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ABSTRACT

DOYEL BARMAN. Consistency results in the theory of continuous functions and
selective separability. (Under the direction of DR. ALAN DOW)

We study of the notion of selective separability(SS), which was introduced by

Marion Scheepers, and its connection with the game-theoretic strengthening, strate-

gically selective separable spaces (SS+). It is known that every set of countable

π-weight is selectively separable, and if X is selectively separable, then all dense sub-

sets of X are selectively separable. We know that some dense countable subsets of 2c

are selectively separable and some are not. It is also known that Cp(X) is selectively

separable if and only if it is separable and has countable fan tightness. Here we prove

that separable Fréchet spaces are selectively separable. It is also shown that consis-

tently the product of two separable Fréchet spaces might not be selectively separable.

Also we show that adding a Sacks real can destroy the property of being selectively

separable.

We introduce a notion stronger than selective separability and called it strategically

selective separable or SS+ and consider its properties in countable dense subsets of

uncountable powers. We show that there is an SS space which fails to be SS+.

The motivation for studying SS+ is that it is a property possessed by all separable

subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy

for countable SS+ spaces can be chosen to be Markov.

We introduce the notion of being compactlike of a collection of open sets in a topo-

logical space and with the help of this notion we prove that there are two countable

SS+ spaces such that the union fails to be SS+, which contrasts the known result

about the union of SS spaces. We also prove that the product of two countable SS+

spaces is again countable SS+.

We prove a very interesting result which consistently contrasts our previous result,

that the proper forcing axiom, PFA, implies that the product of two countable Fréchet
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spaces is SS. Also we show that consistently with the negation of CH that all separable

Fréchet spaces have π-weight at most ω1.

We also worked on an open question posed by Ohta and Yamasaki in the book “Open

Problems in Topology” which is, whether every C∗-embedded subset of a first count-

able space is C-embedded. It is known that a counterexample can be derived from

the assumption b = s = c and that if the Product Measure Extension Theorem

(PMEA) holds then the answer is affirmative in some cases . We show that in the

model obtained by adding κ many random reals, where κ is a supercompact cardinal,

every C∗-embedded subset of a first countable space (even with character smaller

than κ) is C-embedded. The result was derived from the interesting fact that, if two

ground model sets are completely separated after adding a random real, then they

were completely separated originally.

The dissertation is divided as follows. The first chapter contains the topological

properties of selectively separable spaces. The second chapter contains all the results

we obtained about SS+ spaces. The third chapter is devoted to the theorems involving

CH and forcing extensions. The final chapter contains the results we obtained in the

random real model about the C-embedding and C∗-embedding properties.

Any topological term not defined explicitly should be understood as in [1]. The

corresponding remark applies to set theoretic notions and [2].



v

ACKNOWLEDGEMENTS

I would like to gratefully and sincerely thank Dr. Alan Dow for his guidance, under-

standing, and most importantly, his patience during my graduate studies at University

of North Carolina at Charlotte. His mentorship was paramount in providing a well

rounded experience consistent with my long-term career goals. He encouraged me to

not only grow as a researcher but also as an instructor and an independent thinker. I

am not sure many graduate students are given the opportunity to develop their own

individuality and self-sufficiency by being allowed to work with such independence.

For everything you have done for me, Dr. Dow, I thank you.

Additionally, I am very much thankful to the members of my doctoral committee and

the members of our Carolina Research Group for their input, valuable discussions and

accessibility, especially Roberto Pichardo Mendoza, with whom I worked closely and

puzzled over many of the same mathematical problems. I would like to thank Dr.

Joel Avrin, Dr. Mohammad Kazemi and the rest of the department of mathematics

at UNCC for their patience and support.

I would like to thank my mom Anita Barman, dad Subir Barman and my brother

Saptarshi Barman for their faith in me and allowing me to be as ambitious as I

wanted. It was under their watchful eye that I gained so much drive and an ability

to tackle challenges head on. Most importantly, I would like to thank my husband

Soumajit for his support, encouragement, quiet patience and unwavering love, which

were undeniably the bedrock upon which the past three years of my life have been

built. His support during the final stages of this Ph.D. is so appreciated.

Finally, I thank all my friends for their unending encouragement and support.



vi

TABLE OF CONTENTS

CHAPTER 1: ON SELECTIVE SEPARABILITY 1

1.1 Introduction 1

1.2 Selective Separability 3

CHAPTER 2: ON SS+ SPACES 11

2.1 Introduction 11

2.2 On Strategic Fan Tightness and SS+ 12

CHAPTER 3: CONSISTENCY RESULTS AND FORCING WITH
SELECTIVE SEPARABILITY

27

3.1 Introduction 27

3.2 On Product of Selectively Separable Spaces 29

CHAPTER 4: COMPLETELY SEPARATED IN RANDOM MODEL 49

4.1 Introduction 49

4.2 Preliminaries 49

4.3 Consistency Modulo a Supercompact Cardinal 51

REFERENCES 56



CHAPTER 1: ON SELECTIVE SEPARABILITY

1.1 Introduction

In this dissertation we focus on the study of the topological properties of the selectively

separable spaces which was introduced by Marion Scheepers. Particularly interesting

is the naturalness of the SS notion in the function spaces with the pointwise convergent

topology, namely Cp(X) for metric spaces X. For a space X, Cp(X) is the subspace

of RX consisting of the real valued continuous functions on X (i.e. C(X) with the

topology of pointwise convergence).

We will let Cp(X, 2) be the subspace of Cp(X) consisting of the 2-valued functions.

Since such spaces are dense in the product space 2X , it is also natural to consider

other countable dense subsets of such powers.

Many interesting results and questions were presented in the paper [9] and we consider

some of them here. We show that every separable Fréchet space is SS. We prove that

there is a dense subspace of 2ω1 which is SS. We exploit the connections found in [3,9]

between the Menger Property of a space X and selective separability of Cp(X).

We recall the definitions of some well-known concepts from set theory and

topology.

We denote ω as the set of natural numbers. A space X has countable fan tightness

if, for any x ∈ X and any sequence {An : n ∈ ω} of subsets of X such that x ∈⋂
n∈ω An, we can choose a finite set Bn ⊂ An for each n ∈ ω in such a way that x ∈⋃
{Bn : n ∈ ω}. A space X has countable tightness (which is denoted by t(X) 6 ω)

if for any x ∈ X and A ⊂ X if x ∈ A, then there is a countable set B ⊂ A such that

x ∈ B. A space is scattered if every non-empty subspace of X has an isolated point.
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Definition 1.1. A partial order is a pair 〈P,6〉 such that P 6= ∅ and 6 is a relation

on P which is transitive and reflexive (∀p ∈ P(p 6 p)). p 6 q usually referred as “p

extends q”.

Definition 1.2. Let 〈P,6〉 be a partial order. A chain in P is a set C ⊂ P such that

∀p, q ∈ C(p 6 q ∨ q 6 p). p and q are compatible if and only if ∃r ∈ P(r 6 p∧ r 6 q);

they are incompatible (p⊥q) if and only if 6 ∃r ∈ P(r 6 p ∧ r 6 q). An antichain in P

is a subset A ⊂ P such that ∀p, q ∈ A(p 6= q → p⊥q).

A partial order 〈P,6〉 has the countable chain condition (c.c.c.) if and only if every

antichain in P is countable.

Definition 1.3. If 〈P,6〉 is a partial order, D ⊂ P is dense in P if and only if for all

p ∈ P, there exists a q 6 p such that q ∈ D. Now a set G ⊂ P is a filter in P if and

only if the following conditions are satisfied:

1. ∀p, q ∈ G,∃r ∈ G (r 6 p ∧ r 6 q), and

2. ∀p ∈ G,∀q ∈ P (q 6 p→ q ∈ G).

The Martin’s Axiom or MA(κ) is the statement: whenever 〈P,6〉 is a non-empty

partial order satisfying the countable chain conditions and D is a family of 6 κ dense

subsets of P, then there is a filter G in P such that ∀D ∈ D (G ∩D 6= ∅).

The assumption MActble is the statement that the well-known statement of Martin’s

Axiom holds for countable posets (rather than necessarily all ccc posets). This is

equivalent to the statement that the real line can not be covered by a family of fewer

than c many nowhere dense sets and is known to imply that the dominating number

d is c. The bounding number b is the minimum cardinality of a subset of ωω which

has no mod finite upper bound. The pseudointersection number, p, is the minimum

cardinality of a free filter base on ω for which there is no infinite set which is mod

finite contained in each member of the filter.

For several of our results we require extra set-theoretic hypotheses. Using MActble we

establish that the product of two countable SS spaces may not be SS and that there
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is a maximal regular SS space. We seem to require CH to prove that the product of

two countable Fréchet spaces may not be SS.

1.2 Selective Separability

Let us start with the definition of selective separability of a topological space X.

Definition 1.4. [3] A space X is called selectively separable (or SS) if for each sequence

{Dn}n of dense sets, there is a selection {En ∈ [Dn]<ω}n∈ω with dense union.

Now we have some results concerning π-weight of a space and its relation with selec-

tive separability. Before citing those results let us recall the definition.

Definition 1.5. Let (X, τ) be a topological space. A family ζ ⊂ τ is a π-base of X if

for each U ∈ τ , there is a B ∈ ζ such that B ⊂ U .

The cardinal πw(X) (called the π-weight of X) is the minimal cardinality of a π-base

of the space X. The following results are already known.

Proposition 1.1. [9] Assume that X is selectively separable. Then

1. every dense subspace of X is selectively separable and hence separable;

2. every open subspace of X is selectively separable;

3. every open continuous image of X is selectively separable;

4. every closed irreducible continuous image of X is selectively separable.

Proof. Properties 1 and 2 are straightforward from the definition. Now, if a contin-

uous onto map f : X → Y is either open or closed irreducible, then for any sequence

{En : n ∈ ω} of dense subsets of Y , the set Dn = f−1(En) is dense in X, so we

can choose finite Fn ⊂ Dn such that
⋃
n Fn is dense in X. Then Gn = f(Fn) is fi-

nite subset of En for every n ∈ ω and
⋃
n∈ω Gn is dense in Y , which proves 3 and 4. �

Proposition 1.2. [9] Each space with countable π-weight is selectively separable.

Proof. Suppose that πω(X) = ω and fix a π-base {Bn : n ∈ ω} in X. If {Dn : n ∈ ω}

is a sequence of dense subsets of X, then we can choose a point xn ∈ Dn ∩ Bn for

each n ∈ ω; now {xn : n ∈ ω} is dense in X, so X is selectively separable. �

Proposition 1.3. [3] Each countable space with π-weight < d is selectively separable.
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Proof. Let us fix a sequence of indexed dense sets {Dn = {d(n, l) : l ∈ ω} : n ∈ ω}.

Fix a π-base U of cardinality less than d. For each U ∈ U there is a function fU ∈ ωω

satisfying, for each n ∈ ω, U
⋂
{d(n, `) : ` < fU(n)} 6= ∅. Since | U |< d, there is

a function g ∈ ωω such that fU <∗ g for all U . Now let En = {d(n, l) : l < g(n)}.

Then it is easy to check that, for each U ∈ U, U ∩ En 6= ∅ for all such n such that

fU(n) < g(n), and so U ∩
⋃
nEn is not empty. �

A space is said to be crowded if it has no isolated points. For convenience we will

often assume that the spaces under discussion are crowded. Spaces which are not

crowded are easily handled by the following observation.

Lemma 1.4. A space X is SS if and only if the set I of isolated points is countable

and X \ I is SS.

We recall, and generalize, the notion of countable fan-tightness.

Definition 1.6. A space X has countable (dense) fan-tightness at x ∈ X, if for each

sequence (of dense sets) {Yn}n with x ∈
⋂
n Y n, there is a selection {Wn ∈ [Yn]<ω :

n ∈ ω} such that x ∈
⋃
nWn. A space X has countable (dense) fan-tightness if it has

countable (dense) fan-tightness at each point x ∈ X.

It is immediate that each SS space has countable dense fan-tightness, but it is useful

to make note of the partial converse.

Lemma 1.5. For a space X, the following conditions are equivalent:

1. X is SS,

2. X is separable and has countable dense fan-tightness,

3. X has countable dense fan-tightness at each point of some countable dense

subset.

Proof. It suffices to prove that condition 3 implies condition 1. We may assume

that the space X is crowded. Let {An : n ∈ ω} be a partition of ω into infinite

sets. Let D = {dn : n ∈ ω} be a dense subset of X such that X has countable

dense fan-tightness at each d ∈ D. Let {Dn : n ∈ ω} be a sequence of dense subsets
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of X. Now for each n ∈ ω and for each k ∈ An we use countable fan-tightness to

select {F n
k : n ∈ ω, k ∈ An} so that dn ∈

⋃
k∈An F

n
k . Since X = {dn : n ∈ ω} and

{dn : n ∈ ω} ⊆
⋃
n

⋃
k∈An F

n
k , we have X =

⋃
n

⋃
k∈An F

n
k . �

One of our main results shows the surprising connection between the Fréchet property

and selective separability. Let us recall the definition of a Fréchet Space:

Definition 1.7. A space is called Fréchet if it is the case that a point is in the closure

of a subset of X iff there is a sequence from the set converging to that point.

Theorem 1.6. Each separable Fréchet space is selectively separable.

Proof. We may assume that the space X is crowded. Let D be the postulated

countable dense subset of X and let d ∈ D. By Lemma 1.5, it suffices to show that X

has countable dense fan-tightness at (each point) d (of D). Since d ∈ X \ {d} there

exists a sequence {dn : n ∈ ω} ⊆ X \ {d} which converges to d. Let {Dn : n ∈ ω} be

a family of dense subsets of X. If we replace each Dn by
⋃
k>nDk, we may assume

that the sequence {Dn : n ∈ ω} is descending. For all n, dn ∈ Dn, which implies

that there exists a sequence Sn ⊆ Dn which converges to dn. Now we observe that

d ∈
⋃
n Sn and, therefore, we can select a sequence Sd ⊆

⋃
n Sn such that Sd → d.

Now for all n ∈ ω, Sd ∩ Sn is finite since Sd and Sn converge to distinct points. Let

Fn = Sd ∩ Sn, which is a finite subset of Dn. Now Sd =
⋃
n Fn and d ∈ Sd, which

implies d ∈
⋃
n Fn. Therefore, by Lemma 1.5, X is selectively separable. �

We present the following example because it seems to us to be a very natural example

of a countable space with minimal π-weight (namely d) which fails to be selectively

separable. An example using Cp(X) theory was given in [9].

Example 1.1. Consider the box topology on the countable power (ω+1)ω where ω+1

is the usual compact ordinal topology. Let S = {f ∈ �(ω + 1)ω : (∃n) f(k) =

ω iff k > n}.

Let Dn = {f ∈ S : f(k) 6= ω∀k 6 n}. It is easily seen that Dn is a dense subset of S

which is moreover open. We will show that the sequence {Dn : n ∈ ω} is a witness to
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the fact that S is not SS. Assume that Fn ∈ [Dn]<ω for each n ∈ ω. Define a function

h ∈ ωω so that f(n) < h(n) for each f ∈ Fn. Now the basic open set Πk∈ω[h(k), ω]

in �(ω + 1)ω does meet S but it is clearly disjoint from
⋃
n Fn. Therefore S is not

selectively separable.

To show πw(S) = d, let D ⊂ ωω be a dominating family of functions of cardinality d.

