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ABSTRACT 

 

 

OKAN PALA. Decision support for critical infrastructure recovery.  

(Under direction of DR. DAVID C. WILSON) 

 

 

Protecting critical infrastructure systems, such as electrical power grids, has become a 

primary concern for many governments and organizations across a variety of stakeholder 

perspectives. Critical infrastructures involve multi-dimensional, highly complex 

collections of technologies, processes, and people, and as such, are vulnerable to 

potentially catastrophic failures and cascading effects with escalating impact across 

multiple infrastructures. Understanding the impact of service outages in, for example, 

utility services such as electric power, water, and natural gas, is a key part of decision-

making in response and recovery efforts. In this dissertation, I present research that 

investigates the design and development of more effective decision support tools as part 

of critical infrastructure analysis. Thus my overall research question is: “How can spatial 

decision support systems be improved to facilitate more accurate and efficient decision-

making processes in critical infrastructure analysis for critical infrastructure recovery?” 

To address this question, I have conducted three primary research studies.  In the first, I 

develop a recommender framework approach and prototype interactive geovisualization 

environment for static decision-making tasks in critical infrastructure reconstitution. User 

study experimental results indicate that the decision makers can make better decisions 
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with less time and lower cognitive load using a software tool based on this decision 

recommender framework.  

In developing the decision support environment, it became clear that an accurate 

knowledge base to support impact analysis within component critical infrastructure 

networks is essential for improving the decision support tools. Often, however, data that 

encapsulate the source-sink relationships between utility service points and customers are 

confidential or proprietary, and, therefore, unavailable to external sources due to their 

sensitive nature. As a result, during emergencies, external decision-makers often rely on 

estimations of service areas produced by various methods.  During the decision support 

tools user study, critical infrastructure and geographic information analysis experts 

expressed a need for highly accurate estimates. Several types of estimation methods are 

prevalent in practice, but little information is available on their comparative 

effectiveness.  

Therefore, in the second research study I tested and compared traditional distance-

based and cell-based methods for service area approximation on an electric power 

network for a mid-size Midwestern US city. Experimental results showed substantial 

differences in accuracy between the methods, indicating significant tradeoffs in method 

selection.  For example, methods that take capacity and demand into account outperform 

standard methods, and cell-based methods can be more accurate when demand is closer 

to sources, indicating that cell-based methods may work best for large areas, such as 

states, while distance-based methods may work best for locations with uniform demand.  

In the third research study, given that I had found substantial accuracy differences 

among methods in practice, I investigated whether new estimation approaches could be 
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more effective overall.  In order to understand the potential, I applied insights gained 

from the second study in order to develop and test several new estimation approaches. I 

developed two novel service area estimation methods based on road network 

optimization techniques. To better understand the relative merits of each method, I also 

devised a novel adaptation of accuracy assessment methods from land cover 

classification to service area estimation. Experimental results from the third research 

study, estimating water service areas for the state of Kentucky, indicate that service area 

estimation methods based on road network optimization produce more accurate results 

compared to distance or cell-based estimation methods. In order to cross-check the 

results, I set up a comparative experiment applying the new methods to the electric power 

data set for the mid-sized US city from the second study. Experimental results showed 

that the traditional service area estimation methods outperform transportation-based 

methods for this specific spatial location and dataset. This is likely due to the absence of 

zoning or industrial demand area definitions in the reference dataset. This variation in 

results highlights the importance of the distribution of sources and sinks in critical 

infrastructures, and the tradeoffs in modeling for decision support. Overall, these studies 

show that particular care is needed to ensure that approximation methods are chosen to 

align with the properties of the service network, the population distribution, and the 

available source and demand data. 

This dissertation details the research I have conducted in order to investigate how 

spatial decision support systems can be improved to facilitate more accurate and efficient 

decision-making processes in critical infrastructure analysis for critical infrastructure 

recovery. It provides insight and design guidance on decision support environments for 
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cross-infrastructure analysis, as well as modeling tradeoffs in service area approximation 

methods for increased recommendation accuracy. Overall, the results of this dissertation 

research will help support better design and implementation of decision support systems 

for geovisual decision-making, particularly in critical infrastructure analysis.   
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CHAPTER 1: INTRODUCTION 

 

 

In recent years, the protection of critical infrastructures (CI), such as electrical 

power grids or communication networks, has become an increasingly significant concern 

for many governments and organizations across a variety of stakeholder perspectives. 

Critical infrastructures have evolved into multi-dimensional, highly complex collections 

of technologies, processes, and people, and as such, are vulnerable to catastrophic failures 

(intentional or unintentional) on many levels. Aside from the increased complexity, 

cross-infrastructure dependencies have been shown to give rise to cascading effects, with 

escalating impact across multiple infrastructures (Tolone et al., 2009; Tolone et al., 

2004). A well-documented example can be seen in the August 2003 blackout in the 

northeastern U.S. and eastern Canada (Andersson et al., 2005; Hauer et al., 2004). The 

extent of the disaster was unforeseen. A series of unintentional events led to cascading 

failures across 263 power plants, with a loss of power for approximately 50 million 

people, including businesses and homes. Moreover, failure in the electrical power 

infrastructure had serious impacts on other critical infrastructures. For example, the loss 

of power also led to a loss of water for approximately four million people across many 

communities, as water systems depend heavily on power to operate the pumping systems 

that deliver water for consumption. Further, Amtrak rail services in the northeastern 

corridor were stopped, passenger screening was not possible at various airports, and 

flights were canceled due to e-ticket systems being out of service. Even pumping gas into 
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vehicles was not possible in many places, since gas pumps typically rely on power. 

Moreover, there were also disruptions in communication networks for cellular telephone, 

cable, and radio broadcast services. The tight couplings within and across these 

infrastructures and the brittleness that can result were evident in the length of time it took 

to restore both power and the related infrastructures to normalcy in the affected region. It 

also became evident that failure isolation is a difficult task within complex 

infrastructures, let alone across infrastructures. 

There have since been many more examples of similar catastrophes, of varying 

degrees of severity, which have occurred in the U.S. and elsewhere. The prevailing 

opinion held by most citizens is that the government was, and still is, unprepared to 

respond to such large-scale disasters (Scavo et al., 2008). In truth, simply understanding 

the interrelations among different infrastructures, a necessity for initiating adequate 

response, is a difficult task. As an example, utility services, including electric power 

(EP), water, and natural gas (NG), serve their customers through various functional 

sources, such as electric power substations (EP), pumps and pipes (water, NG). 

Understanding the impact of service outages in such services is a key part of decision-

making in response and recovery efforts. 

Critical infrastructure protection involves both safeguarding against potential 

disaster scenarios and effective response in the aftermath of infrastructure failure. There 

have been many discussions across the globe regarding the best approaches to improving 

government response to disaster (Fazel Zarandi et al., 2011; Nigim et al., 2006; Ouyang, 

2014). Both to guard against and respond to critical infrastructure failures, multi-

dimensional infrastructure modeling and simulation has been proposed as a way to 
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support analysis and decision-making (Belton and Stewart, 2002; Johansson and Hassel, 

2014; Masucci et al., 2009). An interactive geovisualization interface provides a natural 

context for this infrastructure analysis support (Mac Aoidh et al., 2008; Pala and Wilson, 

2013; Tolone, 2009; D. C. Wilson et al., 2008; D. C. Wilson et al., 2009). 

For my research in critical infrastructure protection, I wanted to answer the 

question of “How can spatial decision support systems be improved to facilitate more 

accurate and efficient decision-making processes in critical infrastructure analysis for 

critical infrastructure recovery.” To address this question, I have conducted three primary 

research studies.  In the first, I develop a recommender framework approach and 

prototype interactive geovisualization environment for static decision-making tasks in 

critical infrastructure reconstitution (D. C. Wilson et al., 2009). In user study evaluations, 

critical infrastructure and geographic information analysis experts expressed a need for 

highly accurate estimates (Pala and Wilson, 2013). Accuracy in the framework and 

analysis environment depends on good underlying service area models. While several 

types of service area estimation methods are prevalent in practice, little information is 

available on their comparative effectiveness Therefore, in the second research study I 

tested traditional distance-based and cell-based methods for service area approximation 

on an electric power network (Pala et al., 2014). Given substantial accuracy differences 

among methods in practice, I also wanted to investigate whether new estimation 

approaches could be more effective overall.  Thus, in my third research study, I applied 

insights from the second study in order to develop and test several new estimation 

approaches. Overall, my research outcomes contribute to the development, 
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implementation, and understanding of innovative approaches to modeling and assessing 

critical infrastructure systems in support of decision-making. 

1.1 Organization 

The overall research question of this work is: How can spatial decision support 

systems be improved to facilitate more accurate and efficient decision-making processes 

in critical infrastructure analysis for critical infrastructure recovery? In order to address 

this question, the remainder of the dissertation is organized as follows. 

Chapter 2 details foundational background on the Critical Infrastructure 

Protection (CIP) problem, including the challenges of data inaccessibility and resulting 

needs for approximation, and the US-government-proposed methods for CIP. Difficulties 

that arise in the decision-making process, and decision support software, in general and 

specifically created for CIP, are explored. Decision-making for reconstitution after 

emergencies is challenging because of the cascading nature of disablements. 

Relationships that allow for cross-infrastructure cascades further complicate decision-

making. 

Chapter 3 describes related work on decision support in general and decision 

support specifically for CIP. As a foundation for developing and evaluating the novel 

service area approximation methods proposed here, an overview is provided on 

methodologies for understanding interdependence among critical infrastructures. This 

includes spatial approximation methods (computational geometry, Thiessen polygons, 

and Cellular automata), location allocation and accuracy assessment approaches. 

Chapters 4 and 5 describe the first research study, investigating the following 

specific research question:  
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Specific Research Question RQ1: Is a spatial recommender system 

focused on critical infrastructure cross-infrastructure effects more efficient 

and effective than using commonly-used, industry-standard GIS tools for 

Critical Infrastructure recovery decision-making tasks when multiple 

networks are interrelating?  

To answer this question, I developed (1) a framework for a decision 

recommendation tool for CI, (2) developed a Decision Recommendation Tool (DRT)  

called the Critical Infrastructure Explorer (CIE) based on the framework, and (3) 

performed a user study to compare CIE with standard GIS tools. Chapter 4 presents the 

framework and describes the CIE implementation, while Chapter 5 details the user study 

evaluation. In the user study, performance data were collected for system experts and GIS 

analysts using CIE and standard GIS tools to reenact several disablement analysis 

scenarios.  

Results for user task efficiency, task completion, and cognitive load show that, 

given the same scenario, expert CIE users successfully completed more scenarios more 

accurately, in less time, and with lower cognitive load. Overall, the results indicate that 

adoption of such integrated approaches would be useful to support better decision-

making and complex, multi-dimensional analysis for critical infrastructure. 

Chapter 6 describes the second research study, investigating service area 

modeling accuracy in support of approaches like CIE. During an outage, cross 

infrastructure cascade effects are determined by the extent of the service areas for service 

distribution sources. This is one of the foundational modeling assumptions in the first 

study. Grounding cross-infrastructure impact analysis relies on accurate service area 
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estimation for the critical infrastructure networks. Thus, the specific research question for 

the second study is:  

Specific Research Question RQ2: What are the differences in 

effectiveness among various service area estimation techniques that are 

used for CI enablement scenarios? 

In order to answer this question, I conducted experiments to assess the relative 

accuracies of several service area estimation approaches, commonly used in practice, in 

comparison with a reference data set provided by the electric utility company for a mid-

size Midwestern city (~1 million). I employed two different evaluation approaches to 

perform the accuracy assessment of the results: aggregate statistical accuracy analyses 

and spatial accuracy analyses. Moreover, as part of the evaluation I adapted some 

existing accuracy assessment processes (Congalton and Green, 1999, 2008) to the CI 

domain, and also implemented two new analyses specific to the CI domain – polygon 

relaxation analysis and proximity confidence analysis. 

Results from this study shed a light on the relative accuracies of common service 

area approximation methods, which can help system builders to choose the most 

appropriate service area estimation method for the type and context of impact analyses on 

electric power networks. In particular, our study showed that cellular automata (CA) 

algorithms perform better near source stations, suggesting the idea that CA methods may 

work better when utility usage is highest near source stations and tapers off as the 

distance grows. Thiessen polygon (TP) methods seem to perform better in uniform usage 

situations.  
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Chapters 7 – 9 detail the third research study, investigating new methods for 

service area estimation, which are based on transportation optimization metrics. Given 

the substantial differences observed in the accuracies of commonly employed methods, 

the natural next step was to investigate the potential for new methods. Thus the specific 

research question for the third study is:  

Specific Research Question RQ3: Will applying metrics for transport 

optimization to service area estimation improve accuracy in comparison to 

common techniques? 

In order to address this question, I adapted and implemented transportation 

network-based service area estimation techniques for water systems service area 

approximation. The intuition is that many utilities install their distribution networks along 

streets and roads, which may provide additional context to improve estimation accuracy. 

Chapter 7 describes and evaluates two service area estimation methods based on travel 

distance optimization in order to create service areas for CI elements. To support 

evaluation, this chapter also details the adaptation of established land cover classification 

accuracy assessment methods for service area estimation accuracy(Congalton and Green, 

1999, 2008). The proposed service area estimation methods are compared to the cell- and 

distance-based methods using aggregate impact and point impact accuracy. Results show 

that using source capacity and demand amount for network optimization produces 

significantly better results in approximating the service areas than using the network 

optimization without the source and demand values. Based on these results, CI simulation 

systems should consider transportation networks, source capacities, and demand locations 

into account to refine service area approximation. 
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Chapter 8 investigates these new methods applied to the electric power network 

previously explored in Chapter 6, and Chapter 9 compares the accuracies for distance-, 

cell-, and transport-based service area estimation across the power and water network 

studies. Results show that while it is possible to improve accuracy with new approaches, 

there are tradeoffs to consider in the context of the available data. Thus, Chapter 9 

presents an analysis of how the various methods considered differ across network types 

and study area sizes, discussing the potential trade-offs in method applicability. For 

example, differences may arise due to the absence of industrial zoning data for electric 

power demands when their usage is still included in source substation capacities. 

Whereas, water usage from water treatment plants is not impacted as strongly by this 

kind of zoning difference, because these plants are likely not providing large volumes of 

water for industrial use, as this kind of water does not need the same treatment as 

drinking water.  

1.2 Contributions 

This dissertation research shows that spatial decision support systems can be 

improved to facilitate more accurate and efficient decision-making processes in critical 

infrastructure analysis for critical infrastructure recovery. The research contributions are 

summarized as follows: 

Research Study 1 

1. Development of a decision recommendation framework including target model, 

user model, recommender engine and a simulation engine, as well as the 

development of a prototype tool implementing the framework approach. 
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2. User study experimental analysis showing the advantage of the approach for 

cross-infrastructure analysis scenarios – indicating decision makers may be able 

to better decisions with less time and less cognitive load using this kind of 

approach. 

Research Study 2 

1. Adaptation of area and point accuracy assessment processes from land cover 

classification (Congalton and Green, 1999, 2008) to apply to the CI domain for 

city-scale electric power network service area estimation. 

2.  Implementation of point and area accuracy assessment for power networks. 

3. Experimental evaluation showing that weighted point and area service area 

estimation approaches are more accurate in approximating source-sink 

relationships, and weighted distance based methods have higher point impact 

accuracy, in an electric power network context.  

4. Development of confidence interval approaches for more detailed analysis and 

interpretation of accuracy assessment results in the CI domain – polygon 

relaxation analysis and proximity confidence analysis. 

5. Confidence interval analysis of service area estimation accuracy results on 

power networks, showing that as the distance increases between critical points to 

sources, the rate of decrease in accuracy is higher in polygons produced by non-

weighted methods.  

Research Study 3 

1. Adaptation of formal significance (Kappa) analyses to apply to the CI domain, 

in the context of water networks.  
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2. Implementation of previously-described point impact accuracy assessment for 

water networks. 

3. Experimental evaluation showing that weighted service area estimation 

approaches are more accurate in approximating source-sink relationships in a 

water network context.   

4. Development and implementation of two new transportation network-based 

service area estimation methods for a state-scale water network. 

5. Experimental evaluation showing that the proposed transportation-network-

based methods are significantly more accurate than standard service area 

estimation methods for the state-scale water network.  

7. Implementation of the proposed transportation network-based service area 

estimation methods in the previously tested context of a city-scale electric power 

system. 

8. Experimental evaluation showing that transportation network based methods on 

a city scale electric power network does not perform as well as standard distance 

or cell-based methods. 

Overall, the outcomes of this research provide insight for researchers and 

practitioners in geographic information systems, and particularly for developers and users 

of applications for critical infrastructure modeling, analysis, and decision-making. 

Enabling new kinds interaction through tools and environments can support improved 

analysis and thereby decision-making. And since a key enabling element is accurate 

knowledge about the infrastructures themselves, understanding the tradeoffs involved in 

modeling infrastructures and infrastructure interactions can lead to more accurate 
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modeling, enabling improved analysis and decision-making. Results of the accuracy 

analysis here indicate that decision makers and system designers should weight tradeoffs 

and select carefully when applying different service area approximation methods to CI 

source-sink analysis. Methods using source output amounts as weights to approximate the 

service areas provide better results. Networks at larger scale, such as state or regional, do 

well using transportation-based optimization methods and if demand information and 

road network is available it is possible to improve the accuracy using those as a part of 

the method. Dense networks at smaller scale, such as city scale, are not as susceptible to 

transportation network optimization and using weighted version of distance based 

methods provide best accuracy.  



 

CHAPTER 2: BACKGROUND – THE CRITICAL INFRASTRUCTURE 

PROTECTION PROBLEM 

 

 

Findings that I present in this dissertation can be useful for system design or 

analyses for different aspects or stages of preparation, response and recovery. To provide 

a detailed picture of current state of research in this field, in this chapter I focus on 

characterizing the Critical Infrastructure Protection (CIP) problem and provide examples 

of previous research done to cope with various aspects of this problem at various phases 

of the disaster timeline.  

In general, critical infrastructures can be thought of as the fundamental enabling 

systems or networks upon which the smooth functioning of society is particularly 

dependent, with the implication that the failure of such a network has lasting effects on 

the public good (J. P. Cohen, 2010; Reinermann and Joachim, 2003). Infrastructure 

systems widely regarded as “critical” include fundamental enabling assets, such as 

transportation and utilities (e.g., energy, water, telecommunications, wireless sensor 

networks), along with assets that depend on them, such as medical care and government 

institutions or services (e.g., law enforcement, schools, and libraries) (Franco et al., 2012; 

Mbowe and Oreku, 2014; Mendonça et al., 2014; Oreku and Mbowe, 2014). I adopt as a 

working definition the U.S. government’s characterization of critical infrastructures 

(USA Patriot Act, 2001; Franco et al., 2012) as “Systems and assets, whether physical or 

virtual, so vital that the incapacity or destruction of such may have a debilitating impact 
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on the security, economy, public health or safety, environment, or any combination of 

these matters, across any Federal, State, regional, territorial, or local jurisdiction.” 

Many of these critical infrastructure systems, such as the power grid, are 

effectively physical processes that are operated by electronic devices. Over the last 

decade, these electronic devices have begun to be operated remotely, often through 

wireless networks (Buttyán et al., 2010; Cetinkaya et al., 2010; Sousa et al., 2009). This 

has increased system complexity and created cross-infrastructure dependencies between 

many base infrastructures and communications infrastructure. Failures of distinct 

components within the power system, for example, can cause a general failure of the 

delivery of power to specific load points (Volkanovski et al., 2009). In some cases, a full 

blackout may occur.  

In general, critical infrastructures have evolved into multi-dimensional, highly 

complex collections of technologies, processes, and people, and as such, are vulnerable to 

catastrophic failures (intentional or unintentional) on many levels. Aside from the 

increased complexity, cross-infrastructure dependencies have been shown to give rise to 

cascading effects, with escalating impact across multiple infrastructures. Thus, the 

protection of critical infrastructures, such as electrical power grids or communication 

networks, has become an increasingly significant concern for many governments and 

organizations across a variety of stakeholder perspectives. 

As a primary example, I consider the problem of critical infrastructure protection 

in the context of disaster response and recovery. The field of disaster response and 

recovery is one of several disciplines that have focused attention on the challenge of 

properly understanding critical infrastructure behavior and interdependence. From the 
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perspective of the disaster response task domain, an extreme event colliding with a 

vulnerable situation creates a disaster (Kreimer, 1991; Mbowe and Oreku, 2014). The 

World Bank characterizes a disaster as an extraordinary event with limited duration that 

seriously dislocates a country’s economy (World Bank 1995).  

For example, a chemical, biological or radiological (CBR) incident is considered 

to be a wide-area disaster that is anticipated to disrupt a large number and variety of 

critical infrastructure assets. In addition, natural disasters, such as hurricanes, tornadoes, 

floods, tsunamis, and drought can easily be just as disruptive. When infrastructure breaks 

down, results can be catastrophic and may have long-term regional consequences 

(Coffrin et al., 2011; Franco et al., 2012). 

In the most industrialized countries, some of the major effects of disasters have 

included blackouts, with loss of water and power, disruption in transportation, closing of 

public facilities, and many other impacts (Coffrin et al., 2011). Businesses, too, would be 

negatively impacted to the extent that the overall economy is affected. Even in less-

developed nations, these types of incidents have frequently occurred, leaving large 

segments of the population without supplies and communication (Memmott and Hanks, 

1992). 

When critical infrastructures are disrupted, the ability for a community to function 

is reduced and may dissolve altogether (Franco et al., 2012). In particular, from the U.S. 

national perspective, critical infrastructure protection (CIP) is part of a national program 

to ensure that critical infrastructure failures should have a minimal impact on 

• The national government, performing essential national security missions 

and ensuring general public health and safety; 
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• Regional and local governments, maintaining order and to delivering 

minimum essential public services; and  

• The private sector ensuring orderly functioning of the economy and 

delivery of necessary telecommunications, energy, financial and 

transportation services (Clinton, 1998). 

Any disruptions of critical infrastructures supporting these functions must be 

“brief, infrequent, manageable, geographically isolated and minimally detrimental” 

(Clinton, 1998). While this characterization is derived from a national government point 

of view, the general notion applies equally to almost any organization with critical 

infrastructure dependencies, though the profile of focus infrastructures may well vary. 

The definition and securitization of these infrastructures creates various 

hierarchies, along with exclusions, among interrelated structures (Aradau, 2010). The 

decisions made regarding which community assets and systems are critical and how they 

are prioritized often depend on which technical systems are most important for the 

smooth running of daily life (Mbowe and Oreku, 2014). As discussed later, this kind of 

prioritization activity, including infrastructure modeling and stakeholder perspectives on 

impact, is central to CIP decision-making and an essential consideration in developing 

CIP decision support tools. 

To determine which systems are critical, the impacts and consequences of a 

disaster are assessed, along with the interdependencies among assets and the ability to 

find workarounds should a specific system fail (Franco et al., 2012). The prioritization 

may vary depending on the specific community. Determining the impacts and 

consequences, however, is based on the distribution of source-consumer relationships, 
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while interdependencies among assets are determined based on the source-sink 

relationships among the infrastructure elements. 

Thus, effectively addressing the complex problem of critical infrastructure 

protection, requires (1) understanding or modeling critical infrastructures and 

dependencies between infrastructures (e.g., source-sink analysis, geographic scope), (2) 

understanding the impact of service outages within and across infrastructures (e.g., 

community services, economic), (3) in order to make decisions about priorities from 

different stakeholder perspectives. The staggering complexity of decision-making for 

critical infrastructure protection at any significant scale, gives rise to the need for 

decision-support tools. 

2.1 The Problem of Decision Support in Critical Infrastructure Protection 

Decision makers face many challenges in prioritizing resources for protection and 

response during and after the occurrence of a disaster. In this section I review some of the 

main challenges and context considerations that impact CI decision makers, which serves 

as design context for developing CIP decision support tools. 

2.1.1. Difficulties in Decision-Making for Disaster Recovery 

The decision-making environment both during and after an infrastructure disaster 

can be extremely complex and dynamic. One method used for decision-making in various 

types of complex situations is referred to as the analytic hierarchy process (Saaty, 1994). 

Treated as a hierarchy, the problem can be decomposed into sub-problems, and the 

solutions of the sub-problems can then be aggregated into a decision. In practice, the 

hierarchy referred to by Saaty (1994) can be difficult to define during infrastructure 

disasters. The nature of a disaster and its aftermath is constantly shifting. Decision 
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makers may need to re-evaluate plans rapidly in response to those changing conditions. 

For example, the environment during a terrorist attack can be considered as opposing 

sides wanting to control the states of the critical infrastructure systems to achieve their 

goals (Haimes, 2006; Saaty, 1994). 

Another major issue with decision-making during disasters is inadequate 

planning, despite any efforts made (Guikema, 2009). For example, in the pre-planning 

stage, homeland security and emergency management planners discover and isolate 

service areas within a power grid that are likely to be impacted by a disaster. However, 

this process is often hindered by limited information about the utilities. This is due, in 

part, to the fact that approximately 85 percent of critical infrastructures in the United 

States, including power grids, are held by the private sector. These organizations are held 

responsible for the security of information. Unauthorized access or destruction of an 

organization’s information assets arising from malicious acts, errors, or disasters could 

result in compromised information, along with numerous other consequences (Holgate et 

al., 2012).  

On the other hand, the growth of information technology has created scenarios in 

which there is actually an overabundance of data. This scenario creates the necessity for a 

“needle in the haystack” approach to finding answers in the data. Data quality also factors 

into the lack of usability of the data risk assessments (Guikema, 2009). As a result, the 

pre-planning is difficult, may be based on inaccurate assumptions, and may ultimately not 

be sufficient for quick enactment and remediation during and after a disaster takes place 

(Havlin et al., 2012). 
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2.1.2 Cross/Multi-Infrastructure 

Magnifying the challenges for analysts and decision-makers are the numerous 

inherent interdependencies that exist among critical infrastructures (Havlin et al., 2012; 

Usov et al., 2010). Modern infrastructures consist of complex cyclic interdependencies. 

As a result, any restoration process must take a holistic approach  to be successful 

(Coffrin et al., 2012). For example, electric power systems depend upon transportation 

networks to deliver fuel to generation facilities. These same generation facilities often 

depend upon water systems for cooling purposes. In addition, electric power systems 

depend heavily upon telecommunication networks to support the Supervisory, Control 

and Data Acquisition (SCADA) systems that manage power transmission and distribution 

(Ebrahimy, 2014; Mahmood et al., 2010). 

The list of interdependencies among the critical infrastructure sectors is long and 

in many cases, interdependencies are poorly understood. Furthermore, infrastructure 

interdependencies are often very strong, time-sensitive, and essential to overarching 

system operation. The result is a brittle “system of systems” that contributes to the 

potential for catastrophic occurrences as a failure cascades and escalates across related 

infrastructures (Havlin et al., 2012). The problem of understanding the behavior of 

critical infrastructures and their interdependence as part of reconstitution efforts remains 

difficult and open. The limitations of single-dimensional approaches are by no means 

trivial. Multi-dimensional approaches, while theoretically promising, have produced few 

results. Analysts and decision-makers face extremely complex issues in understanding 

and responding to multi-dimensional CIP problems. They must account for a variety of 

contextual elements, including task goals (e.g., remediation vs. response), geographic 
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scope, infrastructure and cross-infrastructure knowledge, resource allocation, and 

outcome measurement (Usov et al., 2010). Particularly given constraints on response time 

and dynamic contextual alterations, the complexity can rapidly lead to information 

overload, which can significantly impact the efficiency and quality of response. In such a 

shifting decision-making environment, it can be just as important to reduce the decision-

making attempt as it is to increase decision quality (Todd and Benbasat, 1992). 

Specifically, simplifying the efforts to prioritize which assets to dedicate resources is 

vital to recovery following a disaster. This balance is also an important design 

consideration in CI decision support environments. 

2.2 Requirements for Critical Infrastructure Analyses 

To meet these CIP goals, frameworks for critical infrastructure assurance have 

been developed, such as the six phases of the Critical Infrastructure Protection Life Cycle 

(England, 2005), as shown in FIGURE 1. Each of these phases gives rise to distinctive 

priorities and goals as a context for decision-making. 

