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ABSTRACT

XIAZHI FANG. The relationship between initial construction IRI and network IRI.
(Under the direction of DR. DON CHEN)

The main objectives of this study are to develop the relationship between initial IRI
and network IRI and to predict service lives of pavements. The raw data used in this
research, including IRI, pavement ages, Annual Average Daily Traffic (AADT), and
locations of pavements, were provided by North Carolina Department of Transportation
(NCDOT). The raw data were merged, linear regression, analysis of variance (ANOVA),
and contrasts were conducted to investigate the relationship, and to estimate pavements’
service lives. The conclusions revealed that pavements with smaller initial IRI last longer,
and that average service lives after construction and treatments for US, NC, and the SR

roadways are 16.4, 9.5, and 6.7 years, respectively.
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CHAPTER 1: INTRODUCTION

1.1 Background and Significance

Roughness is an important parameter that can be used to evaluate pavement
performance. It is an indicator of distortion and variation of the pavement surface, and it
can also measure the quality of delivered roadway construction, which serves as an
acceptance criterion for new construction projects. For roadway users, pavement roughness
directly affects drivers’ comfort, fuel efficiency, safety, and vehicle depreciation (Wen,
2011).

The International Roughness Index (IRI) is used to quantify pavement roughness.
Nationwide, IRI has been widely used by state DOTS to evaluate the condition of roadways
and to predict roadway investment needs (Shafizadeh and Mnnering, 2006). IRI is one of
the key factors associated with users’ perceptions of road roughness, which can be a critical
element affecting resource allocation (Shafizadeh and Mannering, 2006). Park et al. (2007)
indicated that IRl can be assessed as a predictor variable of pavement conditions.
Additionally, a relationship between IRl and pavement performance can be used to
determine when treatments are required and what performance trend is expected after the
rehabilitation treatment (Kargah-Ostadi et al., 2010).

The North Carolina Department of Transportation (NCDOT) has collected IRI ratings
since 1998. The Pavement Management Unit has used IRl information to track and

understand the performance of pavements. The Construction Unit is planning to implement
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the IRI as an approval criterion for roadway constructions and rehabilitations in North
Carolina.
1.2 Research Objectives

This research was conducted to fulfill the needs of these two units in NCDOT. The
objective of this research is two-fold: 1) to develop a relationship between the initial
construction IRI and the network IRI, and 2) to estimate the service lives of pavement
classifications. The findings of this research can be used to answer the following questions:
What is the rate of change in IRI over time? And will pavements with smaller initial IRI
last longer?

In order to achieve these objectives, the rates of change in IRI over time were obtained
by regressing the network IRI against the initial IRl and pavement age. Other factors,
including average annual daily traffic (AADT), pavement classification (Interstate, US,
NC, and SR), and the locations of roadways (regions in North Carolina), were also included
in the analyses. The analysis of variance (ANOVA) was used to compare the magnitudes
of the change rates of different initial IRI groups, and contrasts were used to compare the
network IRI values of different initial IRI groups. Then, the service lives of roadway
families were estimated by developing polynomial regression models and calculating the
numbers of years for pavements to reach the IRI threshold. In this research, service life is

number of years IRI reaches the predefined IRI threshold.



CHAPTER 2: LITERATURE REVIEW

A comprehensive literature review was conducted to study the background of IRI and
to explore the methodologies that will be used in this study.
2.1 Pavement Performance

Pavement performance is defined as the ability of a pavement to satisfy the traffic as
designed (Yoder and Witczack, 1975), and can be evaluated by the data collected from a
pavement condition survey (Gramling, 1994). There are many factors that influence
pavement performance. Generally, these factors include traffic volume, pavement material
properties and composition, environmental associated factors, pavement thickness, and
maintenance levels.

Roughness is considered as one of the most important factors influencing pavement
conditions. Park et al. (2007) concluded in their research that IRI has a great influence on
the Pavement Condition Index (PCI). Many agencies have used pavement roughness to
estimate the Present Serviceability Index (PSI), which is another indicator of pavement
performance (Yoder and Witczak, 1975; Roberts et al., 1991).

PSI was used in the American Association of State Highway Officials (AASHO) road
test to measure ride quality through longitudinal profile variation data (Sun, 2001). Later,
a gquantitative measure for estimating pavement performance, known as PCI, was
developed by the US Army Corps of Engineers (Shahnazari, et al. 2012). The two

components of PCI are the riding comfort rating for roughness and the distress
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manifestation index for pavement surface distresses (Hajek et.al., 1986). Besides PSI and
PCI, there are other performance indicators developed by different state highway agencies,
such as the Pavement Condition Rating (PCR) and the Pavement Quality Index (PQI). PCR
is an index reflecting the combined effects of various distress types, severities, and extents
on general pavement conditions (Highway Preservation Systems, Ltd., 2001). PQI
indicates the overall condition of a pavement regarding both present and future service to
users. It ranges from 2 to 10 with 2 representing the poorest pavement, and 10 representing
the best possible pavement (Lashlee, 2004). Currently, NCDOT uses PCR as the pavement
performance indicator.

2.1.1 Pavement Condition Survey

A pavement condition survey is usually conducted to determine the condition of a
pavement (Wilburn, 1976). The data collected in a pavement condition survey can assist in
the decision-making process regarding pavement maintenance, rehabilitation, and
reconstruction (Hicks and Mahoney, 1981). Four basic types of data are included in a
typical survey: physical distress, structural capacity, friction measurements, and ride
quality or roughness (Gramling, 1994).

Physical distress measures deterioration of road surface and subsurface caused by
traffic, environment, and aging (American Association of State Highway and
Transportation Officials, 1985). Distress types can be generally classified as cracking,
surface deterioration, and distortion. Additionally, distress information is usually collected
based on the extent and severity of the distress. Structural capacity indicates the pavement
capacity to carry traffic loads with minimum distress or deformation (Gramling, 1994).

Pavement friction, also known as skid resistance, is defined as the horizontal force
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generated when a tire that is prevented from rotating slides with the pavement surface
(Meyer and Goodwin, 1972). An adequate level of friction is required by the FHWA to
provide safe operating conditions for all vehicles. Roughness or ride quality is another
important type of performance data, and is described in the following section.

2.1.2 Roughness

Roughness is the predominate measure of pavement service quality, and generally, the
equipment developed to measure pavement roughness falls into two classifications:
response type road roughness measuring system (RTRRMS) and profilers (Gramling,
1994). Gramling (1994) indicated that for a RTRRMS, roughness is calculated by
measuring the movements of a vehicle or a wheel against pavements; whereas, profilers
were designed to measure the true profile of the pavement surface.

In the 1980s, the World Bank sponsored the International Road Roughness Experiment
(IRRE) to develop guidelines for conducting roughness measurement consistently
worldwide. This experiment resulted in an international standard for measuring and
reporting pavement roughness, which is the International Roughness Index (IRI).
According to Thomas (1992), there are several factors that should be considered when
selecting IR as the standard scale of roughness. First, IRI has to relate to the vibration
response of motor vehicles. Second, in order to achieve a time-stable measurement of
roughness, the scale has to be mathematically related to the road profile. Third, a wide
range of hardware has to be available to measure this index. Fourth, the measuring
procedure and equipment have to be predefined to be widely used all over the world.
Currently, IRI has become the industry standard to measure pavement roughness (Thomas,

1992).
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Although technologies of measuring longitudinal profiles have existed for decades,
they have not been fully developed. Karamiha et al. (1999) stated that a prevailing sense
exists in highway communities that if the same road is measured by different communities
with their own equipment, the results will be different. They also indicated that errors may
be caused by variations of equipment, inappropriate conducting procedures, pavement
surfaces, and surrounding environments. Five categories of influencing factors were
identified, including profiler design, surface shape, measurement environment, profiler
operation, and profiler driver and operator.

2.2 Pavement Management System

IRI is an important component of a pavement management system (PMS). The
Organization for Economic Co-operation and Development (OECD) defined pavement
management as “a process of coordinating and controlling a comprehensive set of activities
in order to maintain pavements, as to make the best possible use of resources available”
(OCDE, 1987). Hudson et al. (1979) defined pavement management as “the involvement
of the identification and implementation of optimum strategies, which serve all those
activities ranging from initial information acquisition to planning and programming of
maintenance, rehabilitation and new construction at all levels.” Although there is no
universally accepted definition of pavement management, the common point of pavement
management definitions is that they involve multiple activities to preserve pavement in
mint condition.

A pavement management system (PMS), as defined by the American Association of
State Highway and Transportation Officials (AASHTO), is “...the effective and efficient

directing of the various activities involved in providing and sustaining pavements in a
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condition acceptable to the traveling public at the least life-cycle cost” (AASHTO, 1985).
In other words, a PMS is an integral system that can be used to manage entire activities of
pavements, including design, construction, maintenance, and rehabilitation. The main
purpose of a PMS is to maintain the pavements for public use.

Based on different scopes of pavement administration, a PMS can be classified into
two administrative levels: network and project. The network level analysis concentrates on
decision-making and overall budgeting for network pavements, which involves the
activities of “ranking and identifying candidate pavements for improvements, estimating
the network-level budget, forecasting the long-range budget, assessing the network-level
pavement condition, and forecasting future conditions.” The project level analysis focuses
more on “solving technical problems, including the cause assessment of deterioration, the
potential solution determination, the benefit assessment of alternatives, and the ultimate
selection and design of the desired solutions” (OCDE, 1987). The NCDOT PMS can
perform analyses at both levels.

2.2.1 The Information Subsystem of a Pavement Management System

A typical PMS has three basic components, including the information, the analysis,
and the implementation subsystems (Hudson, et al., 1979). The information of pavement
roughness is included in the information subsystem. The essential function of the
information subsystem is to collect data, such as inventory, pavement condition, pavement
history, traffic loads, and costs. Pavement condition data include pavement roughness,
surface distress, rutting, skid resistance, and structural capacity (Vitillo, n. d.).

The methods of data collection vary based on the categories of pavement. For example,

visual inspection for a small town or rural county can be recorded in Microsoft Excel or
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Access, which is more than sufficient, while a state road network needs a more complex
data system (Pavement Interactive, August 2007). Usually pavement data are collected
every one or two years. The data collected are not only used to evaluate the current
condition of pavements, but also to predict future pavement conditions. The IRI
information used in this research is stored in the information subsystem of the NCDOT
PMS.

2.3 Previous Studies on IRI

Many studies have been conducted to explore the applications of IRI in pavement
management.

