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ABSTRACT 

 

 

JINGRUI XIE.  Probabilistic electric load forecasting.  (Under the direction of DR. TAO 

HONG) 

 

 

Traditionally, utilities have been conservative regarding the infrastructure upgrade. 

This makes electric load forecasts critical for guiding electric utilities’ operation, planning, 

and maintenance decision-making. For a long while, utilities have relied on the point load 

forecast that provides a single expected value about the future to guide their decision 

process. However, when the load forecasting is conducted for the middle or long term, 

things become more uncertain. For example, while the weather for the next week may be 

predictable, the forecast of it for the next month(s) or year(s) become unreliable. An 

unreliable weather forecast is less likely to help on the load forecasting practices. 

Furthermore, the modernization of the grid has brought many changes to the electric utility 

industry. Changes such as the increasing penetration of renewable energy, the emerging 

distribution generation, and the bi-directional communication between the supplier and the 

end-users have brought much more uncertainties for the utilities’ load forecasting practices. 

The single-valued forecast or point forecast that gives a deterministic forecast about the 

future load does not provide any information on such uncertainties. In contrast, a 

probabilistic forecast that estimates the respective probabilities for all the possible future 

outcomes of a random variable provides opinions on the uncertainties.  

Although probabilistic forecasting have been studied for decades and researchers have 

tried to apply those techniques for probabilistic load forecasting (PLF) for the past several 

years, there are still many challenging issues in the PLF field, such as lack of quantitative 

evaluations on the PLF methods, ad-hoc selection of input scenarios for PLF, and the lack 
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of practical guides for PLF. This dissertation dissects the PLF problem into three key 

components including the input scenario simulation, the modeling techniques, and the 

residual analysis. From the input scenario simulation perspective, this dissertation first 

raises a critical yet never answered question about the lack of  methodological foundation 

for practicing probabilistic load forecasting through input simulation. Such lack of 

methodological foundation typically results in ad-hoc, judgmental and indefensible choice 

during the scenario generation step. This dissertation then investigates a framework to 

evaluate the effectiveness of three different temperature scenario generation techniques, 

namely the fixed-date method, the shifted-date method, and the bootstrap method, from 

which an empirical rule-of-thumb is developed to guide the temperature scenario 

generation practice for PLF. The establishment of this evaluation framework helps to lay a 

solid methodological foundation for practicing probabilistic load forecasting through 

temperature scenario simulation. The proposed framework can also be extended to evaluate 

and guide the practices on generating other input scenarios.  The modeling techniques will 

still rely on the representative ones developed for point load forecasting but the focus will 

be on how to convert point forecasting results to probabilistic ones. From the residual 

simulation perspective, studying residual series itself is not anything new in load 

forecasting and its utility applications. Back to 1970s, for example, researchers were using 

mean and standard deviation to characterize uncertainties around electric load forecasts for 

probabilistic load flow analysis. However, most papers in the literature that modeled load 

forecast residuals assumed normality for the residual distribution. Such normality 

assumption has rarely been verified through any formal statistical test. This dissertation 

conducts a comprehensive study regarding the normality assumption of the residuals. It not 
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only studies the residuals from load forecasting as a whole but further considers the 

potential impact of multiple seasonality existing in electricity demand on the normality 

assumption of residuals.  Moreover, it comprehensively studies whether simulating 

residuals with the normality assumption improves the probabilistic forecasts which has 

never been studied before.  

Two case studies are used in this dissertation: (1) the first and primary case study is 

based on the system total demand of North Carolina Electric Membership Cooperation 

(NCEMC). NCEMC serves 93 out of the 100 counties of North Carolina. The weather 

condition varies quite a bit within NCEMC’s service territory; (2) the second case study is 

anonymous data from the load forecasting track of Global Energy Forecasting Competition 

2014 (GEFCom2014). The data is public available which allows others to reproduce the 

results presented in this dissertation. Although only two case studies are presented in this 

dissertation to demonstrate the implementation and comparisons of the different PLF 

techniques, the PLF techniques discussed in this dissertation have outperformed the ones 

developed by several other PLF groups worldwide. 

From research perspective, this dissertation raises and answers questions regarding the 

methodological foundation for practicing temperature scenario generation and residual 

simulation techniques for PLF. The study in this dissertation also points out directions for 

future research in the PLF field. For example, how to generate and evaluate other weather 

scenarios such as relative humidity. From practices perspective, the findings from this 

dissertation study offer multiple practical options for utilities’ probabilistic load forecasting 

practices. Some of the findings presented in this dissertation have been in production use 

by utilities since 2012 with outstanding performance. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Electric Load Forecasting 

Electric load forecasting, which will be used interchangeably with the term load 

forecasting in this paper, is the process to predict the electric demand at certain 

geographical and/or temporal interval into the future. Load forecasts have been used in 

utilities’ operational and planning process since the first day of the central electric power 

system, while the importance and complicated level of load forecasting problems have 

evolved. During the very early age of the central electric power system when central 

stations only served small nearby areas, load forecasting problems were relatively simple 

and not critical. Counting the number of light bulbs installed on the system might be 

sufficient to determinate the system capacity. With the advent of alternating current (AC) 

power system in the late 1890s, electricity can be generated and transmitted to multiple end 

uses and a broader service area. The inventions in the 20th century such as air conditioner, 

electric washing machines, electronic television, personal computers, etc. further enriched 

the variety of electricity end uses and boosted the demand. Such changes made load 

forecasts more and more important to help maintain the system and financial health of a 

utility. Load forecasting problems also became more complicated with diversified use 

patterns that were mainly driven by the interaction of weather conditions and human 

activities. Since then, utilities have relied on expected values of the load for their generation, 

distribution, transmission, and service decision makings. Various statistical and artificial 
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intelligence load forecasting techniques have been implemented to provide single-value 

outputs (point forecasts) of the electric demand into every step of the future. The 

modernization of the grid in the 21st such as the bidirectional communication between 

electricity suppliers and end users, the emerging distributed grid, and the increasing 

penetration of renewable energy brought greater uncertainties to both of the supply and the 

demand side. Utilities also face more intensive competitions in the electricity market than 

ever before. As a result, comparing to traditional point forecasts, probabilistic load 

forecasts have become increasingly useful tools given their success in quantifying the 

uncertainties in electricity demand.  
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1.2 Classification of Load Forecasting Problems 

Load forecasting problems can be categorized from various perspectives. Based on the 

forecasting horizon, the problem can be classified into short term load forecasting which 

provides forecasts for the next few hours to few days, and medium or long term load 

forecasting which yields forecasts from two weeks and up to decades [1]. Alternatively, 

based on the output formats, the problem can be classified into point forecasting and 

probabilistic forecasting. Point load forecasts provide a single value for each step into the 

forecast horizon, while probabilistic load forecasts that are in the form of quantiles, interval, 

or density function can provide more comprehensive information about the future [2]. 

Based on the resolution of the data, the problem can also be categorized into hourly, daily, 

monthly, or annual load forecasting [3]. These aforementioned categories can also interact 

with each other to further categorize the load forecasting problems such as long term 

probabilistic load forecasting with hourly information [4].  

For the past several decades, point load forecasting has been the focus of academia and 

industry: point weather forecasts are fed into load forecasting models to provide short term 

point load forecast [1], [5]–[7], while normalized weather is typically used to generate 

medium or long term point load forecasts [8]–[10]. During the recent few years, the 

increased uncertainties on both power supply and demand sides have pushed the electric 

power industry to take innovative approaches to forecasting. Since probabilistic forecasts 

offer much more comprehensive information about the future than point forecasts, they are 

quite helpful to help make informed decisions in the dynamic environment. Therefore, 

probabilistic load forecasts are becoming more and more attractive to the load forecasting 

professionals. For example, for long-term planning purpose, utilities may use the median 
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of the probabilistic load forecasts to describe the normal load, while the high percentiles of 

it (say 90th percentile) can be used to describe the demand under server conditions such as 

an abnormally hot summer or cold winter day.  

In addition, some traditional load forecasting methods or practices especially for long 

term load forecasting have relied on low-resolution data at annual or monthly interval [11]–

[13]. The low-resolution data often offers a limited amount of observations for modeling, 

which can hardly support enough explanatory variables in a model to capture all the salient 

features in the electricity demand series. The best practice today is to take advantage of the 

high-resolution data, such as hourly or sub-hourly load and weather data, to build load 

forecasting models [3], [4].  

In this dissertation, the probabilistic load forecasting problem will be studied with 

hourly information.  
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1.3 Probabilistic Electric Load Forecasting 

Probabilistic forecasts estimate the probability of all the possible outcomes of a random 

event. It provides forecast on the results of a future event as well as opinions on the 

uncertainties associated with them. Recent years, probabilistic forecasting methodologies 

have been studied for electric load forecasting problem, but there are still many challenging 

issues such as lack of quantitative evaluations on the probabilistic load forecasting 

methods, ad-hoc selection of input scenarios, and the lack of practical guides. This 

dissertation dissects the probabilistic electric load forecasting problem into three 

components including input scenario simulation, modeling techniques, and output analysis. 

For the input scenarios simulation, a framework will be proposed to evaluate three 

temperature scenario generation techniques namely the fixed-date method, the shifted-date 

method, and the bootstrap. The modeling techniques will still rely on the representative 

ones including multiple linear regression models and artificial neural networks while the 

focus will be on how to convert point forecasting results to the probabilistic ones. The 

residuals from the point forecasting models will be analyzed to address the question 

whether residuals simulated from normal distribution will help improve the quality of 

probabilistic forecasts for the first time.  

The organization of this dissertation is presented in Figure 1. Chapter 2 first provides 

an overview of the review papers on load forecasting. It then reviews the literature of load 

forecasting from three aspects, that is the load forecasting techniques, the explanatory 

variables, and the probabilistic load forecasting techniques. Chapter 3 provides the 

background information for the main forecasting techniques that will be implemented in 

this study. That includes the multiple linear regression technique, the artificial neural 
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networks, and the forecast evaluation technique. Chapter 4 introduces the case study data. 

Chapter 5 presents the process to generate probabilistic forecasts from point forecasting 

models. Two techniques will be discussed, namely, input scenario generation and residual 

simulation. The dissertation is then concluded in Chapter 6 with the discussion of the 

possible extension of the study.   
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Figure 1: Organization of the dissertation 

 

 

 

 



 

 

CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 Overview 

The literature review will start with some review papers in electric load forecasting. 

Then, it will be devoted to reviewing the following three aspects of load forecasting: (1) 

representative literature on point load forecasting techniques; (2) representative literature 

that investigate explanatory variables for load forecasting models; and (3) probabilistic 

load forecasting techniques to date.  

Generally, load forecasting techniques can be classified into two categories: statistical 

approaches such as regression analysis and time series analysis, and artificial intelligence 

methods such as artificial neural networks and support vector machine.  

Hippert et al. [7] reviewed the representative papers published in the 1990s that 

reported the application of artificial neural networks (ANN) on short term load forecasting. 

It aimed to clarify the skepticism on the advantages of applying ANN for forecasting. The 

paper 

highlighted two issues of the existing literature: (1) over-parameterization, and (2) lack of 

systematic tests.   

Weron [5] reviewed a wide range of statistical methods for electric load forecasting 

including similar-day method, regression methods, and time series methods such as 

exponential smoothing and autoregressive moving average model (ARMA). A number of 
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case studies and implementations of different techniques in MATLAB were also provided 

to help researchers and analysts in the load forecasting field.  

