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ABSTRACT

ALI KHAYAT BAHERI IRANI. Real-Time Control and Optimal Plant Design for
Renewable Energy Systems Using Bayesian Optimization. (Under the direction of

DR. CHRISTOPHER VERMILLION)

The overarching objective of this research is to use machine learning tools to address

the design and real-time control of active systems, focusing specifically by tethered

airborne wind energy and ocean current energy systems. In both applications, along

with numerous other engineering applications, data is expensive to generate. In par-

ticular, generating new plant designs is costly, and any adjustments to the controller

must be performed in an environment that is continually changing. To address these

challenges, we leverage a data-driven optimization strategy called Bayesian Optimiza-

tion, which is specifically tailored to optimization problems for which a model does

not exist (necessitating expensive data collection) or must be controlled with expen-

sive experiments. This dissertation extends the current state of the art in Bayesian

Optimization to enable Bayesian Optimization to be performed in real-time, in a

spatiotemporally-varying environment. The techniques described in this dissertation

have been applied using real-data, to the real-time altitude and depth optimization of

airborne wind and ocean current turbine energy systems, respectively. Furthermore,

the techniques have been applied to the nested co-design (combined plant/controller

design) of an airborne wind energy system.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

This chapter discusses the motivation of this research, summarizes the main con-

tributions, and outlines the structure of this thesis by giving a chapter-by-chapter

overview.

1.1.1 Renewable Energy Systems: From Sky to Ocean

One of the most urgent challenges faced by society is the search for cheap renewable

energy resources to displace finite and polluting fossil fuel resources. In fact, renewable

energy sources such as wind, solar power, hydro-electric power and ocean current are a

viable alternative to fossil fuels [3]. Among many types of renewable energy systems,

in this thesis we focus on two specific systems, namely airborne wind energy (AWE)

system and ocean current turbines (OCTs).

1.1.2 Airborne Wind Energy Systems

As one of the fastest growing energy technologies for the past decade, wind en-

ergy is one of the best candidate renewable resources for displacing traditional fossil

sources [4]. However, today's wind turbines operate at heights of only about 150m

or less, where wind is weaker and more variable than at higher altitudes. AWE sys-

tems represent a new paradigm for wind turbines in which the structural elements of

conventional wind turbines are replaced with tethers and a lifting body (a kite, rigid
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(a) Altaeros Buoyant Airborne Turbine (b) Surf kite from ETH

(c) EnerKite (d) Makani Power-GoogleX

Figure 1: Different types of Airborne Wind Energy systems

wing, or aerostat) to harvest wind power at significantly increased altitudes (typi-

cally up to 600m or more depending on regulatory limits). At those altitudes, winds

are often 5-10 times stronger and more consistent than ground-level winds. Figure 1

shows several different types of AWE systems.

There are two major options for harnessing wind energy and generating electricity

with an AWE system:

• Ground-based generation: Here, the generator is on the ground and connected to

a winch that holds the cable(s). During the power generating phase, electricity

is produced by flying the lifting body at a high speed, in a crosswind motion,
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Figure 2: Electricity generation in the air (first picture) and on the ground (second
and third picture). Image credit: [2]

generating a high lift force and consequently a high traction force on the cable(s).

• Airborne generation: Here, the generators are on board the lifting body. These

are driven by rotors that are in turn driven by the wind speed. The energy is

transferred to the ground through a conductive cable.

Inspired by the huge potential of AWEs, several academic and commercial groups

have been developing AWEs and building working prototypes. Figure 3 illustrates

the worldwide commercial and academic AWE research and development activity in

2013.

1.1.3 Ocean Current Turbine Array

Comparable to fossil fuels in terms of consistency and reliability, ocean currents

are another candidate source of clean and renewable power. The oceans of the earth

provide a vast source of renewable energy. The Gulf Stream, whose 1-2 m/s flow

speeds carry over 65 million cubic meters per second of flow off the shores of Florida

and North Carolina, possesses an estimated total power of 25 GW [67]. In general,
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Figure 3: Companies and research institutes currently active in Airborne Wind En-
ergy systems [8]

ocean energy can be divided into six forms: ocean wave, tidal range, tidal current,

ocean current, ocean thermal energy, and salinity gradient [74]. Ocean current is

caused by the gravitational pull of the moon and the sun (for the tidal current)

and the temperature difference of ocean water (for the tropical circulation). In this

thesis, we focus on ocean current turbines (OCTs) for our case studies. OCTs are

hydro kinetic turbines that generate electricity from ocean current flow. Because

of the deep waters where the strongest current resources can be found, most OCT

concepts are comprised of tethers (rather than towers) and an underwater lifting body

similar to AWE systems. Figure 4 shows some conceptual designs of OCTs.
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1.2 Challenges

To achieve economic feasibility of both AWE and OCT systems, several important

challenges need to be addressed. Many of these challenges relate to the fact that the

economical realization of AWE and OCT systems involves the component-level and

control system design of dynamically complex systems that operate in highly variable

environments.

Broadly speaking, this thesis aims to address two main challenges:

• In both the plant optimization and real-time control of AWE and OCT systems,

data is expensive to generate. In particular, generating new plant designs is

costly, and any in-situ adjustments to the controller must be performed in an

environment that is continually changing. With respect to the latter (control)

challenges, this means that any attempts to adapt the controller online must

be performed more quickly than the time scales of the environment.

• There is a simultaneous plant optimization and real-time control challenge asso-

ciated with both AWE and OCT systems. In particular, the plant and control

design challenges have been shown to be coupled, as the optimal controller

depends upon the plant and vice versa.

The ultimate goal of this thesis is to show how tools from machine learning can

be used to introduce novel plant and control design mechanisms that address both

aforementioned challenges. To achieve this goal, we present a data-driven optimiza-

tion strategy called Bayesian Optimization. This optimization strategy is tailored
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(a) Rendering of tethered ocean current
turbines

(b) Rendering of underwater ocean cur-
rent turbines

Figure 4: Conceptual design of OCTs. Image credit: [6]

toward instances where a closed-form expression for the objective function as a func-

tion of the decision variables is unobtainable, making expensive simulations and/or

experiments necessary for convergence to an optimal design or control systems. In

such situations, Bayesian Optimization is employed to find the optimum of an un-

known and expensive-to-evaluate objective function. Bayesian Optimization lies at

the heart of this thesis and is a unifying feature in both mentioned applications.

1.3 Renewable Energy Systems in Machine Learning Era

Arthur Samuel in 1959 defined machine learning as “the field of study that gives

computers the ability to learn without being explicitly programmed” [61]. In the

context of this thesis, when a physical model is not available or perfect, large amounts

of amount of data can help to understand, model and predict physical behaviors of

energy resources. In recent years, many researchers have found a great opportunity

in applications of machine learning algorithms in the energy business. Nowadays, the

energy-related data are broadly available [7]. These data carry statistically significant
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information about how sources of energy are generated and/or consumed. Machine

learning has proven to serve as promising tool for understanding the complex nature

of renewable energy systems. In the existing literature, the application of machine

learning to renewable energy systems mainly falls into the following categories [65]:

• Forecasting renewable energy generation

Forecasting power output from a renewable energy power plant is very impor-

tant. Machine learning is a promising tool for achieving this goal, which several

machine learning tools considered in the literature. In this section we will review

a few machine learning techniques used to forecast renewable energy generation

[65]. Auto-regressive moving average (ARMA) and auto-regressive integrated

moving average (ARIMA) models were presented in [48] for wind speed fore-

casting and wind power forecasting through the analysis of time-series data.

The recurrent multi-layer perceptron model, a variant of ANN, was proposed in

[57], and employs a Kalman filter based back-propagation network. In [59], a

support vector machine (SVM) using Gaussian kernels was used to predict the

wind speed. Fuzzy models are another way of using machine learning for predic-

tion. In [30], a fuzzy model with a spatial correlation was used for wind power

generation prediction. Artificial neural networks (ANNs) were used in [58] to

build an equivalent model of a wind farm under normal operating conditions.

• Determining plant location, size, and configuration

Renewable power plants continue to expand. It has been shown that deter-

mining their optimal sizes, locations and configurations will have a significant
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impact on their performance. Several studies have been done to optimize the

configuration of renewable energy systems such as solar photovoltaic (PV) plants

and wind farms. For example, [71] optimized the configuration of power gen-

erating systems on an isolated island using a genetic algorithm. A flexible

neuro-fuzzy approach for location optimization of solar plants was described in

[13].

1.4 Thesis Contributions

The overarching objective of this research is to use machine learning tools to ad-

dress plant and control system optimization challenges faced specifically by tethered

wind (AWE) and ocean energy (OCT) systems. A unifying theme in the proposed

research is the use of Bayesian Optimization to address these challenges. Bayesian

Optimization is ideally suited for applications in which data is expensive to obtain.

This conforms to our situation, since plant redesigns are expensive, and control system

reconfigurations must be performed more quickly than the environmental conditions

are changing. Because Bayesian Optimization plays a central role in the proposed

research, Chapter 2 is dedicated to describing the mathematical details of Bayesian

Optimization. Leveraging and expanding upon Bayesian Optimization tools, this

thesis makes the following contributions:

1.4.1 Real-time control via Bayesian Optimization (Chapter 3)

We present a framework by which Bayesian Optimization can be used for real-time

altitude optimization of an AWE system, for the purpose of maximizing net energy

production. We then provide the details of how Bayesian Optimization is utilized
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for an in-situ layout optimization of an OCT array. Because both real-time control

problems involve an environment that is continually changing, we present a novel

context-dependent Bayesian Optimization formulation where time is treated as the

context in order to address the spatiotemporally varying nature of the environment.

This mathematical formulation is accompanied by an original convergence result.

1.4.2 Combined plant and controller optimization (co-design) via Bayesian

Optimization (Chapter 4)

We present a nested optimization framework that aims to solve the problem of cou-

pling between plant and controller optimization for an AWE application. In the nested

framework, adjustments to the plant design are performed iteratively, in batches, and

control parameters are adjusted in real-time, during the experiments or simulations

that are performed at each iteration. In this chapter, Bayesian Optimization is em-

ployed to solve the nested optimization problem at both the plant and controller

design levels. Furthermore, we assess economies of scale as a function of batch size.



CHAPTER 2: BAYESIAN OPTIMIZATION

2.1 Introduction

In this chapter, our intent is to provide the mathematical details of Bayesian Opti-

mization and the underlying Gaussian Process (GP) modeling tools, upon which the

proposed algorithms in this thesis are built on.

2.2 Bayesian Optimization

Suppose that we want to maximize an unknown, black-box, and expensive-to-

evaluate objective function. Due to the cost associated with evaluating this function,

it is crucial to select the location of each new evaluation point deliberately. Bayesian

Optimization is a powerful tool for finding the extrema of unknown and expensive-

to-evaluate objective functions. If f is an unknown objective function defined by:

f(x) : X → R (1)

the goal of Bayesian Optimization is to find

x∗ = arg max f(x)
x∈X

(2)

However, if there is no analytical expression for f(x), what can we do? Bayesian

optimization solves this problem by maintaining a probabilistic model f and designing

a so-called acquisition function to determine where to evaluate the function next.
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Broadly speaking, Bayesian Optimization involves two steps. First, at each iteration,

we update a model that characterizes our best guess of the objective function vs.

design parameter, along with a quantification of the uncertainty in that guess. This

phase of Bayesian Optimization is referred to as the learning phase. Second, we choose

an acquisition function, which guides the optimization by determining the next point

to evaluate. The selection of the next evaluation point in an effort to maximize

the acquisition function is referred to as the optimization phase. In the rest of this

chapter, we go into more details regarding each of these two steps.

2.2.1 Gaussian Process Regression

One area of supervised learning algorithms is regression, where the ultimate goal is

to generalize an unknown function and predict its value over a continuous domain. As

an attractive choice for non-parametric regression in machine learning, the ultimate

goal of GP models is to find an approximation of a complex map from an input

vector to the objective function value. In general, GP models are able to characterize

complex phenomena, such as nonlinear effects and interactions between covariates, in

a systematic fashion. GP models assume that the objective function values associated

with different inputs follow a joint Gaussian distribution [68]. While this is not true of

all objectives, it is often possible to apply a transformation to the objective function

to more closely satisfy this assumption while preserving the location of the maximizer.

In general, a GP is fully specified by its mean function, µ(x), and covariance

function, k(x, x′):

f(x) ∼ GP
(
µ(x), k(x, x′)

)
. (3)
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The GP framework is used to predict the function value, f(x∗), at a candidate design

parameter x∗, based on a set of t past observations, D1:t =

{
x1:t, f(x1:t)

}
. The un-

known function value, f(x∗), is modeled to follow a multivariate Gaussian distribution

[68]: 

f(x1:t)

f(x∗)


 ∼ N

(
0,



Kt + σ2

ε It kTt

kt k(x∗, x∗)



)
, (4)

where f(x1:t) =

{
f(x1), · · · , f(xt)

}
is the vector of observed function values. The

vector kt(x) = [k(x∗, x1), · · · , k(x∗, xt)] encodes the covariances between the candidate

input, x∗, and the past data points, x1:t. The past-data covariance matrix, with entries

[Kt](i,j) = k(xi, xj) for i, j ∈
{

1, · · · , t
}

, characterizes the covariances between pairs

of past data points. The identity matrix is represented by It, and σε represents the

noise variance [68].

Individual elements of the covariance matrix, namely k(xi, xj), encode the correla-

tions between pairs of different evaluation points. In order to characterize this corre-

lation in a simple, closed-form manner, a covariance kernel is used. This covariance

kernel provides a relatively simple parametric structure for the values of k(xi, xj).

A very commonly used kernel function is known as the Squared Exponential (SE)

covariance kernel. For two observations, xi and xj, the SE kernel is parameterized as:

k(xi, xj) = σ2
0 exp

(
− 1

2
(xi − xj)TΛ−2(xi − xj)

)
+ σεδij, (5)
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where δij represents the Kronecker delta operator:

δij =





1, i = j,

0, i 6= j.