2.3.1 Pavement Performance Models

Several factors can affect the roughness of pavements. According to Kargah-Ostadi et
al. (2010), these factors include initial roughness, pavement age, traffic, climatic
conditions, pavement structural properties, subgrade properties, drainage types, drainage
conditions, maintenance, and rehabilitation treatments. Previous studies (Prozzi and
Madanat, 2003; Chou and Pellinen, 2005) have been conducted to investigate how these
factors influence pavement performance.

In 2003, Prozzi and Madanat (2003) demonstrated that the original pavement
performance model developed by the American Association of State Highways Officials
(AASHO) had some issues when it was developed, “such as inconsistencies of statistical
approach, improper treatment of observations, and mis-specified regression equation
because of units.” In their research, they developed a new model to predict the Present
Serviceability Index (PSI), which encompassed the factors of traffic volume, initial

serviceability, time, structure, and climate. They used nonlinear regression and joint
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estimation of factor parameters. However, this model also had some limitations. According
to their description, the data resources were insufficient and encompassed the information
of pavements under similar environmental conditions.

In 2005, Chou and Pellinen used the artificial neural network (ANN) technology to
develop the time-dependent roughness prediction model for three types of pavements:
polyester polymer concrete (PPC), asphalt overlay on concrete, and hot-mix asphalt
(HMA). The inputs considered were initial IRI, age, freeze index, temperature, annual
Proximity-Based Neural Network (PPN), and traffic load. The output was targeted time-
series IRI, which is the network IRI. After the prediction models were developed, they
were used to calculate the service lives of pavements. It was concluded that the initial IRI
and annual precipitation significantly influenced the performance of pavements; for PPC
pavement, initial IRl was the most important factor that affected the roughness. The
limitation of this study came from the source of the data. Because the data was collected in
the state of Indiana, the models were considered only as local models (Chou and Pellinen,
2005). Another limitation in this studies is that most of the models developed included
more than one independent variable, which is not applicable to some state DOT’s PMSs.
Because in these PMSs, pavement age should be the only independent variable used to
develop the performance models. This is the case for the NCDOT PMS.

2.3.2 Initial IRI and the Service Lives of Pavements

Previous studies stated that initial IRI values impacted the performance of the pavement

during its life time and that pavements with lower initial IRI values would serve the public

longer (Janoff, 1990; Corley-Lay and Mastin, 2009; Crowe, 2002). However, few studies
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have been conducted to validate the relationship between initial IRI and the service lives
of pavements.

In 1997, the Smoothness Specification for Pavement (Smith et al., 1997) reported that
initial smoothness significantly impacted the future smoothness of pavements. In this
research, the significance of initial roughness was studied by examining the coefficient of
the initial IRI in the developed model, which included a network IRI as the dependent
variable and initial roughness and pavement age as independent variables. Coefficients of
the initial IRl were studied, and the significance of initial roughness was verified. The
results indicated that the initial IRI has a significant influence on the network IRI. It should
be noted that the data used in the research was only obtained from asphalt concrete (AC),
Portland cement concrete (PCC), and AC overlay projects.

In the same study, nonlinear regression models were developed to describe the
relationship between long-term roughness and initial roughness, age, and interaction
between initial roughness and age. The threshold value of roughness and the initial
roughness value were used to calculate the service lives of pavements. Then, a linear
relationship between service lives and initial roughness was developed. It was concluded
that pavements with smaller initial IRI have a longer service lives. In their research, other
measurements of pavement roughness were also studied, including ones measured by the
Bureau of Public Road (BPR) rough meter and the Portland Cement Association (PCA)
road meter. Additionally, the research also indicated that other factors could impact the
predicted pavement service lives, such as traffic level, pavement thickness, climate, and

quality of construction.
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In 2005, Perera et al. (2005) indicated in their research that, compared to pavements
having a greater initial IRI, pavements that were built smoother would provide a longer
service lives before reaching a terminal roughness threshold. In this research, the dataset
was subdivided into subdatasets based on the IRl change rates of the roadways. By
estimating the intercepts of each scatter plot of subdatasets, the initial IRl values were
determined. Then, the service lives of pavements were estimated. It was concluded that
pavements with smaller initial IRI deteriorated at a relative slower pace over time. The
limitation of this study is that only concrete pavements were studied.

2.4 Linear Regression Analysis

Linear regression analysis can be used to either estimate the mean of the populations
or predict the future trend of a variable. In this research, linear regression analysis was used
to predict network IRI, using initial IRl and other factors. There are primarily three
objectives of the linear regression analysis. The first objective is general study, which aims
to test the correlation between variables; the second one is prediction, which predicts the
future values according to the information provided by the independent variables; the third
objective is to remove an unwanted factor by replacing one variable with another variable
converted by parameters (Dunn and Clark, 1987).

A dependent variable is explained mathematically by a model. Independent variables
are considered as predictors that provide information for prediction of the dependent
variable. If there is one dependent variable and one independent variable, simple linear
regression models can be used to predict the dependent variable. If there is more than one
independent variable, multiple regression models can be applied to predict the dependent

variable. A multiple regression model can be written as:
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y = by + byx; + byxy + -+ byxy,

where,

y is the dependent variable,

Xn IS independent variable,

n is the total number of independent variables.

2.5 F-test

An F-test is used to test the hypotheses that if there is a difference among the means
of more than two groups. The typical null and alternative hypotheses for F-test are given
by,

Ho: all the means of groups are the same;
Ha: at least two of the means of groups are different.

In this research, the F-test was used to investigate the difference among rates of change
in different initial IRI groups. Analysis of variance (ANOVA) was used to achieve this
goal, which is described in the next section. To conduct an F-test, the mean square error
within the groups (MSE) and the mean square error between the groups (MSB) need to be
calculated. The ratio of MSE to MSB is called the F ratio, which is named after the original
creator, R. Fisher (Lane, n.d.). The formula can be given by:

MSB

F —ratio = VSE
MSB and MSE can be calculated using the following equations:

ny (%, — f..)z + n, (%, — f..)z + ety (fk. - f..)z
k—1

MSB =

where,

ny is the number of observations for the group of k,
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X is the mean of the group of k,
X _is the mean of the total observations from all the groups,

k is the number of groups.

(ny — 1)s? + (ny — DsZ + -+ (ng — 1)sf

MSE =
Neor — K

where,

s¢ is the standard deviation of group of k,

ny is the number of observations for the group of k,

Ntor 1S the total number of observations from all the groups,
k is the number of groups.

s2 can be calculated using the equation below:

, 20—

n—1

where,

X is the mean of a group,

s? is standard deviation,

n is the number of observations for a group.

If MSE is equal to MSB, it indicates that the means of groups are equal. If MSE is not
equal to MSB and the F ratio is larger than the F critical value, then it indicates that at least
two of the means are different, so the null hypothesis should be rejected. To compare the
F ratio to the appropriate F critical value, a control factor called the level of significance
should be determined. If the calculated p-value is smaller than the level of significance, the

null hypothesis is rejected.
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2.6 Analysis of Variance

“Analysis of Variance (ANOVA) refers broadly to a collection of experimental
situations and statistical procedures for the analysis of quantitative responses from
experimental units” (Devore, 2008). In this research, ANOVA was used to examine
whether or not rates of change in different initial IRI groups are different.

The simplest ANOVA problem is a single-factor ANOVA and only involves one factor
that differentiate the treatment or population. “Single-factor ANOVA focuses on a
comparison of more than two population or treatment means” (Devore, 2008). In this type
of analyses, the null hypothesis is that all the means of different groups are the same. To
test the hypothesis, an F- test is used. If the null hypothesis is rejected, the conclusion
would be that, among the means, at least two of them are different. Based on the rejection
of a null hypothesis, further study focusing on which means are different from the others
can be performed using t-tests or contrasts, as described in the next section.

2.7 T-test

A t-test is a statistical method to test whether or not the means of two sample groups
are different. There are typically two types of t-tests: one-sided and two sided. They are
shown as followings,

Two sided:

Ho: the means of two groups are the same;
Ha: the means of two groups are not the same.

One sided:

Ho: the mean of group A is larger than or equal to that of group B;

Ha: the mean of group A is smaller than that of group.
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One sided:
Ho: the mean of group A is smaller than or equal to that of group B;
Ha: the mean of group A is larger than that of group B.
In this research, the t-test was used to investigate the specific differences of changes
in IRI over time between two different initial IRI groups. This can also be achieved using
contrasts, as described in the next section. To conduct a t-test, a t score needs to be

calculated and compared to a critical t value. A t score can be calculated as:

X1+ Xy

2 2
where,
x; is the mean of the first sample group,
X, is the mean of the second sample group,
S, is the standard deviation of the first sample group,
S, is the standard deviation of the second sample group,
n, is the total number of values in the first sample group,
n, is the total number of values in the second sample group.
The formula for the standard deviation is given by:

X(x—x)?

S =
n—1
where,
x is the value given by the sample group,

X is the mean,

n is the total number of values.
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A critical t value can be obtained from a t table, according to the degree of freedom and
the level of significance. The degree of freedom is determined by sample sizes. Different
levels of significance can be used in a t-test, but eventually the strictest level of significance
based on the comparison with the critical t value will be used to draw a conclusion.

The selection of a two-tailed t-test or a one-tailed t-test is determined by the null
hypothesis. If a direction in relationship between the two groups is hypothesized, then a
one-tailed t-test will be chosen. If no direction is hypothesized, then a two-tailed t-test will
be used.

2.8 Contrast

A contrast is usually used to test the significance of differences among levels of
variables. In this research, contrasts are used to examine whether or not the difference
between means of two groups exist and also used to estimate the specific differences
between two groups. The simplest contrast compares two levels of a variable, and a contrast
can also be used to test the differences between combinations of variables.

Contrast defined by Everitt (2002) is “a linear function of parameters or statistics in
which the coefficients sum to zero.” For example, if an application include two treatment
groups (Xa and xp) and a control group (with mean X¢), the following contrast is used to
compare the mean of control group and the average of the treatment groups;

1 1
Xc —Exa —Exb

For this research project, there are only two levels of treatment groups (xa and Xy). The
contrast can be written as:

Xqg — Xp



CHAPTER 3: RESEARCH METHODOLOGIES

3.1 Summary

To achieve the research objectives, initial IRI, network performance IRI, age, AADT,
and locations of pavements need to be analyzed for every roadway section. In this research,
network performance IRl and age were used to develop linear regression models that
described the change in IRI over time, which could be used to investigate if smoother
pavements deteriorated slower. Initial IRI, AADT, and locations of pavements were the
factors that can influence pavement roughness. They were considered in this research and
were used to categorize roadway sections into pavement families and subfamilies.

