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ABSTRACT

NEZIHE TURHAN. Limit theorems for one class of ergodic Markov chains.
(Under the direction of DR. STANISLAV MOLCHANOV)

The goal of this dissertation is to develop some classical limit theorems for the
additive functionals of the homogeneous Markov chains in the special class of the so-
called, Loop Markov Chains. The additive functionals of the Markov chains have the
numerous applications; especially in Mathematical Finance, Optimal control, and Random
game theory. The first limit theorems for the finite Markov chains were proven by the
founder of the theory Andrei Markov, later on by A. Kolmogorov, W. Déblin, J. Doob, W.
Feller and many other experts on the topic. However, the situation with infinite Markov
chains is more complicated including the case of Loop Markov chains. Therefore, we
present a detailed work to prove the limit theorems for the Loop Markov chains in this

dissertation.

This dissertation consists of five chapters. Our most significant contribution to the
theory is presented in chapters four and five after we familiarize the reader on the essentials
of the theory by reviewing the preliminary work given by others in the first three chapters.
The structure of this dissertation is organized as follows. In the first chapter, we provide an
intuitive background for the theory and introduce the case of Loop Markov chains. We
address the difficulties we face during the construction of the limit theorems, especially in
the case of the Gaussian limiting law for the Loop Markov chains. Since we construct the
theory for both discrete and continuous-time Loop Markov chains, we review the essentials
on both cases. Later on in the third chapter we give the specifics on the Déblin method and

the Martingale approach to prove the CLT. In the fourth chapter, we introduce three models
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of Loop Markov chains, namely, Discrete-time Loop Markov chain with countable phase
space, Continuous-time Loop Markov chain with countable phase space and Continuous-
time Loop Markov chain with continuous phase space, which are the main objectives of
this dissertation. We present the CLT for the first two models and calculate the
corresponding limiting variance by using both the Déblin method and the Martingale
approach. Moreover, we talk about the Random Number Generators (RNG’s) which are
appropriate applications of the models constructed on the countable phase. Lastly, in
chapter five we analyze and present a complete work on the convergence to the Stable
limiting laws on both countable and continuous phase space, in which the latter case

enlightens the complexity of the third model.
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CHAPTER 1: INTRODUCTION

Central Limit Theorem (CLT) is one of the most crucial theorems in probability
theory and statistical mathematics. This limit theorem was proven for the finite
Markov chains for the first time by Andrei Markov, who was a student of Pafnuty
Lvovich Chebyshev. As a student of Chebyshev, Markov was undoubtedly in-
fluenced by his mentor’s work. Markov expanded Chebyshev’s initial study of
sequences of independent random variables by including certain types of depen-
dent random variables. Two decades later, Markov completed the proof of the
central limit theorem by the method of moments which was firstly generalized and
presented by Chebyshev. For further reading about Andrei Markov’s life and his
accomplishments as a mathematician, we refer the reader to the paper by Basharin,
Langyville, and Naumov [2].

Ever since the initial work by Chebyshev and Markov, many mathematicians
and statisticians have been studying the theory of limit theorems, i.e., CLT, on a
variety of different classes of Markov chains enormously. For instance, limit the-
orems for functionals on countable ergodic Markov chains were approached by
Kolmogorov and Doblin [9] first time in the late 1930s, and later on, kept being
worked on by many others throughout the years. Maxwell and Woodroofe [17] de-
rived the central limit theorems and invariance principles for additive functionals

of a stationary ergodic Markov chain with zero mean and finite second moment.
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In [8] Derriennic and Lin considered an additive functional of an ergodic Markov
chain on a general state space, and then proved a CLT and an invariance principle
with respect to the law of the chain started at a point.

In general, we cannot expect to have analogies with the theory of summation
of independent random variables, which are the classical objects of the probabil-
ity theory, in the case of the additive functionals of the Markov chains. Markov
himself proved the first limit theorems for the finite Markov chains. However, the
situation with infinite Markov chains, including our case, is more complicated. In
this case, the least we will need is the ergodicity of the Markov chain, i.e., posi-
tive recurrence. On the other hand, this assumption only gives the Law of Large
Numbers (LLN), not a more advanced Central Limit Theorem (CLT). In this study,
we will prove the convergence of the distribution of the additive functionals to
the Gaussian limiting law after appropriate normalization by using two methods,
namely Doblin method, and Martingale approach. Nevertheless, there are still
open problems even in this case. Let’s formulate some of them which will be the

subject of this dissertation as follows:

1. When the limiting distribution is non-degenerated, the situation is well un-
derstood for the chains with an excellent mixing. However, in many ap-
plications, we have to work with the Markov chains with a well developed

deterministic component.

2. Typical examples of "almost deterministic" chains give the Loop Markov chains

proposed by Kai Lai Chung [6], however, in an entirely different setting.
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Such chains can be used for the construction of a new class of the Random
Number Generators (RNG’s), by continuing the random switching between
known algorithms. Limit theorems we will state and prove in this disserta-

tion give the information about the quality of such RNG's.