 

FIGURE 1: Phases of the critical infrastructure protection life cycle 

Prioritization must occur at each stage of this process. Factors affecting prioritization of 

components of critical infrastructure include (Franco et al., 2012): 

 Disaster consequences and impacts  

 Recovery objectives 

 Status and relationships of services to recovery objectives 



20 

 

 Status and contribution of services to Infrastructure assets  

 Interdependencies 

 Workaround potential 

 Milestone requirements 

2.2.1 Pre-Event Preparation 

In the pre-event phase, decision-makers and planners analyze infrastructures to 

determine potential vulnerabilities and focus points for remediation and monitoring. 

Specifically, in the pre-event phase analysis, critical infrastructure systems must be 

considered in their entirety  to identify and prioritize potential weaknesses, with the goal 

of minimizing potential impacts from large-scale disasters on services provided by 

critical infrastructure systems (Mendonça et al., 2014). 

 There are several important actions that should be considered by recovery 

planners and enacted by managers of emergency personnel and processes, which would 

support a quicker economic recovery, for example, after a wide-area CBR (Franco et al., 

2012). These are summarized below 

 Baseline knowledge of critical infrastructure characteristics and assets 

must be developed, including such information as service types, 

dependencies and interdependencies, and workaround potential. 

 Prioritization approaches need to be developed and evolved for 

execution within a multi-disciplinary group of stakeholders. 

 Strategies for disaster economic recovery must be developed, along 

with enactment plans, and aligned between the government (federal 

and local) and the private sector. 
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 Adequate capital must be ensured for recovery (include agreements, 

funding mechanisms, and insurance policies). 

 Economic resistance and resiliency must be built into the regional 

economy. 

Pre-disaster preparation may also involve training exercises that have been 

developed with anticipated hazards in mind (Franco et al., 2012; Mendonça et al., 2014). 

Ultimately, the goal of these exercises is to develop tools, response and training 

techniques that aid in achieving organizational resilience, or the capacity to retain control, 

continue operating, and rebuild where necessary (Mendonça et al., 2014). 

During the pre-disaster phase, criticalities of network elements are studied as a 

part of vulnerability analysis. At this point, it is important to define criticality and explain 

how vulnerability analyses play an important role to help decision makers as a part of 

pre-event analyses. 

Criticality 

One quality of infrastructure system components considered crucial to discovery 

and understanding is criticality – the highest levels of importance. Each critical 

infrastructure system has a distinct mission, generally defined by a decision-maker, and 

can be altered as needed (Quirk and Fernandez, 2005). Energy infrastructure, for 

example, possesses the critical mission to reliably supply power to businesses or 

residents. As society relies more on the internet, to the degree that it is now considered 

indispensable, criticality of that infrastructure has been realized (Yan et al., 2010). 

Pre-planning should incorporate potential effects of damage to a particular 

network component that would result in the loss of critical functionality. Topologic 
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characteristics are often used to convey criticality in a network system. The assessment of 

criticality has taken many forms, using various tools such as graph-theoretical analysis, 

route-based analysis, traffic-based analysis, and consequence-based analysis (Yan et al., 

2010).  

Vulnerability 

Definitions of vulnerability and methodologies to capture them vary in their 

context and specificity (Collins et al., 2011). Criticality and vulnerability are intrinsically 

distinct from each other. Criticality may, in fact, be a constituent of vulnerability (Quirk 

and Fernandez, 2005). Determination of the degree of vulnerability for a component of a 

critical infrastructure can be affected by numerous factors such as population or a single 

point of failure within or across networks. Particularly vulnerable components should be 

prioritized in critical infrastructure analysis. Any CI analysis should consider the specific 

population served by a component, which would be particularly negatively affected in the 

event of a disaster (Matisziw and Murray, 2009; Schintler, Gorman, et al., 2007; 

Schintler, Kulkarni, et al., 2007). For example, when the size of the population served by 

a particular component is large, that population is particularly vulnerable (Bush, 2005).  

The type of population is also a factor, for example, an inpatient hospital houses a 

population of more susceptible people, and the failure of critical infrastructure could 

substantially increase mortality in that particular population. It is also important to note 

that the population served by a specific component of the critical infrastructure may vary 

throughout the day. Subsequently, the vulnerability of that component may also vary. If 

the service area served by a component consists of businesses and the critical 
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functionality of those businesses is at risk, then that will influence the determination of 

vulnerability(Schintler, Gorman, et al., 2007).  

The U.S. Department of Homeland Security (DHS) recently developed a 

methodology for evaluating protection defenses and vulnerability of key resources and 

critical infrastructure. This methodology for detecting and measuring vulnerability is part 

of a greater DHS effort (referred to as the Enhanced Critical Infrastructure Protection 

Program) to mitigate any vulnerabilities, enhance relationships between separate entities, 

and improve the flow of information among public and private entities (Collins et al., 

2011). The complexity and recent nature of this methodology highlight the need for 

research into effective ways to manage critical infrastructures. 

According to Koger and Landry (2010), several factors directly impact the 

vulnerability of critical infrastructure. These factors are grouped as being technological, 

societal, natural, system-related, or institutional. Societal factors include the appeal of a 

particular service area for attack, demographics, and the ability to quickly communicate 

with the public in that area. System-related factors center around a network’s 

sophistication and interdependence. Natural factors involve the availability of vital 

resources and the incidence of natural hazards. Technological factors consist of 

likelihood of failure. For example, inconsistencies in a network design exposes that 

network to potentially severe outages, thereby increasing overall system vulnerability 

(Zio and Golea, 2012). Institutional aspects comprise the existence of historic structures, 

specifically related legislation, and market organization (Cetinkaya et al., 2010; Koger 

and Landry, 2010).  
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Vulnerability analyses are also used to determine the resilience of CI networks. 

The concept of resilience has been introduced as the ability to recover from a disaster and 

to reduce impacts from future disasters. Territorial resilience can be determined by the 

supporting elements for organizations when they confront crisis situations (Garbolino et 

al., 2013). Resilience is the ability of a network to provide a desired service even when 

challenged by large-scale disasters or other types of failures (Sterbenz et al., 2013).  

2.2.2. Event and Post-Event Phase 

During an event, first responders focus on moderating the overall effects of the 

disaster. There is a focus on containment of the effects, which could lead to disabling 

currently functional infrastructure assets to reduce the probability of a cascading failure. 

Such response capabilities are characterized as a “system for responding to a significant 

infrastructure attack while it is underway, with the goal of isolating and minimizing 

damage” (Clinton, 1998). 

In the post-event phase, recovery planners and decision-makers assess 

infrastructures to determine the most effective allocation of resources to rebuild and 

restore damaged infrastructures. A process for prioritization of critical infrastructure is 

necessary (see FIGURE 2). Analysis is more precisely focused on known areas of impact, 

which may be radically different from areas of focus identified in pre-event analysis. 

Reconstitution capability can be characterized as a “system to reconstitute minimum 

required capabilities rapidly” (Clinton, 1998; Franco et al., 2012). 
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FIGURE 2: Process for prioritization of critical infrastructure (Franco et al., 2012) 

2.2.3. Recovery Phase 

Managers of civil infrastructure systems face the problem of restoring essential 

public services after failures of the system (Cavdaroglu et al., 2013). Recovery after a 

disaster, natural or man-made, consists of a variety of components. The planning 

developed during the pre-disaster phase is expected to be enacted immediately following 

the disaster event. Where possible, data are collected and compared to pre-event baseline 

data for regional critical infrastructure assets. Pre-determined prioritization is reassessed 

and utilized. Private and public sectors coordinate efforts and share information. Interim 

provisions are made to protect and preserve life (Franco et al., 2012). If effective, the 

preplanning should speed the response, smooth the transitional periods, and mitigate 

damage to people and the economy.  

There are numerous considerations related to supporting a region’s critical 

infrastructure recovery. Due to the limitations of available resources, recovery team 

members who are responsible for planning recovery efforts must employ a transparent, 

analysis-based process for prioritizing infrastructure restoration to determine the 

components and tasks needed for temporary installment or repair, along with the optimal 

assignment of the tasks to work groups and schedules for the completion of the tasks. 

This involves extensive assessments and data collection and modeling to ascertain the 

current state. This information will assist the decision-making and prioritization, and 

relieve the general uncertainty regarding the need and availability of critical services and 

functions (i.e., drinking water, food, mobility, medical care) that can immediately follow 

a disaster (Cavdaroglu et al., 2013).  
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Transportation of people, goods, and services is critical. These resources sustain 

the operators of infrastructure assets, and, if the resources are unavailable, operators may 

not be able to perform their duties (Cavdaroglu et al., 2013). Transportation is considered 

a focal point. Impacted industries considered to be “cornerstone,” and the critical 

infrastructures they rely on, need to be identified and prioritized accordingly for 

restoration. Agricultural infrastructure, as a source of food and as a fundamental 

component of economy, should be prioritized (Franco et al., 2012). 



 

CHAPTER 3: PREVIOUS WORK ON DECISION SUPPORT APPROACHES 

 

 

In the previous chapter I defined the CIP problem, examined different aspects of 

the problem and provided examples of difficulties facing those aspects at various stages 

of the disaster timeline. The complexity of the CIP problem motivates the need for 

decision support tools and environments to help CI analysts and decision makers. In this 

section I will provide background information on decision support approaches and their 

applications on various aspects of critical infrastructure analyses. In addition, since I 

analyze CI service area estimation methods enabling knowledge components for decision 

support, I also include an overview of foundational concepts for service area estimation. 

3.1 Spatial Decision Support 

A Decision Support System (DSS) can be defined as “a computer based system 

that aids the decision-making” (Finley and Sanders, 1994). Because most computerized 

systems support many critical and non-critical decisions the area is very open for 

interpretations from different fields. Keen (1980) suggested that providing a precise 

definition of DSS that includes all of its facets is impossible, demonstrating the 

complexity of the interplay of factors important to such systems.  

The methods used in DSSs involve designing intelligent components capable of 

delivering informed recommendations, which can greatly assist decision-makers as they 

make choices (D. R. Wilson and Martinez, 2000). 
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3.1.1 Spatial Decision Support Systems (SDSS)  

Spatial Decision Support Systems are defined as flexible systems that enable 

analysis of geographical information in a decision-making environment (Densham, 

1991). It is possible to think of SDSS as a flexible wrapper around set of geographic 

information analyses processes and tools. According to Densham, a SDSS framework is 

used for integrating database management systems with analytical models, graphical and 

tabular reporting capabilities, and expertise of decision-makers (Densham, 1991).   

SDSS evolved from traditional DSS designed for business-oriented applications, 

and then followed a parallel development pattern. DSS and decision-support science 

essentially form the foundation of SDSS. DSS has traditionally been defined as having 

six core components (Densham, 1991; Geoffrion, 1974): 

 1. They are specifically designed to solve ill structured, ill-defined problems. 

 2. They have an easy to use, powerful user interface. 

 3. They can combine complex analytical data. 

 4. They utilize built in models to generate alternatives for the user to select from. 

 5. They support different decision-making styles.  

 6. They support interactive, recursive problem solving. 

Densham (1991) further extends this definition to describe SDSS by including a 

few additional capabilities: 

 1. They allow for input of spatial data. 

 2. They allow for the representation of complex spatial relationships. 

 3. They can be used to perform spatial analysis. 

 4. They provide output in some sort of spatial format (i.e., maps) 
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Examples of the use of SDSS in critical infrastructure assessments include the application 

of a web-based SDSS for flood risk management (Jumadi, 2013), management of storm 

water and assessment of water quality (Kaunda-Bukenya et al., 2012), and determination 

of the optimal sites to use for physical development (Baloye et al., 2010). 

3.1.2 Multi Criteria Decision Analysis  

Multi Criteria Decision Analysis (MCDA) was first designed to provide solutions 

for problems with coexisting conflicting interests in Operations Research field. In such 

cases there exists a need for identification of priorities according to multiple criteria to 

support analysts and decision-makers (E. Gomes and Lins, 2008; E. G. Gomes and Lins, 

2002). It also is possible to describe MCDA as “an umbrella term to describe a collection 

of formal approaches which seek to take explicit account of multiple criteria in helping 

individuals or groups explore decisions that matter” (Belton and Stewart, 2002).  

MCDA allows for weighting, or ranking, of specific criteria important in 

decision-making. For example, MCDA has been utilized to aid in the response to an 

electrical system failure for the determination of the optimal approach for restoration 

(Wang, 2001), in generation of a suitability map for biodiversity conservation within a 

region in Italy (Bottero et al., 2013) and in ranking the potential failure of equipment 

within certain energy substations (Moreira et al., 2009). Achieving MCDA is a long-term 

goal that can be facilitated by findings of this dissertation. In the decision recommender 

system discussed in in chapters 4 and 5, I propose and implement simple decision 

analysis with ordinary weighting.  Expanding this to perform an experiment testing 

different MCDA techniques requires detailed infrastructure data for a large area and 
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multiple infrastructures, so that simulations can be meaningful enough to make 

comparisons to human judgment. 

3.2 Decision Support in Critical Infrastructure Recovery 

According to Kreimer (1991), the actions that immediately follow a natural 

disaster generally include activities designed to 

• Provide emergency assistance 

• Reduce the possibility of secondary damages, and 

• Speed up recovery operations. 

The key to meeting these criteria is gaining greater knowledge and understanding of the 

affected entities and interrelations among them. Post-disaster restoration of infrastructure 

typically requires consistently close collaboration across many sectors. Unfortunately, the 

technological capacity to support this type of collaborative training lags behind current 

training needs. Additionally, the rarity of such large-scale disruptive events reduces the 

opportunity for observation, data collection, and comparisons of impacts, responses, and 

recovery efforts (Mendonça et al., 2014). 

There are several reasons for the increasing research emphasis on more effective 

disaster response support at a national level, specifically in the United States (Tolone et 

al., 2004). Events such as the 2003 northeast blackout and Hurricane Katrina have created 

broader awareness of the complex problems involved in disaster response and insufficient 

planning and resources. Historically, critical infrastructures were not as integrated and 

complex, and man-made chemicals, which may potentially be used as weapons, were not 

available in great abundance (Santella et al., 2009). With advances in technology and 

automation, as well as increased coupling of infrastructure management with 
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communication systems for managing CI, more recent events, including natural disasters 

or terrorist attacks, have had more far-reaching consequences than ever before (Usov et 

al., 2010; Volkanovski et al., 2009). Natural disasters, in particular, are anticipated to 

continue to increase in severity due to climate change (Andersson et al., 2005). In 

addition, technological advancement has also led to increased knowledge availability. For 

example, the National Hurricane Center has developed new models that can predict the 

direction, timing, and magnitude of tropical storms and hurricanes (Coffrin et al., 2011). 

Unfortunately, this knowledge is not easily incorporated into disaster response planning 

(Coffrin et al., 2011). 

Aside from disaster recovery, the problem of understanding critical infrastructure 

behavior and interdependence is a significant issue across many well-established 

disciplines, such as urban and regional planning, civil and environmental engineering, 

operations research, landscape architecture, and emergency management (Tolone et al., 

2004). In pursuit of knowledge and understanding of this behavior and interdependence, 

some researchers emphasize brokered integration of data and information within software 

systems, while others focus on how to prevent such occurrences by vulnerability analysis 

(Haimes, 2006), whereas other researchers focus on responding to events in the most 

effective way (Coffrin et al., 2011). 

The field of Geographic Information Science and Technology (GIS&T) is 

receiving increasing attention for this purpose (D. C. Wilson et al., 2008). GIS&T 

researchers have approached the study of critical infrastructure behavior and spatial 

interdependence from three main vantage points (Sinton, 1992). The first examines 

critical infrastructure interdependence with tools from spatial statistics and econometrics, 
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an approach typically identified as spatial data analysis (Cressie, 1991; Haining, 1990). 

The second depicts geographic correlations among critical infrastructure elements via 

traditional map overlay methods for spatial data aggregation within a geographic 

information systems (GIS) environment (Burrough, 1990; Goodchild, 1990; Greene, 

2002). The third employs rule-based inference engines, usually grounded by human 

expert knowledge, in the delineation and manipulation of interdependence (Gronlund et 

al., 1994). Static models, similar to descriptive, reflect an unchanging status, whereas 

dynamic models give the user a view of changing processes over time (Maguire and 

Longley, 2005). 

The goal of GIS-based modeling is to reflect, simplified but accurate view of the 

real world under varying specific conditions, in order to gain an understanding of, and 

predict the impacts of, certain events and conditions. To meet real world needs, software 

with geospatial analysis capabilities must be developed with the end user in mind. It must 

be easy to learn, function efficiently, and provide straightforward output. Researchers 

have made substantial efforts to improve geospatial software by analyzing the end user’s 

behavior, in addition to better visualization tools and enhanced exploratory data analysis 

capabilities (Mac Aoidh, 2008; Mac Aoidh et al., 2008; D. C. Wilson et al., 2008).  

GIS-based modeling can be used in the application of CIP, as an infrastructure 

modeling tool (Tolone et al., 2004). The Urban Flood Model for ArcGIS is an example of 

an external model and it integrates the urban flood model output directly into ArcGIS 

(Kang et al., 2010). Embedded models, such as those created using a GIS model builder, 

are directly implemented in GIS. These models require more time for the actual 

integration, but are much quicker to use (Goodchild, 1993; Goodchild et al., 1993; 
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Maguire and Longley, 2005; Westervelt, 2002). The Interdependent Energy Infrastructure 

Simulation System (IEISS), which was developed by the Los Alamos National 

Laboratory for the National Infrastructure Simulation and Analysis Center (NISAC), 

simulates the interactions both within and among critical infrastructure systems. 

Specifically, the IEISS seeks out potential cascading failures that impact more than one 

critical infrastructure network (Bush, 2005). Within any urban system, a common GIS 

platform gathering all networks, city infrastructures, populations and issues could be of 

high value in planning for a more resilient city (Toubin et al., 2012). 

Tolone and colleagues (2004) have identified three important characteristics that 

are necessary to modeling architecture. These include scalability, flexibility, and 

extensibility. The flexibility component would allow for varying models to be 

constructed for a given infrastructure and region. Scalability allows for multiple models 

of similar infrastructure types to be simultaneously incorporated into a simulation. 

Extensibility is simply the expansion of the simulation by adding new infrastructure 

model types (Tolone et al., 2004). Advancements in user-friendliness are crucial to CIP 

planners, who may not have expert knowledge of geospatial science and technology, yet 

still have to work across disciplines incorporating GIS-based models  to conduct effective 

planning (D. C. Wilson et al., 2008). 

3.3 Previous Research on Critical Infrastructure Analyses 

Most research on critical infrastructures has been conducted in industrialized countries, 

and has focused on transportation and energy components of the overall infrastructure. 

Less-developed countries have not been as extensively investigated, primarily due to 

scarcity of data in those regions (Usov et al., 2010).   
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CI research has been limited due to such things as differences in the data that are 

available across fields of study (Usov et al., 2010). Climate and climate-impact data tend 

to be collected using large-scale resolution, whereas critical infrastructure data are 

typically at a much finer resolution. More recently, climate data are being scaled to more 

closely match power grid data. This area of study is still emerging, and new problems 

have arisen with regard to how the climate and power grid data can be integrated and 

analyzed (Bhaduri and Kloos, 2013). 

 A recent example of emerging studies includes research on the relationship 

between climate change, or natural disasters, and energy infrastructure, such as energy 

grids (the network of transmission lines, substations, and power plants) (Santella et al., 

2009). Within power systems, Volkanovski et al., (2009) developed a method that 

incorporates both the fault tree analysis and the analysis of power flows within the system 

to conduct reliability assessments. Their method allows for identification of the main 

contributors to reliability within the power system (Volkanovski et al., 2009). The 

Critical Infrastructure Protection Decision Support System (CIPDSS) modeling tool, 

developed for the Department of Homeland Security, was tested by a group of 

researchers trying to determine the potential capabilities available through modeling. 

Specifically, they modeled road and telecommunication disruptions, and studied 

cascading effects on related infrastructure sectors (Santella et al., 2009). More recent 

efforts using different models have aimed to incorporate disaster-specific information 

into optimization techniques, whereby total watts of power outages are minimized 

(Coffrin et al., 2011).  
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 Yet, as sophisticated as mathematical modeling techniques are, those applied to 

critical infrastructure data have not greatly enhanced the understanding vulnerabilities of 

critical infrastructure networks. There is still a great need to build support for analysis 

and decision-making in these networks. Therefore, this dissertation explores an integrated 

tool for decision support and compares service area estimation techniques to a city-wide 

power network and a statewide water networks, to better understand the components 

needed for successful analysis and decision-making for critical infrastructures.  

A number of researchers, such as Getis (1994) and Sinton (1992), have advocated 

a multi-dimensional approach to the study of behavior and spatial interdependence of 

critical infrastructures. Instead of divide and conquer, they suggest a strategy that 

combines the strengths of a multi-dimensional approach and investigates interdependence 

from all three viewpoints. However, though there have been some genuine efforts in this 

direction (Flowerdew and Green, 1994; Getis, 1994), progress along this route has yet to 

meet the advocates’ expectations. 

In 1995, Jankowski identified two main perspectives on the use of GIS in a 

decision support system (Jankowski, 1995). The first perspective, the SDSS perspective, 

incorporates geographical information in the generation, evaluation, testing, and 

production of recommendations to spatial decision-making problems. In this perspective, 

GIS is identified as the core of the SDSS. The second perspective, the integration 

perspective, involves incorporating existing models into the framework of a GIS.  

In MCDA, GIS is widely used and has been studied in fields such as land 

suitability or planning scenarios. Methods used in MCDA include outranking methods 

and weighted summation. However, due to the ease of employing map algebra, weighted 
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summation is used most often, as reflected in publications by Malczewski (2006). Very 

little attention has been given to attribute-based GIS models in the assessment of 

vulnerability and criticality in energy networks. Most of the research examining 

vulnerability and criticality within energy networks focuses primarily on the use of graph 

theory. The flow of energy throughout the system is not incorporated into the model 

(Arianos et al., 2009). 

DHS has supplied a listing and description of the software tools currently used by 

the federal government for the purpose of decision support (Franco et al., 2012). Here, I 

provide an overview of these tools, showing that each one serves a particular purpose but 

there is no single tool that integrates the information that could support the diverse 

purposes of analysis, simulation, or prediction of critical infrastructures that could be 

critical in decision-making. 

The PATH/AWARE tool assists emergency planners with infrastructure 

prioritization by using a quantitative methodology. Planners can use this software to 

scrutinize interactive GIS maps of a given restoration area, based on real-time data. 

Weights can be input into the model, which should be based on specific recovery 

objectives. By using a quantitative algorithm, the software yields a prioritized listing of 

infrastructure components in need of restoration. A user can make changes to the priority 

list as needed. The difference between this tool and the tool that I developed for this 

dissertation is in the cross-infrastructure cascading effects. My approach cascades 

disablements in networks within and across networks based on defined dependencies to 

recommend prioritization.  
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Another software suite, FASTMaps, provides GIS-based results and statistical 

data on essential economic sectors, in addition to the physical position of critical 

infrastructure and assets considered to be at risk. It can either provide answers to 

questions directly or serve as pre-modeling data for more detailed analyses.  

Economic impact can be estimated using REAcct, which yields county-level 

estimates of economic impact as indicated by changes in Gross Domestic Product and 

status of employment. This model can be applied any region within the United States, via 

the integration of geo-spatial tools and economic data. 

Another software tool, N-ABLE, simulates environments and larger-scale supply 

chain models for estimation of economic impacts over time. Long-run structural 

alterations to the economy can be modeled using REMI. This software is publicly 

available and is used to produce annual models retrospectively.  This is an economic 

impact modeling tool specifically used for supply-chain modeling whereas the tool that I 

explain in Chapter 4 of this dissertation focuses on recovery after the disaster, and the 

priorities can be modeled on any information layer such as population effects, effects on 

other stakeholders and critical point impacts instead of just economic data.  

Each of these software tools addresses several factors that could be important for 

critical infrastructure analysis. However, none of these tools is tailored specifically to the 

task of decision support, and each has parts missing that would be needed in emergency 

management. 
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3.4 Research to Develop Methodology for Understanding Interdependence of 

Critical Infrastructures 

In general, studies in the reliability engineering area focusing on interdependence 

have primarily emphasized topological properties like betweenness and disruption of 

connectivity (Dueñas-Osorio and Vemuru, 2009; Ouyang and Dueñas-Osorio, 2011). In 

the sphere of artificial intelligence, more studies focusing on the restoration of multiple 

interdependent infrastructures are needed. Power system restoration scenarios have been 

considered in studies promoting good methodology in the application of planning, 

configuration, and diagnostic techniques. However, many researchers use connectivity as 

a foundation of their models. Inasmuch, their reliability is insufficient in situations in 

which complex interdependencies exist (Coffrin et al., 2012).  

Apostolakis and Lemon (2005) conducted a study in which they examined three 

critical infrastructures on the MIT Campus: electric, water and natural gas, as well as the 

interactions between them (Apostolakis and Lemon, 2005). They focused on developing 

a process for identifying critical locations in infrastructures, given a specific threat as a 

component of their vulnerability analysis. Following on that work, Michaud and 

Apostolakis (2006) developed an approach using geographical information that takes 

water supply network capacities and repair into account  to create a vulnerability 

screening methodology in the context of potential terrorism scenarios (Michaud and 

Apostolakis, 2006). Patterson and Apostolakis (Patterson and Apostolakis, 2007) pooled 

the prior two methods and tailored them  to produce a more effective system for mapping 

the geographic-valued worth, which was exhibited in a color scheme representative of the 
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numerical ranking of distinct geographical areas (Koonce et al., 2008; Michaud and 

Apostolakis, 2006; Patterson and Apostolakis, 2007).  

Tolone and Chu (2010) have created a multi-infrastructure modeling system that 

can simulate interdependencies and vulnerabilities among numerous entities. Through 

simulation, the impacts of infrastructure failure components on other infrastructures can 

be predicted. However, this system requires substantial collaboration and data sharing.  

Coffrin, et al (2012) devised a “last-mile restoration approach” to be applied to 

multiple complex interdependent infrastructures. Their approach uses mixed-integer 

programs (Argany et al., 2011) to model interdependent networks (specifically, power 

and gas), through the combination of a linearized Direct Current model for the first 

network (power) and a flow model for the other (Ehlen et al., 2010). 

 Usov (2010) also recommends simulation for critical infrastructure dependency 

analysis to test methods of risk reduction, and evaluation of historical failures. Moreover, 

coupling the simulations with external threat models, such as a river flood model, can 

help with decision-making processes in more complex situations. More research is 

necessary, specifically on the reusability of coupling solutions and on ontologies, 

development of tools for scenario management, models, and critical infrastructure data, 

and development of other potential uses of the simulation coupling methods (Usov et al., 

2010). 

Each of these studies has contributed to the general understanding of 

interdependencies among infrastructures, but progress hinges upon the resolution of 

certain issues. Sharing of data and information among distinct infrastructures and access 

control is a prominent issue (Tolone et al., 2005). Expansion of system environments to 
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acquire and support novel, discovery-based analyses is necessary for system evolution, 

hence increasing their value. Incorporating probabilistic representations of dependencies 

and failures among and within infrastructures, including the use of more complex 

analyses when dealing with fuzzy effects of probabilistic events is also important 

(Mendonça et al., 2014; Tolone et al., 2004) . A better understanding of cascading and/or 

escalating failures within and among critical infrastructures can be attained through the 

study of alternate scaling of common cause failures in which multiple infrastructures 

become disabled due to a single cause.  

The general interface between simulation and decision-making models needs to 

be further studied, requiring a wider spectrum of expertise and skills. Most essentially, 

validating data, information, and knowledge across infrastructures is fundamental to 

enhancing protection of critical infrastructures (Tolone et al., 2004). For example, the 

accuracy of certain topological metrics used for modeling infrastructure systems has 

recently come into question (Hines et al., 2010). This is a primary issue that I address as 

one of my main research questions here. Chapters 6 through 9 focuses on the accuracy of 

modeling critical infrastructure service areas.  

Mendonça, et al. (2014) published a description of a group of prototype tools that 

were designed for analysis in post-disaster environments and supporting the restoration of 

infrastructure systems through training exercises. The system consists of large-scale 

displays, novel interaction abilities, and realistic data, all run through discrete event 

simulations. The parameters (i.e. time available for task execution, the complexity of the 

networks) of each simulation could be modified as needed. This work shows promise for 
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aiding in understanding complex interactions within and among infrastructures, and 

continues to be developed and tested (Mendonça et al., 2014). 