The pavement family databases were developed by merging three individual databases
that contain network IRI, age, and AADT, respectively. The data merging process was
described in the next section. After the family database was created, each family was
divided into subfamilies based on pre-defined initial IRI ranges, including IRI_60 (initial
IRI between 0~60 inch/mile), IRI_70 (initial IRI between 60~70 inch/mile), and IRI_80
(initial IRI between 70~80 inch/mile). Then, linear regression analysis was performed to
develop the relationship between network performance IRI and age for each subfamily.
The results provided the rates of changes in IRl of pavements in each subfamily, which
represented how fast the IRI value increases over time. Then, ANOVA was conducted to
examine whether or not the deterioration rates of different initial IRl subfamilies are

significantly different. The results showed no significant differences among initial IRI
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groups. To further the study, a new factor, locations of pavements, was included in the
analyses. Contrasts were used to examine the differences of the network IRI for subfamilies
again. In addition, the service lives of roadway families were studied. The flow chart of

research methodologies was shown in Figure 1.
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o NC IRI=92.99+1.049*Age 9.5
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Figure 1: Flowchart of research methodologies



19

3.2 Development of Pavement Families and Subfamilies

The procedure of developing pavement families and subfamilies is described in the
following section.
3.2.1 Roadway Families

In this research, the initial IRI and network performance IRI data were collected by
NCDOT. In North Carolina, pavements are classified as Interstate, US, NC and SR
(Secondary Roads). According to roadways’ traffic volume, i.e., Annual Average Daily
Traffic (AADT), and their classifications, roadways are divided into different families, as
shown in Table 1. In this table, Interstate_0-50k represents Interstate roadways with an
AADT value between 0 and 50,000 veh/day. BSR represents Bituminous Rural
Subdivision routes, BSS represents Bituminous Slurry Subdivision routes, PS represents
Plant Mix Subdivision routes, and PR represents Plant Mix Rural routes.

Table 1: Roadway families in NCDOT PMS

No. Family No. Family

1 Interstate_0-50k 10 NC_15kplus

2 Interstate_50kplus 11 SR _BSR _0-1k
3 US_0-5k 12 SR_BSR_1kplus
4 US_5-15k 13 SR_BSS_0-1k
5 US_15-30k 14 SR_PR_0-1k

6 US_30kplus 15 SR_PR_1-5k

7 NC_0-1k 16 SR_PR_5-15k
8 NC_1-5k 17 SR_PR_15kplus
9 NC_5-15k 18 SR_PS_0-1k

3.2.2 Development of the Merged Database
Databases that contain the network IRI, age, and AADT data were obtained from

NCDOT. In this research, the relationship between initial IRl and network performance
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IRI over time was developed for every pavement family, therefore the respective database
for each pavement family should be created. To this end, the databases provided by
NCDOT need to be merged.

NCDOT has surveyed all the asphalt pavements and 20% concrete pavements every
two years since 1982, and has maintained several databases to store the collected data.
NCDOT provided three databases to be used in this research. The first one is
NCDOT_Construction_Data, which includes construction information for roadways, such
as construction date, the begin mile post and the end mile post of each specific pavement
project, the construction materials, and the thicknesses of pavements. Among these
information, construction completion year was used to calculate pavement age. The second
database is NCDOT_IRI, which encompasses IRI information, such as county names and
route numbers of roadway sections, the start and the end mile posts, and the date of the IRI
survey. In this database, measured IRI values were used in statistical analyses as network
IRI, and initial IRI if the corresponding pavement age is zero. The third database is
NCDOT_Asphalt_Ratings. This database contains the pavement information for asphalt
pavements, such as county names and route numbers, AADT, the start and end mile posts,
and the dates of surveys. In this database, AADT was used to subdivide roadways into
families.

Merging the above mentioned three databases involved several steps. Each of the
provided databases has different start and end mile posts and often times these mile posts
intersect with each other. In addition, the network performance IRI has been collected in
0.1 mile increments, while pavement age and AADT were collected for pavements that are

longer than 0.1 miles, making this data merging process a challenging task. The following
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procedures describe how to merge the provided databases into the final database which

includes age, AADT, and IRI for further analyses. The tool used in this process is Microsoft

Access 2010.

(1) Extracting data

This step is to extract the following needed data from following databases.

e NCDOT IRI: COUNTY, ROUTE, OFFSET FROM, OFFSET TO,

EFF_YEAR and NC IRI L R_AVG

o

o

o

(@]

(@]

o

COUNTY: the county name

ROUTE: the route number

OFFSET FROM: the start mile post of an IRI survey
OFFSET TO: the end mile post of an IRI survey
EFF_YEAR: the date of an IRI survey

NC_IRI L R AVG: the measured IRI value

e NCDOT_ Construction_Data: County (COUNTY), Route (ROUTE), Begin

MP (BEGIN_FROM), End MP (END_TO), and Year Comp (YEARCOMP)

o

o

o

o

County: the county name.

Route: the route number.

Begin MP: the start mile post of construction. For programing
convenience, this item was written as BEGIN FROM in the
following description

End MP: the end mile post of construction. For programing
convenience, this item was written as END TO in the following

description
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Year Comp: the completion date of construction. For programing

convenience, this item was written as YEARCOMP

e NCDOT Asphalt Ratings: COUNTY, ROUTE, OFFSET FROM

(BEGINE_POINT), OFFSET TO (END POINT), EFF YEAR

(AADTYEAR) and AADT

©)

COUNTY: the county name

ROUTE: the route number

OFFSET FROM: the start mile post of the AADT survey. To
distinguish the start mile posts from the data in the NCDOT IRI
database, this item was written as BEGIN_ FROM

OFFSET TO: the end mile post of AADT survey. To distinguish the
end mile posts from the data in the NCDOT IRI database, this item
was written as END POINT

EFF_YEAR: dates of AADT surveys. To distinguish EFF_YEAR

from the NCDOT _IRI database, it was written as AADTYEAR

(2) Merging Age and the IRI into One Database, IR AGE

The purpose of this step was to create a new database, IRI_AGE, which includes IRI

and age information of roadway sections. NC IRl L R_AVG in the NCDOT_IRI

database was collected for every 0.1-mile roadway section, and roadway sections were

merged using this length. In this research, NC_IRI_L R_AVG is referred to as IRI.

Corresponding age and AADT value were extracted and assigned to each roadway section.

In this process, roadway sections were identified by “COUNTY”, “ROUTE”,

“OFFSET_FROM”, “OFFSET_TO”.
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The connection was built between the NCDOT IRl database and the

NCDOT_Construction_Data database in Access by defining county and route attributes as
“primary keys”. Specifically, “BEGIN_FROM”, “END_TO”, and “Year Comp” from
NCDOT _Construction Data and “OFFSET FROM”, “OFFSET TO”, “EFF _YEAR”,
and “NC_IRI L R_AVG” from NCDOT _IRI were used for merging the IRI and age data
into a new database, IRI_AGE. An example is shown below in Figure 2 and actual merged
database is shown in Figure 3. It should be noticed that the new databases contains many

unreasonable entries that need to be removed, as described in the next section.

NCDOT_Construction_Data

NCDOT_IRI_and_RUTTING_DATA (Age Database)
(IRI Database) County_Route | BEGIN_FROM | END_TO | Year Comp
County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR [ IRI 1.10000040 | 0.0 21 1980
04 - 998 1_10000040 | 0.0 21 1997
1_10000040 | 2.1 3.4 2000
1_10000040 | 2.1 34 2002

Merged Table (1)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRI | BEGIN_FROM | END_TO | Year Comp

Figure 2: The example process of merging databases (1)
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Figure 3: Merged database with IRI and age
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9.43
9.45
16.063
16.055
16.055
15.2
14.71
16.055
16.063
6.65
13.72
16.055
9.88
6.65
7.16
1.2
6.7
3.63
6.85
9.43
9.45
16.063
16.055
16.055

To remove the unreasonable roadway sections, only the roadway sections of which

“OFFSET_FROM?” is greater than or equal to “BEGIN_FROM” and “OFFSET_TO” is

smaller than and equal to “END_TO” (Figure 4) remained in the IRI_AGE database.

Otherwise, roadway sections in the two databases are not matching spatially, and thus are

considered unreasonable and removed. This process is illustrated in Figure 4.

The roadway sections were further purged using a condition, which is that a roadway

section was kept in the database only if its “Year Comp” is smaller than or equal to

“EFF_YEAR” and is closest to “EFF_YEAR” (Figure 5). This is because for the same

roadway section, it may be treated for several times and have several “Year Comps”. This

step is to select the reasonable construction year for each IRI record.
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Merged Table (1)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | BEGIN_FROM | END_TO | Year Comp

If OFFSET_FROM > =BEGIN_FROM and
OFFSET_TO < =BEGIN_TO, keep the row,

Merged Table (2)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | BEGIN_FROM | END_TO | Year Comp

Figure 4: The example process of merging databases (2)

The code used in Access to achieve this goal is:
“SELECT COUNTY ROUTE, OFFSET FROM, OFFSET TO, EFF YEAR, IRI,
MAX(YearComp) FROM IRI_AGE
GROUP BY COUNTY ROUTE, OFFSET FROM, OFFSET TO, EFF YEAR, IRI;”
The last step is to derive age for each IRI record. It is calculated by subtracting “Year

Comp” from “EFF_YEAR”
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Merged Table (2)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | BEGIN_FROM | END_TO | Year Comp
1_10000040 0.0 0.1 1998 67 | 0.0 21 1980
1_10000040 0.0 0.1 1998 67 | 0.0 2.1 1997
1_10000040 |0.1 0.2 2000 78 | 0.0 PE 1980
1_10000040 0.1 0.2 2000 78 | 0.0 2.1 1997

1.1f Year Comp <= EFF_YEAR, keep the rows.
2. Select the maximum Year Comp.

Merged Table (3)
County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | BEGIN_FROM | END_TO | Year Comp

1_10000040 0.0 0.1 1998 67 | 0.0 2.1 1997
1_10000040 0.1 0.2 2000 78 | 0.0 21 1997

Delete BEGIN_FROM and END_TO columns
to avoid the potential confusions.

