3:dx_fric(length(dx_fric)); 
  
        ddF(cnt)=gamma1*(2*gamma2^2*tanh(i*gamma2)*(tanh(i*gamma2)^2 - 
1) ... 
            - 2*gamma3^2*tanh(i*gamma3)*(tanh(i*gamma3)^2 - 1)) ... 
            + 2*gamma4*gamma5^2*tanh(i*gamma5)*(tanh(i*gamma5)^2 - 1); 
     
    cnt=cnt+1; 
end 
  
cnt=1; 
cnt2=2; 
  
if max(Fric_Coeff) == Fric_Coeff(length(Fric_Coeff)) 
else 
while cnt == 1 
  
    next = ddF(cnt2+1); 
    previous = ddF(cnt2); 
     
    if next*previous > 0 
        cnt2 = cnt2+1; 
    else 
        cnt = cnt + 1; 
    end 
    
end 
         
index = find(ddF == next); 
  
Fric_Coeff = Fric_Coeff(index:length(Fric_Coeff)); 
dx_fric = dx_fric(index:length(dx_fric)); 
dx_fric = dx_fric - dx_fric(1); 
end 
  
figure(plotNo) 
plot(dx_fric,Fric_Coeff) 
drawnow 
plotNo = plotNo + 1; 
  
dt=1e-3; 
steps=length(time) - 1; 
t=0:dt:length(time)*dt-dt; 
  
vel_f = 0*t; 
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vel_f(1)=dx; 
  
dx_previous = 1;  
for cnt = 1:steps 
    % friction 
    if dx*dx_previous > 0   % velocity is not zero 
        dx_previous = dx; 
        if dx_previous > 0  % velocity is positive 
            dx_abs = abs(dx); 
            F = gamma1*(tanh(gamma2*dx_abs)-
tanh(gamma3*dx_abs))+gamma4*tanh(gamma5*dx_abs);                        
            ddx = (-F*N -A*dx^2- c*dx - k*dista)/m;                 
            dx = dx + ddx*dt;                                
            dista = dista + dx*dt;                           
            vel_f(cnt+1) = dx; 
        else   % velocity is negative 
            dx_abs = abs(dx); 
            F = gamma1*(tanh(gamma2*dx_abs)-
tanh(gamma3*dx_abs))+gamma4*tanh(gamma5*dx_abs);            
            ddx = (F*N +A*dx^2- c*dx - k*dista)/m;        
            dx = dx + ddx*dt;                    
            dista = dista + dx*dt;                       
            vel_f(cnt+1) = dx; 
        end 
         
    else % velocity is zero (passed through zero) 
         
        dx_previous = dx; 
         
                dx_abs = abs(dx); 
                F = gamma1*(tanh(gamma2*dx_abs)-
tanh(gamma3*dx_abs))+gamma4*tanh(gamma5*dx_abs); 
        if abs(dista)*k < F*N    
            ddx = 0; 
            dx = 0; 
            vel_f(cnt+1) = dx; 
        else    % motion continues 
            if dista > 0 
                dx_abs = abs(dx); 
                F = gamma1*(tanh(gamma2*dx_abs)-
tanh(gamma3*dx_abs))+gamma4*tanh(gamma5*dx_abs); 
                ddx = (F*N +A*dx^2 - c*dx - k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            else 
                dx_abs = abs(dx); 
                F = gamma1*(tanh(gamma2*dx_abs)-
tanh(gamma3*dx_abs))+gamma4*tanh(gamma5*dx_abs); 
                ddx = (-F*N -A*dx^2 - c*dx - k*dista)/m;    
                dx = dx + ddx*dt;                
                dista = dista + dx*dt;                   
                vel_f(cnt+1) = dx; 
            end 
        end 
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    end 
  
     
end 
figure(plotNo) 
plot(time,velocity, time,vel_f) 
  
vel_f=vel_f(:); 
  
% Calculate difference between model and data 
vel_diff = velocity - vel_f; 
  
% Performance index, PI, is the objective function to minimize 
PI = abs(vel_diff)*1e3; 
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