(6)

The quantitative correlation between different data points is characterized by hyper-

parameters, which are denoted by θ =

{
σ0,Λ, σε

}
. Kernel hyper-parameters are

identified by maximizing the marginal log-likelihood of the existing observed data, D

[68]:

θ∗ = arg max log
θ

p(f(xt) | x1:t, θ), (7)

where

log p(f(xt) | x1:t, θ) =
(
− 1

2
f(xt)

TK−1
t f(xt)−

1

2
log | Kt | −

t

2
log2π

)
, (8)

Once the hyper-parameters are optimized, the predictive mean and variance at x∗,

conditioned on these past observations, are expressed as:

µt(x
∗ | D) = kt(x)

(
Kt + Itσ

2
ε

)−1

f(xt)
T , (9)

σ2
t (x
∗ | D) = k(x, x)− kt(x)

(
Kt + Itσ

2
ε

)−1

kTt (x), (10)

2.2.2 Use of Acquisition Functions for the Optimization Phase of Bayesian

Optimization

Bayesian Optimization bases its choice of the next operating point on the max-

imization of an acquisition function. Specifically, the acquisition function uses the

predictive mean and variance
(
Eqs. (9-10)

)
to combine exploration (visiting high-
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variance regions) and exploitation (visiting high-mean regions) in selecting the next

operating point. We denote the acquisition function by α(.) in this thesis.

To-date, several acquisition function structures have been proposed in the litera-

ture, including probability of improvement, expected improvement, upper confidence

bound, information gain, and entropy-based improvements. All acquisition functions

have a common theme: they incorporate both the mean, µt, and the variance, σ2
t , of

the GP model prediction, in order to manage the trade-off between exploration and

exploitation. In the rest of this chapter, we will introduce three acquisition function

structures.

• Maximum Probability of Improvement (MPI)

The first and most intuitive acquisition function proposed for Bayesian Optimization

is Maximum Probability of Improvement (MPI) [55]. This acquisition selects the

next operating point as the one that is most likely to improve upon the best value

of objective function value so far. Mathematically, the acquisition function takes the

following form:

αPI(x) , p
(
f(x) ≥ f(x)max

)
, (11)

where f(x)max represents the best value of objective function so far. Thus, the MPI

acquisition function can be expressed as:

αPI(x) = φ
(µt(x)− f(x)max

σt(x)

)
, (12)

where φ(.) denotes the normal cumulative distribution function (CDF). The point
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Algorithm 1 Bayesian Optimization (BO)

1: procedure Generic version of Bayesian Optimization
2: D ← Initialize:

{
x1:2, f(x1:2)

}

3: for each iteration do
4: Train a GP model from D
5: Compute mean and variance of GP

(
Eqs. 9-10

)

6: Compute acquisition function (see Sec. 2.2.2)
7: Find x∗ that optimizes acquisition function
8: Append

{
x∗, f(x∗)

}
to D

9: end for
10: end procedure

with the highest probability of improvement is selected as the best subsequent point

to evaluate.

• Expected Improvement (EI)

In many practical applications, the MPI acquisition function results in local optima,

since it does not take into account the size of the improvement in its formulation.

As an alternative to the MPI acquisition function, the Expected Improvement (EI)

acquisition function [25, 50] considers the amount of anticipated improvement when

choosing the next operating point. To construct the EI acquisition function, the

improvement function is defined by:

I(x) , max

{
0, f(x)− f(x)max

}
, (13)

If the prediction is higher than the best value of the objective function so far,

then the improvement is positive. Otherwise, it is set to zero. The inability for the

acquisition function to assume negative values reflects the fact that if the performance

worsens from one iteration to the next, then it is possible to simply revert to the
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previous best point. This incentivizes exploration, since the system is not “punished”

for testing a new design point that may lead to poor performance. The EI acquisition

function is given by:

αEI(x) = E(I(x)) = E[max

{
0, f(x)− f(x)max

}
], (14)

which can be expressed as:

αEI(x) =

∫ ∞

f(x)max

max

{
0, f(x)− f(x)max]

}

︸ ︷︷ ︸
value of improvement

· φ
(µt(x)− f(x)max

σt(x)

)

︸ ︷︷ ︸
probability of improvement

dP (15)

The first term in the integrand of Eq. (15) is the amount of improvement, and the

second term represents the probability of that improvement. Calculating the integral

of Eq. (15) using integration by parts leads to an expression for the EI acquisition

function [51] that is given by:

αEI(x) =





(
µt(x)− f(x)max

)
Φ(Z) + σt(x)φ(Z), σt(x) > 0

0, σt(x) = 0

(16)

where:

Z =
µt(x)− f(x)max

σt(x)
, (17)

and Φ(.) denotes the probability density function (PDF) for the normal distribution.

The next operating point is chosen as the one that maximizes αEI .

• Upper Confidence Bound (UCB)

The final candidate acquisition function considered in this thesis is known as the

upper confidence bound (UCB) acquisition function [29], which incorporates the mean
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and variance explicitly at a particular location:

αUCB(x) , µt(x) +
√
βtσt(x), (18)

βt plays a crucial role in Eq. (18), as it determines the trade-off between exploration

and exploitation. A special case of the UCB acquisition is GP-UCB, where βt at each

iteration is automatically set according to [73]:

βt = 2 log
( |D|t2π2

6δ

)
. (19)

Here, t is the number of past evaluations of the objective function, δ ∈ (0, 1) is a

calibration parameter, and D is the number of decision variables.

We summarize the conventional Bayesian Optimization in Algorithm 1. The al-

gorithm is initialized by two previously evaluated observations and corresponding

function values (line 2). Then, at each step, a GP model is trained (line 4) to com-

pute the predictive mean and variance (line 5). These statistical quantities are used

to construct the acquisition function (line 6). Next, the point that maximizes the ac-

quisition function is selected as the next operating point (line 7). Finally, data from

the chosen operating point is added to the historical data (line 8), and the process is

repeated.



CHAPTER 3: REAL-TIME CONTROLLER DESIGN USING BAYESIAN
OPTIMIZATION

3.1 Introduction

This chapter provides the details of how Bayesian Optimization can be tailored to

solve real-time optimal control problems, focusing specifically on altitude optimization

of an AWE system and in-situ layout optimization of an OCT array.

In the first application, the objective is to adjust altitude to maximize net energy

production in a spatiotemporally-varying wind environment. In the second applica-

tion, the objective is to use tethers and control surfaces to adjust the layout of an

array OCTs to maximize total power output of the array in a varying flow conditions.

To accomplish these objectives, we have extended the conventional Bayesian Opti-

mization algorithm of Chapter 2 to capture time-dependent patterns of the objective

function. Because this adjustment to the algorithm is a unifying feature in the two

applications, we first describe the adjustment in Section 3.2. We accompany this

description with an original convergence result. We then detail the two applications

in Section 3.3 and 3.4.

3.2 Context-Dependent Bayesian Optimization

Time-varying objective functions are common in many Parameters Estimation for

State-of-Power (SOP) Prediction of Lithium-ion Batteries: A Bayesian Optimization

Approach engineering applications, including the AWE and OCT systems considered
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Algorithm 2 Context-Dependent Bayesian Optimization (CDBO)

1: procedure Context-Dependent Bayesian Optimization (CDBO)
2: D ← Initialize:

{
(s1:2, z1:2), f(s1:2)

}

3: for each time step do
4: Set the context into the current time
5: Construct a composite kernel
6: Train a GP model from D
7: Compute predictive mean and variance of GP
8: Compute acquisition function
9: Find s∗ that optimizes acquisition function

10: Append
{

(s∗, zcurrent context (time)), f(s∗)
}

to D
11: end for
12: end procedure

in this thesis. The time-varying nature of our objective function compels us to mod-

ify the conventional Bayesian Optimization method. In fact, the generic version of

Bayesian Optimization presented in Chapter 2 assumes that the objective function's

dependence on the control variables does not change during the optimization pro-

cedure. One way to cope with the dynamic nature of objective function is through

contextual GP modeling [54]. Contextual GP modeling allows for the possibility

that the objective function depends on both the decision variable(s) and other envi-

ronmental variables (termed the “context”). To deal with time-varying nature of our

objective function, we consider time as the context. With generic Bayesian Optimiza-

tion setting (Algorithm 1), the kernel of the GP is defined only in terms of decision

variable(s). With contextual GP, the kernel is also allowed to vary as a function of

the context (time):

k
(

(s, z), (s′, z′)
)

= ks(s, s
′) + kz(z, z

′), (20)
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where:

ks(s, s
′) = σ2

0s exp
(
− 1

2
(s− s′)TΛ−2

s (s− s′)
)

(21)

and

kz(z, z
′) = σ2

0z exp
(
− 1

2
(z − z′)TΛ−2

z (z − z′)
)
. (22)

In Eq. (57) and (58), θs =

{
σ0s,Λs

}
and θz =

{
σ0z,Λz

}
denote the hyper-

parameters of ks and kz, respectively.

Context-Dependent Bayesian Optimization is summarized in Algorithm 2. First,

at the very first two time steps, the procedure is initialized by two (arbitrary) can-

didates and the corresponding function values (line 2). Then, at each time step, the

context (time) is fixed at the current instance (line 4). Next, the composite kernel is

constructed based upon Eq. (20) (line 5). The GP model, along with its predictive

mean and variance, is computed (line 6-7). Then, the acquisition is computed by

one of the methods outlined in Section 2.2.2, and optimization is done only over the

decision variable(s) (line 8-9). Finally, the selected candidate and the current time

are augmented to the data (line 10), and the process is restarted.

3.2.1 Convergence Rate of Contextual Expected Improvement

In this section, we derive a regret bound for contextual EI acquisition function.

Regret refers to the difference between the optimal objective function value and its

current value.

In each iteration, we receive a context zt ∈ Z from a set of Z context and our goal

is to identify an action (i.e., decision variable) st ∈ S. The function value (i.e., payoff)

is yt = f(s, zt)+εt, where f : S×Z → R is an unkwon function and εt is zero random
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noise. We use X = S × Z to refer to the set of all action-context pairs. We choose

regret as a metric to measure the performance of Bayesian Optimization. Specifically,

the cumulative regret, RT , after T iterations is the sum of the instantaneous regret,

rt:

RT =
T∑

t=1

rt (23)

where rt = f(s∗, zt) − f(s, zt). Furthermore, we use the information gain concept

to measure the reduction in uncertainty (measured in terms of differential Shannon

entropy) in the underlying function gained by revealing a set of observations, yA:

I
(
yA; f(.)

)
= H(yA)−H(yA|f(.)) (24)

Consequently, the maximum information gain, γT , after T decision rounds is defined

by:

γT = max
A⊂S

I
(
yA; f(.)

)
(25)

Before presenting the main theory, first we introduce several lemmas.

Lemma 1. (Lemma 1 of [63]) Let z =
µt−1(s,zt)−ymax

t−1

σt−1(s,z)
. The EI acquisition function can

be expressed as αEIt (s, zt) = σt−1(s, zt)τ
(
zt−1(s, zt)

)
and αEIt (s, zt) ≤ τ

(
zt−1(s, zt)

)
,

where τ(z) = zΦ(z)+φ(z) with Φ and φ are the c.d.f and p.d.f of the standard normal

distribution.

Lemma 2. (Lemma 2 of [63]) The EI acquisition function at the selected point should

be positive for a valid optimization, i.e., ∀Xt ∈ Dt, αEIt (s, zt) ≥ κ > 0, where κ is a

small positive constant.
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Lemma 3. (Lemma 5.2 of [73]) Let βt = 2log
( |St|πt

δ

)
and δ ∈ (0, 1). Then

p
(
∀t,∀X ∈ X , |µt−1(s, zt)− f(s, zt)| ≤ βt

1/2σt−1(s, zt)
)
≥ 1− δ (26)

Lemma 4. (Lemma 9 of [82]) The improvement function It(s, zt) =

{
0, f(s, zt)− ymaxt−1

}

and the acquisition function αEIt (s, zt) = E[It(s, zt)] satisfy the following inequality:

It(s, zt)− β1/2
t σt−1(s, zt) ≤ αEIt (s, zt).

Lemma 5. (Lemma 5.4 of [73]) The sum of the predictive variances is bounded by

the maximum information gain γT . That is
∑T

t=1 σ
2
t−1(s, zt) ≤ 2

log(1+σ−2)
γT .

Lemma 6. (Lemma 8 of [63]) Let κ > 0 be a pre-defined threshold on the acquisition

function αEIt−1(s, zt), if ymaxt−1 − µt−1(s, zt) > 0. We then have ymaxt−1 − µt−1(s, zt) ≤

σt−1(s, zt)C
1/2 where C , log[ 1

2πκ2 ].

Lemma 7. (Lemma 9 of [63]) Let κ > 0 be a pre-defined threshold, z =
µt−1(s,zt)−ymax

t−1

σt−1(s,zt)

and τ(z) = zΦ(z) + φ(z), we have τ(−zt−1(s, zt)) ≤ 1 + C1/2 where C , log[ 1
2πκ2 ].

Theorem 1. Let κ > 0 be a pre-defined threshold, γT be the maximum information

gain for the squared exponential kernel, σ2 be the measurement noise variance, C ,

log[ 1
2πκ2 ] , βt = 2log

( |St|πt
δ

)
, where

∑
π−1
t = 1, πt > 0, and δ ∈ (0, 1). Then, with

a probability of at least 1 − δ, the cumulative regret for contextual EI obeys the

following rate:

RT ≤
√

2TγT
log(1 + σ−2)

(√
3(βT + 1 + C) + β

1/2
T

)
(27)

Proof:
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The roadmap for our proof is analogous to the proof of Theorem 1 of [63], which

drives a convergence rate for EI acquisition function (without context). Using the

results from the legacy contextual GP paper ([54]), our results extend the previous

work of [63] in the presence of context.

Proof.

rt = f(s∗, zt)− f(s, zt) = f(s∗, zt)− ymaxt−1 + ymaxt−1 − f(s, zt) (28)

Now, we bound rt. Using Lemma 3 for the first two terms of Eq. (28), we write:

f(s∗, zt)− ymaxt−1 ≤ αEI(s∗, zt) + β1/2σt−1(s∗, zt) ≤ αEI(s, zt) + β1/2σt−1(s∗, zt)

= σt−1(s, zt)τ(zt−1(s, zt)) + β
1/2
t σt−1(s∗, zt)

(29)

For the last two terms of Eq. 28, ymaxt−1 − f(s, zt), we write:

ymaxt−1 − f(s, zt) = ymaxt−1 − µt−1(s, zt) + µt−1(s, zt)− f(s, zt)

≤ σt−1(s, zt)(−zt−1(s, zt)) + σt−1(s, zt)β
1/2
t

= σt−1(s, zt)[τ(−zt−1(s, zt)) + β
1/2
t − τ(zt−1(s, zt))]

(30)

Thus, we can write:

rt ≤ σt−1(s, zt)[β
1/2
t + τ(zt−1(s, zt))] + β

1/2
t σt−1(s∗, zt) (31)

Using the bound of τ(−zt−1(s, zt)) in Lemma 7, we obtain

rt ≤ σt−1(s, zt)(β
1/2
t + 1 + C1/2)︸ ︷︷ ︸
Lt

+ β
1/2
t σt−1(s∗, zt)︸ ︷︷ ︸

Ut

(32)

Using Cauchy-Schwartz inequality,
(

(a+ b+ c)2 ≤ 3(a2 + b2 + c2)
)

, we bound Lt:
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T∑

t=1

L2
t ≤

T∑

t=1

σ2
t−1(s, zt)(β

1/2
T +1+C1/2)2 ≤ 3(βT+1+C)

T∑

t=1

σ2
t−1(s, zt) ≤

6(βT + 1 + C)γT
log(1 + σ−2)

(33)

Therefore
T∑

t=1

Lt ≤
√
T

√√√√
T∑

t=1

L2
t ≤

√
6T (βT + 1 + C)γT

log(1 + σ−2)
(34)

Using Lemma 5 we bound Ut

T∑

t=1

Ut ≤ βT

T∑

t=1

σt−1(s∗, zt) ≤
√

2TβTγT
log(1 + σ−2)

(35)

Finally, the cumulative regret bound,
(
RT ≤

∑T
t=1(Lt + Ut)

)
, can be expressed as:

RT ≤
√

2TγT
log(1 + σ−2)

(√
3(βT + 1 + C) + β

1/2
T

)
(36)

which completes the proof.