Kulawiak, in a 2013 paper, presented a system offering tools for target analysis, 

simulations, and spatial analysis for use in analyzing municipal Critical Infrastructures 

with a remote, web-based geographic information system. This system was applied to 

research in the city of Gdansk, Poland, including blast attack, chemical contamination, 

and flood hazard scenarios. The system also used a spatial density algorithm, that 

identifies events where the proximity of certain infrastructures can influence their 

susceptibility to attack (Kulawiak and Lubniewski, 2013).  

Liu (2014) used a computational model of failures (incorporating field 

knowledge, records, results from inspection, and sensory data) within the infrastructure of 

water transmission and distribution systems, with the goal of facilitating the decision-

making process in water main renewal. The model used fuzzy theory-based techniques 

(fuzzy synthetic evaluation, and a fuzzy Markov process) (Liu et al., 2009).  

Recently a paper by Ouyang (Ouyang, 2014) reviewed studies across the critical 

infrastructure field and broadly groups the existing modeling and simulation approaches 

into six types: empirical approaches, agent based approaches, system dynamics based 

approaches, economic theory based approaches, network based approaches, and others. 

The author also offers future research directions and identifies critical challenges in the 

field. Future directions that are identified are a) “data access and collection,” b) 

“comprehensive modeling and analysis,” c) “Integration and co-simulation” and d) 

“validation and applications.” This dissertation addresses Ouyang’s areas of 

comprehensive modeling and analysis, validation, and integration. In Chapters 4 and 
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Chapter 5 of this dissertation, I delve into comprehensive modeling critical infrastructure 

systems and also propose a decision support framework that would help integrate 

different approaches. In Chapters 6-8 I evaluate existing service area estimation 

techniques and proposes new ones showing that some of these methods perform 

satisfactorily would lead to decrease in dependency to detailed distribution system data. 

3.5 Previous Work on Service Area Modeling 

Service area estimation methods are used to determine source-sink relationships 

between critical infrastructure service distribution nodes and demand nodes. Chapters 6 

to 9 describe my research on service area estimation as an enabling knowledge model 

component for decision support. Here I provide an overview of concepts and related work 

in service area estimation as a foundation for the development and testing of my 

approach. 

3.5.1 Spatial Approximation Methods for Service Areas 

Utility services, including electric power (EP), water, natural gas (NG), and 

telecommunication (Telecom) serve their customers through various functional service 

source facilities, such as power substations (EP), pumps and pipes (water, NG), and 

switch controls and cell towers (Telecom). Each of these sources is related to a 

geographical area that represents the customers in their service area.  

Defining service areas accurately has long been a problem, but estimating these 

boundaries accurately is very important in disaster recovery situations. During 

emergencies, external decision-makers often rely on estimates of service areas produced 

by various methods. Typically, a geographic boundary for each serving point is defined 

to estimate the source-sink relationships between the serving network entities (“sources”) 
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and the entities using those services (“sinks” or “demands”). Data that encapsulate the 

source-sink relationships between these serving points and the customers are often 

unavailable to external sources. However, the notion of source-sink analysis as the 

foundation of the network models underneath critical infrastructure analysis is extremely 

important.  This kind of analysis is used in Chapters 5-7 to weight and improve the 

accuracy of all investigated service area estimation methods for power and water data. 

Increased estimate accuracy could lead to a more efficient recovery. It is important to 

understand the comparative merits of the estimating approaches to support decision-

makers as they develop mitigation and remediation strategies after a damaging event 

(Castongia, 2006; L. J. Fenwick and Lyne, 1999; P. Newton, 1997; Sulewski, 2013). 

Before a useful process can be designed, spatial approximation methods must be 

fine-tuned for better accuracy within critical infrastructure systems (Keen, 1980). The 

delineation of specific service areas can be done using software (such as ArcGIS). 

However, much of this software requires unobtainable data, and is designed especially for 

utility companies. Furthermore, even though utilities have detailed information about 

specific distribution source-sink relationships between their assets, this information is not 

designed or organized to facilitate large-scale analyses, nor is it documented by public 

regulatory agencies. In fact, these data are often considered sensitive or proprietary. As a 

result, CIP planners have started using other spatial approximation methods for 

delineating service areas within distinct power grids (Meyers, 2001). The two main 

methods used are spatial proximity and rule-of-thumb methods. These two methods are 

of limited value because they do not incorporate factors such as variation in supply and 

demand.  
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3.5.2 Computational Geometry 

Computational geometry is based in geometric modeling. Geometric modeling, in 

turn, consists of the mathematical depiction of geometric shapes, such as curves and 

surfaces. Computational geometry branches from basic modeling, with emphasis on 

developing, analyzing, and implementing computer algorithms that were derived in 

geometric modeling. The application of computational geometry is broad, with 

substantial use in engineering, biology/ecology, geology, and other core sciences 

(Patrikalakis and Maekawa, 2009). De Berg (2000) defines computational geometry as 

“the systematic study of algorithms and data structures for geometric objects, with a 

focus on exact algorithms that are asymptotically fast.”  The field has produced a large 

collection of efficient and useful geometric algorithms that are used today (De Berg et al., 

2000).  

GIS is rife with geometric problems, because geographical data consists of shapes 

of land masses, including heights and depths, vegetation types and density, population 

data, and weather patterns. These systems have a lot of relevance within the study of 

critical infrastructures, as they can also store data for human-made structures (i.e. roads, 

cities, electricity lines). Voronoi diagrams are one method used to solve a geometric 

problem. For example, they can be used for mapping out the optimal route from one 

location to another. These diagrams have also been paramount in the study of critical 

infrastructures and interdependence among them (De Berg et al., 2000). 

3.5.3 Thiessen polygons (Voronoi diagrams) 

Research in the definition of service areas for critical infrastructure has utilized 

the Voronoi approach (Akabane et al., 2002; P. Newton, 1997; A. Okabe and Sugihara, 
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2000). Thiessen polygons, also known as Voronoi diagrams, are useful for data 

presentation and analysis data since they uniformly and systematically partition an area. 

They are simple geometrical structures that are easy to create, computationally less 

demanding than other methods, and the output is a uniform discrete dataset composed of 

polygons separating the space into equal pieces based on the center points. Thiessen 

polygons define abstract boundaries, which is critical when approximating substation 

service areas, which tend to be constrained by geographic traits such as water bodies 

(rivers, lakes, and wetlands) or mountain ridges.  

Given some number of points in a Euclidean plane, a Thiessen diagram divides 

the plane according to a nearest-neighbor rule: each point is associated with the region of 

the plane closest to it (Aurenhammer, 1991). To create the region boundaries, this method 

draws a straight line between all pairs of points; on each line’s mid-point, a perpendicular 

line is drawn at equal Euclidean distance to each endpoint. Thiessen polygons take shape 

when perpendicular lines are trimmed at intersections with other lines (Boots, 1986) 

(FIGURE 3). Work by Okabe (2000) and Okabe et al. (1992) provides detailed 

discussions on the concept of Thiessen diagrams from both historical and geometric 

viewpoints.  

From a critical infrastructure perspective, the literature includes papers (Akabane 

et al., 2002; Held, 2004; P. Newton, 1997; H. Okabe et al., 1992) that detail efforts for 

using this approach to create critical infrastructure service boundaries. For example, some 

researchers have applied Thiessen diagrams to the approximation of service areas when 

looking to determine the optimal sites for power quality control centers (Akabane et al., 

2002).  
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One drawback of this approach is that it assumes each point is homogeneous (as 

seen in FIGURE 3). This is generally not the case because each source point provides 

varying degrees of service. For example, electric power substations have different load 

outputs, and natural gas gates have different pressures and output capacities. For 

weighted Thiessen polygons, the critical infrastructure elements with smaller outputs are 

assigned smaller service areas calculated by using weighted Euclidean distances (Dong, 

2008). In practice, this approach is potentially more realistic than Thiessen polygons with 

equal weighting. For example, an EP substation with a 2-megawatt power output is 

estimated to serve a smaller area than its neighbors with larger load outputs, as shown in 

FIGURE 4. 

Research by (Gahegan, 2000, 2000; Gahegan and Ehlers, 2000; Gahegan and Lee, 

2000; Gahegan et al., 2000) and (Dong, 2008) represents some of the primary attempts at 

creating software applications to produce accurate weighted Thiessen polygons.  

 

FIGURE 3: Example thiessen polygons    
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FIGURE 4: Example thiessen polygons with weights 

Geosensor network optimizations often employ Voronoi diagrams, along with 

Delaunay triangulation (Argany et al., 2011). Voronoi models have also been used to 

estimate the volume of reef-top sediment bodies in Hawai’i (Bochicchio et al., 2009). 

Interest in quantifying the emission of methane from landfills has led to the use of 

Voronoi diagrams and importance sampling for robust prediction of gas and other volatile 

organic compound emissions (Mackie and Cooper, 2009). 

3.5.4 Cellular Automata  

Discrete computational systems that are composed of a finite or enumerable set of 

homogeneous, simple cells as a part of a spatially and temporally discrete grid structure 

are called cellular automata (CA) (Berto and Tagliabue, 2012). Often, CA are explained 

as mathematical models for complex natural systems that contain large numbers of 

simple identical components with local interactions (Wolfram, 1994). I adopt the 

following as a formal definition:  

“[A] Cellular automata system [is] composed of adjacent cells or sites (usually 

organized as a regular lattice) which evolves in discrete time step. Each cell is 

characterized by an internal state whose value belongs to a finite set. The updating 
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of these states is made in parallel according to a local role involving a 

neighborhood of each cell.” (Chopard, 2012) 

There are three fundamental features defining a cellular automaton: 

 Uniformity in which cell states are updated using one set of rules; 

 Synchronicity in which cell states are all updated simultaneously; 

 Locality in which the local rules are used (Schiff, 2011). 

The CA approach emerged with the onset of digital computing in the 1940s (Von 

Neumann, 1953, 1993). However its initial usage in geographic science occurred in the 

1970s (Barto, 1975; Tobler, 1979). A growth in geographic information technologies in 

the 1990s led to an increase in the use of CA within a geographic context (Dowell and 

Maheshwari, 2000; Torrens, 2000, 2006, 2009; Torrens and Benenson, 2005; Torrens and 

O'Sullivan, 2001). In retrospect, the adoption of CA by geographic science was natural as 

both fields intrinsically rely on proximity, adjacency, distance, spatial configuration, 

spatial composition, and diffusion. In addition, remote sensing, geographic information 

systems, relational databases, object-oriented programming and CA share mathematical 

and algorithmic structures (Torrens, 2009). It is also possible to estimate service areas 

using CA (L. J. Fenwick and Lyne, 1999), and I test these methods in Chapters 5-7 for 

accuracy. Although CA is applied to a wide variety of fields, CA techniques were not 

used for service area calculations until the late nineties and early 2000s (L. J. Fenwick 

and Lyne, 1999; H. Linger and Burstein, 2001).  

The CA approach is an iterative approach, whereby each substation cell claims 

one neighboring cell at a time. The claimed area continues to grow iteratively until the 

boundary of a neighboring substation service area is met, or until other constraints that 
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have been added to the model, such as the total capacity of a substation, have been met 

(L. J. Fenwick and Lyne). Similar to the Thiessen polygons, CA algorithms are also run 

with equal weights or weights based on the actual load values of the substations. 

Tools that use CA-based approaches to estimate service and outage areas include 

the IEISS (Bush, 2005; G. Loren Toole et al., 2008), TranSims, and Water Infrastructure 

Simulation Environment (TN McPherson and SJ Burian, 2005; D Visarraga et al., 2005). 

Los Alamos National Laboratory has developed a modified CA method, called the 

Constrained Cellular Colonization (C3) method. This method can also be exploited for 

defining service and/or outage areas for electric power grids (Bush, 2005). Oak Ridge 

National Laboratory formulated another modified CA approach, which is deemed to be 

more robust in its ability to determine service areas. Their method incorporates 

population data derived from Oak Ridge National Labs’ LandScan datasets for 

population distribution, derived using GIS data, remote imagery, and census data, 

combined with load and location data for the substations. The Moore (square-shaped) 

neighborhood approach is used in this method, and neighbors are acquired iteratively 

based on data on supply sources within the given radius. The algorithm assimilates 

neighbor cells until all cells (non-zero) are accounted for (Omitaomu and Badiru, 2007). 

CA can also be easily incorporated into GIS software, as a GIS shapefile (Bush, 2005).  

 Examples of the use of CA in research include a wide range of fields. Chu (2009), 

upon studying facility design for emergency evacuation including a pedestrian model 

along with a selection model, used a CA model of the movement of pedestrians (Chu, 

2009). Another interesting study uses the CA approach to simulate galaxy formation. The 
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researchers used simple percolation model, with a polar grid having rings that rotate at 

different rates (FIGURE 5)(Schulman and Seiden, 1986). 

 

 

FIGURE 5: Percolation model with polar grid. Source: Shulman and Seiden [1986] 

3.5.5 Location Allocation  

Chapter 6 and 7 of this dissertation deal with service area approximation for 

critical infrastructures. In Chapter 6 I introduce two approximation methods based on 

road network optimization. One of these methods uses location allocation, and here I 

provide an overview of the basic location allocation approach.  

Location and the allocation of specific components of an organization to certain 

locations are important factors in cost, quality of services and successful service delivery, 

and accessibility of resources, among other measures of successful functionality of the 

organization. Location allocation is described as an optimization problem with the task of 

simultaneously locating facilities and allocating known demand points to those facilities 

(ESRI, 2014).  
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General examples include the location of a small café or hairstylist shop that will 

serve specific local clientele. If placed in a location that is difficult to access or out of the 

way, that alone can cause the business to suffer and potentially fail. In addition, there are 

international organizations with factories and distribution centers located across multiple 

countries. In this case, costs of doing business in a given country, proximity to raw 

materials, and shipping costs, among many other factors, can contribute substantially to 

overhead costs. Other examples of general location-allocation problems include 

optimizing locations for public-sector service facilities including schools, hospitals, fire 

stations, emergency response services, and many more. In all of these cases, ease of 

access, and speed of response is critical, and may drastically impact the ability to save 

lives (2014). 

 Jenelius et al. (2010) considered the problem of location allocation for critical 

infrastructure assets, with specific consideration given to the ability to protect specific 

assets from malicious attacks. They present a modeling framework that assumes attackers 

have imperfect knowledge of the system, and show that optimal resource allocation can 

differ substantially from what would be expected given an attacker with perfect 

knowledge (Jenelius, 2010; Jenelius et al., 2010). 

 Location-allocation modeling was utilized by Al-Rasheed and El-Gamily (2013) 

to study how planning and decision-making can be improved for educational resources 

available to children in Kuwait. Their results showed many shortcomings, which, if 

remedied, would have an enormous impact on average knowledge and skill levels within 

Kuwait society (Al-Rasheed and El-Gamily, 2013).  
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In other applications of location-allocation models, researchers examined chronic 

health effects due to exposure to certain toxins or otherwise harmful substances in the 

environment (Liu et al., 2009), planning road transport (Jenelius, 2010), creating land-use 

maps (Rozenstein and Karnieli, 2011), and siting waste landfills (Ferretti, 2011). 

 Disaster responders have used location-allocation tools extensively for situational 

awareness in disasters, which has played a critical role in timeliness and effectiveness of 

responses to emergencies by allowing for expeditiously delivered data of high volumes 

and reasonable accuracy. A wireless architecture, DistressNet, was introduced and 

applied to support disaster response. The architecture is designed to include collaborative 

sensing mechanisms, topologically-aware routing mechanisms, and reliably accurate 

resource localization. In addition to DistressNet, a set of protocols and other applications 

for disaster response are recommended (George et al., 2010). Even though the potential 

benefit from this type of architecture is high, it has not been widely applied for disaster 

management situations, due to the relative scarcity and lack of predictability of large-

scale disasters (George et al., 2010).  

3.5.6 Accuracy Assessment  

Decisions about resources typically require a map. Inaccuracies in the map lead to 

ill-informed, and possibly harmful, decisions, particularly if the decision-maker is 

unaware of the inaccuracies. As a result, it is important to measure the accuracy, and 

thus, the reliability, of a map prior to using it for decision-making purposes (Congalton 

and Green, 2008). 

As a part of this dissertation, I survey and test commonly used service area 

approximation algorithms and introduce two approaches that have not previously been 
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used for this purpose. In order to evaluate and compare the accuracies of these service 

area approximation methods, I apply accuracy assessment procedures (Congalton, 1991; 

Congalton and Green, 1999, 2008). These procedures have been commonly applied to 

test the accuracy of land cover type classification in remote sensing field, but not for 

service area estimation, and I adapt them for assessment in the context of critical 

infrastructure analysis. 

An accuracy assessment allows for the determination of the accuracy of a map 

created using remotely-sensed data. There are two types of map accuracy assessment, 

thematic and positional. Positional accuracy emphasizes the accuracy of the position of 

features on the map, and measures the distance of these features from their true locations. 

A thematic measure of accuracy focuses on the accuracies of labels on the map. For 

example, a wetland area that is characterized as an open field would be a labeling 

inaccuracy (Congalton and Green, 2008). 

Thematic accuracy cannot be depended on to characterize geometrical properties 

of classification maps with very high-resolution images. Persello and Bruzzone (2010) 

recommend a protocol incorporating two indices from separate sources. The first is a 

traditional thematic accuracy index. The second is a novel set of geometric indices 

derived from separate geometric properties of objects within the images. They recognize 

five types of geometric errors commonly occurring in maps. These include over-

segmentation, under-segmentation, edge location, shape distortion, and fragmentation. 

They applied their methodology to digital environmental models derived from the 

QuickBird land observing satellite with sub-meter accuracy, and found greater 

effectiveness compared to standard protocols (Persello and Bruzzone, 2010).  
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Foody (2010) studied the accuracy of land cover change detection, wherein the 

ground reference data contained errors. Through simulation, the impacts of various 

ground data imperfections on accuracy of land cover change were studied, and it was 

discovered that even relatively small amounts of known error in the ground reference 

data had the potential to produce large error in the results. The author suggested methods 

for removing the ground reference data error, using simple algebraic techniques to 

estimate the actual accuracy and extent of change (given that the imperfections were 

known), and using a more complex latent class analysis to assess the classification 

accuracy and to estimate change extent without using ground reference data (Foody, 

2010). These types of methods are similar to those presented here to estimate accuracy of 

service area estimation methods and demonstrate how such methods could be integrated 

to make predictions for decision support planning. 

In this dissertation I am exploring ways to harness existing data to support critical 

infrastructure decision-making processes and analysis. I show that both tools for 

exploration through geovisualization and assessments of accuracy are needed to make 

decisions and analyses of CI data more efficient and correct. In Chapters 4 and 5 I detail 

the decision recommender tool framework, its implementation into the Critical 

Infrastructure Explorer prototype, and a user study comparing DRT with common GIS 

tools.  

Correctness of the results of the simulation, and therefore the decisions made by 

the user, is directly related to the accuracy of the information related to cross 

dependencies. This accuracy is defined by all of the source-sink relationships in a service 

area. And this led me to investigate the accuracy of existing service area estimation 
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methods and then introduce two new ones based on transportation network optimization. 

Chapter 6 investigates the accuracy of common estimation methods to a power network. 

Chapter 7 investigates the accuracy of two new methods, as well as common methods, to 

a statewide water network. Chapter 8 applies the new methods to the electric power 

network. Chapter 9 provides a clear comparison of the service area approximation 

accuracy results, and the dissertation concludes in Chapter 10. 



 

CHAPTER 4: RECOMMENDATION-BASED GEOVISUALIZATION SUPPORT FOR 

RECONSTITUTION IN CRITICAL INFRASTRUCTURE PROTECTION 

 

 

In order to address the general research question of how spatial decision support 

systems can be improved to facilitate more accurate and efficient decision-making in CI 

analysis and recovery, I conducted three main research studies. This chapter introduces 

the first research study (D. C. Wilson et al., 2009), which investigates the following 

specific research question: 

Specific Research Question RQ1: Is a spatial recommender system focused on 

critical infrastructure cross-infrastructure effects more efficient and effective 

than using commonly-used, industry-standard GIS tools for Critical 

Infrastructure recovery decision-making tasks when multiple networks are 

interrelating?  

To answer this question, I developed and evaluated an approach to CI decision 

support, which was then implemented within an interactive geovisualization 

environment. This chapter describes (1) the framework for CI decision recommendation 

tools, and (2) the implementation of a particular Decision Recommendation Tool (DRT) 

called the Critical Infrastructure Explorer (CIE) based on the framework. In the following 

chapter, I go on to describe the user study evaluation of the approach. 

My approach to cross-infrastructure modeling and simulation for reconstitution 

leverages the strengths of a multi-dimensional approach for a variety of stakeholder 

contexts. I believe this approach provides an appropriate foundation for multi-
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dimensional analyses of critical infrastructure interdependencies, and I include some 

initial scenario-based results to demonstrate the kinds of analyses and subsequent 

understandings to be gained from this research. The remaining sections of this chapter 

describe the approach, illustrated with components of an example scenario. 

4.1 Recommendation Approach 

My approach to providing active support for decision-making during 

infrastructure reconstitution efforts is grounded in a framework for prioritizing 

infrastructure elements based on potential impacts. The framework provides 

recommendations that highlight high-impact infrastructure elements to consider in 

planning resource allocation to reconstitution efforts. This framework is comprised of 

four primary components, listed below and as illustrated in FIGURE 6. 

• User model: Defines general task goal categories, specific weightings of 

those categories to reflect the user’s individual viewpoint, and the 

geographic scope of interest to the user 

• Target model: Defines individual infrastructure knowledge, cross-

infrastructure dependency knowledge, and the knowledge necessary to 

enable metric assessment of desired outcomes 

• Simulation engine: Calculates effects within and across infrastructures 

based on initial conditions and perturbations 

• Recommender engine: Maps user goals to metric assessment in the 

context of modeling and simulation to prioritize the impact of 

infrastructure elements 
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FIGURE 6: Recommender framework 

The following sections provide further detail on the component aspects of my 

approach, illustrated with a scenario example of the implementation. In the initial 

implementation, my goal has been to develop a proof-of-concept for the overall approach. 

Thus I have chosen simple component techniques (e.g., for determining cross-

infrastructure interactions). Future research would test a variety of finer-grained 

variations on component modeling techniques. 

4.1.1. User Model 

Reconstitution decisions are highly contextual and dependent upon stakeholder 

viewpoints. The user model component of my framework captures this characteristic 

through three primary aspects. For a given stakeholder perspective, I consider (1) the 

geographic scope of the stakeholder mandate; (2) the main stakeholder goals in terms of 

reconstitution; and (3) the relationship of these goals to the individual infrastructures 

being modeled. To this end, I have established an approach to specify individual 

stakeholder perspectives (e.g., emergency services, national guard, and citizenry) in terms 
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of different recovery levels. For example, emergency services may have an initial focus 

on prioritizing transportation network recovery, as they may have their own generation 

equipment and primarily need ease of access to canvas the region for search and rescue. 

The corresponding degree may also be characterized in different ways. For example, a 

minimal baseline level of transportation network functionality may suffice for heavy-duty 

rescue vehicles (e.g., primary roads accessible, or certain proportion of network), as 

opposed to a full reconstitution of all roadway feeders and arteries.  

This user model is embodied in a Recovery Evaluation Matrix (Vatcha et al., 

2009) structure. Currently, the REM is manually specified and the geographic scope is 

fixed for each stakeholder, but more flexibility could be added as tool support for user 

model specification develops. Moreover, the current REM settings do not reflect 

stakeholder expert domain knowledge. The benefit of the REM is that it enables domain 

experts to specify and prioritize their goals as part of the analysis modeling and 

simulation.  

The user model embodied in the REM is then used to evaluate recovery options 

within the modeling and simulation environment. Thus, a decision maker can be 

recommended a candidate prioritization for recovery resources, given (1) a network (e.g., 

electric power); (2) a layer that represents an impact criterion (e.g., population impact by 

service area); and (3) a list of unavailable network elements. This recommendation would 

display the network element that provides the most benefit to a pre-defined target 

criterion on a digital map, and therefore should be restored first. 
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4.1.2 Target Model 

Reconstitution decisions are highly dependent upon the associated infrastructures 

and their functional and spatial properties. The target model captures this understanding 

for a given region. Each target model instance is comprised of individual infrastructure 

knowledge, cross-infrastructure knowledge, and grounding metrics for impact 

assessments. 

4.1.2.1 Individual Infrastructure Knowledge 

Modeling and simulation for infrastructure analysis, of course, relies on the 

fidelity of the underlying infrastructure data. In my work here, I do not address the 

enabling and complementary problem of acquiring such knowledge for individual 

infrastructures. Rather, I presume that such knowledge already exists to support baseline, 

unassisted analysis activity. I know that significant critical infrastructure data is often 

controlled by the private sector, which has a vested interest in keeping such data secret. 

My subsequent research studies address the issue of modeling the supporting knowledge. 

In this study I employ infrastructure models that were developed as part of a related 

project on techniques for building just such models from available data sources (Tolone 

et al., 2007). 

FIGURE 7 shows an illustrative electric power network model that was used as 

part of my research. In this model, points represent power plants (letters) and substations 

(green/orange squares), while lines represent the connecting power lines (green lines). 

This illustrative model supports the identification of neighboring network elements, as 

well as the determination of basic network flow; and thus intra-infrastructure 

dependencies. 
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FIGURE 7: Example electric power network 

4.1.2.2 Cross-Infrastructure Knowledge 

 To model cross-infrastructure dependencies, I employ a proximity-based 

approach guided by domain knowledge. For example, I divide the power network into a 

set of spatially distinct polygonal “service areas” delineating each infrastructure element. 

When an element of a related and dependent infrastructure, such as a cell tower in the 

communication network, falls within the service area of a power network element (e.g., 

substation), the related element (cell tower) is assigned a dependency relationship with 

the provider element serving that area (substation). FIGURE 8 shows an example of the 

service areas associated with power network substations approximated using Thiessen 

polygons. 
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FIGURE 8: Service area determination 

4.1.2.3 Impact Metrics 

I employ service impact metrics to provide concrete measures of an 

infrastructure’s relevance to task goals. For example, if the local government stakeholder 

wants to ensure that services are restored most quickly to the greatest number of 

constituents, they could measure the impact by prioritizing based on areas of greatest 

population density. Other measures might include prioritizing healthcare (e.g., hospitals) 

or educational (e.g., schools) infrastructure elements. 

To illustrate, I have implemented a population density impact metric in the form 

of a process flow that relates power substations to the number of people for which they 

provide power. 
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FIGURE 9: Determining population impact measure 

The second step in the process involves combining the service area layer with 

population layers. I employ Block data from the US Census Bureau for population, as 

shown in FIGURE 10 for an example region. I combine service areas and Census 

population data to carry population data over to the service areas. However, the process 

requires additional steps, as some service area polygon boundaries intersect census block 

data polygon boundaries. So, one census block may belong to two or more service area 

polygons. I included an additional stage in the process to resolve such conflicts 

automatically and assign an appropriate proportion of the population to each service area, 

based on the percentage of the census block polygon overlapping the service area. 
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FIGURE 10: Census block data for example region. 

I first recalculate the areas of each polygon after the union process, and then 

calculate the percentage of the new intersected polygon based on new area and old area. 

Next I recalculate the population information based on this percentage. As an example, 

assume I have a census block with 1000 people in it and the service area boundary 

intersects this polygon so that 60% of the polygon by area now belongs to service area A 

and the remaining 40% now belongs to service area B. I disperse the population 

accordingly, so that 60% of the original census block population now should belong to 

service area A, and 40% of the original census block population now should belong to 

service area B. 

The final stage of this process is to carry the population information that is now 

inherent to service area polygons over to the power substation points via a spatial join 

operation. The overall processes both for relating point (as in my communication cross-

infrastructure example) and polygon (as in my population grounding example) is 
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implemented in ESRI Model Maker, as well as provisioned as a generic tool interface in 

ArcToolbox. 