Taylor and McSharry [14] evaluated five different methods including autoregressive 

integrated moving average (ARIMA) model,  periodic AR model,  double seasonal Holt-

Winters exponential smoothing, an intraday cycle exponential smoothing model, and a 

principal component analysis based method for short term load forecasting (i.e. up to 24 

hours ahead).  

Hong [1] provides the most comprehensive review so far for short term load forecasting 

of the past 50 years. The review was dissected into three parts: (1) a wide range of the load 

forecasting techniques including statistical approaches and artificial intelligence 

techniques (2) the explanatory variables for load forecasting models and (3) the most 

representative publications. It also discussed several issues with the existing literature such 

as lack of benchmark model to compare with, and the lag in applying modern statistics to 

short term load forecasting.   

Hong and Fan [2] presents the first review paper that was devoted to probabilistic load 

forecasting across all forecast horizons. It covered the probabilistic literature from two 

perspectives: (1) on the application side, researches use probabilistic load forecasting as 

inputs for the decision-making process (2) on the technical and methodological 

development side, enhancing the quality of the forecast was the main focus.   
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2.2 Load Forecasting Techniques 

2.2.1 Regression Analysis 

Regression analysis is one of the most widely used statistical techniques for electric 

load forecasting. Regression methods are usually used to model the relationship between 

the electricity consumption and other variables including weather variables such as 

temperature, calendar variables such as day type, socioeconomic variables such as 

macroeconomic index, or the interactions of them.  

Papalexopoulos and Hesterberg [15] provided one of the first few early papers that fully 

studied applying regression analysis for short term load forecasting. Several aspects 

including the temperature and holiday effects on load consumption, and the robust 

parameter estimation using regression-based approach were investigated. The proposed 

method was tested against real data from Pacific Gas and Electric’s service territory for 

short term peak load and hourly load forecasting. Although there exist some issues with 

the details of the paper, for example, the proposing of using weighted least square method 

for handling outliers is not very convincing, this paper provides a comprehensive 

fundamental work for applying regression analysis for short term load forecasting. Later 

papers have extended on different aspects of the multiple linear regression method for load 

forecasting [16], [17].  

A more recent and more comprehensive study on applying regression analysis for short 

term load forecasting was provided by Hong [1]. In the paper, an integrated forecasting 

framework with a short term load forecasting engine was investigated. Most of the paper 

was devoted to the development of the short term load forecasting engine while some 

discussions were provided for extending the engine to long term load forecasting. A 
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regression based benchmark model with considerations of temperature and calendar effects 

was first established. The recency effect, the weekend effect, and the holiday effect were 

then introduced to elaborate the benchmark model. The recency effect describes the impact 

of lag temperature on the current load consumption. The weekend effect groups similar 

weekdays together for modeling to reduce the complexity of the model. The holiday effect 

models holidays as alternative weekday or weekend days to tackle the problem of short of 

historical data and changing consumption patterns for holiday load forecasting. In addition, 

an exponentially weighted least squares approach with higher weights assigned to the most 

recent observations was proposed in the paper to emphasize the recent status of the system. 

A systematic and data-driven variable selection process was proposed to include these 

aforementioned effects and approach. Many aspects of this paper have been reproduced or 

extended in later literature for both of short term and middle/long term load forecasting: 

the benchmark model have been reproduced by many scholars [18], [19] and used as the 

benchmark model in the Global Energy Forecasting Competition 2012 (GEFCom2012) 

[20]. It was also further elaborated to consider other weather variables such as humidity 

[21]. The recency effect was further studied for point load forecasting by Wang et al. [22] 

and for probabilistic load forecasting by Xie and Hong [23].  Xie and Chien [24] recently 

investigated the holiday effect for holiday load forecasting. The proposed variable selection 

process has been implemented by several later literature for selecting the proper load 

forecasting model [4], [25]–[27].   

A refined parametric model for short term load forecasting that was applied for 

GEFCom2012 was reported by Charlton and Singleton [28]. The proposed approach first 

models load as a function of the temperature and day of the data, then  refines the model 
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by using temperature information of combined weather stations, adding day-of-season 

terms, changing the number of seasons, conducting local average of the results, removing 

outliers, treating public holidays, and using a smoother temperature forecast.  

Hong, Wilson et al. [4] developed a multiple linear regression model for long term load 

forecasting by augmenting the regression-based short term load forecasting model with a 

macroeconomic indicator. This hourly based model showed better forecasting accuracy 

than models based on monthly or daily data. The developed model was then applied to 

different temperature and economy scenarios to yield long term probabilistic load forecast.  

Xie and Hong [25] extended the regression-based short term load forecasting model in 

[1] by introducing a two-stage process with the second stage modeling the residuals from 

the regression based model. Similar to what was done in [4], multiple temperature scenarios 

were then applied to the two-stage model for generating probabilistic load forecasting.  
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2.2.2 Artificial Neural Networks 

The use of artificial neural networks (ANN) for load forecasting goes back to the early 

1990s [29], [30]. Depending on the number of output nodes, the ANN-based load 

forecasting system can be classified into two groups. The first group is the ones having a 

single output node, which are usually used to forecast the load of next hour or the peak or 

total load of next day. The load of next hour and the peak and total load of next day were 

forecasted using a three-layer feed-forward ANN with temperature information and lag 

load as inputs in [29]. A partially connected ANN was proposed in [31] to forecast the 

hourly loads for next week. The proposed method was able to more accurately capture the 

impact of temperature, day of week, hour of day, and load information on the future load 

consumption within a shorter training time.  An ANN-based approach with considerations 

of accurate temperature modeling and accurate modeling of special events was 

implemented in the Pacific Gas & Electric company to forecast the peak and hourly loads 

[32].  

The second group includes the ones having multiple output nodes, which are usually 

used to forecast a sequence of hourly loads such as the load of each of the next 24 hours. 

Lee et al. [30] divided a given day into three periods and proposed an ANN-based model 

with three output nodes to forecast each of the three periods. A notable study on ANN-

based approach was reported in a series of publications by Khotanzad et al. in the late 1990s 

[33]–[35]. The proposed method has multiple output nodes to forecast for each of the 24 

hours of a day. It showed improved forecasting accuracy and has been implemented by 

many utilities in their load forecasting practices.  
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2.2.3 Others 

Other than the aforementioned techniques, a larger variety of statistical and artificial 

intelligence techniques have also been developed for load forecasting: 

Similar-day approach searches the historical data for day(s) with similar 

characteristics as the forecasted day. The characteristics being considered include weather 

information such as temperature, humidity, etc., and day type information such as month 

of year, day of week, etc. The load of a single similar day or a combination (usually simple 

or weighted average) of the load of several similar days will be used as the forecasted load. 

The pure similar-day approach has been either replaced by the dynamic models, such as 

time series models [36], or has been used in combination with other methods [37].  

Time series approach assumes that the time series data have some characteristics such 

as autocorrelation, trend, or seasonal variation so that this approach can be used to detect 

and model the characteristics. Discussions on applying time series approach for load 

forecasting can be traced back to 1980s [38]. Taylor discussed a series of seasonal 

exponential smoothing models for short term load forecasting [39]–[41]. A recent book by 

Weron [5] offered detailed discussions of applying time series approach for load 

forecasting and provides corresponding case studies for utilities’ implementations.  

Support vector machines (SVM) performs linear or nonlinear classification to output 

an optimal hyperplane that categories data points. Compared to traditional least-square 

regression technique, it can map input data into higher-dimensional spaces and consider 

both of training loss and regularization term in its objective function. A SVM based 

approach which is a time series based, winter data only, and without temperature 

information model became the winning entry in the EUNITE mid-term load forecasting 
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competition [42]. Other applications of the SVM for load forecasting were also reported 

by more recent literature [43], [44].  

Expert-based systems were usually built based on the rules and procedures that are 

defined by human experts in the load forecasting field. Ho et al. [45] proposed a 

knowledge-based expert system for short term load forecasting of Taiwan power system. 

Kandil et al. [12], [46] proposed a knowledge-based expert system for long term load 

forecasting for fast developing utility to tackle the problem of fast changing consumption 

patterns. However, the application of expert-based systems for load forecasting did not go 

very far due to their high dependence on the inputs from operators.  

Fuzzy logic was first investigated to tackle the problem of the high dependence on the 

inputs from the operator in expert-based load forecasting systems. Ranaweera et al. [47] 

investigated the fuzzy logic model for short term load forecasting by obtaining fuzzy rules 

from historical data using a learning algorithm. The inputs of the model were selected based 

on a combination of engineering judgments and statistical analysis. A recent study focusing 

on the practical application of fuzzy regression on short term load forecasting was provided 

by Hong and Wang [48].  
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2.3 Explanatory Variables 

2.3.1 Weather 

Due to the extensive use of electric equipment and appliances, human activities and 

weather are the main driving factors of electricity demand [49]. A significant part of the 

electricity consumption is to keep the environment at people’s comfort level, which is 

primarily driven by temperature and humidity.  

Temperature, or more specifically, dry bulb temperature, is the most deeply rooted 

weather variable in the load forecasting literature. In summer, load increases as temperature 

increases, in response to cooling needs. In winter, load increases as temperature decreases 

to meet heating needs. Various functional forms of temperature have been used to model 

the relationship between load and temperature, such as piecewise linear models [44], 

second order polynomials [50], third order polynomials [1] and high order regression 

splines [51]. Furthermore, there are various ways to include temperature information, such 

as temperatures of the current and preceding hours [1], [44], daily maximum (or minimum) 

temperature [52], average temperature of a defined period [22], [53], and cooling (or 

heating) degree days [53]. Other than dry bulb temperature, dew point temperature and wet 

bulb temperature have also been studied in some load forecasting models [54] [55]. 

Although humidity information can be directly used in load forecasting models [18], 

[55], it is usually embedded in Heat Index (HI) or Temperature-Humidity Index (THI). For 

instance, the effect of humidity is considered in load forecasting models for late spring, 

summer and early autumn in [56], where THI is used to replace temperature in the model 

during the forecasted period of April to September when the temperature was between 76°F 

and 91°F. Relative humidity is used to calculate HI in [57] for load forecasting models in 
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a case study in Taiwan. It was found in [58] that including Relative Humidity (RH) in the 

model can improve monthly load forecast accuracy during the summer months in the UK. 

Overall, the load forecasting literature on humidity variables is far less common and 

thorough than that on temperature variables until a recent formal and systematic 

investigation to identify better humidity variables than HI for load forecasting models [21], 

where a data-driven approach was proposed to select proper humidity variables for load 

forecasting.  

The use of weather variable(s) for load forecasting depends on the availability of the 

weather history and forecasts, the meteorological condition of the service territory and/or 

the season being forecasted. For example, relative humidity is not as predictable as 

temperature, so although adding humidity information helps with an ex post forecast 

accuracy, it may not improve the ex ante one [21]. This is one of the reasons that relative 

humidity is not as popular as temperature for load forecasting. This dissertation studies the 

temperature scenarios for probabilistic load forecasting and proposes a framework to 

evaluate temperature scenarios generation techniques, while other weather variables can 

also be studied following a similar framework.    
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2.3.2 Calendar 

The electricity consumption behavior is also largely driven by calendar variables such 

as month of year, day of week, hour of day, and holidays or special events. Grouping the 

twelve months into seasons and/or transition seasons such as four seasons of a year were 

reported to be used in load forecasting models [59]–[61], although the definition of 

season(s) varies from region to region depending on the local climate. To better capture the 

distinguish the unique of the transition period, the 12 calendar months were also reported 

being used for load forecasting [1].  