Merged Table (4) (IRI_AGE)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRI | Year Comp
1_10000040 0.0 0.1 1998 67 | 1997
1_10000040 |04 0.2 2000 78 | 1997

Figure 5: The example process of merging databases (3)

(3) Merging the AADT and the IR AGE databases into a new database, IRl AGE AADT

The purpose of this step is to create a new database, IRI_AGE_AADT, which includes
IRI, age, and AADT of roadway sections. This process involved several steps. Similar to
the previous section, the connection of the “IRI AGE” database and the
NCDOT_Asphalt_Ratings database was built in Access by defining county and route
attributes as “primary keys”. “OFFSET FROM”, “OFFSET TO”, “EFF_YEAR”,
“NC _IRI L R_AVG” and “Year Comp” from IRI_AGE (merged database including IRI
and age), and “BEGINE_POINT”, “END_POINT”, “EFF_YEAR1”, “AADT” from the
NCDOT_Asphalt_Ratings database were selected in order to merge AADT values into the

IRI_AGE database (Figure 6).
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NCDOT_Asphalt_Ratings
(AADT Database)

Merged Table (4) (IRIAGE) County_Route BEGIN_POINT | END_POINT | AADTYEAR | AADT

County_Route | OFFSET_FROM | OEFSET_TO | EFE_YEAR |IRI | Year Comp 1_10000040 0.0 35 1994 5000
1_10000040 0.0 35 2000 15000
1_10000040 35 6.7 1994 5000

| 1_10000040 3.5 6.7 2000 15000

!

Merged Table (5) |

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRI | Year Comp | BEGIN_POINT | END_POINT | AADTYEAR | AADT

Figure 6: The example process of merging databases (4)
Roadway sections were kept in the final database, if their AADT “OFFSET_FROM”
is greater than “BEGINE POINT” and “OFFSET TO” is smaller than “END POINT” to

ensure spatial matching (Figure 7).
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Merged Table (5)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRI | Year Comp | BEGIN_POINT | END_POINT | AADTYEAR | AADT

If OFFSET_FROM > BEGIN_POINT and
OFFSET_TO < END_POINT, keep the rows.

Merged Table (6)
County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | Year Comp | BEGIN_POINT | END_POINT | AADTYEAR | AADT

Figure 7: The example process of merging databases (5)

The next step is to select the sections that have the most recent AADT values (Figure
9). This is because for each IRI record section, it may have more than one AADT record
collected at different times. In this step, it was assumed that the most reasonable AADT
value for each IRI record section is the most recent one. For a practical example, as shown
in Figure 8, the AADT effective year selected for the IRI in year 1998 was year 2000, and
the AADT effective year selected for the IRI in year 2000 was year 2000 as well. Figure 9
shows the practical process of merging databases. As shown in this figure, the IRI value in
2001 has various AADT values collected in different years, and the most recent year, 2010,

was used.
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Merged Table (6)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl |Year Comp | BEGIN_POINT [ END_POINT | AADTYEAR | AADT
1_10000040 |0.0 0.1 1998 67 | 1997 0.0 D 1994 5000
1_10000040 |0.0 0.1 1998 67 (1997 0.0 S5 2000 15000
1_10000040 |0.1 0.2 2000 78 (1997 0.0 3.5 1994 5000
1_10000040 |0.1 0.2 2000 78 | 1997 0.0 3.5 2000 15000

If AADTYEAR is the largest one, keep the rows ‘

Merged Table (7)
1_10000040 OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl | Year Comp | BEGIN_POINT | END_POINT | AADTYEAR | AADT

1_10000040 0.0 0.1 1998 67 | 1997 0.0 3.5 2000 15000
1_10000040 0.1 0.2 2000 78 | 1997 0.0 3.5 2000 15000

Delete BEGIN_POINT and END_POINT
columns to avoid the potential confusions.

Merged Table (8) (IRI_AGE_AADT)

County_Route | OFFSET_FROM | OFFSET_TO | EFF_YEAR | IRl |Year Comp | AADT

1 10000040 |0.0 0.1 1998 67 |1997 15000
1_10000040 |0.1 0.2 2000 78 | 1997 15000

Figure 8: The sample process of merging databases (6)

=] IRLAGE_AADT_A_00 -_— -

COUNTY_RO-V| OFFSET_FRC-¥'| OFFSET_TO - EFF_YEAR vVi IRI - | YEARCOMP ~ BEGIN_FROMN - | BEGIN_TO - |ERADTYEAR - AADT -
l_ZDDDDbYD 0.3 0] 2001 96 1987 0.24 1.272 1982 8600
1 20000070 0.3 0.4 200 96 1987 0.24 1.272 1983 8600
1 20000070 0.3 04 ZDD:I 96 1987 0.24 1.272 1934 8000
1 20000070 0.3 D.l 2001 96 1987 0.24 0.84 1986 8000
1 20000070 0.3 0.4 2001' 96 1987 0.24 0.84 1988 2000
1_20000070 0.3 D.I 2001" 96 1987 0.24 0.84 1990 8000
1_20000070 0.3 0l 200 96 1987 0.24 0.84 1992 8000
1 20000070 0.3 0.4 200 96 1987 0.24 0.84 1994 13600
1 20000070 0.3 O.l 2001 96 1987 0.24 0.84 1996 3400
1_20000070 0.3 0. 200 96 1987 0.24 0.84 1998 2400
1 20000070 0.3 0.2 ZDD:I 96 1987 0.24 0.84 2000 3400
1 20000070 0.3 D.' 2001 96 1987 0.24 0.84 2002 20083
1 20000070 0.3 0.4 200:' 96 1987 0.24 0.84 2004 20900
1 20000070 0.3 0y 200 96 1987 0.24 0.84 2006 22000
1_20000070 0.3 D.I 2001 96 1987 0.24 0.84 2008 22000
1 20000070 0.3 0.4 200 96 1987 0 0.84 2010 22000
* h — I

Figure 9: Merged database with IRI, age, and AADT values
The code used in Access to achieve these goals is:
/Selecting the most recent AADT values for each roadway sections/
“SELECT COUNTY ROUTE, OFFSET FROM, OFFSET TO, EFF YEAR, IR]

YearComp, MAX(AADTYEAR) FROM IRI_AGE_AADT
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GROUP BY COUNTY_ROUTE, OFFSET_FROM, OFFSET_TO, EFF_YEAR, IRl,

YearComp,”

As a result, the roadway section database including IRI, age and AADT is obtained,
namely IRI_AGE_AADT.
3.2.3 Creating Roadway Families

After obtaining the merged database IRI_AGE_AADT, it was divided into families
based on the roadway classification (Interstate, US, NC, or SR) and its most recent AADT
value. A list of all the families is shown in Table 1.
3.2.4 Dividing a Family into Subfamilies

Because this research is to develop the relationship between initial IRI and network
performance IRI, network performance IRI will be studied based on different initial IRI

ranges. Thus, each family is divided into subfamilies in term of initial IRI values as shown

in Table 2.
Table 2: Subfamilies of pavement family definition
Subfamily Subfamily 60 Subfamily 70 Subfamily 80
Initial IR1 Range (inch/mile) 0~60 60 ~ 70 70 ~ 80

Roadways which have initial IRI values greater than 80 inch/mile were not included
in this research. This is because an initial IRI value greater than 80 inch/mile is very close
to an IRI value of 103 inch/mile that was identified as the threshold of acceptable ride
quality achieved in a previous study (Chen, et al., 2014), which means the pavements will
need be repaired soon after they are treated or constructed. Outliers were excluded in this
process. The extremely large IRI values at age of 0, 1, 2, and 3 were considered as outliers,

as shown in the SAS code in Figure 10.
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3.3 The Relationship between Initial IRI and Network IRI

In this study, if roadway sections in all subfamilies with smaller initial IRI values have
smaller rates of change in network IRI, it can be concluded that pavements with smaller
initial IR1, meaning smoother surface, will have slower IRI deterioration rates. In other
words, if the pavement is constructed with a high quality (indicated by a small initial IRI
value), this pavement would stay in good condition for a longer time (indicated by the
slower IRI deterioration rates). Linear regression was conducted to investigate this
relationship, as described in the next section.
3.3.1 Relationship between Network IRI and Age

Linear regression analysis was conducted to investigate the relationship between
network IRI and age for each subfamily. Based on the way the subfamilies were developed,
roadways’ classification, AADT, and initial IRI were already considered in the analysis.

The model used is,

IRI= ¢+ B * AGE
where AGE is age of pavement, IRI is network IRI, a and g are parameters,

The resulting B values indicate the rates of deterioration of IRI for a specific subfamily.
The code used in SAS is shown in Figure 10. “New_age” indicates the age of the
pavements, “NC_IRI L. R AVG” indicates the network IRI, and “IRI _IDX” represents
the IRI index, which ranges from 0 to 100, with 100 representing the perfect smooth
condition. “IRI IDX” was used to identify outliers in this study. The thresholds,
“IRI_IDX” values of 98, 95, and 92, were determined by the researchers, to remove the

most extreme IRI ratings, while preserving the majority of the observations.
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@ regression
=IDATA prlSp wo; set sasdata.prlip:
if new_age<=1 and IRI IDE<=93 then delete;

if new age<=2 and IRI IDE<=95 then delete;
if new age<=3 and IRI IDX<=92 then delete;
label new age="ige"
HNC IRI L R AWG="Long-term IRI"™;
rumn;

-|Proc reg data=prlSp wo;
where IRIO=60;
model NC_IRI L R AWVG= new age:
RUH:
guit:

-IProc reg data=prlsp wo;
where IRIO=70;
model NC_IRI L R AVG= new age:
RUH;
guit;

-|Proc reg data=prlSp wo:
where IRIO=80;
model NC _IRI L R AVG= new age:
RUH;
guit:

Figure 10: SAS Code for linear regression

Table 4 shows P values for all the subfamilies. “N/A” in this table indicates the data is
not available, because of the insufficient data for some subfamilies. The results of
regression analysis are included in appendix A.

To examine P values for each subfamily, descriptive statistics were obtained and
summarized in Table 5. The outliers were defined as the value lying outside of two times
of the standard deviation. According to the descriptive statistics, the outliers of
subfamily_60, subfamily_70, and subfamily 80 fall outside of ranges of (-4.044, 7.34),
(0.0937, 1.5889), and (-0.2208, 2.5724), respectively. The final reasonable  values are

included in Table 5.



