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ABSTRACT 

 

 

MORTEN ARRILD JUHL. Can the Value of Ether Be Explained and Predicted? 

(Under the direction of DR. CRAIG DEPKEN) 

 

 

 This paper analyzes the Ethereum blockchain and the applicability of models for 

network valuation in explaining the value of Ether. After examining the fundamentals of 

the Ethereum blockchain and its associated cryptocurrency, Ether, it is argued that the value 

of Ether is driven by the demand for computing power, but also that Ethereum shares many 

similarities with non-blockchain networks. Thus, the analysis applies the network valuation 

models by Metcalfe (2013), Briscoe, Odlyzko, and Tilly (2006), and Alabi (2017). While 

these models are based on the number of users, the findings suggest that other measures 

better represent demand of computing power on Ethereum. Thus, besides daily active IP 

addresses on Ethereum, the daily number of transactions and daily Gas used are applied as 

predictors. Contrary to previous findings, the analysis shows that Metcalfe’s Law and 

Alabi’s model are not able to explain the value of Ether over time. Metcalfe’s Law best 

explains the early value of Ether, and this paper suggests a combined model of Metcalfe’s 

Law and the model proposed by Briscoe, Odlyzko, and Tilly. The combined model proves 

to better explain the value of Ether over time compared to the single equation models. No 

evidence supports that Gas and transactions provide better predictors compared to active 

IP addresses. As the value of Ether seems to follow the proposed model, the model is used 

for forecasting to examine the predictability of Ether. The results show that existing models 

for forecasting activity and the demand for computing power on Ethereum challenge the 

predictability of the value of Ether. Thus, the final 6-month ahead forecast provides a wide 
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range, and the value of Ether is forecasted between $96.95 billion and $132.34 billion for 

July 1, 2018. The forecast implies a gain between 35.36% and 84.78% over six months 

from December 31, 2017.  
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1. INTRODUCTION 

Since the initial whitepaper by Satoshi Nakamoto (2008) introduced Bitcoin and the blockchain 

technology, several blockchains with associated cryptocurrencies and other tokens have emerged. 

On February 25, 2018, coinmarketcap.com showed 1,491 different cryptocurrencies with a 

collective market capitalization of just above $430 billion. However, while many cryptocurrencies 

have emerged, the market is still dominated by a few coins. Bitcoin is still the largest, representing 

38% of the market. Second, is Ether at 19%, and third, Ripple, at 9%. Thus, the two largest coins 

currently represent more than half of the market. 

Many of these blockchains and cryptocurrencies build on similar protocols, but their purposes are 

somewhat different. The purpose of Bitcoin was to create an alternative way of payment and store 

of value to circumvent the traditional financial institutions and the need to trust any intermediary. 

Through complex cryptographic “puzzles”, consensus on the blockchain is reached in a 100% 

trustless community of computers (Nakamoto, 2008). Several companies have started to implement 

Bitcoin as a way of payment, including major companies such as Microsoft. However, as a general 

method of payment the implementation is still limited (eBay, 2015). 

Ether, the cryptocurrency on the Ethereum blockchain, is based on similar technology and 

consensus algorithm, but unlike Bitcoin, Ether is meant only as a currency for buying computing 

power on the Ethereum blockchain. Ethereum was created to provide a decentralized world 

computer and facilitates a much more comprehensive coding language compared to Bitcoin. Thus, 

Ethereum can host an unlimited variety of small applications that, in theory at least, will run exactly 

as initially programmed without any downtime, censorship, and risk of fraud (Harm, Obregon, and 

Stubbendick, 2016). 

The increase in market value of Ether indicates that many investors believe in the technology and 

potential of Ethereum. Figure 1.1 shows that the total market capitalization has reached values 
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above $100 billion since Ethereum’s initial coin offering in 2015. Market capitalization was $82.6 

billion on February 25, 2018. 

   
Figure 1.1: Total Market Capitalization of Ether 2015-2018. 

With such tremendous growth in recent years, it becomes of high to interest to determine what 

drives the value of Ether. As Ethereum is a decentralized computer and the medium of exchange 

needed to utilize Ethereum is Ether, a connection between the use of Ethereum and the value of 

Ether might exist. Identifying the drivers for the value of Ether can provide valuable information 

for investors and actors who want to utilize Ethereum.  

The link between the use of Ethereum and the value of Ether is what this paper aims to analyze. 

The research question is formulated as follows:  

Can the value of Ether be explained by observable factors on Ethereum, and if so, can value be 

predicted?  
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To answer this question, the following questions must be answered: 

1. What is the purpose of Ether and what drives its value? 

2. Can these drivers be observed? 

3. How can the relationship between the observable measures and the value of Ether be 

defined? 

4. Can the drivers of value be forecasted? 

After a review of previous research, the paper continues with outlining the fundamentals of 

Ethereum and a theoretical discussion of the drivers of the value of Ether. This is followed by a 

methodology section outlining how the research question is approached before the results of the 

analysis will be presented and discussed.     
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2. PREVIOUS LITERATURE 

As blockchains and cryptocurrencies have become more popular among companies, investors, and 

the general public, the amount of literature on the subject has seen a major rise. Satoshi Nakamoto’s 

(2008) whitepaper not only introduced Bitcoin but also outlined the foundation of the blockchain 

protocol, which other blockchains have utilized and developed since. The founder of Ethereum, 

Vitalik Buterin, released his white paper outlining the protocol behind Ethereum and the issuance 

scheme for Ether in 2013.  

Most subsequent research regarding blockchain and cryptocurrencies focus on analyzing the 

specific protocols underlying these blockchains or the implications of implementation. Research 

on specific protocols includes Greenspan (2016), who analyzes and compares the technical details 

of transactions on the Bitcoin and Ethereum blockchains. Bartoletti and Pompiano (2017) 

investigate the use of smart contracts on the Bitcoin and Ethereum blockchains and the differences 

between the two. 

Regarding implementation, Dai and Vasahelyi (2017) analyze the potential use of blockchains in 

accounting and assurance. Similarly, O’Leary (2017) analyzes how different architectures of 

blockchains can be used in accounting and supply chains, and Neyer and Geva (2017) discuss the 

application of blockchains and cryptocurrencies as general payment systems for domestic and 

cross-border transactions. While the areas differ, the conclusions are similar. All three papers find 

potential and beneficial implementations but highlight the current limitations and need for maturity 

of the technology to gain adoption in these fields.  

As for financial markets, Surujnath (2017) discusses the applicability of blockchains to derivatives 

markets and how regulation should focus on this new technology to prevent potential crises. 

However, he argues that the current state of this technology requires some hesitation among 

regulators to let it develop naturally. Sontakke and Ghaisas (2017) analyze cryptocurrencies’ 
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potential of becoming an established asset class and find it likely because of recent adoption by 

major financial institutions. They too raise the issue of regulation and provide a similar conclusion 

as Surujnath, that regulation in this area will be a determining factor for its success as both no 

regulation and too extensive regulation might harm the development.   

Less literature exists regarding valuation and prediction of the value of cryptocurrencies. Most of 

the research focuses on Bitcoin and the exchange rate (price) with the US dollar. Li and Wang 

(2017) utilize and build on this research to find determinants of the exchange rate. They build an 

autoregressive distributed lag (ARDL) model with a bounds test approach and use multiple time 

series to test for blockchain specific, economic, and public recognition effects. The blockchain 

specific variables used are Bitcoin supply, number of transactions, transaction volume, trading 

volume, mining difficulty, and volatility. Economic variables used are USD money supply, US 

GDP, US federal funds rate and US inflation rate. Finally, they use Google searches and Tweets on 

Twitter containing the word “Bitcoin” as proxies for public recognition. They find that the 

exchange rate between Bitcoin and the US dollar shows systematic differences comparing its early 

years to later years. In the early years, the main driver was speculation and therefore deviated from 

economic fundamentals. With the adoption of Bitcoin, interest rate, money supply, GDP, and 

inflation show a significant effect on the exchange rate. 

Blockchain specific variables show mixed results. However, Li and Wang do find significant 

effects of blockchain activity on the exchange rate both in the long-term and short-term. Their 

findings provide two valuable insights for this analysis. First, in the early years, speculation makes 

modeling difficult, which might create challenges for this analysis, as Ethereum is still young 

compared to Bitcoin. Second, blockchain specific variables show positive relationships with the 

price of the cryptocurrency, which is highly related to the purpose of this analysis.  
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Alabi (2017) examines whether Metcalfe’s Law can explain the value of the three cryptocurrencies 

Bitcoin, Ethereum, and Dash.  Metcalfe’s law was developed as an Ethernet sales tool in the 1980’s 

by Robert (Bob) Metcalfe (2013) and states that the value of a network is the square of its users 

multiplied by a constant. The intuition is that fundamental value of a network derives from the total 

number of possible connections. Each node or user can have 𝑁 − 1 connections, which result in a 

total value of the network being proportional to 𝑁(𝑁 − 1) ≈ 𝑁2 as 𝑁 increase.  

In his analysis Alabi (2017) uses a 30-day moving average of unique daily IP addresses 

participating on the respective blockchains as a measure for users and fits the price of the underlying 

cryptocurrencies to Metcalfe’s Law and his own proposed model. His own proposed model is:  

𝑉(𝑁) = 𝐶𝑒𝜆�̅�𝑡
𝑚

, 

where 𝑉 is the price of the underlying cryptocurrency in dollars, 𝐶, 𝜆, and 𝑚 are constants, and �̅�𝑡 

is the 30-day moving average of unique IP addresses. For all three blockchains, he finds that both 

models explain the growth in value but also that his own proposed model performs better than 

Metcalfe’s Law. For Ethereum he utilizes data from mid-2015 to mid-2017 and estimates the 

following models: 

𝑉(𝑁) = (11 × 10−9)𝑁2 

𝑉(𝑁) = 3𝑒0.011×𝑁
0.5

 

If moving forward to December 2017, the average daily number of active IP addresses was 594,445. 

Based on his models, the associated price of Ether would then be $3,887 and $14,467, for 

Metcalfe’s Law and his proposed model, respectively. With a price of $741 on December 31, 2017, 

and a high throughout the month of $814, it shows that subsequent growth has not been following 

the estimated models.  
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Metcalfe’s Law has previously received criticism for a tendency to overestimate value as the 

number of users grows. Briscoe, Odlyzko, and Tilly (2006) formulated the most notable critique. 