3. We will essentially develop the construction introduced by Chung for the
Loop Markov chains with continuous-time or continuous phase space. For
these models, we will prove the CLT on the convergence to the Gaussian lim-
iting law, and then we will find the conditions on non-degeneracy including

the new case of infinite limiting variance.

4. We will use Doblin method and Martingale approach to prove the limit the-
orems for the Loop Markov chains as they were used for the general Markov
chains. We will justify in detail that Doblin method is stronger than the Mar-

tingale approach even though its application is technically more challenging.

5. The limit theorems on the convergence to the Stable, or infinite-divisible dis-
tributions are practically not known outside the Doblin condition. We will
prove several results on the convergence to the Stable multidimensional dis-

tribution for the Loop Markov chains.

As future work, we will publish the results given by 1-4 and 5 as two different

scientific papers.



CHAPTER 2: PRELIMINARIES ON THE MARKOV CHAINS

In this section, for the reader’s convenience, we shall mention some basic de-
finitions on both discrete and continuous-time Markov chains. First, we will for-
mulate and discuss the most general results for the discrete-time Markov chains on
countable phase space. Consider the discrete-time Markov chain
{x(t), t = 0,1,2,...} on the countable phase space X = {0,1,2,...,n,...}.

The matrix P = [p (x,y), x,y € X] where

p(x,y) =Pr{x(t+1) =y |x(t) = x}

with p(x,y) >0and ) p(x,y) =1,
yeX

is called the stochastic transition matrix for the chain x () . Therefore, probability
of the transition from state x to y in exactly ¢ steps, p) (x,y), is the element of the
stochastic transition matrix after ¢ steps, P! = [p(t) (x,y)} ,t=0,1,2,... A chain
is called irreducible (connected) and aperiodic if for any x,y € X there exists N such
that p®) (x,y) > 0 for all t > N. For our future purposes, we will assume that
the chain x () is irreducible and aperiodic. A chain x (t) is called recurrent, that is,

Pr{x(t) = xforsomet > 1| x(0) = x} = 1forany x € X, if

(]

Y p (x,x) = oo,

t
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and transient, that is, Pr {x(t) = x forsome t > 1| x(0) = x} < 1 forany x € X, if

(ee]

Zp(t) (x,x) < oo.
t

Note that for an irreducible Markov chain, either all states are recurrent, or all
states are transient. If all states are recurrent, then we say that the Markov chain is
recurrent; transient otherwise.

Now let f(x) : X — R be a real-valued function, and then consider the additive

functional of the discrete-time Markov chain x (t) given by

S(T)=Y_ f(x(1)). (2.1)

The sum in Equation (2.1) denotes the price one has to pay for the observation
of the chain in the given time interval [0, T]. Now assume that p is the limiting
distribution of S(T) after appropriate normalization. Distribution y (-) can depend
on the initial distribution of the Markov chain x (¢) ,thatis, v (x) = Pr(x (0) = x).
To prove the limit theorems as T — oo, such that they are independent of the
initial distribution, and preserve the basic properties of limit theorems for sums
of independent and identically distributed (i.i.d.) random variables such as the
infinite divisibility of the limiting distribution, we need strong additional assumption
on the chain x (¢) , namely, positive recurrence. We will define positive recurrence as

follows. For some recurrent state x* € X, let 7.+ be the moment of first return from



x* to x*, i.e.,

Ty =min (£ > 1:x(f) =x* | x(0) = x¥).

State x* is called positive recurrent if the expected amount of time to return to state

x* given that the chain started in state x* has finite first moment, i.e.,

Because the chain x () is irreducible, we say all states in the chain are positively
recurrent, i.e.,

Ey [Tx] < o0

forany x € X.
Now assume that the discrete time Markov chain {x (t),t =0,1,2,...} is posi-
tively recurrent, that is, any state x € X is positively recurrent. Then the limit

7 (y) = lim p® (x,y) = tlin;oPr{x(t) =y | x(0) =x, Vx € X} (2.2)

t—o00

exists for all y € X, which is called the unique stationary distribution of the chain

x (t). The stationary distribution is independent of the initial state x (0) , and given

by

> 0, for all states y € X.
Ey [1]

Next, we will give the definition of the Doblin condition which relates to the

existence and uniqueness of the stationary distribution provided by (2.2).



Definition 2.1 There exists an integer kg > 1 such that for some € > 0,

]P(kO) > eIl

(2.3)
ie, po) (x,y) > em,

forVx,y € X. Here Il is a rank-one stochastic matrix, i.e.,

T T2
IH=|m

The following lemma shows that, if we have the Doblin condition then there ex-
ists a unique stationary probability measure to which the Markov chain converges

at a geometric rate from any starting point.

Lemma 2.2 Under condition (2.3), 3y > 0 such that

p (x,y) — 7 (y)| < 27 (2.4)

forvx,y € X.