The load consumption on different days of a week may also vary due to the fact that 

patterns of human behavior are different from one day of week to another. Load forecasting 

models can be built based on the seven days of a week [34].  But, in most cases, the load 

consumption pattern during some days of a week could be similar, many literature has 

reported various methods to group similar days of a week for reducing the complicity level 

of a load forecasting model [1], [47], [59], [61], [62].   

Hour of a day is another driving calendar factor of load consumption. For example, the 

consumption during night may be more stable than that during the day due to the fact that 

most of the various human activities occur during the daytime. Many literature reported 

use hour of day information in their load forecasting model either by grouping hours with 

similar consumption patterns [63], by using the 24 hours of a day directly [1] [34], or by 

developing unique forecast models for each hour [18].  

In addition, special days such as holidays can significantly impact the electricity 

consumption patterns. In most cases, holidays were modeled simply as different weekday 

groups or as weekend days. Song et al. [62] applied fuzzy linear regression on holiday load 
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forecasting, which grouped holidays based on the weekday they fell on. Holidays were 

treated as weekends in [1], [64], [65], although different modeling techniques were applied. 

In some other cases, researchers followed more complicated modeling steps for modeling 

holidays. For example, Khotanzad and Afkhami-Rohani [34] used a two-stage method for 

holiday electric demand forecasting. In the first stage, the holiday electric demand was 

forecasted according to the weekday it fell on and the peak load of the holiday was 

forecasted by using demand series with a similar temperature profile. In the second stage, 

the holiday electric demand forecasts were reshaped based on the peak load forecasts. Xie 

and Hong [25] also followed a two-stage approach for electric demand forecasting 

including holidays, where the second stage modeled the residuals. A recent study by Xie 

and Chien [24] compared several different techniques to model holiday load through a case 

study of ISO New England data. It concluded that the selection of holiday modeling 

technique not only depends on the unique holiday load consumption pattern but also 

depends on the availability of historical data for modeling.  
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2.3.3 Economy 

The general health of the economy has traditionally driven long term electricity 

consumption, although the relationship between the economy and electric load growth has 

been changing across much of the industry. In practice, depending upon the drivers of the 

load, economy indicators such as Gross State Product (GSP), housing stock, employment 

rate, number of jobs and their combinations are often used for middle/long term load 

forecasting [1], [4]. For retail electricity providers who provide services in a deregulated 

environment, the total loads are highly impacted by customer churn [27]. In such cases, 

customer count is often used as the macroeconomic indicator. In this dissertation, GSP of 

the utility’s service territory is used as the macroeconomic indicator for the first case study. 

It is selected for two reasons: (1) the service territory of the utility of the case study covers 

most of a specific state, which likely makes GSP a good indicator of the long term load, 

and (2) GSP is easy to access and understand. If the utility’s territory covers one or a few 

counties or cities, GDP (Gross Domestic Product) by county or GMP (Gross Metropolitan 

Product) can be used as the macroeconomic indicator. The second case study uses 

anonymous data without any economy indicator available, so no economy indicator but a 

linear trend variable is used.  

There are mainly three ways to use GSP in a load forecasting model [4]:  

(1) Using GSP as a trend. There is an inherent assumption in this approach: the load’s 

sensitivity to weather and calendar remain constant in the profile over time, while there is 

part of a base load that grows (or declines) linearly in proportion to the economic growth 

(or decline). If the forecasting horizon is within a few years, this approach can be a good 

approximation in practice. As the horizon becomes longer, there can be significant changes 
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in the number of customers. Consequently, the weather and calendar sensitive loads should 

grow as well.  

(2) Dividing load by GSP. The inherent assumption for this approach is that the load is 

growing (or declining) at exactly the same rate as the economic growth (or decline). In 

other words, there is no base load that stays constant while the economy is changing. Take 

a residential community as a counterexample. Before everyone moves in, the feeders, 

transformers and street lights are already placed in the community, which leads to a small 

base load, including no-load loss of transformers, street lighting load, etc. As people are 

moving in during the next a few years, the total load of this system is growing. However, 

the small base load stays almost the same since day one. Several ways to extend this 

approach are to take the natural log or square root of the load or macroeconomic indicator, 

or both in some combination before performing the division, which allows load to grow 

faster or slower than the economy.  

(3) Using GSP as a trend and interacting GSP with other main and cross effects in the 

model. This approach assumes end-users’ behavior changes as the economic environment 

changes. Since a significant amount of variables are being added through the additional 

interaction effects, the resulting model may be over-parameterized. Depending upon the 

forecasting horizon and the electricity usage pattern, this approach may not provide 

forecast results that are as accurate as the first two options.  

In this dissertation, GSP is used as a trend in the load forecasting model because the 

forecasting horizon being used is relatively short (i.e. one year) where the customer profile 

is pretty stable overtime.     
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2.4 Probabilistic Load Forecasting Methods 

Probabilistic load forecasts can be generated from one of the three components or a 

combination of any two or three of them [2]: 1) simulating predictors to generate multiple 

input scenarios [4], [8], [26], [66]–[71], 2) employing probabilistic forecasting models, 

such as quantile regression models [72]–[74], and 3) converting point load forecasts to 

probabilistic forecasts through residual simulation[26], [71], or forecast combination [72].  

Among these various approaches to generating probabilistic load forecasts, simulating 

predictors, particularly temperature scenario generation, is being commonly accepted in 

practice for its simplicity and interpretability. Although simulating joint temperature and 

economy scenarios has been reported by Hong et al. [4]. Many different temperature 

scenario generation methods have been reported in the probabilistic load forecasting 

literature. In the order from simple to sophisticated, these methods can be categorized into 

four groups:  

1) The fixed-date method picks the temperature profile of a past year and assigns the 

historical temperatures date by date to a future year to obtain a scenario based forecast. The 

probabilistic forecast is from k scenarios with equal probability, where k is the total number 

of years for the temperature history. The method was introduced in [4] and then 

implemented in [25], [26], [72]. 

2) The shifted-date method picks the temperature profile of a past year, shifts the 

profile forward and backward by one or more days, and then assigns each shifted profile 

date by date to a future year to obtain a scenario based forecast. The probabilistic forecast 

is formed by (2n+1)k scenarios with equal probability, where n is the number of days the 

original temperature profile being shifted in each direction. This method has been used by 
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PJM in their long term load forecasting practices for many years. For example, it’s reported 

that PJM used the weather data from year 1973 to 2013 (i.e. k = 41) to generate 533 

scenarios (i.e. n = 6) in its 2015 load forecasting [8].  

3) The bootstrap method first segments the temperature profile of each historical year 

into equal length of time blocks, and then randomly picks the blocks with replacement from 

any of the historical years to form a new temperature profile. This method was adopted by 

Australia Electric Market Operator (AEMO) for long term peak load forecasting [66]. 

4) The surrogate method simulates new temperature series through shuffling and 

taking the Fourier transform of the original time series to maintain the distribution and 

autocorrelation of the original temperature series. It was first proposed in [71] for one year 

ahead load forecasting.  

Among these four methods, the first three are practical and widely used in the industry. 

Nevertheless, the methodological foundation for practicing them is not yet solid, which 

typically result in ad-hoc, judgmental and sometimes hard to be defended choices during 

the scenario generation step. For instance, it has never been clear to the industry how many 

years of weather history would be sufficient to adopt any of these methods. This 

dissertation will utilize a quantile score to evaluate the first three temperature scenario 

simulation methods and try to propose a guideline for temperature scenario generation 

practices.  

Probabilistic forecasting techniques can be categorized into two groups based on 

whether their original purpose was for point forecasting or probabilistic forecasting. For 

example, Hyndman et al. [75] extend the exponential smoothing methods to enable the 

computation of prediction intervals. While models such as quantile regression [72], 
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Bayesian models [76] were originally developed for probabilistic forecasting. None of 

these probabilistic forecasting techniques have been extensively studied for probabilistic 

load forecasting. Some of the reasons could be compared to point forecasting techniques, 

these techniques are more computationally intensive and the accuracy of them could be 

hard to evaluate due to the lack of proper evaluation criteria. This dissertation will not focus 

on applying probabilistic forecasting techniques but rather to focus on developing 

probabilistic forecasts from applying point forecasting techniques and scenario generation 

/ residual simulation methods.  

For the residual simulation method, in fact, studying residual series itself is not 

anything new in load forecasting and its utility applications. Back to 1970s, for example, 

researchers were using mean and standard deviation to characterize uncertainties around 

electric load forecasts for probabilistic load flow analysis [77]–[79]. However, most papers 

in the literature that modeled load forecast residuals assumed normality for the residual 

distribution. In other words, normal distributions were used to model the residuals. Such 

normality assumption, however, has rarely been verified through any formal statistical test. 

This dissertation will report the comprehensive study on whether simulating residuals with 

the normality assumption improves the original probabilistic forecasts or not [26].  

 

 

 

 

 

 



 

 

CHAPTER 3: THEORETICAL BACKGROUND 

 

 

Among the various load forecasting techniques discussed in Section 2.2, multiple linear 

regression is one of the oldest yet most widely applied forecasting techniques and artificial 

neural network is one of the most popular techniques for load forecasting since the 1990s. 

In this chapter, the theoretical background of these two most common load forecasting 

techniques will be introduced. Later on, they will be implemented for the probabilistic load 

forecasting case studies. The goal of this chapter is not to provide comprehensive 

introductions to these techniques but to cover the most relevant information to build and 

evaluate the load forecasting methods in this dissertation.  

3.1 Multiple Linear Regression 

Multiple linear regression (MLR) has been widely used in the forecasting field 

including electric load forecasting. A comprehensive introduction to MLR can be found in 

[80]. A general matrix form of the MLR model can be defined as (1) where Y is a n×1 

column vector of observations on the response variable, X is a n× (p+1) matrix representing 

the one column of ones and p columns of the observations on the explanatory variables, β 

is a (p+1) row vector of model parameters to be estimated and ε is a n×1 column vector of 

random errors.  

                                                  Y X                                                                        (1) 

In this dissertation, the response variable is the hourly electric demand, the explanatory 

variables include quantitative variables, qualitative variables, and their interactions. An
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example of the quantitative variable is the hourly temperature: in the summer, as the   

temperature increases, the electric demand may also increase; in the winter, as the 

temperature increase, the electric demand may decrease. However, this temperature and 

load relationship may not be linear but nonlinear/curvilinear instead. As a result, the 

polynomial of the independent variables may be used. Qualitative variables such as month, 

weekday or hour of day can also be used as independent variables by introducing dummy 

variables into the model. For example, if month is used as an independent variable in the 

model, then each of the 12 months will have a dummy variable to represent whether the 

electric demand falls into that month as shown in (2): 
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                                                            (2) 

The interactions between variables should be introduced into the MRL model when the 

impact of one explanatory variable depends on the level of another explanatory variable. 

For example, Figure 2 shows the different impact of the temperature on the electric demand 

during different time of a day. In this case, the 24 hours of a day are categorized into four 

groups as morning, afternoon, evening, and night. The demand during the morning and the 

night time is relatively lower than that during the afternoon and the evening when people 

have more activities. Also, the variation of the demand during the night is smaller than that 

during the rest of the day. This indicates the impact of temperature on load depends on the 

level of temperature itself as well as the time of a day. The interaction of two explanatory 
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variables can be represented by multiplying these two variables to generate a new 

explanatory variable. In this case represented by Figure 2, the quantitative variable 

temperature can be multiplied by the qualitative variable hour of a day to reflect the 

combined effect.   