The main critique is that Metcalfe’s Law implies that all compatible networks would benefit equally 

by interconnecting despite size differences. In their analysis, they consider two networks where 

network one has 𝑛 users, with value proportional to 𝑛2, and network two has 𝑚 users, with value 

proportional to 𝑚2.  If the two networks interconnect, the gain in value for both networks would 

be proportional to 𝑛𝑚. They argue that empirical evidence suggests that large networks seem to 

resist interconnection with smaller networks. To better explain this behavior, they propose the 

model 𝑉(𝑁) = 𝑘𝑁 × log10(𝑁). If the two networks 𝑛 and 𝑚 interconnect, the value gain would 

be proportional to 𝑛 (log10(𝑛 + 𝑚) − log10(𝑛)) and 𝑚(log10(𝑛 + 𝑚) − log10(𝑚)), respectively. 

For illustrative purposes assume 𝑛 = 10,000 and 𝑚 = 100,000 and the value gain would therefore 

be proportional to 10,414 and 4,139 for 𝑛 and 𝑚, respectively. Thus, the value gain for the smaller 

network significantly exceeds the gain for the larger one. While not applying their model to real 

data, Briscoe, Odlyzko, and Tilly argue that the difference between the value from Metcalfe’s Law 

and their proposed model can explain the difference between the artificial values of the dot-com 

years and the actual value generated by the mainstream adoption of the internet. 

Metcalfe (2013) answers the critique by modeling user growth over time using a Netoid function, 

which Alabi (2017) adopts in his analysis: 

𝑁(𝑡) =
𝑝

1 + 𝑒−𝑣(𝑡−ℎ)
 , 

where 𝑁 is the number of users on the network, 𝑝 is the asymptote, to which the number of users 

will converge as time (𝑡) goes to infinity, 𝑣 is the virality parameter determining how fast the user 

base is growing, and ℎ is the point in time where the number of users is estimated to experience the 

highest level of growth. Alabi (2017) finds that the Netoid function explains well the growth in 

active IP addresses across the three blockchains.   
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While Metcalfe’s Law and the model proposed by Alabi does not seem to explain well the growth 

in value of Ether in the last half of 2017, defining Ethereum as a network provides models from 

previous research that can help explain the value of Ether. Thus, this analysis will further examine 

the fundamentals of Ethereum to determine if it is appropriate to define Ethereum as a network. If 

so, the models by Metcalfe and Alabi will be re-estimated given more recent data, to examine if 

the models can still explain the value of Ether.  
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3. FUNDAMENTALS OF ETHEREUM 

Underlying Ether is the Ethereum blockchain. Before deep diving into Ethereum, a general 

overview of how blockchains work is appropriate. As the name suggests, a blockchain is a chain 

of blocks. A block consists of some data regarding transactions of cryptocurrency or digital 

contracts. Each block is a time stamp of the state of the blockchain as blocks enter chronologically 

and one at a time. Blockchains can be both public and private (Underwood, 2016), but for the sake 

of this analysis, the focus will be on the public Ethereum blockchain. So, unless explicitly stated, 

“The Ethereum blockchain” or just “Ethereum” will refer to the public Ethereum blockchain. The 

main property of a public blockchain is that it is open for everyone with a computer and that every 

participating computer, called a node, holds a copy of the entire blockchain. Before a block can 

enter the blockchain, the block must be validated. Validation methods differ, but both Ethereum 

and Bitcoin currently use the Proof of Work consensus model, where Miners (nodes with specific 

hardware) compete to first validate the block, by solving a complex computing problem. The 

winning Miner adds the validated block to the chain and distributes it to all nodes on the blockchain. 

In that way, as soon as a block enters the blockchain, it cannot be changed. Since every node holds 

a copy of the blockchain, tampering with an existing block would result in other nodes realizing 

the unauthorized change. Thus, ownership of more than 50% of the computing power on the 

blockchain is essentially needed to manipulate it. These attributes allow nodes to execute 

transactions and contracts without having to pay and trust a specific intermediary (Dannen, 2017; 

Underwood, 2016).  

3.1 THE ETHEREUM BLOCKCHAIN 

3.1.1 Ethereum Virtual Machine  

The description of blockchains also applies to Ethereum, but Ethereum has several specific aspects 

that separate it from other blockchains. At the center of Ethereum is the “Ethereum Virtual 

Machine” (EVM). EVM is essentially a large virtual computer distributed over every node 
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participating on Ethereum. Unlike desktops and laptops, the EVM is a 100% decentralized 

computer, where every node runs the same instructions. That every node runs the same instructions 

might seem highly inefficient and compared to a single hardware-based computer, it is indeed very 

slow. However, unlike a single computer, it has no off switch and cannot be controlled or tampered 

with by any single entity. Since the EVM is essentially a computer, it can run applications written 

in a compatible coding language. Anyone on Ethereum can upload these applications called smart 

contracts or dApps. As no one owns Ethereum, any program uploaded to Ethereum can only run as 

initially programmed and cannot be changed unless the initial code includes that option. The blocks 

of Ethereum only contains the current and all previous states. Thus, the blocks hold the program 

code, but it is the EVM that executes the code (Dannen, 2017).   

3.1.2 Smart Contracts 

To support smart contracts, Ethereum includes two types of user accounts. Externally Owned 

Accounts (EOA) and Contract Accounts. EOA’s are the accounts owned and controlled by some 

entity outside the blockchain. It can be a server but, in the end, owned and controlled by people. 

These accounts can participate in transactions, mining, and upload of smart contracts. Contract 

Accounts are the smart contracts. Unlike EOA’s smart contracts have no owners as soon as they 

are in the blockchain and EVM. Smart contracts contain code and can be triggered by transactions 

from EOA’s, make predefined transactions to other smart contracts, and perform transactions to 

other EOA’s. In doing so, smart contracts can also trigger other smart contracts. It is not possible 

to alter a smart contract as soon as it is part of Ethereum. However, if the smart contract is 

programmed accordingly, EOA’s can trigger predetermined alterations. These alterations are 

therefore in the contract as it is initially uploaded (Dannen, 2017).  

Most research in the application of smart contracts focus on the financial services industry as the 

general purpose of smart contracts is the transfer of cryptocurrency and other digital tokens. In the 

case of Ethereum, potential uses are Initial Public Offerings (IPO), derivatives, mortgage lending, 
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invoicing, payments, insurance contracts, and compliance. Within these fields, smart contracts are 

expected to lower time of execution and costs compared to current practices (Cant et al., 2016). 

However, because of the programmable nature of smart contracts, the potential is theoretically 

unlimited. While a detailed analysis of potential and associated risks of smart contracts is outside 

the scope of this paper, it is worth mentioning that issues with smart contracts still cause problems 

for mainstream adoption. The Ethereum blockchain is considered un-hackable, but smart contracts 

are not necessarily un-hackable. Bugs in the code pose a potential risk of unauthorized actions if 

triggered correctly. An example is the DAO (Decentralized Autonomous Organization), where a 

hacker managed to steal many of the contract’s Ether (Siegel, 2016). Several developers and 

organizations are working on solutions to these problems. Most notably, Microsoft Azure with the 

publication of the COCO framework (Russinovich, 2017). 

3.1.3 Transactions, Messages, and Gas 

A transaction on Ethereum is an instruction from EOA’s to the EVM. The instruction can be a 

simple transfer of Ether between two EOA’s, a call for transferring Ether to a Contract Account 

(smart contract), code and instructions to create new a smart contract, triggering a smart contract, 

or for the EVM to do some calculations. Thus, creating a new smart contract or triggering an 

existing smart contract also requires a transaction. Contract Accounts do not make transactions but 

send messages and only do so, if triggered. A trigger can be both transactions from EOA’s or 

messages from other smart contracts. Also, smart contracts can send messages transferring Ether 

held by the Contract Account to an EOA. Every transaction or message requires the EVM to 

perform some computing action, which requires participating nodes to deliver required the 

computing power. As computing power requires hardware and electricity, the nodes must be 

compensated. However, while all the nodes essentially run the EVM, it is the Miners who do the 

work of verifying these transactions and messages. So, only Miners get compensated (Dannen, 

2017). 
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Ethereum has a unit for quoting the price of computing power called Gas. Any computing action 

has an associated cost quoted in Gas, which remains fixed over time. Thus, Gas cannot be held or 

traded by EOA’s or Contract Accounts, as it would then be a currency affected by supply and 

demand. Here the purpose of Ether enters. The EOA’s and Contract Accounts use Ether to pay for 

Gas. As Ether is traded, its price varies and likewise, the price of Gas, quoted in Ether, varies 

(Dannen, 2017). 

3.1.4 Mining and Supply of Ether 

The nodes that supply computing power to Ethereum and participate in verification of transactions 

and messages are the Miners. Using the current Proof-of-Work algorithm, Miners compete in 

verifying a group of transactions and messages to win the right to add these changes to Ethereum. 

In other words, the winning Miner adds a new block to the blockchain and thereby provides the 

new state. To win, the Miner must solve a complex computing puzzle, where the degree of difficulty 

varies with the supply of computing power. When supply decreases, difficulty decreases to attract 

Miners and vice versa if supply increases. The algorithm defines the equilibrium level of difficulty 

based on the speed, in which Miners validate new blocks. The current equilibrium blocktime is 

about 14-15 seconds. 

While only one Miner wins the right to add a block, the Miners who “lose”, still play a vital role. 

The “losing” Miners must validate the new block to be allowed to mine for the next block and 

therefore still participate in securing the blockchain (Dannen, 2017). 

The winning miner receives the fees paid by the EOA’s and Contract Accounts on top of three 

Ether created solely to compensate the Miner. Sometimes Miners who solved the puzzle, but did 

not win, are in total awarded between 0.625 and 2.625 (Ethereum.org, 2017). So, the total of 3-

5.625 Ether per block is the only new Ether issued over time.  
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The developing team behind Ethereum works on a new consensus algorithm called Proof of Stake, 

which is expected to be implemented sometime in 2018 or 2019. The Proof of Stake model is 

expected to lower cost of verification, increase scalability, and greatly decrease the issuance of new 

Ether (Ethereum.org, 2017). Instead of having Miners using lots of computing power to solve a 

complex puzzle, validators (nodes that participate in verification) deposit some amount of Ether, 

or in other words, a stake. Only validators can then add new blocks, and other validators must bet 

on these blocks to gain consensus. If a validator bet on an invalid block or otherwise try to alter the 

process, the node’s deposit will be forfeited, and the node will lose the right to be a validator 

(Zamfir, 2015). Like Miners, Validators receive the Ether paid for Gas. With Proof of Stake, block 

rewards are essentially unnecessary, and the issuance of new Ether can potentially stop. The 

algorithm is still in the making, so it might not stop issuance of Ether at first but is expected to 

significantly decrease issuance of new Ether (Dale, 2017).  