4.2 Recommender & Simulation Engines 

Given representations for infrastructure and cross-infrastructure connectivity, as 

well as related grounding measures, I can model the impact of various failed 

infrastructure elements, in order to measure the importance of an individual element to 

the user’s task goals. 

4.2.1 Simulation Dependency Knowledge 

Simulating disablement and enablement scenarios requires utilizing not only 

connectivity of the network elements but also the dependencies of the network elements. 

I developed an independent application that utilizes ESRI libraries and data structures. 

There are two possible approaches to follow. The first is to employ ESRI programming 

structures to simulate network outages. The second is to export infrastructure network 

data to an external junction dependency matrix, simulate the outage using this matrix and 

send the result back to ESRI tools for display. Given simulation performance 

considerations and potential complexity in cross-infrastructure interactions, I chose to use 

the latter approach. I export network data at the beginning of a session and create a 

dependency matrix used to perform the simulation.  

The first phase of the process to create the dependency matrix extracts the 

network connectivity graph and creates a matrix data structure where rows and columns 

represent network elements, with matrix entries representing connectivity. This provides 

a matrix of network connectivity, but network element dependencies (e.g., flow direction) 

are also needed for simulating outage and reconstitution effects. I then perform a 
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dependency analysis on the network data structure to create a dependency matrix. 

FIGURE 11 and FIGURE 12 show a simplified example matrix and a network that it 

represents. A similar process is employed to create a set of dependency matrices for 

cross-infrastructure dependencies, with each matrix representing the dependencies 

present between two distinct infrastructures. There are a variety of ways to determine 

cross-infrastructure dependencies, depending on the fidelity of the source network data. 

In the absence of direct cross-infrastructure dependency information, geographic 

proximity, such as service sheds approximated with Thiessen polygons, may be 

employed, as shown in FIGURE 13. In the next section I explain how I perform basic 

simulations based on the dependency matrix. 
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FIGURE 11: Example dependency matrix 
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FIGURE 12: Example network for dependency analysis 

 

 

FIGURE 13: Cross infrastructure service area modeling 

4.2.2 Simulation Metrics 

To perform a simulation to determine potential impacts of infrastructure elements, 

I begin with a representation of the state of each infrastructure network. I employ a state 

matrix for each network, in which each element is represented as functional or non-

functional. At the start of a simulation, the user sets the initial state of the system, in order 

to represent the failed infrastructure elements in the current task context, as shown in 

FIGURE 14. 

A dynamic placeholder matrix is used to hold currently disabled nodes. For each 

element that is disabled, the simulation environment follows the dependency matrix and 

obtains a list of elements that are directly dependent on the current element. It then 

searches through the network and obtains a list of dependent objects to each of the nodes 

that are being held in the temporary matrix. This process is repeated until it goes through 

all the dependencies. When a step in the simulation process would re-enable a failed 

infrastructure element, either directly or indirectly, available grounding measures are 

evaluated and added to the overall impact measure. By cycling through failed 
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infrastructure elements across each infrastructure of interest to evaluate overall impacts, I 

compute an individual relevance measure for each element.  

Using this information it is straightforward to test the effect of each node on the 

population, given that population information has been associated with each substation in 

the network. Based on this information I provide a recommendation to the decision maker 

about the candidate junctions to be enabled that will enable service to the greatest number 

of people. FIGURE 15 shows an example screenshot. The power substation highlighted is 

the node recommended for restoration first. 

 

 

FIGURE 14: Scenario initialization 
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FIGURE 15: Recommended infrastructure elements for prioritization. 

4.3 Decision Support Recommender Framework Conclusion 

This chapter presented my recommendation-based approach to support analysis 

and decision-making for cross-infrastructure reconstitution tasks. The contributions of 

this chapter are: (1) development of the user model that accounts for varying stakeholder 

perspectives and priorities, as implemented in the recovery evaluation matrix; (2) 

development of the target model, as implemented in the cross-infrastructure dependency 

and grounding metric analyses; (3) development of the baseline modeling and simulation 

engine coupled with the recommendation engine for prioritizing infrastructure elements 

for consideration; and (4) providing this analysis functionality within an interactive 

geovisualization interface. These elements are integrated within my prototype GIS 

environment, as a proof-of-concept for the approach. Since decision-making 

environments can be extremely complex and dynamic, it is as important to reduce the 
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cognitive load and overhead as to improve decision quality (Todd and Benbasat, 1992). 

My approach and prototype system accomplishes this by approaching the decision maker 

with a recommendation based on specified criteria.  

The work I have reported here is a first step in creating a complex system that 

supports analysis and decision-making for critical infrastructure networks. An effective 

critical infrastructure analysis and decision recommendation tool is critically dependent 

on deriving cross-infrastructure dependencies. This ability depends on accurate service 

area estimation. To address the needs for supporting decision-making and analysis for 

critical infrastructures, it is important to understand the impacts of a decision 

recommendation tool on users’ task performance, while also understanding the potential 

tradeoffs in accuracy underlying the methods used to estimate service area coverage. In 

the next chapter, I present a user study evaluation of the critical infrastructure explorer 

tool (CIE) that I built using the DRT framework presented in this chapter. In later 

chapters, I explore the accuracy of service area estimation techniques.  



 

CHAPTER 5: USER STUDY ANALYSIS OF A GEOVISUALIZATION DECISION 

SUPPORT ENVIRONMENT FOR CRITICAL INFRASTRUCTURE RECOVERY 

 

 

Given the DRT framework and CIE analysis tool developed in the previous 

chapter, I conducted a user study evaluation in order to investigate my first specific 

research question (Pala and Wilson, 2013) – (RQ1): Is a spatial recommender system 

focused on critical infrastructure cross-infrastructure effects is more efficient and 

effective than using commonly-used, industry-standard GIS tools for Critical 

Infrastructure recovery decision-making tasks when multiple networks are interrelating? 

This chapter describes a user study evaluation of the Critical Infrastructure Explorer 

(CIE) system conducted in order to address RQ1.  

The user study focused on GIS system experts and GIS analysts as participants. It 

collected performance data as users ran through several disablement analysis scenarios 

separately with the CIE and ArcGIS tools. I chose ArcGIS with the Utility Network 

Analyst extension (referred to as STDGIS for standard, or commonly used, GIS) since 

the study’s system experts employ this ArcGIS extension regularly for analysis of critical 

infrastructures. I performed quantitative analyses comparing results for the two platforms 

in terms of effectiveness measures for end users. It is important to note that the scenarios 

used were static, in order to investigate how two different systems could support a single 

decision for critical reconstitution. It was assumed that the emergency event has 

completed, and instantaneous updates were not made.  Real-time systems with 

instantaneous updates could impact the results of such a study.  
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5.1 CI Decision Support Approach 

My approach for CI decision support is grounded in the decision recommender 

framework, presented in the previous chapter, for prioritizing infrastructure elements 

based on potential impacts – recommending high-impact elements to consider in planning 

resource allocation to CI recovery efforts.  

5.1.1 Decision Recommendation Tool: CIE 

At the start of a simulation, the user sets the initial state of the system to represent 

the failed infrastructure elements in the current scenario. The CIE models resulting 

disablements through the initial CI network and linked CI networks that depend on 

service from the initial network. It also relates each network node to target layer 

components in order to determine the effect of disablement of each network node (e.g., 

population affected). Coupling this with cascading disablement simulation provides an 

indication of the overall effect of each initial disabled point’s effect on the ground.  

The CIE affords an interactive interface enabling the user to explore various 

cross-infrastructure scenarios, visualize the effects of disablements, and thereby explore 

the best options for CI reconstitution. This includes simulation animations, tabular data, 

network table of contents, and three information tabs (FIGURE 16):  

 “Disablements” shows network disablements in a tree-view structure,  

 “Options” shows disablements and details in tabular form. Details can be clicked 

to initiate related animations on the map (see FIGURE 17). A summary is also 

provided for each initial disabled network element, showing the effect of its 

enablement on target service layers. For example, if node #15 is enabled then 
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electrical service would be restored for approximately 15,000 people and 

communications (dependent on electric service) for approximately 39,000 people. 

 “Network Detail” enables the user to click for detailed information on individual 

nodes in the networks.  

 

FIGURE 16: CIE interface details 
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FIGURE 17: On screen outage simulation with CIE 

5.2 Study Design 

To evaluate my approach, I have conducted a user study with system experts and 

GIS analysts. The study compares my implemented DRT approach (CIE) with off-the-

shelf industry-standard GIS tools (ArcGIS with Utility Network Analyst extension, 

denoted STDGIS), which are often employed by analysts for CI support, as indicated by 

my study experts. Such controlled studies typically compare novel tools or techniques to 

state of the art (Koua et al., 2006; Network, 2014). For example Plaisant et al. (2002) 

compared three tree visualization tools, space tree, hyperbolic and window explorer. 

ESRI ArcGIS Desktop software products are commonly used tools for GIS analysis.  

Hypotheses:  

A Decision Recommendation Tool (DRT) developed for critical infrastructure 

recovery based on my proposed framework is more efficient than using existing GIS 
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tools for Critical Infrastructure reconstitution when multiple networks are interrelating. 

More specifically, 

H1-1. Given the same scenario, decision makers can make decisions with less 

time using DRT than using the most common GIS suite of tools.  

H1-2. Given the same scenario, decision makers can make decisions with lower 

cognitive load using DRT than using the most common GIS suite of tools.  

H1-3. Given the same scenario, decision makers prefer using DRT than using the 

most common GIS suite of tools.  

For each participant I recorded the screen, user voice and user video with the Morae 

usability software. Users were asked to complete an exit survey on tool use, cognitive 

load, user preference, and general feedback. Users were also asked to fill out the NASA 

Task Load Index (NASA-TLX) Mental Demand evaluation questionnaire twice, once for 

each tool in the same context. The NASA-TLX is a survey that rates perceived workload 

to assess a system’s effectiveness (Hart, 2006; Hart and Staveland, 1988). All the 

materials including the user surveys and tasks can be found in APPENDIX A: Supporting 

Documents for User Study.  

5.2.1 Participants: US National Research Labs employees and UNCC GIS 

analysts 

My user base consists of professional critical infrastructure system experts and 

GIS analysts from UNC Charlotte. The CI system experts were employees of one of the 

US National Research Laboratories who have been working on CI-related projects for the 

last five years or more. GIS Analysts were recruited from UNC Charlotte staff and 

student GIS users who are proficient in GIS theory and usage of GIS tools. Participants 
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were recruited to gain insight both into the decision makers’ approach and the approach 

that GIS analysts would take to make recommendations to decision makers. 

I recruited 5 system experts from national labs and 10 GIS users from UNC 

Charlotte. Out of 15 participants 13 had at least three or more years of GIS experience. 

More than half of all the users defined themselves as experts in GIS. For my study, 

domain experts are considered to be individuals who have been working professionally 

with critical infrastructure analysis (my national lab subjects).  

System experts with at least five years of experience in Critical Infrastructure 

decision support at Los Alamos National Labs were recruited by email invitation to 

participate in the study during their regular workdays. As employees of a federal national 

lab, these system experts have been providing support to real decision makers throughout 

the U.S. in emergency situations involving critical infrastructures.  

GIS users were recruited by sending emails to the UNC Charlotte Geography 

department and GIS email listserves, as well as posting flyers posted in the UNC 

Charlotte Geography department. GIS users are the students, faculty and staff 

professionals who are proficient in GIS and therefore are qualified to play a “GIS 

Analyst” role with training in CI analysis that I provided. Demographic and expertise info 

can be seen in FIGURE 18, FIGURE 19, FIGURE 20, and FIGURE 21. 

 

FIGURE 18: Expert user participants’ GIS experience at LANL and UNC Charlotte  
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FIGURE 19: Participant’s GIS expertise at LANL and UNC Charlotte 

 

FIGURE 20: Participants’ education levels 

 

FIGURE 21: Participants' job titles 

I selected a within-subject study design because I am comparing the performance 

and experience of the same group of users in different scenarios with two different tools, 

and because my targeted user population is small. I counter-balanced the presentation of 

the interfaces allowing half to be presented with STDGIS first (Group A, 8 participants) 

and the other half with CIE first (Group B, 7 participants). I have equally assigned system 

experts to my counter-balanced participant sample. 
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5.2.2 Measures 

To evaluate system effectiveness, I considered task efficiency (time) and outcome 

quality. I also considered cognitive load, which is important for improving decision 

quality for decision makers (Todd & Benbasat, 1992). Quantitatively I measured: time 

spent on each task, rate of outcome correctness, and rate of analysis correctness. These 

were measured and validated through analysis of recorded participant sessions. To 

measure cognitive load, I utilized the NASA Task Load Index (TLX) tool (Hart, 2006; 

Hart and Staveland, 1988). 

5.2.3 Experiment Setup 

To familiarize users with the software tools in the study, each participant was 

provided an initial training session on a sample CI outage scenario covering cascades and 

cross infrastructure effects. I first drew an example scenario on paper – one network with 

two initial disabled points. Then I showed the participants how the service areas are 

utilized to determine the buildings that would be affected by these outages. Then I drew 

the second network elements overlaying the first outage and showed participants how to 

determine the second network outages based on the first network’s service areas. Next I 

cascaded down the second network outage and showed how those would be related to the 

number of buildings in the service areas of the disabled second network elements. Based 

on this I created a table that lists the first network disabled points and overall effect of 

each of those in the buildings with respect to type of service being disrupted. After the 

paper disablement scenario demonstration I ran through an outage scenario once with 

STDGIS and once with CIE. These example scenarios had one initial disabled point on 

the first network and two interacting infrastructure networks.  
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Users were then asked to work through four outage scenarios at increasing levels 

of complexity. Complexity was set to be similar at each level but with different initial 

disablements. I applied four levels of complexities, so users worked through eight 

different scenarios. Users were instructed to act as the GIS analyst in an outage-

emergency situation where they are required to provide a report to the Decision Maker 

(DM) on the priority of the initial disabled points in importance of their effect in each 

specific situation. This way the DM could allocate appropriate resources to the CI 

elements with greatest effect on target layer elements for optimum recovery. The network 

data employed is adapted from UNC Charlotte Critical Infrastructure network data. For 

this experiment I used CI network data, buildings and building center point layers 

(FIGURE 22). 

The first scenario included one network (water) with two network elements 

disabled initially. The second scenario included one network (electric power) with six 

network elements disabled initially. The third scenario included two networks (water, 

gas) and two elements initially disabled on each network, with the water network 

interacting with gas in a source-sink relationship (e.g., pump cooling). The last scenario 

had the electrical power network interacting with the steam network in a source-sink 

relationship with six initial disabled elements. Users were asked to determine which of 

the initial disabled network elements should be restored first to provide most benefit. All 

the initial disablements were on the first network, which was presumed to be providing 

services essential for elements of the second network to function. For the purposes of this 

study, I presumed a one-way source sink relationship between networks.  
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An exit survey was given to all the participants and their verbal comments were 

recorded using Morae Recorder software. Then all the recordings including exit survey 

recordings and participant task recordings were imported into the Morae Manager 

software tool. Through this tool I was able to mark the task beginning and ending times 

for all the tasks and users. I also was able to mark the task completion rates. Then I 

exported all the videos and imported those into a software tool called InqScribe to create 

transcripts of the participant’s speech and record timings.  

 

FIGURE 22: Scenario critical infrastructure overview 

5.3 Results Comparing DRT to Standard GIS tools for CI analysis 

Results of the study were evaluated and analysed in terms of task completion and 

correctness, time, cognitive load, and preferences for users using CIE and STDGIS. 
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5.3.1 Correctness: DRT results in more correct analyses 

Results for successful task completion and correctness of supporting analysis are 

shown in FIGURE 23a and in FIGURE 23b. As shown in FIGURE 23a, participants who 

worked through the scenarios in CIE completed the tasks with correct conclusions based 

on correct analysis in almost all cases. However, as shown in FIGURE 23b, participants 

working with STDGIS reached correct answers significantly less frequently. Only 70% 

and 60% of participants completed Tasks 1 and 2, respectively, successfully achieving 

the correct analysis using STDGIS. Only 30% of users performing Tasks 3 and 4 with 

STDGIS had correct analyses. For Tasks 2 and 4 in FIGURE 23b, where the participants 

are prioritizing among six alternatives, 10% and 50% of the participants respectively did 

not reach the correct conclusion. Some participants carried over the disablement to the 

second network, but neglected to cascade the disablement through the second network, 

whereas some simply lost track of details in the process. Even for straightforward Tasks 1 

and 3 (2 initial disablements), when using the STDGIS tools 30% of the participants on 

Task 1 and 70% of the participants on Task 3 did not have the correct numbers even 

though they reached the correct overall conclusion (FIGURE 23b). 
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FIGURE 23: Distribution of successful task completion among participants using (a) 

CIE, (b) STDGIS 

5.3.2 Time: DRT takes less time 

Hypothesis H1-1 was accepted, that with DRT participants would be able to make 

decisions in a shorter time compared to standard GIS tools. Results for average task 

completion time are shown in FIGURE 24 (overall) and FIGURE 25 (only correct 

conclusions with correct analysis). Tasks were set up with increasing complexity and 

therefore difficulty. Overall, as the participants progressed through the tasks it took them 
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longer to make the connections and come up with a conclusion. Completion time in Task 

2 is lower for CIE. My observations indicate that users spent additional time exploring 

and familiarizing themselves with the CIE tool upon first use, accounting for additional 

time spent on a simpler task. 

Task completion time increases in direct proportion to complexity for STDGIS 

tools, while completion time for CIE remains relatively flat. In the most complex 

scenario, STDGIS takes almost three times as long. This is even more apparent if I use 

the data from only those who reached the correct conclusion using correct numbers 

(FIGURE 25). Solutions with STDGIS remain a more manually-driven process where the 

participants have to pay a lot of attention to the task at hand to produce the correct 

numbers so that they can base their prioritization decision on correct numbers.  

 

FIGURE 24: Average time spent on each task in minutes including data from all GIS user 

participants 
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FIGURE 25: Average time on task: Only the participants who reached the correct result 

using correct numbers 

Based on the correctness results participants can be considered to have made 

better, more well founded decisions using DRT than standard GIS tools. Based on timing 

results, DRT users complete scenarios accurately in shorter time frames, hence improving 

efficiency. The combination of shorter time and higher correctness indicate that DRT is 

more effective than STDGIS for these kinds of scenarios. 

5.3.3 Mental demand: DRT takes less cognitive load  

Another measure that I employed for evaluation was in terms of mental demand. 

Hypothesis H1-2 posited that decision makers would make decisions with less cognitive 

load while making decisions using DRT versus standard GIS tools. Results on the NASA 

TLX mental task demand evaluation support the hypothesis H1-2 about reduced 

cognitive load, as shown in TABLE 1. I found a significant difference between the 

average TLX score using CIE (M=21.26; SD=12.22) and STDGIS (M=65.26; 

SD=13.21); t (14)= -9.032, p= 0.00. The TLX score of 21.26 for CIE is significantly 

smaller than the TLX score for STDGIS with a TLX score of 65.26 where they both have 
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similar standard deviations. I can conclude that participants’ mental demand was 

significantly lower with CIE than STDGIS tools. This interpretation is also supported by 

comments from users’ exit interviews where they indicated that they had to concentrate 

much harder to get to a conclusion using STDGIS tools compared to CIE, and there was 

much greater room for mistakes and confusion even if they keep their attention at the 

highest level.  

I also found a significant difference between the average TLX scores for STDGIS 

tools, based on experiment type. Group A has lower TLX score than Group B for 

STDGIS tools: Group A: M=58.54, SD=13.56, Group B: 72.95, SD=7.94; t(11.49)=-

2.547, p=.026. In other words, while evaluating STDGIS tool for mental demand, 

participants didn’t find performing the tasks as equally demanding if they performed the 

task with STDGIS tools first and then a similar one with CIE. I can interpret this as 

performing the task first with CIE they experienced a tool that provides easier interaction 

and better visualization. And therefore doing a similar task with a tool that requires more 

manual interaction appeared to be taking a greater mental toll, hence the higher TLX 

score. Moreover, if the participants first performed the tasks with STDGIS tools and then 

with CIE, they indicated higher mental demand required for CIE. Thus the users seem to 

be mentally fatigued upon starting to use CIE if they performed the task with STDGIS 

first. 

TABLE 1: Group TLX statistics based on experiment type  

 
Group N Mean 

Standard 

Deviation 

Standard Error 

Mean 

TLX: CIE 
A 8 23.08 14.69 5.19 

B 7 19.19 9.34 3.53 

TLX: STDGIS A 8 58.54 13.57 4.80 

B 7 72.95 7.94 3.00 
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5.3.4 Survey results 

As a part of the exit survey I asked participants four main questions. One of these 

questions was related to mental demand. I asked participants to compare the mental 

demand for each tool and also to comment about the level of mental demand as the task 

complexity increased. Most participants made comments that support the quantitative 

analysis discussed previously for the comparison of the tools. This also supports 

hypothesis H1-2 regarding mental demand. They also pointed out that as the complexity 

increased with each task, the mental power that they had to exert did not increase 

linearly. Participants pointed out that mental demand for Task 1 and 2 was almost the 

same. They did not think that Task 2 was more mentally challenging than Task 1 even 

though they were required to prioritize six alternatives instead of two. Task 1 and Task 2 

scenarios had only one network. Similarly, participants indicated that mental demand for 

Task 3 and 4 was not significantly different where they had to work with two networks 

and cross infrastructure effects. It is likely that having to perform the task with two 

networks and two initial disablements first helped them learn the process and therefore it 

was not significantly harder to prioritize six alternatives later.  

The exit survey included questions comparing the effectiveness and the ease of 

use of the tools. All participants felt that CIE was more effective for these kinds of tasks 

and was easier to use. When asked if they had any problems completing any of the tasks, 

several participants pointed out the difficulty of cascading down the disablements and 

especially cascading cross infrastructure disablements using ArcGIS tools. All the 

participants (100%) stated that they prefer the CIE compared to standard GIS tools; this 
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supports hypothesis H1-3, which says given the same scenario, decision makers prefer 

using DRT over commonly-used GIS tools.  

5.4. User study conclusions 

Results for user task efficiency, task completion, and cognitive load consistently 

support my hypothesis: given the same scenario, decision makers can make better 

decisions (H1-4) with less time (H1-1) and less cognitive load (H1-2), and prefer (H1-4) 

using CIE. Applying my approach for CI reconstitution, users successfully completed 

more scenarios more accurately (FIGURE 23 a and b), in less time (FIGURE 24, 

FIGURE 25), and with lower cognitive load (TABLE 1). Overall, I believe that such 

approaches are essential to address the information overload problem in complex, multi-

dimensional analysis for CI in general and reconstitution efforts in particular. Results 

from this user study provide a baseline for my investigation of recommender-based 

geovisualization tools for CI decision support.  

 Important limitations to this study are that the CIE takes into account only a static 

emergency situation in a single type of CI network. Tools with instantaneous 

reconstitution data would be much more accurate, but would also be much more 

complex. It is possible that the results of this study would be different in these situations. 

However, I believe that the complexity of changing scenarios makes it even more 

important to build targeted tools to support emergency reconstitution decision-making. 

 The results from this study show that interactive geovisualization tools to support 

CI analysis, particularly in cross-infrastructure scenarios, can play an important role in 

making more accurate and timely decisions for deploying resources in disaster recovery. 

However, this is only one aspect needed to support decision makers.   
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During an outage, cross infrastructure cascade effects are determined by the 

extent of the service areas for service distribution sources. While working on the first 

study, we saw that even small changes in the extent of the approximated service area can 

make a big difference in the outcome. Adding one critically placed secondary network 

infrastructure element to the outage can introduce a cascade in a secondary network that 

might cover a large area. Hence, grounding cross-infrastructure impact analysis relies on 

accurate service area estimation for the critical infrastructure networks. 

Because of the great responsibility that emergency managers have, these users 

have particular interest in using support tools that employ the most appropriate and 

accurate service area estimation algorithms. To that end, the following two studies were 

conducted to understand the nature of performance of algorithms for service area 

estimation for power and water. 



 

CHAPTER 6:  ACCURACY ASSESSMENT OF SERVICE AREA APPROXIMATION 

ALGORITHMS FOR CRITICAL INFRASTRUCTURE RECOVERY 

 

 

The critical infrastructure and geographic information analysis experts in the CIE 

user study emphasized the need for highly accurate estimates on infrastructure 

knowledge. And decision-makers in general have a need to understand the accuracy of 

existing methodologies for critical infrastructure service area estimation and developing 

new approaches to improve existing techniques (J. W. Fenwick and Dowell, 1999; K. 

Newton and Schirmer, 1997; Sulewski, 2013). Several types of estimation methods are 

prevalent in practice, but surprisingly little information is available on their comparative 

effectiveness. This led to the second research study (Pala et al., 2014), investigating my 

second specific research question – (RQ2) What are the differences in effectiveness 

among various service area estimation techniques during an emergency operation for CI 

enablement scenarios?  

It is important to understand the comparative merits of the estimating approaches 

used to support decision-makers as they develop mitigation and remediation strategies 

after a damaging event.  Without knowledge of the accuracies of service area estimates, 

decision makers will not be able to trust decision-support systems, and will therefore rely 

on commonly used systems that may not support efficient or correct decisions.  

In the previous chapter, one of the main reasons that some study participants did 

not come to the correct conclusion was because they missed the connection of a cross 

infrastructure cascading outage to one specific node. This node ends up cascading down 
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the network to affect a large area, which is very close to the service area of the one of the 

disabled nodes in the first network. Thus a small change in the approximated service area 

can have a profound effect on the outcome of the scenario. The previous study employed 

Thiessen polygons to approximate the service areas as the enabling knowledge model for 

infrastructure interactions, and I wanted to investigate how the outcomes of the scenarios 

might change if another approximation method were used. My personal experience and 

judgment combined with information from system experts led me to test the accuracies of 

existing algorithms that are commonly employed in CI analysis. 

 In order to compare estimation approaches, it is necessary to employ well 

understood methods for accuracy assessment.  Here, I have adapted accuracy assessments 

from land cover classification (Congalton and Green, 2008) to the domain of CI analysis. 

These metrics are applied to compare a representative set of service area approximation 

algorithms used in critical infrastructure recovery analysis. In this chapter, I focus on 

service area approximation using distance-based Thiessen polygon estimation, described 

in section 3.5.3 Thiessen polygons, and cell-based approaches, described in section 3.5.4 

Cellular Automata. 

In this study, I assess the accuracy of four different methods commonly used for 

estimating infrastructure impacts after a disruptive event. The methods I evaluate include 

distance-based Thiessen (Voronoi) polygons with weights (WTP) and without (TP), and 

cell-based cellular automata with weights (WCA) and without (CA). The term “impact” 

refers to the inability of a utility to provide a service, such as power or gas, due to 

infrastructure system damage. I focus on two types of impacts: (1) aggregate impacts, 



91 

 

such as economic activity and population contained by the outage, and (2) point data 

impacts, such as whether a specific asset is included in an outage. 

I compare the methods for overall accuracy with a reference model of a power 

distribution network for a Midwestern, mid-size U.S. city that does not have unusual 

geographic elements that might disrupt analysis of service area estimation. This work was 

performed in consultation with an electric power (EP) subject matter expert with a high 

level of familiarity with the nuances of the system developed reference service areas.  

This chapter is organized as follows: In the next section, I discuss the literature 

related to service area estimation methods. Then, I describe the methods used to create 

distance- and cell-based service area estimates and assess their accuracy. Finally, I 

discuss my results, showing that weighted methods outperform their standard 

counterparts, confirming hypothesis H2-2, but also showing that cell-based methods do 

not always outperform distance-based ones (so H2-1 cannot be accepted). However, I 

discuss some possible limitations of the study that suggest that tuning may be important 

for cell-based methods may be particularly important for accuracy.  