Table 3: Rates of change in IRI values

Family Subfamily
Subfamily 60 Subfamily _70 Subfamily 80
Interstate 0-50k 0.37010 N/A N/A
Interstate 50kplus 0.28608 N/A N/A
US 0-5k 0.53576 1.00126 1.46503
US 5-15k 0.99852 1.16400 0.62123
US 15-30k 0.97747 0.44515 1.49026
US 30kplus 0.49645 0.29572 0.58778
NC 0-1k 0.92099 0.69980 N/A
NC 1-5k 0.83556 N/A N/A
NC 5-15k 0.72083 N/A 0.58660
NC 15kplus 0.44381 0.68594 0.54262
SR 0-1k BSR 1.85725 N/A 0.74153
SR 0-1k BSS N/A N/A N/A
SR 0-1K PR 2.19287 0.92448 1.96254
SR 0-1K PS N/A N/A N/A
SR 1-5k PR 1.13650 0.38560 0.68261
SR 1kplus BSR 11.75481 1.47318 2.70794
SR 5-15k PR 1.18662 0.96319 0.96519
SR 15kplus PR N/A 1.21551 1.75598
Table 4: Descriptive statistics of f Values
Subfamily_60 Subfamily_70 Subfamily_80

Minimum 0.286 Minimum | 0.2957 | Minimum 0.5426

Maximum | 11.755 | Maximum | 1.4732 | Maximum 2.7079

Mean 1.648 Mean 0.8413 Mean 1.1758

Mode ~0.911 Mode ~0.3755 Mode ~0.5723

Median 0.921 Median 0.9245 Median 0.7415

Std Dev 2.846 Std Dev | 0.3738 Std Dev 0.6983

Skewness | 3.6507 | Skewness | 0.0449 | Skewness 1.0546

Kurtosis | 16.7376 | Kurtosis | 2.1027 Kurtosis 3.3524

Sum 24.71362 Sum 9.25383 Sum 14.10931
Count 15 Count 11 Count 12
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ANOVA was conducted to determine if B values of subfamily_60, subfamily_ 70, and

Ho: the average rates of change in IRI (the mean 3 values) are the same for these

3.3.2 ANOVA for Deteriorate Rates

three subfamilies.

subfamily_80 are equal to each other. The hypotheses are:

Ha: at least two of the means are different from each other.

Table 5: Final  Values

Family Subfamily
Subfamily 60 Subfamily _70 Subfamily 80
US 0-5k 0.53576 1.00126 1.46503
US 5-15k 0.99852 1.16400 0.62123
US 15-30k 0.97747 0.44515 1.49026
US 30kplus 0.49645 0.29572 0.58778
NC 15kplus 0.44381 0.68594 0.54262
SR 0-1K PR 2.19287 0.92448 1.96254
SR 1-5k PR 1.13650 0.38560 0.68261
SR 5-15k PR 1.18662 0.96319 0.96519
The code used in SAS is shown in Figure 11.
[ﬁ rate
-ldata sasdata.rate;
infile "W:%Desktop\Dats from Dr. Chensas.csv" delimiter=',' firstobs=2;

rumn;

run;
gquit;

input rate subcategory:

-lproc anovra data = sasdata.rate;
class subcategory:
model rate=subcategory;

Figure 11: Code of ANOVA
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Table 7 shows the test results. The p-value of the ANOVA is 0.4123, indicating that it

was failed to reject the null hypothesis at the 0.05 significant level. This means that there

IS no significant difference between these three subfamilies.

Source

subcategory

20

rate

0.5

Table 6: ANOVA results

DF Anova 55 Mean Square F Value Pr>=>F
2 043979472 0.21989736 0.92 04123

Distribution of rate

] F 0.92
Prob =F 0.4123

o~ <
o
.
1
60 70 80
subcategory

Figure 12: Boxplots of B values for three subfamilies

The boxplot (Figure 12) also shows that the average deteriorate rates of IRI for

subfamily_60, subfamily_70, and subfamily_80 are not significantly different. It should be

noted that, in this regression analysis, the factors which have been considered are roadway

classifications, initial IRI, and age. Based on the literature review, other factors can also

affect pavement roughness, including environmental factors, pavement structures, and
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pavement materials. Therefore, the next step was to include an additional factor, locations
of roadway sections that has been collected by NCDOT in the further analysis, as described
in the next section.
3.3.3 Contrasts for analyzing Network IRI Using Different Initial IRI

To further investigate the relationship between initial IRI and long term network
performance IRI, the locations of roadway sections were included in the analyses. As
shown in Table 7, when considering the location factor, each pavement family has 9
subfamilies. The location factor has three levels, i.e., Coastal, Mountains, and Piedmont,
representing three geographical regions in North Carolina. AADT was already considered
when creating initial roadway families. Therefore, the factors that were included in the
analyses were roadway classification, IRI, age, AADT, and location. As an example shown
in Table 7, the pavement family of Interstate_0-50k has nine subfamilies with different
initial IR1, in each of the locations (the coastal, mountains, and piedmont regions).

Table 7: Sub categories of pavement family with region

Pavement Family Region Initial IRI
IRIs0
Coastal IRI7o
IRIgo

IRIs0
Interstate_0-50k Mountains
IRI7o

IRIgo

_ IRIs0
Piedmont IRI7o

IRIso

Since locations of pavements are considered as an additional factor, if the subfamilies

are divided based on all the factors, the data for each subfamily will be insufficient to
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conduct the regression analysis. To address this issue, condition data were grouped for
pavement families. The multiple regression equation describing the relationship between
those factors and network IRI is:
IRl = a + f; *x Region; + (B, * Regiony + [3 * Regionp + L4 * IRIgy + B5 * IRI7g
+ B¢ * IRIgy + 7 * (Region, * IRIg,) + Bg * (Regione * IRI;) + By
* (Region; * IRIgy) + P10 * (Regiony, * IRIg,) + B11
* (Regiony * IRI;) + P12 * (Regiony  IRIg) + Bi3
* (Regionp * IRlgo) + P14 * (Regionp * IRI70) + Bis
* (Regionp * IRIgy) + P16 * Age
where,
« is constant,
B, B2, -.., P1e are coefficients,
Region. is the Coastal region,
Regionm is the Mountains region,
Region,, is the Piedmont region,
IRleo includes roadway sections with initial IRI between 0 and 60,
IRI70 includes roadway sections with initial IR1 between 60 and 70,
IRIgo includes roadway sections with initial IR1 between 70 and 80,
Age is the age of the pavement.
It should be noticed that in this model, S,¢, Which is the coefficient of age, is the same
for all regions and initial IRI values. Therefore, B, represents the overall IRI deterioration
rate. To investigate how individual subfamily’s IRI values would change over time, the

following contrasts were analyzed to test the corresponding null hypotheses:



Ho: IRIgo— IRI70= 0 in the Coastal region (the network IRI values of
subfamily 60 and subfamily 70 at the same age are the same in the coastal
region)

Ho: IRIso— IRIgo = 0 in the Coastal region (the network IRI values of
subfamily 60 and subfamily 80 at the same age are the same in the coastal
region)

Ho: IRI70— IRIgo = 0 in the Coastal region (the network IRI values of
subfamily 70 and subfamily 80 at the same age are the same in the coastal
region)

Ho: IRIs0 — IRI70= 0 in the Mountains region (the network IRI values of
subfamily 60 and subfamily 70 at the same age are the same in the Mountains
region)

Ho: IRIso — IRIgo = 0 in the Mountains region (the network IRI values of
subfamily 60 and subfamily 80 at the same age are the same in the Mountains
region)

Ho: IRI70— IRIgo = 0 in the Mountains region (the network IRI values of
subfamily 70 and subfamily 80 at the same age are the same in the Mountains
region)

Ho: IRIgo— IRI70= 0 in the Piedmont region (the network IRI values of
subfamily 60 and subfamily 70 at the same age are the same in the Piedmont

region)
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e Ho: IRIso— IRIgo = 0 in the Piedmont region (the network IRI values of
subfamily 60 and subfamily 80 at the same age are the same in the Piedmont
region)

e Ho: IRI7;0— IRIgo= 0 in the Piedmont region (the network IRI values of
subfamily 70 and subfamily 80 at the same age are the same in the Piedmont
region)

The code used in SAS is shown in Figure 13.

7 @ | | HE EX O

-IPROC MIZED DATA=sasdata.us0s5;
class region IRIO;
model NC TRI L B AVG = new age REGICH IRIO Region®IRIO;
estimate 'IRIE0 W3 IRIVO in Cosstal' IRIO 1 -1 0 ;
estimate 'IRI&0 W3 IRISO0 in Coastal' IRIO 1 0 -1;
estimate 'IRIT0 W3 IRIS0 in Cosstal' IRIO 0O 1 -1:;
where region='C';
RUH:
QUIT;

PROC MIXED DATA=sasdata.us05:;

clas=s region IRIO:

model NC IRI L R AWG = new age REGICH IRIO Region*IRIO;
ezatimate 'IRIE0 V3 IRIYO in Mountains' IRIO 1 -1 0 ;
estimate 'IRIE0 VW3 IRISO in Mountsains' IRIO 1 0O -1;
estimace 'IRIVO0 W3 IRISO0 in Mountains' IRIO 0O 1 -1
where region='MN';

RUH;

QUIT:;

PROC MIXED DATA==asdata.us05;

class region IRIO;

model NC _IRI L B AVG = new age REGICHN IRIO Region®IRIO:
estimate 'IRIS0 V3 IRIYO in Piedwont' IRIO 1 -1 0 ;
estimate 'IRIs0 W3 IRISON in Piedwont' IRIO 1 0 -1:
estimate 'IRIYO0 W3 IRISO0 in Piedwont' IRIO O 1 -1:
where region='P':

RUHJ

QUIT;

Figure 13: Code of ANOVA contrast
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Because of the unbalanced sample sizes of the Interstate families, not all contrasts of
Interstate_0-50k and Interstate_50kplus were performed. Because of insufficient data,
contrasts of SR_BSS 0-1k, SR_BSR_0-1k, SR_PR_0-1k, and SR_PS 0-1k were not
analyzed. As two examples, the results of US_0-5k and NC_1-5k are shown in the Table 8
to Table 13. Detailed results are included in Appendix B.