3.3 Real-Time Altitude Optimization Using Bayesian Optimization

We now present a framework by which Bayesian Optimization can be used for

real-time altitude optimization of an AWE system, for the purpose of maximizing

net energy production. In particular, we leverage the extension of context-dependent

Bayesian Optimization to capture time-dependent patterns of a realistic wind shear

profile.

3.3.1 Background and Literature Survey

AWE systems provide control degrees of freedom that allow the systems to ad-

just their operating altitudes and intentionally induce crosswind motions to enhance
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power output. To-date, the majority of research in the area of AWE system control

has focused on the latter problem, i.e., crosswind motion control [79, 38, 27, 49, 83].

Comparatively fewer studies have focused on the impact of adjusting altitude [77, 15].

Even within the smaller body of literature that addresses altitude optimization, many

of the results in the literature make greatly simplifying but often unrealistic assump-

tions. For example, [79, 38] make the assumption of a monotonic wind profile that

conforms to a power law model, an assumption that greatly simplifies the altitude

optimization problem but is seldom satisfied in the instantaneous wind shear (wind

speed vs. altitude) profile (as we shall see in this chapter). A more recent publica-

tion, [15], does take into account the possibility of non-monotonic wind shear profiles

but uses an extremum seeking (ES) formulation that only achieves convergence to

local, rather than global, optima. The authors recently extended their work in [14] to

consider more complex control architectures such as hierarchical structure and “glob-

alized” extremum seeking to improve the overall performance of the AWE system.

Still, the extremum seeking algorithms only leverage recent data in adjusting the

amplitude of the perturbation signal.

Only recently has any effort been undertaken to take into account the stochastic

nature of the wind shear profile in the context of a global altitude optimization. An

initial attempt to address this problem using model predictive control (MPC) is de-

tailed in [24]. In the context of the altitude optimization problem, MPC attempts to

balance exploration with exploitation in optimizing the altitude setpoint. However,

this MPC formulation requires an offline characterization of the statistical properties

(conditional mean and conditional variance) of the wind shear (wind speed vs. al-
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titude) profile, thereby necessitating the collection of a very substantial amount of

data offline in order to kick-start the optimization.

For the altitude optimization problem at hand, it is desirable to employ a con-

trol system that can learn the statistical properties of the wind shear profile online,

thereby alleviating the need for offline data collection prior to running the control

system. One of the most well-studied problems in the machine learning community

is the design of optimization algorithms for a real-world applications using scarce

data. In existing literature, this problem has been studied in the context of sequen-

tial decision-making problems where the goal is to learn the behavior of an objective

function (called exploration) while simultaneously trying to maximize or minimize

the objective function (called exploitation). Bayesian Optimization is a fitting ap-

proach for addressing this problem, as it blends exploration and exploitation in such

a way that it finds the global optimum of an unknown, expensive-to-evaluate, and

black-box function within only a few evaluations. As mentioned in Chapter 2, one

popular approach is to model the unknown function as a Gaussian Process (GP),

where Bayesian Optimization puts prior belief the overall structure of that objec-

tive function. At every step of Bayesian Optimization, the next operating point is

selected to maximize some acquisition function, which characterizes (i) how much

will be learned by visiting a candidate point (exploration) and (ii) what the likely

performance level will be at that next candidate point (exploitation) [72], [25].

In the case of the altitude optimization problem at hand, the decision variable is

the operating altitude at the next time step, denoted by zk+1, where k is the current

time step. The objective is net power output, taking under consideration the power
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required to control the system at a given altitude and the power required to adjust

the altitude. In this chapter, we focus specifically on the Altaeros Energies Buoyant

Airborne Turbine (BAT), pictured in Fig. 5. The BAT maximizes power output by

hunting for the optimal altitude.

3.3.2 Wind Shear Profile, Altitude Adjustment, and Energy Generation Models

To maximize generated energy, it is of interest to operate the AWE system at alti-

tudes where the wind velocity, Vwind, is as close as possible to the rated wind speed,

Vrated. Consistent with intuition, if Vwind < Vrated, the net power production will di-

minish because the turbine is producing less power. Less obviously, the net power

production will also diminish whenever Vwind > Vrated because more power will be ex-

pended controlling the system. While it is possible to install wind profiling equipment

to continuously monitor Vwind as a function of altitude (z), such profiling equipment

is very costly. Table 1 shows an estimated cost comparison between different wind

profiling technologies, including fixed LiDAR and SODAR units, as well as a weather

balloon that continually is raised and lowered through the domain of allowable al-

titudes. These cost estimates account for capital expenses, along with operational

expenses that include the cost of the energy required to operate the system. The cost

estimate for the weather balloon system includes not only the balloon, but also the

on-board instrumentation and winch system that continually actuates the weather

balloon. Given these costs, it is of economic interest to use the AWE system itself to

periodically explore the wind shear environment, taking into account the spatiotem-

poral variability of the wind in deciding which altitude to explore next. In the case
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of the Altaeros BAT (used as a case study in this work), the wind speed is measured

through the use of an ultrasonic anemometer, as discussed in [80]. Anemometer mea-

surements (which provide apparent wind speed) are used in conjunction with GPS

data to compute the true wind speed. This alleviates the need for expensive equip-

ment but only provides a wind speed measurement at the AWE system’s operating

altitude. This introduces partial observability to the problem, leading to a tradeoff

between exploration and exploitation.

Figure 5: Altaeros Buoyant Airborne Tur-
bine (BAT), Image Credit: [1]

To conduct our study, we used data

obtained from a Doppler radar-based

wind profiler in Cape Henlopen State

Park (located in Lewes, Delaware). The

data includes wind speed at 30 minute

intervals, at 48 altitudes up to 3000m,

over the course of one year [11]. Due to

regulatory and technical constraints on

the AWE system flight altitude, we used

the portion of data involving altitudes

up to roughly 1600m (one mile) above

ground level for the study at hand.

The progression of the wind shear profile over the course of one day, at 3 hour

intervals, is shown in Fig. 6. One can infer from this figure that the wind profile

at any given time does not follow a power law or logarithmic law wind profile (or

even a monotonic trend in many instances). Thus, in order to optimize net energy
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Table 1: 20-year cost comparison for different technologies of measuring wind shear
profile

Technology Capital cost
Annual operational

cost
Total cost

SODAR 990, 000 36, 000 1, 710, 000
LiDAR 190, 000 32, 000 830, 000

Weather Balloon + Winch System 50, 000 1, 000 70, 000
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Figure 6: Sample wind shear profile based on actual data for one day from Cape
Henlopen State Park, Lewes, Delaware, Date: March 1, 2014, [11]. The propagation
of wind shear profile at 3 hour increments has been shown. One can conclude that (i)
the optimal altitude varies over the course of the day and (ii) the wind shear profile
does not fit a neat, monotonic relationship.

capture, it is imperative to employ a control scheme that is capable of coping with

the uncertain nature of the wind shear profile.

3.3.3 Altitude Adjustment Model

In any AWE system, a low-level flight control system must regulate key flight

variables, such as altitude, pitch angle, and roll angle, to prescribed setpoints. The

block diagram of the low-level control structure used for the AWE system considered

in this work (the Altaeros BAT) is shown in Fig. 7 and is described in detail in
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[80]. Among other things, [80] demonstrates that the underlying flight control system

can successfully control the BAT to prescribed altitude setpoints, denoted by zsp.

Because the efficacy of this lower-level controller has already been demonstrated in

the literature and because of the relatively long time steps involved with altitude

optimization, we will work with a very simple altitude adjustment model that assumes

that the altitude at the next step is equal to the altitude setpoint at the current time

step, i.e.:

zt+1 = zsp
t . (37)

Here, zsp
t denotes the altitude setpoint at step t. Given the altitude tracking per-

formance demonstrated in [80] and the long time step of 30 minutes that we will

work with for the adjustment of zsp in this work, this very simple model represents

a reasonable approximation. In fact, a lower-level control has been designed in [80]

for altitude tracking, and this lower-level controller operates on a much faster time

step. Furthermore, we have evaluated the impact of different rate limitations (i.e.,

limitations on zspt+1− zspt ) that ensure that any prescribed altitude adjustment can be

made quickly (relative to the total 30 minute time step for altitude optimization) and

the vast majority of time is spent generating energy at a prescribed altitude rather

than adjusting altitude. The impact of different rate limitations on control results is

studied in detail in Section 3.3.7.

3.3.4 Energy Generation Model

In this section, we formalize the objective function for altitude optimization. An

appropriate objective function for altitude optimization should account for the energy
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Figure 7: Lower-level controller Altaeros BAT, as detailed in [79]. ū represents the
vector of control inputs to the winches, whereas Ti denotes the tension in each tether.

generated by the turbine and the energy expanded adjusting and maintaining altitude

(even when maintaining altitude, control energy must be expended to make small

adjustments to the tethers in order to reject typical levels of turbulence). In order

to account for each of these objectives, the instantaneous net power generation is

expressed as [15]:

Ptotal = c1 min
(
Vwind, Vrated

)3 − c2V
2

wind + Pz
(
Vwind, ż

)
, (38)

Generally, the power produced by a wind turbine can be modeled as:

Ptur =
1

2
ρAVwind

3CP , (39)

where ρ is the air density, A is the rotor area, and CP is the power coefficient.

Accordingly, c1 can be defined as:

c1 =
Ptur

V 3
wind

=
1

2
ρACP (40)
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To calculate c2, it is important to consider that maintaining altitude requires the

tethers to apply a total force that overcomes the lifting force on the BAT. The applica-

tion of this force alone does not require mechanical energy. However, in the presence

of turbulence (or any wind environment that is less than perfect), small adjustments

are necessary to maintain altitude and attitude (orientation). The power required to

make these adjustments is proportional to the tension in the tethers multiplied by

the tether reel-in speed. The lifting force on the aerostat body is given by:

L =
1

2
ρArefVwind

2CL + Fb, (41)

where L is the total lift force, Aref is the reference area of the BAT, CL is the lumped

coefficient of lift, and Fb is the buoyant force. Under high wind conditions (under

which the tether tensions are significant), Fb is much smaller than the aerodynamic

lifting force, and the lifting force can be approximated by:

L =
1

2
ρArefVwind

2CL, (42)

Since the power expenditure for maintaining altitude is proportional to this lifting

force multiplied by the tether speed, that power expenditure, Pmaint, can be expressed

as:

Pmaint =
1

2
ρArefVwind

2VaveCL, (43)

where Vave is the average tether release speed over typical operation. Accordingly, c2
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can be defined as:

c2 =
Pmaint

Vave
2 =

1

2
ρArefVaveCL, (44)

The power required to adjust altitude, Pz, is given as follows:

Pz
(
Vwind, ż

)
=





c3
ηm
żV 2

wind ż ≤ 0,

c3ηgżV
2

wind otherwise.

(45)

where ηm and ηg represent the efficiency of the motors that drive the winches and

efficiency of the winches, respectively. The parameter c3 is a constant that depends

on the aerodynamics of the lifting body and its trim pitch angle. Because any upward

motion of the AWE system must at some later time be compensated by downward

movement (the AWE system must land eventually), [15] presents a simplified version

of Eq. (38), which will be used in this work and is given by:

P = c1 min
(
Vwind(z), Vrated

)3

− c2Vwind
2 − c̄3Vwind

2 | ż | . (46)

Here, c̄3 is a lumped parameter that is dependent on overall winch efficiency and

aerodynamics of the lifting body. In our discrete-time altitude optimization algorithm,

we approximate | żk | by:

| żk |=
| zk − zk−1 |

∆t
(47)

where ∆t denotes the time step.

Ultimately, Eq. (46) serves as the reward function to be maximized. The AWE

system power curve is shown in Fig. 8. This figure illustrates the power curve for

a 100 kW variable-speed turbine, which is in line with the BAT design. One can
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Figure 8: Comparison of power curve for the turbine alone and the full AWE system.
The power production decreases for the wind velocity beyond Vrated due to increased
energy required to control system to an altitude set-point in the presence of typical
wind disturbances.

conclude from this figure that the power generated by the full AWE system is always

less than the power generated by the turbine alone, due to the energy that must be

used to control the system's altitude to a constant set-point, under typical turbulence

levels. Moreover, unlike the conventional wind energy systems, the power generated

decreases for wind speeds that exceed Vrated. This is the result of higher aerodynamic

loads, which in turn requires more energy to control the system to an altitude set-

point in the presence of typical turbulence levels. It should be noted that Fig. 8

is specific to scenarios where the AWE system is controlled to a constant setpoint.

Additional energy losses exist when the altitude changes from one time step to the

next.
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3.3.5 Tailoring to Altitude Optimization

The ultimate goal of altitude optimization with Bayesian Optimization is to max-

imize the net energy generated by the BAT. Due to partially observable nature of

wind shear profile, the optimal altitude in not known a priori. Hence, the optimiza-

tion strategy must appropriately balance a trade-off between learning more about the

objective function (exploration) and selecting an altitude that maximizes expected

net power generation based on the collected data (exploitation). Bayesian Opti-

mization serves as an attractive technique for achieving this tradeoff in an efficient

manner, which is critically important since each evaluation of the objective function

corresponds to an expensive experiment that requires physically relocating the AWE

system to a new altitude.