3.1.5 Drivers of The Price of Ether 

It is clear by now that Ether is essential to perform any activity on Ethereum. In fact, the sole 

purpose of Ether is to serve as a medium of payment for computing power on Ethereum. Intuitively, 

this property implies that the market capitalization of Ether derives from the price (in fiat money) 

charged for computing power and the total demand for computing power. For simplicity, USD is 

used instead of referring to fiat money in general.  

The US dollar price required by suppliers for computing power is difficult to observe. Unlike most 

buyer-seller relationships, it is the buyer of computing power who decides how much Ether she 

wishes to pay for Gas. Miners then include the transactions with highest Gas price in the block. 

Thus, some pay a high price to get the transactions executed fast, while others pay less and wait 

until a Miner finds it attractive (Dannen, 2017). However, from economic theory, the price is a 

function of supply and demand. If demand (𝐷𝑐) increases, but supply (𝑆𝑐) is stable (and not 

abundant), price (𝑃𝑐) increases and vice versa. Price can therefore be defined as 𝑃𝑐 = 𝑓(𝐷𝑐, 𝑆𝑐).  
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Supply of computing power can be measured by the Hashrate. The total Hashrate is the amount of 

computing power supplied by all the Miners and thus represents total computing power available 

on Ethereum. Figure 3.1 graphs daily average Hashrate and daily demand for Gas.  

 
Figure 3.1: Hashrate and Gas 2015-2018. 

While demand has experienced significant spikes over time, it seems supply and demand for 

computing power have experienced similar growth. Applying the Granger Causality test, the 

relationship can be examined further. To satisfy the assumptions of the test, the series must be 

transformed to become stationary. Using weekly observations from August 16, 2015, through 

February 25, 2018, the two series are transformed using natural logarithm, and taking the first 

difference creates the two series 𝑑 ln(𝐺𝑎𝑠) and 𝑑 ln(𝐻𝑎𝑠ℎ). The transformed series are found 

stationary using the DF-GLS test in SAS using “proc varmax”. Both tests reject the null of a unit 

root at the 1%-level using single mean test. 
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Table 3.1: Granger Causality Wald Test for Hashrate and Gas. 

Endogenous Variable Exogenous Variable Lags DF 2 p-value 

Hashrate Gas 3 3 12.01 <0.01 

Gas Hashrate 3 3 25.50 <0.01 

 

The results in Table 3.1 show that with 99% confidence the null of no causality is rejected for both 

tests. Thus, Gas Granger Causes Hashrate and vice versa. Table 3.2 shows the estimated 

coefficients and standard errors. The three lags of Gas all significantly and positively affect 

Hashrate and the results are similar, considering the effect of lags of Hashrate on Gas, where only 

the second lag is insignificant. The F-stats represent the tests for the null that the coefficients of the 

three lags of the exogenous variable are jointly zero.   

Table 3.2: VAR(3) Models using Hashrate and Gas. 

Indep. / Dep. Variable Hashrate Gas 

Constant 0.043 0.076 

  (0.010)*** (0.037)* 

Gas Lag 1 0.050 -0.409 

  (0.02)* (0.09)*** 

Gas Lag 2 0.055 -0.121 

 
(0.02)* (0.09) 

Gas Lag 3 0.064 -0.146 

  (0.02)** (0.08) 

Hashrate Lag 1 0.117 1.175 

 
(0.09) (0.32)*** 

Hashrate Lag 2 -0.155 -0.185 

  (0.09) (0.33) 

Hashrate Lag 3 0.026 -0.968 

 
(0.09) (0.32)** 

F-stat 4.10* 8.71*** 

Signifance levels: *p<0.05, **p<0.01, ***p<0.001 

 

The analysis supports the pattern in Figure 3.1. It seems that as demand grows, so does supply. So, 

demand has predictive power over supply. With that in mind, it should be possible to determine 

supply as a function of demand, so 𝑆𝑐 = 𝑓(𝐷𝑐). However, demand alone might not be able to 

determine supply. The cost of supplying computing power and potential entry barriers affects the 

entry of new suppliers.   
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Ethereum is fully decentralized, and everyone has access to the technology. So, the entry barriers 

for suppliers of computing power are limited to hardware and access to electricity. Currently, the 

cost of hardware necessary for mining starts at a few thousand dollars. The minimum stake required 

in the coming Proof-of-Stake algorithm is still unknown, but in September 2016 Vitalik Buterin 

presented a paper, claiming a minimum stake of 32 Ether (Rivlin, 2016). At the time, 32 Ether 

totaled $300-$400. So, entry barriers are low both regarding cost and technology. Thus, it seems 

fair to assume that the main driver of supply is in fact demand for computing power, as new 

suppliers will quickly enter in case of increasing demand. The price of computing power can now 

be redefined as a function of demand for computing power: 

𝑃𝑐 = 𝑓(𝐷𝑐 , 𝑆𝑐) = 𝑓(𝐷𝑐, 𝑓(𝐷𝑐)) =  𝑔(𝐷𝑐). 

It was argued above, that the market capitalization of Ether (𝑉) derives from the price and demand 

of computing power. Define the relationship as 𝑉 = 𝑓(𝑃𝐶 , 𝐷𝑐), then 𝑃𝑐 = 𝑔(𝐷𝑐) leads to 𝑉 =

𝑓(𝐷𝑐 , 𝑔(𝐷𝑐)) = ℎ(𝐷𝑐). Thus, the market capitalization of Ether should derive from the demand of 

computing power.       

3.2 ETHEREUM AS A NETWORK 

Ethereum is essentially a platform that allows entities to conduct transactions and execute contracts 

in a digital and trustless environment. As such, Ethereum shares some fundamental properties with 

other networks. Like other networks, the value for the individual user can be divided into two 

components. First, the functionality of the network provides value for users. For Ethereum, this 

value comes from the potential of smart contracts and how these can enable a variety of contractual 

agreements to be executed with higher efficiency. Second, value comes from the number of users 

on the network. For example, Facebook will not have the same value for a person whose personal 

network does not use Facebook, compared to someone who has her entire personal network on 
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Facebook. The same logic applies to Ethereum. As more people and corporations use the 

blockchain, the more relevant applications exist for the individual. 

The current use of smart contracts is still limited. Thus, the associated value comes from a perceived 

future potential. As the network grows, the associated value for the individual increases as adoption 

increases the likelihood of future utilization. Thus, value grows non-linear in users, as the value 

increases in users but the average value per user also increases in users. This intuition is exactly the 

argument behind Metcalfe’s Law, as value is proportional to the total number of possible 

connections. As users increase, the number of possible connections for each user also increases, 

leading to value growing proportional to 𝑁2.  

3.3 VALUE OF ETHEREUM 

Unlike most other networks, it is not possible to own Ethereum. Entities can participate, but it is 

not possible to own a share of Ethereum. As such, every participating node owns Ethereum and yet 

no one owns Ethereum. Thus, the total value of the network must be determined differently than 

based on expected future earnings for the owners. The value of Ethereum is represented by the 

value it can create for all its users, so the intrinsic value comes from the functionalities that 

Ethereum provides. Ether is needed for any interaction on Ethereum, and so, the value represents 

the expected future consumption of computing power on Ethereum. Thus, the value of Ether 

represents how much value investors associate with the future utilization of Ethereum. As such, the 

value of Ether is the best available measure of the value of Ethereum. That said, the total value of 

a public blockchain is somewhat misleading as no one can ever own it and thus never trade it. As 

the technology matures and proves its real potential, other measures and definitions might be more 

appropriate, but for now, the total market capitalization of Ether is considered to represent the value 

of the Ethereum blockchain.  
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3.4 MODELING NETWORK VALUE  

Metcalfe’s Law is one of the most utilized models for network valuation, and most subsequent 

research builds on it. 

Metcalfe’s Law states: 

𝑉(𝑁) = 𝑘𝑁2, 

where 𝑁 is the total number of users (or nodes), 𝑉(𝑁) is the value of the network, and 𝑘 is a 

constant. The value of the network experiences slow growth in the beginning, but growth increases 

as more users participate on the network. In more formal terms, 
𝜕𝑉(𝑁)

𝜕𝑁
= 2𝑘𝑁 and 

𝜕2𝑉(𝑁)

𝜕2𝑁2
= 2𝑘, so 

the marginal value of additional users is increasing in number of users, while the second-order 

effect is constant. In other words, the model proposes that network value will grow exponentially 

in users, regardless of the number of users.  

Briscoe, Odlyzko, and Tilly (2006) criticize Metcalfe’s Law and propose the following model:  

𝑉(𝑁) = 𝑘𝑁 × log10(𝑁). 

For the sake of simplicity, this analysis will apply the model using the natural logarithm as the 

relationship between ln(𝑁) and log(𝑁) is linear and will thus only affect the estimated constant. 

Compared to Metcalfe’s Law, the model predicts a more modest growth pattern as users increase: 

𝑉(𝑁) = 𝑘 ln(𝑁)𝑁 

𝜕𝑉(𝑁)

𝜕𝑁
= 𝑘(ln(𝑁) + 1) 

𝜕2𝑉(𝑁)

𝜕𝑁2
=
𝑘

𝑁
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The marginal value is still increasing in 𝑁, but the second-order condition is decreasing in N. As 

the second-order derivative converges to zero as 𝑁 goes to infinity, the value of the network will 

start to grow in a linear fashion. 

Metcalfe (2013) responded to the critique by Briscoe, Odlyzko, and Tilly (2006) by proposing a 

Netoid function to model the growth of users used in his model: 

𝑁(𝑡) =
𝑝

1 + 𝑒−𝑣(𝑡−ℎ)
 , 

where 𝑁 is the number of users, 𝑝 is the upper bound for users, to which 𝑁 will converge as time 

(𝑡) goes to infinity, 𝑣 is virality, where a higher value means faster adoption, and ℎ is the center of 

the Netoid function, where growth peaks. Thus, when 𝑡 > ℎ growth is decreasing. 