 

Figure 2: Scatter plot of hourly load and temperature during different periods of a day 
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3.2 Artificial Neural Networks 

Artificial neural networks (ANN) models were originally inspired by the biological 

neural networks, especially brain, to estimate the unknown relationships between the 

output and a large number of inputs. A comprehensive introduction of ANN is provided in 

[81], [82]. The types of ANN could vary from single- or multiple-layer single direction 

logic to complex multi-directional loops, with the later one mainly used for image 

processing and language recognition. Figure 3 demonstrates the structure of a single-layer 

feeding-forward ANN which is also the type of ANN that will be implemented in this 

dissertation. It consists of three parts: (1) the input nodes are the explanatory variables (2) 

the neurons receive information from the weighted combinations of the input nodes and 

process them to generate the response. In this study, the neurons are organized in the single 

hidden layer. The number of neurons does not have to be the same as the number of input 

nodes. A rule of thumb in practice usually suggests having the number of neurons range 

between 0.5 to 1.5 times of the number of input nodes.  When the neurons process the 

information, a non-linear activation function is used which makes ANN models able to 

handle the non-linear relationship between input and output variables. (3) the output node(s) 

could be our target variable. In this dissertation, only one output node is used for the ANN, 

which is hourly electric demand.  
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Figure 3: A single-layer feeding-forward neural network 
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3.3 Forecast Evaluation 

3.3.1 Point Forecast Evaluation 

Point forecast evaluation measurements can be categories into the following three 

groups: 

(1) Scale-dependent measures such as root mean square error (RMSE) and mean 

absolute error (MAE) are error measurements that measure the size of error in units. They 

can be useful for comparing different methods applied to the same data, but should not be 

used across different data sets with various scales because they are scale-dependent. In this 

dissertation, multiple models and data sets with different scales will be compared such that 

scale-dependent measures will not be useful.  

                             2
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(2) Percentage error measures are in the form of 
Pr

t t

t

Actual edict

Actual


 are scale-free. The 

most commonly used percentage error measures include mean absolute percentage error 

(MAPE). 
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The defect of such percentage error measures is that they can be infinite or undefined 

when the actual value is zero or a very small number such as electric demand at the 

household level. But, the data being used in this dissertation are all aggregated data at the 

system or zonal level so this issue is not a concern. In this dissertation, MAPE will be used 
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for evaluating the point forecasts due to its simplicity, interpretability, and being widely 

adopted by load forecasting practices.  

(3) Relative error measures are dividing the error obtained from the proposed method 

by the one from a standard or benchmark model. However, defining a proper benchmark 

model for point load forecasting is out of the scope of this dissertation. As a result, relative 

error measures will not be used for this dissertation 

 A series of MAPE values could be of interest to a load forecaster: 

(1) Hourly load of a specific period which is usually a year depending on the 

availability of the data and the purpose of the forecasting.  

(2) Daily, monthly or annual energy which can be calculated by aggregating the hourly 

load to daily, monthly or annual level.  

(3) Daily, monthly or annual peak load which is the maximum load of a day, a month 

or a year.  

In this dissertation, the hourly MAPE is used to evaluate the load forecasting model 

because the probabilistic forecasts will also be evaluated for hourly forecasts. 
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3.3.2 Probabilistic Forecast Evaluation 

The most commonly used attributes for probabilistic forecast evaluation are reliability, 

sharpness, and resolution. They were first covered by Pinson, et al. [83] for evaluating 

probabilistic wind power forecasting. Hong and Fan [2] then extended the discussion on 

these three attributes for selecting probabilistic load forecasting measures. Reliability 

evaluates how close the predicted distribution is to the actual one. For example, the 50% 

prediction intervals should cover 50% of the actual observations. Reliability describes the 

unconditional coverage of the predicted distribution. Sharpness measures how tightly the 

predicted distribution covers the actual one. For instance, in the case that two 50% 

prediction intervals that both cover the 50% of the actual observations but with different 

width in the boundaries. We will say the one with the narrower boundary width is better 

regarding the sharpness criteria.  Resolution measures how much the predicted distribution 

varies over time. For example, we will expect the prediction interval for residential load 

forecast is wider during the daytime when people are more active while expect it to be 

narrower during the nighttime when the weather condition is smoother and people are less 

active. If the prediction interval does not vary overtime, we will say it has no resolution. 

Sharpness and resolution together describe the independence of the target variable (i.e. load) 

on other factors (such as weather and human activities). These three criteria together 

describe the conditional coverage of the prediction interval.  

There exist several probabilistic forecasting criteria and each of them may address one 

or several of the aforementioned three evaluation criteria.  

(1) Ranked probability score (RPS) measures the mean square error of differences between 

the cumulative probabilities of the forecasts and that of the observed one. The 
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continuous ranked probability score (CRPS) is an extension of RPS for continuous 

probability forecasts (e.g. density function) which measures the integrated squared 

difference between the cumulative distribution function of the forecasts and that of the 

observed one. An extension of the RPS and CRPS is the ranked probability skill score 

(RPSS) or continuous ranked probability skill score (CRPSS). RPSS and CRPSS relate 

the RPS or CRPS of the forecasts to that of a reference forecast. It can be difficult to 

establish a reference forecast while one of the most commonly used reference forecasts 

is the persistent forecast. The RPSS / CRPSS ranges from -∞ to 1 with a negative 

number indicating the forecasts is worse in accuracy than the reference one. The more 

negative the number is the worse the forecast to be.  

(2) Kolmogorov-Smirnov (KS) statistic is the simplest measure of the unconditional 

coverage (i.e. the reliability criteria) of the forecasted distribution. It measures the 

maximum vertical distance between the cumulative distribution functions of the two 

samples to decide whether they belong to the same distribution. The smaller the number 

indicates a better forecasted distribution. KS statistic has been used by Magnano and 

Boland [84] to compare the real and simulated half-hourly load profiles. The drawback 

of this measure is it is only based on the maximum vertical distance of two cumulative 

distribution functions but overlooks the distance between them.  

(3) Pinball loss function is an error measure for quantile forecasts that penalizes for 

observations lying far from a given quantile. The use of pinball loss can be tracked 

back to 1970s when Koenker and Bassett [85] used it as the loss function for estimating 

the parameter of the regression quantiles. Let yt be the actual load of time t, ,
ˆ

t q
y  be the 
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qth  (q = 1, 2, … , 99) quantile of the predicted load of time t and let  
100

q
p  . The 

pinball loss for the qth quantile can be defined as  
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                                    (6) 

The mean of the pinball losses across all the quantiles and all the forecasted hours is 

then taken as the quantile score for the probabilistic forecast. A lower quantile score 

indicates a better probabilistic forecast. Quantile score considers both of the sharpness 

and resolution in the evaluation by assessing the forecast at each quantile and has been 

used for evaluating probabilistic load forecasting since Global Energy Forecasting 

Competition 2014 [3], [23], [25], [26], [72], [86], [87]. In this dissertation, pinball score 

will be used to evaluate the probabilistic load forecasts in the form of quantiles due to 

its popularity and compressive regarding the probabilistic forecasting evaluation 

criteria. 

(4) Winkler score [88] allows a joint assessment of the unconditional coverage (i.e. 

reliability) and interval width (i.e. sharpness) of a probabilistic forecast. For a central 

(1-α) * 100% prediction interval, let yt be the actual load of time t, Lt and Ut are the 

lower and upper bounds of the prediction interval, δt = Ut-Lt is the interval width. 

Winkler score is defined as  
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It penalizes observations lying far from a given prediction interval and rewards a 

forecast with a narrower prediction interval. A lower Winkler score indicates a better 

prediction interval. It was firstly used for evaluating probabilistic load forecasts in [72]. 
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But, as demonstrated [72], the quantile score and the Winkler score generally agree 

with each other. 
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3.3.3 Sliding Simulation 

In the forecasting evaluation practice, the data is generally dissected into two parts: (1) 

the fit period is used to train the model and the error measurements calculated from this 

period is to measure the goodness-of-fit of the forecasting method, and (2) the test period 

is used for the out-of-sample evaluation of forecasting accuracy. Forecasters usually assess 

the accuracy of a forecasting method based on its out-of-sample performance rather than 

goodness-of-fit due to two main reasons: Firstly, in-sample errors are likely to understate 

the forecasting errors because the models are calibrated to fit the in-sample data. Secondly, 

methods selected by best in-sample fit may not best predict out-sample data.     

Among the several out-of-sample evaluation techniques, cross validation and sliding 

simulation are popular due to their simplicity and universality. A survey of cross-validation 

procedures for model selection was provided by Arlot and Celisse [89] to review the 

different cross-validation techniques with an emphasis on the model selection theory 

behind it. A guideline for choosing the best cross-validation procedures according to the 

problem in mind was proposed at the end of the paper. Cross-validation techniques split 

data once or several times and conduct out-of-sample evaluation on one out-of-sample 

piece with the rest as the training data. The average of the forecast performances of the out-

of-sample pieces across the several splits is used for model selection to avoid overfitting 

as well as the risk of one model may perform extremely well out of luck. Based on the data 

splitting schema, cross-validation techniques can be grouped into two categories: (1) cross-

validation with exhaustive data splitting schema such as leave-one-out [90], [91] and leave-

p-out [92], in which each one or p data points are left out for validation with the rest as 

training; and (2) cross-validation with partial data splitting such as V-fold cross-validation 
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[91], in which the data is partitioned into V subsamples with equal size and each of them 

is used for validation with the rest as training.  

Tashman [93] offered a comprehensive review of out-of-sample tests in which the 

sliding simulation technique is reviewed in details. In sliding simulation, both of the 

historical length and the forecast horizon are fixed while the forecast origin rolls forward 

to conduct several rounds of out-of-sample forecast evaluation. The average of the forecast 

performance of the several rounds of out-of-sample tests is used for model selection.  

In this dissertation, sliding simulation technique is selected for the following reasons 

among others. First, comparing with cross-validation, sliding simulation is much less 

computational intensive yet effective for model selection. Second, the electricity demand 

pattern of several years ago may not be as informative as those from most recent few years. 

Sliding simulation technique allows the forecaster to limit the forecasting process to uses 

most recent historical data for model training. Third, when the historical data is sufficient, 

compared to cross-validation, sliding simulation is more similar to the real forecasting 

environment in which the forecaster only have data prior to the forecast origin.     

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4: CASE STUDY DATA 

 

 

4.1 North Carolina Electric Membership Corporation 

The primary case study in this dissertation is from North Carolina Electric Membership 

Corporation (NCEMC). NCEMC is one of the largest electric generation cooperatives in 

the U.S. and is comprised of a family of corporations formed to support 26 of North 

Carolina’s electric distribution cooperatives. These cooperatives provide energy and 

related services to more than 950 000 households and businesses in 93 of the 100 North 

Carolina counties. At NCEMC, load forecasts serve as important inputs to the power supply 

group to support decisions on electricity purchase contracts. 

NCEMC data has also been used as the case study data by several load forecasting 

literature [3], [4], [21], [26]. It includes 9 years (2003-2011) of hourly load at the system 

level, the Gross State Product of the state of North Carolina of the corresponding years, 

and 36 years of hourly temperature data from 1976 to 2011, of which the first 30 years of 

temperature series is used to generate the temperature scenarios for probabilistic load 

forecasting. Figure 4 shows the hourly load and temperature of first three training years 

(2003 – 2005).  