Then basic open sets are of the form: W (t, f) = Πi<dom(t){t(i)} × Πi>dom(t)[f(i), ω],

t ∈ ω<ω and f ∈ ωω. For any open U(s, g), where s ∈ ω<ω and g ∈ ωω, we can take

W (s, f) ⊂ U(s, g) where f dominates g , f ∈ D. Let κ < d, then for {fα : α < κ},

∃g such that | {n : fα(n) < g(n)} |= ω. Then Uα = U(∅, fα) 6⊂ W (∅, g), which shows

that {Uα : α < κ}, κ < d is not a π-base. Therefore πω(S) = d.

The elegant and natural connections between properties of a space X and the selective

separability of its function space Cp(X) was discovered in [3] and explored further

in [9]. The connection is the Menger Property.

Definition 1.8. A space X has the Menger Property (or is Menger) if for each sequence

{Un}n of open covers, there is a selection {Wn ∈ [Un]<ω}n such that
⋃
n (
⋃
Wn) is a

cover.

For example, any σ-compact space, such as R or 2ω, has the Menger Property but it

is known that ωω ≈ R \Q does not.

Theorem 1.7. [3,9] For a space X, Cp(X) is selectively separable if and only if Cp(X)

is separable and Xn is Menger for each n ∈ ω.

The following theorem is due to Arhangelskii.

Theorem 1.8. [5] Xn is Menger for each n if and only if Cp(X) has countable fan

tightness.

We shall need one direction of the above result, so we include a proof for the reader’s

convenience.

Proposition 1.9. If a space X has the property that Xn is Menger for each n, then

Cp(X) has countable fan tightness.
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Proof. Since Cp(X) is homogeneous, it suffices to show that Cp(X) has countable

fan-tightness at the constant zero function 0. Let {Dn}n be the sequence of sets each

with the constant 0 function as a Cp(X)-limit. For each n, let Un be the collection of

open sets {(d−1(− 1

n
,

1

n
))k : d ∈ Dn, k 6 n}. We show that Un contains an open cover

of Xk for each k 6 n. Fix any k 6 n and 〈xi〉i<k ∈ Xk. Since 0 is a limit of Dn, there

exists a d ∈ Dn such that d(xi) ∈ (− 1

n
,

1

n
) for each i < k. This, in turn, means that

〈xi〉i<k ∈ (d−1(− 1

n
,

1

n
))k which is a member of Un. Thus it follows that Un contains

an open cover of Xk. Applying the Menger Property (for Xk for each k and open

covers {Un : k 6 n ∈ ω}) we can select En ∈ [Dn]<ω for each n so that the finite

subcollection Wn, of Un we get from the elements d ∈ En yields a cover of each Xk.

In fact, we can, and do, ensure that for each k < n, the collection
⋃
n6mWm contains

a cover of Xk. To show that 0 is a limit of
⋃
nEn, let us fix any k, {xi : i < k} ⊂ X

and n > k. Now we need an e ∈
⋃
n6mEm such that e(xi) ∈ (− 1

n
,

1

n
) for i < k. Since

〈xi〉i<k is covered by the collection
⋃
n6mWm, we get one such e in

⋃
n6mEn. �

These next results, also from [9], reveal some of the interesting behavior of SS in

products and subspaces.

Corollary 1.10. 2c has a dense selectively separable subspace, namely Cp(2
ω, 2).

Proof. Countable fan-tightness is easily seen to be hereditary and Cp(2
ω, 2) is sepa-

rable. Therefore it is SS. It is well-known that Cp(2
ω, 2) is dense in 22ω . �

Similarly we have the existence of a countable dense non-SS subspace.

Corollary 1.11. 2c has a countable dense non-selectively separable subspace, namely

Cp(ω
ω, 2).

Let us mention here that G. Gruenhage [14] has established the non-trivial fact that a

finite union of SS spaces is again SS. On the other hand, it is interesting to note that

the union of the two countable dense subsets of the product space 2c, namely Cp(2
ω, 2)

and Cp(ω
ω, 2), results in a countable space which is not SS and yet which has a dense

SS subset. Certainly a countable discrete space is SS, hence the continuous image of
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an SS space need not be SS. A more revealing example of this is to consider a dense

copy, X, of the irrationals in 2ω, and to observe that {f � X : f ∈ Cp(2
ω, 2)} is a

continuous image (by the projection map from 22ω onto 2X) of the SS space Cp(2
ω, 2)

which is itself not SS . Similarly, as noted in [9], the non-SS space Cp(ω
ω, 2) has a

countable dense SS subspace consisting of those functions which are continous with

respect to a coarser (compact Hausdorff) topology on ωω.

The following result was shown to hold for countable π-weight in [9].

Theorem 1.12. If X and Y are both countable, selectively separable and πw(Y ) < b,

then X × Y is selectively separable.

Proof. Let {Bα : α < κ} where κ < b be a π-base for Y . Let {Dk = {dk,m : m ∈

ω} : k ∈ ω} be a countable sequence of dense subsets of X × Y . Let πx and πy be

the natural projection onto the spaces X and Y respectively. For each α < κ, the

set Gα
k = πx[Dk ∩ (X × Bα)] is dense in X. Since X is selectively separable, there is

a selection Fα
k ⊆ Dk (k ∈ ω) so that πx[F

α
k ] ⊆ Gα

k and
⋃
πx[Fα

k ] = X. Since Fα
k is

finite, ∃fα(k) ∈ ω so that Fα
k ⊆ {dk,m : m < fα(k)}. Therefore we have a sequence

{fα : α < κ} where fα : ω → ω. Since κ < b, there exists a function f ∈ ωω such

that ∀α < κ, fα <
∗ f . Let us define Fk = {dk,m : m < f(k)} ⊂ Dk. We claim that⋃

k∈ω Fk = X × Y . Let us choose a basic open set U × Bα of X × Y , then ∃l ∈ ω

such that ∀i > l, f(i) > fα(i). Since U ∩
⋃
πx[F

α
k ] 6= ∅, there exists a z ∈ Fk such

that πx(z) ∈ U ∩
⋃
πx[F

α
k ], which implies that z ∈ Fk ∩ (U ×Bα). Therefore

⋃
Fk is

dense in X × Y . �

It is established in [9] that it is independent of the usual axioms that 2ω1 has a dense

non-selectively separable subspace. On the other hand, the following result answers

a natural question posed in [9]. One should recall, as noted above, that one cannot

conclude that the projection of an SS subspace of 2c will remain SS.

Theorem 1.13. 2ω1 does have a dense SS subspace.

Proof. If b > ω1 then every countable subset of 2ω1 is selectively separable. Otherwise,
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let Y = {fα : α ∈ b} ⊂ ωω be <∗-unbounded family of increasing functions. Let

Q = {q ∈ (ω + 1)ω : q is monotone and is eventually equal to ω}.

Now we make use the following result from [10].

Proposition 1.14. X = Q ∪ Y has all the finite powers Menger.

Again for the reader’s convenience, we include the proof. Let us define basic open

sets in the product space (ω + 1)ω:

[s : n] = {f ∈ X : s ⊂ f and f(|s|) > n} ⊂ (ω + 1)ω

where s ∈ ω<ω and n ∈ ω.

We prove by induction on m that Xm is Menger. Given a sequence 〈Un〉n of open

covers of Xm by basic open sets, we may assume that each basic open subset of a

member of Un is also in Un. Now let us define g(`) by recursion on `. Given l = mk3

and i such that l + i < m(k + 1)3, so that g(l + i)(i < mk) has been defined, set

n = g(l + i + 1) large enough so that for each sequence {sj : j < m} ⊂ (g(l + i)<k)

the set

[s0 : n]× [s1 : n]× . . .× [sm−1 : n] ∈ Uk

(and is added to Wk). Such a value for n exists, since we are just asking for a member

of Uk which contains the point 〈xj : j < m〉 where for j < m, xj is the unique member

of Q extending sj such that xj(|sj|) = ω. Let ḡ(k) = g(m(k + 1)3) for each k. Let us

assume that fα0 6<∗ ḡ and let α0 6 α1 6 . . . 6 αm−1 < b.

Now fix any k so that

g(mk3) < ḡ(k) < fα0(k) 6 . . . 6 fαm−1(k).

For each i < mk and j < m, there is a minimal sij ⊂ fαj � k such that fαj(|sij|) >

ni = (mk3 + i). It follows that

{sij : j < m} ⊂ (g(mk3 + i))<k

and that

[si0 : ni+1]× [si1 : ni+1]× . . .× [sim−1 : ni+1] ∈ Wk.

Given such an i, if 〈fαj〉j<m is not in [si0 : ni+1]× [si1 : ni+1]× . . .× [sim−1 : ni+1], then
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for some j < m, the domain of si+1
j is strictly bigger than the domain of sij. As this

can only happen at most mk times, there is an i < mk such that

〈fαj〉j<m ∈ [si0 : ni+1]× [si1 : ni+1]× . . .× [sim−1 : ni+1] ∈ Wk

The same argument shows that any rearrangement of the order of the elements in

〈fαj〉 ∈ Xm will be covered by a member of this choice for Wk.

If follows therefore that we are able to choose the sequence 〈Wn〉n to be a cover of

(X \ {fβ : β < α0})m. It is rather immediate that a Lindelof space which is the

union of fewer than b many Menger subspaces is again Menger. Therefore if follows

by induction on m, that the complement in Xm of (X \ {fβ : β < α0})m is Menger.

This completes the proof that Xm is Menger.

Thus Cp(X, 2) is a selectively separable subspace of 2b. �



CHAPTER 2: ON SS+ SPACES

2.1 Introduction

While studying selective separability, we were interested to explore the game theo-

retic strengthening, strategically selective separable spaces, namely SS+ spaces. The

motivation for studying SS+ is that it is a property possessed by all separable subsets

of Cp(X) for each σ-compact space X.

Let us begin by the definition,

Definition 2.1. A space has the property SS+, if player II has a winning strategy for

the natural game: player I picks a dense set Dn; player II picks a finite set En ⊂ Dn.

Player II wins if
⋃
nEn is dense.

Dr. Gary Gruenhage posed the question whether player II would always have a

Markov strategy in each SS+ space. A strategy is Markov if it only depends on which

move it is and the other player’s previous move.

Since SS seems to have arisen in the study of fan tightness in the spaces of the form

Cp(X), it is natural to introduce the idea of strategic fan tightness. We observe that

if a space X is σ-compact, then Cp(X) has strategic fan tightness, so all the separable

subsets will be SS+. Pursuing the duality between the properties of a space X and the

base properties of Cp(X), we introduce the idea of a collection of open subsets from

a space being compactlike and notice that the property of being SS+ is not finitely

additive while it is productive in case of countable spaces. In pursuit of an answer to

Gruenhage’s question, we are able to show that if an SS+-space is countable, then it

has a Markov strategy for being SS+.
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2.2 On Strategic Fan Tightness and SS+

Let us start this section by recalling the definition of countable fan tightness of a

topological space X.

Definition 2.2. [3] A space S has countable fan tightness at x if for each sequence

〈An : n ∈ ω〉 of subsets of S each with x in the closure, then there is a sequence of

finite sets 〈an : n ∈ ω〉 ∈ Πn[An]<ω such that x is in the closure of
⋃
n an.

We let countable dense fan tightness refer to the property we get by restricting each

An to be dense. Using this definition for countable fan tightness we introduce the

natural game, namely, strategic fan tightness at a point defined as:

Definition 2.3. A space S has strategic fan tightness at a point x ∈ S if Player II has

winning strategy for the following game:

• Player I plays An with x ∈ An .

• Player II selects an ∈ [An]<ω.

• Player II wins if x ∈
⋃
n an

This definition leads to the following immediate Lemma.

Lemma 2.1. A space S is SS (SS+) if it is separable and has (strategic) countable

dense fan tightness at each point.

Clearly each SS+ space is separable and SS.

Lemma 2.2. Any crowded SS+ space has an uncountable almost disjoint family of

dense subsets; thus no maximal space is SS+.

Proof. Let D be the collection of all dense subsets of a space which is SS+ and

assume, for convenience, that ω is a dense subset. Fix a winning stragegy σ for

Player II; i.e. σ is a function with domain
⋃
nD

n, and for ~D ∈ dom(σ) and D ∈ D,

σ( ~D,D) ∈ [D]<ω. Since we are assuming that the space is crowded, it follows that

Dk = ω \ k is dense for any k ∈ ω. Let J0 = 0 and, recursively define for n ∈ ω,

Jn+1 = 1 + max
⋃
{σ(〈Dki〉i<m) : k0 < · · · < km, for m, km < Jn} .
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Notice that if I is any infinite subset of ω, thenDI =
⋃
n∈I [Jn, Jn+1) contains the union

of the responses of σ for the run of the game given by the dense sets {DJn : n ∈ I}.

Therefore DI is dense. �

We record the following observation.

Proposition 2.3. Each space with countable π-weight is SS+.

The following theorem shows an important result about SS and SS+.

Theorem 2.4. SS does not imply SS+.

Proof. We consider the space X = Q ∪ {fα : α < b} ⊂ (ω + 1)ω from Proposition

1.14. Let S = {f |X : f ∈ Cp((ω + 1)ω, 2)} which is SS. We claim that S is not

SS+. To prove this, let D be the collection of all dense subsets of X. Assume

that σ is a strategy for Player II, i.e. for each sequence {D0, D1, . . . , Dn} ⊂ D,

σ(D0, D1, . . . , Dn) ∈ [Dn]<ω. Let us fix a sequence ~D = {D0, D1, . . . , Dn−1} ⊂ D and

set K ~D =
⋂
D∈D

(⋃
d∈σ( ~D,D) d

−1(1)
)

where the closure is taken in (ω + 1)ω.

For each y ∈ (ω + 1)ω \ X the set Dy = {d ∈ S : y 6∈ d−1(1)} is dense in S. To

see this let us fix any finite partial function s from X into 2 which defines a basic

clopen set [s] = {d ∈ S : s ⊂ d}. Since Cp((ω + 1)ω, 2) is dense in 2(ω+1)ω , there is

an f ∈ Cp((ω + 1)ω, 2) such that s ⊂ f and f(y) = 0. It follows that d = f |X is in

Dy, hence [s] ∩ Dy is non-empty. The set K ~D is a compact subset of X, hence it is

countable.

Now let us fix a countable M ≺ Hθ for θ = 2c+ such that σ, X, and D are in M . Let

x ∈ X \M . If ~D ∈ M ∩ [D]<ω then, since it is countable, KD ⊂ X ∩M . Therefore

there is some D′ ∈ D such that x /∈
⋃
d∈σ( ~D,D′) d

−1(1). Since σ( ~D,D′) is simply a

finite subset of D, there is some D∗ ∈ D∩M so that σ( ~D,D∗) = σ( ~D,D′). From this

it follows that we may inductively choose a play of the game {D0, D1, ...} ⊂ D ∩M

such that for all ~Dn = {D0, D1, ..., Dn}, x 6∈
⋃
d∈σ( ~Dn) d

−1(1). Now we have ensured

that if d ∈ En = σ( ~Dn) for any n, then d(x) = 0. Then
⋃
nEn is not dense in S, since

it misses the clopen set {d ∈ S : d(x) = 1}. Therefore σ is not a winning strategy,
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which shows that S is not SS+. �

It is natural to ask which dense subsets of 2ω1 are SS+ and which are not. The fol-

lowing result provides an interesting insight from MActble .