A Markov chain x (¢) that is irreducible, aperiodic and positively recurrent is
called ergodic, see [6,10] . For an ergodic Markov chain, the unique stationary dis-
tribution 7 (-) is the solution of the equation

T = P

st. Vx € X, m(x) >0 and Z m(x) =1 (2.5)

xeX
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If the initial distribution of the chain x (t) equals to the stationary distribution
7 (+), then the chain {x(f)} will be the stationary ergodic process.

Next, we will state some facts about the countable continuous-time Markov
chains. One should know that most properties of continuous-time Markov chains
are related to the results of discrete-time Markov chains, the Poisson process, and
the exponential distribution. Therefore, to understand the continuous-time case
we need to explain the connection between these concepts. One can consider the
continuous-time Markov chain as a discrete-time chain with tailored transition
times. That means the transition times; subsequently, the number of occurrences
are both random, unlike the discrete case. In continuous-time Markov chains, the
amount of time chain x(¢) spends in state x before making a transition is exponen-
tially distributed with rate —Ay_., = ; Ax—y, and thus, mean 1/Ay .

y#x

Now consider the continuous-time Markov chain {x(¢) : + > 0} where time ¢
is understood to be any nonnegative real number. Similar to the discrete case, we
can assume the phase space is countable, i.e,, X = {0,1,2,...,n,...}, and the chain
x (t) is ergodic. Before we proceed, we will give the definition of the matrix expo-
nent. Let Ay, be the rate of transition from state x to y, and A = [/\x_>y, X,y € X]
be the generator matrix for the chain. Then by definition, for any real number ¢t > 0
we have

[e9) tTl ATI

exp(tA) ==Y —— and A’ =T, (2.6)
n=0 ’

(n)

where A" = [A,(C@y] is the n'" power of the matrix A. Because A;~,, can be



estimated as

)\,(ﬂy) < || A|l", we have

t’%y | Al

n!

<y

n=0

exp(tA)) = exp(t || Al]).

-5 =

Thus, the series Z y is analytic with infinite radius of convergence which

means it is differentiable. By taking derivative of the expression in (2.6) with re-

spect to t we have

detA 00 ntn—l A" 00 tn—l An—l
dt L n! L (n—1)! ¢ i

n=1

t A

i.e., the matrix function e'* = [p (t, x,y)] is the unique solution of the system

( detA
dt
p(0,x,y) =y (x)

L p(t,x,y) >0, Vx,y € Xand t > 0.

= At =otAA

We say matrix IP(t) = e'# is stochastic for any ¢ > 0 iff

i) — Ayox <0
i) Y Ary =0, Vx,y € X.
y#x

tA _

Hence matrix P(t) = e [p (t,x,y)] is called the stochastic transition matrix of

the chain.
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Next, define the moment of first return from state x to x as

Ty =min{t >0, x(t) =x | x(0) = x},

for any x € X. Then we have

1

'
| Ax—x

Py{tx >t} = eth = and E, [Ty] =

which underlines the fact that, time spent in state x is exponentially distributed
with parameter Ay_,y, i.e., lifetime of state x ~ Exp (Ax_.x). Similar to the discrete
case, for a continuous-time ergodic Markov chain the limiting distribution 7(+) is
given by

t(y) = lim p(t,x,y) (2.7)

t—o0

which exists for all y € X. This limit value in equation (2.7) is independent of
the initial state x, and it is called the stationary distribution of the ergodic Markov

chain.

Lemma 2.3 Under condition (2.3), 3y > 0 such that

p(tx,y)—m(y)| <ce (2.8)

forVx,y € X.

We conclude from Lemma 2.3 that, for a continuous-time ergodic Markov chain,
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7t (y) is the unique solution of the equation

wTA =0

st. t1=0and ) m(x)=1. (2.9)

xeX

For further reading, we refer the reader to the books by P. Billingsley [3],

K. L. Chung [6], and W. Feller [10,11].



CHAPTER 3: METHODS TO PROVE THE LIMIT THEOREMS

In this chapter we will introduce two methods, namely Doblin method and
Martingale approach, to prove the Central Limit Theorem for the Loop Markov
chains. We will demonstrate both methods on the discrete case only. For further
reading and the proofs in the continuous case, we refer the reader to Chung |5, 6],
Bhattacharya [1] and Holzmann [13] for Doblin method and Martingale approach,
respectively.

Assume that the countable phase space X is provided with the unique station-
ary distribution 7t (-) . On this phase space, we define two functional spaces

mx,m:{f(x):xwr Y () \f<x>rzuful<oo}

xeX
(3.1)

(X, m) = {f(x) X =R Y, w@)|f (0 =[£Il <°°}

xeX

and the dot product in ¢? (X, 77) is given by the formula

(f18)n= L f(x)g(x) 7 (x).

xeX

Moreover, ¢ (X, 7t) C ¢' (X, 7r) which means the subspace

G ={f 0B (D)= Lr0f0=0) 62



is IP-invariant and ||IP||, < 1.

13

On a countable phase space, the ergodicity of the discrete-time Markov chain

gives the Law of Large Numbers (LLN). First, we will give a lemma regarding the

expectation and variance of the additive functional of the stationary ergodic chain.