More formally, 𝑝, 𝑡, 𝑣, and ℎ are assumed to be non-negative, therefore: 

𝜕𝑁(𝑡)

𝜕𝑡
=

𝑣𝑝𝑒𝑣(𝑡−ℎ)

(1 + 𝑒𝑣(𝑡−ℎ))2
> 0    𝑓𝑜𝑟 0 ≤ 𝑡 < ∞ , 

𝜕2𝑁(𝑡)

𝜕2𝑡2
= −

𝑝𝑣2(𝑒𝑣(𝑡−ℎ) − 1)𝑒𝑣(𝑡−ℎ)

(𝑒𝑣(𝑡−ℎ) + 1)3
{
≥ 0      𝑓𝑜𝑟  0 ≤ 𝑡 ≤ ℎ
< 0      𝑓𝑜𝑟  𝑡 > ℎ

 . 

Thus, the Netoid function is graphically represented by an S-curve. While it does not directly 

address the proposed critique, the Netoid function does prevent the value from reaching extreme 

levels and does have some interesting properties for networks. It seems reasonable to apply the 

Netoid function in determining the growth pattern of participation on a network as adoption is 

unlikely to occur linearly. In the beginning, a few early adopters will begin to use the network. If 

the network provides value for these users, they are likely to share that value-proposition in their 

personal network leading to new users. These new users then share the value-proposition and attract 

additional users. Thus, growth will be slow in the beginning but will increase as more people join 
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and share the network with others. The increasing growth will continue until a certain amount has 

entered the network. At some point, there are not enough potential new users to maintain 

exponential growth. Thus, the growth will start to decrease and finally converge to the maximum 

potential of the network. In the case of an Internet-based network, a natural upper bound would be 

the total number of people with internet access. Similar logic applies to Ethereum. As mentioned, 

the increase in the value of Ether seems to come from perceived future potential. If current 

participants on Ethereum present the value proposition to their personal network, it can be expected 

that a ratio of these will also participate directly or indirectly by acquiring Ether through an 

exchange. Like other networks, this will result in slow but increasing growth initially. As more 

users share the value proposition, growth will increase, but only as long as new potential users are 

available. Thus, at some point, growth peaks and the Blockchain will move towards saturation 

(Alabi, 2017).   

In his application to cryptocurrencies, Alabi (2017) also utilizes the Netoid function and finds that 

the growth in IP addresses on the respective blockchains, seems to follow the model. 

Besides Metcalfe’s Law, Alabi proposes a new model for value as a function of IP addresses on 

blockchains: 

𝑉(𝑁) = 𝐶𝑒𝜆𝑁
𝑚
, 

where 𝐶, 𝜆, and 𝑚 are constants. 𝐶 is a linear growth factor and 𝜆 is an exponential multiplier for 

user-growth. His model provides more flexibility compared to Metcalfe’s Law as it does not include 

a pre-defined exponent like 𝑁2. Thus, it should apply to networks where value does not grow 

proportional to the quadrate of users. Alabi finds his model provides better results for all three 

cryptocurrencies he investigates.   
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The first and second order derivatives, with respect to 𝑁, show significantly different growth 

patterns compared to the two previously examined models. As it is assumed that 𝐶, 𝜆, and 𝑚 are 

positive, the first derivative is positive for any value of 𝑁, but the second derivative can take 

negative values. 

𝜕𝑉(𝑁)

𝜕𝑁
= 𝐶𝜆𝑚𝑁𝑚−1𝑒𝜆𝑁

𝑚
, 

𝜕2𝑉(𝑁)

𝜕𝑁2
= 𝐶𝜆𝑚𝑁𝑚−2(𝜆𝑚𝑁𝑚 +𝑚 − 1)𝑒𝜆𝑁

𝑚
. 

In his analysis, Alabi estimates the following for Ethereum, 𝐶 = 3, 𝜆 = 0.011, and 𝑚 = 0.5, which 

results in: 

𝜕2𝑉(𝑁)

𝜕𝑁2
 {
 < 0    𝑓𝑜𝑟 𝑁 ≤ 8,246
 > 0    𝑓𝑜𝑟 𝑁 ≥ 8,247

 

In his model, marginal value decreases until the blockchain reaches about 8,200 users, where the 

second derivative becomes positive and marginal value increases in 𝑁. Based on the assumptions 

of positive constants, the general model shows that 
𝜕2𝑉(𝑁)

𝜕𝑁2
< 0 if 𝜆𝑚𝑁𝑚 +𝑚 < 1. Thus, Alabi’s 

model implies that marginal value of additional users is decreasing, until it reaches a certain 

threshold, and marginal value starts to increase.  

To further build and improve on the work by Alabi, the three models for network valuation will be 

applied to examine if any of the models can explain the value of Ether from activity on Ethereum. 

The Netoid model will be applied to see if participation still follows the proposed pattern and if so, 

it will be applied in forecasting the value of Ether.   
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3.5 USERS ON ETHEREUM 

When applying the three models to Ethereum the first step is to determine how to measure 

participation. One way is the number of IP addresses on the blockchain, following Alabi (2017). 

Among available variables, IP addresses are the closest to the traditional measure of users. 

However, IP addresses have some shortcomings considering the nature of Ethereum. First, it is 

possible to interact with the blockchain without being on the blockchain. Due to the programmable 

nature of smart contracts, off-chain interactions are possible. Thus, some IP addresses potentially 

represent thousands or millions of users, while others only represent one. Second, one user might 

be represented by multiple IP addresses by participating with multiple computers/servers. Third, 

the number of IP addresses does not represent the utilization of the users. In other words, users can 

be represented by an IP address with only a few transactions. 

On a platform like a cellular network, the functionality is more limited, and thus the number of 

users is likely to be a very good predictor of value. While social networks provide more options, 

the functionality is still limited. Thus, users provide a good predictor. On Ethereum, functionality 

is potentially unlimited, and users alone might not explain all variation in value. To clarify, it helps 

to consider Metcalfe’s Law. Metcalfe defines total value by 𝑉(𝑁) = �̂�𝑁2, where the hat simply 

states that 𝑘 is uncertain and must be estimated. The average value per user is therefore  �̅� = �̂�𝑁. 

If we measure users as one-for-one in 𝑁, the average utilization is incorporated in �̂� and therefore 

estimated. If measuring the activity of users, 𝑁 can be substituted with 𝐴 = �̅�𝑁, where �̅� is a 

measure for average utilization per user and 𝐴 is the total activity on the blockchain. Instead of 

using the traditional formula, define   �̂� = �̂��̅�2 and therefore 𝑉(𝑁) = �̂�𝑁2 = �̂��̅�2𝑁2 = �̂�𝐴2 →

𝑉(𝐴) = �̂�𝐴2. As pointed out, the true number of users on Ethereum is difficult to measure, but total 

activity can be measured more precisely.  
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One way to measure activity is by the number of transactions. Every activity by an EOA is in the 

form of a transaction. One issue with transactions is that they do not measure the magnitude of 

activities, as transactions can also hold smart contracts. It is difficult to assign a value to each 

contract, and so, the true value of each transaction is difficult to estimate.  

Another measure of activity is the amount of Gas used. As any activity requires Gas, it accounts 

for transactions, the complexity of smart contracts, and messages from smart contracts. Thus, Gas 

accounts for most activities and the complexity of smart contracts making it a potentially good 

measure of activity. Gas does not account for the Ether volume of transactions and messages since 

a transaction of 1 Ether uses the same amount of Gas as a transaction of 1,000 Ether. Thus, Gas has 

similar problems as transactions, yet is still considered to be the best available measure for 

utilization of Ethereum. Like IP addresses, transactions and Gas are both imperfect measures, so 

all three will be used in this analysis to determine, which is the best predictor of the value of Ether.  

3.6 USERS AND DEMAND FOR COMPUTING POWER 

As it turns out, the appropriate measures for users are also measures for the demand of computing 

power on Ethereum. The amount of Gas used in a day measures the demand for computing power, 

and as any interaction requires Gas, active IP addresses and transactions also serve as measures of 

demand. Thus, combining the analysis, demand for computing power as the driver of value 

coincides with the notion of Ethereum as a Network with Ether representing the value of Ethereum. 

The models for network valuation are therefore found appropriate to explain the relationship 

between activity (demand) on Ethereum and the value of Ether. It is also argued that the current 

value of Ether comes from expected future utilization of Ethereum. As an increase in activity or 

current demand increases the probability of future utilization of Ethereum, the observed demand of 

computing power should represent the expectation of future demand. However, this relationship is 

unlikely without frictions. New information might not directly affect current demand but positively 

or negatively affect value. Thus, deviations from the values predicted by the models are expected, 
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but as expectations change, the observed demand should adjust. If the expectations of future 

demand increase, then Ether becomes more attractive for investors who will then acquire Ether. 

Thus, number of transactions increases and therefore demand for computing power increases. 

Assuming the demand for computing power explains the value of Ether, deviations from predicted 

values are therefore expected to be temporary. 
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4. DATA AND METHODOLOGY  

4.1 DATA 

The independent variables for the analysis will be IP addresses, transactions, and the amount of 

Gas used. Active daily IP addresses are available from bitinfocharts.com. Daily number of 

transactions and total daily Gas used are available from etherscan.io. For the dependent variable, 

daily price in USD and total daily supply of Ether are available from etherscan.io and are used to 

calculate total market capitalization of Ether. Ethereum was first released on July 30th, 2015 and 

data are available from then until the present day. 

Ether is a very volatile asset. In fact, the standard deviation of daily returns on Ether was 7.1% for 

2017 compared to 0.4% for S&P500. To minimize the effects of volatility, a weekly frequency will 

be used. For prices, and thus market capitalization, the quoted price from etherscan.io on every 

Sunday will be applied. For the independent variables, a daily average from Monday through 

Sunday will be applied. Thus, market capitalization on every Sunday will be a function of the 

average daily measure of activity over the week ending that Sunday. Averaging, number of IP 

addresses, transactions, and Gas used is found appropriate as daily fluctuations might be caused by 

many factors and not correctly represent the general activity on Ethereum, during that period. As 

the price of Ether was zero during the first week, the first week is excluded from the analysis. The 

sample period is therefore from August 10, 2015, through December 31, 2017, providing a total of 

125 observations. Table 4.1 summarizes applied variables. 

Table 4.1: Summary of Applied Variables.      
Variable  Notation Description 

Market Capitalization   𝑉 Price of Ether multiplied by the supply of Ether for every 

Sunday.  

Active IP Addresses 𝑁1  Average daily active IP addresses on Ethereum from Monday 

through Sunday.  