Theorem 2.5. (MActble ) If ω < κ < c and D is a countable dense subset of 2κ, then

D is not SS+.

Proof. Let B be the Boolean algebra generated by {d−1(0) : d ∈ D} ⊆ P (κ). Now

since D is dense, B separates points. Let us identify κ as (the fixed ultrafilters)

X ⊂ S(B) where S(B) is the Stone space generated by B. With this identification,

we can view D as a countable dense subset of Cp(X, 2); but we may also view members

of D as continuous functions on all of S(B) because they do have uniquely defined

continuous extensions. For all y ∈ S(B) we ask if Dy = {d : y ∈ d−1(0)} is dense in D

or not. If not then there is finite partial function τy : X → 2 so that the corresponding

basic open set [τy] ∩ Cp(X, 2) is disjoint from Dy, i.e. d ⊃ τy implies d(y) = 1. Now

given a finite partial function τ : X → 2, let Yτ = {y : τ = τy}.

Let us assume that for some compact crowded set K ⊂ S(B), we have that X∩Yτ ∩K.

is infinite. If so then ∃x ∈ Yτ ∩K, x 6∈ dom(τ), so we can find d ⊃ τ such that d ∈ D

and d−1(0) is a neighbourhood of x, i.e., d(x) = 0, which implies that d−1(0) ∩ Yτ is

non-empty. Let y ∈ d−1(0) ∩ Yτ . Then d ⊃ τ = τy implies d(y) = 0 and d(y) = 1 - a

contradiction. It follows then that for each τ , Yτ ∩X is countable.

Since there are only κ many such functions τ , we can conclude from MActble that

there exists uncountably many y ∈ S(B)\X such that y 6∈ Yτ for all τ . For each such

y we note that the corresponding set Dy is dense.

Now let D be the collection of all dense subsets of Cp(X, 2) and assume that σ is a

strategy for Player II, i.e. for each sequence 〈D0, D1, . . . , Dn〉 ⊂ D, σ(〈D0, D1, . . . , Dn〉) ∈

[Dn]<ω. Consider a sequence ~D = 〈D0, D1, . . . , Dn−1〉 ⊂ D and set,

K ~D =
⋂
D∈D

 ⋃
d∈σ( ~D,D)

d−1(0)


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We showed above that K ~D∩X is countable. Now let us again fix a countable M ≺ Hθ

where θ = 2c+ where σ, X, κ, and D are in M . Let x ∈ X \M . Since it is countable,

if ~D ∈M , then (X ∩KD) ⊂ X ∩M . Arguing as in the proof of Theorem 2.4, there is

a play of the game {D0, D1, ...} ⊂ D∩M such that for all ~Dn = {D0, D1, ..., Dn}, x 6∈⋃
d∈σ( ~Dn) d

−1(0). If d ∈ En = σ( ~Dn) for any n, then d(x) = 1. Then
⋃
nEn is not

dense in S, since it misses the clopen set {d ∈ D : d(x) = 0}. Therefore σ is not a

winning strategy, which shows that S is not SS+. �

We noted in the previous section that if X has countable dense fan tightness,

then Cp(X) is SS. Here is a similar result for SS+.

We recall the following definition,

Definition 2.4. A space X is Menger if given a sequence 〈Un : n ∈ ω〉 of open covers

of X, there is a sequence 〈Wn〉n ∈ Πn[Un]<ω such that
⋃
nWn is again a cover.

The next result is due to Arhangelski [5],

Theorem 2.6. For an arbitrary space X the following are equivalent:

1. Xn is Menger for all n ∈ ω,

2. Cp(X) has countable fan tightness.

Proof. (2) ⇒ (1) : Let n ∈ ω and {Uk : k ∈ ω} a countable open cover of Xn. A

system µ of covers of X is called Uk-small if for any V1, ..., Vn ∈ µ there is a G ∈ Uk

such that V1 × ...× Vn ⊂ G. Denote by εk the family of all finite Uk-small systems of

open sets in X. For µ ∈ εk, we put Fµ = {f ∈ Cp(X) : f(X \ µ) = {0}}.

We show that the set Ak = ∪{Fµ : µ ∈ εk} is everywhere dense in Cp(X).

Let f ∈ Cp(X) and K ⊂ X, K is finite. There is a finite family Θ of open sets in X

such that for any (y1, ..., yn) ∈ Kn there are V1, ..., Vn ∈ Θ and a G ∈ Uk satisfying

the conditions: yi ∈ Vi and V1 × ...× Vn ⊂ G. Clearly K ⊂ ∪µk.

The family µk is Uk-small. In fact, take an arbitrary Wx1 × ...×Wxn , where xi ∈ K.

There are V1, ..., Vn ∈ Θ and a G ∈ Uk such that yi ∈ Vi and V1 × ... × Vn ⊂ G.

Since Wxi ⊂ Vi for i = 1, ..., n, we have that Wx1 × ... ×Wxn ⊂ G. Take a function

g ∈ Cp(X) such that g � K = f � K and g(X \ ∪µk) = {0}. Clearly, g ∈ FµK ⊂ Ak
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and g lies in all standard neighborhoods of f based on K. Let f ≡ 1 on X. By the

above, f ∈ Ak for all k ∈ ω. Since Cp(X) has countable fan tightness, there are finite

sets Bk ⊂ Ak for which f ∈ Bk. there is a finite subfamily ζk ⊂ εk such that each

function g ∈ Bk is µ-small with respect to some µ ∈ ζk.

Let µ ∈ ζk. For each ξ = (V1, ..., Vn) ∈ µn we choose a set Gξ ∈ Uk such that

V1 × ...× Vn ⊂ Gξ.

The family λk = {Gξ : ξ ∈ µn, µ ∈ ζk} is finite, since ζk is finite and every µ ∈ ζk is

finite. Clearly λk ⊂ Uk. We show that the family ∪kλk covers X.

Take an arbitrary (x1, ..., xn) ∈ Xn and put U = {f ∈ Cp(X) : f(xi) > 0, i = 1, ..., n}.

The set U is open in Cp(X), and f ∈ U . Since f ∈ ∪kBk, there is a k∗ ∈ ω for which

U ∩ Bk∗ 6= ∅. Then U ∩ Fµ∗ 6= ∅ for some µ∗ ∈ ζk∗ , i.e. there is a µ∗-small function

g ∈ U . We have g(xi) > 0 for i = 1, ..., n, and g(x) = 0 for all x ∈ X \ ∪µ∗. Take

Vi ∈ µ∗ such that xi ∈ Vi, for i = 1, ..., n. Then (x1, ..., xn) ∈ V1 × ... × Vn ⊂ Gξ for

some Gξ ∈ λk∗ . Hence (x1, ..., xn) ∈ ∪ ∪k Uk.

(1) ⇒ (2) : Let Xn be Menger for all n ∈ ω. Fix f ∈ Cp(X) and a family {Ak :

k ∈ ω} of sets in Cp(X) such that f ∈ ∩kAk. Fix also n ∈ ω and k ∈ ω. For each

x = (x1, ..., xn) ∈ Xn there are gx,k, k ∈ Ak, such that | gx,k(yi)− f(yi) |< 1/n for all

i = 1, ..., n.

Since the functions gx,k and f are continuous, there is a neighborhood Oi of xi such

that | gx,k(yi) − f(yi) |< 1/n for all yi ∈ Oi. The set Vx,k = O1 × ... × On is a

neighborhood of x in Xn.

Thus γn,k = {Vx,k : x ∈ Xn} covers Xn, and | gx,k(yi) − f(yi) |< 1/n for all

(y1, ..., yn) ∈ Vx,k. Since Xn is Menger, there are finite sets Pn,k ⊂ Xn such that

the family ∪{γn,k : k ∈ ω, k > n}, where γn,k = {Vx,k : x ∈ Pn,k}, covers Xn. The set

Bn,k = {gx,k : x ∈ Pn,k} is finite, and Bn,k ⊂ Ak. But the Bk = ∪{Bn,k : n 6 k} is a

finite set, and Bk ⊂ Ak. We show that f ∈ ∪kBk.

Take arbitrary y1, ..., yn ∈ X and an ε > 0. We may assume that 1/n < ε. There is
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a K∗ > n for which (y1, ..., yn) ∈ ∪λn,K∗ . Then (y1, ..., yn) ∈ Vx,k∗ for some x ∈ Pn,k∗ .

We have gx,k∗ ∈ Bn,k∗ and | gx,k∗(yi)−f(yi) |< 1/n for all i = 1, ..., n. But Bn,k∗ ⊂ Bk∗ ,

since n 6 k∗. Thus gx,k∗ ∈ Bk∗ and f ∈ ∪kBk. The theorem has been proved. �

Our investigation is inspired by the connection between strategic fan tightness in

Cp(X) and the σ-compactness of X. We include this next result for motivation and

the reader’s convenience.

Proposition 2.7. If X is σ-compact then Cp(X) has strategic fan tightness at each

point; and so separable subsets of Cp(X) are SS+.

Proof. Since Cp(X) is homogeneous, it suffices to show that Cp(X) has strategic fan

tightness at the constant zero function 0. Let {Xk : k ∈ ω} be an increasing chain

of compact sets which cover X. We recall that, Cp(X) is simply a subspace of RX ;

where a basic open subset (neighborhood of f ∈ Cp(X)) is, [f � {xi : i < n}; ε] =

{g ∈ Cp(X) :| g(xi)− f(xi) |< ε for i < n}. Now player I chooses An ⊂ Cp(X) with

0 ∈ An.

Let

Un = {(a−1(− 1
n
, 1
n
))k : k 6 n and a ∈ An}

We claim that Un contains an open cover of (Xk)
k for each k 6 n. Indeed, for any

k 6 n and H ∈ (Xk)
k, [0 � H; 1

n
] is a neighborhood of 0 and so must intersect An.

Thus, as required, there is some a ∈ An satisfying that H ∈ (a−1(− 1
n
, 1
n
))k. Now,

since each (Xk)
k is compact, player II may select a finite en ⊂ An so that the finite

subcollection Wn = {(a−1(− 1
n
, 1
n
))k : k 6 n and a ∈ en} is a cover of (Xk)

k for each

k 6 n. Now we are left to show that 0 ∈ ∪nen. To show that, let us fix any k,

{xi : i < k} ⊂ X and ε > 0. We need to show there is an a ∈ ∪nen such that

a ∈ [0 � {xi : i < k}; ε]. Choose n > k so large that {xi : i < k} ⊂ Xn and 1
n
< ε.

It follows then that there is an a ∈ en such that 〈xi : i < k〉 ∈
(
a−1(− 1

n
, 1
n
)
)k

; and

therefore, a ∈ [0 � {xi : i < k}; ε] as required. �

It is routine to generalize Lemma 1.5 to obtain the following.

Corollary 2.8. If X is σ-compact and metrizable, then Cp(X) is SS+ .
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Our next example shows that it is consistent that Fréchet does not imply SS+.

Example 2.1. Let X ⊂ 2ω be such that ω1 6 |X| < p. Let D = Cp(2
ω, 2) Then

D′ = D � X ⊂ Cp(X) and wt(D′) < |X| < p < d which says it is SS and with

the similar argument in Theorem 2.4 shows that it is not SS+, whereas the space is

Fréchet since it has countable tightness (indeed it is countable) and character less

than p.

We end this discussion by observing that, in contrast to Theorem 2.5, the space 2c

contains countable dense SS+ subspace, namely Cp(2
ω, 2).

As mentioned previously, Gruenhage asked whether there is always a Markov strategy

in SS+ spaces. In such a case let us say that the space is Markov SS. We show that

there is always a connection if the space is countable.

When studying SS or SS+ for the spaces like S = Cp(X, 2) ⊂ 2X , the role of X can be

thought of as enumerating the base for S, and a compact subset of X plays a crucial

role in SS+. Keeping that in mind we define the notion of a subcollection of open sets

being compactlike in a space, which we define as follows:

Definition 2.5. Suppose S is a space and C is a collection of (open) subsets of S. We

say that C is compactlike, if for all dense D ⊂ S, there is a finite e ⊂ D such that

e ∩ C 6= ∅ for all C ∈ C.

It is immediate from the definition, that if E is a family of finite subsets of a space

S satisfying that each dense set contains a member of E, then any family C of open

sets which meets every member of E will be a compactlike family.

The notion of σ-compactlike is defined as follows:

Definition 2.6. A space S is σ-compactlike, if the topology τ related with S is σ-

compactlike, that is, if τ can be written as countable union of compactlike open

subcollections of τ .

Lemma 2.9. If a space S is σ-compactlike, then S has a Markov strategy for being

SS+, i.e., S will be Markov SS.
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Proof. Since S is σ-compactlike, it has a σ-compactlike base, say B. Let B = ∪nBn,

where 〈Bn〉n is an increasing family and each of them is compactlike. So for each

dense D ⊂ S and each n, there exists a finite en ∈ D such en ∩ B 6= ∅ for each

B ∈ Bn. We show that this selection, en ⊂ D at stage n is the desired Markov

strategy for Player II. Indeed, let, at stage n, player I plays An, where An is dense in

S. Player II will choose a finite set en ⊂ An as above, i.e. so that en ∩ B 6= ∅ for all

B ∈ Bn. It is immediate that ∪nen is dense since it meets every member of the base

B. �

Also we have the next result,

Theorem 2.10. If S is Markov SS, then S is σ-compactlike.

Proof. Let D be the collection of all dense subsets of S. Since S is Markov SS

there is a winning strategy σ with domain D × ω, where, for each (D,n) ∈ D × ω,

σ(D,n) is a finite subset of D. Now let us consider the collection Cn = {C ∈ B : for

D ∈ D, C ∩ σ(D,n) 6= ∅}. From the definition of Cn, it is clear that each of them is

compactlike, so ∪nCn is σ-compactlike. So we just need to prove that the collection

∪nCn is a base. To show this, let x ∈ S and U be any open set such that x ∈ U . If

no member of Cn is contained in U , then for some Dn ∈ D, σ(Dn, n) misses U . If we

can find Dn for each n, then the fact that ∪nσ(Dn, n) misses an open set, contradicts

that it is to be a dense union. Therefore ∪nCn is a σ-compactlike base. �

Theorem 2.11. If a space S is countable and SS+, then it is Markov SS.

Proof. The space is SS+, so there is a SS+ strategy σ on S. Let D denote the family

of dense subsets of S. Our assumption on σ is that it is a function with domain

consisting of finite sequences 〈Di : i 6 n〉 from D, satisfying that σ(〈Di : i 6 n〉) is a

finite subset of Dn and, for all infinite sequences 〈Di : i ∈ ω〉 from D, the sequence

{σ(〈Di : i 6 n〉) : n ∈ ω} of finite subsets of S will have dense union.

We now show that S is σ-compactlike. We will recursively define a tree T consisting

of finite sequences of finite subsets of S which result from partial plays of the game
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following the strategy σ. Thus, if t ∈ T there is an integer ` = dom(t), and for each

i < `, t(i) is a finite subset of S. Furthermore, t ∈ T if and only if there is a fixed

sequence 〈Dt
i : i < ` = dom(t)〉 ∈ D`〉 such that for each i < `, t(i) = σ(〈Dt

j : j 6 i〉).

An important additional assumption is that if t ⊂ s are both in T , then for i ∈ dom(t),

Dt
i = Ds

i .