Table 8: Estimates of contrasts: US 0-5k in coastal

Estim ates
Label Estimate Standard Errori DF tValue Pr> |t
IRIGO VS IRI70 in Coastal -20.7418 0.8664 12E4 -2394 =.0001
IRIBO V S IRIBOD in Coastal -34.5042 15522 12E4 -22.23 =.0001
IRI70 VS IRIBD in Coastal -13.7623 17717 12E4 -1.77 =.0001

Table 9: Estimates of contrasts: US 0-5k in mountains

Estimates
Label Estimate Standard Emror DF tValue Pr= [t
IRIE0 VS IRIT0 in Mountains | -21.2227 0.9319 633 -2277 =.0001
IRI60 VS IRIB0 in Mountains | -39.5429 1.0139 63E3 -39.00 =.0001
IRI70 VS IRI80 in Mountains | -18.3203 1.3644 63E3 -13.43 =.0001

Table 10: Estimates of contrasts: US 0-5k in piedmont

Estimates
Label Estimate Standard Error DF tValue Pr>|f
IRIGO VS IRIT0 in Piedmont  -14.1174 0.7179 B4E3 -19.67 =.0001

IRIGO VS IRIBO in Piedmont| Non-est
IRI7T0 VS IRIBO in Piedmont| Non-est

Table 11: Estimates of contrasts: NC 1-5k in coastal

Estimates
Label Estimate Standard Error| DF tValue Pr>|
IRIBO VS IRITO0 in Coastal -13.1004 03860 22E4 -33.94 =0001
IRIE0O VS IRIBO in Coastal -22.7642 06746 22E4 3374 <0001

IRI70V S IRIB0 in Coastal  -0.6638 0.7726 | 2264 -12.51 <0001



Table 12: Estimates of contrasts: NC 1-5k in mountains

Estimates
Label
IRIE0 VS IRI70 in Mountains | -20.2917
IRIE0 VS IRI80 in Mountains | -22.2649

IRI70 VS IRI80 in Mountains | -1.9732

0.3187 43E3
0.6176 43E3
0.6621 43E3 -2.98 | 0.0029

Estimate Standard Emor DF tValue Pr> [t

-83.67 <0001
-36.05 <0001

Table 13: Estimates of contrasts: NC 1-5k in piedmont

Estim ates
Label Estimate Standard Error DF tValue Pr>|f
IRIBO VS IRI70 in Piedmont  -9.1016 0.2837 15E4 -32.08 <.0001
IRIBO VS IRIB0 in Piedmont -18.8184 0.8497 15E4 2215 <.0001
IRIZ0 VS IRI80 in Piedmont  -9.7168 0.8894 15E4 -10.93 <0001
Table 14: Summary of contrast results
Pavement Family | Location of Pavement Order
Coastal N/A
Interstate_0-50k Mountains IRIg < IR0
Piedmont N/A
Interstate 50kplus Coastal N/A
Mountains N/A
Piedmont IRI70 < IRIso
Coastal IRIso < IRI70 < IRIso
US_0-3k Mountains IRIs < IRI70 < IRIg0
Piedmont IRIg0 < IRI79
Coastal IRI60 < IRIgo < IRI7g
US_5-15k Mountains IRIs < IRI70 < IRIgo
Piedmont IRIs0 < IRIgo < IRI70
Coastal IRIso < IRIgo < IRI7o
US_15-30k Mountains IRIs < IRI70 < IRIs0
Piedmont IRIgo < IRI7p < IRIgo
Coastal IRIgo < IRI7p < IRIgo
US_30kplus Mountains IRI70 < IRIeo < IRIso
Piedmont IRIso < IRI7o
NC 0-1k Coastal IRIso < IRI70 < IRIgo
- Mountains IRIgo < IRI70 < IRIso




Piedmont IRIgo < IRI79 < IRIgo
Coastal IRIg0 < IRI79 < IRIg0
NC_I-3k Mountains IRIgo < IR 7o < IRIso
Piedmont IRIso < IRI70 < IRIgo
Coastal IRIso < IRI70 < IRIgo
NC_3-15k Mountains IRIgo < IRI7 < IRls0
Piedmont IRIg0 < IRI79 < IRIgo
Coastal IRIgo < IRI79 < IRIgo
NC_ISkplus Mountains IRI7 < IRIgo < IRIso
Piedmont IRIso < IRI70 < IRIgo
Coastal IRIso < IRI70 < IRIgo
SR_BSR_lkplus Mountains N/A

Piedmont IRI79 < IRIg0
Coastal IRIso < IRI70 < IRIgp
SR_PR_1-k Mountains TRI7 < IRIgo < IRIso
Piedmont IRI79 < IRIso < IRIgo
Coastal IRIso < IRI70 < IRIgo
SR_PR_5-13k Mountains IRIs < IRI70 < IRIso
Piedmont IRI7p < IRIgo < IRIg0
Coastal IRIgo < IRIgp < IRI70

SR_PR_I5kplus Mountains N/A

Piedmont IRIsp < IRI70 < IRIgo

From the analysis results, for most of the subfamilies (25 out of 36, approximately
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70%), the null hypotheses were rejected at the 0.05 significant level, as shown in the Table

14, and an ascending order, IRlso < IRI70 < IRIgo, can be concluded. For example, the

estimates of contrasts for US_0-5k in Coastal are shown as: IRlso-IR170=-20.7, IRlso-IRIgo=

-34.5, and IRI7o-IRIgo= -13.8, which can be written as IRlg= IRl7;o +13.8= IRlgo + 34.5.

Therefore, for the US_0-5k family, IRleo < IRI70 < IRIgo. The contrasts of other pavement
families are attached to Appendix B. This finding proved that smoother pavements (smaller

initial IR1) have longer service lives.
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3.4 Prediction of Pavement Service Lives

Linear regression analysis was conducted to predict the service lives of roadways using
the following expression:

IRl = a+ p * Age

Where,

«a is constant,

[ is the coefficient,

age is the age of pavements

The service lives are estimated for 4 roadway classifications: Interstate, US, NC, and
SR. This was based on the assumption that roadways in the same pavement classification
perform similarly, therefore, having the same service lives. Minitab was used for this
analysis.

The parameter estimates for four pavement classifications are shown in Figure 14 to
21.

2 .
=) Session

Regression Analysis: NC_IRI_L_R_AVG versus new_age
The regression edquation is
NC_IRI_L F_AVG = 80.98 + 0.3962 new_age

3= 26.2995 P-3g = 0.5% EBE-3gfad]) = 0.5%

Analvysiz of Variance

Source LF 35 o] F I3
Regression 1 201569 201569 291.43 0.000
Error 63378 43836368 692

Total 63379 44037937

Figure 14: Regression analysis for Interstate
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Figure 15: Fitted line plot for Interstate
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Regression Analysis: NC_IRI_L_R_AVG versus new_age
The regression edquation is
NC_IRI_L_R_AVG = 87.12 + 0.9682 new age

3= 27.8034 R-5q = 2.3% R-3gfad)) = 2.5%

Analysis of Wariance

Source DF 33 ok F i3
Regression 1 15425553 1542585583 199558.61 0.000
Error 775506 602118907 T3

Total 77507 617545490

Figure 16: Regression analysis for US
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Regression Analysis: NC_IRI_L_R_AVG versus new_age
The regression edquation is
NC_IRI L F_AVG = 92.99 + 1.049 neuw_age

3 = 28.0577  R-3q = 3.0%  R-Sqiad)) = 3.0%

hnalysis of Variance

Jource DF 33 M3 F I3
Regression 1 15498331 18498331 23497.84 0.000
Error 756685 595689311 787

Total 756686 ©5l4187642

Figure 18: Regression analysis result for NC
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Regression Analysis: NC_IRI_L_R_AWS versus new_age
The regression equation is
NC IRI L B AVG = 94.14 + 1.318 new_age

§ = 25.0183 R-Sg = 6.2% R-Sgiadj) = 6.2%

Analyziz of Wariance

Source DF 35 juk] F P
Regrezssion 1 845865 846865 1078.77  0.000
Error lg229 12740185 785

Total 16230 13537053

Figure 20: Regression analysis for SR
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Figure 21: Fitted line plot for SR

The final models for each pavement family are shown in Table 15. The service lives
before roadways reach the threshold of 103 in. /mi. are also calculated.

Table 15: Polynomial Models for IRI and age

Pavement Classification Model Service Life
Interstate IR1=80.98+0.3962*Age 55
uUs IRI=87.12+0.9682*Age 16.4
NC IR1=92.99+1.049*Age 9.5
SR IR1=94.14+1.318*Age 6.7

From Table 15, the estimated service lives for Interstate, US, NC, and SR roadways are
55, 16.4, 9.5, and 6.7 years, respectively. NCDOT recommends that asphalt pavements to
be treated in year 12 and 23 (NCDOT, 2014). Compared to the NCDOT recommendations,
the service life for Interstate is much longer, and the service lives for US, NC, and SR are
comparable. The service life for Interstate is not realistic. The contour plot (Figure 22) and
the distribution of age vs. IRI for Interstate (Figure 23) show that there are a large number

of IRI values of 75 inch/mile clustering at ages of 6 and 11. This is probably because of
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survey equipment errors occurred in these two years. These two highly dense groups of IRI
values make the service life of Interstate to be a large number. It was decided to exclude
this service life from further analyses, and recommend a future study to investigate the
possible causes and develop a reasonable solution. Because service lives derived in this
study were solely based on IRI, and NCDOT recommendations were obtained based on
various different distress and the overall pavement performance, the estimated service lives
of US, NC, and SR roadway classifications are reasonable.

The models developed for US, NC, and SR can be used to calculate the acceptance IRI
criterion for corresponding pavement constructions or treatments. If NCDOT expects to
treat the pavement in the year of 12, initial IRI value at the age of 0 can be calculated using
the defined threshold and the expected service life (Table 15). This initial IRI value
provides a reference IRI criterion for NCDOT to accept the contractors’ performance. The
calculated initial IRI values are included in Table 16.

Table 16: Initial IRI values for US, NC, and SR

Pavement Classification Initial IRI Value (inch/mile)
usS 91
NC 90
SR 87
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Figure 22: Contour plot of age vs. IRI for Interstate
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS

The objectives of this research are to develop the relationship between initial IRl and
network IRI and to predict the service lives of pavement. To achieve these objectives, three
databases provided by NCDOT were merged, linear regression and contrasts were
conducted to develop the relationship between initial IRl and network IRI, and to predict
the service lives of pavements.

It can be concluded that roadway initial IRI values have influence on the network IRI
performance. When roadway classification, AADT, and initial IRl were included as
independent variables in this study, the roadways’ IRI deterioration rates of pavements
families with different initial IRIs were not significantly different. Thus, locations of
roadways were included as an additional factor to further analyze the relationship between
initial IRI and network IRI, and the results indicated that pavements with smaller initial
IRI last longer.

In this study, reasonable service lives were estimated for each pavement classification.
The IRI threshold used in the analyses is 103 inch/mile, which was obtained from the
previous study and is the threshold of acceptable/ unacceptable ride quality. The results
indicated that the average service lives for the Interstate, the US, the NC, and the SR
pavements are 55, 16.4, 9.5, and 6.7 years, respectively. NCDOT recommends that asphalt
pavements to be treated in year 12 and 23 (NCDOT, 2014). Compared to NCDOT

recommendations, the results in this study indicated that service life for Interstate is much
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longer and was not used in further analyses, US roadways last longer than 12 years, and
NC and SR roadways last shorter than 12 years. The estimated service lives for US, NC,
and SR are reasonable because service lives derived in this study were based on IRI only,
and NCDOT recommendations were obtained based on various different distress and the
overall pavement performance. The possible reason for the unrealistic service life for
Interstate was survey equipment errors. Using the derived regression equation (Table 15),
the initial IRI values for Interstate, US, NC, and SR were calculated, assuming these
roadways would reach the IRI threshold of 103 inch/mile in year 12. These initial IRI
values can be used as construction acceptance criteria for the NCDOT construction unit.
The initial IRI values are:

Recommendations are provided for the future studies.