The most recent six years of the load data (2006 – 2011) are used for the out-of-sample test 

on a rolling basis with the length of the rolling estimation window fixed at three years as 

demonstrated in Figure 5. For example, we first forecast the load for 2006 with the data 

from 2003 – 2005 as the training data. Then, we roll the forecast origin forward to 



39 

 

forecast the year 2007 with the data from 2004 – 2006 as the training data. We repeat this 

process until we generate forecasts for all these six years from 2006 to 2011.  

 

 

 Figure 4: Hourly load and temperature of NCEMC 
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Figure 5: Evaluation using sliding simulation for NCEMC 
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4.2 Global Energy Forecasting Competition 2014 

The Global Energy Forecasting Competition 2014 (GEFCom2014) was a probabilistic 

energy forecasting with four tracks on load, price, wind, and solar forecasting [87]. The 

competition data has been made public available by the organizer to promote reproducible 

research and to allow researchers to compare their models and methods using the same 

datasets. The dataset of the load forecasting track of GEFCom2014 (GEFCom2014-L data) 

includes seven years of hourly load from 2005 to 2011 and 10 years of hourly temperature 

data from 2001 to 2010. Due to the limitation in the availability of historical temperature 

data, only year 2011 will be used for out-of-sample test for the input scenario simulation 

case study. For the residual simulation case study, since temperature scenarios are not the 

main focus, the restriction has been relaxed to use three years (i.e. 2009 to 2011) for out-

of-sample test. Figure 6 presents the time series plots of hourly load and temperature from 

2005 to 2010.  
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Figure 6: Hourly load and temperate of GEFCom2014-L data 

 

 

 

 

 

 



 

 

CHAPTER 5: PROBABILISTIC LOAD FORECASTING 

 

 

This chapter will discuss two methods to generate probabilistic forecasts: the first one 

generates probabilistic forecasts by simulating the temperature scenarios for point 

forecasting models and the second one generates probabilistic forecasts by simulating the 

residuals from point forecasting models. The chapter will start with introducing the point 

forecasting models and follow with introducing the two methods.  

5.1 Point Forecasting Models 

5.1.1 Linear Regression Model 

Three linear regression models with different levels of predictive power are developed 

for this dissertation. The first model is named as T-cube model. It includes GSP and the 3rd 

order polynomials of the current hour temperature as defined in (8) where tGSP and tT

represent the Gross State Product of the state of North Carolina and the temperature at time 

t, respectively. 

                                         2 3
0 1 2 3 4

ˆ
t t t t ty GSP T T T                                                     (8) 

The second model is Tao’s Vanilla Benchmark model, abbreviated as Vanilla model in 

this dissertation. It was first proposed in [1],  then used in GEFCom2012 as the benchmark 

model for the load forecasting track [20], and later reproduced by other scholars [18], [19], 

[72]. Compared with the T-cube model, the Vanilla model includes calendar variables 

(Month, Weekday and Hour) and their interactions with the polynomials of current hour 

temperature. It is represented by (9)



44 

 

               

2 3

0 1 2 3 4 5 6 7 8

2 3 2 3

9 10 11 12 13 14

ˆ
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y GSP M W H W H T T T

T M T M T M T H T H T H

        

     

         

    
           (9) 

The third model is developed following the model selection process introduced in [1] 

and implemented in [4], [25]. Compared to the Vanilla model, it takes into account of the 

Recency Effect that is meant to capture the impacts of temperature of preceding hours on 

the current hour’s electric demand [1], [22], Weekend Effect that is meant to group 

weekdays with similar electric demand patterns together in order to reduce the complexity 

of the model [1], and Holiday Effect that is used to model holiday as weekend days to 

address the limited historical data available and the changing of load use patterns issue in 

forecasting holiday electric demand [1] [24]. This model is named as the Hong-2014 model 

in this dissertation and is presented by (10) with the values of h (h  = 1, 2, 3) and d  (d = 0, 

1) varying from year to year depending on the validation dataset that is used for the model 

selection process. 

  

0 1 2 3 4 5 ,

2 3 2 3 2 3
6 7 8 9 10 11 12 13 14

24

, 24 23

ˆ ( ) ( ),  

where  ( )  

1
and 

24
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        (10) 

 

 

 

 

 

 

 



45 

 

5.1.2 Artificial Neural Networks 

To further investigate whether the conclusions from this study on probabilistic load 

forecasting stay the same when the underlying models are nonlinear, this dissertation will 

be extended to implement three ANN models for the main case study (i.e. NCEMC). The 

structure of each ANN model is three-layer feed forward. The input variables of each ANN 

model are assigned based on the independent variables of the corresponding regression 

model introduced in the previous section with the high order terms and cross effects 

removed, so that the nonlinear modeling capacity of ANN is used to capture the 

relationship between load and the input variables.  

In details, the first ANN model (ANN-T-cube) is comparable to the linear T-cube model. 

It has GSP and the current hour temperature as the interval variables. The second ANN 

model (ANN-Vanilla) has all variables from the ANN-T-cube model plus Month, Weekday 

and Hour as the class variables. It is comparable to the linear Vanilla model. The third 

model is comparable to the linear Hong-2014 model. It has Month, Weekday, and Hour as 

class variables, temperatures of the current hour and previous three hours, and the average 

temperatures of the previous 24 hours as interval variables. The polynomials of the 

temperature terms have been removed to allow the ANN model to identify the nonlinear 

relationships. The number of hidden neurons is determined via cross validation. Each ANN 

model is re-diagnosed when forecasting the next year, so the number of hidden neurons 

may vary from one year to another. 
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5.2 Input Scenario Generation 

5.2.1 Temperature Scenario based Probabilistic Load Forecasting 

For temperature scenario based probabilistic load forecasting, j temperature scenarios 

are first created as the input for the point forecasting models. The techniques to create the 

temperature scenarios will be discussed in details the following sections. Figure 7 

illustrates how to use the generated temperature scenarios to create j point load forecasts: 

by feeding these j temperature scenarios into the point load forecasting model, j point 

forecasts can be generated for each hour, where each of the j point forecasts comes from 

one of the j temperature scenarios. 

 

Figure 7: Illustration of generating j point load forecasts from j temperature scenarios 

The temperature scenario based probabilistic load forecast in the form of quantiles is 

generated from these j point forecasts for each hour into the forecast horizon by calculating 

the 1st to the 99th percentile of the j point forecasts. The 1st to the 99th percentile are 

calculated using the empirical distribution function with averaging. This method will still 

produce the percentiles in the case that j is a small number, say 2. However, when the value 

of j is small, many of the adjacent percentiles may share the same value. In details, let N 

be the number of non-missing values in the j point forecasts at time t, and let   

,1 ,2 ,
ˆ ˆ ˆ, ,...,t t t Nx x x  represent the ordered values of them. The qth (q = 1, 2, …, 99) percentile 

of the predicted load of time t is represented by  ,
ˆ

t qy . Let /100p q , we define 
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The value of ,
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t qy  is calculated as shown in (12): 

                          
,int ,int 1

,

,int 1

ˆ ˆ1/2(x +x )    0
ˆ

x̂                      0

t t

t q

t

if g
y

if g






 


                                                 (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

5.2.2 Fixed-date Method 

The fixed-date method picks the temperature profile of a past year and assigns the 

temperatures date by date to a future year to obtain a scenario based forecast. The 

probabilistic forecast is from k scenarios with equal probability, where k is the total number 

of years for the temperature history. The method was introduced in [4] and then 

implemented in [3], [23], [25], [26]. Figure 8 uses the NCEMC case as an example to 

demonstrate this process: when forecasting the year of 2011, k years of historical 

temperature series will be assigned to the year 2011 date by date to create k temperature 

scenarios for the year 2011. When k = 1, only the historical temperature series of year 2005 

will be used. When k = 2, the historical temperature of year 2004 and 2005 will be used, 

and so forth. When k = 30, the historical temperature from 1976 to 2005 will be used.  

 

Figure 8: Illustration of generating k temperature scenarios using the fixed-date method 
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These k temperature scenarios are then fed into each point forecasting model to create k 

point forecasts for each hour. The probabilistic load forecasts are then derived from taking 

the 1st to the 99th percentile of the k point forecasts as introduced in Section 5.2.1.  

Figure 9 presents the quantile scores of the Hong-2014 model for each of the years 

from 2006 to 2011. For each year, the quantile scores show a decreasing trend as the length 

of temperature history increases. This pattern also appears when the Hong-2014 model is 

replaced by the other two MLR models. To keep the presentation concise, the average of 

the quantile scores mainly from the Hong-2014 model will be presented for the rest of this 

dissertation. 

 

Figure 9: Quantile scores by year  

(Case = NCEMC, Model = Hong-2014) 

Figure 10 shows the first-order difference of the adjacent average quantile scores from 

using k-1 and k years of historical temperature series. The fact that all bars are above or 

close to zero further confirms the decreasing trend of average quantile score for each model. 

Moreover, the decreasing magnitude of the bars in each panel indicates the diminishing 

improvement as the length of temperature history increases. For all three models regardless 
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of the predictive power, the improvement from increasing length of temperature history is 

negligible when the history is beyond 15 years or so.  

 

Figure 10: First-order difference of adjacent average quantile scores from using k-1 and k years of historical 

temperature series  

(Case = NCEMC) 
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5.2.3 Shifted-date Method 

The shifted-date method generates more temperature scenarios in additional to those 

generated from the fixed-date method by shifting the temperature series forward and 

backward. The rationale behind the shifted-date method is twofold:  

1) A season may come in a few weeks sooner or later in different years. For example, the 

weather of August in 2003 may be similar to the weather of July (or September) in 2006.  

2) Electricity demand shows a significant day-of-week pattern. Consequently, if the same 

temperature profile occurs on a different day of a week, or in the earlier or later of a month 

than usual, the load profile may be different.  

Therefore, instead of fixing the date for a temperature year, it may be worthwhile to 

create additional temperature scenarios using this shifted-date method. It preserves the 

autocorrelation of the temperature series naturally while creating additional scenarios to 

enhance the efficacy of the probabilistic load forecasts. By shifting the temperature series 

forward and backward by n days, this method will result in 2n+1 temperature scenarios for 

each historical year. Suppose we use k years of historical temperature data for this 

simulation process, we will generate with (2n+1)k temperature scenarios for the load 

forecasting models. Figure 11 illustrates how to shift a temperature series one-day forward 

and one-day backward to create additional two temperature scenarios. 

 

Figure 11: Generating additional temperature scenarios by shifting dates 

The line plot in Figure 12 shows the average quantile scores of the Hong-2014 model 

for year 2006-2011 by shifting the temperature series from 0 to 6 days forward and 
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backward. There are three observations from it: 1) shifting the temperature series forward 

and backward to create additional temperature scenarios helps improve the quantile score 

of the fixed-date method; 2) the improvement is diminishing as the number of shifted days 

increases and the length of temperature history increases; and 3) the improvement from the 

shifted-date method is negligible when n > 4 and k > 5. 