As mentioned in Chapter 2, Bayesian Optimization involves two steps. First, at

each iteration, we update a model that characterizes our “best guess” at the objective

function vs. design parameter (i.e., altitude), along with a quantification of the

uncertainty in that guess. This phase of Bayesian Optimization is referred to as

the learning phase. Second, we choose an acquisition function, which guides the

optimization by determining the next point (i.e., next altitude) to evaluate. The

selection of the next altitude in an effort to maximize the acquisition function is

referred to as the optimization phase.

3.3.5.1 Learning Phase: Using Gaussian Processes (GPs)

In the context of the altitude optimization problem, the GP framework is used

to predict the generated power, P (z), at candidate altitude zc, based on a set of t
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past observations, D1:t =

{
z1:t, P (z1:t)

}
. In general, having µ(z) = 0 significantly

simplifies the training and prediction phase of a GP model [68]. To achieve this in the

AWE application, we normalize the outputs of GP model using z-score normalization.

Thus, the normalized power at step t+ 1, denoted by P̄t+1(z), is expressed as:

P̄t+1(z) =
Pt+1(z)− µ1:t

σ1:t
(48)

where µ1:t and σ1:t denote the mean and standard deviation of the population up to

step t.

The normalized power at candidate altitude zc, represented by P̄ (zc) in Eq. (49), for

an unobserved altitude, zc, is modeled to follow a multivariate Gaussian distribution

[68]:



y1:t

P̄ (zc)


 ∼ N

(
0,



Kt + σ2

ε It kTt

kt k(zc, zc)



)
, (49)

where yt =

{
P̄ (z1), · · · , P̄ (zt)

}
is the vector of observed function values. The vector

kt(z) = [k(zc, z1), · · · , k(zc, zt)] encodes the covariances between the candidate alti-

tude, zc, and the past data points, z1:t. The past-data covariance matrix, with entries

[Kt](i,j) = k(zi, zj) for i, j ∈
{

1, · · · , t
}

, characterizes the covariances between pairs

of past data points. The identity matrix is represented by It, and σε represents the

noise variance [68].

Individual elements of the covariance matrix, namely k(zi, zj), encode the corre-

lation between pairs of different altitudes. In order to characterize this correlation
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Figure 9: Gaussian Processes (GP) models can both make predictions and maintain
a measure of uncertainty over those predictions. The 95% confidence of the model
prediction is represented by blue area. Once an observation is made at a particular
point, the uncertainty drops to zero. Recognizing that the wind shear profile is time-
varying, Section 3.3.6 discusses how context-dependent Bayesian Optimization can
be used to account for the fact that uncertainty increases in relation to the amount
of time that has passed since an observation has been made (i.e., under context-
dependent Bayesian Optimization, uncertainty at a location does not remain zero for
all time just because that location was visited in the past).

in a simple, closed-form manner, a covariance kernel is used. This covariance kernel

provides a relatively simple parametric structure for the values of k(zi, zj). In this

work, we represent the elements of the covariance matrix through a very commonly

used kernel function known as the Squared Exponential (SE) covariance kernel. For

two altitudes, zi and zj, the SE kernel is parameterized as:

k(zi, zj) = σ2
0 exp

(
− 1

2
(zi − zj)TΛ−2(zi − zj)

)
+ σεδij, (50)

where δij represents the Kronecker delta operator:

δij =





1, i = j,

0, i 6= j.

(51)

We choose the SE kernel based on observation of key characteristics of the problem
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at hand. Qualitatively, the SE kernel structure accounts for the fact that two mea-

surements taken at close altitudes are more likely to be correlated than measurements

taken at distant altitudes. Furthermore, the SE kernel accounts for the fact that the

value of data decays exponentially with variations in time and altitude, which has

been generally seen to be reflected in actual wind shear data. In fact, the assess-

ment performed in [24] shows that the level of certainty in the wind speed decays

exponentially with respect to both time and position.

The quantitative correlation between different data points is characterized by hyper-

parameters, which are denoted by θ =

{
σ0,Λ, σε

}
. Kernel hyper-parameters are

identified by maximizing the marginal log-likelihood of the existing observed data, D

[68]:

θ∗ = arg max log
θ

p(yt | z1:t, θ), (52)

where

log p(yt | z1:t, θ) =
(
− 1

2
yTt K

−1
t yt −

1

2
log | Kt | −

t

2
log2π

)
(53)

Once the hyper-parameters are optimized, the predictive mean and variance at z∗,

conditioned on these past observations, are expressed as:

µt(z
∗ | D) = kt(z)

(
Kt + Itσ

2
ε

)−1

yTt , (54)

σ2
t (z
∗ | D) = k(z, z)− kt(z)

(
Kt + Itσ

2
ε

)−1

kTt (z), (55)
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Figure 10: A graphical network (inspired from [47]) illustrating the Bayesian Opti-
mization concept. Given some initial data, D0, Bayesian Optimization identifies the
next best operating altitude, z1, to evaluate. The objective function is then evaluated
at this altitude, P (z1). Next, this pair is augmented to the previous data, the model
is updated, and the process is repeated.

3.3.5.2 Acquisition Function

As mentioned before, Bayesian Optimization bases its choice of the next operating

point on the maximization of an acquisition function, which guides the optimiza-

tion by determining the next point to evaluate. Specifically, the acquisition function

uses the predictive mean and variance
(
Eqs. (54-55)

)
to combine exploration (high-

variance regions) and exploitation (high-mean regions) in selecting the next operating

point.

3.3.6 Use of Context-Dependent Bayesian Optimization for Altitude Optimization

The time-varying nature of our objective function (resulting from variations in the

wind shears profile) compels us to modify the conventional Bayesian Optimization

method.

To address the challenge presented by the time-varying objective function, we leverage

the context-dependent Bayesian Optimization formulation described in Section 3.2.

For this purpose, we choose an addition of two kernels, one over altitude, kz, and one
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over time, kt

k
(

(zi, ti), (zj, tj)
)

= kz(zi, zj) + kt(ti, tj), (56)

where:

kz(zi, zj) = σ2
0z exp

(
− 1

2
(zi − zj)TΛ−2

z (zi − zj)
)

+ σεzδij, (57)

and

kt(ti, tj) = σ2
0t exp

(
− 1

2
(ti − tj)TΛ−2

t (ti − tj)
)

+ σεtδij. (58)

In Eq. (57) and (58), θz =

{
σ0z,Λz, σεz

}
and θt =

{
σ0t,Λt, σεt

}
denote the hyper-

parameters of kz and kt, respectively. These hyper-parameters describe how quickly

the wind shear profile changes and how similar one altitude is to the next at a given

time. The collection of hyper-parameters are automatically tuned (i.e., optimized) at

each iteration of our algorithm, based on the data up to that time, using a maximum

likelihood estimation criterion
(
see Eq. (53)

)
.

3.3.7 Real-Time Altitude Optimization Results

We have evaluated the proposed altitude optimization algorithm by simulating

the model in Sec. 3.3.4 based on available wind speed vs. altitude data [11]. We

summarize the objective function parameters and design parameters in Tables 3 and

4, respectively. We compare the system performance under four different control

scenarios:

• Scenario 1: Off-line Optimum Fixed Altitude: The first scenario involves

flying the AWE at a optimum fixed altitude. We identify this optimal fixed

altitude through off-line calculation of energy generation at different altitudes,
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Figure 11: Comparison of net energy production over the course of one week. Bayesian
Optimization (with different acquisition functions) outperforms off-line optimized
fixed altitude, minimum fixed altitude, and maximum fixed altitude.

0 20 40 60 80 100 120 140 160 180

Time (hour)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
lt

it
u

d
e
 (

k
m

)

Bayesian Optimization (MPI)

Off-line Optimum Fixed Altitude (= 1233m)

(a) Comparison of operating altitude

0 20 40 60 80 100 120 140 160 180

Time (hour)

0

5

10

15

20

25
V

e
lo

c
it

y
 (

m
/s

)

Bayesian Optimization (MPI)

Off-line Optimum Fixed Altitude (= 1233m)

Rated Wind Speed ( = 12 m

s
)

(b) Comparison of wind speeds at operating
altitude

Figure 12: Comparison of operating altitude and wind velocity over the course of one
week using Maximum Probability of Improvement (MPI) acquisition function

using all available wind data. Thus, the optimization takes the following form:

maximize
z=constant

τ∑

t=0

Pt(z)

where τ is the final time step. It is important to note that this calculation

requires knowledge of the entire time window. Hence, this scenario serves an

upper bound on the potential of any fixed altitude algorithm but is not imple-
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Figure 13: Comparison of operating altitude and wind velocity over the course of one
week using Expected Improvement (EI) acquisition function
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Figure 14: Comparison of operating altitude and wind velocity over the course of one
week using Upper Confidence Bound (UCB-GP) acquisition function
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(a) Zoomed operating altitude (EI)
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Figure 15: Zoomed operating altitude for EI and UCB-GP acquisition function where
the altitude exhibits very large fluctuations.

mentable in practice, since this would require knowledge of the future, along

with measurements of the wind speed over all admissible altitudes. The off-line

optimum fixed altitude was 1233m for the time period studied in this work.
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• Scenario 2: Minimum Fixed Altitude: The second scenario is representa-

tive of conventional towered wind turbines. For this scenario, we rely on data

from the lowest available altitude 146m, which is close to the hub length of the

world’s tallest towered wind turbines [5].

• Scenario 3: Maximum Fixed Altitude: The third scenario involves flying

the AWE at the maximum allowable fixed altitude, 1528m.

• Scenario 4: Bayesian Optimization: The fourth scenario employs Context-

Dependent Bayesian Optimization (CDBO), as outlined in Algorithm 2.

The design parameters used in the study are reported in Table 3. Bayesian Op-

timization is performed at each 30 minute time interval to identify the best next

operating altitude.

Table 2 compares the performance of Bayesian Optimization (i.e., Scenario 4) to

baseline scenarios (i.e., Scenario 1-3) for 10 randomly selected weeks in our dataset [17,

21, 22]. One can conclude form this table that our algorithm outperforms the other

baseline scenarios in most instances. Furthermore, Fig. 27 illustrates the performance

Table 2: Comparison of net energy production for 10 randomly selected weeks

Bayesian
Optimization [kWh]

Off-line optimum
fixed altitude [kWh]

Maximum fixed
altitude [kWh]

Minimum fixed
altitude [kWh]

Week 1 9371 8990 8688 6200
Week 2 9068 7896 7752 7111
Week 3 8774 7818 7809 7811
Week 4 9441 9374 9214 6913
Week 5 8934 8920 8442 7414
Week 6 11306 10867 7752 6786
Week 7 8827 8514 8278 7349
Week 8 10804 11019 10721 6888
Week 9 8706 8714 8693 7634
Week 10 9586 9872 9626 7060

Mean 9481.7 9198.4 8697.5 7116.6
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Table 3: Design parameters for Bayesian Optimization algorithm

Parameter Description Value
Prated Rated power of turbine 100 kW
Vrated Rated wind velocity 12 m

s

zmin Minimum allowable altitude 146 m
zmax Maximum allowable altitude 1528 m
∆t Time step 30 min

of Bayesian Optimization over the course of one selected week, using each of the three

candidate acquisition functions outlined in Section 2.2.2. One can conclude from this

figure that all Bayesian Optimization methods result in superior energy production

when compared to baseline scenarios. In this figure, we have also included a new

scenario termed the off-line optimum variable altitude. This scenario serves as an

upper bound on the achievable energy output that cannot be exceeded under any

control strategy. It should be noted that, similar to the off-line optimum fixed altitude,

this scenario cannot be implemented in real-time, as it requires the knowledge of

future. The resulting operating altitudes and corresponding wind velocities are shown

in Figs. 12-14. Fig. 15 provides a zoomed in version of Fig. 13 and 14 for the

operating altitude where the altitude exhibits very large fluctuations.

Table 4: Cost function parameters

Parameter Description Value

c1
Coefficient of power production

related to the power curve
0.0579

c2
Coefficient of power production
required to maintain altitude

0.09

c3
Coefficient of power production

required to change altitude
0.15
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Figure 16: Comparison of net energy production where the altitude adjustment under
a variety of rate limitations.

3.3.7.1 Exploration Rate Limitation

To account for different limitations on the tether release rate for the AWE system,

Fig. 16 illustrates the net energy production of the AWE system under stricter rate

limits than the one imposed in our initial result. One can infer from this figure

that the most net energy is produced under the least severe rate limit, as expected.

However, even strict rate limitations result in more energy production than constant

altitude control strategies.

3.4 In-situ Layout Optimization of an OCT Array

Here, we show how Bayesian Optimization, in conjunction with a suite of low-level

flight controllers, can be used to adjust the layout (staggering) of an array of OCTs.

Bayesian Optimization is used to set target OCT locations, and tethers and control

surfaces are used to adjust positions.
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The proposed layout optimization algorithm has two key novel features. First,

the location of each turbine is described through a small set of basis parameters;

the number of basis parameters does not grow with increasing array size, thereby

leading to an optimization that is not only computationally tractable but is also

highly scalable. Secondly, context-dependent Bayesian Optimization algorithm is

utilized to adjust these basis parameters as the flow environment varies.

3.4.1 Background and Literature Survey

Figure 17: Conceptual design of OCT ar-
ray, Image credit: [6]

The Gulf Stream, whose 1-2 m/s flow

speeds carry over 65 million cubic me-

ters per second of flow off the shores of

Florida and North Carolina, possesses

an estimated total power of 25 GW

[67]. In response to this tremendous

resource, several organizations (such as

Florida Atlantic University, the Univer-

sity of North Carolina Coastal Studies

Institute, Virginia Tech, and others) have investigated the design, control, and eco-

nomic characterization of ocean current turbine (OCT) systems [75, 60, 76]. As with

wind turbines, OCTs will ultimately need to be installed as part of large arrays

(farms), such as the one in the schematic of Fig. 4, in order to create the economies

of scale that render marine hydrokinetic energy economically viable. Unlike towered

wind turbines and tidal turbines, however, Gulf Stream OCTs will be deployed in
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deep waters that require the conventional tower to be replaced with tethers and a

lifting body such as a wing. While the replacement of towers with tethers leads to

dynamic modeling and control challenges (see [76]), it also provides the opportunity

to adjust individual turbine positions within an array through the paying out/in of

tether and manipulation of control surfaces (elevators and rudders). This ability to

reconfigure the array layout in-situ can be very beneficial in the presence of a Gulf

Stream resource profile that varies with respect to both space and time, as is shown

to be the case in Fig. 18 [60].

To adjust the OCT layout online, it is necessary to employ an optimization tech-

nique that is not only effective but also enables fast convergence. A limited number

of studies have focused on the layout optimization of marine turbine arrays. The

existing literature generally falls into two categories:

1. Research that compares a small number of predetermined array designs but

does not actually optimize the layout (see [62]);

2. Gradient-based optimization of the array configuration (see [44]). These algo-

rithms generally converge quickly but easily get stuck in local optima.