Transactions 𝑁2  Average number of daily transactions from Monday through 

Sunday. 

Gas 𝑁3 Average Gas used per day from Monday through Sunday. 
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4.2 MODELS AND ESTIMATION  

To model market capitalization as functions of active IP addresses, transactions, and Gas, the three 

models examined in the previous section will be applied.  

4.2.1 Estimation 

The models proposed by Metcalfe (2013) and Briscoe, Odlyzko, and Tilly (2006) are both linear in 

the parameter 𝑘. So, Ordinary Least Squares (OLS) method is applied. While the series are expected 

to suffer from both autocorrelation and heteroscedasticity, OLS is still found applicable as 

parameter estimates are still unbiased and statistical inference is of minor importance in this 

analysis. However, Newey-West standard errors will be applied in estimation for more robust 

standard errors.   

The model proposed by Alabi requires a non-linear estimation method. In this analysis, the SAS 

‘proc nlin’ function is applied using the default Gauss-Newton algorithm. While the technical 

details of the Gauss-Newton algorithm are outside the scope of this paper, a few should be 

mentioned. Gauss-Newton is a non-linear least squares iterative optimization method. As the 

sample size is relatively small, parameters are likely to be biased, following non-normal 

distribution, and not minimum variance. Thus, t-test, F-test, and R2 are not meaningful statistics 

(Gujarati and Porter, 2009). So, in the analysis, a fit will be found for the equation and compared 

to the two other models as described in Section 4.2.3. 

4.2.2 Robustness of Models  

The proposed models are deterministic in nature. As econometric methods are applied, it raises the 

issue of non-stationarity, which can cause spurious results. The discussion in Section 3 argues why 

the activity on Ethereum should determine the value of Ether. However, there is no exogenous 

justification for the applicability of the proposed models. To see if these deterministic models 

explain the value of Ether, a simple test will be conducted following the estimation of the models.  
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First, take the natural logarithm and first difference of Metcalfe’s Law: 

ln(𝑉𝑡(𝑁𝑡)) = ln(𝑘𝑁𝑡
2) = ln(𝑘) + 2 ln(𝑁𝑡) 

ln(𝑉𝑡(𝑁𝑡)) − ln(𝑉𝑡−1(𝑁𝑡−1)) = ln(𝑘) + 2 ln(𝑁𝑡) − ln(𝑘) − 2 ln(𝑁𝑡−1) =2(ln(𝑁𝑡) − ln(𝑁𝑡−1)) 

Define: 

𝑑 ln(𝑉𝑡) = ln(𝑉𝑡) − ln(𝑉𝑡−1)   𝑎𝑛𝑑 

𝑑 ln(𝑁𝑡) = ln(𝑁𝑡) − ln(𝑁𝑡−1). 

The result is the log-difference version of the model. 

𝑑 ln(𝑉𝑡) = 2𝑑 ln(𝑁𝑡). 

Subtracting the right-hand side from the left-hand side provides: 

𝑑 ln(𝑉𝑡) − 2𝑑 ln(𝑁𝑡) = 0. 

The result implies, that if above relationship holds, the value of Ether follows Metcalfe’s Law using 

the applied measures of activity. As deviations between predicted and observed values are 

expected, a new time series 𝑧𝑡, is created. 

𝑑 ln(𝑉𝑡) − 2𝑑 ln(𝑁𝑡) = 𝑧𝑡   

For the model by Briscoe Odlyzko, and Tilly, the result is: 

𝑑 ln(𝑉𝑡) = 𝑑 ln(𝑁𝑡) + ln (
𝑙𝑛(𝑁𝑡)

𝑙𝑛(𝑁𝑡−1)
). 

Define: 
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(𝑑 ln(𝑁𝑡) + ln (
𝑙𝑛(𝑁𝑡)

𝑙𝑛(𝑁𝑡−1)
)) = 𝑋𝑁 

𝑑 ln(Vt)−𝑋𝑁 = 0 → 𝑑 ln(Vt)−𝑋𝑁 = 𝑧𝑡 . 

For the model by Alabi, the result is: 

𝑑 ln(𝑉𝑡) = 𝜆(𝑁𝑡
𝑚 −𝑁𝑡−1

𝑚 ). 

Define: 

𝑌𝑁 = 𝜆(𝑁𝑡
𝑚 −𝑁𝑡−1

𝑚 ) 

𝑑 ln(Vt)−𝑌𝑁 = 0 → 𝑑 ln(Vt)−𝑌𝑁 = 𝑧𝑡 . 

If 𝑧𝑡 has zero mean and the mean is constant over time, it implies, that the models explain the value 

of Ether, but other factors cause the price of Ether to fluctuate around the predicted values. In other 

words, when comparing the results to actual price data, temporary deviations can have two 

interpretations. First, deviations can be interpreted as mispricing and provide valuable information 

for investors. Second, the deviations can also be a result of temporary misalignment between 

current and expected future demand of computing power on Ethereum. 

Determining if the true mean is exactly zero, is not possible. However, it is possible to test if the 

null of 𝜇(𝑧𝑡) = 0 can be rejected using a t-test:  

𝑡 =
𝜇(𝑧𝑡) − 0

𝑆𝐸(𝜇(𝑧𝑡))
, 

where 𝜇(𝑧𝑡) and 𝑆𝐸(𝑧𝑡) are the mean and standard error of 𝑧𝑡. From the t-value, the p-value is 

determined. The null hypothesis is that 𝜇(𝑧𝑡) = 0 and the p-value represents the probability of 

rejecting the null, when it is in fact true. The decision rule usually applied to econometric analysis 
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is rejection of the null if 𝑝 < 0.05 or 𝑝 < 0.01. However, as the relationship between the value of 

Ether and activity on Ethereum only shows to hold if the null is not rejected, the decision rule is 

chosen at 𝑝 < 0.2. A higher p-value indicates less evidence against the null hypothesis and to 

increase the power of the test, models are rejected even with relatively weak evidence against the 

null.     

To see if the mean is constant over time, the series will be tested for a unit root using the Augmented 

Dickey-Fuller (ADF) test with zero mean. If the presence of a unit root is rejected at the 5%-level, 

the series is accepted as stationary, and the mean of zero assumed to be constant over time.  

The power of the test is weak, as it does not test for 𝜇(𝑧𝑡) = 0 directly. However, if the null is not 

rejected and the series is found to be stationary with zero mean, the model is assumed to have 

𝜇(𝑧𝑡) = 0 and will be utilized further in the analysis. 

As the test for Alabi’s model requires the estimates of 𝜆 and 𝑚, the tests will be done after 

estimating the models. 

4.2.3 Comparison of Models 

To compare models, R2, the Root Mean Square Error (RMSE), and an adjusted version of RMSE 

will be applied. As Alabi’s model and the Netoid function are non-linear in parameters, the 

residuals do not necessarily sum to zero, and the sum of the estimated sum of squares and residual 

sum of squares does not necessarily equal total sum of squares. Thus, R2 for all models will be 

computed as proposed by Gujarati and Porter (2009): 

𝑅2 = 1 −
∑ (𝑌𝑡 − �̂�𝑡)

2𝑇
𝑡=1

∑ (𝑌𝑡 − �̅�𝑡,𝑇)
2𝑇

𝑡=1

 , 
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where 𝑌𝑡 is the actual value of the dependent variable at time 𝑡, �̂�𝑡 is the predicted value of the 

dependent variable at time 𝑡, and  �̅�𝑡,𝑇 is the mean of observed values of the dependent variable 

from time 𝑡 to 𝑇. 

RMSE is defined as: 

𝑅𝑀𝑆𝐸 = √∑(
(𝑌𝑡 − �̂�𝑡)

2

𝑁
)

𝑇

𝑡=1

 , 

where 𝑁 is the total number of observations. From Figure 1.1, market capitalization experienced 

relatively slow growth and low variation in absolute terms from mid-2015 to the beginning of 2017 

compared to the more recent observations. Thus, RMSE will be likely to favor models that better 

explain recent value compared to early value. To better compare models, the following measure 

will also be applied: 

𝑅𝑀𝑆𝐸Δ𝑌 =

√
  
  
  
  
  

∑

(

 
 (
𝑌𝑡 − �̂�𝑡
𝑌𝑡

)
2

𝑁

)

 
 

𝑇

𝑡=1

  , 

where 𝑅𝑀𝑆𝐸Δ𝑌 weights each residual by the inverse of the observed value of 𝑌𝑡. Thus, predictions 

associated with lower values of 𝑌𝑡 receive the highest weights. So, in this case, 𝑅𝑀𝑆𝐸Δ𝑌 favors 

models that better explain early market capitalization. Combined with 𝑅𝑀𝑆𝐸, this measure 

provides a more holistic picture of the models’ ability to explain the observed values of Ether over 

time. 

4.2.4 In-Sample versus Out-of-Sample Performance 

The last observation in the sample period is the week ending December 31, 2017. To see how the 

different models perform out of sample, data have been collected for the 8-week period from 
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January 1, 2018, through February 25, 2018. Observed values for the independent variables will be 

utilized to see how well the estimated models perform out of sample.  

4.3 FORECASTING 

The purpose of this analysis is first to examine if the applied network valuation models and activity 

measures can explain the value of Ether over time. Second, the models will be used for forecasting. 

An appropriate forecasting horizon was chosen at 6-months from the first Sunday in January 2018 

(7th) through Sunday, July 1, 2018. Weekly forecasts in the 6-month period will also be presented 

and discussed to see how the models perform in the very short-term. 

To forecast the value of Ether, the independent variables must also be forecasted. The chosen 

approach is to use the Netoid function proposed by Metcalfe (2013) and later used for 

cryptocurrencies by Alabi (2017). To estimate the model, a time variable is created with the value 

of 1 at Sunday, August 16, 2015, the value of 2 at August 23, 2016, and so on through December 

31, 2017. The model is estimated using the Gauss-Newton algorithm with the time variable as the 

independent variable. All models applied in the analysis are summarized in Table 4.2. For further 

reference, all models have been named according to author besides the Netoid function. The model 

by Briscoe, Odlyzko, and Tilly is referred to as Odlyzko’s Law following Metcalfe (2013). 