 

Figure 12: Quantile scores from using temperature series simulated by the shifted-date method  

(Case = NCEMC, Model = Hong-2014) 

Figure 13 presents the actual load (blue dot) of the summer peak week of 2011 and the 

corresponding quantile forecasts (lines) from the Hong-2014 model.  The black dash lines 

in the plots show the 1st to the 99th quantile forecasts except for the median which is 

highlighted in red. Each subtitle for the plot is in the form of k_n indicating using k years 

of historical temperature series and shifting the temperature series n days around to create 

additional temperature scenarios. For examples, 15_6 represents using 15 years (1991 – 

2005) of historical temperature series and shifting the historical temperature series 6 days 

around to create 180 additional scenarios. We only present the quantile forecasts generated 

from using 1, 15 and 30 years of historical temperature series and shifting the historical 

series 0 and 6 days around to avoid verbose presentation. Nevertheless, Figure 13 confirms 

the findings above. When the historical temperature data is limited, additional temperature 
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scenarios generated from shifting the historical temperature series help improve the 

efficacy of the probabilistic forecast. As additional years of historical temperature data is 

being used to generate scenarios, the shifted-date method does not result in significant 

improvement much further. 
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Figure 13: Quantile forecasts of a summer peak week (Jul 26 – Aug 01, 2011)  

(Case = NCEMC, Model = Hong-2014) 
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5.2.4 Bootstrap Method 

The double season block bootstrap temperature scenario simulation technique first 

segments each temperature series into blocks with equal length of m days. Let m = 9 in this 

study to be consistent with what was done in [66]. For example, a year with 365 days will 

have the first 9 days of the year as the first block, the second 9 days of the year as the 

second block and so on. Each of the first 40 blocks will have equal days (i.e. 9 days), while 

the last block will only have 5 days. If k years of historical temperature data are used, each 

of the 41 blocks will be randomly picked from one of the k years to form a new temperature 

series. Figure 14 illustrates the method with one example: the first block of scenario 1 may 

come from the first block of year 2001; the second block may come from the second block 

of year 1973; and so on. If this random pick l times with replacement is done l times, l 

temperature scenarios will be simulated. In this dissertation, l is set to 100 for 

demonstration purpose without loss of generality. The cases with l = 500 and 1000 have 

also been tested, respectively, but only tiny difference after the first decimal place of the 

quantile scores were observed. Thus, only results from l = 100 are presented in this 

dissertation to avoid verbose presentation. This simulation process will result in k+l 

temperature scenarios for the PLF.  

 

Figure 14: Generating additional temperature scenarios by bootstrapping  

Figure 15 shows the scatter plot of the average quantile scores between the fixed-date 

method (horizontal axis) and the bootstrap method (vertical axis). The points all lie on or 

above the diagonal line (i.e. the black line) in this scatter plot, which indicates that the 
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additional temperature scenarios simulated by the bootstrap method does not improve the 

quantile score. When the lagged temperatures are used in the model (e.g. Hong-2014), the 

quantile scores from the bootstrap method becomes worse than those of the fixed-date 

method. This is likely due to the fact that two adjacent blocks that come from different 

years may create an unrealistic gap on the border. 

 

Figure 15: Scatter plot of quantile scores from using fixed and simulated temperature series  

(Case = NCEMC) 

Figure 16 shows an example of the temperature scenario simulated from using 30 years 

of historical temperature for the summer peak week of 2006 (Aug 01 – Aug 10), with the 

peak occurring on Aug 4, 2006. The temperature of the first four days were drawn from 

the corresponding block of the year 1998, while the last six days were drawn from year 

1994. This example shows that the simulated temperature series may have significant 

discontinuity on the border between the two blocks. While this may not have much impact 
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on the peak demand forecasts as it was first proposed in [66], it appears to harm the quantile 

scores when the forecasts at all the hours are involved. One way to alleviate this issue is to 

widen each block. As the block size goes up to one year, this bootstrap method becomes 

identical to the fixed-date method. 

             

Figure 16: Hourly temperature from the simulated series during the summer peak week of 2006  

(Case = NCEMC) 
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5.2.5 Discussion on Empirical Rule-of-thumb 

In sum, based on the results from the above three temperature scenario generation 

methods, the findings are 1) the quantile score of each method shows diminishing 

improvement as the length of available temperature history increases; 2) comparing with 

the fixed-date method, the shifted-date method helps improve the quantile score with the 

improvement diminishing as the number of shifted days increases; and 3) the bootstrap 

method offers the capability of generating more comprehensive scenarios but does not 

improve the quantile score of the fixed-date method.  

When taking the weather scenario generation approach, one of the first questions is 

how many years of history are good enough. The variant of this question can be as follows: 

1) Have we collected enough historical data to perform probabilistic load forecasting? 

2) Do we have enough history so that we can stay with the simplest method, i.e., fixed-

date method? 

3) With the length of history we have today, which method shall we choose? 

Based on the observations made in Section 5.2.4, the bootstrap method can be excluded 

here to focus on the quantile score improvement. Since the conclusions from the three 

models are consistent on the fixed-date and shifted-date methods, here we use the Hong-

2014 model for illustration purpose.  

Figure 17 shows the quantile score from shifting the k years of historical temperature 

n days around. The horizontal axis is the number of days (n) being shifted forward and 

backward. The vertical axis is the quantile score. Each line represents the quantile scores 

under a certain length of history k. As the value of n increases, the quantile score first 

decreases but will eventually increase. This indicates that shifting the weather history 
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within a range can help improve the quantile score, though shifting too many days can 

aggravate the quantile score. The rationale is that a season may come in a few weeks sooner 

or later, but the weather in August should not be treated as typical in November.  

When only one year of historical temperature is used, the quantile score is 168.91. By 

using different combinations of k and n, the global lowest quantile score we can get is 91.21 

by using four years of historical temperature series and shifting it by five days around. 

Table 1 presents the n value to achieve the lowest quantile score when k is fixed, and the 

upper and lower boundary of the value of n to achieve at least 95% of the global best 

improvement (i.e. reducing the quantile score from 168.91 to 95.09). For example, when 

five years of history is used, we need to shift the five-year historical temperature series at 

least three days forward and backward to bring the quantile score lower than 95.09. The 

more years of historical temperature series is used, the smaller the number of shifts that is 

needed to achieve a desirable quantile score. However, the shift of more than 39 days 

around will result in a quantile score higher than 95.09. Overall, regardless of the value of 

k, we should be cautious about shifting the historical temperatures series too many days.  

 

Figure 17: Quantile score of shifting the k years of historical temperature series n days around   

(Case = NCEMC, Model = Hong-2014) 
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Table 1: Lower and upper bounds of n for different k  

(Case = NCEMC, Model = Hong-2014) 

               k                                    

     n 
1 2 3 4 5 10 20 30 

95%, LO 19 9 9 5 3 2 1 0 

Min 26 19 19 19 16 17 16 14 

95%, UP 32 39 39 >40 39 38 39 39 

 

The following rule of thumb is proposed to offer a practical guide for forecasters to 

select the effective temperature scenario generation method with the appropriate 

parameters: 

                                                          k(n+1) > 30                           (13) 

For instance, if 30 or more years of temperature history is available, there would be no 

significant improvement in quantile score by taking the shifted-date method. If 4 years of 

temperature history is available, we should shift about 7 days forward and backward to 

gain most improvement in quantile score. 

Following a similar approach presented in this paper, practitioners may come up with 

different rules of thumb based on the practical considerations. For instance, the threshold 

may be chosen as 90% or 99%. Alternatively, the rule of thumb may be targeting the 

optimal value instead of a threshold.   
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5.2.6 Results from Nonlinear Models 

Figure 18 presents the average quantile score of the ANN-Hong-2014 model with the 

temperature scenarios generated from the three aforementioned temperature scenario 

generation techniques: (1) the fixed-date method, (2) the shifted-date method with n = 6, 

and (3) then bootstrap method. The results from the other two models are not presented 

here because they show a similar pattern. The conclusions from using the linear models do 

not change when we switch to nonlinear models. Shifting historical temperature series 

around to create additional temperature scenarios helps significantly improve the PLF only 

when few years of temperature history are used. Additional scenarios generated by 

bootstrapping resampling do not contribute to the improvement of the quantile score. 

 

Figure 18: Quantile score from using three different temperature generation techniques  

(Case = NCEMC, Model = ANN-Hong-2014) 
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5.2.7 Results from GEFCom2014-L Data 

Table 2 lists the quantile scores from the three linear models using the three 

aforementioned temperature scenario generation techniques, namely fixed-date (FD), 

shifted-date with n =6 (SD) and bootstrap (B). The lowest quantile score for each model 

group is highlighted in bold. The three conclusions still hold when we extend the study to 

this new set of data.  

Table 2: Quantile scores of year 2011  

 T-cube Vanilla Hong-2014 

k FD SD B FD SD B FD SD B 

1 18.02 12.09 n/a 15.35 10.11 n/a 15.49 10.02 n/a 

2 13.52 10.78 13.59 11.28 8.74 11.37 11.32 8.59 13.20 

3 12.14 10.33 12.23 9.85 8.17 9.92 9.75 8.00 11.72 

4 11.56 10.25 11.61 9.36 8.11 9.40 9.22 7.95 11.22 

5 11.16 10.20 11.20 8.89 7.97 8.90 8.77 7.82 10.62 

6 11.12 10.25 11.15 8.90 8.08 8.96 8.80 7.94 10.64 

7 10.94 10.19 10.98 8.66 7.96 8.74 8.54 7.80 10.48 

8 10.86 10.20 10.84 8.62 7.98 8.57 8.52 7.84 10.23 

9 10.79 10.15 10.83 8.55 7.91 8.56 8.44 7.77 10.23 

10 10.71 10.14 10.79 8.42 7.85 8.51 8.29 7.70 10.19 

 

Table 3 shows the quantile score of the Hong-2014 model for year 2011 with the k 

years of historical temperature series being shifted n days around. A cooler color in the 

background of the cell indicates the lower quantile score. For each column, the bolded 

quantile score is the lowest value for each fixed k. The global lowest quantile score is 7.16 

that is achieved by using 10 years of historical temperature series and shifting the 

temperature series 16 days around. The quantile scores we get for each k and n combination 

by following the proposed rule of thumb are underscored. The 95% threshold in this case 

is 15.49 – 0.95(15.49 – 7.61) = 8.00. By following the proposed rule of thumb, most of the 

cases reach the 95% threshold. The only two exceptions are k = 1 and k = 2, where the 

lowest quantile scores (8.42 and 8.01 respectively) are still larger than the 95% threshold. 
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Table 3: Quantile scores of year 2011 by shifting the k years historical temperature series n days around  