A larger body of literature addresses the optimization of wind farm configurations.

Unlike the aforementioned research in marine array layout optimization algorithms,

many of the wind farm optimization schemes are global in nature. Some of the global

techniques for wind farm optimization include extended pattern searches [35], particle

swarm algorithms [28], particle filtering approaches [37], simulated annealing [23],

evolutionary algorithms [56], and colony optimization [36]. These global optimizations
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come at a computational price, however. For example, optimization of a 2D array

of 47 turbines still required 61,802 simulations in [23]. While the aforementioned

optimizations are effective for the offline design of wind farm layouts, they are not

appropriate for the online optimization of tethered OCT locations.

Figure 18: The Gulf Stream profile continuously varies over time. This trend mo-
tivates us to research methods by which we can reconfigure the array layout online
to accommodate the most recent flow profile. It is important to note, however, that
any iterative optimization process for doing so needs to happen quickly relative to
the rate of change in the flow profile. In these figures, the contours represent flow
velocities. Furthermore, a potential constraint volume for an OCT array is enclosed
in dashed lines. As can be seen, the flow profile within this (or practically any)
constraint volume varies over time.

The majority of the aforementioned studies focus on 2D modeling and optimization

of array configurations. This approach makes sense for river arrays, shallow-water

tidal arrays, WECs, and wind farms, where vertical spacing is either impossible or

very costly. At the depths at which OCT arrays are typically deployed, however,

there exists a significant vertical range over which the average flow speed varies little

(due to a low shear rate near the surface). This creates a significant opportunity

to stagger both the horizontal and vertical spacing of the turbines, with the design

objective of maximizing power output within a constraint volume. Furthermore,

while the aforementioned studies focus on fixed-based turbines, our study considers

the tethered turbines. The use of tethered systems in deep waters will allow the OCTs
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Figure 19: a) Each OCT’s longitudinal location can be adjusted by changing the
angle of attack of the wing (i.e., α), which can in turn be altered through elevators.
b) Each turbine’s lateral location can be adjusted by generating side force on the
wing, which can be generated through a rudder. δr presents the deflection caused by
rudders.

to adjust their vertical positions through the adjustment of tether lengths and their

horizontal (longitudinal and lateral) positions via control surfaces.

In this chapter, we propose a two-part layout optimization strategy that iteratively

adjusts the 3D locations of each of the turbines within an OCT array in order to

maximize output power, subject to volumetric and spacing constraints. The two

unique components of our approach are:

1. A low-order parameterization of the OCT locations where a large number of

turbines’ locations are represented through a small number of basis parameters.

These basis parameters are sufficient to describe a wide variety of array layouts

that can be realized through adjustment of tether lengths and control surfaces.

Furthermore, as we show later in this chapter, optimizing these basis parameters

leads to array layouts that produce very close to the theoretically optimal power

output for the array. Finally, the number of basis parameters does not grow as

the array size grows, thereby leading to a highly scalable optimization.
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2. Use of Bayesian Optimization to efficiently converge to an optimal set of basis

parameters in a very small number of iterations.

3.4.2 Frameworks for Studying Reconfigurable OCT Arrays

We consider an array of N OCTs that each possess (i) the ability to adjust tether

payout, (ii) the ability to adjust longitudinal position through the use of elevators

and/or a variable bridle geometry, and (iii) the ability to adjust lateral position

through the use of rudders. A conceptual drawing of the type of OCT under con-

sideration is shown in Fig. 19a and Fig. 19b. Each OCT is assumed to have two

rotors, each located at the aft of two hulls that are connected via a wing. Adjust-

ment of tether payout can be accomplished through the use of a winch system, as is

done in the airborne wind energy community (see [81]). Adjustment of longitudinal

position can be accomplished through the use of elevators, which alter the angle of

attack of the lifting body that houses the on-board turbines, which in turn alters the

lift-to-drag ratio of the system. Finally, adjustment of the lateral position can be

accomplished through the use of rudders. The deflection of the rudders through an

angle δr alters the side slip angle of the flow incident to the rudder, which drives the

OCT to a new equilibrium position. Consequently, with sufficient control authority,

the OCT can navigate itself anywhere within a finite constraint volume. Fig. 20

presents two frameworks for the iterative 3D layout optimization process considered

in this chapter. The Framework A assumes instantaneous OCT dynamics, while the

more realistic Framework B incorporates a fused flight dynamics and wake interac-

tion model for capturing the dynamic behavior of each OCT. In both frameworks,
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[A]

Bayesian 
Optimization

Wake interaction
model

↵

V1

[B]

V1

↵
Bayesian

 Optimization
Closed-loop

dynamics model

Wake interaction
model

X,Y,Z

Vlocal

Figure 20: Illustration of the iterative layout optimization processes. While the
Framework A assumes instantaneous OCT dynamics, the Framework B incorporates a
fused flight dynamics and wake interaction model for capturing the dynamic behavior
of each OCT. The mathematical engine for performing the optimization is Bayesian
Optimization for both frameworks.

Bayesian Optimization is used to compute a new set of basis parameters at discrete

time intervals. These basis parameters act as a low order representation of the OCT

layout and are related directly to the x, y, and z positions of each turbine in the array.

Once the new layout has been determined, the individual OCTs navigate themselves

to the prescribed locations, and the corresponding array power output is measured.

3.4.3 Low Order Wake Interaction Model

To evaluate the efficacy of the proposed array layout optimization framework

through simulation, it is essential to have a numerical model that predicts array
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power output for a given layout. In this chapter, we present an extension of a low-

order analytical array power production model from [28] to address very generic 3D

geometries that consist of an arbitrary number of rows of turbines. The total power

generated by the underwater turbine array is determined through the following four

step procedure, detailed in [28], where the x (longitudinal) axis corresponds to the

flow direction and the y (lateral) axis corresponds to the cross-flow direction:

• Step 1: An influence matrix, M , identifies if a turbine lies in the wake of

another turbine. The elements of this matrix are determined as follows:

Mij =





+1 if turbine i influences turbine j

−1 if turbine j influences turbine i

0 if there is no mutual influence

(59)

Turbine j is affected by the wake of turbine i if and only if:

∆xij < 0,

dij −
Dj

2
<
Dwake,ij

2
,

where:

∆xij = xi − xj,

∆yij = yi − yj,

∆zij = zi − zj,
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and dij =
√

∆y2
ij + ∆z2

ij is the separation distance between the center of turbine

j and the wake from i. Dj is the rotor diameter of turbine j. Dwake,ij represents

the diameter of the wake due to turbine i, reaching turbine j. The diameter of

the wake from i, as it reaches j, is given by [43]:

Dwake,ij = Di + 2β|∆xij| (60)

where β is the wake expansion constant. β is set to 0.075 based on results

reported in [52, 45]. The wake expansion coefficient depends on several factors,

including the upstream turbulence intensity, and turbulence and vorticity intro-

duced by the turbines, but earlier work from a two-turbine study ([52]) suggests

that the generated power appears to depend weakly on β.

The wake expansion following turbine i is accompanied by a corresponding

reduction in the velocity [52] reaching turbine j:

Ukj =
(

1− 2a

(1 + 2β∆kj)2

)
Uk (61)

where a is the induction factor. Other effects such as wake dissipation due to

turbulence, are not included in this model.

• Step 2: The turbines are ranked in increasing order of their longitudinal (x)

positions. Thus, lower ranks correspond to turbines that are located closer to

the “clean” flow.

• Step 3: The power outputs of individual turbines are calculated in ascend-
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ing order of rank so that the wake effect on downstream devices is properly

accounted for. Turbine j might be fully or partially in the wakes of other tur-

bines. The wake of each preceding turbine (e.g. turbine k), for which Mkj = 1,

is mapped onto turbine j as follows:

If the rotor of turbine j lies fully in the wake of turbine k, then:

Akj = Aj

Aj =
πD2

j

4

Otherwise, if the rotor of turbine j lies partially in the wake of turbine k, then:

Akj = r2
k cos

−1(
d2
kj + r2

k − r2
j

2dkjrk
)+r2

j cos
−1(

d2
kj + r2

k − r2
j

2dkjrk
)−1

2

√
(a)(b)(c)(d), (62)

where:

a = −dkj + rk + rj,

b = dkj − rk + rj,

c = dkj + rk − rj,

d = dkj + rk + rj.

Thus, Eq. (62) represents the calculation of the area of the region Akj, as the

area of the lenticular region between the overlapping circles of radii rj and rk.
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The effective area of influence of the wake (from turbine k) on turbine j is rep-

resented by Akj. rk and rj represent the radii of turbines k and j, respectively.

Finally, dkj represents the distance between the centers of turbines j and k. For

turbine pairs that satisfy Mkj = 1, the resultant wake velocity is given by:

Uj = U0 −
√∑

k

Akj
Aj

(
U0 − Ukj

)2

. (63)

The power generated by turbine j, denoted by Pj, is then determined by:

Pj = Cp

(1

2
ρπ
D2
j

4
U3
j

)
, (64)

where ρ is the density of the fluid (water) and Cp represents the power coefficient.

• Step 4: Finally, the power generated by the array, PArray, is calculated as the

sum of the power outputs from the individual turbines:

PArray =
N∑

j=1

Pj. (65)

3.4.4 Fused Flight Dynamics and Closed-Loop Control System Model

The fused model of the tethered system array characterizes Nsys systems, where

Nsys can be tailored to different array sizes. Each tethered system consists of a lower

level flight controller and dynamic model of the lifting body and tethers. The general

block diagram of the dynamic model is provided in Figure 21. Each of the compo-

nents of this block diagram is detailed in this section. In Fig.21, the flow velocity into

the tethered array is denoted as Vflow =

[
vflow,1 . . . vflow,Nsys

]T
. The control input



56

vector for the ith dynamic model is denoted as ucmd,i =

[
ucenter,i ustbd,i uport,i urudder,i

]T
.

The first three elements of ucmd,i are tether release speeds, while urudder,i is an angular

deflection of the rudder.

Wake 
Interaction 

Model

Tethered array, 
(containing 𝑁𝑠𝑦𝑠

tethered systems, 
with lower level 

controllers)

Flow data,
V𝑟𝑎𝑤 z, t

Flow velocity at each 
tethered system, 𝐕𝑓𝑙𝑜𝑤

Measured 
location of each 
tethered system:
𝐱, 𝐲, and 𝐳

𝜃1
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𝑦1
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Tethered 
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Controller 𝐮𝑐𝑚𝑑,𝑁𝑠𝑦𝑠

𝜃𝑠𝑝,2

𝑦𝑠𝑝,2

𝜙𝑠𝑝,2
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𝜃𝑠𝑝,𝑁𝑠𝑦𝑠

𝑦𝑠𝑝,𝑁𝑠𝑦𝑠
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Figure 21: Block diagram of the fused flight dynamics, flight control, and wake inter-
action model [33]

3.4.4.1 Dynamic Model of an Individual Tethered System

The model for each individual tethered system has been developed based on an

airborne wind energy system model first discussed in [81]. The model presented in

this section is for a single system. Therefore, each variable in this section should

be indexed with an i to correspond to ith dynamic model; however, for conciseness

of notation, this index is omitted in this section. This modeling framework assumes

that each system contains three tethers, with lengths given by lcenter, lport, and lstbd,

where the average tether length is given by Lt.
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Derived using an Euler-Lagrange framework, this dynamic model is described by

six degrees of freedom (three uncontrolled and three controlled), which are shown in

Fig. 22 and given by: Θ, Φ, Ψ, Lt, θ
′ and φ′. Θ represents the angle between the

longitudinal wind axis and the tether’s projection onto the ground, referred to as the

azimuth angle. Φ is the zenith angle, which represents the angle between the vertical

axis and tether. Ψ describes twist angle about the tether axis. The average tether

length is given by Lt, whereas θ′ and φ′ represent the induced pitch and roll angles

that are introduced by varying the lengths of the individual elements. By introducing

these induced angles, we approximate a multi-tethered system as a single-tethered

system with a controllable bridle joint. This leads to comparable dynamics that can

be expressed entirely through differential equations, without the need to resort to

differential algebraic equations (where algebraic constraint equations result from the

presence of multiple tethers). The induced angles are related to the lengths of the

bridle elements, denoted by lcenter, lport, and lstbd, as follows:

θ′ = tan−1

(
lcenter − 0.5(lport + lstbd)

lcenter

)
, (66)

φ′ = tan−1

(
lstbd − lport
lcenter

)
. (67)

Each tethered system is controlled using a rudder (whose controlled angular deflec-

tion is given by urudder) and the release rates of the three tethers, which are specified

by ucenter, ustbd, and uport). The tether lengths are directly related to the release rates
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through pure integrators:

d

dt
(lcenter) = ucenter, (68)

d

dt
(lstbd) = ustbd, (69)

d

dt
(lport) = uport, (70)

and urudder directly impacts the yaw moment acting on each tethered system.

Ultimately, the system dynamics are given by:

D(Q)Q̈+ C(Q, Q̇)Q̇+ g(Q) = τ(Q, Q̇,vflow, ψflow, urudder), (71)

X = f(Q, Q̇), (72)

Ω = g(Q, Q̇), (73)

where:

Q = [Θ Φ Ψ Lt θ′ φ′]T , (74)

X = [x y z u v w]T , (75)

Ω = [φ θ ψ p q r]T . (76)

Here, τ is a vector of generalized forces, vflow is the local flow velocity at each teth-

ered system (in contrast to the free-stream flow velocity, the local flow velocity is an

output of the wake interaction model, which accounts for the velocity deficit within

the wake of each system), ψflow is the flow direction, and urudder is the rudder in-

put. The orientation of the apparent flow velocity vector with respect to body-fixed
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coordinate system is given by the angle of attack (α) and side-slip angle (β). Aero-

dynamic/hydrodynamic forces and moments are functions of both α and β.

The tethered system model that was used for the simulations in this chapter con-

sists of a main body, vertical stabilizer, and two turbines. As such, the total aero-

dynamic/hydrodynamic coefficients have been partitioned between the main body

and stabilizers. Partitioning the coefficients allows for rapid reconfigurability of the

aerodynamic/hydrodynamic aspects of the system. Total coefficients are given by:

Ctotal
D,L,S(α, β) = Cbody

D,L,S(α, β) + CV
D,L,S(α, β)

AV
Abody

, (77)

Ctotal
Mx,My,Mz(α, β) = Cbody

Mx,My,Mz(α, β) (78)

+CV
Mx,My,Mz(α, β)

AV lV
Abodylbody

.