6.1 Background 

Power, gas, water, and other infrastructure system assets (e.g., power substations) 

serve customers in a geographical area. These regions are termed service areas. Even 

though utilities have detailed information about specific distribution source-sink 

relationships between their assets, this information is not designed or organized to 

facilitate large-scale analyses, nor is it documented by public regulatory agencies. In 

addition, these data are often considered sensitive or proprietary. In the absence of data, 

defining the service areas accurately has long been a problem, but estimating these 
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boundaries accurately is very important in disaster recovery situations (Castongia, 2006; 

J. W. Fenwick and Dowell, 1999; K. Newton and Schirmer, 1997; Sulewski, 2013). 

During emergencies, external decision-makers often rely on estimates of service areas 

produced by various methods. Typically, a geographic boundary for each serving point is 

defined to estimate the source-sink relationships between the serving network entities 

(“sources”) and the entities using those services (“sinks”). Increased estimate accuracy 

could lead to a more efficient recovery. It is important to understand the comparative 

merits of the estimating approaches to support decision-makers as they develop 

mitigation and remediation strategies after a damaging event. In this research, I focus on 

approaches commonly employed as part of CI analysis – Voronoi estimation and CA 

approaches. 

6.1.1 Thiessen Polygons (Voronoi Diagrams) 

Thiessen polygons, also known as Voronoi diagrams, have been used in different 

ways to present and analyze data. The success of this method originates from its ability to 

uniformly and systematically partition an area. A Voronoi diagram divides the plane 

according to a nearest-neighbor rule when a number of points are provided and each point 

is associated with the region of the plane closest to it (Aurenhammer, 1991). This method 

draws a straight line between all of the points; on each line’s mid-point, a perpendicular 

line is drawn to create the boundaries representing the point. Thiessen polygons take 

shape when perpendicular lines are trimmed at intersections with other lines (FIGURE 3). 

Work by Okabe (2000) and Okabe et al. (1992) provides detailed discussions on the 

concept of Thiessen diagrams from both historical and geometric viewpoints. From a 

critical infrastructure perspective, the literature includes papers (Akabane et al., 2002; A. 



93 

 

Okabe, 2000; Tolone et al., 2009; G Loren Toole and McCown, 2008) that detail efforts 

for using this approach to create critical infrastructure service boundaries.  

Standard Thiessen method assumes that the dataset is homogeneous. This is 

generally not the case because each source point provides varying degrees of service. For 

example, different water treatment plants have different daily outputs. Using a weighting 

approach based on source points might enhance Voronoi-based approaches. This 

approach creates Thiessen polygons by calculating weighted Euclidean distances (Dong, 

2008). For weighted Thiessen polygons, the critical infrastructure elements with smaller 

outputs are assigned smaller service areas. In practice, this approach is potentially more 

realistic than Thiessen polygons with equal weighting. For more information on Thiessen 

polygons please see the background section “3.5.3 Thiessen polygons (Voronoi 

diagrams).” FIGURE 3 and FIGURE 4 provide graphical representation of the Thiessen 

polygons.  

6.1.2 Cellular Automata  

Discrete computational systems that are composed of a finite or enumerable set of 

homogeneous, simple cells as a part of a spatially and temporally discrete grid structure 

are called cellular automata (Berto and Tagliabue, 2012, 2012). Often, CA are explained 

as mathematical models for complex natural systems that contain large numbers of 

simple identical components with local interactions (Wolfram, 1994).  

It is also possible to estimate service areas using CA (J. W. Fenwick and Dowell, 

1999). Although CA is applied to a wide variety of fields, CA techniques were not used 

for service area calculations until the last decade (J. W. Fenwick and Dowell, 1999; S. P. 

Linger and Wolinsky, 2001; Werley, 2002). Similar to the Thiessen polygons, CA 
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algorithms are also run with equal weights or weights based on the actual load values of 

the substations. Tools that use CA-based approaches to estimate service and outage areas 

include the Interdependency Environment for Infrastructure Simulation Systems (IEISS) 

or TranSims (Bush, 2005; J. W. Fenwick and Dowell, 1999; G. L. Toole et al., 2001; G. 

Loren Toole et al., 2008; Werley, 2002), and Water Infrastructure Simulation 

Environment (T. McPherson and S. Burian, 2005; D. Visarraga et al., 2005). 

Detailed background information about the cellular automata technique and 

examples of its applications can be found in the background section “3.5.4 Cellular 

Automata.” 

6.2 Methodology 

Creating the polygon datasets using each approximation method and evaluation of 

the accuracy assessment of these polygon layers are the main tasks of this study. I 

hypothesize that cell-based methods will outperform distance-based, and that weighted 

methods will outperform non-weighted ones.  

Hypotheses for Research Question RQ2:   

H2-1. Cell-based Service Area (SA) estimation techniques produce more 

accurate results compared to distance-based ones. 

H2-2. Weighted SA estimation techniques produce more accurate results 

compared to their non-weighted counterparts.  

In this chapter I compare four existing service area calculation methods for power 

network: (1) Thiessen Polygons (TP), (2) TP with weights from electric power substation 

load (WTP), (3) Cellular Automata (CA), and (4) CA with weights (WCA).  
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The experimental setting uses the CI network data of an Electric Power (EP) 

network for a regularly laid-out, Midwestern mid-size city in the US with around 150 

substations. The data set includes the distribution network, the substations, and demand 

for power. It also includes the service areas for the substations. The service areas are 

polygons delineated by an EP system expert to reflect the service area for each 

substation. Finally, the data set also includes economic and population information. The 

population and economic impact data is driven from the 2010 LandScan data which was 

developed by Oak Ridge National Laboratory with funding by the Department of Defense 

(Bright et al., 2012). I also utilized LANL Daytime/Nighttime population information 

(ESRI, 2014; Tolone et al., 2007).  

I used standard ArcGIS tools to implement the ordinary Thiessen polygons (TP). I 

also created the WTP using a publicly available ArcGIS extension, as described by Dong 

(2008). To create the CA and WCA polygons, I used functionality embedded in a desktop 

software tool, the Interdependent Energy Infrastructure Simulation System (IEISS) 

created by LANL (Bush, 2005; G Loren Toole and McCown, 2008). To create CA and 

WCA polygons using IEISS, I created two versions of XML data based on the power 

infrastructure layers. This XML file contains locations of all the substations, lines 

connecting them, study area boundary coordinates and settings related to various 

functionality in IEISS, including the service area estimation. I left the original power 

output numbers in the XML file. However, in order to create the non-weighted CA, I 

inserted a high power output number that is the same in all the power substations. This 

ensured that the power output numbers would not affect the algorithm and create regular 

(non-weighted) CA service areas. The algorithm starts growing cells using a raster format 
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starting from each source point, in this case, EP substations, and grows them until it runs 

out of space or EP resource. Next, during the export process, the data set is converted to 

vector format. Than the accuracy of each service area calculation is assessed through 

comparison with the reference data set described earlier.  

I use two different approaches to perform the accuracy assessment of the results: 

aggregate statistical accuracy analyses and spatial accuracy analyses. One contribution of 

this research is the adaptation of impact analysis from remote imagery classification 

accuracy assessment for use in the CI domain.   

6.2.1 Aggregated Impacts  

Aggregated impacts are used in situations where coarse information about the 

service areas is required. Examples include total population, total economic activity, or 

total area. In these situations, error in the spatial extent of the service area is acceptable, 

as long as the extent of the area generates the correct values. To generate these 

comparisons, I first calculate the daytime population for each polygon associated with 

substations, using each of the four methods. I then compare the results from each method 

to the actual population associated with the substation in the reference model. In these 

results, the method that has the smallest error is considered the better performing 

approach. This process is repeated for nighttime population, economic activity indicators, 

and total area. The economic activity indicators include direct, indirect, and induced 

economic impacts, as well as economic impact on business and employment. Similarly, 

the smallest difference between the numbers produced by the reference dataset and the 

method is considered the best approach. Direct economic impacts are based on the types 

of businesses in each area. Indirect economic impacts are derived from suppliers of 
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commodities in a service area. Induced economic impacts are caused by the reductions in 

factor incomes in each service area. Economic impact on businesses and employment 

considers the overall effect on known businesses and approximated employment (Ewers, 

2008). 

6.2.2 Point Data Impacts 

For other types of analysis, the spatial accuracy of a service area is important. It is 

often important to determine if an infrastructure outage impacts other infrastructure 

assets. For example, an asset that depends on electric power from a certain substation 

may be unable to function if the substation is out of service. For this analysis, I calculate 

the spatial agreement between the reference service areas and the calculated service 

areas. I evaluated spatial accuracy using a point accuracy test. For this metric, I create 

10,000 points, randomly located within the study area. I overlay the service areas created 

by each method on the random points (FIGURE 26, FIGURE 27, FIGURE 28, and 

FIGURE 29). The point analysis assesses the accuracy of matching critical facilities with 

their corresponding service source point through service areas. This type of analysis is 

widely used in land cover classification accuracy assessments studies (Congalton, 1991). 

For each randomly placed point, I determine which service area the point belongs to in 

the reference model, as well as for the TP, WTP, CA, and WCA approaches. Using this 

information, I can calculate overall accuracy for evaluating the approaches, as shown in 

the process flowchart of FIGURE 30.  
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FIGURE 26: Point layer (10K) overlaid with standard thiessen polygon layer 
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FIGURE 27: Point layer (10K) overlaid with weighted thiessen polygon layer 

 

FIGURE 28: Point layer (10K) overlaid with standard CA polygon layer 

 

FIGURE 29: Point layer (10K) overlaid with weighted CA polygon layer 
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FIGURE 30: Point accuracy assessment data preparation flowchart  

Decision makers need to trust decision support tools to provide them with 

accurate information. However, as much of the information for critical infrastructure is 

estimated, it is important to understand the strengths and limitations of the methods used.  

In particular, here I also performed proximity confidence analyses to estimate if the 

proximity to the source point in a polygon affects the accuracy of the estimation. To do 

so, I measure the distance between each of these points and the substation, defined as the 

serving point by the reference dataset. To classify the points uniformly based on their 

proximity to the serving source point, I normalize these distances based on the size of the 

service area polygon that overlays the point for each method. This approach allows a 

decision-maker to quantify the quality of the results based on where a point is located 
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within a service area. Specific facilities that are closer to the service source facility (i.e., 

EP substation) naturally have higher confidence values then those that are further from 

the service source facility. 

As an example, consider two hospitals as point data. The first one is 500 yards 

from EP substation A. The second hospital is 2 miles away from a substation B. If the 

service area sizes are the same for both substations, it is reasonable to compare the 

hospital to EP substation distances and to calculate my confidence that the hospitals are 

correctly associated with substations. However, if substation A’s service area is much 

smaller than substation B’s, distances must be normalized. Below I formulate the 

normalization and point classification based on distance to the source: 

Let P(s) be the service area polygon of serving point s  

Let A be the area of P 

Let r be the radius of a circle that has the same area A as the service area polygon 

P(s) 

Let i be a randomly placed point within the agreement zone (the agreement zone 

is where the reference data polygon and the polygon produced by the service area 

estimation method overlap)  

Let d be the distance between i and s. d is normalized and classified as follows: 

If   d < (r/4)   then i is classified in Proximity Class #1 (closest 25%) 

If   (r/4) < d < (r/2) then i is classified in Proximity Class #2 (25%-50%) 

If   (r/2) < d < (3r/4) then i is classified in Proximity Class #3 (50%-75%) 

If   d > (3r/4)   then i is classified in Proximity Class #4 (furthest 25%) 
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Based on the normalized distances, I can classify the points and use these 

classifications to measure the effect proximity has on the accuracy of point data and 

quantify confidence in a method when reference data is unavailable. I also investigate the 

methods’ ability to estimate the accuracy of determining the source sink-relationships if 

the neighboring polygons are also considered as a part of the equation. To achieve this, I 

created a lookup table for each method. This lookup table lists all the existing service 

area polygons for all the methods as well as the neighboring polygons for each of those. 

Using this lookup table, I was able to recalculate the point accuracy values. For each 

point that was misplaced on the reference dataset, I determine if the point was correctly 

associated with a neighboring polygon. Thus, the accuracy of determining a correct 

source-sink relationship for critical point locations can be tested by considering the 

neighboring service area polygons.  

6.3 Experimental Results 

In this section, I describe the performance of the four approaches. For the 

weighted methods, I use peak electric power consumption in megawatts (MW) for the 

weights. FIGURE 31 shows examples of some of the results; it contains four screenshots. 

Each example displays one service area creation method together with the reference 

dataset. The Figure also shows comparisons between the methods and the reference set. 

The top left Figure (A) is comparison of reference set and the TP approach. The top right 

image (B) in FIGURE 31 shows a comparison of WTP with the reference dataset. The 

bottom left Figure (C) shows the polygons produced by CA method and bottom right 

image (D) shows the WCA overlaid with the reference dataset.  
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FIGURE 31: Service area polygon examples: (A) TP, (B) WTP, (C) CA, (D) WCA. 

Using aggregate statistical accuracy analyses, I compare the area, population, and 

various economic indicators with results of the reference service areas. FIGURE 32 

shows the mean difference in daytime and nighttime population between the calculated 
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and reference service areas. A smaller value indicates a better result because it shows that 

the population number of the method is closer to the population number produced for the 

reference service area. In both population types, WCA produced the best result with a 

minimum difference when compared to the reference data. CA produced results with the 

highest difference. The cumulative sum of differences in population analysis yields 

similar results (FIGURE 33). As the difference between the results from WCA and 

reference set was the smallest, I conclude that the WCA method performed best out of the 

four methods. The WTP method showed slightly better results than the regular Thiessen 

and CA methods.  

 

FIGURE 32: Mean difference in population 
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FIGURE 33: Sum of differences in population 

FIGURE 34 and FIGURE 35 show the mean of the difference in economic impact 

for various types of economic impact metrics, such as direct, indirect, induced, 

employment, and business. In all of these economic impacts, the difference is smallest in 

WCA, second smallest is CA, and third smallest is the WTP. The only exception to this is 

economic impact on business (Figure 36), where WTP and CA swap places. The largest 

mean difference occurred in TP. Although the mean difference in WTP is larger than CA 

(with the exception of economic impact on business), the differences are not as notable as 

the differences in the other categories. FIGURE 36 and FIGURE 37 show the summation 

of the differences; these results follow a trend similar to mean differences. These results 

indicate that decision support systems should not uniformly adopt one estimation method 

over another, but must consider the spatial qualities of the data and how these relate to the 



106 

 

chosen methods. In this instance, it is clear that weighted methods are preferred, but that 

the nature of the most important impact has bearing on the method to choose. 

 

FIGURE 34: Mean of the difference in economic impact (direct, indirect and induced) 

 

 

FIGURE 35: Mean of the difference in economic impact on employment and business 
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FIGURE 36: Total sum of difference in economic impact (direct, indirect and induced) 

 

 

FIGURE 37: Total sum of difference in economic impact on employment and business 

My final aggregate statistical comparison considers the total surface area of the 

polygons. The results for surface area comparisons indicate that the average reference 

polygons’ area is 1,033 square acres. As shown in FIGURE 38, WCA and TP are closest 
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in size, on average, to the average of the reference polygon sizes. The CA algorithm is 

the least accurate approximation for this metric. 

For the point accuracy analysis, I place 10,000 random points across the study 

area and I calculate the overlay agreement accuracy by applying a series of spatial 

overlay processes (FIGURE 30). FIGURE 39 shows that WTP performed the best overall 

with 68.9%, followed by WCA at 59.5%, TP at 54.1%, and trailed by CA at 52.3% 

overall accuracy. These results are nuanced, as seen in FIGURE 40. Here, WCA has the 

highest point accuracy (91%) when I consider the points in closest 25% area of each 

polygon, followed by WTP with 86%, CA with 85%, and TP with 81%. The further from 

the source point, the lower the accuracy of the non-weighted methods (TP and CA). 

Accuracy of the weighted methods (WTP and WCA) decreases considerably with 

distance, but they are considerably higher than the non-weighted methods.  

It is important to note that the accuracy of all approaches improves dramatically 

when neighboring polygons are included. Instead of assigning a point to a single polygon, 

I instead assign a point to a single polygon and any neighboring polygon. This relaxes the 

analysis to indicate that a point is associated with one from a set of source facilities. 

These results are shown in FIGURE 41, where points are correctly assigned to a set of 

source facilities over 95% of the time for all methods.  
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FIGURE 38: Average service area polygon size 

 

 

FIGURE 39: Overall accuracy through point analysis   (% accuracy) 
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FIGURE 40: Proximity confidence analysis results  (% accuracy) 

 

 

FIGURE 41: Point accuracy analysis based on polygon neighborhood relaxation 
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6.4 Power Network Accuracy Discussion and Conclusion 

In this chapter, I have studied the accuracy of commonly used techniques for 

service area estimation in CI (Thiessen polygons and Cellular Automata) on a mid-size 

Midwestern US city with no unusual geographic qualities to ensure transfer to other 

cities. I tested two hypotheses. The first hypothesis H2-1 suggests that the cell-based 

methods work better than distance-based methods and the second hypothesis H2-2 

suggests that the weighted version of these methods would work better than their non-

weighted counterparts. To test these I implemented two types of accuracy assessment; 

namely Aggregate Statistic Accuracy Analyses and Spatial Accuracy Analyses. Through 

aggregate statistic accuracy analyses I have tested the differences in the population and 

economic indicator numbers caused by the difference between four estimation methods 

(TP, WTP, CA, WCA) and the reference data set. Mean difference and total sum of 

difference in daytime and nighttime population graphs show that WCA numbers are 

closest to the reference dataset numbers, with minimal difference. It is followed by the 

other weighted method WTP and the non-weighted methods CA and TP in accuracy. This 

result is similar in economic impact numbers, except that WTP and CA change places for 

some of the measurements. This also holds true for the rest of my analyses as WCA and 

WTP perform better than CA and TP in load population – Landscan population 

difference, average service area polygon size estimate and point accuracy analysis. This 

result supports hypothesis H2-2 – that weighted methods perform better than their non-

weighted counterparts. However results are more complicated when testing H2-1 on the 

relative accuracy of cell-based approaches compared to distance-based methods.  
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My original hypothesis H2-1 held that cell-based approaches would perform more 

accurately than their distance-based counterparts. Results from mean and total sum of 

difference in day and night time populations, point accuracy analysis and some of the 

economic impact analysis show that this is not always true. Therefore I reject hypothesis 

H2-1 regarding the cell-based approaches performing unilaterally better.  There are two 

main reasons for the performance differences between CA and TP methods. First, TP 

methods seem to be well-suited for uniform distribution of consumption, while CA 

methods seem better suited for denser areas of consumption around source stations with 

less usage between stations. This intuitively makes sense, since TP methods are 

partitioning the space under consideration into a grid, while CA approaches are building 

ever-increasing disks around sources. Second, CA approaches seem to suffer more from 

anomalies in resource allocation on the border of the region, as discussed in more detail 

below. 

The results showing that cell-based approaches are not always more accurate than 

Thiessen polygons is somewhat surprising as the cell-based approaches are more 

sophisticated; this is especially surprising for the point accuracy analysis. I investigated 

possible reasons for this unexpected result. Visual inspection for the WCA polygons 

compared to polygons from the reference (ground truth) set provided some insight into 

the point accuracy result.  

There are two visible occurrences that lead to the lower accuracy of WCA 

polygons in point accuracy analyses. The first occurrence happens mostly on the WCA 

polygons at the outer edge of the study area. As all the source points start growing cells 

and the space starts the run out, the cells from inner sources start taking up all the 
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available space. Outer sources with larger power outputs run out of space and start 

channeling their growing cells further outwards. This phenomenon results in a few 

unexpected and unrealistic cell growths that contribute to the lower accuracy results on 

CA methods.  This suggests that performing CA estimation on a larger area then clipping 

down to a focus area for study might be a better process for CA approaches than the 

constraint that all source output be absorbed only in the region being considered. 

The second anomaly that I discovered in the dataset is that there are a few cases 

where the ratio of power output number for a specific substation to the total service area 

in the ground truth dataset is too large. This indicates that some of the power is provided 

to an industrial complex. The dataset that I employed does not indicate the type of power 

output so it is possible that the dataset includes some substations that are dedicated for 

industrial purposes. Inclusion of these substations with large outputs and small area 

coverage on the reference dataset also contribute to the unexpected results. As with all of 

the methods, it may also be possible to tune the CA parameters for better performance on 

the specific dataset.  

The results of the confidence proximity analysis suggest that, as the distance 

between the point sources increases, the rate of decrease in point-impact accuracy is 

higher in polygons produced by non-weighted methods. I also found that, for cell-based 

methods, the closer to the source point, the better the point-impact accuracy.  This 

suggests that, although the WTP method was more accurate overall for point-impact 

accuracy, WCA is more accurate in close proximity to the source.  Therefore, when 

choosing among service area estimation methods and accuracy measures to use, it is 

important to consider where the highest accuracy is needed.  For example, if it is 
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important to have the highest point-impact accuracy in high-density locations, near 

source points, then Weighted Cellular Automata would be the best choice.  On the other 

hand, in situations where the aggregate point-impact accuracy is more important, then 

weighted distance-based methods should be more accurate. 

Through this study, I provide an empirical evaluation of service area estimation 

techniques, showing weighted methods are preferred, but that a more uniform distribution 

of source and demand points limits applicability of cell-based methods. There are several 

limitations to the generalizability of these results. One limitation is that the weighted 

methods only took into account the capacity of power substations, but not differentiated 

demand among the population – there could be impacts based on residential, industrial, 

and commercial zoning, such as a data center or manufacturing.  

The city considered was a mid-size Midwestern city with no irregular geographic 

features, making the results generalizable to power networks in similar cities. However, 

this study only studied service area estimation for power, so more studies are needed to 

understand potential differences among CI types. The next chapter investigates a water 

network, but not in the same city, because of data access limitations.  

Another limitation of this study for its generalization is that many cities may not 

have reference data to compare with the estimations. Therefore, it may be necessary to 

develop other metrics to assess accuracy. For example, each substation has MW load 

associated with it. This load could be compared with the expected consumption of 

population and businesses to assess the accuracy of a calculated polygon.  

A major limitation in this study is that each service area estimation algorithm 

usually needs considerable tuning by system experts to address each algorithm’s 
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particular limitations. To provide a fair comparison, this tuning was not performed for 

each algorithm.  In addition, since the inherent error and uncertainty in each service area 

algorithms varies, formal probability-based methods need to be developed to better assess 

the methods.  

In the next chapter, I introduce, adapt, and implement two new methods for 

service area approximation based on transportation network optimization, study them in 

comparison to distance- and cell-based methods for a large water network, and expand 

methods for accuracy assessment to include error matrices and Kappa analysis.  



 

CHAPTER 7: WATER UTILITY SERVICE AREA APPROXIMATION 

 

 

Given that the substantial accuracy differences found among methods in practice 

from the previous study, my third research study was designed to investigate whether 

new estimation approaches could be more effective overall.  In order to understand the 

potential, I applied insights gained from the second study in order to develop and test 

several new estimation approaches. I developed two novel service area estimation 

methods based on road network optimization techniques, in order to investigate my third 

specific research question: 

Specific Research Question RQ3: Will applying metrics for transport 

optimization to service area estimation improve accuracy in comparison to 

common techniques? 

In this chapter, I perform a novel adaptation of transportation network analysis to 

create two new service area approximation algorithms, and compare them to cellular 

automata and Thiessen polygons for accuracy. Since utility networks are often aligned 

with transportation networks, this investigates the intuition that using transportation 

network layout as a weighting parameter can help to refine service area estimation 

methods and improve accuracy. The study also serves to demonstrate the more general 

applicability of the methods for accuracy assessment to water networks. The two figures 

below (FIGURE 42) illustrate visual inspection confirmation that this alignment holds 

true for water pipelines in Kentucky. It is likely that other CI networks will also have 
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similar alignments with transportation networks, since they are often constructed 

together. For example, when new neighborhoods are built, utilities and roads are planned 

together to service them. Therefore, using road networks to estimate service areas would 

be expected to perform well since these are often planned in conjunction with CI 

networks.  

 

FIGURE 42: Visual comparison of water (A) and road (B) networks in urban setting 

For this work, I use the Kentucky infrastructure authority water and waste water 

datasets available for free download (Authority, 2013). 

In the previous chapter, I compared four service area approximation methods that 

are heavily used in the disaster/emergency response community. In this chapter, I 

introduce two new methods, service area optimization (SAO) and location allocation 

optimization (LAO) and apply them to service area estimation for the Kentucky water 

network. Both SAO and LAO are based on road network travel distance optimization. 

However, LAO also incorporates into the model the amount of output the service source 

provides and matches that to the demand locations. I compare the results of these two 

methods to the previous four approximation methods discussed in Chapter 6.  
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It is reasonable to think that service areas are related to ease of connectivity to a 

source point.  In this chapter, I estimate ease of connectivity using the transportation 

network. Service areas are estimated by using the road distance from source points.  In 

GIS software, I can define a service area as a region that encompasses all accessible 

streets within specified “impedance.” For example, a 10-minute service area for a source 

point includes all the streets that can be reached within 10 minutes from that point.  

Location allocation optimization, also known as the facility location problem, has 

been utilized in scenarios such as the building of a new manufacturing plant. This 

optimization method uses the baseline knowledge of the capacity of the manufacturing 

plant, all the buyers that it has access to, and all other manufacturing plants. Using this 

information, the minimally expansive transportation routes based on the transportation 

network (e.g. roads) are determined, and an optimal location for the new plant is found 

based on the capacity, demand points and the amount of demand. The LAO can be 

considered the weighted version of SAO, similar to those tested in Chapter 6.  

Many major critical infrastructure distribution network service delivery 

components (water pipes, power lines, etc.) are often planned and located along the 

transportation networks. Therefore, modeling critical infrastructure based on road 

networks might be of value. To this end, I have adapted transportation service area 

approximation processes (SAO and LAO) for critical infrastructure (or utility) service 

area approximation. I compare two versions of the new methods to each other, as well as 

to the four methods discussed in the previous chapter.  

Hypotheses  
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I hypothesize that estimating service areas based on transportation networks will 

be more accurate than common methods, since many CI distribution networks are closely 

aligned with transportation networks. To understand and quantify the differences among 

the estimation methods, I test the following four hypotheses on the water network in the 

state of Kentucky:     

H3-1. Road-network-based Service Area Optimization (SAO) will produce more 

accurate point impact results compared to cell-based (CA) or distance-based (TP) 

estimations. 

H3-2. Road-network-based Service Area Optimization (SAO) will produce more 

accurate aggregate impact (area estimation) results when compared to cell-based 

CA or distance-based TP estimations.  

H3-3. Road-network-based Location Allocation Optimization (LAO), weighted 

using capacities and demands, will produce more accurate point and area results 

than all other methods. 

H3-4. Weighted SA estimation techniques (WTP, WCA, LAO) produce more 

accurate results compared to their standard counterparts (TP, CA, SAO).  

The accuracy of each service area calculation is assessed through comparison with the 

ground truth service areas. I use two different approaches to perform the accuracy 

assessment of the results: aggregate (area) impact accuracy analyses and spatial point 

impact accuracy analyses. In the next section, I will discuss the data used for the study.  

7.1 Data and Location 

Kentucky has developed a system called Water Resource Information System 

Portal (WRIS) through the cooperative efforts of water systems and local, regional and 
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state agencies (2013). It is one of a very few web-based mapping and analysis tools that 

also allows data download. The WRIS portal not only contains valuable system 

information, but also serves as the statewide registry for water and wastewater projects in 

the Commonwealth of Kentucky. Through this system, comprehensive water and 

wastewater datasets are made available for free download to aid water resource planning, 

such as watershed protection and infrastructure development. The dataset covers the 

Commonwealth of Kentucky and includes detailed information about each component.  

Layers that are provided are water lines (FIGURE 43), water treatment plants, 

water tanks, surface and well sources, purchase sources, water meters, pump stations, and 

water pumps. Detailed technical information about these layers can be found in 

APPENDIX B: KENTUCKY GEOSPATIAL and on the WRIS website (2013) in the 

“Geospatial Data” section. In addition, I used data from Kentucky Geography Network’s 

KY Geoportal (Authority, 2013). From this source, I obtained the state and local road line 

layers to create the Kentucky road network. I used USGS’s 10-meter-resolution digital 

elevation model (DEM), in addition to miscellaneous layers like the state boundary layer 

and the state counties layer to clip the polygons to consider only the state of Kentucky. 