Table 4.2: Summary of Applied Models. 
Model Equation Dependent Variable  Independent Variable 

Metcalfe 𝑉(𝑁) = 𝑘𝑁2 Market capitalization  Active IP addresses, 

Transactions or 

Gas 

Odlyzko 𝑉(𝑁) = 𝑘 ln (𝑁)𝑁 Market capitalization  Active IP addresses, 

Transactions or 

Gas 

Alabi 𝑉(𝑁) = 𝐶𝑒𝜆𝑁
𝑚

 Market capitalization  Active IP addresses, 

Transactions or 

Gas 

Netoid 𝑁(𝑡) =
𝑝

1 + 𝑒−𝑣(𝑡−ℎ)
 Active IP addresses, 

Transactions or 

Gas 

Time 
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4.3.1 Assumptions for Forecasting 

As the Netoid function requires an iterative estimation method, many solutions can provide good 

fits for the equation. From preliminary analysis, estimation without upper bounds tends to produce 

unrealistically high values of 𝑝. The current Proof-of-Work algorithm implies some restrictions on 

the use of Ethereum. At the time, Ethereum supports around 15-16 transactions per second, or 

around 1.3-1.4 million transactions per day. The coming Proof-of-Stake algorithm is anticipated to 

drastically increase the limit to thousands per second but is not expected to be implemented in the 

first half of 2018 (Karnjanaprakorn, 2017). As of December 31, 2017, the number of daily 

transactions was just shy of 1 million and has previously reached levels just above 1.1 million. 

Thus, it is fair to assume, that with current technology, Ethereum is entering the latter part of the 

Netoid function, with diminishing growth. For estimation, the value of 𝑝 will be fixed at 1.4 million 

representing the absolute maximum for the current state. While extensive growth might come 

because of a new consensus algorithm, the growth pattern will likely change and is therefore not 

accounted for in this analysis due to the forecasting horizon. 

For active IP addresses, the average daily transactions per IP was 1.48 in December 2017. Given a 

maximum of 1.4 transactions that gives a maximum around 950 thousand active IP Addresses. 

However, larger values have been observed, and the average transactions per active IP address have 

generally been decreasing over time, so a maximum of 1.4 million daily IP addresses will be used. 

As EOAs interact with Ethereum through transactions, the average transactions per active IP cannot 

fall below 1, and thus 1.4 million seems to be a reasonable upper bound. 

The average Gas per transaction was just above 46 thousand in December 2017. Appropriate 

assumptions are more difficult to determine, as Gas per transactions can be very high, and values 

above 200 thousand were observed in 2016. However, due to data limits on blocks, values at such 

levels are unlikely to occur as the number of transactions has increased. As levels just above 50 
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thousand were experienced during December 2017, an upper bound of 55 thousand is assumed. 

This assumption leads to an upper bound for daily Gas of 77 billion.        
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5. RESULTS 

5.1 RESULTS OF MODEL ESTIMATION 

Tables 5.1 to 5.3 show the estimated coefficients and error measures for the applied models and 

Figures 5.1 to 5.3 show visual representations of results.  

Table 5.1: Estimated Models using Active IP Addresses as Predictor.  

  Metcalfe Odlyzko Alabi 

k 0.19 8,661.10  

  (0.011)*** (713.840)*** 
 

C   9.91E-09 

    
(0.000) 

   32.62 

   
(0.252) 

m   0.02 

    
(0.001) 

R2 0.592 0.934 0.950 

RMSE 9,774,976,003 3,933,450,863 3,416,675,679 

RMSEY 0.85 1.20 3.96 

*** p<0.001. Significance level not included for non-linear least squares 

  

 
Figure 5.1: Ether Market Capitalization and Predictions using Active IP Addresses 2015-2017   
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Table 5.2: Estimated Models using Transactions as Predictor.  

  Metcalfe Odlyzko Alabi 

k 0.10 5,529.33  

  (0.022)*** (250.250)*** 
 

C   9.93E-09 

    
(0.000) 

   31.61 

   
(0.310) 

m   0.02 

    
(0.001) 

R2 0.690 0.938 0.941 

RMSE 8,504,016,087 3,817,503,842 3,719,750,360 

RMSEY 0.78 2.67 5.09 

*** p<0.001. Significance level not included for non-linear least squares 

 

 
Figure 5.2: Market Capitalization of Ether and Predictions using Transactions 2015-2017. 
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Table 5.3: Estimated Models using Gas as Predictor.  

  Metcalfe Odlyzko Alabi 

k 4.61E-11 0.06  

  (7.98E-12)*** (0.003)*** 
 

C   9.95E-09 

    
(0.000) 

   24.62 

   
(0.485) 

m   0.02 

    
(0.001) 

R2 0.751 0.943 0.944 

RMSE 7,636,100,031 3,655,907,306 3,633,675,513 

RMSEY 0.81 3.07 4.60 

*** p<0.001. Significance level not included for non-linear least squares 

 

 
Figure 5.3: Market Capitalization of Ether and Predictions using Gas 2015-2017. 
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from 93.4% to 95.0%. Metcalfe’s Law shows less ability to explain the value of Ether with R2 

ranging from 59.2% to 75.1%. When considering RMSEY, Metcalfe’s Law provides the lowest 

values, but highest RMSE. These results suggest that Metcalfe’s Law best explains early market 

capitalization, but that value as a function of activity has recently experienced more modest growth. 

To further examine these results Metcalfe’s Law and Odlyzko’s Law are presented visually. Figures 

5.4 and 5.5 show the market capitalization of Ether on active IP addresses squared, and the market 

capitalization of Ether on the natural logarithm of active IP addresses times active IP addresses, 

respectively. For Metcalfe’s Law to hold, a linear relationship should be evident in Figure 5.4. 

However, what seems to be closer to a logarithmic relationship confirms the critique of Metcalfe’s 

Law as the value seems increasing less than proportional to 𝑁2 at higher levels of 𝑁. From Figure 

5.5 the pattern does seem to be somewhat linear and explains why Odlyzko’s Law performs better 

in explaining the value of Ether over time.  

 
Figure 5.4: Market Capitalization of Ether on (Active IP Addresses)2. 
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Figure 5.5: Market Capitalization of Ether on LN(Active IP Addresses)x(Active IP Addresses). 
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5.2 RESULTS OF ROBUSTNESS TEST 

Tables 5.4 to 5.6 present results of the t-tests. The null is rejected for Metcalfe’s Law using active 

IP addresses as 𝑝 < 0.2, but not rejected for the other models. The confidence, at which the null 

can be rejected, does support the previous findings, that Metcalfe’s Law is not able to explain the 

value of Ether over time, and Metcalfe’s Law using active IP addresses is excluded from further 

analysis. 

Table 5.4: t-test: Mean of zt using Metcalfe’s Law. 

  IP Transactions Gas 

Mean -0.0441 -0.0427 -0.0514 

Standard Error of Mean 0.0239 0.0355 0.0652 

t-value -1.8441 -1.2006 -0.7890 

DF 123 123 123 

p-value 0.068 0.232 0.432 

 

Table 5.5: t-test: Mean of zt using Odlyzko’s Law. 

  IP Transactions Gas 

Mean -0.0002 -0.0036 -0.0015 

Standard Error of Mean 0.0168 0.0362 0.0365 

t-value -0.0099 -0.0983 -0.0404 

DF 123 123 123 

p-value 0.992 0.922 0.968 

 

Table 5.6: t-test: Mean of zt using Alabi’s Model. 

  IP Transactions Gas 

Mean 0.0111 0.0086 0.0048 

Standard Error of Mean 0.0159 0.0208 0.0328 

t-value 0.6997 0.4151 0.1463 

DF 123 123 123 

p-value 0.4855 0.6788 0.8839 

 

Appendix 1 shows the results of the ADF tests. Across all models, the null of a unit root is rejected 

at the 0.1%-level. Thus, except for Metcalfe’s Law using active IP addresses, it is not possible to 

reject that change in value predicted by the applied models and activity measures, in fact, explain 

the change in the value of Ether over time.  
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5.3 OUT-OF-SAMPLE RESULTS 

To examine the out-of-sample performance, the market value of Ether was predicted using 

observed values of the three activity measures. Table 5.7 shows that all three models provide very 

high RMSE independent of utilized activity measure. From Appendix 2, it is evident, that results 

suffer from a large value bubble in this period and so the results are found inapplicable in the 

analysis. 

Table 5.7: Out-of-Sample RMSE: January 2018 to February 2018. 

  Metcalfe Odlyzko Alabi 

Active IP Addresses N/A 25,460,038,461 30,180,672,303 

Transactions 25,085,506,865 29,367,365,136 32,439,548,548 

Gas 29,245,236,743 40,076,735,439 41,451,820,041 

 

To further examine the robustness of the models over time, all models were re-estimated utilizing 

data through May 2017 to mimic the sample period used by Alabi (2017). Table 5.8 shows the 

results for out-of-sample RMSE and Figure 5.6 depicts the models using transactions as predictor. 

In Figure 5.6 the y-axis is limited to $200 billion but, as can be seen in Appendix 3, Metcalfe’s 

Law and Alabi’s model predict market values as high as $700 billion. Appendix 3 shows similar 

results using active IP addresses and Gas.   

Table 5.8: Out-of-Sample RMSE: June 2017 to December 2017. Estimates through May 2017. 

 Metcalfe Odlyzko Alabi 

Active IP Addresses N/A 7,758,615,744 180,021,995,294 

Transactions 166,877,518,136 9,405,821,287 215,160,699,293 

Gas 123,658,737,527 7,991,294,433 43,120,537,913 
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Figure 5.6: Market Capitalization of Ether and Models Estimated through May 2017, using 

Transactions. 
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observed market capitalization. Figure 5.8 shows the hybrid model compared to Metcalfe’s Law 

and Alabi’s model using transactions as a predictor. 

Table 5.9: Estimated Hybrid Models of Metcalfe’s Law and Odlyzko’s Law. 