Here, CD, CL, CS, CMx, CMy, and CMz represent the drag, lift, side force, roll mo-

ment, pitching moment and yaw moment coefficients of a single tethered system,

respectively. Superscripts and subscripts body and V denote the main body and

vertical stabilizer; A represents a surface area, whereas l represents a chord length.

3.4.4.2 Flight Controller

The closed loop system (combined flight dynamics model and controller) for each

individual tethered system is shown in Fig. 23. Similar to the dynamic modeling

section, the i (denoting the particular tethered system under consideration) has been

removed in this section for notational simplicity. For each individual tethered system,

the goal is to to track a prescribed pitch angle setpoint (θsp), roll angle setpoint (φsp),
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Figure 22: Axis system for tethered system dynamic model. The full system model is
shown on the left in global coordinates. In the right frame, the body fixed coordinates
and Euler angles from ground to body fixed coordinates can be seen. Also, the
controlled degrees of freedom at the bridle joint are displayed [33].

altitude setpoint (zsp), and lateral position setpoint (ysp). To achieve tracking of each

of the first three setpoints (θsp, φsp, and zsp), three lead filters are used, as in [81]:

ūz(s) =
kd,zs+ kp,z
τzs+ 1

(zsp(s)− z(s)), (79)

ūθ(s) =
kd,θs+ kp,θ
τθs+ 1

(θsp(s)− θ(s)), (80)

ūφ(s) =
kd,φs+ kp,φ
τφs+ 1

(φsp(s)− φ(s)). (81)

The commanded velocities of each tether, denoted by ucenter, ustbd, and uport, are

related to ūz, ūθ, and ūφ through simple linear combinations:
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ucenter = ūz − ūθ, (82)

ustbd = ūz + ūθ + ūφ, (83)

uport = ūz + ūθ − ūφ. (84)

The above linear combinations correspond to the use of synchronous tether motion

to control altitude (depth), asynchronous forward/aft control to regulate pitch, and

asynchronous port/starboard control to regulate roll. Because of the pure integrators

that relate ūcenter, ūstbd, and ūport to the tether lengths, integral control is not needed

for tracking of θsp, φsp, and zsp.

Flight 
Controller

Tethered 
System 

Dynamics

𝜃, 𝜙, 𝑦, 𝑧

𝐯𝑓𝑙𝑜𝑤

𝜃𝑠𝑝

𝑦𝑠𝑝

𝜙𝑠𝑝

𝑧𝑠𝑝

𝑢𝑐𝑒𝑛𝑡𝑒𝑟
𝑢𝑠𝑡𝑏𝑑
𝑢𝑝𝑜𝑟𝑡
𝑢𝑟𝑢𝑑𝑑𝑒𝑟

Figure 23: Closed loop block diagram for an individual tethered system [33]

Unlike the control system detailed in [81], we assume that each tethered system is

equipped with a rudder that allows for lateral movement. Having the ability to use

the rudder allows the system to adjust its lateral position, which can be used to move

out of the wake of an upstream system. The rudder is controlled by a filtered PID

controller, parameterized as:
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urudder(s) =
kd,ys

2 + kp,ys+ ki,y
(τys+ 1)s

(ysp(s)− y(s)). (85)

3.4.5 Array Layout Optimization Methodology

Our optimization process will focus on maximizing power output, subject to volu-

metric and spacing constraints. The design variables are the x, y, and z positions of

each turbine of N OCT array. The optimization problem takes the form:

Maximize PArray(X,Y,Z) (86)

subject to:

(xi, yi, zi) ∈ V, i = 1, . . . , N,

di,j ≥ dmin, i 6= j,

where PArray represents generated power from the array, and X,Y, Z are vectors that

contain the x, y, z positions of each of the N turbines in the array, i.e:

X = [x1, . . . , xN ], Y = [y1, . . . , yN ], Z = [z1, . . . , zN ], (87)

and di,j represents the Euclidean distance between turbine i and j. Directly optimiz-

ing these 3N design variables will lead to a computationally intense and poorly scaled

optimization problem (where the number of design variables grows linearly with the

array size and the computational complexity of the optimization grows super-linearly

in most cases). To alleviate this computational and scalability issue, we introduce a
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Figure 24: Comparison of a simple 3D rectangular array (a- corresponding to ρlong =
4, ρlat = 4, ρvert = 4, flong = 0, flat = 0, fvert = 0 ) with a staggered array that makes
use of six basis parameters (b- corresponding to ρlong = 4, ρlat = 4, ρvert = 4, flong =
0.25, flat = 0.5, fvert = 0.25). It is evident from this figure that a small number of
basis patterns can yield highly general layouts. Blue + symbols represent the centers
of the OCTs in both figures.

novel technique in this section wherein the array is parameterized as a function of a

small number of basis parameters, leading to a more efficient and scalable optimiza-

tion problem. We then use Bayesian Optimization to iteratively optimize this small

set of basis parameters.

3.4.5.1 Array Layout Parameterizations

To form a computationally efficient and highly-scalable optimization framework,

we describe each array configuration via a small set of basis parameters. Specifically,

these basis parameters represent a small number of scalar array geometry variables

that describe properties of the 3D array that are anticipated to be critical to power

production.

In our case, we fix the number of rows, columns, and layers that comprise the array

and use the basis parameters to characterize the level of staggering between these
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rows, columns, and layers, which can be physically accomplished through the use of

tether length and control surface adjustment. Specifically, we model this staggering

through three basis parameters, namely:

• flong: Longitudinal stagger fraction (fraction of nominal row separation by which

successive columns are staggered)

• flat: Lateral stagger fraction (fraction of nominal column separation by which

successive rows are staggered)

• fvert: Vertical stagger fraction (fraction of nominal row separation by which

successive layers are staggered)

These basis parameters will be represented in this work through a compact vector,

α, where:

α = [ flong flat fvert
]T . (88)

Taking L, W , and D as the length, width, and depth, respectively, of the constraint

domain, and taking ρlong, ρlat, and ρvert as the number of rows, columns, and layers

in the array, the basis parameters of α are related to the actual turbine positions

through the following (rather intricate) formulas:
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xi =
L(1− 1

ρlong−1
)

ρlong − 1
floor(

i− 1

ρlat

) (89)

+
Lflong

ρlong − 1
mod(i− 1, ρlat) +

L

2(ρlong − 1)
,

yi =
W (1− 1

ρlat−1
)

ρlat − 1
mod(i− 1, ρlat) (90)

+
Wflat(i− 1)

ρlat(ρlat − 1)
+

W

2(ρlat − 1)
,

zi = floor(
i− 1

ρlongρlat

)
D − D

ρvert

ρvert − 1
+

D

2(ρvert − 1)
(91)

+ floor(
mod(i− 1, ρlongρlat)

ρlat

)
fvert

2( W
ρlat−1

)

+ mod(i− 1, ρlat)
fvert

2( L
ρlong−1

)
.

To gain an appreciation for the effect of the basis parameters, Fig. 24 compares

two scenarios: The figure on the left shows a layout with ρlong = 4, ρlat = 4, ρvert = 4,

flong = 0, flat = 0, and fvert = 0. By taking staggering parameters to be equal to

zero, we end up with a simple rectangular array. In the right sub-figure, we take the

same values for ρlong, ρlat, and ρvert but take flong = 0.25, flat = 0.5, and fvert = 0.25,

respectively. Through just these three basis parameters, we arrive at an array geome-

try that departs significantly from a simple rectangular array. Furthermore, different

values of flong, flat, and fvert can be used to generate widely differing array geometries.

Most importantly, as we will show in Section 3.4.6, this simple parameterization is

sufficient to describe array geometries that produce power outputs that are very close

to the theoretical limit for the given number of turbines.

We can also quantify the feasible domain over which each turbine in the array can

adjust its location through use of tether length adjustment and control surfaces. To
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achieve this goal, we have conducted a simple simulation where the variation of x,

y, and z position were computed through variation of the chosen basis parameters

(flong, flat, and fvert).

Fig. 25 illustrates variation in turbine positions for three different turbines in an

OCT array, as each of the aforementioned basis parameters (flong, flat, and fvert) is

varied while the other three remain fixed at ρlong = 5, ρlat = 5, ρvert = 4. One can

conclude from this figure that it is possible to define a continuous constraint volume

within which each turbine must lie, for any combination of basis parameters.

The maximum constraint volume within which each OCT is restricted to lie de-

pends, intuitively, on the total constraint volume and number of turbines (LWD and

ρlongρlatρvert, respectively). Based on a least squares regression over 125 configura-

tions, the maximum constraint volume, Vmax, can be approximated as:

Vmax = K̄LWD
(
ρ−1

longρ
−1
latρ

−1
vert

)
(92)

where K̄ ≈ 1.73.

Identification of this value of K̄ indicates that:

• Each OCT can indeed be guaranteed to lie within a continuous constraint vol-

ume whose size varies predictably with the packing density of OCTs within a

constraint volume.

• Each OCT’s constraint volume partially overlaps its neighbors’ constraint vol-

umes, which can be identified by the fact that K̄ > 1. Our optimization does

not allow for turbines to occupy the same space, however, through a spacing
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Figure 26: Maximum constraint volume based on different number of turbines

constraint.

Fig. 26 represents how the actual and estimated (i.e., fitted) maximum constraint

volume (based on the least squares regression) vary for different numbers of turbines.

3.4.6 Results - Framework A

To evaluate the proposed algorithm, a simple test case was set up, consisting of a

domain of 400m × 400m × 200m, subjected to a uniform inlet flow of 1m
s

[19, 20].

A summary of parameters used in this test case is provided in Table 5. To assess the
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Table 5: The parameter values used in the proposed algorithm

Description Symbol Value Units

Water density ρ 1000 kg
m3

Inlet flow velocity U0 1 m
s

Turbine diameter Dt 5 m
Power coefficient Cp 0.45 -

Wake expansion constant β 0.075 -
Domain length L 400 m
Domain width W 400 m
Domain depth D 200 m

effectiveness of our algorithm, we consider two different scenarios:

• Scenario 1: Baseline Rectangular Array

This scenario represents the case where flat = 0, flong = 0, and fvert = 0. This

baseline scenario conforms to a rectangular layout.

• Scenario 2: Staggered Array Using Bayesian Optimization

Here, each of the staggering basis parameters, namely flat, flong, and fvert, are

optimized iteratively using Bayesian Optimization.

We also compare the performance of the optimized array (Scenario 2) with the

theoretical maximum array output power for the given number of turbines (N). This

maximum possible output power is given by:

PArray =
1

2
ρCpU

3
0π(

Dt

2
)2N (93)

where N is the total number of turbines. This reflects the total array power output

under the condition that each OCT is exposed to the free stream flow velocity, U0.

Fig. 27 illustrates the percentage of maximum available power produced at each
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iteration, where the total allowable number of turbines varies from 100 to 400. It is

noteworthy here that there are several iterations over which the best power remains

constant. These are iterations at which the power output is not improving (or is even

getting worse); however, Bayesian Optimization is learning more about the nature

of the array power vs. basis parameters at these iterations, leading to an ultimate

improvement at later iterations. Table 7 presents the detailed results for different

scenarios where the total number of turbines is restricted to a number ranging from

100 to 800. The optimized array is able to achieve nearly the maximum available

power. To gain an appreciation for the final layout, Fig. 28 and Fig. 29 present the

final layout for the first and second scenario, where the number of turbines is restricted

to 75 and 100, respectively. In these figures, the center of each “+” represents the

center of each turbine in the array. The color of each turbine indicates the amount

of power that is harnessed by that turbine (see Table 6).

3.4.6.1 Parametric Trade Study

In this section, we explore how (and if) the results of the proposed layout optimiza-

tion approach vary as we sweep through the values of key parameters. Specifically,

we conduct a parameter sweep across the OCT axial induction factor (which is as-

sumed to be the same for each OCT) and allowable separation distance between the

Table 6: Illustration of colored circles as center of turbines

Color Percentage of rated power
Red >= 95%

Orange 90% - 95%
Yellow 85% - 90%
Green <85%
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Table 7: Power output for a rectangular array (scenario 1) and optimized array
(scenario 2)

Maximum allowable

number of turbines
Optimal staggered

array layout [kW]
Rectangular

array out [kW]
Maximum available

power [kW]
100 442 325 442
150 661 488 663
200 877 651 884
400 1750 1310 1770
800 3290 1350 3470
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Figure 27: Evolution of the normalized best observed power output power at each
iteration of Bayesian Optimization (maximum allowable number of turbines varies
from 100 to 400)
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Figure 28: Rectangular vs. staggered Bayesian Optimization layout (maximum al-
lowable number of turbine is 75).

turbines.
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Figure 29: Rectangular vs. staggered Bayesian Optimization layout (maximum al-
lowable number of turbine is 100).

3.4.6.2 Sensitivity to Induction Factor

In the presence of a wake, the flow velocity reaching the rotor plane is smaller than

the inlet stream velocity. The ratio of this reduction to that of the flow velocity far

away from the turbine, denoted as a, is given by:

a =
U0 − U1

U0

(94)

where U0 is the inlet flow velocity and U1 is the flow velocity at the rotor. The

relationship between the power coefficient, Cp, and the induction factor, a, is given

by:

Cp = 4a(1− a)2 (95)

The maximum value of Cp (called Betz limit) is equal to 16
27

. Therefore, even with

the best rotor design, it is not possible to extract more than about 60% of the kinetic

energy from the flow. Furthermore, one can show that this maximum occurs at a = 1
3
.
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Figure 30: Evolution of the power output over a rage of induction factors for a fixed
number of turbines
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tor = 0.3, Number of tur-
bines fixed to 100
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Figure 32: Induction fac-
tor = 0.4, Number of tur-
bines fixed to 100
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tor = 0.5, Number of tur-
bines fixed to 100

Fig. 30 examines how the array power output varies for a range of induction

factors, where the number of turbines is fixed. One can infer from this figure that the

array power output has a peak around the optimum induction factor, as expected.

Furthermore, one can conclude from this figure that the staggered optimized array

results in significantly more power output than a rectangular array farm, regardless

of the induction factor. Furthermore, it should be noted that in these figures, the

layouts have been individually optimized for each induction factor considered. For

instance, Figs 31-33 represent the optimal layouts corresponding to induction factor

of 0.3, 0.4, and 0.5, respectively.
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Figure 34: Evolution of the normalized best observed power output at each iteration
of Bayesian Optimization for a number of induction factors

Fig. 34 illustrates the evolution of the normalized best observed power output at

each iteration of Bayesian Optimization for a number of feasible induction factors.