One last data source that I used for my analysis was the US Census bureau website 

(Bureau, 2012) to be used in demand estimation. This dataset included 2012 Census 

Tracts, Census Groups, and Census Block points. The layers were in TIGER format with 

GCS_North_American_1983 as their Geographic Coordinate System and 

D_North_American_1983 as their datum. All data layers were imported into an ESRI 

ArcGIS Geodatabase structure as feature datasets and grouped under feature classes.  The 

Kentucky water system data is provided in North American Datum, Kentucky State Plane 



121 

 

FIPS 1600, and Lambert Conformal Conic projection system. To ensure accurate 

overlays, I transformed all other data layers into this projection. 
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FIGURE 43: Kentucy state water lines 

 

FIGURE 44: Elements of the Kentucky water network 

The census database included the variables: track, block group (polygon) and block 

(point). Census blocks are designed as subsets of zip code zones, and block groups are 

designed as subsets of census tracks with up to 6000 people in each block group. Census 
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block point data is a subset of block group data spread out in each census block group. 

Each census group point represents blocks with up to 3000 people; however, the mean of 

block point population values is 47.7. In the census data, I deleted block points with zero 

population values. This helped reduce the confusion and unnecessary data processing in 

the optimization system.  

FIGURE 45 shows the census block points with population and census block data. 

 

FIGURE 45: Census block population data 

Water systems are typically organized around water treatment plants (WATP) as 

the source of water. To compute the service areas for the Kentucky, I began with the 

WATP dataset, and then performed cleanup. Five WATPS with 0 thousand gallons 

average daily production (AVGDP)  WATPs with less than 10 thousand gallons average 

daily production (AVGDP) were removed from the dataset, because they are significantly 

smaller than most other WATPs, and are only used to serve areas in very close proximity 

to the WATP. This reduced the total number of WATPs from 217 to 203. I combined the 
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two largest WATPs into one serving Louisville, since they were 7 miles apart and 

produce 102.36 and 92.36 million gallons for the city. The next largest Kentucky-

American Water Company WATP is 75 miles away, producing 30.57 million gallons. I 

used a combination of system IDs and WATP names to consolidate duplicate WATPs. 

7.2 Service area methods 

Using Kentucky’s water network, I re-tested four methods that were previously 

tested for an EP network (Chapter 6) and tested the two new methods for critical 

infrastructure service area approximation. In section 7.3.1 I review CA, WCA, TP, WTP 

methods and show examples of the resulting polygon layers for each. In section 7.3.2 I 

discuss the two new methods, namely service area optimization (SAO) and location 

allocation optimization (LAO), which I employed to create service areas. In section 7.3.3 

I discuss the reference set.    

7.2.1 Thiessen Polygons and Cellular Automata 

In the previous chapter, I explained the creation of polygons using cellular 

automata (CA), weighted cellular automata (WCA), Thiessen polygons (TP) and 

weighted Thiessen polygons (WTP) for the electric power network of a mid-size US city. 

For the Kentucky water dataset, I followed a similar procedure to create water treatment 

plant service area polygons. I used ArcGIS’s built-in Thiessen polygon creation tool to 

create the service area polygons using TP approximation. I then clipped this layer with 

the state border layer. FIGURE 46 depicts Thiessen Polygons created as an 

approximation of water treatment plant service areas.  

As in Chapter 6, I created the WTPs using the publicly available ArcGIS 

extension (Dong, 2008). This method creates a raster grid file based on the cell unit 
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setting defined by the user. The higher the cell unit setting is, the smaller the pixels of the 

grid are, and higher the resolution of the grid. I set this cell unit to 7000, which was the 

highest value available based on my computational power. The computer used and the 

setting are the same as what I used for EP network service area estimation in Chapter 6. I 

then clipped the output raster and polygon layers with the state border layer. The grid file 

and the weighted Thiessen polygons are shown in FIGURE 47. The lines on FIGURE 47 

are anomalies that arose during the raster to vector conversion for WTP. This seems to be 

an implementation defect that introduces errors on donut-shaped polygons while 

performing the grid-to-polygon transformation.  

 

FIGURE 46: Thiessen polygons approximating service areas for water treatment plants. 
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FIGURE 47: Weighted thiessen raster grid and polygons for approximating service areas  

Cellular automata layers were created using the functionality built into the 

Interdependency Environment for Infrastructure Simulation Systems IEISS (Bush, 2005; 

G Loren Toole and McCown, 2008). For this I first re-projected the water treatment plant 

layer to the geographic coordinate system (WGS 84) and inserted two new columns for 

latitude and longitude coordinate values. I used WATP Name, X Coordinate, Y 

Coordinate, AVGDP, and ID and filed values into the appropriate XML tags by 

automating the process through MS Excel. For CA, I did not include the AVGDP value 

but instead I placed a sufficiently high number in its place. This number (1000) was the 

same for all the WATPs. For each water treatment plant, I also had to have a junction 

defined at the same exact location. WATPs were linked to these junctions through the 

“connections” tag linking to junctions “ID” tag. Please see “APPENDIX C: IEISS XML 

INPUT EXAMPLE: KENTUCKY WATER SYSTEM” for an example XML file for one 

WATP.  
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After creating the CA and WCA polygons based on water treatment plant layer 

information, I ran a “repair geometry” tool and manually cleaned the geometries of some 

donut shaped polygons. Next I clipped the layers with the Kentucky state border layer to 

have uniform study area boundaries. FIGURE 48 shows the process I applied to create 

the CA and WCA layers, and FIGURE 49 and FIGURE 50 show the resulting layers.  

 

FIGURE 48: Process for creating polygons for standard and weighted cellular automata  

 

FIGURE 49: Service areas for water treatment plants using cellular automata 
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FIGURE 50: Service areas for water treatment plants using weighted cellular automata 

7.2.2 Service Area Optimization and Location Allocation Optimization 

Service area optimization and location allocation optimization processes both are 

based on the transportation (road) network data. I used the ArcGIS Network Analyst tool 

to generate a travel-distance based road network from GIS data layers for local and state 

roads for Kentucky. To do this, I set the ArcGIS Network Analyst tool impedance to the 

road length attribute, the merge field to “No overlap,” and the overlap type to disks.  I set 

the default break values as 264K feet (50 miles) to ensure coverage of the whole state 

(FIGURE 51). Next, I loaded the water treatment plant dataset as the facilities source 

point data. The SAO algorithm then computes the shortest path from each WATP to each 

road segment, and assigns each road to its nearest WATP. The final SAO polygons for 

each WATP are the hull of the WATP’s assigned road segments.   
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FIGURE 51: Service area optimization (SAO) layer set up 

 

FIGURE 52: Overview of the polygons created using SAO 
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FIGURE 53: Road extent defining the service area polygons created using SAO 

In a similar way, I used ArcGIS Network Analyst to create LAO service areas 

based on the road network. This is an application related to the facility location problem 

that seeks to optimally locate facilities to serve customers.   The distances are set using 

the shortest path on the road network.  A customer is characterized by a demand, and a 

source facility WATP by its daily capacity (AVGDP).  In this case, a customer is a 

census block, and its demand is computed as the average block population (47) multiplied 

by the average daily demand per person (67 gallons (Kenny et al., 2009)). A table that 

shows average daily demand is shown in “APPENDIX D: .” 

I created the LAO location allocation layer in ArcGIS Network Analyst, using 

WATPs for source facilities, and the study area separated into census block-size cells 

using the Thiessen polygon tool as point data layer for demand. For the problem type, I 

choose “maximized capacitated coverage,” that chooses WATPs so that all or the greatest 

amount of demand can be served without exceeding the capacity of any facility. In 
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addition to satisfying capacity limit, it selects facilities such that the total sum of 

weighted impedance (demand allocated times distance) for all WATPs is minimized.  

As a last step, I join the location allocation demand points and their assigned 

source points with the block area layer, according to WATP name. See FIGURE 54 for 

the flowchart of LAO layer creation process. See FIGURE 55 for the resulting service 

area polygons, as well as the source and demand points connected by relationship lines.  

 

FIGURE 54: Process for LAO based on travel distance and population 
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FIGURE 55: Service area polygons created by location allocation optimization 

7.2.3 Reference Dataset 

 For an accurate comparison of the methods, it is crucial to have an accurate 

reference dataset. Data provided by the Kentucky infrastructure authority does not 

include the information about which area is getting service from which water treatment 

plant (WATP). However it includes the information about the systems that owned the 

infrastructure components like water pipes and treatment plants. Using this with 

additional data sources and collaboration with a principal Kentucky Infrastructure 

Authority GIS expert, I was able to finalize the reference dataset defining the WATP 

service areas.  
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The reference dataset polygons are based on distribution system water lines using the 

locations of these components associated with a water system (utility): 

 Water lines (system name, their reach and location, connection to purchase 

points and water treatment plants)(FIGURE 43) 

 Purchase points (amount of daily average sale, selling system name, buying 

system name and function as permanent, seasonal or emergency)(FIGURE 

44). 

 Water treatment plants  (locations and amount of average daily output and 

system name) (FIGURE 44) 

The majority of the systems were self-sufficient. Delineating the service area 

polygons for these self-sufficient systems uses the general shape of the water lines and 

does not cover areas where there are no pipelines (FIGURE 56). In some cases, self-

sufficient systems or system groups might be grouped together with very minimal water 

exchanged between them (FIGURE 57). During this process I consulted the principal 

Kentucky WRIS GIS domain expert, who corroborated my analysis as useful for making 

accuracy comparisons. The resulting final reference dataset can be seen in FIGURE 58. 
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FIGURE 56: Service area reference dataset delineation for a self-sufficient system 

 

FIGURE 57: Service area reference dataset delineation - multiple systems 
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FIGURE 58: Reference dataset for water treatment plant service areas 

7.2.4 Accuracy Checkpoints: Point Data Impact Analysis  

Point data impact analysis requires random points placed across the study area.  

For each polygon, the service source is determined and agreement between the actual 

source and source assigned by the service area approximation method is checked. For 

each accuracy checkpoint, I determine from which water treatment plant they would get 

their service at their current location. Then I check if the calculated service area polygon 

agrees with that or not. Repeating this for all the points gives a measure of overall 

accuracy. To achieve this, I used two reference sets with different fidelities. The first 

reference dataset was a point layer with close to 1.1 million points quasi-randomly spread 

across the state using ArcGIS tools. The distribution was not totally random because I 

wanted to avoid smaller polygons not being well represented. The second reference 

dataset was a point layer, but these were specifically placed on top of the water lines.  
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Sample size and distribution are one of the most discussed and documented areas 

of accuracy assessment. A number of researchers have published guidelines for choosing 

appropriate sample sizes (Ginevan, 1979; Hord and Brooner, 1976; Rosenfield et al., 

1982) in remote sensing accuracy assessment. Usage of an equation based on a normal 

approximation to binomial distribution or just the binomial distribution is appropriate if 

all you want is an accuracy number.  

In this chapter, I introduce the computation of an error matrix to better understand 

the analysis (Congalton and Green, 2008). An error matrix represents a situation where 

for each point there are n possible source points, there is only one correct answer and (n-

1) incorrect answers. To create a statistically valid error matrix, the sample size decided 

by multinomial distribution is recommended (Tortora, 1978). Sample size is selected to 

best represent the area and the classes; however, ideally, it would be most accurate if I 

had as many samples as my minimum mapping units (Congalton, 1991). 

My minimum mapping unit in this case is the census blocks with an average of 47 

persons (12-15 households). Using the random point distribution, with the total numbers 

equaling the number of households in each census block group, results in a total number 

of 1,097,512 accuracy points. I then performed an overlay with the reference dataset and 

eliminated the points that do not overlay the reference dataset (FIGURE 59). The number 

of points that do not overlay the reference dataset is inherently small because naturally, 

population numbers are considerably lower at locations where there is no public water 

service. After the overlay I eliminated 24,798 points, and overall accuracy was computed 

using 1,072,714 points (FIGURE 60). 
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Accuracy checkpoints were also created by placing the points directly on the lines 

representing the water pipes, because of the concern for potential errors produced by the 

reference data service area delineation process. Each line had 4 equidistant points placed 

on top of them. With over 280 thousand water lines and four points in each line, there 

were over 1.1 million total accuracy checkpoints. I consider a dataset the high-fidelity 

point accuracy reference set (FIGURE 61).  

 

FIGURE 59: Accuracy checkpoints eliminated 
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FIGURE 60: Accuracy checkpoints randomly distributed in each census block group 

based on the number of household units 

 

FIGURE 61: Accuracy checkpoints placed on water lines 

7.3 Accuracy Assessment 
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In this study I test the reliability of various methods in approximating service 

areas for water treatment plants. Similar to the previous accuracy analysis, two types of 

accuracy assessments were implemented.  

Aggregate impact analysis compares the agreement or disagreement between the 

total areas defined by the reference dataset and the method in question. I created an error 

matrix for each layer using the amount of area – as per the previous study. In addition I 

also created an error matrix for each layer using the amount of area agreement and 

disagreements.  

Creating the error matrices from GIS data required multiple steps to overlay 

layers to transfer attributes and some database table manipulation (Congalton and Green, 

2008). I used ESRI’s ArcGIS 10.2.1 “tabulate intersection” tool to compute the 

intersection between two feature classes and cross-tabulates the area, length or count of 

the intersecting features. See FIGURE 62 for an example of the functioning of the “Table 

Intersect” tool. I include this figure and reference to ensure replicability of this work. I 

defined the zone field as the reference dataset for WATP service areas. Then the accuracy 

checkpoint layer went through a spatial overlay process to get the attributes of the service 

area approximation layers. For aggregate impact analysis, the service area approximation 

layer was defined as the class feature layer. For point accuracy analysis, the point 

accuracy checkpoints with the service area approximation layers attributes were defined 

as the class feature layer. Output of this table was used as an input for the “Pivot Table” 

tool to create the final error matrix. An example of this process is shown in FIGURE 63. 
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Details of the error matrix creation process for aggregate impact analysis can be 

seen in FIGURE 64, and details of the error matrix creation process for point impact 

analysis can be seen in FIGURE 65.  
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FIGURE 62: Tabulate intersect tool overview 

 

FIGURE 63: Pivot table example 

 

FIGURE 64: Creation of error matrices for aggregate impact analysis  
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FIGURE 65: Creation of error matrices for point impact analysis 

Once I finished producing the error matrices, I calculated overall accuracy values 

for aggregate (area) and point accuracies. I did this first using the accuracy point dataset 

created by points placed across the area and then using the points placed on the water 

lines.  For both the aggregate and point impact accuracy analyses, the commission and 

omission errors are calculated and presented as producer’s and user’s accuracies for 

WATP service areas.  

Overall accuracy is calculated using the approach described in (Congalton and 

Green, 1999, 2008), as follows: 

 

where k is the total number of water treatment plants, n is the number of sample points 

and nij is the variable that represents each cell in the matrix where i and j represents 

columns and rows respectively. As shown on an example error matrix in FIGURE 66, the 

columns are the reference values and the rows are the values for a particular method (e.g., 

WCA). I create four of these matrices, one for each method, to assess the accuracy of 

each calculated dataset when compared to the reference dataset. For each sample point, I 



OverallAccuracy  ( nii
i1

k

 ) /n
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determine which reference polygon it falls on (i) and which calculated polygon (j) it falls 

on. If both of these polygons represent the service area for the same water treatment 

plant, the ID fields match (i=j), which adds one to the nij cell in the matrix.  

 

 

FIGURE 66: Example error matrix 

The producer’s and user’s accuracy values as well as Kappa analysis for 

significance are calculated as follows, after (Congalton and Green, 1999, 2008). 

Producer’s accuracy can be calculated by 

 

And the user’s accuracy can be calculated by  

 

7.3.1 Kappa Analysis 

Kappa analysis is a discrete multivariate technique. It is one of the analyses used 

for statistically determining if one error matrix is significantly different than another 




i

ii
i

n

n
sAccuracyUser'



144 

 

matrix (Bishop et al., 2007). The KHAT statistic is the result of Kappa analysis and it is 

another measure of agreement of accuracy (J. Cohen, 1968). It is a measure of agreement 

between the actual agreement in the error matrix and the chance agreement. Actual 

agreement in the error matrix is indicated by the major diagonal in the matrix and 

represents the agreement between service areas that each approximation method created 

and the reference dataset.  

Let pij denote the proportion of the samples in the (i,j)-th cell corresponding to nij. 

Let pi+ and p+j be defined by 

    and   

Also, let   

 be the actual agreement and be the chance agreement. 

Then the maximum likelihood estimate of Kappa is calculated by  

              

For each error matrix, the computed KHAT value is a measure of agreement or 

accuracy. The values can range from +1 to -1. There should be a positive correlation 

between the truth set and the methods because they both overlap the water treatment 

plants, so negative values are not possible in this analysis. Possible ranges for KHAT 

values are categorized in to three main groupings (Landis and Koch, 1977): a value 

greater than 0.8 (80%) represents strong agreement, a value between 0.4 and 0.8 (40-

80%) represents moderate agreement and a value below 0.4 (40%) represents poor 

agreement.  
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Calculating Z value is a means for testing the significance of the KHAT statistic 

for a single error matrix. Through this I can determine if the agreement between the 

produced service area dataset and the reference dataset is significantly greater than zero 

(i.e., better than a random dataset). I can also apply the Z test to have pairwise 

comparison of two error matrices. With this I can determine if these two error matrices 

are significantly different or not.  

 Let 1 and 2 be the kappa statics for error matrix #1 and #2. Let also var ( 1) 

and var ( 2) be the estimates of variance. In this context, the Z value is used for testing 

the significance of a single error matrix as expressed by: 

 

For pairwise comparison of error matrices, the Z value is computed as follows: 

 

More detailed information about above listed equations and equations for 

calculating error matrix variance values can be found in (Congalton and Green, 1999, 

2008).  

7.4 Transportation-based service area estimation Discussion and Conclusion 

In this section, I report accuracy analysis results for aggregate impact analysis 

(AIA) and point impact analysis (PIA). The sample size for aggregate impact analyses is 

203, representing the area of the spatial extent of Kentucky. On point impact analysis, my 

sample size is 1.07 million points that are categorized in 203 classes. On the high fidelity 
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version of the point impact accuracy dataset, where the accuracy points are placed on the 

water lines, my sample size was over 1.1 million points.  It would be logical to consider 

point impact analysis as the more accurate of two throughout this study because it has a 

very high sample size, and it is based on exact spatial locations rather than the amount of 

area comparison that aggregate impact analyses use. I created polygon datasets that 

approximate the service areas for water treatment plants in Kentucky, using tested six 

different methods: Thiessen Polygons (TP), Weighted Thiessen Polygons (WTP), 

Cellular Automata (CA), Weighted Cellular Automata (WCA), Service Area 

Optimization (SAO) and Location Allocation Optimization (LAO).  

In TABLE 2, TABLE 4 and TABLE 5, I present overall accuracy values for all 

the methods. Table 4 and Table 5 show point impact analysis for two different point 

accuracy fidelities. Table 4 is created using the points placed across the study area 

whereas Table 5 is created using points specifically placed on the water lines. The 

accuracy results for those fidelities are very similar, so I use the numbers from the lower 

fidelity one for comparison as the conclusions from both fidelities are the same.   

In both AIA and PIA, the LAO method has the highest accuracy values (72.32 

and 83.08). At almost 10 points behind LAO, SAO and WCA had the second best 

accuracy values. Accuracy values for standard versions of TP and CA are around 60 

(AIA) and 70 (PIA), with TP having slightly better accuracy than CA. WTP accuracy is 

the lowest in all the tests. Examination of the resulting polygons illustrates the difference 

of WTP compared to others as shown in FIGURE 47. This is likely due to the particular 

implementation of this method and an outlier in the dataset with a very large daily water 

output value. The WTP implementation uses raster graphics to do the weighting and this 
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may allow the outlier to overtake most of the space in the study area. The problem can 

arise when the data is converted from raster format to vector format. 

Producer’s and User’s accuracy tables provide accuracy values for each water 

treatment plant. Due to the large size of these tables I include user’s and producer’s 

accuracy tables for location allocation Point Impact Analysis and cellular automata 

aggregate impact analysis in “APPENDIX E: EXAMPLE PRODUCER’S AND USER’S 

ACCURACY TABLE FOR AGGREGATE IMPACT ANALYSIS.”  

KHAT values are a measure of agreement or accuracy and they can range from +1 

to -1. Since a value greater than 0.8 (80%) represents strong agreement (Landis and 

Koch, 1977), I can conclude that with KHAT value of 82.21, the LAO point impact 

analysis shows strong agreement with the reference dataset. All the remaining accuracy 

numbers show moderate agreement with the reference dataset except TP, which shows 

poor agreement.  

Pairwise Z values show the agreement between a pair of methods. A higher Z 

value indicates more significant differences in the error matrices of the pair in question. 

See TABLE 7 for calculated Z values comparing all the weighted methods to their 

standard counterparts. Since WTP has low accuracy, but TP has decent numbers, it was 

expected for their difference to be high. TABLE 8 shows pairwise comparison Z values 

for all the possible pairs. 

TABLE 2: Kentucky water SA accuracy based on aggregate impact analysis 

 
Thiessen 

Polygons 

Weighted 

Thiessen 

Polygons 

Cellular 

Automata 

Weighted 

Cellular 

Automata 

Service Area 

Optimization 

Location 

Allocation 

Optimization 

Overall 

Accuracy 61.66 12.29 57.63 62.14 64.68 72.32 
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TABLE 3: Kentucky water SA KHAT and Z values based on aggregate impact analysis 

 
Thiessen 

Polygons 

Weighted 

Thiessen 

Polygons 

Cellular 

Automata 

Weighted 

Cellular 

Automata 

Service Area 

Optimization 

Location 

Allocation 

Optimization 

KHAT 61.40 11.10 57.33 61.81 64.42 72.32 

Z value 
241.90 69.44 223.44 241.11 258.78 1674.21 

 

TABLE 4: Kentucky water SA overall accuracy based on point impact analysis  

 

Thiessen 
Polygons 

Weighted 

Thiessen 

Polygons 

Cellular 

Automata 

Weighted 

Cellular 

Automata 

Service Area 

Optimization 

Location 

Allocation 

Optimization 

Overall 

Accuracy 
72.32 42.33 70.11 74.32 73.40 83.08 

TABLE 5: Kentucky water SA accuracy based on high fidelity point impact analysis  

 
Thiessen 

Polygons 

Weighted 

Thiessen 

Polygons 

Cellular 

Automata 

Weighted 

Cellular 

Automata 

Service Area 

Optimization 

Location 

Allocation 

Optimization 

Overall 

Accuracy 
71.8 47.33 70.3 72.4 76.8 84.7 

TABLE 6: Kentucky water SA KHAT and Z values based on point impact analysis 

 

Thiessen 

Polygons 

Weighted 

Thiessen 

Polygons 

Cellular 

Automata 

Weighted 

Cellular 

Automata 

Service Area 

Optimization 

Location 

Allocation 

Optimization 

KHAT 71.09 35.43 68.68 72.18 72.19 82.21 

Z Value 1603.86 823.51 1549.54 1668.14 1645.13 2186.19 

TABLE 7: Kentucky water SA Z values comparing weighted to non-weighted methods  

Pairwise comparison TP vs WTP CA vs WCA SAO vs LAO 

Z Value 577.27 69.07 173.48 
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TABLE 8: Kentucky water SA error matrix Z values for all pairs comparisons 

Error Matrix 

Z value 

matrix 

TP WTP CA WCA SAO LAO 

TP  577.3 38.4 30.4 17.7 191.4 

WTP 577.3  538.3 612.0 598.2 818.7 

CA 38.4 538.3  69.1 56.3 232.8 

WCA 30.4 612.0 69.1  12.8 160.0 

SAO 17.7 598.2 56.3 12.8  173.5 

LAO 191.4 818.7 232.8 160.0 173.5  

Hypotheses H3-1 and H3-2, that SAO outperforms common methods in both 

point and area accuracy, can be accepted because the KHAT values are higher for both 

SAO and LAO accuracies.  

Hypothesis H3-3 that LAO weighted using capacities and demands, will produce 

more accurate point and area results than all other methods can be accepted because LAO 

has better accuracy and KHAT values than SAO. This difference is significant because a 

pairwise comparison of the error matrices produced a high enough number, greater than 

1.96 (Congalton and Green, 2008), to state that these two error matrices are statistically 

different at a 95% confidence level.  

Hypothesis H3-4 that weighted methods outperform non-weighted methods on the 

water network for the state of Kentucky has to be rejected because WTP performed 

significantly worse than TP in terms of overall accuracy and KHAT values. The 

difference is significant with a Z value of 577, within the 95% confidence value. It is 

likely that the implementation of this method impacts the result for the approach. To 

determine Thiessen polygons, the software implementation does an approximation of the 

Voronoi algorithm based on an axis-aligned grid with interpolated values for source 
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points on the axis-aligned grid. However, the minimum grid size usable in this software 

implementation (set for performance) was not small enough for an accurate conversion 

between the grid calculations and the finalized Thiessen polygons; this conversion was 

considerably impacted by differing weights in the weighted approach. Therefore, this 

particular software setup may not be sufficient to judge the performance of weighted TP. 

The limitations of this study include: (1) the ground truth was estimated based on 

public dataset that is not comprehensive for the service area, (2) the software had a 

flawed implementation of the WTP algorithm, (3) demand is estimated based on 

population (zoning is not taken into account), and (4) the method requires considerable 

time for a GIS and service area allocation expert to merge diverse data sources, match 

projections, and filter out anomalous data.   

In this chapter, I introduced a new type of service area approximation based on 

transportation networks. Such approaches have not been applied previously for critical 

infrastructure service area approximation. On the water network in the state of Kentucky, 

the transportation-network-based methods outperformed all other methods, with the 

weighted LAO transportation-network-based method having the best accuracy. 

Visual inspection showed a high degree of alignment between the road networks 

and water pipelines (FIGURE 42). One exception to that is on rural areas where residents 

have their own private water wells. As shown in FIGURE 67, the layer for water lines (in 

blue) is placed on top of the layer for roads (in red). This layer arrangement shows the 

roads in red show more often in rural areas where there are no water lines accompanying 

them. Another outcome of the visual comparison was that interstates and major highways 

do not typically have water lines that run in parallel with them. Excluding the interstates 



151 

 

and big highways from network optimization could be a good design choice as a 

refinement to the approach. With other types of CI networks, there is likely to be overlap 

as there is with water pipelines. However this would be specific to the CI network type 

and depend on their inherent structure that requires them to be aligned with roads. I 

expect substantial overlap between road network and other utilities such as electric 

power, natural gas, cable services, landline communication, etc. However, networks such 

as wireless phone, wide area Wi-Fi and specific other transportation networks would not 

be as conforming. 

 

FIGURE 67: Water and road network overlap compared (blue: water, red: road) 



 

CHAPTER 8: TRANSPORT-BASED APPROACHES FOR POWER NETWORK 

 

 

Chapter 6 introduced and evaluated commonly employed distance- and cell-based 

techniques for service area approximation, which were comparatively evaluated in the 

context of a power dataset. Chapter 7 introduced two service area approximation methods 

based on road network optimization called Service Area Optimization (SAO) and 

Location Allocation Optimization (LAO). These were evaluated in the context of a larger 

dataset – the Kentucky state water distribution network, in comparison with the 

previously studied distance and cell-based techniques and SAO and LAO performed very 

well. In order to make a fuller comparison of results for discussion, here I evaluate the 

two new transport-based methods in the context of substation service area estimation for 

the same mid-size city power network that was studied in Chapter 6. This evaluation 

enables a more complete comparison of the possible differences in service area 

estimation methods across CI networks of different size and type, and will help to inform 

CI analysts about the considerations that must be taken in these different situations. 

8.1 Data and methods 

I obtained population data from the US Census Bureau website in TIGER GIS 

format for census blocks. Similarly, I also obtained the road data GIS layer from the U.S. 

Census Bureau website (Bureau, 2012). I used ArcGIS Network Analyst to create the 

network structure for driving directions to be used for the transport-based service area 
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estimation methods SAO and LAO. LAO requires additional information about the 

capacity of the substations, while SAO does not take this into account.  

To create the service areas, I first defined the facility locations and the road 

network. Then, to insure proper coverage, I set the maximum distance for the search 

reach to 25 km. ArcGIS Network Analyst then created service area polygons. As a last 

step for the SAO polygon layer, I clipped the resulting polygon set with city boundary 

layer. See FIGURE 68 for the SAO polygon layer along with the reference dataset for a 

small portion of the study area.  