We begin with the empty sequence as an element of T . It follows easily that for each

t ∈ T ,

Et = {σ(〈Dt
0, . . . , D

t
dom(t)−1, D〉) : D ∈ D}

is a family of finite subsets of S satisfying that every dense set includes one. Let

dom(t) = `, and for each e ∈ Et, we have that se ∈ T where dom(se) = ` + 1, se ⊃ t

and se(`) = e. In addition, for s = se, D
s
i = Dt

i for i ∈ dom(t), and Ds
` is chosen to

be any D ∈ D such that σ(〈Ds
i : i 6 `〉) = e. Therefore, the collection Ct (or DEt)

is compactlike, where an open subset U of S is in Ct if and only if it meets every

member of Et.

We show that every non-empty open set is in
⋃
t∈T Ct; thus showing that the topology

on S is σ-compactlike. Assume otherwise, and assume that U /∈ Ct for all t ∈ T . By

a simple recursion, choose an increasing chain {tn : n ∈ ω} in T so that U ∩ tn+1(n)

is empty for each n. It follows easily that 〈Dtn+1
n : n ∈ ω〉 is a play of the game that

the strategy σ fails to defeat by virtue of the fact that the union of Player II’s play

will miss U . �

The above connections between countable SS+-spaces and the property of being σ-

compactlike is instrumental in our approach to discovering that the union of two SS+

spaces need not be SS+. This is quite surprising since it was shown in [14, 15] that

the property SS is finitely additive. We include the proof here,

Theorem 2.12. If X is a finite union of selectively separable spaces, then X is selec-

tively separable.

Proof. It suffices to show that the union of two selectively separable spaces is selec-
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tively separable. So suppose X = A ∪ B, where A and B are selectively separable,

and that Dn, n ∈ ω, is a sequence of dense subsets of X. We need to show that there

are finite Fn ⊂ Dn such that
⋃
n∈ω Fn is dense.

For each n, let

Un = X \ (∪i>nDi) ∩ A

and let U =
⋃
n∈ω Un.

Claim 1: For each i > n,Di ∩B ∩ Un is dense in Un .

Proof of Claim 1: Suppose x ∈ Un. Then there exists an open neighborhood Nx of x

contained in Un such that

Nx ∩ (∪i>nDi) ∩ A = ∅,

and so

Nx ∩ (∪i>nDi) ⊂ B.

Thus for each i > n, Di ∩Nx = Di ∩B ∩Nx. It follows that

x ∈ Di ∩B ∩Nx ⊂ Di ∩B ∩ Un, and the Claim 1 is proved.

Claim 2 : There are finite Gn ⊂ Dn such that
⋃
n∈ω Gn is dense in U

Proof of Claim 2 : Since open subsets of selectively separable spaces are selectively

separable, B ∩ Un is selectively separable for each n. Then it follows fron Claim 1

that there are finite subsets Gn
i of Di ∩B ∩ Un, i > n, such that

⋃
i>nG

n
i is dense in

B ∩Un and hence also dense in Un. Now let Gi =
⋃
i>nG

n
i . Then Gi is a finite subset

of Di and
⋃
i∈ω Gi is dense in Un for all n, and hence in U . This proves Claim 2.

Now let V = X \ U . Clearly each x ∈ V is in (∪i>nDi) ∩ A for each n, and so

(∪i>nDi)∩A is dense in V , and also A∩V , for each n. A∩V is selectively separable,

so there are finite Hn ⊂ (∪i>nDi) ∩ A such that
⋃
n∈ωHn is dense in V ∩ A, hence in

V .

For each x ∈ Hn, let in(x) ∈ ω \ n such that x ∈ Din(x).

Let Ki = {x : ∃n ∈ ω(x ∈ Hn ∧ in(x) = i)}.. Then Ki is a finite subset of Di and⋃
i∈ωKi =

⋃
n∈ωHn and hence is dense in V .
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Finally, if Gn is as in Claim 2, then
⋃
n∈ω Gn∪Kn is dense in X. Thus X is selectively

separable. �

In [8], we produced an example of a space being SS but not SS+. By the next result

we now have another example of an SS+ space which is not SS, namely the union of

the two SS+ spaces.

Theorem 2.13. There are countable SS+ spaces A, B such that A ∪B is not SS+.

Proof. For x ∈ 2ω, let us define x† by flipping the first value, i.e.,

x† = 〈1− x(0), x(1), x(2), ...〉

Let Z ⊂ 22ω be defined by,

Z = {z ∈ 22ω : z(x) · z(x†) = 0 ∀x ∈ 2ω} = 22ω \
⋃
x∈2ω

([x; 1] ∩ [x†; 1]),

where [x; i] is the basic open neighborhood of a function which takes x to i for i ∈

{0, 1}. Let A = Cp(2
ω, 2) ∩ Z. Since Cp(2

ω, 2) is SS+, A is SS+. To identify the set

B, we first define a new topology τ † on 2ω. Let Q denote the countable dense set of

rationals in 2ω (the sequences that are eventually 0). The basic open sets in τ † are of

the form [s]τ† = [s]\Q∪ ([s†]∩Q) for any s ⊂ 2<ω =
⋃
n 2n. It is immediate that this

space is just another copy of the Cantor set obtained by a simple permutation on the

elements of Q. Now we define B = Cp((2
ω, τ †), 2) ∩ Z. Again it follows immediately

that B is SS+.

We claim that A and B are mutually dense in Z. We show that A is dense in Z and

omit the simple modification necessary to show that B is also dense in Z. Let us

consider any l ∈ ω and let ∩i<l([xi; 0] ∩ [yi; 1]) be a basic open set meeting Z. Note

that since this basic open set does meet Z, we have that ∀i 6= j, y†i is not equal yj.

To show that this basic open set hits A, we pick m so large that, first, if any of the

members of {xi, yi : i < l} are rationals, they are constant above m, and secondly,

any two distinct elements of {xi, yi, x†i , y
†
i : i < l} will differ somewhere below m. Let

a ∈ Cp(2ω, 2) be defined so that whenever t ∈ 2m, a[t] = 1 if and only if there is an

i < l such that t = yi � m. It is clear that a ∈ ∩i<l([xi; 0] ∩ [yi; 1]). To show a ∈ Z,
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let x ∈ 2<ω and a(x) = 1. We need to prove that a(x†) = 0. Let t = x � m, therefore

a[t] = 1 and t ⊂ yi for some i < l. Now if a(x†) = 1, then there must be some

i 6= j < l such that x† � m ⊂ yj. Of course it now follows that y†i � m = yj � m which

contradicts the assumptions that y†i 6= yj for all i 6= j, and that m is large enough to

distinguish these elements. Therefore A is dense in Z.

As mentioned above, each of A and B are SS+. We claim that A ∪B does not have

σ-compactlike topology. Assume that B = {[x; 1] ∩ Z : x ∈ 2ω} can be written as

countable union of compactlike sets. By the Baire category theorem then, there is an

I ⊂ 2ω \Q which is dense in some Cantor basic clopen set [s] such that I ′ = {[x; 1] :

x ∈ I} is compactlike. Let us pick any rational q ∈ Q ∩ [s] and let us define the set

D = (A ∩ [q; 0]) ∪ (B ∩ [q†; 0]).

Fix any mq so that q is constantly 0 above mq. Since the union of the two open sets

Z ∩ [q; 0] and Z ∩ [q†; 0] is dense in Z, it follows immediately that D is dense in Z.

Now if d ∈ D, then either d ∈ A ∩ [q; 0] or d ∈ B ∩ [q†; 0]. Since q ∈ [s] = I, there is

a sequence 〈xn〉n ⊂ I converging to q. We show that d is in only finitely many of the

sets from the collection {[xn; 1] : n ∈ ω} and so no finite subset of D can meet every

member of the collection I ′. Notice that this is equivalent to proving that d(xn) = 0

for all but finitely many n.

First suppose that d ∈ A ∩ [q; 0]; hence d is continuous with respect to the usual

topology on 2ω. It follows then that there is an m > mq such that d sends the entire

basic open set [q � m] to 0. Since all but finitely many of the xn’s are in [q � m],

this completes the proof of the case d ∈ D ∩ A. Now suppose that d ∈ B ∩ [q†; 0].

Now d is continuous with respect to τ †. In this new topology, it is easy to see that

the sequence {xn : n ∈ ω} converges to the point q†. Thus, since d(q†) = 0, it follows

again that d(xn) = 0 for all but finitely many n.

Therefore A∪B is not σ-compactlike, and so, by Theorems 2.11 and 2.10, this space

is not SS+. �
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Now we will prove that Markov SS is finitely productive. For that we need the fol-

lowing lemma,

Lemma 2.14. Let S be any space and C be any collection of open sets. Then C is

compactlike if and only if for each ultrafilter U on C, the collection S(C,U) = {s ∈

S : Cs = {C ∈ C : s ∈ C} ∈ U} has interior.

Proof. If S(C,U) does not have interior, then D = S \S(C,U) is dense and therefore

for any finite F ⊂ D, a ∈ F implies Ca = {C ∈ C : a ∈ C} 6∈ U, so F does

not even meet U-many elements of C. Conversely, assume that for each ultrafilter

U on C, S(C,U) has interior. Let D be any dense subset of S. Then, for each

d ∈ D ∩ int(S(C,U)), Cd = {C ∈ C : d ∈ C} ∈ U. Now we can see that the

collection {Cd}d∈C covers βC. Since βC is compact, there are finitely many members

{d1, d2, ...., dn} from D, such that {Cdi : i ∈ {1, 2, ..., n} is a subcover for βC. So we

have a finite set F ⊂ D, namely {d1, d2, ...., dn}, such that F ∩ C 6= ∅ for all C ∈ C,

which shows that C is compactlike. �

Now we can prove the next important result.

Theorem 2.15. The property of being Markov SS is finitely productive.

Proof. Let X and Y have σ-compactlike bases B =
⋃
nBn and C =

⋃
n Cn respec-

tively. We use Lemma 2.14 to show that the collection An = {B × C : B ∈ Bn, C ∈

Cn} is compactlike. Let W be any ultrafilter on An. We will show that,

S(An,W) = {(x, y) ∈ X × Y : {(B × C) ∈ An : (x, y) ∈ B × C} ∈W}

has interior. Let us define W0 and W1 by

W0 = {W ⊂ Bn : πX
−1(W ) = W × Cn ∈W}

and

W1 = {V ⊂ Cn : πY
−1(V ) = Bn × V ∈W}.

Since W is an ultrafilter, W0 and W1 are both ultrafilters on Bn and Cn respectively.

We claim that S(Bn,W0) × S(Cn,W1) ⊂ S(An,W). Let us choose any (x, y) ∈

S(Bn,W0) × S(Cn,W1). Then x ∈ S(Bn,W0) and y ∈ S(Cn,W1), hence (Bn)x ∈
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W0 and (Cn)y ∈ W1. Since W is an ultrafilter (Bn)x × (Cn)y = πX
−1((Bn)x) ∩

πY
−1((Cn)y) ∈ W. Since (An)(x,y) ⊃ (Bn)x × (Cn)y we have shown that (x, y) ∈

S(An,W). Therefore S(An,W) contains S(Bn,W0) × S(Cn,W1). Since Bn and Cn

are compactlike, both of S(Bn,W0) and S(Cn,W1) have interior which implies that

S(An,W) also has interior. Therefore An is compactlike. �

We also notice the following important observation about countable SS+ spaces.

Proposition 2.16. The finite product of countable SS+ spaces is again SS+.

The extensive use of ultrafilters does seem somewhat unnatural in dealing with finite

products, so we thought it helpful to provide a proof of Theorem 2.15 with more sim-

ilarity to the standard proof of compactness for the product of two compact spaces.

However, we still rely on ultrafilters by using Lemma 2.14. We begin with the follow-

ing consequence of a collection being compactlike.

Proposition 2.17. Suppose that E is a family of finite subsets of a space S with the

property that for all non empty open U ⊂ S, there exists e ∈ E such that e ⊂ U . Then

for each compactlike collection C of open subsets of S there exists a finite collection

E′ ⊂ E such that for all C ∈ C, there exists e ∈ E′ with e ⊂ C.

Proof. We apply Lemma 2.14 as follows. For each ultrafilter U on C, we have that

S(C,U) has interior. Therefore, there is an eU ∈ E which is contained in S(C,U).

Similarly, there is a subcollection CU ∈ U satisfying that eU ⊂ C for all C ∈ CU. As

in Lemma 2.14, there is a finite set, {Ui : i < n}, of ultrafilters on C such that C is

covered by
⋃
{CUi : i < n}. It follows immediately, that E′ = {eUi : i < n} is the

desired finite subset of E. �

Proposition 2.18. If B and C are compactlike families of open subsets of X, Y respec-

tively, then B× C is compactlike in X × Y .

Proof. Let πX denote the projection map from X × Y onto X, and fix any dense

subset D of X×Y . Let U be any non-empty open set in X×Y . Since C is compactlike

in Y, it is trivial to check that the family CU = {U × C : C ∈ C} is compactlike in
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X × Y . Therefore there is a finite DU ⊂ D ∩ (U × Y ) which meets every member of

CU . Observe that this means that DU meets πX(DU)× C for every C ∈ C.

Now the family E = {πX(DU) : ∅ 6= U ⊂ X is open} (where πX is the projection

onto X) satisfies the hypothesis of Proposition 2.17, and so we may select open sets

{Ui : i < n} of X so that each B ∈ B contains πX(DUi) for some i < n. Since DUi

meets πX(DUi) × C for all C ∈ C, this shows that DUi meets B × C for all C ∈ C.

Thus
⋃
i<nDUi is the desired finite set to show that B× C is compactlike. �



CHAPTER 3: CONSISTENCY RESULTS AND FORCING WITH SELECTIVE
SEPARABILITY

3.1 Introduction

The method of forcing was introduced by Paul Cohen in his proof of independence

of the Continuum Hypothesis and of the Axiom of Choice. Forcing proved to be a

remarkably general technique for producing a large number of models and consistency

results.

The main idea of forcing is to extend a transitive model V of set theory (the ground

model ) by adjoining a new set G (a generic set ) in order to obtain a larger transitive

model of set theory V[G] called a generic extension. The generic set is approximated

by forcing conditions in the ground model, and a judicious choice of forcing conditions

determines what is true in the generic extension.

Definition 3.1. For a set V (usually a model of most of ZF) and a generic filter G of

a poset P ,

V[G] = {valG(Ẋ) : Ẋ ∈ Vis a P -name}

Let us mention the forcing theorem, which will be used in this often.

Theorem 3.1. The Forcing Theorem: Let (P,<) be a notion of forcing in the ground

model V. If σ is a sentence of the forcing language, then for every G ⊂ P generic

over V,

V[G] |= σ if and only if (∃p ∈ G)p ‖−σ

We have seen that if S ⊂ 2κ, and we force κ < d, then S becomes SS. Also if S is a

countable dense in Cp(X, 2), where X = Q ∪ {fα : α ∈ b}, then S is SS. Hence any
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forcing which preserves the value of b (more precisely preserving that the unbounded

families of functions remain unbounded) will preserve that S is SS.

Here we can ask a question: Can we force to destroy selective separability? The an-

swer to this question is an immediate consequence of the following result of A. Miller.

This result is derived using Sacks Poset, defined below,

Definition 3.2. The elements of Sacks poset P satisfies : p ∈ P iff p is a subtree of 2<ω

such that

(∀s ∈ p)(∃t ∈ p) : (s ⊆ t) ∧ (t_0 ∈ p) ∧ (t_1 ∈ p);

and the ordering is by inclusion: p 6 q iff p ⊆ q.