It is recommended to allocate the resources to collect condition data in a more balanced
way: when conducting the contrast analysis, it was noticed that the data for some of the
pavements (for example, Interstate_0-50k and Intersate_50kplus) was unbalanced (for
example, for Interstate_0-50k in location of Mountains, there are 30 records out of 13,930
for IRI_70, 13,900 records for IR1_60, and there is no records for IR1_80), resulting in
insufficient data for some subfamilies and the contrast analysis could not continue.

It is recommended to store pavement information in one comprehensive database:
merging databases in this research was very complicate and time consuming. In addition,
during the merging process, some data were removed in order to achieve reasonable
combinations of IRI, age, and AADT, which means those data were not used even though
they contain useful information. A centralized, geo-referenced database can efficiently

address this issue.
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It is recommended to improve the data quality of future data collection efforts: it was
observed that for some roadway sections, the IRI data collected changes dramatically and
inconsistently over time. This is probably because different vendors, using different
surveying equipment, were selected to survey the roadways in different years. It is
recommended that future IRI data should be collected by one vendor who can make a long-
term commitment or by the NCDOT surveying crew.

It is recommended to use multiple IRI thresholds for pavements. The IRI threshold used
in this study, 103 inch/mile, is the overall threshold for all roadway classifications.
However, each pavement classification has its own service purpose and should be built
with its corresponding criterion. Therefore, it is recommended to use different thresholds
for different pavement classifications to estimate more reasonable service lives, and initial
IRI values for the construction acceptance purpose.

It is recommended to further study the service life for Interstate. Possible reasons for
the IRI value of 75 inch/mile to be clustered at ages of 6 and 11 need to be investigated.
Once the issue is addressed, a reasonable regression equation should be developed to derive

an appropriate service life for Interstate.
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Long-term IRI
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US_15-30k subcategory_60

Parameter Esimates

Parmameter Standard
Variable Label DF Estimate Error tWValue Pr> [t

Intercept Intercept 1 85.51839 022085 387.23 <0001
new _age Age 1 0.97747 0.02152 | 4541 =.0001

Fit Plot for NC_IRI_L_R_AVG

150

Qbservations 106611

Parameters 2

Error DF 106603

MSE 86279

; E ; : : R-Square 0.018

160 4 AdiR-Square 0.019

a0




Laong-term IR

US_15-30k subcategory_70

Parameter Egimates

Pammeter Standard
Varable Label DF Estimate Error | tValue Pr=>|f

Intercept Intercept 1 116.73870  1.5318%  76.22 =.00M1
new_age Age 1 0.44515  0.1353% 3.2% 0.0010

Fit Plot for NC_IRI_L_R_AVG

. o o
175 g s E
= :
o [e]
o o
; o
150 - 2 &
; 8 Ohzervations 2540
5 ¢ | Parameters 2
125 - E Error DF 2538
b MSE 908994
o [@| RSeuse 00042
=] g Adj R-Sgusre 0,0038
100 - -
g
75 -|
T
5 10 15 20

67



Long-term IR
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Long-term IRI

SR_PR_1-5k subcategory 70

Parameter Egimates

Parmameter Standard

Variable Label DF Estimate Emor tValue Pr=|f

Intercept Intercept 1 08.56546 1.48649  66.31 =.0007

new_age Age 1 0.38560 013083 285 00032

Fit Plot for NC_IRI_L_R_AVG
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Long-term IRI

SR_PR_1-5k subcategory 80

Parameter Estimates

Parmmeter Standard

Variable Label DF Estimate Emor tValue Pr=|f
Intercept Intercept 1 10647537 158285 6722 <0001
new_age Age 1 0.68261 012237 5.58 =000
Fit Plot for NC_IRI_L_R_AVG
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Long-term IR

SR_BSR_1kplus subcategory 60

Parameter Egimates

Pammeter Standard
Varnable Label DF Estimate Error tValue Pr>|f

Intercept Intercept 1 30302868 20.70684 1.46 01690

new _age Age 1 11. 75481 502215 2.34 0.0373

Fit Plot for NC_IRI_L_R_AVG
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Lang-term IR

SR_BSR_1kplus subcategory 70

Parmameter Estimates

Parmmeter | Standard

Variable Label DF Estimate Emor tValue Pr=|f
Intercept Intercept 1 89.88544 305735 2040 =.0001
new_age Age 1 147318 0.33142 445 = 0001
Fit Plot for NC_IRI_L_R_AVG
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Lang-term IR

SR_BSR_1kplus subcategory 80

Parameter Estimates

Parameter Standard
Variable | Label DF Estimate Error | t Value  Pr = |t

Intercept | Intercept 1 99.76213 3.20050 | 3117 <0001
new_age Age 1 270794 0.30043 9.01 <0001

Fit Plot for NC_IRI_L_R_AVG
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Lang-term IR

SR_PR_5-15k subcategory 60

Parameter Estimates

Parameter Standard
Variable Label DF Estimate

Intercept  Intercept 1 92 57363

new_age

150

100

50

Age 1 1.18662

Error | tValue Pr=|f

235175 3936 =.00M1

0.21681 547 =001

Fit Plot for NC_IRI_L_R_AVG
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Long-term IRI

SR_PR_5-15k subcategory 70

Variable Label

Intercept Intercept
new_age Age

50

Lrlelelncecino xlio JJals PR elorales alol] mq}@ Lo o]

Parameter Estimates

Parameter Standard
DF Estimate Error | t Value Pr> [f

1 56, 45541 208208 48.78 =.0001
1 0.9831%  0.168M 5,70 <=.0001

Fit Plot for NC_IRI_L_R_AVG
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Long-term IR

SR_PR_5-15k subcategory 80

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error | tValue Pr=|f
Intercept Intercept 1 106.80008 1.78284 6093 =.0001
new_age Age 1 0.96519 0.14459 G.68 =.0001
Fit Plot for NC_IRI_L_R_AVG
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Long-term IRI

SR_PR_15kplus subcategory 60

Parameter Estimates

Parameter 5tandard

Variable Label DF E stimate Error tWValue | Pr= i
Intercept Intercept 1 91.68429 4 63503 1978 =.0001
new_age Age 1 0.51107 043675 17 | 0.2428
Fit Plot for NC_IRI_L_R_AVG
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Lang-term IR

SR_PR_15kplus subcategory 70

Parameter Estimates

Parameter Standard

Variable Label DF E stimate Error | tValue Pr=|f
Intercept Intercept 1 10404162 215413 4330 =.0001
new_age Age 1 1.21551 0.16865 7.21 =.0001
Fit Plot for NC_IRI_L_R_AVG
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Long-term IR

SR_PR_15kplus subcategory 80

Parmmeter Estimates

Parmameter | Standard

Variable Label DF Estimate Emor tValue Pr=|f
Intercept Intercept 1 10028212 257260 3898 =.0001
new_age Age 1 1758838 0.29165 6.02 =.0001
Fit Plot for NC_IRI_L_R_AVG
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Label
IRIE0 VS IRI70 in Mountains | -13.2910

APPENDIX B: CONTRAST RESULTS

Interstate_0-50k

Estimates

Estimate Standard Error DF tValue Pr> |t

IRIG0 VS IRIBO in Mountains | Non-est

IRI70 VS IRI80 in Mountains | Non-est

Interstate_50kplus

47438 14E3

-2.80 0.0051

Estimates
Label Estimate Standard Error DF t Value | Pr > [i|
IRI6O VS IRITO0 in Piedmont |  1.9415 21669 14E3 0.90 0.3703
IRI60 VS IRIBO in Piedmont  Non-est
IRI70 VS IRIBO in Piedmont Non-est

US_0-5k

Estimates
Label Estimate Standard Error DF t Value Pr > |t
IRIEO VS IRI70 in Coastal -20.7418 0.8664 12E4 -23.94 =.0001
IRIEO VS IRIBO in Coastal -34.5042 1.6522 12E4 -2223 <0001
IRI70 VS IRI8OD in Coastal -13.7623 1.7717 12E4 -177 =.0001
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US 0-5k

Estimates
Label Estimate Standard Error
IRI60 VS IRI70 in Mountains -21.2227 0.9319
IRI60 VS IRIBO in Mountains -39.5429 1.0139
IRI70 VS IRIBO0 in Mountains -18.3203 1.3644

US 0-5k

Estimates
Label Estimate Standard Error
IRIE0O VS IRI70 in Piedmont  -14.1174 0.7179

IRIGO VS IRIB0 in Piedmont MNon-est
IRI70 VS IRIB0 in Piedmont  Non-est

DF tValue Pr> |t
63E3 2277 <.0001
63E3  -359.00 <.0001
63E3 -13.43 <.0001

DF tValue Pr= [f|
64E3  -19.67  <.0001

US_5-15k

Estimates
Label Estimate Standard Emror DF tValue | Pr= |t|
IRIG0 VS IRI70 in Coastal | -22.5465 0.6883 15E4 -32.73 <.0001
IRIG0 VS IRIB0 in Coastal | -20.1456 1.1864 15E4 -16.98 <.0001
IRI70 VS IRI80 in Coastal 2.4008 1.3681 15E4 1.75 0.0793

US 5-15k

Estimates
Label Estimate Standard Error DF tValue Pr>|t
IRI60 VS IRI70 in Mountains | -11.8021 1.0829 7E4 -10.80 <.0001
IRI60 VS IRIB0 in Mountains -13.9682 1.5308 T7E4 -9.12 | <.0001

IRI70 VS IRIBO in Mountains | -2.1661 1.8747

TE4 -1.16 | 0.2479
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US 5-15k

Estimates
Label Estimate Standard Error DF
IRI60 VS IRITO in Piedmont | -26.8244 1.8821 14E4
IRI60 VS IRIBO in Piedmont | -25.0627 1.5904 14E4
IRI70 VS IRIBO in Piedmont 1.7617 24612 14E4

US_15-30k

Estimates
Label Estimate Standard Error DF
IRIED VS IRITO in Coastal | -34.1749 0.7089 56E3
IRIED VS IRIBO in Coastal | -32.8706 21373 56E3
IRI70 VS IRIBO in Coastal 1.3044 2.2440 5HB6E3

US_15-30k

Estimates
Label Estimate Standard Error DF
IRI6D VS IRITO in Mountains -20.3971 1.2633 22E3
IRIED VS IRIB0 in Mountains -22.6501 3.0560 22E3
IRITO VS IRI8B0 in Mountains  -2.2529 3.2927 22E3