(Model = Hong-2014) 

   k               

n 

1 2 3 4 5 6 7 8 9 10 

0 15.49 11.32 9.75 9.22 8.77 8.80 8.54 8.52 8.44 8.29 

1 12.71 9.92 8.79 8.53 8.26 8.38 8.16 8.20 8.14 8.03 

2 11.57 9.33 8.42 8.27 8.07 8.22 8.02 8.06 8.01 7.91 

3 10.99 9.08 8.30 8.19 8.01 8.17 7.96 8.00 7.94 7.85 

4 10.58 8.92 8.21 8.13 7.96 8.11 7.92 7.95 7.88 7.80 

5 10.25 8.75 8.09 8.04 7.89 8.02 7.86 7.89 7.81 7.75 

6 10.02 8.59 8.00 7.95 7.82 7.94 7.80 7.84 7.77 7.70 

7 9.85 8.48 7.93 7.88 7.77 7.88 7.76 7.80 7.73 7.67 

8 9.71 8.42 7.88 7.84 7.73 7.84 7.73 7.76 7.70 7.64 

9 9.57 8.35 7.85 7.83 7.71 7.81 7.71 7.75 7.68 7.63 

10 9.47 8.30 7.82 7.81 7.70 7.80 7.71 7.74 7.68 7.63 

11 9.36 8.26 7.80 7.80 7.69 7.79 7.70 7.73 7.68 7.63 

12 9.26 8.21 7.77 7.78 7.68 7.77 7.69 7.71 7.67 7.62 

13 9.17 8.18 7.75 7.76 7.68 7.75 7.67 7.69 7.66 7.61 

14 9.11 8.16 7.75 7.76 7.68 7.74 7.66 7.68 7.65 7.61 

15 9.05 8.17 7.76 7.76 7.69 7.74 7.66 7.67 7.64 7.61 

16 8.99 8.16 7.77 7.77 7.70 7.75 7.65 7.66 7.64 7.61 

17 8.95 8.15 7.77 7.77 7.71 7.75 7.65 7.65 7.64 7.61 

18 8.90 8.13 7.77 7.77 7.71 7.75 7.65 7.65 7.64 7.61 

19 8.85 8.11 7.77 7.77 7.72 7.76 7.66 7.66 7.65 7.61 

20 8.80 8.09 7.77 7.78 7.73 7.76 7.66 7.66 7.65 7.62 

21 8.77 8.08 7.77 7.79 7.74 7.76 7.67 7.68 7.66 7.63 

22 8.74 8.08 7.78 7.80 7.75 7.77 7.68 7.69 7.68 7.64 

23 8.71 8.07 7.80 7.81 7.76 7.78 7.69 7.70 7.69 7.66 

24 8.69 8.07 7.82 7.83 7.77 7.79 7.71 7.71 7.70 7.67 

25 8.66 8.06 7.84 7.84 7.79 7.80 7.72 7.73 7.72 7.69 

26 8.63 8.05 7.85 7.85 7.80 7.81 7.74 7.74 7.73 7.71 

27 8.60 8.04 7.86 7.86 7.81 7.83 7.75 7.76 7.75 7.72 

28 8.56 8.02 7.87 7.88 7.83 7.84 7.77 7.77 7.76 7.74 

29 8.53 8.01 7.88 7.89 7.84 7.85 7.78 7.79 7.78 7.76 

30 8.50 8.01 7.89 7.90 7.86 7.87 7.80 7.80 7.79 7.78 

31 8.48 8.01 7.90 7.91 7.87 7.88 7.81 7.81 7.81 7.79 

37 8.42 8.03 7.99 8.00 7.95 7.97 7.91 7.91 7.91 7.91 
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5.2.8 Pros and Cons 

Table 4 summarizes the pros and cons of the aforementioned temperature scenario 

generation methods from the following three perspectives: 1) the number of temperature 

scenarios a method can potentially produce, 2) the complexity involved for implementation, 

and 3) the quantile score of the resulting probabilistic forecasts. The bootstrap method has 

the capability of generating very large number of scenarios. The fixed-date method is 

easiest to implement among the three. The empirical studies in this paper have shown that 

the shifted-date method can lead to the lowest quantile score among the three. In sum, there 

is no single method that outperforms all others based on these comparison matrix, in 

practice, forecasters should choose the one that best suitable for their jurisdiction.  

Table 4: Pros and cons of three temperature scenario generation techniques 

 # of scenarios Complication Quantile score 

Fixed-date Least Least Moderate 

Shifted-date Moderate Moderate Lowest 

Bootstrap Most Most Highest 
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5.3 Residual Simulation 

Prediction interval estimates the interval that future observations will fall into with a 

certain probability. For example, one can estimate that with a 90% possibility, tomorrow’s 

peak load will fall into the range between 120MW and 180MW. Prediction interval is a 

widely-adopted way to describe the uncertainties in the forecast. A simple and commonly 

used prediction interval for the estimated value �̂� can be calculated as shown in (14), where 

𝛼  is the multiplier (such as 1.96 for a 95% prediction interval) and 𝜎 ̂is the standard 

deviation of the forecast distribution.  

                                                            �̂� ± 𝛼�̂�                                                                 (14) 

This calculation of prediction interval assumes that the error term or the residuals are 

normally distributed and uncorrected. The violation of such normality assumption likely 

makes the confidence interval to be too wide or too narrow and not an ideal estimate of the 

probability that a given forecast will exceed some threshold in a particular direction. In 

practices, such normality assumption has rarely been validated through any formal 

statistical test. This section will start with looking into the distribution of the residuals from 

the point load forecasting models. Then, the process to simulate the residuals will be 

introduced for improving the probabilistic load forecast. Although the residuals are 

simulated from normal distribution, this residual simulation method does not rely on the 

validity of the normality assumption to improve probabilistic load forecasts.  
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5.3.1 Normal Distribution 

Residuals are defined as the difference between the actual value and the forecasted one. 

The validity of the normality assumption on the residuals from the three representative 

underlying linear regression models will be first investigated graphically and by the 

Kolmogorov-Smirnov (K-S) test. The K-S test is a nonparametric test that can be used to 

compare a sample with a reference probability distribution which is the normal distribution 

in this dissertation. It quantifies a distance between the empirical distribution function of 

the sample and the cumulative distribution function of the reference distribution. The null 

hypothesis of the K-S test is the sample is drawn from the reference distribution.  

Figure 19 shows the histograms of the residuals from the three ex post forecasts, the 

normal distribution, and the Kolmogorov-Smirnov test results. The blue histograms 

represent the empirical distributions, while the red lines represent the normal distributions. 

The axes of the three sub-figures are in the same scale.  None of the residual series passes 

the K-S test based on the significance level of 0.05 with the critical value as 0.0095 [94]. 

In other words, there is not enough evidence showing that the residuals are normally 

distributed.  
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Figure 19: Normality test on ex-post point forecast residuals of linear models 
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5.3.2 Group Analysis 

Since electricity demand series has multiple seasonal patterns, the residuals may 

behave differently by hour of the day, day of the week or month of the year. Instead of 

performing K-S test on all the residuals as one group, the residuals can be grouped by 

different calendar variables (month, weekday and hour) and their combinations. Table 5 

lists the results of K-S test performed on each group. Using the significance level of 0.05, 

the results show that performing group analysis on the residuals helps increase the passing 

rate of K-S test. On average, grouping the residuals by month and hour yields the highest 

passing rate across all three models. 

Table 5: Normality test passing rates (in %) of ex-post point forecast residuals with various grouping 

methods 

 Grouping Method Number of Levels 2005 2006 2007 2008 2009 2010 AVG. 

T
-c

u
b
e 

No Grouping 1 0 0 0 0 0 0 0 

Weekday 7 0 0 0 0 0 0 0 

Month 12 0 0 0 0 0 0 0 

Hour 24 33.3 25 29.2 16.7 25 12.5 23.6 

Month + Weekday 78 21.4 16.7 14.3 19.0 17.9 26.9 19.4 

Weekday + Hour 168 69.0 62.5 46.3 57.1 64.9 67.3 61.2 

Month + Hour 288 76.7 76.4 76.7 84.0 81.3 75.3 78.4 

V
a
n

il
la

 

No Grouping 1 0 0 100 0 0 0 16.7 

Weekday 7 14.3 0 0 0 0 0 2.4 

Month 12 8.3 0 16.7 16.7 0 0 7.0 

Hour 24 29.2 8.3 25 25 0 8.3 16.0 

Month + Weekday 78 40.5 36.9 51.2 41.7 35.7 32.1 39.7 

Weekday + Hour 168 83.9 65.5 79.2 72.0 45.2 72.6 69.7 

Month + Hour 288 72.6 72.2 72.9 70.1 70.5 78.1 72.7 

H
O

N
G

-2
0
1
4
 

No Grouping 1 0 0 0 0 0 0 0 

Weekday 7 12.5 0 0 0 0 0 2.1 

Month 12 8.3 8.3 0 0 0 8.3 4.2 

Hour 24 16.7 8.3 12.5 8.3 0 4.2 8.3 

Month + Weekday 78 34.8 37.7 26.0 41.1 43.0 36.1 36.5 

Weekday + Hour 168 63.5 62.5 80.4 56.3 38.7 43.8 57.5 

Month + Hour 288 77.4 68.6 74.7 73.3 76.4 78.5 74.8 
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5.3.3 Post-Processing Probabilistic Load Forecasts with Simulated Residuals 

To investigate whether residual simulations help further improve the probabilistic load 

forecasts, the original point forecast results from applying temperature scenarios generated 

from the fixed-date method are post-processed by adding 100 simulated residuals to the 

forecasted load of each hour. The 100 simulated residuals are random numbers generated 

from a normal distribution with parameters derived from the empirical distribution of the 

point forecasts residuals of the previous year (i.e. the validation year). 

Table 6 lists the quantile scores of the three models with different group analysis 

options. The “best group” method is to use the grouping method that returns the lowest 

quantile score of previous year as the grouping method of the current year. Considering 

Vanilla as an example, year 2006 is the first year that has probabilistic forecasts. Since the 

previous year to use as the reference to select the best group is not available, “N/A” is listed 

in Table 5. The lowest quantile score for Vanilla in year 2006 is 83.65, corresponding to 

“no grouping” method. Therefore, for year 2007, the selected “best group” strategy is “no 

grouping”, which returns the quantile score 94.35 in 2007. On the other hand, the best 

group strategy in hindsight for 2007 is to group by hour, of which the quantile score is 

94.30. 

Overall, the following observations can be drawn from the results:  

(1) The differences between the hindsight best average quantile score and the original 

score for T-cube, Vanilla, and Hong-2014 are 33.2, 0.9, and 0.2 respectively. In other words, 

adding residuals simulated from normal distribution helps improve the probabilistic 

forecasts of deficient underlying models. The improvement is diminishing as the 

underlying model is being improved. 
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(2) From the perspective of forecasting improvement, how to improve the forecasts 

from the models with high predictive power is of the interest. Based on the results listed in 

Table 5, when the underlying model is very comprehensive (i.e., Hong-2014), the 

improvement is negligible (i.e., 0.2 in this case study). 

Table 6: Quantile scores for probabilistic forecasts based on various residual simulation methods 

 Grouping Method 2006 2007 2008 2009 2010 2011 AVG. 

T
-c

u
b

e 

(original) 116.13 129.45 128.90 128.57 146.82 125.15 129.2 

No Grouping 110.51 122.47 122.38 121.36 140.07 121.80 123.1 

Weekday 110.73 122.38 122.57 121.69 140.22 121.15 123.1 

Month 109.79 122.18 121.29 118.71 129.72 118.99 120.1 

Hour 88.85 99.79 102.53 98.57 119.79 99.27 101.5 

Month + Weekday 109.94 122.63 121.45 119.32 129.99 119.11 120.4 

Weekday + Hour 87.77 98.37 101.37 97.51 118.97 98.12 100.4 

Month + Hour 87.18 97.82 98.79 93.30 106.13 93.02 96.0 

Best Group  N/A 97.82 98.79 93.30 106.13 93.02 97.8 

V
a

n
il

la
 

(original) 84.67 95.68 96.02 90.82 106.65 92.46 94.4 

No Grouping 83.65 94.35 95.51 89.75 107.12 92.63 93.8 

Weekday 84.00 94.52 96.93 89.89 107.06 90.88 93.9 

Month 83.72 95.18 96.16 90.37 104.98 90.79 93.5 

Hour 83.79 94.30 95.96 89.66 106.93 90.86 93.6 

Month + Weekday 83.92 96.21 96.39 90.97 105.20 90.97 93.9 

Weekday + Hour 84.19 94.63 96.26 89.93 106.92 90.86 93.8 

Month + Hour 84.42 95.95 96.49 90.81 105.53 90.69 94.0 

Best Group N/A 94.35 95.96 89.75 106.93 90.79 95.6 

H
o

n
g

-2
0

1
4
 

(original) 82.89 95.35 94.58 90.13 108.46 90.39 93.6 

No Grouping 82.19 94.36 94.03 89.56 110.60 90.09 93.5 

Weekday 82.40 94.51 94.20 89.63 110.58 90.20 93.6 

Month 82.25 95.61 94.85 89.81 109.57 91.30 93.9 

Hour 82.21 94.12 93.99 89.48 110.30 90.07 93.4 

Month + Weekday 82.54 96.31 94.85 90.13 109.73 91.38 94.2 

Weekday + Hour 82.52 94.23 94.05 89.57 110.39 90.09 93.5 

Month + Hour 83.07 95.68 94.51 90.08 109.95 91.40 94.1 

Best Group N/A 94.36 93.99 89.48 110.30 90.39 95.7 

 

To investigate whether a higher normality test passing rate indicates a better quantile 

score when modeling the residuals with normal distributions, the normality passing rate 

and the quantile score from each model and each grouping method is plotted in Figure 20. 