Fix p, q ∈ P and n ∈ ω. A node t ∈ p is an nth branching point of p if t_0, t_1 ∈ p

and |{s ∈ p : (s ⊆ t) ∧ (s_0, s_1 ∈ p)}| = n.

p 6n q means that p 6 q and that every nth branching point of q is a branching point

of p.

If 〈pn : n ∈ ω〉 is a fusion sequence (pk+1 6k pk, for all k < ω), then p :=
⋂
n pn (the

fusion of the sequence) satisfies p ∈ P and p 6n pn for every n ∈ ω.

Now we prove the next theorem,

Theorem 3.2. [Miller] If x is Sacks generic over V, then in V[x] the set V ∩ 2ω does

not have the Menger Property.

Proof. Let us define Q = {T ⊆ 2<ω infinite : ∀σ, τ(σ ⊂ τ ∈ T → τ ∈ T )}. Note

that Q is a closed subspace of P (2<ω) (when identified as a subspace of 22<ω) and is

homeomorphic to 2ω.

Given the Sacks real x ∈ 2ω and n ∈ ω, we define in V[x] an open cover of Q∩V by

U(n,m) = {T ∈ Q : x�m /∈ T or |{` < m : {(x�`)_0, (x�`)_1} ⊂ T | > n+ 2} .

A Sacks real has the property that it is not a member of any ground model closed set

which does not contain a perfect set. This implies that for each T ∈ Q∩V such that

x�m ∈ T for all m, then the set {` : {(x�`)_0, (x�`)_1} ⊂ T} is infinite. Therefore,

for each n, the family {U(n,m) : m ∈ ω} is an increasing open cover of Q ∩V.
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It is well-known that the family V ∩ ωω is dominating in V[x] (see [21]). Therefore

to show that Q ∩ V is not SS in V[x], we consider a strictly increasing function

g ∈ ωω from V and show there is a T ∈ Q such that T /∈ U(n, g(n)) for all n. To

prove this it is enough to know that if, working in V, C is a collection of compact

perfect subsets of 2ω with the property that each perfect set contains one, then there

is some C ∈ C such that x ∈ C. Set C to be the collection of all perfect subsets C of

2ω with the property that if x0, y0, x1, y1 are distinct members of C, and ` < m are

minimal such that x0(`) 6= x1(`) and y0(m) 6= y1(m), then there is an n such that

` 6 g(n) < g(n+1) < m. Given such a perfect set C, TC = {t ∈ 2<ω : (∃y ∈ C)t ⊂ y}

will be a member of Q, and the Sacks real x will be in C precisely if for all m,

x�m ∈ TC . It is routine to see that each perfect set K contains a perfect set in C,

hence there is some such C such that x�m ∈ TC for all m. The definition of C ensures

that for each n, {` 6 g(n) : {(x�`)_0, (x�`)_1} ⊂ TC} will have cardinality less than

n+ 2.

This of course completes the proof that Q ∩V fails to have Menger property in

V[x]. �

From this result, we observe the interesting fact that there is an SS+ space, namely,

S = (Cp(2
ω, 2), τV), for which the SS property is also destroyed by adding a Sacks

real.

3.2 On Product of Selectively Separable Spaces

Let us begin by the following result in the product space,

Theorem 3.3. If X and Y are both countable, selectively separable and πw(Y ) < b,

then X × Y is selectively separable.

Proof. Let {Bα : α < κ} where κ < b be a π-base for Y . Let {Dk = {dk,m :

m ∈ ω} : k ∈ ω} be the countable sequence of dense subsets of X × Y . Let πx

and πy be the natural projection onto the spaces X and Y respectively. Now the set

Gα
k = πx[Dk ∩ (X × Bα)] is dense in X. Since X is selectively separable, there is
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a selection Fα
k ⊆ Dk (k ∈ ω) so that πx[F

α
k ] ⊆ Gα

k and
⋃
πx[Fα

k ] = X. Since Fα
k is

finite, ∃fα(k) ∈ ω so that Fα
k ⊆ {dk,m : m < fα(k)}. Therefore we have a sequence

{fα : α < κ} where fα : ω → ω. Since κ < b, there exists a function f ∈ ωω such

that ∀α < κ, fα <
∗ f . Let us define Fk = {dk,m : m < f(k)} ⊂ Dk. We claim that⋃

k∈ω Fk = X × Y . Let us choose a basic open set U × Bα of X × Y , then ∃l ∈ ω

such that ∀i > l, f(i) > fα(i). Since U ∩
⋃

Πx”F
α
k 6= ∅, there exists a z ∈ Fk such

that πx(z) ∈ U ∩
⋃
πx[F

α
k ], which implies that z ∈ Fk ∩ (U ×Bα). Therefore

⋃
Fk is

dense in X × Y . �

One of our main results is to confirm the conjecture in [9] that SS is not productive

in general.

Theorem 3.4. (MActble ) There exists two countable SS spaces whose product is not

SS.

Proof. Let us consider the set Q = {qi : i ∈ ω} with the standard zero-dimensional

topology generated by a countable base B0
0 = B1

0 of clopen sets. Let τ 0
0 and τ 1

0

denote the topologies so generated. Obviously (Q, τ 0
0 ) and (Q, τ 1

0 ) are SS. We will

enlarge our topology in such a way that the product space Q×Q will not be SS. Let

{En : n ∈ ω} be a countable family of dense sets in Q×Q such that En hits every row

and column in a singleton set, in fact for any q ∈ Q, | En∩[({q}×Q)∪(Q×{q})] |6 1.

Moreover we ensure that for each q ∈ Q, there is at most one integer n such that

En∩ [({q}×Q)∪(Q×{q})] is non-empty. In order to ensure the product is not SS, we

let {〈Fα
n : n ∈ ω〉 : α ∈ c} be an enumeration of all selections {Fn ∈ [En]<ω : n ∈ ω}.

Let {Sα : α ∈ c} be a listing of all the countable subsets of c so that for each α,

Sα ⊂ α. Of course the family {Yα = {qi : i ∈ Sα ∩ ω} : α ∈ c and Sα ⊂ ω} is also a

listing of P(Q).

By induction on α ∈ c, we define families 〈B0
β : β < α〉, 〈B1

β : β < α〉, 〈D0
β : β < α〉,

and 〈D1
β : β < α〉 so that, for each i ∈ 2 and β < γ < α,

1. Bi
β ⊂ Bi

γ,
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2. Bi
β has cardinality at most |β + ω| and is a base of clopen sets for a topology,

τ iβ, on Q,

3. {Di
ξ : ξ < β} is a family subsets of Q which are dense in the τ iβ topology.

4. for each n, En is dense in the product topology τ 0
β × τ 1

β , and
⋃
n F

β
n is not dense

in the product τ 0
γ × τ 1

γ

5. if Sβ ⊂ ω and Yβ is dense in (Q, τ iβ), then Di
β = Yβ,

6. if Sβ is infinite and not contained in ω, then there is a sequence {Ei
ξ ∈ [Di

ξ]
<ω :

ξ ∈ Sβ} such that Di
β =

⋃
ξ∈Sα E

i
ξ.

To complete the α = 0 stage of the induction, we may let D0
0 = D1

0 be any dense

subset of Q (with the usual topology). Now we assume that α > 0. If α is a limit

and i ∈ 2, then Bi
α =

⋃
β<αB

i
β. If α is a successor, we define B0

α and B1
α below.

The choices of D0
α and D1

α do not depend on whether or not α is a limit. If Sα is

finite, then Di
α = Di

0 for each i ∈ 2. If Sα is a subset of ω, then, independently for

i ∈ 2, we set Di
α = Yα if Yα is dense in τ iα, and otherwise, let Di

α = Di
0. If Sα is

infinite and is not a subset of ω, then, again independently for i ∈ 2, we let Di
α be

any τ iα-dense set satisfying the last condition. Such a set exists since τ iα is SS because

of Lemma 1.3 and, by the hypothesis of the theorem, d = c.

Finally, in the case that α = β+ 1 we consider the construction of B0
α,B

1
α in order to

satisfy condition 2. We will choose two sets A0 and A1 such that (A0×A1)∩(∪nFα
n ) =

∅. Then Bi
α is the topology generated by Bi

β ∪ {Ai,Q \ Ai}.

Let us consider the countable poset,

P = {〈aj, bj〉j<M ∈ [ω2]<ω :

(∀j < M − 1) (aj < aj+1 and bj < bj+1),

and
(
{qaj}j<M × {qbj}j<M

)
∩
⋃
n

Fα
n = φ} . (3.1)
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We will define a family of fewer than c many dense subsets of P and, applying

MActble , select a generic filter G meeting that family of dense sets. Given such a G,

we let

A0 = {q ∈ Q : (∃〈aj, bj〉j<M ∈ G) q ∈ {qai : i < M}

and

A1 = {q ∈ Q : (∃〈aj, bj〉j<M ∈ G) q ∈ {qbj : j < M}.

We must define dense sets to ensure that each El remains dense which requires con-

sidering all combinations from {A0,Q \ A0} × {A1,Q \ A1}.

For each B,B′ ∈ B0
β ×B1

β let

D(`, B,B′) = {〈aj, bj〉j<M ∈ P : (∃j < M − 4)

(qaj , qbj) ∈ E` ∩ (B ×B′)

(∃i ∈ (aj, aj+1)) (qi, qbj+1
) ∈ E` ∩ (B ×B′)

(∃i ∈ (bj+1, bj+2)) (qaj+2
, qi) ∈ E` ∩ (B ×B′)

(∃i ∈ (aj+2, aj+3), i′ ∈ (bj+2, bj+3)) (qi, qi′) ∈ E` ∩ (B ×B′)} . (3.2)

The special properties of the family {Ek : k ∈ ω} ensure that each D(`, n,B,B′) is a

dense subset of P . To see this, fix any p = 〈aj, bj〉j<M ∈ P . For each j < M , there

are at most four points in E` which have qaj or qbj in one of their coordinates. Let

E ′` be E` minus these at most 4M many points. Since E` is τ 0
α × τ 1

α-dense, there is

a (qaM , qbM ) ∈ (E ′` \ Fα
` ) ∩ (B × B′). Furthermore, since (qaM , qbM ) ∈ E`, it follows

that ({qaM , qbM} ×Q) ∪ (Q× {qaM , qbM}) is disjoint from Ek for all k 6= `. Therefore

it follows that 〈ai, bi〉i6M is an extension of p in P . Similarly, repeat this process

and choose pairs (aM+j, bM+j) ∈ El ∩ (B × B′) (for j < 6) with exactly the same

requirements (so as to ensure no intersection with
⋃
n F

α
n ). The desired extension q

of p which is in the set D(`, n,B,B′) is 〈a′j, b′j〉j<M+4 where

1. a′j = aj and b′j = bj for j 6M ,

2. a′M+1 = aM+2 and b′M+1 = bM+1,

3. a′M+2 = aM+2 and b′M+2 = bM+3,
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4. a′M+3 = aM+5 and b′M+3 = bM+5.

By suitably skipping members of 〈aj, bj〉j<M+6 we have ensured that each of the

conditions in D(`, n,B,B′) are met by one of the pairs (ai, bi) (M 6 i < M + 6).

Next, to show that each of D0
γ and D1

γ for γ 6 α remain dense, we define

D(γ,B,B′) = {〈aj, bj〉j<M ∈ P : (∃j < M−1)(∃i, i′)

such that {qi, qaj} ⊂ D0
γ ∩B, {qi′ , qbj+1

} ⊂ D1
γ ∩B′,

i ∈ (aj, aj+1) and i′ ∈ (bj, bj+1)} . (3.3)

By a similar but easier argument as above, one can show that D(γ,B,B′) is a dense

subset of P .

This completes the inductive construction of the topologies τ 0 = τ 0
c and τ 1 = τ 1

c .

The family {En : n ∈ ω} is a family of dense subsets of the product space, and by

condition 2, it is a witness to the fact that the product is not SS. Condition 5 ensures

that, for each ` ∈ 2, {D`
γ : γ ∈ c} lists all τ `-dense sets. Finally, condition 6 ensures

that τ ` is SS. �

Let us remark that we have learned that the above result has been established in-

dependently by Bella and Gruenhage. In addition, L. Babinkostova has a stronger

result from CH, namely that there are spaces X, Y such that Cp(X) and Cp(Y ) are

SS but the product is not.

In light of the fact that separable Fréchet spaces are SS, it is natural to wonder if the

SS property is productive if the factors are Fréchet. We will show, this time from the

continuum hypothesis that it is not. Although it is a stronger topological statement

than 3.4, we include both proofs since the set-theoretic assumption is stronger and

the ZFC questions remain open. Before dealing with the Fréchet product question,

we turn our attention to maximal spaces and will use one of the methods from these

results for the Fréchet result.

Again motivated by the results in [9], we turn our attention to maximal spaces. A
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space is said to be maximal if it is crowded and it has no strictly finer crowded

topology. We restrict our interest to maximal spaces which are also regular. Let us

recall van Douwen’s well-known result that there are regular maximal spaces. One

can deduce more from his proof.

Proposition 3.5. [7] For any countable crowded regular space X, there is a stronger

regular topology on X which contains a dense subspace D which is a maximal space.

The following result was proven from the hypothesis that d = ω1 in [9].

Theorem 3.6. There is a countable maximal space which is not selectively separable.

Proof. Let us start with the countable non-SS subspace S ⊂ �(ω+ 1)ω as discussed

in Example 1.1. Apply Proposition 3.5 to expand the topology (on a dense subspace)

D to a maximal regular topology. We check that D can not be SS. Of course D maps

continously into a dense subset of S. Although a non-SS space can have a preimage

which is SS, the reason that does not happen in this example is that the dense subsets,

{Dn}n∈ω, of S from 1.1 which witness that S is not SS are dense open sets. It follows

then that the sequence {D ∩ Dn}n∈ω are also dense in the maximal topology. The

fact that there is no appropriate dense selection of finite sets for D follows easily from

the fact that no such selection exists for the coarser topology on S. �

The next two results establish that the existence of a maximal SS space is indepen-

dent of ZFC.

Theorem 3.7. It is consistent with ZFC that there is no maximal SS space.

Proof. Assume that X is a maximal crowded SS space and assume that ω is a dense

subset. Let F be the filter of dense open subsets of ω. Since X is a maximal space,

every dense subset of X is open (see [7]), hence F is also the (free) filter of dense

subsets of ω. Since X is SS, it follows easily then that F is a P-filter in the (usual)

sense that if {Fn : n ∈ ω} ⊂ F, then there is an F ∈ F, such that F \ Fn is finite

for all n. Such an F can be chosen simply by applying the SS property applied to

the descending sequence of dense sets {F0 ∩ · · · ∩ Fn : n ∈ ω}. In addition, since X
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is maximal (and every dense set is open), if I ∈ F+ (i.e. I ∩ F 6= ∅ for all F ∈ F)

then its complement is not dense, hence I must have interior in X. In βN termi-

nology, we have shown that F gives rise to a ccc P-set in ω∗. That is, the subset

K =
⋂
{F ∗ : F ∈ F} is a P-set in ω∗ which has the ccc (in fact, it is separable). To

finish the proof, we note that it was shown in [16] that it is consistent that there are

no such P-sets. �

Theorem 3.8. (MActble ) There exists a maximal SS space.