  Active IP Addresses Transactions Gas 

Metcalfe k 1.57 0.57 2.19E-10 

  (0.010)*** (0.020)*** (2.77E-12)*** 

Odlyzko k 8580.87 5456.47 0.06 

  (590.980)*** (182.760)*** (0.003)*** 

R2 0.950 0.962 0.958 

RMSE 3,371,975,098 2,985,576,877 3,131,837,120 

RMSEY 0.46 0.38 0.65 

Break Date 6/11/2017 6/18/2017 6/18/2017 

Signifance levels: *p<0.05, **p<0.01, ***p<0.001 

 

The hybrid models outperform the previous models considering R2, RMSE, and RMSEY. From 

the statistical results and graphical representations, it is clear that the hybrid models are better able 

to explain the value of Ether compared to the three previously examined models. The results 

confirm that early market capitalization of Ether seems to follow Metcalfe’s Law, but later value 

seems to follow Odlyzko’s Law. Applying the test from Section 4.2.1 shows that for all three 

models the null of a unit root is rejected at the 0.1% level. However, the model using active IP 

addresses provides a p-value from the t-test of 0.17. Thus, the model should be excluded, but if the 

break date is changed to January 29, 2017, the p-value is 0.39. So, the break date might be 

incorrectly estimated when chosen using RMSE. Also, forecasting only applies the part of the 

model using Odlyzko’s Law. If only considering that part of the model the p-value is 0.51 and so, 

the model is still applicable for forecasting.   

Interpretation of the estimated parameters is somewhat difficult due to the nonlinearity of the 

models. If considering Metcalfe’s Law, define the change in 𝑁 from 𝑁𝑡 to 𝑁𝑡+1 as 𝑁𝑡+1 = 𝑁𝑡 + 𝜆, 

where 𝜆 is the absolute change in activity. Then 𝑉(𝑁𝑡+1) − 𝑉(𝑁𝑡) = 𝑘𝜆(𝜆 + 2𝑁𝑡) and for 
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Odlyzko’s Law, 𝑉(𝑁𝑡+1) − 𝑉(𝑁𝑡) = 𝑘 × ln (
(𝑁𝑡+𝜆)

𝑁𝑡+𝜆

𝑁𝑡
𝑁𝑡

). Thus, the paramters do not provide any 

intuitive interpretation, besides the positive relationship between value and activity. For easier 

interpretation, the first-order conditions can be used if the change in 𝑁 is sufficiently small.   

The hybrid models show some variation in RMSE and R2 given the activity measure applied, with 

transactions proving to be the best predictor. However, differences are too small to make any 

definitive conclusions. The R2 of the hybrid models indicate that these explain 95.0% to 96.2% of 

the variation in market capitalization. As the hybrid models provide better results than both 

Metcalfe’s Law and Alabi’s model, only the hybrid models will be used in forecasting. Forecasting 

using the hybrid models implies using Odlyzko’s Law, and so, the initial estimates of Odlyzko’s 

Law will also not be used for forecasting.    

 
Figure 5.7: Market Capitalization of Ether and Predictions using Hybrid Models 2015-2017. 

0

10

20

30

40

50

60

70

80

90

8/16/2015 12/18/2015 4/20/2016 8/22/2016 12/24/2016 4/27/2017 8/29/2017 12/31/2017

Billion USD

Market Capitalization Active IP Adresses Transactions Gas



44 

 

 
Figure 5.8: Ether Market Capitalization and Predictions using Transactions 2015-2017. 
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Table 5.10: Estimated Netoid Models. 

  Active IP Addresses Transactions Gas 

p 1,400,000 1,400,000 77,000,000,000 

v 0.071 0.075 0.072 

  (0.004) (0.003) (0.003) 

h 132.1 122.6 125.8 

  (1.027) (0.617) (0.574) 

R2 0.900 0.931 0.953 

RMSE 41,573 51,728 2,067,841,695 

RMSEY 0.64 0.67 0.64 

 

From R2 and visual representations, it seems that the Netoid function can largely explain the growth 

of active IP addresses, transactions, and Gas over time. However, when using time as an 

independent variable, the Netoid function is not expected to explain weekly fluctuations.  Estimates 

for 𝑣 are very similar but as the models utilize different independent variables, the estimates are 

difficult to compare. The estimates for ℎ show some differences across the activity measures. The 

models estimate the point of maximum growth at mid-February 2018, mid-December 2017, and 

the beginning of January 2018 for active IP addresses, transactions and Gas respectively.  

 
Figure 5.9: Active IP Addresses and Predictions using Netoid Function 2015-2017. 
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Figure 5.10: Transactions and Predictions using Netoid Function 2015-2017 

 
Figure 5.11: Gas and Predictions using Netoid Function 2015-2017 
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5.3.2 Forecasting Market Capitalization  

Tables 5.11 and 5.12 show the results of the 6-month forecasts for market capitalization and price 

per Ether respectively. The price estimates for Ether depend on estimated values of supply. Since 

the last hard fork of Ethereum in October 2017, the daily increase has been stable around 20,500 

Ether per day. No public announcements exist regarding a change in the mining reward, and so, it 

seems reasonable to assume similar growth and use the average of 20,500 as the daily growth rate. 

Thus, price forecasts contain additional uncertainty but are considered low due to the stability of 

supply growth. 

Table 5.11: Forecasted Market Capitalization of Ether from January to July  2018. 
(USD Billion) 

Date Observed Active IP Addresses Transactions Gas 

January 7, 2018 108.17 62.43 58.55 59.63 

January 14, 2018 131.76 65.33 60.60 61.84 

January 21, 2018 101.83 68.29 62.63 64.04 

January 28, 2018 119.72 71.28 64.63 66.24 

February 4, 2018 80.57 74.30 66.60 68.42 

February 11, 2018 79.09 77.35 68.54 70.57 

February 18, 2018 89.23 80.41 70.43 72.71 

February 25, 2018 82.17 83.49 72.29 74.81 

March 4, 2018 N/A 86.56 74.09 76.88 

March 11, 2018 N/A 89.63 75.84 78.90 

March 18, 2018 N/A 92.68 77.53 80.89 

March 25, 2018 N/A 95.71 79.17 82.82 

April 1, 2018 N/A 98.70 80.76 84.71 

April 8, 2018 N/A 101.67 82.28 86.54 

April 15, 2018 N/A 104.58 83.74 88.32 

April 22, 2018 N/A 107.45 85.14 90.04 

April 29, 2018 N/A 110.26 86.48 91.71 

May 6, 2018 N/A 113.01 87.77 93.31 

May 13, 2018 N/A 115.69 88.99 94.85 

May 20, 2018 N/A 118.30 90.15 96.33 

May 27, 2018 N/A 120.84 91.26 97.75 

June 3, 2018 N/A 123.30 92.30 99.11 

June 10, 2018 N/A 125.68 93.30 100.41 

June 17, 2018 N/A 127.98 94.24 101.65 

June 24, 2018 N/A 130.20 95.13 102.83 

July 1, 2018 N/A 132.34 95.96 103.96 
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The results for the first eight weeks of 2018 show contradicting movements as the observed price 

has been decreasing whereas forecasts are increasing. However, the price of Ether experienced a 

value bubble in January 2018 and prices returned to levels slightly above those observed in 

December 2017 during February 2018. 

Table 5.12: Forecasted Price per Ether from January to July 2018.  
(USD) 

Date Observed Active IP Addresses Transactions Gas 

January 7, 2018 1,117.75 645.07 604.96 616.20 

January 14, 2018 1,359.48 674.09 625.21 638.04 

January 21, 2018 1,049.09 703.51 645.20 659.78 

January 28, 2018 1,231.58 733.24 664.86 681.38 

February 4, 2018 827.59 763.22 684.14 702.75 

February 11, 2018 811.24 793.36 703.00 723.86 

February 18, 2018 913.90 823.59 721.38 744.64 

February 25, 2018 840.31 853.80 739.24 765.05 

March 4, 2018 N/A 883.94 756.56 785.03 

March 11, 2018 N/A 913.91 773.30 804.56 

March 18, 2018 N/A 943.64 789.44 823.58 

March 25, 2018 N/A 973.05 804.96 842.07 

April 1, 2018 N/A 1,002.07 819.85 860.00 

April 8, 2018 N/A 1,030.63 834.09 877.34 

April 15, 2018 N/A 1,058.66 847.69 894.06 

April 22, 2018 N/A 1,086.10 860.63 910.16 

April 29, 2018 N/A 1,112.89 872.93 925.63 

May 6, 2018 N/A 1,138.98 884.58 940.44 

May 13, 2018 N/A 1,164.34 895.60 954.61 

May 20, 2018 N/A 1,188.91 905.99 968.12 

May 27, 2018 N/A 1,212.67 915.77 980.98 

June 3, 2018 N/A 1,235.59 924.96 993.20 

June 10, 2018 N/A 1,257.65 933.58 1,004.78 

June 17, 2018 N/A 1,278.83 941.63 1,015.73 

June 24, 2018 N/A 1,299.13 949.15 1,026.07 

July 1, 2018 N/A 1,318.53 956.15 1,035.81 

 

Forecasts in Tables 5.11 and 5.12 show significant differences across the applied activity measures. 

When considering the last forecast on July 1, 2018, the forecast from active IP addresses is an 

increase of 37.91% compared to using transactions and a 27.30% increase over the forecast using 
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Gas. The final 6-month ahead forecast for market capitalization of Ether thus ranges from $96.95 

billion to $132.34 billion representing a gain between 35.36% and 84.78% over six months from 

December 31, 2017. 
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6. DISCUSSION OF RESULTS 

Alabi (2017) finds that both Metcalfe’s Law and his own proposed model well explain the price of 

Ether given active IP addresses as predictor. Utilizing more recent data, this analysis finds that this 

is not the case. The market capitalization of Ether has recently experienced a more modest growth 

pattern than proposed by Metcalfe’s Law and while Alabi’s model provides low RMSE and high 

R2, it is less robust over time compared to Odlyzko’s Law. 

Comparing Alabi’s estimation of his model, it becomes evident that estimation on new data 

provides a significantly different growth pattern. In Alabi’s analysis, marginal value is decreasing 

in active IP addresses until around 8,200 active IP addresses. From this analysis, that number is just 

above 9 million. So, based on the arguments by Alabi (2017), Ethereum has not yet reached a 

critical mass and started to experience exponential growth. However, using transactions and Gas 

as predictors, this point is estimated at 370,809 thousand transactions and about 15 billion Gas. 

These numbers for transactions and Gas were both reached in late 2017, so are in sharp contrast to 

Alabi’s estimate of around 8,200 active IP addresses, which were reached at the beginning of 2016.  

Alabi’s model assumes positive parameters. In the process of estimation, the algorithm applied 

found 𝐶 to converge to zero and was limited by the defined bound. The implications are standard 

errors of zero and might suggest an issue in applying the model to current data. Further analysis of 

this issue is left for future research but might explain the significantly different results compared to 

Alabi’s own analysis.  