There exist no obvious relationship between the normality passing rate and the quantile 

score for the Vanilla and the Hong-2014 model. In other words, for this two models, a 

higher normality passing rate does not necessarily lead to a better quantile score. But, for 



71 

 

the T-cube model, there is a downward trend in quantile score when residuals are grouped 

by seasonal variables such as month, weekday, and hour of a day for residual simulation. 

This is because the T-cube model doesn’t consider the seasonality of electricity demand 

series in the model and the information are left in the residuals. When the residuals are 

grouped analyzed by such seasonality variables, it can significantly help improve the 

forecasts.  

 

Figure 20: Normality test passing rate vs. quantile score  

(Case = NCEMC, Linear models) 
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5.3.4 Additional Simulation 

The results presented so far are all based on adding 100 simulated residuals to each 

hour through the forecast horizon. Further investigation on whether the number of 

simulations affects the quantile score have also been done. Figure 21 lists the quantile 

scores of the three regression models under a different number of simulations. Since the 

results are similar across all years for all grouping strategies, only the results from the year 

of 2011 with the best grouping strategy of each model for both data sets are shown to avoid 

verbose presentation. According to the results, when the number of simulations is 50 or 

above, the quantile scores are quite similar. While 10 simulations do not seem to be good 

enough, too many simulations beyond 200 do not add much value either. 

Figure 22 shows the probabilistic monthly energy forecast of Hong-2014 model for 

NCEMC case with the number of simulations as 0, 100 and 500 for year 2011, respectively. 

The appearance of the probabilistic forecasts also agrees with the numbers in Table 5. Note 

that the load variation in the winter months is much wider than that of the summer months, 

which is a common phenomenon in North Carolina’s cooperatives due to the wide adoption 

of electricity heating systems and climate diversity in the winter. Reflecting such 

phenomenon through probabilistic forecasts is quite helpful to power supply planning. 
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Figure 21: Quantile scores from different number of residual simulations 
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Figure 22: Probabilistic monthly peak forecasts with different number of residual simulations  

(Case = NCEMC, Model = Hong-2014) 
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5.3.5 Results from Nonlinear Models 

Table 7 lists the specifications of the three ANN models, together with the quantile 

scores from the NCEMC case study. The scatter plot in Figure 23 shows the relationship 

between normality passing rate and quantile score. The results reaffirm the conclusions 

drawn earlier. To avoid verbose presentation, only the results from NCEMC case study are 

presented in this dissertation. 

Table 7: Quantile scores for probabilistic forecasts based on various residual simulation methods  

 Input Variables  2006 2007 2008 2009 2010 2011 AVG. 

T
-c

u
b
e GSPt, Tt, 

(Number of input 
neurons: 2) 

Hidden Neurons 2 3 4 4 4 4  

(original) 136.24 132.41 124.88 124.65 142.90 128.42 131.58 

No Grouping 127.50 115.33 120.56 120.21 137.41 124.18 124.20 

Weekday 127.15 116.08 120.64 120.53 137.37 124.16 124.32 
Month 124.96 114.36 119.78 116.94 128.91 121.66 121.10 

Hour 105.49 95.95 102.83 99.81 117.28 104.11 104.25 

Month + Weekday 125.38 114.52 119.85 117.46 129.22 122.32 121.46 
Weekday + Hour 104.02 95.10 101.68 98.78 116.45 103.14 103.20 

Month + Hour 100.97 92.10 99.65 94.03 105.72 97.998 98.41 

Best Group  N/A 92.10 99.65 94.03 105.72 97.998 97.09 

V
a
n

il
la

 

GSPt, Tt, Mt, Wt, Ht 

(Number of input 
neurons: 42) 

Hidden Neurons 40 20 20 20 20 20  

(original) 111.03 112.36 98.08 91.77 114.81 100.62 104.78 

No Grouping 101.07 101.97 96.16 91.29 111.53 123.39 104.24 

Weekday 100.98 99.47 120.64 91.65 111.32 124.43 108.08 
Month 98.25 97.87 97.19 90.45 108.82 119.59 102.03 

Hour 100.77 101.14 96.27 91.24 111.34 124.88 104.27 

Month + Weekday 99.21 94.84 97.03 91.18 108.59 120.88 101.96 
Weekday + Hour 100.75 98.20 95.99 91.53 111.10 125.27 103.81 

Month + Hour 98.65 94.36 96.57 90.08 108.63 120.59 101.48 

Best Group N/A 94.36 96.75 91.53 108.63 120.88 102.43 

H
o

n
g

-2
0
1

4
 

GSPt, Tt, Tt-1, Tt-2, 
Tt-3, Ta, Mt,  Dt,  Ht 

(Number of input 

neurons: 46) 

Hidden Neurons 25 40 25 25 35 55  

(original) 101.41 101.48 96.32 90.25 113.26 98.62 100.22 

No Grouping 98.86 99.36 95.43 89.70 111.05 96.80 98.53 

Weekday 98.90 99.19 95.44 89.88 111.04 96.79 98.54 
Month 98.25 93.81 96.48 89.13 108.65 94.58 96.82 

Hour 98.00 98.56 95.18 89.53 110.92 96.956 98.19 

Month + Weekday 98.55 93.64 96.47 89.21 108.71 95.26 96.97 
Weekday + Hour 97.91 98.42 95.14 89.69 110.85 96.957 98.16 

Month + Hour 96.57 92.86 95.64 88.96 108.49 94.72 96.21 

Best Group N/A 92.86 95.64 89.69 108.49 94.72 96.28 
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Figure 23: Normality test passing rate vs. quantile score  

(Case = NCEMC, ANN models) 
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5.3.6 Results from GEFCom2014-L Data 

The same process to simulate residuals and then add them back to the point forecast 

results is then repeated for the GEFCom2014-L data. Table 8 lists the passing rate of the 

normality tests against the residuals and the corresponding quantile scores. Although there 

are only three years of testing period, we have the same observations as from the NCEMC 

case. 

Table 8: Normality test passing rates and quantile scores

  Passing Rate (%)  Quantile Score  

 Grouping Method 2008 2009 2010 AVG. 2009 2010 2011 AVG. 

T
-c

u
b
e 

(original) N/A N/A N/A N/A 10.88 12.18 10.78 11.28 

None 0 0 0 0 9.79 11.55 9.94 10.43 

Weekday 0 0 0 0 9.86 11.54 9.94 10.45 

Month 0 0 0 0 9.72 10.89 8.76 9.79 

Hour 16.7 20.8 16.7 18.1 8.72 10.55 8.95 9.41 

Month + Weekday 23.8 28.6 26.2 26.2 9.80 10.90 9.79 10.16 

Weekday + Hour 52.4 65.5 63.7 60.5 8.70 10.53 8.93 9.39 

Month + Hour 84.4 85.8 77.1 82.4 8.34 9.57 8.52 8.81 

Best Group N/A 85.8 77.1 81.4 N/A 9.57 8.52 9.05 

V
a
n

il
la

 

(original) N/A N/A N/A N/A 8.29 9.41 8.39 8.70 

None 0 0 0 0 7.93 9.45 8.08 8.49 

Weekday  0 0 0 0 7.96 9.44 8.09 8.50 

Month 8.3 0 0 2.8 8.13 9.50 8.20 8.61 

Hour 16.7 20.8 12.5 16.7 7.94 9.44 8.09 8.49 

Month + Weekday 34.5 31.0 31.0 32.2 8.17 9.47 8.25 8.63 

Weekday + Hour 74.4 74.4 64.9 71.2 7.95 9.44 8.10 8.50 

Month + Hour 78.5 77.4 83.0 79.6 8.08 9.49 8.24 8.60 

Best Group N/A 0 N/A 0 N/A 9.45 8.39 8.92 

H
o

n
g

-2
0
1

4
 

(original) N/A N/A N/A N/A 8.20 9.39 8.27 8.62 

None 0 0 0 0 7.99 9.55 8.04 8.527 

Weekday 0 0 0 0 8.03 9.55 8.07 8.55 

Month 0 8.3 8.3 5.5 8.14 9.59 8.14 8.62 

Hour 8.3 16.7 4.20 9.7 8.00 9.55 8.05 8.53 

Month  Weekday 26.7 29.2 36.7 30.9 8.18 9.59 8.18 8.65 

Weekday + Hour 60.0 72.2 29.2 53.8 8.02 9.56 8.08 8.55 

Month + Hour 80.9 71.18 75.0 75.7 8.11 9.60 8.16 8.62 

Best Group N/A 0 N/A 0 N/A 9.55 8.27 8.91 

 

 

 

 

 

 

 

 

 

 

  



 

 

CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

 

This dissertation presents a formal study of probabilistic electric load forecasting. The 

study dissects the probabilistic load forecasting problem into three components: (1) input 

scenario simulation, (2) probabilistic modeling, and (3) residual simulation. From the input 

scenario perspective, it proposes a framework to evaluate different temperature scenario 

generation techniques. The proposed framework is applied to evaluate three temperature 

scenario generation methods that have all been implemented in the field, namely the fixed-

date method, the shifted-date method, and the bootstrap method. The evaluation from the 

proposed framework help to build the methodological foundation for practicing the 

temperature scenario generation methodologies. From the output perspective, a 

comprehensive study has been conducted on the normality assumption of residuals from 

point forecast models. This comprehensive study on residuals considers the multiple 

seasonality in electricity demand series and group the residuals by seasonal factors for 

analysis. A residual simulation method has been proposed to improve the probabilistic load 

forecasts.   The proposed methods offer multiple practical options for utilities to generate 

their probabilistic load forecasts based on their unique situations such as availability of 

historical data and comprehensive level of load forecasting models. Some of these 

proposed methods have been implemented in utilities’ probabilistic load forecasting 

practices.  Some further extensions on this topic can be: from the input scenario simulation 

perspective, although temperature is the most significant weather variable that drives  
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electricity demand, other variables such as relative humidity, wind chill, and etc. may also 

impact the demand. The proposed framework can be applied to evaluate the scenario 

generation methods for other weather variables. In addition to weather scenarios, 

economics scenario can also be generated for creating probabilistic load forecasts. 

Furthermore, the interactions of scenarios may lead to many more scenarios. The use of 

economic scenarios and the cross scenarios of temperature scenarios and economic 

scenarios have been studied by Hong et al. [4] but a more formal and systematical study is 

needed. From the residual simulation perspective, residual simulated from other 

distributions or other methods such as bootstrap can also be further analyzed.   
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