Proof. Let us start with ω endowed with a crowded metric topology, let τ0 be the

countable base of clopen sets. Let {Dα : α < c} be the listing of all dense τ0-dense

sets. Suppose that at stage α we have a zero-dimensional topology τα such that for

each α < c the following conditions are satisfied,

1. If β < α then τβ ⊂ τα

2. If β < α and Dβ is dense in τβ, they remain dense in τα

3. For β < α, Bβ is either open or it has an isolated point in τβ+1.

At stage α, along with τα we also have the listing {Dβ : β ∈ α} of dense subsets. If

we are given a countable Sα ∈ [α]ω, hence a list {Dn : n ∈ ω} = {Dβ : β ∈ Sα},

we use MActble to pick a new countable dense set Dα such that Dα can be expressed

as a countable union of finite sets selected from each Dα. This ensures selective

separability. Now to ensure maximality, if we are given any Bα ⊂ ω, we first assume

that Bα is not currently open,then there is some bα ∈ Bα which is also in the closure

of ω \ Bα in τα. Let Dα =int(Bα) ∪ (ω \ Bα) - which is of course dense. Now we use

MActble to partition Dα =
⋃
nD(α, n) into dense sets. Also let {b(α, n) : n ∈ ω} be

the listing of complement of Dα. By assumption, b(α, n) ∈ D(α, n) \Bα for all n.

Now let us define a countable familily of disjoint sets, for each n and 0,1 U(α, n, 0) =

D(α, n)∩ int(Bα) and U(α, n, 1) = {b(α, n)}∪D(α, n)\Bα. Now we add them to our

topology τα to get to τα+1 and see that U(α, n, 1) ∩ Bα = {(bα)}. So bα becomes an

isolated point of Bα. �
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It will be useful to extract the following lemma from the previous proof. However

we need a strengthening of it for use with Fréchet spaces. This also necessitates a

strengthing of the set-theoretic assumption beyond MActble .

Lemma 3.9. If X is a countable crowded space of weight less than p, D ⊂ P(X) is

a family almost disjoint converging sequences of X, |D| < p, and S ⊂ X has dense

complement and is almost disjoint from each member of D, then there is an expansion

of the topology obtained by adding countably many (crowded) clopen sets, in which S

is a closed nowhere dense set, and each member of D is again a converging sequence.

Proof. Fix any countable subcollection B of clopen subsets of X which separates

points (and assume that B is closed under the operations of complements and finite

unions and intersections). We have the set S which is almost disjoint from each

D ∈ D and what we want to do is to introduce new clopen sets which will preserve

that each D ∈ D is converging, and which will ensure that S is closed and discrete.

If S is finite there is nothing to do, so let S = {si : i ∈ ω} (a faithful enumeration).

The plan, like in Theorem 3.8, is to produce countably many disjoint dense subsets

of X. The difficulty is to ensure that the members of D are not split.

Define a poset P by p ∈ P if there is an np ∈ ω and a finite sequence {Api : i < np}

such that these sets are pairwise disjoint, and for each i < np, si ∈ Api is a compact

subset of {si} ∪X \ S which satisfies that for some finite set F ⊂ X, there is a finite

set D′ ⊂ D such that Api \ F =
⋃
D′ \ F

We define p < q if nq 6 np and for each i < nq, A
q
i ⊂ Api . We show below that P

is σ-centered, from which we deduce that we can find “generic” filters that meet any

collection of fewer than p dense sets. In particular, we see easily that for each D ∈ D

and x ∈ X, {p ∈ P : (∃i, j < np)x ∈ Apj and |D \Api | < ω} is dense. Furthermore, for

each non-empty open U ⊂ X and each i ∈ ω, the set {p ∈ P : Api ∩ U 6= ∅} is dense.

Given a filter G ⊂ P meeting each of these dense sets, we define Ai =
⋃
{Api : p ∈ G}

and observe that Ai will be dense and meet S at the point si. Furthermore, the family
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{Ai : i ∈ ω} will be a partition of X. It follows easily that the topology we obtain by

adding each {Ai, X \Ai} to the base will be as desired. It remains only to show that

P is σ-centered.

Given any p ∈ P , we may choose a finite sequence {Bp
i : i < np} of pairwise disjoint

members of B so that Api ⊂ Bp
i for each i < np. If p, q ∈ P are such that np = nq

and Bp
i = Bq

i for each i < np, then it is easy to see that r = {Api ∪ A
q
i : i < np} is

a common extension which is again separated by the same sequence {Bp
i : i < np}.

Clearly then the poset P is σ-centered. �

Theorem 3.10. (CH) There exist two countable Fréchet spaces whose product is not

SS.

Proof. Let us start with ω as our base set and a standard countable base τ0 = σ0

of clopen sets for a zero-dimensional crowded topology on ω. Choose the sequence

{En : n ∈ ω} ⊂ ω2 just as we did in Theorem 3.4. Let π0 and π1 denote the two

coordinate projections on ω × ω. For a set Y ⊂ ω, define

E(Y, 0) = π0[(ω × Y ) ∩
⋃
n

En]

and

E(Y, 1) = π1[(Y × ω) ∩
⋃
n

En].

Fix an enumeration {(xα, Sα) : α ∈ ω1} for ω× [ω]ω. We inductively choose countable

bases τβ, σβ for crowded 0-dimensional topologies on ω. We also inductively choose

families {Yβ : β < α} and {Zβ : β < α} of converging sequences with respect to the

τα and σα topologies, respectively. For convenience we assume that lim(Yβ) ∈ Yβ and

lim(Zβ) ∈ Zβ for each β < α (the limits are uniquely determined by the τ0 = σ0

topology). Let {〈Fα
n : n ∈ ω〉 : α ∈ ω1} be an enumeration of all selections {Fn ∈

[En]<ω : n ∈ ω}.

Suppose that at stage α < ω1 of our induction the following conditions are satisfied

for γ < β < α:

1. τγ ⊂ τβ and σγ ⊂ σβ are countable bases on ω,



38

2. for each n, En is dense in the product topology τβ×σβ, and
⋃
n F

γ
n is not dense

in the product τβ × σβ.

3. Yγ is a τβ-converging sequence, E(Yγ, 1) is σβ closed discrete, and if xγ is a

τβ-limit of Sγ, then for some ξ 6 γ, Yξ ∩ Sγ is infinite and lim(Yγ) = xγ,

4. Zγ is a σβ-converging sequence, E(Zγ, 0) is τβ closed discrete, and if xγ is a

σβ-limit of Sγ, then for some ξ 6 γ, Zγ ∩ Sγ is infinite and lim(Zγ) = xγ.

5. each of the families {Yξ : ξ < β} and {Zξ : ξ < β} are almost disjoint.

If α is a limit, then τα =
⋃
β<α τβ, σα =

⋃
β<α σβ, and all the inductive conditions are

preserved. For the successor stage, i.e. α = β + 1, we define τα and σα as follows.

We have the sequence {Fn = F β
n : n ∈ ω} ∈ [En]<ω. Our plan is to first choose new

clopen sets A to be added to τα and B to be added to σα with the property that

A×B is disjoint from each Fn.

We will define A and B by a countable induction. Let {ξk : k ∈ ω} be an enu-

meration of α. Let {Uj : j ∈ ω} enumerate a clopen base for τβ × σβ. Finally,

let {(ik, jk) : k ∈ ω} enumerate ω × ω. For each n ∈ ω, we define τ0-closed sets

An, A
−
n , Bn, B

−
n , so that

1. for k < n, Ak ⊂ An, A−k ⊂ A−n , Bk ⊂ Bn, and B−k ⊂ B−n ,

2. n ⊂ An ∪ A−n and n ⊂ Bn ∪B−n ,

3. An ∩ A−n = ∅, Bn ∩B−n = ∅,

4. each of An and A−n is, mod finite, equal to a finite union of members of

{Yξk : k ∈ ω} and, for each k < n, Yξk is, mod finite, contained in one of An, A
−
n ,

5. each of Bn and B−n is, mod finite, equal to a finite union of members of

{Zξk : k ∈ ω} and, for each k < n, Zξk is, mod finite, contained in one of

Bn, B
−
n ,

6. An ×Bn is disjoint from
⋃
` F`,

7. each product from {An, A−n } × {Bn, B
−
n } meets Eik ∩ Ujk for each k < n.
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To start the induction, we can let each of A0, A
−
0 , B0, and B−0 be empty. Assume

that n ∈ ω and we have chosen the sets An, A−n , Bn, and B−n satisfying the inductive

conditions. Each of the conditions are preserved if we add the singleton n to A−n

providing n /∈ An, and similarly add n to B−n if n /∈ Bn. With this possible change

then, we may assume that n+1 is a subset of each of An∪A−n and Bn∪B−n . We begin

by considering the last inductive condition. Since E({`} ∪ Yξ, 1) and E({`} ∪ Zξ, 0)

are nowhere dense in σβ and τβ respectively (for all ` ∈ ω and ξ ∈ α), it follows that

the set (
(An ∪ A−n ∪ E(Bn, 0))× ω

)
∪
(
ω × (Bn ∪B−n ∪ E(An, 1))

)
is a nowhere dense set in the topology τβ × σβ. Since Ein \ Fin is dense, we can

choose a point (a0
n, b

0
n) ∈ Ujn ∩ Ein \ Fin which is not in that product. Consider

any point (a0
n, b) for b ∈ Bn. Since a0

n /∈ E(Bn, 0), it follows that (a0
n, b) /∈ E` for

all ` ∈ ω. Similarly, for all a ∈ An, (a, b0
n) /∈ E` for all ` ∈ ω. In addition, the

family {E` : ` ∈ ω} are pairwise disjoint, hence (An ∪ {a0
n})× (Bn ∪ {b0

n}) is disjoint

from F` for all `. It is routine to recursively repeat this process to similarly choose

points {(ain, bin) : i < 4} ⊂ Ein ∩ Ujn (so that each of {ain : i < 4} and {bin : i < 4}

have four elements). It will then follow that (An ∪ {a0
n, a

1
n})× (Bn ∪ {b0

n, b
2
n}) will be

disjoint from
⋃
` F` (and of course that each of (An ∪ {a0

n, a
1
n}) ∩ (A−n ∪ {a2

n, a
3
n}) and

(Bn ∪ {b0
n, b

2
n}) ∩ (B−n ∪ {b1

n, b
3
n}) are empty).

We next consider the converging sequence Yξn with limit yn. Since E((n ∪ Bn ∪

B−n ∪ {bin : i < 4}), 0) is closed discrete, there is an integer mn so that Yξn \ mn is

disjoint from E((n ∪ Bn ∪ B−n ∪ {bin : i < 4}), 0). If yn ∈ An ∪ {a0
n, a

1
n}, then we

define An+1 = An ∪ {a0
n, a

1
n} ∪ (Yξn \ mn) and A−n+1 = A−n ∪ {a2

n, a
3
n}. Otherwise,

yn /∈ An ∪ {a0
n, a

1
n}, and we set

An+1 = An ∪ {a0
n, a

1
n}

and

A−n+1 = A−n ∪ {a2
n, a

3
n} ∪ {yn} ∪ (Yξn \mn).
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We have maintained the requirements that An+1 × (Bn ∪ {b0
n, b

2
n}) is disjoint from F`

for all `. We proceed similarly with Zξn and zn = lim(Zξn). There is an integer m′n so

that Zξn \m′n is disjoint from E((n ∪ An+1), 1). If zn ∈ Bn ∪ {b0
n, b

2
n}, then we define

Bn+1 = Bn ∪ {b0
n, b

2
n} ∪ (Zξn \m′n)

and

B−n+1 = B−n ∪ {b1
n, b

3
n}.

Otherwise, zn /∈ Bn ∪ {b0
n, b

2
n}, and we set Bn+1 = Bn ∪ {b0

n, b
1
n} and B−n+1 = B−n ∪

{b1
n, b

3
n}∪{zn}∪(Zξn \m′n). We have maintained the requirements that An+1×Bn+1 is

disjoint from F` for all `. It should be clear that An+1, Bn+1, A−n+1, and B−n+1 meet all

the inductive requirements. Let A =
⋃
nAn andB =

⋃
nBn (hence ω\A =

⋃
nA
−
n and

ω\B =
⋃
nB

−
n ). We generate new topologies from τβ∪{A, ω\A} and σβ∪{B,ω\B}

which we will temporarily denote by τ ′α and σ′α. Of course we have ensured that A×B

is disjoint from
⋃
` F` and we have preserved that each E` is dense in τ ′α × σ′α.

Now we define Yβ and take care to ensure that E(Yβ, 1) is closed discrete in σα.

Before starting, we select countably many σ′α converging sequences to temporarily

add to the collection {Zξ : ξ < β} so that for each ` ∈ ω and each (n,m) ∈ ω × ω,

there is a sequence, T (`, n,m), in this collection, and a function from T (`, n,m) into

E` so that the range converges to (n,m). Now choose Yβ so as to be almost disjoint

from each member of {Yξ : ξ ∈ β}, and to be a sequence which τ ′α-converges to xβ

and, if possible, is contained in Sβ. By a simple inductive thinning out process of Yβ,

we can additionally enusure that T (`, n,m) \ E(Yβ, 1) is infinite for each `, n,m ∈ ω

(which uses the fact that E({y}, 1) is finite (even a singleton) for each y ∈ ω). Now

we apply Lemma 3.9 to expand the countable base σ′α to a countable base σα so as

to ensure E(Yβ, 1) is closed discrete and while preserving that each member of the

collection {Zξ : ξ ∈ β}∪{T (`, n,m)\E(Yβ, 1) : `, n,m ∈ ω} remains converging. The

existence of the converging sequences T (`, n,m) and the fact that τ ′α is not changing,

ensures that each E` is dense in τ ′α × σα. Next, working with the topologies τ ′α and
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σα, we repeat the process to suitably choose a σα converging Zα (satisfying condition

4) so that by expanding τ ′α to a countable base τα, E(Zα, 0) is closed discrete. This

completes the inductive construction. �

We had shown that, MActble implies that there are countable SS spaces whose product

is not SS but we required CH to construct two countable Fréchet spaces whose product

was not SS. Of course it is well-known that the Fréchet property itself is not finitely

productive. In this section we begin by establishing that MActble is not sufficient by

studying Fréchet spaces in the well-known Cohen model. This first result is certainly

of independent interest.

Let us first introduce elementary submodels, before going into the CH proof.

Definition 3.3. For a set or class M , N , M is an elementary submodel of N , denoted

by M ≺ N , if M ⊂ N and for all n ∈ ω and formulas φ with at most n free vari-

ables and all {a1, ..., an} ⊂M the formula φ(a1, ..., an) is absolute for M , N . That is

M |= φ(a1, ..., an) if and only if N |= φ(a1, ..., an).

Definition 3.4. For a cardinal κ, the set H(κ) is the set of all sets whose transitive

closures has size less than κ.

Let us also recall the Cohen Forcing,

Definition 3.5. Let I and J be sets. We define

Fn(I, J) := {p ∈ [I × J ]<ω : p is a function}.

The Cohen forcing is Fn(I, 2) ordered by p 6 q iff q ⊆ p.

If I, J are in the ground model V such that I is infinite, J 6= ∅ and G is Fn(I, J)-

generic over V, then f =
⋃
G is a new function from I onto J , called by Cohen

Real.

We use the term “Adding a Cohen Real” to mean that forcing with the Cohen poset

and getting a generic function as described above.