To create service areas based on LAO, I defined the substations as the source 

points with the “Load” output in megawatts as the capacity/weight value. I also defined 

census block points as the demand points. I set up the demand amount for each block 

point by multiplying the number of people in that block with the average per capita 

power usage value for the service area. Running the ArcGIS Network Analyst Location 

Allocation tool with the “Maximum Coverage Allocated” option and the settings noted 

above for source and demand points produces the optimized source-sink relationships. 

Carrying the relationship over to census block point areas and resolving based on the 

source facility ID produces the final service areas based on LAO. See FIGURE 69 for the 

service area polygons created with LAO, along with the reference dataset. FIGURE 70 

shows a sample of the SAO service areas with assigned road lines, and FIGURE 71 

shows an example of the LAO source-sink relationships used for service area creation. 

The load values shown in these figures are all in Megawatts.  

I applied the same process used in Chapter 6 to compute the point data impact 

accuracy.  First, I created a point dataset with 10K points randomly placed across the 
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city’s study area. The flowchart in FIGURE 72 shows the overall process –  the attributes 

from the reference dataset and the SAO and LOA methods were transferred onto the 

point data layer through a series of spatial joins. To determine the overall accuracy, I 

divided the number of points where the method and reference sets agreed on the source 

by the total number of points (10K).  Sample overlays of the accuracy check points for 

substation service areas created using SAO and LAO are shown in FIGURE 73 and 

FIGURE 74.  
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FIGURE 68: SAO EP service area polygons 

 

FIGURE 69: LAO EP service area polygons 

 

FIGURE 70: Road network & SAO EP 

service areas 

 

FIGURE 71: Source-sinks in LAO EP 

service areas 
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FIGURE 72: Point accuracy assessment flowchart for SAO and LAO 

 

 

FIGURE 73: Sample SAO EP service 

areas with distribution of accuracy check 

points 

 

FIGURE 74: Sample LAO EP service 

areas with distribution of accuracy check 

points 
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8.2 Accuracy results for city-wide power network service area estimation 

Overall accuracy results were lower than expected, with a point impact accuracy 

of 46.3% for SAO and 49.1% for LAO. This confirms the hypothesis H3-4 that the 

weighted method (LAO) outperforms the non-weighted method (SAO) for transport-

based methods on electric power data at city scale. As shown in TABLE 9, when 

comparing the LAO and SAO accuracies for electric power service area estimation to 

those for distance- and cell-based methods as presented in Chapter 6, I found that the 

accuracies for LAO and SAO are lower than all the other methods. To understand the 

overall lower accuracy, I performed a visual inspection of the data from SAO and LAO 

overlaid with accuracy check points colored according to agreement with the reference 

dataset. FIGURE 75 and FIGURE 76 show the distribution of points with positive 

agreement on the source substation (green) and negative agreement (red).  

TABLE 9: Accuracy of distance, cell, and transport methods on EP service area 

estimation for a mid-size midwestern US city 

Method WTP WCA TP CA LAO SAO 

Accuracy 68.9% 59.5% 54.1% 52.3% 49.9% 47.0% 
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FIGURE 75: Sample of the visual point 

impact analysis for SAO 

 

FIGURE 76: Sample of the visual point 

impact analysis for LAO 

The primary reason for the lower accuracy of methods using road network for 

estimation appears to be the presence of industrial sites where there are the substations 

with a high power output used over a small amount of land. In addition, there are many 

large roads in proximity to industrial facilities, leading to higher numbers of source-sink 

connections between the substations presumably serving industry, and the residential data 

analyzed for accuracy. Because of this, the error introduced by industrial complexes 

using large amounts of power seems to greatly impact the accuracy of transport network 

based service area approximation methods. These results highlight the need to include 

industrial power usage to create source-sink relationships, instead of only population data 

combined with average power consumption per person. Other ways to mitigate this 

impact could be to eliminate the substations dedicated to industrial sites, or put barriers 

around them to reduce the amount of error they may be introducing.  
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Another contributing factor to differences in accuracy may be in the makeup of 

the study area. A statewide water network makeup is different than a city’s power 

network makeup in terms of density and structure. In most states, the statewide water 

network includes cities and small towns with long distances between them. On the other 

hand, a city’s electric power network is a tight grid of power lines and roads. Therefore, a 

transport-based method will have more difficulty with service area estimation in a city, 

where there are significantly more paths between sources and sinks. In a city, there are 

also fewer fluctuations in power output across the substations. The distribution of the 

substations and their power outputs are more uniform than the distribution and outputs of 

statewide water treatment plants.  In a state water network, water treatment plants in one 

or two big cities provide two more orders of magnitude more water than the majority of 

the other water treatment plants. Methods based on the transportation network using 

source and demand amounts and locations compensate for this well, as the high density 

population in the big cities absorbs the source output. On the other hand, distance- and 

cell-based methods do not take the demand into account cannot contain outlier source 

points with very high outputs.  



 

CHAPTER 9: COMPARISON OF SERVICE AREA ESTIMATION METHODS 

ACROSS NETWORKS 

 

 

This chapter compares the accuracies for distance-, cell-, and transport-based 

service area estimation across the power and water network studies to understand how the 

methods differ across network types and study area sizes. In Chapter 7, RQ3 asked “Will 

applying metrics for transport optimization to service area estimation improve accuracy 

in comparison to common techniques?” Chapter 7 results showed transport-based 

methods to be more accurate for a state-wide water network, but follow-up results in 

Chapter 8 showed that accuracy was not improved using transport-based methods in the 

context of a city power network.  

Research question RQ2 was a more general question about the differences in 

effectiveness among various service area estimation techniques for CI enablement 

scenarios. In this chapter, I compare the accuracy results across both study areas and 

network types noting that weighted SA estimation techniques produce more accurate 

results compared to their non-weighted counterparts across both network types and study 

areas. I expected the accuracy of the methods to be highest for transport-based, then cell-

based, then distance-based as we saw in the Chapter 8 for the state water network. 

However, this chapter shows that changing the characteristics of the study area, network 

type, and the geographic extent can change the results dramatically; this ordering is 

reversed for electric power network service area estimation in a city.  
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9.1 Results of comparison across networks and methods 

TABLE 10 summarizes the overall accuracies of the compared methods in the 

studies of water and power networks and FIGURE 77 shows these accuracies in a bar 

chart.  

TABLE 10: Overall point accuracies for service area estimation methods  

Network and study area type TP WTP CA WCA SAO LAO 

Electric Power - City 54.1 68.9 52.3 59.5 47.0 49.9 

Water - State 71.8 47.3 70.3 72.4 76.8 84.7 

 

 

FIGURE 77: Chart of overall point accuracies for service area estimation across networks 

9.2 Discussion of comparative accuracy across methods and networks 

In Chapter 6 I hypothesized that cell-based service area (SA) estimation 

techniques produce more accurate results compared to distance-based ones (H2-1, 

rejected) and weighted SA estimation techniques produce more accurate results compared 

to their non-weighted counterparts (H2-2, accepted). In Chapter 7, the scope of H2-2 was 
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extended to consider also the SAO and LAO techniques (H3-4) hypothesizing that the 

weighted SA estimation techniques produce more accurate results compared to their 

standard counterparts. However, H3-4 had to be rejected in the context of the water 

network for the state of Kentucky, because WTP performed significantly worse than TP 

in terms of overall accuracy and KHAT values. 

In Chapter 7 I hypothesized that road-network-based service area optimization 

(SAO) will produce more accurate point impact results (H3-1, accepted) and more 

accurate aggregate impact (area estimation) results (H3-2, accepted) compared to cell-

based (CA) or distance-based (TP) estimations. In addition I also hypothesized that road-

network-based location allocation optimization (LAO), weighted using capacities and 

demands will produce more accurate point and area results than all other methods (H3-3, 

accepted). In considering the extension of these hypotheses from the water network 

context to include the power network context, the hypotheses must be rejected for the 

city-wide EP dataset, since accuracy values for LAO are lower than the other previously 

used methods.  

Comparing the methods across both primary datasets, there are no clear-cut 

winners in service area estimation. For the water network across the state of Kentucky, 

the transport-based methods LAO and SAO outperform all other methods. However, for 

the electric power network in a mid-size Midwestern US city, these methods are the least 

accurate. This is likely because of the differential impact of industrial utility usage, and 

could also be affected by the large difference in the sizes of the study areas investigated.  

Much of the water used by industrial applications does not require treatment, so therefore 

the demand for these applications is not included in the average water usage per person 
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and is also not included in the outputs of the water treatment plants. On the other hand, 

industrial usage of power does come from the power network, but is not accurately 

localized by using census data. 

Another difference is apparent when comparing transport methods to standard 

methods: the improvement in accuracy is marked for weighted distance- and cell-based 

methods for the electric grid in a mid-size US city, but is less pronounced for the 

transport methods. Conversely, the difference in weighted methods for the water network 

is more pronounced than the differences between weighted and non-weighted distance 

and cell-based estimates for water across the state of Kentucky. These differences likely 

arise from the difference in the size of the study area, spatial and structural makeup of the 

datasets, and limitations on the implementation of some of the methods.   

For the statewide water network, there are more source water treatment plans, 

with only a few very large plants and many substantially smaller ones. This disparity 

minimizes the impact of weighting over such a large area for the distance and cell-based 

methods. In other words, there is likely an averaging effect over the large areas, 

equalizing weighted and non-weighted distance- and cell-based methods. However, the 

transport networks likely reflect the population distribution quite well, so the weighted 

transport method was likely more accurate because of the alignment of the roads, water 

networks, and census block data, improved with source capacity data. 

For the citywide electric power network, on the other hand, weighted distance and 

cell-based methods were significantly more accurate than their standard counterparts. 

This is likely due to the smaller area considered, making it important to take source 

capacities into account. Both transport network-based methods suffer from the lack of 
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industrial usage data. In addition, for an electric power network, the source output 

distribution is more uniform, with no large outliers, helping distance and cell-based 

methods work effectively. On the other hand, transport-based methods are not as efficient 

in approximating the service areas because of the dense road and EP networks in a tight 

grid form.  

Differences in performance also arise for distance (TP, WTP) and cell-based (CA, 

WCA) methods across the two networks. Within the same network, the standard CA and 

TP methods have similar accuracies. For the electric power service area estimation, the 

weighted methods outperformed the standard methods considerably. I note that the water 

network accuracy results for WTP are likely due to the implementation rather than the 

method. WCA did not improve CA results for the water network drastically.  

9.3 Cross-network service area estimation accuracy conclusions 

Based on the results presented in Chapters 6, 7 and 8, we can conclude that, across 

the study areas and networks, weighted methods are more accurate, with the exception of 

weighted distance-based methods on the water network. This discrepancy is likely due to 

implementation details in the tools used rather than the method itself. We also can 

reasonably conclude that the ordering of accuracies for the statewide water network is 

transport-based, then cell-based, then distance-based, but for the city power network, the 

accuracies are in reverse order. This difference is likely due to the impact of the lack of 

industrial zoning data for electric power demands while their usage is still included in 

source EP substation capacities. However, water usage from water treatment plants is not 

as impacted by this zoning difference because plants are likely not providing large 

volumes of water for industrial use, since this kind of water does not need the same 
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treatment as drinking water. Another likely reason for the difference in the results is due 

to the differences in spatial distribution of the source points, their service output amounts 

and structural makeup of the networks across the study areas.  

The comparison presented in this chapter is of particular importance in the design 

and development of future CI analysis tools, which will include multiple networks with 

potential cross-infrastructure dependencies. The results highlight the need to choose 

service area estimation methods that are appropriate for the network type and size, the 

availability of population and zoning data, not to mention geospatial feature data. In other 

words, these results show that applying the same method across networks may not be 

advisable. In particular, CI analysts will need to consider the purpose of the analysis, the 

size and features of the geographic study area, and the features of the utility network in 

selecting service area approximation methods. In addition, availability of source 

capacities, detailed population data and road network data must be a decision factor while 

selecting a method.  All the weighted methods require the use the source capacities as a 

parameter. In addition to source capacities, both transport-based optimization methods 

require detailed road network data and weighted transport-based method (LAO) also 

requires detailed demand data.  The results here also provide a starting point for reference 

in terms of design guidance for analysis considerations in electric power and water 

distribution networks at city and state scales. 



 

CHAPTER 10: CONTRIBUTIONS, LIMITATIONS, AND CONCLUSION 

 

 

This chapter summarizes the contributions, limitations, and future directions of 

my dissertation research in support of decision-making and analysis for critical 

infrastructures. 

10.1 Summary of research contributions 

In this dissertation, I have sought to investigate methods for effective decision 

support for critical infrastructure managers, including aspects of user support and 

accuracy of service area estimation methods, both of which are of high importance in 

making correct, timely decisions in the face of emergencies. I have developed a Decision 

Recommender Tool (DRT) framework and a prototype Critical Infrastructure Explorer 

(CIE) decision support platform described in Chapter 4 for use during infrastructure 

reconstitution. The DRT framework models users, targets (e.g. economic impact), and a 

simulation engine in an interactive geovisualization environment. A major benefit of this 

framework is that it accounts for cross-infrastructure interdependency.  

Chapter 5 showed that decision makers preferred the prototype Critical 

Infrastructure Explorer (CIE) over common GIS tools for reconstitution tasks, and CIE 

allowed decision makers to make better decisions with (1) less time and (2) less cognitive 

load. The study confirmed our hypothesis that tools tailored to support critical 

infrastructure decision-making are needed for more effective and efficient decision-

making. 
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In CI modeling and analysis, data of good quality are difficult to access for many 

reasons. The result is a reliance on estimation methods to analyze impacts of specific 

outages on populations, regional economies and other critical infrastructure elements. 

During the study of CIE, GIS experts expressed that accuracy estimation methods were of 

critical importance, greatly impacting the trust that experts would place in a decision 

support system. Therefore, the dissertation research studies that followed had a focus on 

evaluating the accuracy of service area estimation methods. Choosing the correct 

estimation methods to provide the highest possible accuracy for decision makers is 

critical in establishing trust and ensuring that decisions will not have unexpected negative 

impacts. Inaccuracy in service area estimation could be particularly important when 

making decisions that involve cross-infrastructure effects. 

Chapter 6 studied the accuracy of two commonly used estimation methods on a 

power network dataset from a midsize Midwestern US city, demonstrating that weighted 

approaches are more accurate, as hypothesized.  Weighted cellular automata (WCA) was 

the strongest performer estimating aggregated area impacts, however WTP had better 

accuracy for estimating point impacts. I found that cell-based methods have limited 

ability to balance capacities within a bounded service region. Adjustments to cell-based 

methods to handle service area boundaries may make them more accurate. 

Chapter 7 studied the accuracy of common methods and two new transport 

network-based methods on the water network for the state of Kentucky, confirming the 

hypothesis that accuracy is improved by using transportation network optimization, and 

that weighted approaches were generally still more accurate. However, this study 

revealed a limitation of the ArcGIS implementation of the weighted distance-based 
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method on the large area of a state. I also applied Kappa analysis for comparison of 

classification methods to CI analysis. This provides greater confidence in results through 

significance testing for pairwise comparison of service area estimation methods across 

networks and study areas. 

Chapter 8 applied the new transportation-based methods to the electric power 

dataset used in Chapter 6, showing dramatically different results. While the water 

network was reflected accurately by the road network, transportation methods were much 

less accurate than distance- and cell-based methods in the context of a power network. I 

believe that the reason for this is that there was no zoning information included in the 

power reference datasets. The impact of this source of inaccuracy is not large for water 

treatment plants, since industrial uses of water such as cooling do not necessarily require 

water treatment and as such that unrepresented demand may also not be represented in 

the water treatment plant data. However, for electric power networks, most power is 

provided by the utility, so a dataset that does not include the location of high-demand 

points for industry may have very skewed results. 

In Chapter 9, I compared the overall point accuracies across the methods and 

networks. Applying all six methods to a city electric power network and a state water 

network showed potential tradeoffs. In general, weighted methods outperformed non-

weighted methods. Cell-based methods fell in the middle in both cases. This suggests that 

cell-based methods may be less sensitive to changes in area size than distance- or 

transport-based methods. Transport-based methods considerably outperformed other 

methods in the water network, while they performed the most poorly in the citywide 

electric power network. 
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The arc of this dissertation highlights the importance of providing accurate, 

tailored support for critical infrastructure decision-making. With a decision recommender 

tool, decision makers can make decisions more quickly, more correctly, and with less 

cognitive load, given that the system is relying upon accurate data. Because of very 

limited access to critical infrastructure service area data, it is of the utmost importance to 

understand the accuracy of service area estimation methods for decision support 

recommendation. To this end, I have developed two novel models for service area 

estimation based on transportation network optimization, showing them to be very 

accurate for state-wide water network service area estimation. I have demonstrated that, 

in general, weighted methods are more accurate, across network type and study area size. 

Transport-based service area estimation methods using population sink data did not work 

well for electric power service area in a city, where uniform populations and transport 

networks belie possible missing demand information from industrial and commercial 

zones.  

Overall, the outcomes of this research provide insight for researchers and 

practitioners in geospatial information systems, and particularly for developers and users 

of applications for critical infrastructure modeling, analysis, and decision-making. 

Analysts and decision makers can benefit from tools and environments that enable new 

kinds of interaction, which can support improved analysis and thereby decision-making. 

And since a key enabling element is accurate knowledge about the infrastructures 

themselves, helping system developers and analysts understand the tradeoffs involved in 

modeling infrastructures and infrastructure interactions in different contexts can lead to 

more accurate modeling, enabling improved analysis and decision-making. Results of the 
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accuracy analysis here indicate that decision makers and system designers should weight 

tradeoffs and select carefully when applying different service area approximation 

methods to CI source-sink analysis.  

The practical application of this research is grounded in two primary ways. Much 

of the service area estimation work was conducted and published in collaboration with 

critical infrastructure analysts and researchers at Los Alamos National Lab, who employ 

these kinds of tools in response to real critical infrastructure scenarios. In addition the 

team at the Kentucky Infrastructure Authority expressed interest in making use of the 

byproducts of this research. 

10.2 Limitations and Future Work 

Results obtained through the experiments performed through this dissertation 

research also include some limitations that need to be listed here. For instance, CIE 

explained and Chapter 4 and implemented and tested in Chapter 5 is a prototype and 

needs many improvements and additions to make it useful for real life decision support 

during a disaster. Also accuracies of different methods varies according to the data and 

location it is applied to and therefore more research is required to have deeper 

understanding of their functioning. Here is a concise list of the primary limitations of this 

work: 

1. The CIE tool is a prototype. Many more features are needed to make such 

a framework feasible for actual emergency decision support, particularly support 

for multiple networks, multiple criteria, prioritized appropriately for diverse 

emergency scenarios, and ideally real-time adaptation to changing situations and 

having live connections to dynamic data sources.  
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2. More studies on the accuracy of service area approximations are needed to 

understand the robustness of the findings presented, particularly to understand the 

impact of diverse CI networks, geographical features, or land-use type (such as 

residential/ industrial/ commercial). 

3. More access to real datasets is needed for other researchers to replicate the 

kinds of analyses done here. 

4. Integration for accuracy assessment and scenario simulations are needed 

for decision makers to practice before emergencies occur, and this practice could 

allow researchers and developers to discover new needs or considerations for CI 

decision-making software support. 

Although our results are quite promising, the prototype that I created and 

described herein is only a first step in supporting decision-making and analysis for 

critical infrastructure. What is needed is a complex system that is able to analyze multiple 

critical infrastructure networks using multiple ranking factors to provide 

recommendations and support for the decision maker. Since CIE was only an 

experimental tool, it does not include functionality to run scenarios across multiple 

networks, or to take into account more than one priority criteria for decision support.    

An ideal CI decision support system would help CI analysts and decision makers 

by accurately and quick describing the situation and recommending scenarios that best 

target areas for recovery. It is also important to provide transparency in suggested 

prioritizations and in the strengths and limitations of the service area approximation 

methods. This transparency will help decision makers be more efficient and effective 

while being aware of the possible pitfalls of using particular tools and methods.  
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More research is needed to describe the potential trade-offs between distance-, 

cell-, and transport-based methods for service area estimation as applied to diverse 

critical infrastructure network types and to study areas of varying sizes. This research 

could benefit from both empirical comparisons and formal probability-based methods. In 

reality some networks, like EP are dynamic in nature and realistically would need to be 

modelled in a dynamic fashion to have more real life applications. Adding estimation 

approaches such as agent-based modeling and simulation would allow for more dynamic 

modeling that can adapt to changing EP loads due to load balancing and fluctuations in 

demand, therefore service areas.  

10.3 Conclusion 

Integrated CI analysis tools can support improved decision-making, but rely on 

the accuracy of the data and estimation techniques they are built upon. The studies in this 

dissertation have shown that straightforward application of an individual technique is not 

possible, but that CI analysts and decision makers will need to be apprised of the 

limitations of each service area estimation technique, or the support software will need to 

select from among techniques depending on network type, study area size, study area 

population composition and availability of additional data such as road network and 

demand locations. Below is a brief list of selection criteria based on the results of this 

dissertation: 

 Transport-based methods seem to perform better overall in state-wide sparse 

networks such as water, if detailed road network data is available. If the 

demand data and source capacities are also available, use of location 

allocation is more appropriate. 
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 When road network and demand data are not available, weighted versions of 

cellular automata are likely the best option in state-wide sparse networks such 

as water.  

 Thiessen polygon methods weighted by source capacity are expected to 

perform best in city-scale power networks with many substations, considering 

point impact analysis criteria. 

 Cellular automata methods weighted by source capacity are expected to 

perform best in city-wide power networks with many substations, considering 

aggregate impact analysis criteria. Weighted CA methods tend to perform 

better than their standard counterparts. 

However, care must be taken to assure that the implementation of the estimation 

methods can handle the study area size. More study may show that transport-based 

methods, weighted using source capacities and information on sinks both from population 

and zoning information will be most accurate. Overall, this dissertation has shown that 

both integrated decision support and careful contextualization of service area models 

across different types of CI networks are essential to address the needs for complex, 

multi-dimensional analysis of critical infrastructure networks. (Argany  et al., 2011) 
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APPENDIX A: SUPPORTING DOCUMENTS FOR USER STUDY  

 

 

Informed Consent for 
Recommendation System for Critical Infrastructure Recovery 
Project Purpose 

You are invited to participate in a research study entitled “Recommendation System for Critical 

Infrastructure Recovery.” Critical Infrastructures are integral part of everyday life as they 

provide essential services to all segments of the population. During an outage of the service it is 

often hard for a decision maker to determine the priorities for resource allocation. This is 

especially true when more than one network(s) are involved in the outage and the effects of 

outage in one network can cascade down to other networks. Therefore I have proposed a 

recommendation framework and created a software tool based on this frame work. In this study, 

I aim to gain insight into how the software tool that I created based on the recommendation 

framework compares to state of the art GIS tools that are used for this kind of analysis. You will 

be given various scenarios and will be asked to prioritize the network elements’ enablement in 

each scenario. 

 
Investigator(s) 

Dr. David Wilson, Associate Professor, Software and Information Systems Department, UNC 

Charlotte 

Okan Pala, PhD Student, Software and Information Systems Department, UNC Charlotte 

 
Eligibility 

Participants must be at least 18 years old. 

Participants must be able to comfortably communicate in spoken and written English. 

Participants must be at least intermediate level users of GIS suite tools (by ESRI)  to be able to 

perform geographic analysis. Experience in ArcGIS Network Analyst Extension is a plus but not 

a must.  

 
Overall Description of Participation 

In carrying out the tests to which this consent applies, I will ask you to perform several analysis 

tasks on digital Critical Infrastructure spatial data using ArcGIS and Network Explorer. You will 

first be given a short questionnaire regarding your background. You will then be introduced to a 

map that visualizes several data sets and asked to perform several analysis tasks using the 

ArcGIS Tools and Network Explorer Tool that I have created. While using these tools, you will 

be asked to “think-aloud;” I ask that you express any thoughts you have during the activity so I 

can understand your mental process. Finally, I will interview you to gather your feedback on the 

various aspects of the task. Your software use and interview will be recorded. Audio recording of 

participants’ voice and video recordings of the computer screen will be transcribed and coded 

using transcription and coding software. Video recordings of the participants’ upper body will be 

recorded as well for qualitative measurements.  
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Length of Participation 

Your participation in this study will take approximately 60 minutes. 

 
Risks and Benefits of Participation 

There are no known risks to participation in this study. However, there may be risks which are 

currently unforeseeable. I will keep identifiable information about you, nevertheless, identifiers 

will be randomly numbered, encrypted and will be kept separately from the study data There are 

no personal benefits to you; however your participation may benefit decision makers and general 

population during disaster recovery by providing better tools to help speed up the resource 

allocation process. After completion of the study, you will be compensated with a $15 Target gift 

card. If you withdraw before the end of the study, or 45 minutes, whichever comes first, you will 

not be eligible for the compensation. 
 

Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If you 

decide to be in the study, you may stop at any time. You will not be treated any differently if you 

decide not to participate in the study or if you stop once you have started. 
 

Confidentiality Statement 

Any information about your participation, including your identity, is completely confidential. 

The following steps will be taken to ensure this confidentiality: 

Your records will be kept in locked files and only study staff will be allowed to look at them. 

The recordings of your tasks and interview will be stored on password protected computers, with 

access only to study staff. 

No personally identifiable information will be released or shared. 

All the audio, video and paper records will be destroyed 5 years after the end of the study.  

Recordings could be used for other related studies for comparison purposes within next five 

years. Your contact information will be kept in a secure computer. I will keep names and contact 

information for use in recruitment for future studies. Therefore, you might be contacted to as for 

your participation in future studies.  

 
Statement of Fair Treatment and Respect 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. Contact 

the university’s Research Compliance Office (704-687-3309) if you have questions about how 

you are treated as a study participant. If you have any questions about the actual project or study, 

please contact Okan Pala (704-687-8387, opala@uncc.edu) Dr. David Wilson (704-687-8585, 

davils@uncc.edu). 

 
Participant Consent 

I have read the information in this consent form. I have had the chance to ask questions about 

this study, and those questions have been answered to my satisfaction.  I am at least 18 years of 

age, and I agree to participate in this research project. I understand that I will receive a copy of 

this form after it has been signed by me and the investigator of this research study. 

 

 

___________________________________________________ ______________ 

mailto:davils@uncc.edu
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Participant Name (PRINT)      DATE 

 

___________________________________________________ 

Participant Signature 

 

___________________________________________________ ______________ 

Investigator Signature       DATE 
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Demographic and Background Questionnaire 

 

Age: ___________ 

 

Gender: 

Male 

Female 

 

What is your major and/or profession? 

 

How have you used mapping applications (such as ArcGIS, etc.)? Please list what 

applications you have used and for what purpose. 

 

Personal usage 

 

Professional/work usage 

 

What courses or training classes, if any, have you taken that use mapping applications?  

Please list what applications you have used. 

 

How many years experience do you have with mapping applications? 

a. < 1 year 

b. 1-2 years 

c. 3-4 years 

d. 4-6 years 

e. 6 + years 

 

How many years experience do you have with ArcGIS Software Suit? 

a. < 1 year 

b. 1-2 years 

c. 3-4 years 

d. 4-6 years 

e. 6 + years 

 

How would you classify yourself? 

 

Computer   

a. Novice   

b. Intermediate 

c. Expert 

 

 

GIS  

a. Novice 

b. Intermediate 

c. Expert 
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Network or Utility Extension 

 

a. Novice 

b. Intermediate 

c. Expert 

 

 

Critical Infrastructure Expertise: 

 

a. Novice 

b. Intermediate 

c. Expert 

 

 

Disaster Recovery Expertise: 

 

a. Novice 

b. Intermediate 

c. Expert 

 

Recommendation System for Critical Infrastructure Recovery – Post Survey 

1) Did you have any problems answering any of the tasks?  If so, please explain 

which task(s) and why. 

 
2) Please comment on ease of use for each software tool. Provide comparison of 

two software tools as it applies.  

 
3) Please comment on effectiveness of each software tool. Provide comparison of 

two software tools as it applies.  

 
4) Please comment on mental demand that the tasks required and compare the 

level for each task (1,2,3, and 4) 
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July 8,  

To Whom It May Concern, 

We are sending you this message to request your participation in a research study that I 

are conducting  to test a software tool that I have developed. The software tool is 

designed to help decision makers with enablement prioritization task for Critical 

Infrastructure elements, such as power substations or telecommunication relays, during 

disaster response process.  