Lemma 3.1 Let f be the mean value of f, i.e., f = (f, 1), = Y 7 (x)f(x),and let

xeX
fx) = f(x) = (£, 1),
be the centralization of the functional f. Then
Er[S(T)]=Tf+0(1)
and
Vary [S(T)] = To* (f) +Q (1)
where

7 (f) = nf2+27 (f,9f)

Here ® = Y. (IP' — ) is the fundamental matrix of the stationary ergodic chain.
=1

Next theorem follows directly from Lemma 3.1.

Theorem 3.2 If f € (' (X, 7t), then

(3.3)
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ie., foranye >0

Proof. Using the Chebyshev’s Inequality we have

Pr{‘&;) —7' > e} < glzvbmr lS(TT)] = 821TZVarn [S(T)] — o.

T—o0

Note that, this result is similar to the LLN for the sequence of independent and

identically distributed random variables X;, i = 1,...,n, (see [3]), that is,

Mt gy, poas

n n—oo

The assumption of ergodicity only results in LLN for the normalized additive
functionals of Markov chains. Because we want to prove the CLT in the case of
Gaussian limiting law, we must study the asymptotic behavior of S(T) after nor-
malization. Therefore, for our purposes, we assume f € ¢? (X, 7r) . Next, consider

the centralized additive functional
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one can expect that

220 (f,1),. — N(0,0%), (34)

which unfortunately is not always true. Here, calculation of the expectation of

the normalized centralized sum (3.4) is straightforward by Theorem 3.2, i.e., for

fer(Xn)

S(T)

:]En[ . —(f,l)n}:IEn[ T ]—(ffl) — 0

T T—o0

since ¢ (X, ) C ¢! (X, ) . However, the situation with the variance is more com-
plicated. Andrei Markov, who invented the Markov chain theory, proved the CLT
for the finite Markov chains under the condition that

~ 2
3(T)
R (=

lim TVar,

T—oo

s(ny| ..
\/T] = Ylgrc}OT{]En

- e (Y7 - 0)
= g e | (V7 -5 [S7])]
= v [

= Varn(f)—i—ZIgCovn(f,p(k)f)
— 2(]7,];;9(")]7) - (£.F)

7T

= o*(f) > 0.
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The simple examples show that even in the case of the finite Markov chains, the

limiting variance o () can vanish, i.e., o> (f) = 0. In the case of countable Markov

chains, the situation is even more complicated. Therefore, to avoid this complica-

tion we apply two methods namely Doblin method and Martingale approach, to
prove the CLT.

3.1  Doblin Method

Doblin method proposed by Chung [5, 6], who established the method based

on Doblin’s idea in [9], in the following setting. Let xy € X be a fixed point and let

0=17< 11 <+ < 7Ts < --- be the successive moments of returns of the chain

from xg — xp, i.e.,

71 = min{t > 0] x(t) = x¢ given that x (0) = xo},

Ty = min{t > 0| x (71 +1) = xo given that x (11) = x0},. ..

where T, is a random variable. Let [(T) be a unique nonnegative integer satisfying

Ty1y < t < Ty()41- The dissection formula for the additive functional is given by

T—1 -1 -1 T—1
S(T) = Z(J)f(X(t))= Zéf(X(t))Jr Y fx®)+-+ ), f(x(h)
t= t= t=11 =Ty

Let

Xo= Y fx(r), 1<s<IT). (35)
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Here X;’s are random variables which are independent and identically distributed

with a common distribution (§I. Thm.14.3 in [6]). Then we can rewrite equation

(3.5) as
Tl—l

I(T)-1 T—1
S(T)= ) fx()+ ) X+ )} f(x(t). (36)
t=0 s=1 t:Tl(t)
Considering the first sum in equation (3.6), we have

Tlfl

tZO f(x(#)

Tlfl

< tZO f (x (8))]

where the right-hand side is independent of T. Since 77 is finite with probability
1, then this sum is bounded by a fixed random variable with probability 1. Next
consider the third sum in equation (3.6) . Chung proved that for a positively recur-
rent Markov chain, this sum is bounded in probability (§I. Thm.14.8). These two
facts bring us to the conclusion that the asymptotic behavior of S (T) depends on
only the asymptotic behavior of random variables given in (3.5) . Before we con-
tinue, we must note that all the following statements are made for any real-valued
functional f on the countable phase space X. However, they can be reduced to a
particular, case of functionals, namely ¢ = f, for the positive recurrent class, (§L.

Thm.15.1) by Chung [6], which is essential for our work.

Theorem 3.3 Let S (f) = E(X). If S (f) and S (g) are both finite and not both zero,

then we have

T-1
z fx()) 3 (f)
T-1 Toeo 3 (g)
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with probability 1.

In his work Chung proved that the first two moments of the random variable
X; exist and finite (see, §I. Thm. 14.5&14.7), and for a positively recurrent Markov

chain they can be calculated. Therefore,

T—oo T

lim 1IEx0{ Z X} mwﬂim (X) = 1t (x0) Ey, (X).