Now we can state the result and show the proof using an elementary submodel.
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Theorem 3.11. In any model obtained by adding Cohen reals over a model of CH all

countable Fréchet spaces have π-weight at most ω1.

Proof. We assume our ground model satisfies CH and we consider forcing with

P = Fn(κ, 2) where κ is some cardinal greater than ω1. Let τ̇ be a P -name of a

topology on ω so that X = (ω, τ̇) is forced to be a Fréchet space. Let Ȧn denote

the P -name which is forced to be the collection of all sequences converging to n. Let

θ = 2c+ and M ≺ Hθ be an elementary submodel such that Mω ⊂ M and |M | = ω1.

Suppose also that X, τ̇ , {Ȧn : n ∈ ω} are in M . We will prove that τ̇ ∩M is forced to

be a π-base for τ̇ . This will rely heavily on the fact that the elementary submodel M

is closed under ω-sequences. In particular, we have that if G is a P -generic filter, then

V [G ∩M ] is a submodel of V [G] which will satisfy that the interpretation of τ̇ ∩M

will be a Fréchet topology on ω in which, for each n, the interpretation of Ȧn∩M will

be the collection of sequences converging to n (see [17, 4.5] for more explanation).

We now proceed by working within the model V [G ∩M ] (which we refer to as the

ground model) and using that V [G] is obtained by forcing over this model with

Fn(κ\M, 2). Through a standard abuse of notation, we may let τ̇ continue to denote

the name for the final topology in V [G]. Now suppose that U̇ is a name of a set forced

to be non-empty and a member of τ̇ . For each condition p, let U̇−p denote the set

{x ∈ ω : p ‖−x ∈ U̇}. Notice that U̇−p is a set in the ground model and is forced by

p to be contained in U̇ . Also, by the elementarity assumptions on M , it also follows

that p would force that the ground model closure of U̇−p would be contained in the

closure of U̇ .

For a contradiction, let us assume that it is forced that the closure of U̇ contains no

ground model open set. In particular, by the assumptions on M , we then have that

there is a condition p0 and an integer n such that p0 ‖−n ∈ U̇ and for all conditions

p 6 p0, U̇−p is nowhere dense.

Since U̇ is a name of a subset of ω, we may choose a countable set L ⊂ κ \M so that



43

dom(p0) ⊂ L and for each k ∈ ω and each condition p ∈ Fn(κ, 2), p ‖− k ∈ U̇ implies

p � L ‖− k ∈ U̇ . In effect, U̇ is a Fn(L, 2)-name, and let {p` : ` ∈ ω} enumerate

those members of Fn(L, 2) which extend p0. Since, for each n, U̇−p0 ∪ U̇
−
p1
∪ ..... ∪ U̇−pn

is nowhere dense, it follows that, the complement of the closure of this union, Dn, is

dense. As mention, [8, 2.9], each countable Fréchet space is SS, so there is a selection

Fn ∈ [Dn]<ω such that
⋃
n Fn is dense.

Since the space is Fréchet and x ∈ ∪nFn, there is a sequence Sx ⊂ ∪nFn converging

to x. By the definition of the Dn’s, we have that Sx is almost disjoint from U̇−p for

each p ∈ Fn(L, 2) which extends p0. On the other hand, since Sx converges to x,

we have, by elementarity, Sx converges to x in the final model, and so there must

be a condition p which forces that Sx is almost contained in U̇ . This is the desired

contradiction. �

Corollary 3.12. In the Cohen model, finite products of countable Fréchet spaces are SS.

Proof. It was shown in [3], that if a space is separable and has π-weight less that d

then it is SS. Our last theorem shows that in the specified Cohen model, all countable

Fréchet spaces have π-weight at most ω1. So the product will also have π-weight at

most ω1, which is less than d. Therefore the product is SS. �

Now for the next result, let us say something about proper posets.

Definition 3.6. Let P be a poset and let M be a countable elementary submodel of

H(θ) for some cardinal number θ so that P ∈ M . We say that a condition q ∈ P is

(M,P )-generic if for each dense subset D ∈ M of P and for all r < q there exists a

condition p ∈ D ∩M so that r is compatible with p.

P is proper if for each regular θ > 2|P | and each countable M ≺ Hθ with P ∈ M

there is an (M,P )-generic condition below each p ∈M ∩ P .

The proper forcing axiom, PFA is very similar to Martin’s Axiom, which is already

introduced.

Definition 3.7. PFA is the statement : For any proper poset P and predense sets Dα,
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α < ω1, there is a filter G ⊂ P so that for each α < ω1, G ∩ Aα 6= ∅.

The open coloring axiom (OCA) is defined below,

Definition 3.8. OCA is the statemnt: Let X be a subset of R. For any partition

[X]2 = K0 ∪ K1 with K0 open, either there is an uncountable Y ⊂ X such that

[Y ]2 ⊂ K0, or there exist sets {Hn : n ∈ ω}, such that X =
⋃∞
n=0Hn and [Hn]2 ⊂ K1

for all n.

The Open Coloring Axiom is a consequence of PFA. If [X]2 = K0 ∪K1 with K0

open, let us call Z ⊂ X 0-homogeneous if [Z]2 ⊂ K0 and 1-homogeneous if [Z]2 ⊂ K1.

The next theorem shows us the same conclusion as before assuming PFA.

Theorem 3.13. The proper forcing axiom, PFA, implies that products of finitely many

countable Fréchet spaces are SS.

Proof. Let X and Y be countable Fréchet spaces and we assume that their product

is not SS. There is no loss of generality to assume that neither X nor Y has isolated

points. Let {En : n ∈ ω} be a sequence of dense subsets of X × Y . It is known

( [8, 2.7]) and easy to see that it is sufficient to show that each point (x0, y0) ∈ X×Y

is in the closure of the union of some sequence of finite selections. So we fix a point

(x0, y0). Without loss of generality, we may also arrange that the En’s are a descending

sequence. Let Ax0 ⊂ [X]ω and By0 ⊂ [Y ]ω be the collection of all sequences converging

to x0 and y0 respectively. Let {xi : i ∈ ω} and {yi : i ∈ ω} be enumerations of X and

Y respectively. Since there is no harm to shrink the En’s, we will assume that each En

is disjoint from the closed nowhere dense sets {xi : i < n} × Y and X × {yi : i < n}.

For each (A,B) ∈ Ax0×By0 , we may assume there is an m such that Em∩ (A×B) is

empty, because otherwise there is a suitable selection of finite choices accumulating

to (x0, y0). To see this, first notice that there must be an n such that (x0, y0) is not

in the closure of En ∩ (A×B). It follows that such an En will satisfy that, for some

m > n,

En ∩ (A×B) ⊂ (({xi}i<m × Y ) ∪ (X × {yi}i<m)) .
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Then we choose our m > n by our additional assumption that Em is disjoint from

{xi}i<m × Y and X × {yi}i<m.

Now we consider the poset P defined by the following:

P =
⋃
n

Πk<nEk

where P is ordered by set inclusion. Of course the members of P are just finite partial

selections from the sequence 〈Ek : k ∈ ω〉 and forcing with P gives rise to a name of

a generic selection Ḟ = {p(k) : k ∈ ω}. Notice also that no x and no y will appear as

a coordinate in infinitely many of the pairs {p(k) : k ∈ ω}.

We will prove, using an auxiliary proper poset extending P , that there is a family of

ω1-dense sets which are sufficient to ensure that (x0, y0) is forced to be in the closure

of Ḟ . Establishing this completes the proof of the theorem since PFA implies there

is a filter meeting each of those dense sets. The methodology is borrowed from the

theory behind the development of the Open Coloring Axiom.

In the generic extension by P , notice that for any A ∈ Ax0 and B ∈ By0 , we have

that F ∩ ((A× Y )∩ (X ×B)) = F ∩ (A×B) is finite (since some Em misses A×B).

For A ∈ Ax0 , let Ã = F ∩ (A × Y ) and, for B ∈ By0 , let B̃ = F ∩ (X × B). Let

X = {(Ã, B̃) : Ã ∩ B̃ = ∅}. Now we define K0 ⊂ [X]2 as follows:

〈(Ã0, B̃0), (Ã1, B̃1)〉 ∈ K0

if

(Ã0 ∩ B̃1) ∪ (B̃0 ∩ Ã1) 6= ∅.

The separable metric topology on X is defined by the following: for finite subsets

u0, u1, v0, v1 of X × Y , the basic open sets are of the form

[(u0, u1), (v0, v1)] = {(Ã, B̃) ∈ X : u0 ⊂ Ã, u1 ∩ Ã = ∅, v0 ⊂ B̃, v1 ∩ B̃ = ∅}.

Notice that K0 is an open set in this topology.

Let K1 = [X]2 \ K0. Since K0 is open in [X]2, then by [18], we can say that either

X is a countable union of 1-homogeneous sets or there is a proper poset, Q which

introduces an uncountable 0-homogeneous set.
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First we show that if indeed X can not be covered by a countable union of 1-

homogeneous sets then we obtain our desired selection F from the En’s accumulating

to (x0, y0). In this case then, there exists a P -name Q̇ for a proper poset such that

Q̇ introduces an uncountable 0-homogeneous set. That is, there is a P ∗ Q̇-name of

a sequence, 〈(Ȧα, Ḃα) : α ∈ ω1〉 of pairs from Ax0 × By0 so that (it is forced that)

{(˜̇Aα, ˜̇Bα) : α ∈ ω1} is a K0-homogeneous subset of X. It is somewhat routine to

verify that there is a family of ω1-many dense subsets of P ∗ Q̇ so that an applica-

tion of PFA ensures that we obtain an infinite selector F from 〈En〉n and a sequence

{(Aα, Bα) : α ∈ ω1} ⊂ Ax0 ×By0 satisfying that for each α 6= β ∈ ω1,

(F ∩ Ãα) ∩ (F ∩ B̃α) = ∅

and

F ∩ [(Ãα ∩ B̃β) ∪ (Ãβ ∩ B̃α)] 6= ∅ and is finite.

The above properties are the requirements that the families {F ∩ (Aα× Y ) : α ∈ ω1}

and {F ∩ (X × Bα) : α ∈ ω1} form a Luzin gap and so, [20], cannot be mod finite

separated in P(X × Y ). Now we show that if U ×W is a neighborhood of (x0, y0),

then U × W meets F – as required. Notice that U × Y will contain, mod finite,

F ∩ (Aα × Y ) for all α ∈ ω1. Therefore there must be some α ∈ ω1 such that U × Y

meets F ∩ (X ×Bα) in an infinite set. Since X ×W will contain a cofinite subset of

F ∩ (X × Bα), we then have that U ×W meets F ∩ (X × Bα) (and hence F ) in an

infinite set.

So finally we complete the proof by showing that (in the extension by P ) the family X

is not a countable union of 1-homogeneous sets. To see this, first we fix a P -name Ẋ,

for X. Suppose we have a P -name of such a sequence 〈Ẋn〉n and a condition p0 ∈ P

such that,

p0 ‖−
⋃
n

Ẋn = Ẋ,

and for each n,

p0 ‖−[Ẋn]2 ⊂ K1.
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For better readability, let A \m abbreviate A \ {xi : i < m} for A ⊂ X and m ∈ ω,

and similarly let B \m abbreviate B \{yj : j < m} for B ⊂ Y . Recall that we showed

that, for each (A,B) ∈ Ax0×By0 , there exists m such that ((A×Y )∩(X×B))∩Em =

∅. Therefore it follows that there is a sufficiently large m such that p0 forces that

(Ã \m, B̃ \m) is a member of Ẋ. Furthermore, there is an n and a p < p0 in P , such

that p ‖−(Ã \m, B̃ \m) ∈ Ẋn. Let us define

Xp,n,m = {(A,B) ∈ Ax0 ×By0 : p ‖−(Ã \m, B̃ \m) ∈ Ẋn}.

It is obvious that
⋃
{Xp,n,m : p ∈ P, n,m ∈ ω} should equal Ax0 ×By0 . We will prove

our claim by proving that this is not the case. First let us enumerate P×ω×ω in order

type ω as {(pk, nk,mk) : k ∈ ω} and we will construct, by induction on k, a descending

sequence {Xk × Yk : k ∈ ω} of subspaces of X × Y (with X0 = X and Y0 = Y ). To

guide this induction we fix an ultrafilter W on ω × ω which is not a P-filter. We also

choose a sequence {aj : j ∈ ω} converging to x0 and {bl : l ∈ ω} a sequence converging

to y0. At any stage k in the induction we will let (p, n,m) denote the triple (pk, nk,mk)

and we deal with Xp,n,m. For each k, let Ak = {A \ m : ∃B (A,B) ∈ Xp,n,m} and

Bk = {B \m : ∃A (A,B) ∈ Xp,n,m} for n ∈ ω. As an induction hypothesis we will

assume that, for all m, {(j, l) : (aj, bl) ∈ [Em ∩ (Xk × Yk)]′} ∈ W. This is true for

X0 and Y0 as Em is a dense set of X × Y for all m ∈ ω. The construction of Xk+1

and Yk+1 will also ensure that, for each pair (A,B) ∈ Xpk,nk,mk , one of A ∩Xk+1 and

B ∩ Yk+1 will be finite.

Now we show the inductive step. Let Sk =
⋃
Ak and Tk =

⋃
Bk. Now a key step

in the proof is that since p0 ‖−[Ẋn]2 ⊂ K1, there must exist m such that (Sk × Tk) ∩

Em = ∅. In fact choose m̄ larger than each of m and dom(p) and assume that

(x, y) ∈ (Sk × Tk) ∩ Em is not empty. Extend p to some p̄ so that p̄(m̄) = (x, y) and

observe that p̄ ‖−(x, y) ∈ Ḟ . Since (x, y) ∈ Sk × Tk there are (A0, B0) and (A1, B1)

in Xp,n,m such that x ∈ A0 \ m ∈ Ak and y ∈ B1 \ m ∈ Bk so that p̄ ‖−(x, y) ∈

Ḟ ∩ ((A0 \m)× (B1 \m)). However notice also that (x, y) ∈ (Ã0 \m ∩ B̃1 \m) and



48

so p̄ ‖−〈(Ã0 \m, B̃0 \m), (Ã1 \m, B̃1 \m)〉 ∈ K0. Of course this contradicts that p

forces that this pair is in K1.

Now we are ready to define Xk+1 ⊂ Xk and Yk+1 ⊂ Yk. If for all m̄ > m,

{(j, l) : (aj, bl) ∈ [Em̄ ∩ ((Xk \ Sk)× Yk)]′} ∈W

then put Xk+1 = Xk \ Sk and Yk+1 = Yk. Otherwise we set Xk+1 = Xk and Yk+1 =

Yk \ Tk. To show that this works we must show that for all m̄ > m,

{(j, l) : (aj, bl) ∈ [Em̄ ∩ (Xk × (Yk \ Tk))]′} ∈W .

If this fails, then there is an m̄ > m such that

{(j, l) : (aj, bl) 6∈ [Em̄ ∩ ((Xk \ Sk)× Yk)]′ ∪ [Em̄ ∩ (Xk × (Yk \ Tk))]′} ∈W .

However this implies that

{(j, l) : (aj, bl) ∈ Em̄ ∩ (Sk × Tk)} ∈W,

which is impossible since it contradicts the fact that Sk × Tk is disjoint from Em.

So we select all the Xk’s and Yk’s satisfying our induction hypothesis. According to

our construction, for each k, there is jk > k such that the sequence ajk is in X ′k.