3.4.6.3 Sensitivity to Spacing Constraint

Practical limitations will restrict the safe proximity of OCTs with respect to one

another. The allowable separation of turbines is taken into account in optimization

formulation as a “soft” constraint. In general, soft constraints act as approximations

of the hard constraints and are penalized in the objective function. In this case, the

modified optimization problem takes the following form:

Maximize PArray (X,Y,Z)− k
N∑

i=1

(
max

(
Dthresh − dmin(i), 0

))2

(96)

where Dthresh represents the maximum allowable separation of turbines. dmin(i) de-

notes the minimum Euclidean distance between turbine i and all other turbines, and

k represents a scalar weighting parameter. Fig. 35 shows the evolution of the normal-

ized best observed power output at each iteration of Bayesian Optimization, where

Dthresh varies from 10m to 40m. One can infer from this figure that the most power
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output occurs under the least severe maximum allowable separation constraint, as

expected.
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Figure 35: Evolution of the normalized best observed power output power at each
iteration of Bayesian Optimization for various Dthresh (the number of turbines is fixed)

3.4.7 Results - Framework B

In summary, the framework B presented in Section 3.4.2 integrates the lower-level

OCT layout adjustment controllers with the higher-level context-dependent Bayesian

Optimization algorithm to generate realistic simulations of a reconfigurable OCT

array. This model (i) is driven with an inlet velocity profile from actual ADCP

current measurements, (ii) uses the low-order wake interaction model to predict local

flow velocities at each OCT as a function of each OCT’s location, and (iii) utilizes

context-dependent Bayesian Optimization to iteratively optimize array locations.

We evaluate the performance of context-dependent Bayesian Optimization using

real Gulf Stream data from the UNC-Coastal Studies Institute to drive the dynamic

model. An ADCP provides flow speed measurements in 4 m intervals in space, down

to a depth of 230m, and 10 minute intervals in time. We assess the performance of

our layout optimization algorithm over the 6 hour simulation, where each iteration of
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Figure 36: (a) Instantaneous power output vs. best observed power output (b) Cor-
responding optimal layout (maximum allowable number of turbine is 32).

Bayesian Optimization corresponds to a 10 minute simulation. Fig. 36-a illustrates

the evolution of instantaneous power output and the best observed power output

over time. Furthermore, Fig. 36-b provides a snapshot of the corresponding optimal

configuration at the conclusion of the 6 hour simulation. Given the lengthy time con-

stants associated with Gulf Stream flow variations (commonly 3-8 days), performing

computationally tractable simulations over longer durations has been identified as a

topic of future work.



CHAPTER 4: FUSED PLANT / CONTROLLER OPTIMIZATION USING
BAYESIAN OPTIMIZATION

4.1 Introduction

So far, this thesis has examined ways in which Bayesian Optimization, a tool that

has been used in many applications for design optimization in past work [26, 53, 16],

can also be used for real-time control (for AWE and OCT applications). A number

of engineering applications, including those considered in this research, involve both

a complex design optimization and control system optimization, where the optimal

controller depends on the design and vice versa.

This chapter shows how Bayesian Optimization can be employed to solve the prob-

lem of coupling between plant and controller optimization. Specifically, we utilize a

nested framework wherein a batch of plant designs are chosen at each iteration using

Bayesian Optimization, then Bayesian Optimization is used in continuous time to

optimize control parameters for each given plant.

4.2 Background and Literature Survey

Combined plant and controller problems consist of those scenarios in which the

optimal controller depends on the physical system design (i.e., the plant) and vice

versa. Combined plant and controller optimization (often termed co-design) has been

employed for a wide variety of systems, including automotive suspension systems (see

[40], and [9]), elevator systems [39], and the AWE application described earlier (with
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initial studies reported in [64], and [32]). Broadly speaking, combined plant and

controller strategies fall into four different categories:

• Sequential : A sequential strategy completes the plant and controller optimiza-

tion problems in successive order. For instance, authors in [66] use control proxy

functions to augment the objective function of the plant, thereby separating the

plant and and controller optimization problem into two sub-problems.

• Iterative: The iterative approach fully optimizes the plant design for a given

controller, then optimizes the controller design for a fixed plant, then repeats

the cycle (see [84], [69]).

• Nested : A nested optimization approach contains two loops: an inner loop that

completes a full optimization of the controller and an outer loop that completes

an iteration of the plant optimization (see [64], and [40], [39], and [41]).

• Simultaneous : In a simultaneous optimization strategy, both the plant and

controller optimization problems are carried out at the same time [12], [31]. An

efficient decomposition-based variant of simultaneous optimization is proposed

in [10].

Among these techniques for solving the co-design problem, the nested co-design

approach is unique in its ability to leverage critical differences in control parameters

(which can be modified during experiments) and plant parameters (which, when

experimental work is required, can generally only be modified between experiments).

This sort of approach can therefore be extremely beneficial in complex systems where
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experiments will ultimately be required. However, existing literature on nested co-

design makes numerous simplifying assumptions (linearity, full state measurement,

etc.). The tools used for the plant adjustment are typically local in nature and often

unsuitable for complex systems. Furthermore, most existing literature on nested co-

design uses continuous-time optimal control design techniques (such as LQR) for the

controller design ([42]), without taking advantage of online adaptation capabilities.

Recently, authors in [32] proposed a nested co-design approach in which the con-

trol parameter is adjusted during a simulation/experiment and plant parameters are

optimized between simulations/experiments. The benefit here is that when the de-

sign optimization process involves lengthy simulations or experiments, the ability to

adjust controller parameters during the simulations/experiments can significantly re-

duce the time and cost of the optimization process. The framework in [32] used

G-optimal design of Experiments (DoE) to select a batch of candidate plant param-

eters that cover the design space while maximizing a statistical information metric.

Furthermore, extremum seeking (ES) control was utilized to adjust the control param-

eter(s) in real-time over the course of experiments/simulations. The authors recently

extended their work in [34] to consider online adaptation mechanisms that are based

on a global statistical information metric. While resolving some challenges, these

approaches suffer from two main drawbacks:

1. Populating the design space with candidate points in order to merely gain the

most information about the design space may lead to the evaluation of candidate

designs that have very poor associated performance. This will lead to significant
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Table 8: Description of key variables involved in the combined plant and controller
optimization

Variable Description
pp Plant parameter(s)
pc Control parameter(s)

p∗c(pp) Optimal control parameter(s) for a candidate plant design
Bj Elements (candidate plant designs) in a batch at iteration j

J(p∗c(pp),pp)
Integral performance value while operating at the optimal

control parameter(s) and candidate plant design

effort expanded in characterizing regions of the design space that are unlikely

to yield optimal design parameters.

2. ES only achieves local, rather than global optimality.

To address these challenges, we need a framework that (i) effectively explores the

global design space in a small number of iterations and (ii) dose not focus on ex-

planation of designs with very poor expected performance. Once again, Bayesian

Optimization is a fitting approach for addressing these challenges.

4.3 Fused Plant and Controller Methodology

4.3.1 Problem Formulation

The ultimate goal of this study is to solve the following optimization problem:

minimize
pp,pc

J(pp,pc) =

∫ Tfinal

0

g
(
x(t); pp,pc

)
dt (97)

subject to:

ẋ = f(x,u,d; pp,pc) (98)

pp ∈ P, pc ∈ C (99)
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where (1) describes an integral cost function, (2) represents a general dynamic model

that governs the system dynamics, and (3) presents hard constraints on plant and

control parameters, which are denoted by pp and pc, respectively. d is the state

disturbance vector. This work will focus on co-design processes that are carried out

in controlled environments, where the environmental perturbation (manifested by d)

is consistent between simulations/experiments but nonetheless important.

The nested optimization framework consists of two main loops:

• Outer loop: Plant parameters (pp) are adjusted in a direction that is chosen

by one iteration of our chosen optimization tool (i.e., Bayesian Optimization).

• Inner loop: For the candidate set of plant parameters generated by the outer

loop, the inner loop completes a full optimization of the control parameter

vector.

Fig. 37 illustrates the proposed nested co-design framework. A description of each

variable within the general process is provided in Table 8. The process continues

until convergence to optimal parameters is obtained. Algorithm 3 also summarizes

the process proposed in this work.

Bayesian Optimization traditionally seeks to maximize the value of some perfor-

mance index. To keep our exposition aligned with this traditional implementation,

we define:

R , −J(p) (100)

as the reward to be maximized.
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Figure 37: Machine learning variant of nested plant and controller co-design using
Batch Bayesian Optimization

Algorithm 3

1: procedure Fused plant and controller with BO
2: while plant parameters not converged do
3: Run one iteration of Bayesian Optimization in outer loop
4: for plant candidate parameters do
5: while control parameter not converged do
6: Run full Bayesian Optimization in inner loop
7: Update control parameter
8: end while
9: end for

10: end while
11: end procedure

4.3.2 Bayesian Optimization-Based Co-Design: Batch Plant Design

In this section, we examine the use of Batch Bayesian Optimization at the plant

optimization level to generate a set of plant designs at each iteration of the overall

optimization process, recognizing that there will exist economies of scale in running

multiple experiments at each outer loop iteration. To mathematically introduce the

idea of Batch Bayesian Optimization, we slightly modify the notation of acquisition

function presented so far. Specifically, we take α(p, It,k) as the acquisition function,
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where I represents the available data set, D, plus the GP structure when n data

points are available. Consequently, subscripts t and k represent the kth element of

tth batch, respectfully.

The Local Penalization (LP) algorithm originally presented in [46] is a heuristic

approach for Batch Bayesian Optimization that works by iteratively penalizing the

current peak in the acquisition function to find the next peak. Consequently, each

successive element of the batch is chosen to maximize the modified acquisition func-

tion, which has been modified based on each previous element of the batch. According

to the LP algorithm, every element in tth batch is given by:

pt,k = arg maxp∈P

{
g
(
α(p, It,0)

)∏k−1
j=1 ϕ(p; pt,j)

}
(101)

where g is a differentiable transformation of α that keeps the acquisition function pos-

itive. ϕ(p; pt,j) is the core component of LP algorithm and called the local penalizer

centered at pj (in the tth batch). If selected properly, the LP estimates the distance

from pj to the true optimum of the cost function. If we believe that the distance from

pj is far from the true optimum, then a large penalizer can discard a large portion

of the design parameter domain that should not be considered in selecting one of the

batch elements. On the other hand, if we believe that pj is close to the true optimum,

a small penalizer keeps collecting elements in a close neighborhood of true optimum.

The main challenge lies in selecting an appropriate local penalizer.
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4.3.2.1 Selecting a local penalizer

As mentioned earlier, the local penalizer characterizes a belief about the distance

from the batch locations to true optimum. Let RM = maxp∈PR(p). Consider the

ball:

Brj(pj) =

{
p ∈ P :

∥∥pj − p
∥∥ ≤ rj

}
(102)

where

rj =
RM −R(pj)

L
(103)

and L is a valid Lipschitz constant of R.

If R(p) ∼ GP
(
µ(p), k(p,p′)

)
, then we can choose a local penalizer, ϕ(p; pj), as the

probability that p, any point in P that is a potential candidate for batch elements,

does not belong to Brj(pj):

ϕ(p; pj) = 1− p
(
p ∈ Brj(pj)

)
(104)

However, we need an analytical expression for ϕ(p; pj) to compute each batch element.

Proposition 1 provides an analytical form for the local penalizer [46]:

Proposition 1. If R(p) ∼ GP
(
µ(p), k(p,p′)

)
, then ϕ(p;pj) as defined in (18), is a

local penalizer at pj such that:

ϕ(p,pj) =
1

2
erfc(−z) (105)

where

z =
1√

2σ2
n(p)

(
L
∥∥p− pj

∥∥−RM + µn(pj)
)
. (106)

and erfc is the complementary error function.
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Proposition 1 implies that if µn(pj) is close to RM , then ϕ(p,pj) will have a more

localized and small impact on α(p). On the other hand, if µn(pj) is far from RM ,

then ϕ(p; pj) will have a big impact on α(p).

4.3.2.2 Selecting the parameters L and RM

An appropriate local penalizer relies on valid choices for RM and L. However, the

value of RM and L are unknown in general. To approximate RM , one can take

R̂M = maxi

{
Ri

}
(107)

Regarding the parameter L we take

L̂ = maxp∈P ‖ ∇µ(p) ‖ (108)

as a valid Lipschitz constant [46].

Algorithm 4

1: procedure Batch Bayesian Optimization with LP
2: Inputs: batch size: nb
3: for t = 1 until convergence do
4: Fit a GP to Dt
5: Build the acquisition α(p, It,0) using the current GP
6: α̃t,0(p)← g

(
α(p, It,0)

)

7: L̂← maxp∈P ‖ ∇µ(p) ‖
8: for j = 1 to nb do
9: pt,j ← arg max α̃t,j−1(p)

10: α̃t,j(p)← α̃t,0(p)
∏k−1

j=1 ϕ(p; pt,j)
11: end for
12: Bnb

t ←
{
pt,1, . . . ,pt,nb

}

13: Rt,1, . . . , Rt,nb
← evaluation of R at Bnb

t

14: Dt+1 ← Dt ∪
{
pt,j, Rt,j

}nb

j=1

15: end for
16: end procedure

Finally, algorithm 4 summarizes the procedure presented for Batch Bayesian Op-
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timization.

4.3.3 Bayesian Optimization-Based Co-Design: Continuous Controller

Optimization

Bayesian Optimization is an iteration-based optimization algorithm. Thus, in order

to use Bayesian Optimization as a tool for adaptation of controller parameters in a

continuous-time setting, it is crucial to make a clear connection between the concept

of discrete iterations (used in Bayesian Optimization), and continuous time over the

course of a simulation/experiment. Each iteration in the Algorithm 3 corresponds to

one window of time within the total simulation/experiment duration. We divide each

of these windows into three different phases (See Fig. 38). Phase one represents the

settling period. To avoid unfairly introducing system transients from one iteration to

another in our cost function calculation, we allow the system to settle during the first

period, then only compute the cost function value based on the second phase, which

we refer to as the performance period. Finally, the calculation of the subsequent

decision variable(s) occurs in the third phase, using Bayesian Optimization.

4.3.4 Convergence Detection

In any optimization problem, the stopping criteria is determined based on either a

fixed iteration budget or a convergence criterion. Detecting convergence, rather than

relying on a fixed iteration budget, is critical particularly where experiments come

into play, since every experiment requires time and money. In this work, we set the

following stopping criterion for convergence:
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Figure 38: Clarification of iteration vs. time in the proposed framework

|R(pi)−R(pi−j)| < ε j = 1, . . . , n (109)

We set n equal to 2 in this work.