Since the chain has a unique limiting distribution 77, we have

limlE{ Zf |x0€X} 7T (x) Ex, (X) =Y, 7 (x)f(x),

T—oo xex

hence,

Let £, (x) = Ts41 (x) — T5 (x) be the time spent between leaving the state x and

returning back there for the s time. Then define

Er [X]
IE7T [Cs] '

]? = f—M;s;
Zi(x) = Y, f(x(T)

[Ts/Ts+1]

M

where
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for positive recurrent class. Moreover, in a positive recurrent class if M; exists for
any s, then it exists for every s. Therefore, it is independent of s and can be assumed

constant, i.e., Mgs = M. Now let

7 (f) = Ex [(z:(x))7],

and
1 1(H)-1 2
— 2(7) — 1im —
B=r(x)c (f) = lim —E (; Zs(x)> .
Then Chung states the Doblin’s Central Limit Theorem as follows.

Theorem 3.4 If E, [Cﬂ < ooand 0 < o2 (f) < oo, then S(T) is asymptotically

normally distributed with mean M-T and variance B-T, that is, for every real x

X
— . 2
lim Pr {S(’T)—W S x} = L ei%dy.
T—oo BT 27T

Doblin proved in [9] that if ¢ (f) = 0 then &\/? is the sum of M’s for all

1 < s <I(T), and depends only on the values of x (0) and x (T).

Remark 3.5 Note that ¢ (f) is the variance of Zs, not Xs. However, under the assump-

tion IE [gﬁ] < oo, condition o (f) < oo yields to En [X?] < .

In our setting, we assume that (f,1) . = 0,i.e., f € £2 (X, ), and

E, [Cﬂ =E, [(’L’z — 71)2} < oo.
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Next we consider the random variable

Tgfl

Xy= ) f(x(t).

t=T1

By definition of the inner product, we find the expectation of X; as

IETL’ [Xl] - ]Erc

-1 T—1
£ rion] =L s =, =0

t:’l'l t=T1

Moreover, E, [X?] < oo by Remark 3.5. Then by Déblin’s Central Limit Theorem

we have

5(T)
W Tjw N(O,D)

where D = UZDEf) and « = E;[C4].

T T

Remark 3.6 On the time interval [0, T| , we have approximately% = E 7 - ool
(61 Tt [t0—0

loops due to Law of Large Numbers.

The Doblin method can be extended in principle to the limit theorems on the

convergence to the stable distribution. Assume that the random variable

Tl—l

X = t; f(x(t))

belongs to the domain of attraction of the stable distribution St, g with the para-
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meters 0 < a <2, —1 < B < 1. It means (due to classical theory) that
L
P{Xx; >x} ~ C1%, X — 400

(3.7)

L
P{X <—x} ~ o ’(|fo|) , X — —00
X
where L(x) is slowly varying function, ie, on x > 0 for all a > O0;

. L(ax)
Nim 75

— 1. For instance, L(x) = logf x. Conditions given in (3.7) are called

regularity conditions of the tails. Consider
S:l - l—(Sn_An)/

where

A = nE[X],a>1
e 0 ,a<l’

Then we have
Sn law Stop

C1—0C2

with parameter 8 = .
p p P

The main difficulty here is related to the justification of the regular tails con-

dition given in (3.7). We can use, of course, the equations for the characteristic
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function of A, i.e.,

¢ (k) = E ||

but we cannot in general solve this equation. As a result, the theorems on the
convergence of the distribution of the linear functional St in law to the stable
distribution can be proven only in some particular cases, including our main object
"Loop Markov Chain."
3.2 Martingale Approach

This approach is an adaptation of Lindeberg method given in [4]. Later on
P. Lévy [16] expanded the method to martingales. Since then this approach has
been studied extensively (see [1,12,14,13,19]). The goal of this method is to ease
the study of the asymptotic behavior of the additive functional by decomposing it
into the sum of martingale differences with ergodic and stationary increments.

Now consider the arbitrary f € ¢3(X, r). Hence, we don’t need the centraliza-

tion. Next, consider the homological equation

g—Pg=f (38)

for any given f, which will play the central role in this approach. The central
moment here is to find the solution of the equation (3.8) , namely g, in £2(X, 7). In
general, without the Doblin condition (2.3), we can prove the CLT only in the case

when equation (3.8) has solution in £2(X, 7r) which has the form
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g(x)=(I=P)"" f(x) =} (PUf)(x) = f (x) + i (Z (P (x,y) — 7 (y))f(y))

t=0 t=1 \yeX

Here it is clear to see that, under the Doblin condition (2.3), solution g belongs to
(2(X, ). This result was based on the results of Ibragimov and Linnik [15] regard-
ing the stationary processes. However, Déblin condition does not always exist. For
example, in our case, we have a countable number of loops with varying lengths.
If the lengths are not bounded, the Déblin condition does not hold.