The experiment is conducted by College of Computing PhD student Okan Pala and his 

advisor Dr. David Wilson. I will award a Target gift card worth $15 to all the participants 

who finish the tasks and complete surveys OR spend at least 45 minutes participating. To 

participate in this study one would have to be: 

• Intermediate or higher-level users of GIS suite tools (by ESRI) to be able to 

perform geographic analysis, 

• At least 18 years old, 

• Comfortably communicate in spoken and written English. 

• Experience in ArcGIS Network Analyst Extension is a plus but not a necessity.  

Subjects will not have any kind of benefits besides feeling good about testing a new 

software tool that might have decision makers in the future. Society would benefit in the 

long run as decision makers could use new software tools based on this research  to make 

better decisions effectively and timely. 

We do not foresee any discomfort to be experienced by the participants. They might have 

a slight stress while competing the tasks or slight frustration but this should not be at a 

level to create significant discomfort. I do not foresee any economic and legal harm or 

threat.  

Please contact us by email (opala@uncc.edu) if you are interested in participating in 

this study.  

mailto:opala@uncc.edu
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Critical Infrastructure Research 

Study

A Research Study at the College of Computing and 
Informatics at UNC Charlotte is looking for participants. 

Qualifications:

• Intermediate or higher level users of GIS suite tools (by 

ESRI) in order to be able to perform geographic analysis. 

• At least 18 years old.

• Must be able to comfortably communicate in spoken and 

written English.

• Experience in ArcGIS Network Analyst Extension is a plus 

but not a necessity. 

Participants will be awarded a $15 Target Gift Card
(Participants will have to spend at least 45 minutes or finish all the tasks and surveys in order to 

receive the gift card) 

Contact Okan Pala by Email at opala@uncc.edu
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APPENDIX B: KENTUCKY GEOSPATIAL WATER DATA 

 

 



 

APPENDIX C: IEISS XML INPUT EXAMPLE: KENTUCKY WATER SYSTEM 

 

 
<Project name= “Kentucky Water Treatment Plants”> 

<Model name= “KY WTP”> 

    <Entities> 

<water> 

    <Junction> 
<name>BARREN LAKE WTP</name>        
<pressure>14.7</pressure> 
<elevation>0</elevation> 
<maximumPressure>1000</maximumPressure> 
<slack>false</slack> 
<id>JKY0050929</id> 
<inService>true</inService> 
-<location>- 

<point> 
<x>-86.063998096</x> 
<y>36.899576012</y> 
<z>1.5</z> 

</point> 
</location> 

    </Junction 
    <DeliveryPoint> 

<name>BARREN LAKE WTP</name> 
<id>KY0050929</id> 
<consumptionRate>4.22</consumptionRate> 
<maximumPressure>1000</maximumPressure> 
<inService>true</inService>- 
<location>- 

<point> 
<x>-86.063998096</x> 
<y>36.899576012</y> 
<z>1.45</z> 

</point> 
</location> 
<connections> 

<id>JKY0050929</id> 
</connections> 

    </DeliveryPoint> 
</water> 

</Entities> 

<ServiceAreaParameters> 

‘Detailed SA parameters are defined here 

</ServiceAreaParameters>  

</Model> 

<Map> ‘Map presentation and layer details are stored here</Map> 

</Project> (Tolone et al., 2004) 



 

APPENDIX D: WATER USE  BREAKDOWN FOR US STATES 

 

 

 
 

Source:     

http://water.usgs.gov/edu/wateruse/pdf/wudomestic-2005.pdf  

http://water.usgs.gov/edu/wateruse/pdf/wudomestic-2005.pdf
http://water.usgs.gov/edu/wateruse/pdf/wudomestic-2005.pdf
http://water.usgs.gov/edu/wateruse/pdf/wudomestic-2005.pdf
http://water.usgs.gov/edu/wateruse/pdf/wudomestic-2005.pdf


 

APPENDIX E: EXAMPLE PRODUCER’S AND USER’S ACCURACY TABLE FOR 

AGGREGATE IMPACT ANALYSIS 

 

 

Location Allocation - Point Impact Analysis 

Name of the Plant 

Users 

Accuracy 

Producers 

Accuracy 

ALBANY WATER TREATMENT PLANT A 78.27 59.88 

ALBANY WATER TREATMENT PLANT B 98.53 82.07 

ALLEN WTP 71.91 60.90 

ARLINGTON WTP 100.00 45.61 

ASHLAND WTP 83.75 99.87 

AUGUSTA WTP 87.55 82.70 

BARBOURVILLE WATER PLANT 91.24 74.17 

BARDWELL WTP 100.00 86.67 

BARKLEY LAKE WATER TREATMENT PLANT 61.42 89.48 

BARLOW WTP 85.71 33.33 

BARNEY JOHNSON 42.77 97.79 

BARREN LAKE WTP 88.19 64.29 

BARREN RIVER WTP 98.54 96.28 

BEATTYVILLE WTP PLANT B 85.19 70.92 

BEAVER CREEK WTP 74.21 90.23 

BEAVER DAM WTP 14.38 79.57 

BEECH FORK WTP 90.46 67.80 

BELL COUNTY FC 46.43 46.43 

BENHAM WTP 71.17 85.29 

BENTON WTP 97.28 86.03 

BEREA WTP 93.50 61.72 

BROWNSVILLE WTP 98.28 70.10 

BULLOCK PEN WTP 28.00 71.51 

BURKESVILLE WATER PLANT 94.12 79.52 

BURNSIDE WATER TREATMENT PLANT 91.15 35.43 

BUTLER COUNTY WTP 66.77 65.55 

CADIZ WATER TREATMENT PLANT 59.65 51.76 

CALHOUN WTP 81.70 40.31 

CALVERT CITY WTP 97.78 60.86 
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CAMPBELLSVILLE 88.21 81.28 

CAMPTON WTP 59.51 87.82 

CARLISLE WATER PLANT 84.11 80.35 

CARR CREEK WTP 36.34 84.83 

CARROLLTON WTP 81.42 73.61 

CAVE RUN WATER TREATMENT PLANT 38.55 30.73 

CAWOOD WTP 47.14 92.45 

CENTER RIDGE WTP 100.00 75.00 

CITY SPRINGS 72.61 98.70 

COLUMBIA/ADAIR WATER TREATMENT PLANT 89.06 83.42 

COLUMBUS WTP 100.00 100.00 

CRESCENT HILL WTP 97.64 99.49 

CUMBERLAND MUNICPAL WATER WORKS WTP 98.49 54.48 

CUMBERLAND RIVER PLANT 85.28 79.65 

CUMBERLAND RIVER WATER TREATMENT PLANT 50.30 97.61 

CUNNINGHAM WTP 70.37 100.00 

DEEP WELLS WTP 94.12 100.00 

EARLINGTON WATER TREATMENT PLANT 21.48 10.10 

EDDYVILLE WATER TREATMENT PLANT 80.49 49.07 

EVARTS MUNICIPAL WATER PLANT 89.16 88.50 

FALMOUTH WTP 73.49 73.38 

FANCY FARM WTP 48.89 100.00 

FERN LAKE PLANT 99.74 93.92 

FLEMINGSBURG WTP 50.55 26.44 

FORT KNOX/CENTRAL WTP 83.97 31.88 

FOURTH STREET WTP 91.36 96.40 

FRANCIS WTP 41.51 8.15 

FRANKFORT WTP 89.56 83.82 

FRANKLIN WTP 98.19 71.28 

FT THOMAS WTP 76.49 82.64 

FULTON MUNICIPAL WTP 96.54 76.76 

GALLATIN WTP 74.79 24.62 

GEORGE ARNOLD WATER TREATMENT PLANT 49.99 98.89 

GHENT WTP 51.19 79.96 

GRAYSON COUNTY 87.69 79.46 

GRAYSON WTP 68.14 77.24 

GREEN RIVER VALLEY WTP 78.45 94.77 

GREEN RIVER WATER TREATMENT PLANT 86.88 83.28 

GREENSBURG WATER TREATMENT PLANT 67.97 76.10 

GREENUP WTP 72.15 94.04 

GREENVILLE WATER TREATMENT PLANT A 83.13 80.56 
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GUIST CREEK LAKE WTP 95.93 72.98 

HARDEMAN WTP 39.81 100.00 

HARDINSBURG REVERSE OSMOSIS WATER TREATMENT 
FACILITY 64.49 79.00 

HARLAN MUN WTP 93.21 47.47 

HARRODSBURG WTP 73.76 84.79 

HARTFORD WTP 69.15 39.64 

HAWESVILLE WTP 77.71 40.88 

HAZARD WTP 92.84 70.59 

HENRY CO WTP 50.91 75.11 

HERRINGTON LAKE WTP 91.56 86.75 

HICKMAN WTP 100.00 93.32 

HICKORY WTP 66.23 72.18 

HINKSTON CREEK WTP 52.25 56.18 

HODGENVILLE 92.84 71.44 

HOPKINSVILLE WATER TREATMENT PLANT 97.26 82.62 

HYDEN LESLIE WTP 79.18 80.47 

IMPOUNDMENT PLANT 91.76 92.13 

IRVINE WTP 92.01 85.67 

JACKSON COUNTY WATER TREATMENT PLANT 60.96 73.44 

JACKSON WTP 63.86 89.99 

JAMESTOWN WATER TREATMENT PLANT 98.20 89.08 

JENKINS WTP 91.56 54.51 

JONATHAN CREEK WTP 93.78 84.10 

KENTUCKY RIVER STATION II/ HARDIN'S LANDING PLANT 77.95 29.50 

KENTUCKY RIVER STATION WTP 65.09 86.21 

KENTUCKY RIVER WTP 74.74 84.29 

KEVIL WTP 77.54 59.44 

KUTTAWA WATER TREATMENT PLANT 96.55 82.97 

KY RIVER WTP 91.90 83.33 

LACENTER WTP 100.00 88.39 

LAKE LINVILLE PLANT 97.84 82.74 

LAKE PEE WEE WATER TREATMENT PLANT 96.54 88.81 

LAUREL LAKE PLANT 99.82 39.62 

LAUREL RIVER PLANT 86.48 63.84 

LAWRENCEBURG WTP 97.64 78.29 

LEBANON 68.59 87.37 

LEDBETTER WATER TREATMENT PLANT 88.99 57.96 

LEITCHFIELD 68.99 80.35 

LEWISPORT WTP 100.00 59.51 

LIBERTY WATER TREATMENT PLANT 76.95 84.62 

LICKING RIVER WTP 82.85 94.01 
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LIVERMORE WTP 100.00 19.94 

LOUISA WTP 83.82 95.06 

LOVELACEVILLE WTP 80.00 40.00 

MANCHESTER WATER PLANT 81.75 89.72 

MARION WATER TREATMENT PLANT 85.08 86.39 

MARTIN CO WTP 99.22 74.44 

MAYFIELD WTP 97.12 79.96 

MAYSVILLE WTP 87.91 95.74 

MCCREARY COUNTY WATER TREATMENT PLANT 93.88 97.70 

MCCREARY COUNTY WATER TREATMENT PLANT 2 93.32 79.89 

MCKEE RESERVOIR PLANT 62.83 12.46 

MEADOW HILL WATER TREATMENT PLANT 72.95 65.45 

MEMORIAL PARKWAY WTP 68.81 98.70 

MONTICELLO WATER TREATMENT PLANT 78.13 99.03 

MOREHEAD STATE UNIVERSITY WATER TREATMENT PLANT 70.79 57.01 

MOREHEAD UTILITY PLANT BOARD WATER TREATMENT 
PLANT 69.88 87.64 

MORGANFIELD WTP 94.42 78.26 

MORGANTOWN WTP 31.03 2.35 

MOUNT STERLING WATER TREATMENT PLANT 81.66 81.13 

MULDRAUGH PLANT 70.43 65.21 

MURPHY LANE WTP 61.52 66.60 

MURRAY WTP 99.15 99.39 

NICHOLASVILLE WTP 85.84 55.02 

NORTH POINT TRAINING CENTER 70.14 26.31 

NORTH WTP 85.50 100.00 

NORTONVILLE WATER TREATMENT PLANT 96.56 57.84 

OHIO COUNTY WTP #2 46.28 56.57 

OLDHAM CO WTP 90.23 92.68 

OLIVE HILL WTP 94.22 50.27 

OWENTON WTP 73.91 60.84 

PADUCAH WTP 95.43 99.31 

PAINTSVILLE WTP 97.52 77.46 

PARIS WTP 99.67 51.47 

PIKEVILLE WTP 85.92 88.22 

PINEVILLE WATER TREATMENT PLANT 74.41 98.93 

PIRTLE SPRINGS 96.90 47.84 

PRESTONSBURG WTP 56.32 75.36 

PROVIDENCE WATER TREATMENT PLANT #2 98.99 51.28 

RATTLESNAKE RIDGE WTP 56.53 44.84 

REIDLAND WTP 90.18 77.70 

RICHMOND RD STATION WTP 81.63 88.21 
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ROYAL SPRING WTP 75.75 79.91 

RUSSELL FORK WTP 80.04 87.63 

RUSSELL WTP 93.93 70.15 

S FORK KY RIVER WTP 79.85 67.75 

SALYERSVILLE WTP 57.96 97.20 

SANDY HOOK WTP 53.84 58.71 

SCOTTSVILLE WTP 57.06 90.72 

SEDALIA WTP 71.43 8.62 

SHEA FORK MINE WTP 60.97 67.49 

SOMERSET WATER TREATMENT PLANT 93.30 96.71 

SOUTH GRAVES WTP 27.93 92.25 

SOUTH SHORE WTP 99.84 82.53 

SOUTH WTP 60.14 10.73 

SPRINGFIELD 97.73 59.81 

STURGIS WTP 88.26 46.60 

SYMPSON LAKE 96.60 79.80 

SYMSONIA WTP 46.03 96.67 

TATUMSVILLE WTP 63.75 78.77 

TAYLOR MILL WTP 70.24 50.14 

TOMPKINSVILLE WTP 94.57 71.62 

TREATMENT PLANT-sm 57.87 59.94 

TREATMENT PLANT-big 73.08 87.26 

TRIMBLE # 1 WTP - BRAYS 43.65 83.95 

TWO CITY RESERVOIR WTP 73.14 96.23 

VANCEBURG ELECRIC PLANT BOARD WTP 93.61 86.22 

WALLINS CREEK WTP 22.37 80.47 

WARSAW WTP 50.62 94.77 

WATER DISTRICT TREATMENT PLANT 69.23 58.98 

WAX WTP 85.95 76.73 

WEBSTER CO WTP 18.25 69.66 

WEST LIBERTY WATER TREATMENT PLANT 519 46.22 69.91 

WEST POINT 34.94 14.65 

WESTERN FLEMING WTP 82.33 81.63 

WESTERN LEWIS RECTORVILLE WTP 92.20 45.60 

WHEELWRIGHT WTP 93.04 22.14 

WHITE MILLS 91.82 54.64 

WHITE PLAINS WATER TREATMENT PLANT 83.40 81.85 

WHITESBURG WTP 72.19 89.00 

WICKLIFFE WTP 100.00 86.05 

WILLIAMSTOWN LAKE WTP 90.90 54.52 

WILMORE WTP 96.65 35.05 
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WINGO WTP 88.00 40.00 

WOOD CREEK LAKE PLANT 21.02 96.41 

WOODSON BEND PLANT 75.00 4.55 

WORTHINGTON WTP 69.64 28.67 

WTP #1 (WELL HOUSE RD) 100.00 38.46 

WTP #2 100.00 40.00 

 

 

 

 

 

 

 

Cellular Automata - Aggregate Impact 

Name of the Plant 

Users 

Accuracy 

Producers 

Accuracy 

ALBANY_WATER_TREATMENT_PLANT_A 1.17 39.59 

ALBANY_WATER_TREATMENT_PLANT_B 5.96 81.51 

ALLEN_WTP 0.69 31.61 

ARLINGTON_WTP 64.24 65.85 

ASHLAND_WTP 51.31 100.00 

AUGUSTA_WTP 52.74 99.37 

BARBOURVILLE_WATER_PLANT 86.15 42.33 

BARDWELL_WTP 100.00 27.00 

BARKLEY_LAKE_WATER_TREATMENT_PLANT 30.66 94.70 

BARKLEY_LAKE_WATER_TREATMENT_PLANT_PRINCETON 0.38 100.00 

BARLOW_WTP 100.00 100.00 

BARNEY_JOHNSON 81.92 64.66 

BARREN_LAKE_WTP 40.13 83.04 

BARREN_RIVER_WTP 82.17 75.32 

BEATTYVILLE_WTP_PLANT_B 67.32 92.88 

BEAVER_CREEK_WTP 66.56 54.07 

BEAVER_DAM_WTP 74.40 5.81 

BEECH_FORK_WTP 80.19 62.22 

BELL_COUNTY_FC 100.00 4.41 

BENHAM_WTP 74.88 33.99 

BENTON_WTP 86.40 65.00 

BEREA_WTP 87.16 36.24 

BROWNSVILLE_WTP 95.39 65.45 

BULLOCK_PEN_WTP 79.24 25.85 

BURKESVILLE_WATER_PLANT 94.29 54.61 

BURNSIDE_WATER_TREATMENT_PLANT 99.97 2.05 

BUTLER_COUNTY_WTP 79.77 66.69 

CADIZ_WATER_TREATMENT_PLANT 100.00 5.39 
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CALHOUN_WTP 41.78 28.21 

CALVERT_CITY_WTP 97.60 35.63 

CAMPBELLSVILLE 54.72 82.11 

CAMPTON_WTP 86.99 41.20 

CARLISLE_WATER_PLANT 42.54 85.14 

CARR_CREEK_WTP 51.41 73.56 

CARROLLTON_WTP 72.97 43.92 

CAVE_RUN_WATER_TREATMENT_PLANT 26.43 50.67 

CAWOOD_WTP 53.25 98.90 

CENTER_RIDGE_WTP 100.00 48.37 

CITY_SPRINGS 80.69 80.29 

COLUMBIA_ADAIR_WATER_TREATMENT_PLANT 57.56 68.18 

COLUMBUS_WTP 100.00 100.00 

CRESCENT_HILL_WTP 57.96 93.90 

CUMBERLAND_MUNICPAL_WATER_WORKS_WTP 53.06 92.41 

CUMBERLAND_RIVER_PLANT 98.94 63.92 

CUMBERLAND_RIVER_PLANT_KNOX 0.51 100.00 

CUMBERLAND_RIVER_WATER_TREATMENT_PLANT 72.67 96.04 

CUNNINGHAM_WTP 100.00 93.63 

DEEP_WELLS_WTP 100.00 100.00 

EARLINGTON_WATER_TREATMENT_PLANT 100.00 12.40 

EDDYVILLE_WATER_TREATMENT_PLANT 86.37 32.70 

EVARTS_MUNICIPAL_WATER_PLANT 62.02 65.06 

FALMOUTH_WTP 84.75 47.14 

FANCY_FARM_WTP 83.13 64.41 

FERN_LAKE_PLANT 65.44 87.72 

FLEMINGSBURG_WTP 100.00 1.60 

FORT_KNOX_CENTRAL_WTP 100.00 1.30 

FOURTH_STREET_WTP 57.72 85.19 

FRANCIS_WTP 100.00 1.24 

FRANKFORT_WTP 53.60 82.18 

FRANKLIN_WTP 100.00 57.22 

FT_THOMAS_WTP 7.84 88.72 

FULTON_MUNICIPAL_WTP 90.32 81.74 

GALLATIN_WTP 69.11 27.11 

GEORGE_ARNOLD_WATER_TREATMENT_PLANT 40.20 97.55 

GHENT_WTP 6.11 100.00 

GRAYSON_COUNTY 91.93 44.92 

GRAYSON_WTP 23.78 56.75 

GREEN_RIVER_VALLEY_WTP 65.38 83.42 

GREEN_RIVER_WATER_TREATMENT_PLANT 37.75 82.09 

GREENSBURG_WATER_TREATMENT_PLANT 63.65 75.81 

GREENUP_WTP 43.47 96.30 

GREENVILLE_WATER_TREATMENT_PLANT_A 95.23 25.68 

GUIST_CREEK_LAKE_WTP 99.85 52.80 

HARDEMAN_WTP 88.41 34.90 

HARDINSBURG_REVERSE_OSMOSIS_WATER_TREATMENT_FACILITY 41.09 83.11 

HARLAN_MUN_WTP 72.80 15.49 
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HARRODSBURG_WTP 25.07 71.09 

HARTFORD_WTP 16.48 15.55 

HAWESVILLE_WTP 80.79 26.60 

HAZARD_WTP 63.47 86.81 

HENRY_CO_WTP 27.09 46.35 

HERRINGTON_LAKE_WTP 66.41 81.22 

HICKMAN_WTP 100.00 88.81 

HICKORY_WTP 40.21 91.79 

HINKSTON_CREEK_WTP 66.63 41.36 

HODGENVILLE 100.00 32.01 

HOPKINSVILLE_WATER_TREATMENT_PLANT 77.54 86.45 

HYDEN_LESLIE_WTP 62.65 83.03 

IMPOUNDMENT_PLANT 97.37 31.18 

IRVINE_WTP 86.00 76.31 

JACKSON_COUNTY_WATER_TREATMENT_PLANT 32.62 82.58 

JACKSON_WTP 99.28 72.95 

JAMESTOWN_WATER_TREATMENT_PLANT 89.04 79.05 

JENKINS_WTP 65.80 78.92 

JONATHAN_CREEK_WTP 69.62 84.73 

KENTUCKY_RIVER_STATION_II__HARDIN_S_LANDING_PLANT 94.10 28.53 

KENTUCKY_RIVER_STATION_WTP 0.07 100.00 

KENTUCKY_RIVER_STATION_WTP_LANCASTER 56.88 75.77 

KENTUCKY_RIVER_WTP 25.08 96.21 

KENTUCKY_RIVER_WTP_RICHMOND 0.32 100.00 

KEVIL_WTP 83.23 18.34 

KUTTAWA_WATER_TREATMENT_PLANT 38.29 98.41 

KY_RIVER_WTP 89.06 53.32 

LACENTER_WTP 100.00 53.57 

LAKE_LINVILLE_PLANT 91.68 72.42 

LAKE_PEE_WEE_WATER_TREATMENT_PLANT 60.04 94.59 

LAUREL_LAKE_PLANT 100.00 13.43 

LAUREL_RIVER_PLANT 44.76 30.17 

LAWRENCEBURG_WTP 45.00 63.41 

LEBANON 58.04 80.76 

LEDBETTER_WATER_TREATMENT_PLANT 55.21 77.65 

LEITCHFIELD 20.48 65.66 

LEWISPORT_WTP 99.21 43.89 

LIBERTY_WATER_TREATMENT_PLANT 97.61 61.78 

LICKING_RIVER_WTP 56.80 96.80 

LIVERMORE_WTP 100.00 1.43 

LOUISA_WTP 78.02 80.88 

LOVELACEVILLE_WTP 100.00 4.60 

MANCHESTER_WATER_PLANT 97.35 63.37 

MARION_WATER_TREATMENT_PLANT 58.46 50.83 

MARTIN_CO_WTP 98.96 58.10 

MAYFIELD_WTP 13.79 88.13 

MAYSVILLE_WTP 10.34 95.81 

MCCREARY_COUNTY_WATER_TREATMENT_PLANT 56.26 98.34 
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MCCREARY_COUNTY_WATER_TREATMENT_PLANT_2 76.63 60.46 

MCKEE_RESERVOIR_PLANT 99.94 6.76 

MEADOW_HILL_WATER_TREATMENT_PLANT 64.51 65.04 

MEMORIAL_PARKWAY_WTP 30.73 94.48 

MONTICELLO_WATER_TREATMENT_PLANT 63.57 66.98 

MOREHEAD_STATE_UNIVERSITY_WATER_TREATMENT_PLANT 100.00 2.03 

MOREHEAD_UTILITY_PLANT_BOARD_WATER_TREATMENT_PLANT 20.03 86.45 

MORGANFIELD_WTP 68.59 72.10 

MORGANTOWN_WTP 27.39 14.01 

MOUNT_STERLING_WATER_TREATMENT_PLANT 65.15 54.48 

MULDRAUGH_PLANT 26.99 77.67 

MURPHY_LANE_WTP 89.45 63.48 

MURRAY_WTP 97.96 97.30 

NICHOLASVILLE_WTP 72.53 47.39 

NORTH_POINT_TRAINING_CENTER 44.51 7.15 

NORTH_WTP 60.40 99.93 

NORTONVILLE_WATER_TREATMENT_PLANT 99.88 9.13 

OHIO_COUNTY_WTP__2 17.36 79.96 

OLDHAM_CO_WTP 49.69 55.05 

OLIVE_HILL_WTP 86.48 20.76 

OWENTON_WTP 73.14 59.33 

PADUCAH_WTP 31.66 93.28 

PAINTSVILLE_WTP 55.75 84.39 

PARIS_WTP 88.68 45.69 

PIKEVILLE_WTP 39.56 83.45 

PINEVILLE_WATER_TREATMENT_PLANT 30.14 98.77 

PIRTLE_SPRINGS 73.98 66.76 

PRESTONSBURG_WTP 63.71 82.91 

PROVIDENCE_WATER_TREATMENT_PLANT__2 100.00 11.30 

RATTLESNAKE_RIDGE_WTP 44.76 20.64 

REIDLAND_WTP 63.97 21.26 

RICHMOND_RD_STATION_WTP 37.16 48.47 

ROYAL_SPRING_WTP 85.14 31.29 

RUSSELL_FORK_WTP 99.60 49.34 

RUSSELL_WTP 48.73 50.94 

S_FORK_KY_RIVER_WTP 48.18 90.24 

SALYERSVILLE_WTP 91.99 55.43 

SANDY_HOOK_WTP 96.56 42.41 

SCOTTSVILLE_WTP 60.33 78.51 

SEDALIA_WTP 100.00 2.48 

SHEA_FORK_MINE_WTP 60.95 87.76 

SOMERSET_WATER_TREATMENT_PLANT 1.87 99.98 

SOUTH_GRAVES_WTP 70.11 76.63 

SOUTH_SHORE_WTP 99.29 43.70 

SOUTH_WTP 31.78 15.83 

SPRINGFIELD 91.79 49.09 

STURGIS_WTP 100.00 7.76 

SYMPSON_LAKE 84.66 76.40 
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SYMSONIA_WTP 100.00 19.40 

TATUMSVILLE_WTP 48.88 86.27 

TAYLOR_MILL_WTP 63.75 28.54 

TOMPKINSVILLE_WTP 90.33 82.50 

TREATMENT_PLANT_BIG 0.02 100.00 

TREATMENT_PLANT_SM 99.10 44.52 

TRIMBLE___1_WTP___BRAYS 16.47 97.61 

TWO_CITY_RESERVOIR_WTP 57.65 84.86 

VANCEBURG_ELECRIC_PLANT_BOARD_WTP 74.63 95.56 

WALLINS_CREEK_WTP 94.79 20.40 

WARSAW_WTP 55.78 51.68 

WATER_DISTRICT_TREATMENT_PLANT 36.39 84.80 

WAX_WTP 80.40 65.90 

WEBSTER_CO_WTP 16.94 34.28 

WEST_LIBERTY_WATER_TREATMENT_PLANT_519 16.04 65.09 

WEST_POINT 97.06 5.42 

WESTERN_FLEMING_WTP 55.78 80.29 

WESTERN_LEWIS_RECTORVILLE_WTP 93.43 19.02 

WHEELWRIGHT_WTP 100.00 2.72 

WHITE_MILLS 69.76 67.42 

WHITE_PLAINS_WATER_TREATMENT_PLANT 98.40 34.68 

WHITESBURG_WTP 66.43 75.42 

WICKLIFFE_WTP 100.00 100.00 

WILLIAMSTOWN_LAKE_WTP 91.22 60.36 

WILMORE_WTP 85.18 13.70 

WINGO_WTP 100.00 13.88 

WOOD_CREEK_LAKE_PLANT 25.58 72.27 

WOODSON_BEND_PLANT 100.00 1.19 

WORTHINGTON_WTP 91.72 8.45 

WTP__1__WELL_HOUSE_RD_ 95.36 94.94 

WTP__2 90.90 31.90 

 