4.4 Plant and Controller Design Optimization of Altaeros BAT

4.4.1 Plant Model of Altaeros BAT

The Altaeros BAT ([1]) features a horizontal axis turbine that is suspended within

a buoyant shell. Unlike many AWE concepts, the BAT is designed to remain sub-

stantially stationary and passively align with the wind. By accomplishing this, the

BAT can achieve secondary objectives, such as telecommunications, which Altaeros

has publicly indicated interest in. To that end, it is of great interest to design the

combined plant and control system to achieve the steadiest possible flight under at-

mospheric disturbances, which is the focus of our case study.

The dynamic model of Altaeros BAT system was originally introduced in [78]. We

briefly introduce some of the important features of this model here. Fig. 39 shows
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the variables used in the dynamic model.

The model, which was derived using an Euler-Lagrange framework, describes the

position and orientation of the BAT through six generalized coordinates: Θ, φ, ψ,

Lt, θ
′
, and φ

′
. Three of these generalized coordinates represent uncontrolled angles.

Specifically, Θ is the azimuth angle (angle of the tether projection on the horizontal

plane), Φ is the zenith angle (angle of tether with respect to vertical), and Ψ is the

twist angle (about the tether axis). Table 9 represents the full state variables of AWE

system.

The three tethers are modeled as a single tether with length Lt with a bridle joint at

the top that provided three attachment points on the BAT. The bridle joint is modeled

through two angles, φ
′
and θ

′
, which are referred to as induced roll and induced pitch,

respectively. The single tether approximation removes algebraic constraint equations,

allowing the system to be described by ordinary differential equations (ODEs) rather

than differential algebraic equations (DAEs). The center of mass location is modeled

as a function of Φ (zenith angle), Θ (azimuth angle), and Lt (average tether length).

The induced angles are related to the tether lengths (l1, l2, and l3) through the

following expressions:

φ′ = tan−1
( l3 − l2

llat
sep

)
(110)

θ′ = tan−1
( l1 − 0.5(l2 + l3)

llong
sep

)
(111)

where llong
sep and llat

sep are longitudinal and lateral tether attachment separation distances,

respectively. l1, l2 and l3 are the distances between the bridal joint and the three tether

attachment points. The control inputs are the tether release speeds, ūi, which are
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Figure 39: Ground-fixed and body-fixed coordinates plus the key variables used in
deriving Euler-Lagrangian dynamics.

given by:

ūi =
d

dt
li (112)

Ultimately, the governing system equations given below are derived using an Euler-

Lagrange formulation and are expressed by:

D(Q)Q̈+ C(Q, Q̇)Q̇+ g(Q) = τ
(
Q, Q̇, Vwind, ψwind

)
, (113)

X = f(Q, Q̇), (114)

Ω = g(Q, Q̇), (115)

where:

Q = [Φ Θ Ψ Lt θ′ φ′] (116)

X = [x y z u v w] (117)

Ω = [φ θ ψ p q r] (118)



89

Here, Vwind is the wind speed, and ψwind and τ represent the wind direction and

vector of generalized aerodynamic forces and moments, respectively. Aerodynamic

forces and moments are functions of α (angle of attack) and β (side slip angle), which

describe the orientation of the apparent wind vector with respect to the body-fixed

coordinates of the BAT. X and Ω represent the translational and rotational dynamics,

respectively. Since we treat the horizontal stabilizer area, AH , as a design parameter

to be optimized, the aerodynamic coefficients are modeled as explicit functions of the

stabilizer areas as follows:

CD,L,S(α, β) = CF
D,L,S(α, β) + CH

D,L,S(α, β)
AH

Aref

+ CV
D,L,S(α, β)

AV

Aref
(119)

CMx,My ,Mz(α, β) = CF
Mx,My ,Mz

(α, β)

+ CH
Mx,My ,Mz

(α, β)
AH lH

Aref lref

+ CV
Mx,My ,Mz

(α, β)
AV lV

Aref lref
(120)

Here, CD, CL, and CS represent the drag, lift, and side force coefficients, whereas

CMx , CMy , and CMz represent the roll, pitch, and yaw moment coefficients.

4.4.2 Closed-Loop Controller

The controller is designed to track three different set points, namely altitude (zsp),

pitch (θsp) and roll (φsp). Due to the symmetrical configuration, φsp is always set to

zero. The block diagram of the controller is shown in Fig. 40. Bayesian Optimization

is used to update θsp, which is programmed/adjusted internally on the flight computer
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Table 9: Full state variables of an AWE system

State variable Notation
Zenith angle Φ

Azimuth angle Θ
Twist angle Ψ

Zenith angle rate Φ̇

Azimuth angle rate Θ̇

Twist angle rate Ψ̇
Unstreched tether length l

Induced roll φ′

Induced pitch θ′

✓sp

zsp

Bayesian
Optimization

Position, velocity feedback

�sp = 0

Altitude/attitude
control

ūfwd

ūaft,fwd

ūaft,port

J
⇣
pc(pp),pp

⌘

Figure 40: Block diagram of closed loop flight controller for the BAT. zsp denotes a
constant altitude set-point. We choose pc = θsp and pp = [xcm− xcb AH ]T in our case
study results.

and is not a user-specified value (hence, θsp represents a control parameter). Tracking

is achieved through the use of three lead filtered PD controllers, which individually

control altitude, pitch angle, and roll angle. The outputs of these three lead filters are

denoted, respectively, by v̄z, v̄θ, and v̄φ. These outputs represent the average tether

release speed (used to regulate altitude), forward/aft tether speed difference (used

to regulate pitch), and port/starboard tether speed difference (used to regulate roll),

respectively. These controller outputs are related to the tracking errors in altitude
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(ze), pitch (θe) and roll (φe) through:

v̄z(s) =
kzds+ kzp
τzs+ 1

ze(s), (121)

v̄θ(s) =
kθds+ kθp
τθs+ 1

θe(s), (122)

v̄φ(s) =
kφds+ kφp
τφs+ 1

φe(s). (123)

The tether release speeds ūcenter, ūstbd, and ūport serve as control inputs to three

motors and are related to v̄z, v̄θ, and v̄φ through:




ūcenter

ūstbd

ūport




=




1 −1 0

1 1 1

1 1 −1







v̄z

v̄θ

v̄φ



. (124)

For our case study results, we focus on the following plant parameters to be opti-

mized:

pp =

{
xcm − xcb, AH

}
(125)

where xcm − xcb describes the longitudinal center of mass position relative to the

center of buoyancy and AH represents the horizontal stabilizer area.

The controller parameter used in this work is given by:

pc = θsp (126)

where θsp presents the trim pitch angle.
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4.4.3 Performance Index

The performance index, to be minimized, takes into account two main system

properties:

1. Ground footprint : It is of interest to minimize the land usage requirements for

multiple systems. For this purpose, the horizontal projected area of land that

BAT covers is used as a criterion for quantifying the ground footprint. This

area is represented by A = πl2 sin2 Φ. Thus, as Φ decreases, the projected area

decreases.

2. Quality of flight : A low value of heading angle typically corresponds to few

oscillations in the system and desirable direct-downwind operation. Further-

more, since we are focused on steady, level flight, we desire to have the BAT as

stationary as possible. To characterize the degree to which we accomplish this

goal, we penalize heading and roll angle tracking error (ψ − ψflow and φ − φsp,

respectively) in our performance metric.

Ultimately, the performance index is denoted by:

J
(
pc(pp),pp

)
=

∫ Tf

Ti

(
k1Φ2 + k2(ψ − ψflow)2 + k3(φ− φsp)2)

)
dt, (127)

4.4.4 Simulation Setup

To excite the system with a wind environment that is consistent across simulations,

we implement a frequency approximation of vortex shedding of flow over a cylinder.

The model perturbation is based on spectral analysis of flow over a cylinder in [70].
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Each component of the velocity is approximated as a sinusoidal perturbation about

a mean velocity found in [70]. Each of the velocity components is given by:

vx = vbase
x + vx0 sin(ωdistt) (128)

vy = vy0 sin(ωdistt) (129)

vz = vz0 sin(ωdistt) (130)

where vbase = 0.606m
s

, vx0 = 0.0866m
s

, vy0 = 0.065m
s

, vz0 = 0.0087m
s

, and ωdist =

1HZ.

This mechanism for perturbing the system is attractive because it (i) excites key

lateral dynamics and (ii) can be implemented in later lab-scale experimental co-design

using the team's water channel setup and pictured in Fig. 46.

4.5 Results

We evaluated the proposed algorithm on the BAT numerical model. We assessed

the effectiveness of Batch Bayesian Optimization algorithm for 3 and 4 elements (plant

designs) in each batch. We also compare results from Batch Bayesian Optimization

against results for a batch size of 1 (i.e., generic Bayesian Optimization) [18].

Fig. 41 shows the convergence of plant parameters (horizontal stabilizer area and

relative center of mass), control parameter (trim pitch angle), and integral of cost

function for different batch sizes. Each trajectory in this figure represents the evolu-

tion of a different batch element over the course of optimization.

One can immediately see that fewer total iterations are required to converge with

larger batch sizes. Furthermore, as can be seen from this figure, the plant parameters
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Figure 41: Convergence of plant parameters, control parameter, and integral cost
function for 1, 3, and 4 batch sizes (from upper left to lower right)

converge after only a small number of iterations (each iteration corresponds to one

round of system performance evaluation). With the same simulation setup, compar-

ing these results with those reported in [32] reveals that Bayesian Optimization leads

to a faster convergence than the optimal DoE proposed in that work. It should be

emphasized that plant design changes are much more expensive compared to adjust-

ing control parameters in instances when simulations are replaced with experiments

(which is a long-term goal of the present work). Therefore, reducing the number of

required plant reconfigurations in the design optimization process is a very important

goal.
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Figure 42: Sample evolution of control parameter (i.e., trim pitch angle) and actual
pitch angle in inner loop over the time
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Figure 43: (Zoomed) roll
tracking error before and
after the optimization
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Figure 44: (Zoomed) head-
ing tracking error before
and after the optimization
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Figure 45: Zenith angle be-
fore and after the optimiza-
tion

Fig. 41 also illustrates the optimal control parameter in the inner loop for each

plant design generated by the outer loop. Furthermore, Fig. 42 represents a sample

evolution of the control parameter (trim pitch angle) and actual pitch angle (which

is regulated by a lower-level flight controllers) in the inner loop over a simulation.

Figs. 43, 44, and 45 illustrate the evolution of the individual instantaneous cost

function components (i.e., roll tracking error, heading tracking error, and zenith angle)

before and after the iterative optimization process to demonstrate the effectiveness

of the proposed approach.
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4.6 Economies of Scale

So far, we have explored the idea of Batch Bayesian Optimization at the plant

optimization level to generate a set of plant designs at each iteration of the overall

optimization process. In this section, we will assess, for the AWE system, whether

this will result in economies of scale.

To assess the economies of scale that are introduced through a Batch Bayesian

Optimization process, we focus our attention on a lab-scale experimental platform

(depicted in Fig. 46) for closed-loop flight characterization of AWE systems. With

this system, 3D printed models (depicted in Fig. 47) of AWE system lifting bodies are

tethered and flown in the UNC-Charlotte water channel. Micro DC motors are used

to regulate tether lengths, high-speed cameras are used for real-time image capture,

and a high-performance target computer is used for real-time image processing and

control. Because this experimental platform represents the ultimate “end game” for

the Batch Bayesian Optimization approach, we use it as the basis for the economies

of scale analysis presented herein.

In order to run an experimental batch (and non-batch) Bayesian Optimization in

water channel, the following steps need to happen:

• Prior to running any experiments: 3D print the main body.

The cost associated with this step is modeled as:

C3D =
(
m× ceng + crecharge

)
NTprint (131)
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Figure 46: Water channel experi-
mental setup at UNC Charlotte Figure 47: 1

100
-scale BAT model

Table 10: Design parameters for economic assessment

Parameter Description Value

ceng cost required to hire employee(s) to conduct experiments $30
hours

crecharge cost required for equipment recharge $240
day

cWrecharge cost required for water channel recharge $2400
day

clostTime opportunity cost of lost time $1200
day

Tprint time required to print the main body 12 hours
T3DFins time required to print the fins 4 hours
Tlead lead time 5 days
Tsetup time required to setup experiment 30 min
Treconfig time required to reconfigure the model 5 min
Texp time required to conduct one experiment in inner loop 1200 sec
N number of elements per batch 1, 3, 4
m number of employee(s) required to print the model and fins 1
m′ number of employee(s) required to conduct experiments 2

Table 11: Cost in $ associated with running experiments with different batch sizes

# of elements
per batch

Cost ($)

1 54293
3 49200
4 44533
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where ceng and crecharge represent the cost required for engineer(s) to conduct ex-

periments and the facility charge, respectively. Tprint denotes the time required

to print the main body. m is the number of employees required to print the

model (and fins).

• After each batch is chosen, the following needs to happen once per batch:

(i) 3D print N sets of fins. This cost is given by:

C3DFins =
(
m× ceng + crecharge

)
NT3DFins (132)

where T3DFins represents the time required to print the fins.

(ii) Schedule future time in the water channel. While the act of scheduling

testing time does not result in a direct cost, the lead time involved in waiting

for a testing slot results an opportunity cost, which is modeled as:

Clead = clostTimeTlead (133)

where clostTime and Tlead represent the opportunity cost of lost time and the lead

time, respectively.

(iii) Initialize the water channel:

CWchannel =
(
m′ × ceng + cWrecharge

)(
Tsetup

+NTexp +NTreconfig

) (134)

where Tsetup and Treconfig denote the time required to set up the experiment in
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the water channel and the time required to reconfigure the model, respectively.

Furthermore, cWrecharge and Texp represent the cost of running the water channel

and time required to conduct an experiment in the inner loop, respectively. m′

is the number of employees required to conduct experiments.

• Between each experiment within a batch, the following needs to happen N times

per batch:

(i) Swap out fins; (ii) Adjust center of mass; (iii) Initialize image processing for

a given configuration; (iv) Run the experiment.

Table 10 summarizes the design parameters for economic assessment. The total

cost can be ultimately expressed as:

Ctotal = Nconvergence ×
(
C3D + C3DFins + Clead + CWchannel

)
(135)

where Nconvergence denotes the number of iterations required for convergence based

on the number elements per batch. As can be seen from Ctotal, some terms depend

on N , while some terms do not. This indicates that there exist economies of scale

in running Batch Bayesian Optimization. Table 11 shows the cost associated with

different batch sizes, according to our economic assessment. One can conclude from

this table that as the number of elements per batch increases, the associated cost

decreases.
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