Now assuming ¢ € ¢3(X, 71), we expand the additive sum as

S(T) = f(x(0)) + f(x(1)) +--- + f(x(T))

= 8(x(0))+8(x(1)) — (IPg)(x(0)) +¢(x(2)) — (Pg)(x(1))— (3.9)

-+ g(x(1)) = (Pg) (+(T = 1)) — (Pg)(x(T))
MgT

= 8(x(0)) — (Pg)(x(T)) + Mg, + Mg, +--- + Mg,

In this dissertation, we consider the Loop Markov chains where the chain returns

to point 0 after transition on the loop is completed, i.e.,

(Pg)(x(s —1)) = g(x(s)), 0<s<T

which yields to

g(x(0)) — (Pg)(x(T)) = 0.
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Consider the filtration s = o (x (0),...x(s)) . Then we have

E [Mgs | Foo1] = E[g(x(s)) — (Pg)(x(s = 1)) | For]
= E[g(x(s)) | Fs1] = (Pg)(x(s — 1))
= E[(Pg)(x(s = 1)) [ Fsa] = (Pg)(x(s = 1))
= (Pg)(x(s —1)) = (Pg)(x(s = 1))

= g(x(s)) — (Pg)(x(s = 1))

which means Mg (, 8 are stationary martingales adapted to the filtration F; with

expectation 0. Then the Central Limit Theorem in [18] is given as below.

Theorem 3.7 Let f € ¢2(X, 7). If the homological equation has the solution g € ¢3(X, ),

then
T-1
A= L) [ N (00 ()
where
o (f) = lim Var (S(T)) = (8,8) = (P&, Pg)r = (£, Bf) - (310)

In this presentation, B is the covariance operator which is adjoint and non-

negative. It is bounded only under the Doblin condition (2.3), and given by

B =1+ (P+P*) +--- + (P"4+(P*)") + - - -
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where IP* = [p* (x,y)] is the stochastic conjugate operator given by

We can extend this method to multidimensional case. Consider the vector func-
tion

F@) =7 =(f,...f™) (3.11)

where Vf;(x) € £3(X, ), under the assumption that homological equation

—Pg;i = fi (3.12)

has solutions g;(x) € 3(X, 7), foralli = 1, N. The following CLT is a consequence

of the Martingale approach.

Theorem 3.8 Consider the normalized vector sum

T—1_,
e e, PIRACO)

where 7 (x) is the vector function given in (3.11) . Assume that the homological equation
(3.12) has the solution g;(x) € (3(X, 7). Then
—
S

T—o0

(T) i (0, C),

93
a\



and the limiting covariance matrix is given by formula for1 < m,l < N

C = [cij] = (81,81 — (P8, Pgi)

= [i Pi?fm)ﬁ(l)nf - (i Piﬁ(m)”i> <i ij]('l)”j)] :
i= i= j=

Proof. Consider the sum

Sro= F(x(0)+ F(x(1)+--+ F (x(T))
= F(x(0) ~ (PF)(x(0) + g (x(1) — (PF)(x(1) + F(x(2)) -
e, e,
- (PR T 1) + T (1) ~ (PF)(x(T))
ﬁCT

— =
If the initial distribution of our chain is 7t, then the random vectors M &y M Eyr

form an ergodic martingale-difference

—

Mg, = ((PF)((E) - Tilx(Enn))

s.t. IE[MQ] = 0Oand Cov (Mg,,) = [(P"P - D)gi gj] ,

— = PV .
Therefore, M¢, are uncorrelated, i.e., C = Cov ( S T) = T Cov (Mé'i)' i=1,T.
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CHAPTER 4: LOOP MARKOV CHAINS

4.1 Discrete-time Loop Markov Chain on Countable Phase Space

Consider the connected, aperiodic and positively recurrent Markov chain x (f),
t = 0,1,2,... The phase space of our Loop Markov chain is given with
X ={{0}yu{(ij)),i=12,...;j=1,2,...,n;}, ie., there is a countable collection
of loops that are pinned at a central position 0, and each loop i has a varying fi-
nite length n;. Here aperiodicity implies GCD (n;, i > 1) = 1. The transition of
the chain occurs as follows. From the central position 0, the chain x (t) moves to
the first position (i,1) on the i loop with probability p;. Since the selection of the
loop which the chain x (¢) will move is random, we have Z p; = 1. From there
the process moves to the second position (7,2) on the i " lolop with probability 1
and so forth until it reaches position (7, 1;), that is, it is deterministic. Finally, the
movement of the chain x (t) on the i*" loop comes to an end when it reaches the
central position 0 with probability 1. Afterward, the chain x (t) jumps to another

loop, and a similar scheme occurs with the same probabilities given above. Hence,

the transition probabilities for discrete-time Loop Markov chain are

p(0,i,1)) = p;and p(0,x) = 0ifx # (1)
p (i), (ij+1)) = 1and p((i,f),x) =0if x # (i,j+1), j < n;

p((i,n;),0) = land p((i,n;),x)=0ifx #0
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s
/

K i toop chosen |

) o /
’/ with probability p;
; /

Figure 4.1: Discrete-time Loop Markov chain with countable phase space

The discrete-time Loop Markov chain is ergodic so there exists a unique station-
ary distribution 7 () satisfying the system (2.5) which is given by the following

lemma.