The pseudo-out-of-sample predictions further confirmed that the value of Ether, as explained by 

activity on Ethereum, seems to have experienced a structural change over time. Early value of Ether 

is found to follow Metcalfe’s Law, while Odlyzko’s Law best explains later value. These results 

provide valuable information as it is evident that growth patterns can change. As a new consensus 
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algorithm is expected sometime in 2018-2019, the issue of structural changes further challenges 

the ability to forecast the value of Ether.   

The robustness tests applied to the models show that the models and applied predictors seem to 

explain the value of Ether and that results are not spurious even with apparent non-stationarity. The 

results are interesting in the context that deviations from predicted values can then be interpreted 

as mispricing and provide valuable insights for investors. However, the results are subject to some 

uncertainty, and further research is encouraged. First, the tests applied do not directly test for 

𝜇(𝑧𝑡) = 0 and do not provide the probability of the true mean of 𝑧𝑡 being zero. Thus, more powerful 

tests might shed further light on this relationship. Second, deviations from predicted values can 

also be interpreted as misalignment between observed demand and expected future demand of 

computing power on Ethereum. Thus, while some mispricing seems apparent because of value 

bubbles over the life of Ether, more research is needed to explain the deviations observed in this 

analysis.   

To forecast the activity on Ethereum, the Netoid function is applied. The results show that in general 

the growth of active IP addresses, transactions, and Gas has followed the pattern proposed by the 

model, but due to the Netoid function being a strictly increasing function in time, weekly 

fluctuations are not well explained. The results for the first eight weeks of 2018 also show 

contradicting movements between forecasts and observed values. While it is evident that Ether 

experienced a value bubble in January 2018, the question arises whether the results are based on 

incorrect forecasts of activity measures or if the applied hybrid models fail to predict value given 

activity. 

Table 6.1 shows the predicted values using observed activity from January 1, 2018, through 

February 25, 2018, compared to observed values of market capitalization. The predicted values 

using active IP addresses and transactions show similar patterns as the observed values. However, 
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while active IP addresses largely followed the increase in value in January, transactions did less so 

and result in predictions that are much lower than observed. Gas was more stable, and the predicted 

values of Ether show only slightly higher values in January compared to February. That the model 

using active IP addresses provides better results in this period implies that the number of active 

nodes better captures expected future demand for computing power, as Gas does not increase with 

value. However, the predictions for February show more aligned results across the activity 

measures and thus the conclusion of this analysis must be, that no significant difference in 

predictive power is found between the applied measures for activity. That the predictions for 

February are much lower than the observed values also suggest that potential mispricing and 

misalignment between expected future demand and observed demand for computing power provide 

challenges for forecasts.  

Table 6.1: Predicted Market Capitalization of Ether using Out-of Sample Values for Activity. 
(USD Billion) 

Date Observed Active IP Addresses Transactions Gas 

January 7, 2018 108.17 109.12 90.50 63.83 

January 14, 2018 131.76 107.02 89.35 63.94 

January 21, 2018 101.83 101.48 87.00 64.53 

January 28, 2018 119.72 71.97 67.08 61.97 

February 4, 2018 80.57 73.18 67.63 62.43 

February 11, 2018 79.09 56.92 60.19 60.10 

February 18, 2018 89.23 55.37 56.28 58.74 

February 25, 2018 82.17 53.81 57.82 60.58 

     

The final 6-month ahead forecast for market capitalization of Ether for July 1, 2018, is in the range 

of $96.95 billion to $132.34 billion. That results show such a wide range raise the questions of the 

predictability of both Odlyzko’s Law, the applied activity measures, and the Netoid function.  

The predicted activity measures depend on assumptions about 𝑝, and so, the large variations might 

be a result of these. For transactions, the assumption is based on known limitations and thus no 

better assumption is readily available. However, if transactions per active IP address remains 



53 

 

around 1.5 as observed in December 2017, the upper bound for active IP addresses changes to 

approximately 950,000. Similarly, if assumed, that Gas per transaction remains around its 

December 2017 level of 46,500 the upper bound for Gas is approximately 66 billion. Using these 

assumptions and re-estimating the Netoid models provide the forecasts for July 1, 2018, shown in 

Table 6.2.   

Table 6.2: Forecasted Market Capitalization of Ether for July 1, 2018, with New Assumptions. 
(USD Billion) 

Date Active IP Addresses Transactions Gas 

July 1, 2018 99.21 95.96 91.79 

 

With the new assumptions, the largest difference between forecasts is 8% of the lowest forecasts. 

Thus, the forecasts’ sensibility to applied assumptions further discourages any reason to conclude 

any differences in the models’ ability to explain and predict the market capitalization of Ether. 

However, the results imply further issues in applying the Netoid function for predicting the activity 

and thus, demand for computing power on Ethereum. Being subject to assumptions and strictly 

positive in time the Netoid function results in large errors and variance of forecasts. Thus, more 

data-based models might provide more robust results but are left for future research.   

6.1 FUTURE PERSPECTIVES 

That market capitalization of Ether seems to be explained by the demand of computing power raises 

some additional questions for future research. If a holder of Ether can manipulate the market's 

expectations of future demand of computing power on Ethereum, the results of the analysis imply 

that the price of Ether can be manipulated. Manipulating current demand is costly, but if someone 

can send a credible signal of increased future demand and sustain it over a sufficient time span, the 

potential gains can be significant. With the current lack of regulation and the global nature of 

Ethereum, such strategies pose a challenge for regulators. 

If Ethereum gains widespread adoption for real application, the need for more stable prices of Ether 

is apparent. With more applications, the expectation of future demand is likely to converge to 
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observed demand, and thus, the results of this analysis imply more stable prices. As Ether then 

serves as an input for companies utilizing Ethereum, Ether is likely to become a commodity. Unlike 

many other commodities the supply of Ether over time is very predictable, and so the value of Ether 

might become highly predictable.   
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7. CONCLUDING REMARKS  

The analysis finds that most of the variation in market capitalization of Ether can be explained by 

the activity on Ethereum also representing the demand for computing power. The empirical analysis 

shows that the early value of Ether follows Metcalfe’s Law, whereas later value follows Odlyzko’s 

Law. Thus, the results by Alabi (2017) can only be partially confirmed, as his proposed model 

proves inconsistent over time. As a result, hybrid models of Metcalfe’s Law and Odlyzko’s Law 

are estimated and prove to better explain the value of Ether compared to any of the single equation 

models. Both the theoretical and empirical analyses imply that the value of Ether can be explained 

by the demand for computing power on Ethereum. Thus, observed deviations from predicted values 

are argued to be a result of potential mispricing and misalignment of observed demand and 

expectations of future demand for computing power. 

The theoretical analysis of the Ethereum blockchain suggests that Gas should provide a better 

predictor of the value of Ether compared to transactions and active IP addresses. However, this 

cannot be confirmed with current data.   

Besides determining the drivers of the value of Ether, the purpose of this paper is to examine its 

predictability. Forecasting the value of Ether proves difficult because of volatility of activity on 

Ethereum. The applied Netoid function seems to explain overall growth over time but does not 

account for weekly fluctuations. Furthermore, forecasted values of Ether are sensitive to 

assumptions needed in applying the Netoid function to Ethereum. Thus, the final 6-month ahead 

forecast is a wide range, and the total market capitalization of Ether is forecasted at between $96.95 

billion and $132.34 billion for July 1, 2018, representing a gain between 35.36% and 84.78% over 

six months from December 31, 2017. The paper concludes that more research is needed in 

predicting the demand of computing power on Ethereum to provide forecasts of higher quality.    
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APPENDIX 1: AUGMENTED DICKEY FULLER TEST RESULTS 

ADF Zero-Mean Test 

Model and Variable Lags T Pr < T 

        

Metcalfe's Law       

Active IP Addresses 0 -16.2664 < 0.0001 

Transactions 0 -16.0347 < 0.0001 

Gas 0 -16.7337 < 0.0001 

        

Odlyzko's Law       

Active IP Addresses 0 -14.7521 < 0.0001 

Transactions 0 -16.2224 < 0.0001 

Gas 0 -16.2106 < 0.0001 

        

Alabi's Model       

Active IP Addresses 0 -13.2937 < 0.0001 

Transactions 0 -13.9677 < 0.0001 

Gas 0 -15.9238 < 0.0001 
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APPENDIX 2: OUT-OF-SAMPLE RESULTS JANUARY 2018 TO FEBRUARY 2018. 

 
Out-of-Sample Results for Models using Active IP Addresses. 

 

 
Out-of-Sample Results for Models using Transactions. 
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Out-of-Sample Results for Models using Gas. 
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APPENDIX 3: MODELS ESTIMATED THROUGH MAY 2017 AND OUT-OF-

SAMPLE RESULTS JUNE 2017 TO DECEMBER 2017. 

Estimates through May 28, 2017 using Active IP Addresses: 

  Odlyzko Alabi 

k 8,294.07   

  (1587.900)***   

C   9.93E-09 

    (0.000) 

   24.99 

   (0.296) 

m   0.04 

    (0.001) 

R^2 0.772 0.958 

RMSE 1,203,207,146 517,186,630 

RMSEy 1.28 0.44 

Signifance levels: *<0.05, **<0.01, ***<0.001 

Significance level not included for non-linear least squares 

 

Estimates through May 28, 2017 using Transactions: 

  Metcalfe Odlyzko Alabi 

k 0.60 4,590.01   

  (0.027)*** (642.380)***   

C     9.93E-09 

      (0.000) 

     23.32 

     (0.315) 

m     0.05 

      (0.001) 

R^2 0.958 0.702 0.955 

RMSE 519,353,249 1,375,112,185 534,107,054 

RMSEy 0.43 2.43 0.43 

Signifance levels: *<0.05, **<0.01, ***<0.001 

Significance level not included for non-linear least squares 
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Estimates through May 28, 2017 using Gas: 

  Metcalfe Odlyzko Alabi 

k 2.21E-10 0.06   

  (0.000)*** (0.035)   

C     1.00E-08 

      (0.000) 

     18.45 

     (0.592) 

m     0.04 

      (0.001) 

R^2 0.778 0.772 0.867 

RMSE 1,187,427,559 1,204,019,364 920,599,174 

RMSEy 0.75 3.09 1.48 

Signifance levels: *<0.05, **<0.01, ***<0.001 

Significance level not included for non-linear least squares 

 

 

 
Out-of-Sample Results for Models using Active IP Addresses.  
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Out-of-Sample Results for Models using Transactions. 

 

 

 
Out-of-Sample Results for Models using Gas. 
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