Now is the place where we use the hypothesis that X is Fréchet. For each k, choose

a sequence Jk ⊂ Xk converging to ajk . Since the sequence {ajk}k converges to x0,

we have that x0 is in the closure of
⋃
k Jk. Therefore there is a sequence A ⊂

⋃
k Jk

converging to x0. By construction we have that A\Xk is finite for all k. By the similar

argument as above we get a sequence B converging to y0 with the property that B\Yk

is finite for all k. Therefore (A,B) ∈ Ax0 ×By0 but clearly (A,B) /∈
⋃
Xp,n,m. �



CHAPTER 4: COMPLETELY SEPARATED IN RANDOM MODEL

4.1 Introduction

Ohta and Yamazaki asked [27] if every C∗-embedded subset of a first countable space

is C-embedded. It is known [25] that a counterexample can be derived from the

assumption b = s = c and that if the Product Measure Extension Axiom (PMEA)

holds then the answer is affirmative in some special cases.

We show that in the model obtained by adding supercompact many reals the question

of Ohta and Yamazaki has a positive answer with no extra assumptions needed. It

is well known that this model satisfies PMEA and therefore this result improves the

one from [25].

One of the key devices in this section is that adding random reals does not introduce

a continuous function that separates two ground model sets that were not completely

separated.

4.2 Preliminaries

The purpose of this section is to establish the basic terminology. Our primary sources

are [23] for topology; [2] and [4] for forcing and set theory (large cardinals and ele-

mentary embeddings).

Let X be a topological space. A subset A ⊆ X is C-embedded if every continuous

real-valued function with domain A can be extended continuously to X. If every

continuous function from A into [0, 1] has a continuous extension to X then A is

C∗-embedded in X.

A zero-set in X is a set of the form f−1(0) for some continuous f : X → [0, 1]. Two

sets A,B ⊆ X are completely separated if there is a continuous f : X → [0, 1] such
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that f [A] ⊆ {0} and f [B] ⊆ {1}; equivalently, A and B are contained in disjoint

zero-sets.

If j is a function whose domain is transitive we will denote by j(a) the value that j

assigns to the element a ∈ dom j and j′′a will be used to represent {j(x) : x ∈ a}.

Let κ be a cardinal. We say that X has character less than κ (in symbols, χ(X) < κ)

if any point in X has a local base of cardinality < κ. 2κ denotes the set of all functions

from κ into 2 = {0, 1}. For each α < κ the set aα := {f ∈ 2κ : f(α) = 0} is a clopen

subset of the topological product 2κ.

Let B be the σ-algebra generated by {aα : α < κ}. For each α < κ define µ(aα) =

µ(2κ \ aα) = 1/2. One can extend µ to obtain a probability measure on B. This µ is

called the Haar measure on 2κ.

2<ω is the set of all functions whose domain is an integer. Observe that when κ = ω,

B is generated by {[t] : t ∈ 2<ω}, where [t] := {f ∈ 2ω : t ⊆ f}, i.e. all the functions

that extend t. Each [t] will be called a basic clopen set for 2ω.

Random real forcing is the poset Mκ obtained by identifying two members of B \ {∅}

if the measure of their symmetric difference is zero. Mκ is ccc and complete, i.e. if

S ⊆Mκ is not empty then S has a supremum in Mκ, denoted by
∨
S. In particular, if

Φ is a formula and σ1, . . . , σn are names so that a ‖−Φ(σ1, . . . , σn), for some a ∈Mκ,

then we define

[[Φ(σ1, . . . , σn)]] :=
∨
{b ∈Mκ : b ‖−Φ(σ1, . . . , σn)}

If S is a non-empty subset of Mκ and has a lower bound in Mκ then S has an infimum

which will be denoted by
∧
S.

If τ is a topology for X and P is any forcing notion, then it could be the case that,

in the generic extension, τ is no longer a topology for X due to the presence of new

subsets of τ but τ will always be a base for some topology for X. Hence, whenever we

refer to the topological space (X, τ) (or simply X) we will be referring to the topology

on X that has τ as a base.
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We recall that A submodel N of a model M is elementary if all formulas are absolute

between N and M with respect to every set of parameters in N .

An embedding of V into a model M is an elementary embedding if its image is an

elementary submodel of M.

If j : V → M is a non-trivial elementary embedding with M transitive, then M is

inner, and induction on rank shows that there is a least ordinal κ moved by j, that

is, j(α) = α for all α < κ, and j(κ) > κ. Such a κ is called the critical point of j,

and is necessarily a measurable cardinal.

For a set X and a cardinal κ, let Pκ(X) be the set of subsets of X of cardinality less

that κ. A cardinal κ is called λ-supercompact, where λ is an ordinal, if the set Pκ(λ)

admits a normal fine measure. A cardinal κ is supercompact if it is λ-supercompact

for every ordinal λ.

Instead of recalling the definition of a normal measure, we recall that a cardinal κ is

λ-supercompact if and only if there is an elementary embedding j : V →M such that

j(α) = α for all α < κ and j(κ) > κ, where M is an inner model such that Mλ ⊂M .

For more information on supercompact cardinals, see [4] and [29].

4.3 Consistency Modulo a Supercompact Cardinal

We start this section with an auxiliary result which is itself of significant interest.

Theorem 4.1. Let κ be a cardinal. If X is a topological space and A,B ⊆ X, then

the following are equivalent.

1. A and B are completely separated in the ground model.

2. Mκ ‖− “A and B are completely separated”

Proof. To show that (1) implies (2) note that any continuous function from the

ground model remains continuous in the generic extension.

Now assume (2) and let ḟ be a name for a real-valued continuous function on X so

that

Mκ ‖− “ḟ [A] ⊆ {0} ∧ ḟ [B] ⊆ {1} ∧ ḟ [X] ⊆ [0, 1]”.
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For each 0 < r < 1 define Ur := {x ∈ X : µ([[ḟ(x) < r]]) > 1 − r}. We show below

that {Ur : r ∈ (0, 1)} is a family of open sets satisfying Ur ⊆ Us whenever s < t,

and A ⊆ Ur ⊆ X \ B for every r. And therefore the map h : S → [0, 1] given by

h(x) := inf({1} ∪ {r ∈ (0, 1) : x ∈ Ur}) is continuous, h[A] ⊆ {0} and h[B] ⊆ {1}.

Let r be arbitrary. If x ∈ Ur and b := [[ḟ(x) < r]], then there exists a name for an

open set Ẇ so that b ‖− “x ∈ Ẇ ∧ ḟ [Ẇ ] ⊆ [0, r)”. Fix an antichain {bn : n < ω} and

a family {Wn : n < ω} of open sets from the ground model so that b =
∨
{bn : n < ω}

and bn ‖−x ∈ Wn ⊆ Ẇ . Since
∑

n<ω µ(bn) = µ(b) > 1 − r there is an integer m for

which
∑

n<m µ(bn) > 1 − r. Define a :=
∧
{bn : n < m} and O :=

⋂
{Wn : n < m}.

Hence a ‖− ḟ [O] ⊆ [0, r) and therefore 1 − r < µ(a) 6 µ([[ḟ(y) < r]]) for each y ∈ O.

Clearly x ∈ O ⊆ Ur so Ur is open.

To prove that A ⊆ Ur ⊆ X \B observe that µ([[ḟ(x) = 0]]) = 1 and µ([[ḟ(y) = 1]]) = 1

for all x ∈ A and y ∈ B.

To finish the proof assume that r < s and let x ∈ Ur be arbitrary. Let W be the

collection of all open sets from the ground model that contain x. For each W ∈W the

condition bW :=
∨
{[[ḟ(y) < r]] : y ∈ W ∩ Ur} satisfies bW ‖− “ḟ [W ] ∩ [0, r) 6= ∅”and

µ(bW ) > 1− r. Set b :=
∧
{bW : W ∈W}. Since {bW : W ∈W} is closed under finite

intersections, we obtain µ(b) > 1− r > 1− s. We also have that b ‖− ḟ(x) 6 r which

implies 1− s < µ(b) 6 µ([[ḟ(x) < s]]). Thus x ∈ Us. �

Assume that ν : Mκ → [0, 1] is a probability measure. Note that the argument

given above shows that if ḟ is an Mκ-name for a continuous real-valued function with

domain X, then h : X → [0, 1] given by

h(x) := inf({1} ∪ {r ∈ (0, 1) : ν([[ḟ(x) < r]]) > 1− r})

is continuous.

Before proving the main theorem let us discuss a simplification that will be used:

Any real-valued continuous function f can be expressed as f = (f+ + 1)− (f− + 1),

where both, f+ and f−, are continuous and non-negative. This simple remark shows
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that a set A is C-embedded in X iff any continuous function from A into [1,∞) has

a continuous extension to X.

Theorem 4.2. Let κ be a supercompact cardinal. In the model obtained by adding

κ many random reals, every C∗-embedded subset of space whose character < κ is

C-embedded.

Proof. Let Ẋ, τ̇ , Ȧ and ḟ be Mκ-names so that Mκ ‖− “χ(Ẋ, τ̇) < κ, Ȧ is C∗-

embedded in Ẋ and ḟ : Ȧ→ [1,∞) is continuous.” As remarked above, it is enough

to show that ḟ has a continuous extension to Ẋ. In order to do this we may assume

that Ẋ and Ȧ have been decided, i.e. there are two sets (in fact ordinals) X and A

from the ground model satisfying

1 ‖− “Ẋ = X̌ ∧ Ȧ = Ǎ”

Let G be an Mκ-generic filter. Working in V [G] we observe that 1/f is a function

from A to [0, 1] and so can be extended to a continuous map h : X → [0, 1]. Note

that we only have to prove that A and Z(h) are completely separated. Indeed, if

s : X → [0, 1] is a continuous function so that s[A] ⊆ {0} and s[Z(h)] ⊆ {1}, then

1/(s+ h) extends f .

In V [G] let ρ be a name for the canonical random real added by Mω. In other words,

Mω ‖− ρ : ω → 2 and µ([[ρ(n) = i]]) = 1/2 for all n ∈ ω and i < 2, where µ is the

Haar measure on 2ω described before. Also let ġ be an Mω-name for the piecewise

linear extension of ρ on [1,∞), i.e. ġ � [n, n+ 1] is the line segment that connects the

points (n, ρ(n)) and (n+ 1, ρ(n+ 1)) for each positive integer n.

Fix a cardinal λ > max{|X|, c}. Since κ is supercompact, there exists an elementary

embedding j0 : V → M , where M is a transitive class closed under λ-sequences, so

that j0(α) = α for each α < κ and j0(κ) > λ. Therefore (see [24]) G can be extended

to G∗, an Mj(κ)-generic filter over M , and j0 can be exentended to an elementary

embedding j : V [G] → M [G∗] in such a way that V [G] and M [G] have exactly

the same sets of rank < λ. As a consequence of this we obtain that j(A) is a C∗-
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embedded subspace of (j(X), j(τ)) and j(f) is a continuous function from j(A) into

[1,∞). Since ġ can be interpreted as an Mκ+ω-name and κ + ω < j(κ) we get that

g := val(ġ, G∗) is a continuous function from [1,∞) into [0, 1]. Hence g ◦ j(f) has a

continuous extension ψ : j(X)→ [0, 1].

Elementarily, the fact that (X, τ) has character < κ, and our choice of λ imply that

j � X : X → j′′X is a homeomorphism (proof of Lemma 2.4 of [24]) where j′′X

is considered as a subspace of j(X). Thus the function ϕ0 : X → [0, 1] given by

ϕ0(x) = ψ(j(x)) is continuous. To show that it extends g ◦ f we only have to observe

that if x ∈ A then j(f)(j(x)) = j(f(x)) by elementarity and that j(f(x)) = f(x)

because f(x) is a real number.

The argument given above proves that there is an Mj(κ)-name, ϕ̇0, for a continuous

extension of ġ◦ḟ . Using the fact that Mj(κ) is ccc and assuming that ϕ̇0 is a nice name

we can find an ordinal α for which ϕ̇0 is an Mκ+ω ∗Mα-name and κ+ α + ω < j(κ).

Since Mκ+ω ∗Mα and Mκ+α ∗Mω are forcing equivalent we can arrange things in such

a way that ϕ̇0 is an Mκ+α ∗Mω-name, G is extended to G, an Mκ+α-generic filter over

V , and, in V [G], ρ is an Mω-name for the canonical random real added by Mω. The

rest of the argument takes place in V [G].

Let ϕ̇1 and ϕ̇2 be names for the maps 1− ϕ̇0 and |ϕ̇0 − 1/2|, respectively. If b ∈ Mω

then µb : Mω → [0, 1] defined by

µb(a) =
µ(a ∧ b)
µ(b)

,

where a ∧ b is the infimum of {a, b}, is a probability measure and therefore (see the

remark following Theorem 4.1) the function ψb,i : X → [0, 1] given by

ψb,i(x) = inf({1} ∪ {r ∈ (0, 1) : µb([[ϕ̇i(x) < r]]) > 1− r})

is continuous for all i < 3.

We claim that if b is a basic clopen set then there is an integer nb so that f−1[nb,∞) ⊆

ψ−1
b,i [1/3, 1] for all i < 3. To see that this is true let t ∈ 2<ω be such that b = [t] and let

nb ∈ ω \ dom t be arbitrary. The arguments needed for each individual i are similar
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so we will present here only the case i = 0. Start with arbitrary x ∈ f−1[nb,∞) and

r ∈ (0, 1/3).

Define c := [[ϕ̇0(x) < r]] and fix integers m > n and k < 3 such that

m+ k/3 6 f(x) 6 m+ (k + 1)/3.

If k = 0 or k = 2 we obtain c = [[ρ(m) = 0]] or c = [[ρ(m + 1) = 0]], respectively,

and therefore µb(c) = 1/2. When k = 1, c = [[ρ(m) = ρ(m + 1) = 0]] and hence

µb(c) = 1/4. In any case, µb(c) < 2/3 < 1− r which implies that ψb,i(x) > 1/3.

For each basic clopen set b and each integer i < 3 define

Z(b, i) := h−1[1/nb, 1] ∪ ψ−1
b,i [1/3, 1]

to obtain a zero-set in X that contains A. We will show that Z(h) and
⋂
{Z([t], i) :

t ∈ 2<ω ∧ i < 3} are disjoint and thus A and Z(h) are completely separated (recall

that two sets are completely separated iff they can be separated by disjoint zero-sets).

Given z ∈ Z(h) let a ∈Mω and 0 6 k 6 3 be so that

a ‖− k/4 6 ϕ̇0(z) 6 (k + 1)/4.

There is an integer i < 3 depending entirely on k so that a ‖− ϕ̇i(z) 6 1/4. Fix a real

number 1/4 < r < 1/3. Since µ is the Haar measure on 2ω we can apply the analogue

to Lebesgue Density Lemma for µ (see Section 17.B of [26]) and claim the existence

of a basic clopen set b for which 1 − r < µb(a). On the other hand, a 6 [[ϕ̇i(z) < r]]

and therefore 1− r < µb([[ϕ̇i(z) < r]]). Clearly ψb,i(z) < 1/3 and hence z /∈ Z(b, i).

We just showed that, in V [G], A and Z(h) are completely separated after adding (an

additional) α+ ω many random reals. According to Theorem 4.1 this implies that A

and Z(h) are completely separated in V [G] and this finishes the argument. �
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