Lemma 4.1 The invariant distribution for the discrete-time Loop Markov chain with count-

able number of loops is given by
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Proof. Assume that 77 : X — [0, 1] is stationary distribution satisfying the system

(2.5) . Therefore, for all y € X, we have

m(y) =) m(x)p(xy).

xeX

This means for any position (i,j) € X,i=1,2,...and j = 1,2, ..., n;, we have

(i, j+1) =@ j)p(E)),Gj+1)).

By using the transition probabilities for any loop i, we obtain

((7(i,1) = 7(0) p (0, (i, 1)) = p; 7(0)
7 (i,2) = 7 (,1) p((i,1),(i,2)) = 7 (i, 1) = pi 70(0)

m(i,nj —1) = m(i,ni—2)p ((i,n; —2),(i,n; —3)) = 7 (i,n; — 2) = p; w(0)
m(i,ni) = m(i,ni—1)p((i,n;—1), (i n;)) = 7 (i,n; — 1) = p; 7(0).

\

Hence we have

7T (l,]) = pi 7'[(0) , ] = 1,2,..., n;. (41)

Furthermore, 77 is a probability distribution which means

Y, n(i,j) =1

{oru(ijex

This fact along with equation (4.1) implies that

T (0) + inipin (0)=1
i=1
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Therefore, the invariant distribution at the control position is

()= ——"—. (4.2)

Remark 4.2 Discrete time countable Loop Markov chain is ergodic iff '}, pin; < oo.
i=1

Remark 4.3 The Loop Markov chain does not satisfy the Doblin condition if the sequence

{n;} is unbounded.

Next, formulate the CLT for the discrete-time Loop Markov chain. For this par-
ticular chain, the functional spaces ¢! (X, 7t), ¢* (X, ) and the subspace 3 (X, 77

have the following forms:
[e9) n; L
(X, ) = {f(X) X RIFO+ Ep L fGD] < 00}
= ]:

2 (X,m) = {f(x) X-RI£O)+ L pié £ ) < oo}

G (X,m) = {f € LX) | fO+ E i L 1) = o}

For each function f € ¢4 (X, ), we will introduce the new one which is con-

stanton eachloopi,i=1,2,...:

F.) =T, = L AG)
ij=
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i.e., averaging over the loops. So we will assume f (i,j) = f; on each loop

i =1,2,...First, we will explore the Martingale approach.

Theorem 4.4 Let f = f; € (3 (X, 7). The homological equation has solution ¢ €

2 (X, ), and
5(T) _

1 = law 2
7~ 7F LI N (00),

T—o0

L2 2,
if ¥ pifin; < oo, then
i=1

o*(f) = (8,.8), — (Pg,Pg), = *

2
o0 -2 &%) —
pifi 12_ (,E Pifi”i)
=1 i=1 .

1+ '21 pin;

1

Proof. Assume that f (i,j) = f, constant on each loop. We already proved that
martingale differences have zero means. Next, we consider the homological equa-
tion

g—Pg=f

to attain the variance of the martingale differences. Since (Pg) (i,j) = g (i,j+1),

foranyi=1,2,... we have

gi1)—g(i,2) = f(i,1)

8(i,2)—¢g(i3) = f(i2)

gi,n)—g(0) = f(im)
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which yields to

g(i1) = g(0) + Zlf (i) = $ (0) + Fomi 43)
L

Since g € (2 (X, ) C *(X, ), itis clear to see that

_ 2
fimi| =

o ; 0o
Y pi) Y pifin} < co. (4.4)
i=1 =1 i

Next we will calculate g (0) . We can generalize equation (4.3) forany j = 1,2, ..., 1

as

S ) =g (0)+ Y. £ (i5) 45)
5=]

Solution (4.5) belongs to K% (X, m); therefore, we have

8(0)+§pi§(g(0)+s71) =0

i+ 1
+sz n;g (0 +Z lfz n+) =0

i=1

1+Zplnz +Z lfz nl+1) =0

| Z pifns (n+1)
g(0) = 2[

p- (4.6)
1+ ) pini]

i=1

Here note that assumption f = f; € £2 (X, ) is equivalent to

0) + Z piﬁ.ni =0
i=1



which gives
f0) ==Y pifni
i=1

Then by substituting this in (4.6) , we have

£O0) - L pifind

1
g(O)ZE {1—#% ‘n-]
i:1pl 1

Next, we calculate the variance

o*(f) = (8,8) . — (IPg,Pg),

explicitly. Again we consider the homological equation

33

(4.7)

g—Pg=f «— Pg=g-f

Since (IPg) (i,j) =g (i,j+1),fori=1,2,... we have

*(f) = (88).— (Pg,Pg),
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_ LOEEOLO 1SS [Fes-1)+250)F)
e Eom] e Epe] TS