US_15-30k

Estimates
Label Estimate | Standard Error DF
IRI60D VS IRITO in Piedmont | -7.9002 0.9589 HBE3
IRI60 VS IRIB0 in Piedmont | 457355 2.3978 5BE3

IRI70 VS IRIBO in Piedmont -37.8353 25770 5BE3

t Value
-14 25
-15.76

0.72

t Value
-48.21
-15.38

0.58

tValue
-16.15
7.4
-0.68

t Value
-3.24
-19.07
-14.68

Pr> |t]
< 0001
= 0001
0.4741

Pr> It]
<.0001
<.0001
0.5611

Pr= |4
<0001
=.0001
0.4938

Pr> |t
=.0001
=.0001
=.0001
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US_30kp

Estimates
Label Estimate Standard Error DF
IRIE0 VS IRI70 in Coastal -11.7670 0.8112 12E3
IRIE0 VS IRIBO in Coastal -28.9115 1.5899 12E3
IRI70 VS IRI80 in Coastal -17.1446 1.7316 12E3

US_30kp

Estimates
Label Estimate Standard Error DF
IRIED VS IRI70 in Mountains 4.6959 2.8028 2542
IRI6D VS IRIB0 in Mountains -44.1443 2.9926 2542
IRI70 VS IRI80 in Mountains -48.8402 40028 2542

US_30kp

Estimates
Label Estimate Standard Error DF
IRIE0 VS IRITO in Piedmont  -19.0591 0.7198 2E4
IRIE0 VS IRIBO in Piedmont  MNon-est
IRIT0 VS IRI80 in Piedmont  Non-est

NC_0-1k

Estimates
Label Estimate Standard Error DF
IRI6D VS IRITO in Coastal  -11.3688 0.3696 46E3
IRI60 VS IRIB0 in Coastal  -14.3302 1.0648 46E3

IRI70 VS IRIB0 in Coastal | -3.4614 1.1102 46E3

t Value
-14 51
-18.18

-9.90

t Value
1.68
-14.75
-12.20

t Value

-26.45

t Value
-30.76
-13.93

-3.12

Pr= |t]
=.0001
= 0001
=.0001

Pr= |t
0.0940
<0001
<.0001

Pr= |t
=.0001

Pr=|t]
=.0001
=.0001
0.0018
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NC 0-1k

Estimates
Label Estimate Standard Error DF
IRI60 VS IRIT0 in Mountains  -2.386G6 0.5142 15E3
IRI6D VS IRIBO in Mountains -20.9415 0.6363 15E3
IRITO VS IRIB0 in Mountains -18.5548 0.6761 15E3

NC_0-1k

Estimates
Label Estimate Standard Error DF
IRI60 VS IRI7O in Piedmont -15.9976 0.3885 29E3
IRI60 VS IRIBD in Piedmont -21.7933 0.6863 29E3
IRITO VS IRIBD in Piedmont  -5.8012 0.7476 29E3

NC_1-5k

Estimates
Label Estimate Standard Error DF
IRI6D VS IRITO in Coastal  -13.1004 0.3860 22E4
IRI6D VS IRIB0 in Coastal  -22.7642 0.6746 22E4
IRI70 VS IRIB0 in Coastal -9.6638 0.7726 22E4

NC_1-5k

Estimates
Label Estimate Standard Error DF
IRI6D VS IRIT0 in Mountains -20.2917 0.3187 43E3
IRI6D VS IRIBO in Mountains -22.2649 06176 43E3
IRI70 VS IRIBO in Mountains  -1.9732 0.6621 43E3

tValue Pr= |t
-4.64 <0001
-32.91 <0001
-27 44 < 0001

tValue Pr> [t
-41.18 | < 0001
-31.76 | = 0001
-7.76 <0001

tValue Pr> |t
-33.94  <.0001
-33.74  =.0001
-12.51  =.0001

tValue Pr=|f
-63.67 =.00M1
-36.05 <.00M1
-2.98 0.0029
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NC 1-5k
Estimates
Label Estimate Standard Error
IRIGO VS IRI70 in Piedmont  -9.1016 0.2837
IRI60O VS IRIBO in Piedmont -13.8134 0.8497
IRI70 VS IRIB0 in Piedmont  -9.7168 0.8894
US 5-15k
Estimates
Label Estimate Standard Error
IRIGO VS IRITO in Coastal  -11.0800 0.3701
IRIE0 VS IRIB0 in Coastal  -156.8612 0.7894
IRI70 VS IRIB0 in Coastal -5.8012 0.8590
US_5-15k
Estimates
Label Estimate Standard Error
IRI6O VS IRI70 in Mountains -15.5875 0.4590
IRI6O VS IRIB0 in Mountains -19.4397 0.9253
IRI70 VS IRIB0 in Mountains  -3.8522 0.95874
US 5-15k
Estimates
Label Estimate | Standard Error
IRI60 VS IRI70 in Piedmont -10.1251 0.28099
IRI60 VS IRIBO in Piedmont -11.9309 0.5653

IRI70 VS IRI80 in Piedmont  -1.8058 0.6222

DF
15E4
15E4
15E4

DF
81E3
81E3
81E3

DF
23E3
23E3
23E3

DF
11E4
11E4
11E4

t Value
-32.08
-22.15
-10.93

t Value
-29.88
-21.36

£6.75

t Value
-33.96
-21.01

-3.90

t Value
-34.92
-21.10

-2.90

Pr> |t
=.0001
<.0001
<.0001

Pr> It
< 0001
<.0001
<.0001

Pr=|t
<.0001
= 0001
<.0001

Pr> ||
=.0001
=.0001
0.0037
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NC_15kp

Estimates
Label Estimate Standard Error DF tValue
IRI60 VS IRITO in Coastal -9.3643 0.7639 13E3 -12.26
IRI60 VS IRIBO in Coastal £5.54138 1.3245 13E3 -4.94
IRI70 VS IRIBO in Coastal 2.8225 1.4678 13E3 1.92

NC_15kp

Estimates
Label Estimate Standard Error| DF tValue
IRI60 VS IRITO in Mountains 4.0827 1.2329 3046 a3
IRI60 VS IRIBO in Mountains  -5.0002 1.7280 3046 -2.89
IRI70 VS IRIBO in Mountains  -9.0829 1.9398 3046 -4 .68

NC_15kp

Estimates
Label Estimate Standard Error DF tValue
IRI60 VS IRITO in Piedmont | £.1919 0.8475 26E3 7.3
IRI60 VS IRIBO in Piedmont | -10.4475 0.7528 26E3 -13.88
IRIT0 VS IRIBO in Piedmont | -4 2556 1.1005 26E3 3,87

SR_BSR_0-1k

(NOT AVAILABLE)

Pr= |t
<.0001
=.0001
0.0545

Pr> |t
0.0009
0.0038
=.0001

Pr= |t
= 0001
= 0001
0.0001
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Label

IRIGO VS IRI70 in Coastal
IRIG0 VS IRIBO in Coastal
IRI70 VS IRIBO in Coastal

Label

IRIE0 VS IRI70 in Piedmont
IRIE0 VS IRIBO in Piedmont
IRI70 VS IRIBO0 in Piedmont

Label

IRIE0 V'S IRI70 in Coastal
IRI60 VS IRIBO in Coastal
IRI70 V'S IRI80 in Coastal

Label

IRI6D VS IRI70 in Mountains
IRIG0 VS IRIBO in Mountains
IRI7T0 VS IRIBO in Mountains

SR_BSR_1kp
Estimates
Estimate Standard Error
-2.3264 3.1169
-21.1187 3.4233
-18.7923 1.9660
SR_BSR_1kp
Estimates

Estimate Standard Error

108

DF tValue Pr> [
915 0.75 0.4556
915 £.17 <.0001
915 956 <0001

DF | tValue Pr=>|f

21.3552 7.6363 185 2.80 0.0057
Non-est
Non-est
SR_PR_1-5k
Estimates
Estimate Standard Error DF tValue Pr> |f
-10.0536 1.0660 2230 -9.43  <.0001
-24.2235 23171 2230 1045 <.0001
-14 1699 2.3169 2230 512 <.0001
SR_PR_1-5k
Estimates
Estimate Standard Error DF t Value Pr > [t
6.1571 1.9779 981 311 0.0019
-9.5731 20714 981 -4 62 < 0001
-15.7303 1.7037 981 -9.23 <.0001



SR_PR_1-5k
Estimates
Label Estimate Standard Error
IRI60 VS IRITO in Piedmont 1.2588 1.4035
IRI60 VS IRIBO in Piedmont  -4.9730 1.1149
IRIT0 VS IRIB0 in Piedmont  -6.2368 1.3249
SR_PR_5-15k
Estimates
Label Estimate Standard Error
IRI60 VS IRI70 in Coastal -3.9940 1.6805
IRI6D VS IRIBO in Coastal -17.2196 1.7981
IRI70 VS IRIB0 in Coastal -13.2255 1.89396
SR_PR_5-15k
Estimates
Label Estimate Standard Error
IRIED VS IRITO in Mountains -7.5413 26797
IRIED VS IRIBO in Mountains | -25.0981 3.1765
IRITO VS IRIBO in Mountains  -17.5569 3.2245
SR_PR_5-15k
Estimates
Label Estimate Standard Error
IRIGD VS IRITO in Piedmont 3.3384 1.4321
IRIGO VS IRIBO in Piedmont  -5.2047 1.4163

IRITO VS IRIB0 in Piedmont  -5.5431 1.1461

DF tValue
3257 0.90
3257 -4.47
3257 471

DF tValue
1580 -2.38
1580 -9.58
1580 £.82

DF tValue

32 -2.81

32 -7.90

32 -5.44

DF tValue
3173 233
3173 -3.67
373 -7.45

Pr> |t|
0.3698
=.0001
=.0001

Pr= |t
0.0176
<.0001
< 0001

Pr> It
0.0052
<0001
<0001

Pr= |t
0.0198
0.0002
=.0001
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SR_PR_15kplus

Estimates
Label Estimate Standard Error
IRIGO VS IRI70 in Coastal -13.6425 7.6196
IRIGO VS IRIBO in Coastal  -7.3258 3.8847
IRI70 VS IRIBO in Coastal 6.3166 5.8221

SR_PR_15kplus

Estimates
Label Estimate Standard Error
IRI60 VS IRI70 in Piedmont -18.5262 1.7915
IRI60 VS IRIBO in Piedmont -20.4832 1.8292

IRIT0 V5 IRI80 in Piedmeont  -1.6570 1.5049

DF tValue
420 -1.79
420 -1.89
420 1.08

DF tValue
1567  -10.51
1567  -11.20
1567 -1.10

Pr> |t
0.0741
0.0600
0.2786

Pr> |t
=.0001
=.0001
0.2710
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