—f2(0) +2g (0) f (0)
1+ £y

+ ﬁ i pi {712 (Zni (n;+ b_ ”i) +2¢(0) 71'”1}
pini| '~
i=1

) +230)f (0)+ L pif {2 +23(0) L pify

]
i=1
Here substituting f (0) given by (4.7) , we get

) +230)f (0)+ L pifn2 =25 (0) £ (0)

{1 + E Pﬂ’lz}

i=1
T pifing — (,Z Pifi”i>
i=1 i=1

e
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Remark 4.5 The proof of Theorem 4.4 is based on the direct calculations of the solution
g(+) of the homological equation. Here we observe that the limiting variance contains
:Yo;l piﬁn? but not 'Ozoll piﬁn?, which indicates that probably the condition :Yoll piﬁn? < 00
i= i= i—

is too strong, that is, assumption g € (2 (X, 7v) is not necessary for CLT by this approach.

Next, we will show that, by using Déblin method one can prove the following

extension of Theorem 4.4.

Theorem 4.6 If f = f; € ¢2 (X, i) and » pi?n% < oo, then
i=1

T-1
A= JR L) 2 X (0.0%)

where o?(f) is the same variance given in Theorem 4.4.
Proof. Consider the random variable

T—1

Xi= ) f(x(t)

i':’l'l

In section 3.1, we stated that asymptotic behavior of the additive functional is re-
lated to asymptotic behavior of the random variable &;. Assume that transition of
the chain starts at point 0. Then it jumps to the i*" loop with probability p; where it

spends

To—0 = Cl (X) =1 (X) —T1 (X) = 1point(0) +n; (4.8)

time on the loop before it reaches central position 0 again. For the Loop Markov

chain, where we assume f = f; € {2 (X, 7t) is constant on the i*" loop, X has the
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form

T21

Zf ()+fznl

=11

nj — —
since Y. f(i,j) = f,n;. By assumption f; € £2 (X, ), we have
=1

0)+ )Y pifni=0
iz

Then expectation of X7 is

Ell] = Y 7(ij)X=m(0 sz[ ) +nif]

1 > o _
= = T {f(O) Y pit sz’fi”i}
e f o] VOB
i=1
1
= 7= 7O f0)}
{1 + X Pini}
i=1
= 0
for § pi = 1. This implies that variance is equivalent to the second moment, so
i=0
we have

Vary [X1] = Ex [Xf} = Y 7 (i,f) A2

xeX
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= 7O Ll +n)]’
= 7O L5 [0+ 2 O)nf, 4]

= {f2 ZP1+2f sz f+ZPz 1fz}

1+sz

- {f2 ) +2f(0) (—£ (0)) + ipm?ﬁ}
1 + Z pin; =0

- {ir) WP~ )}
1+2p1 =0

2
-2 oo —
pifi ”12 - (;1 Pifz'”i>

{1 + f pinz}
i—1

18

i=1

i.e., the same variance ¢?(f) from Theorem 4.4. m

Conclusion 4.7 In Theorem 4.4 (Martingale approach) we assumed Z pi f .13 < oo, and
in Theorem 4.6 (Doblin method) we assumed Z pi f .n? < oo. Therefore, we can conclude
i=1

that the Doblin method is stronger than Martingale approach in the case of Loop Markov
chain.

There are results on the convergence in law to the Gaussian distribution with-
out the assumption that f € ¢2 (X, 7). The typical result (similar to the corre-

sponding theorem i.i.d.r.v.) is given below:
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— N N
Theorem 4.8 Assume that f = f; and ) pif?n? = oo but Y, pif?nlz = L(N) T o0, as
i=1 i=1
N — oo, where L(N) is slowly varying function. Then for appropriately chosen slowly

varying function L1(N), we have

S(T) 1 r o
VLN - VL) &) e VO

Remark 4.9 Theorem 4.8 cannot be proven by Martingale approach, and if the series
N
Y. pif;n? diverges faster, one can expect (under some regularity conditions) convergence

1=

to the stable distribution. We will discuss this topic in Chapter 5.

42  Continuous-time Loop Markov Chain on Countable Phase Space

In the previous section, we discussed the Loop Markov chain with discrete
time t = 0,1, ... Discrete-time model required a crucial technical condition like
GCD(n;,i > 1) = 1, and the local limit theorems were not simple. Now we will in-
troduce the continuous-time Loop Markov chain. Assume that on the phase space
X = {0tu{(ij),i=12,...;j=1,2,...,n;} the continuous-time chain x (¢),
t > 0, moves deterministically on each loop; however, it spends exponentially
distributed time with parameter A > 0 at each position on every loop. Therefore,

each transition occurs with density 77(t) = Ae *Z;>(. At the moment of the jump,

chain x (t) moves from central position 0 to the first position (i,1) on the i loop
with probability p;, i.e., ) p; = 1. Then it moves to the next position on the ith
i

loop, that is, moves from (i,j) to (i,j+1),j = 1,2,...,n; — 1, with probability 1.

Lastly, it moves from position (i, 1;) to 0 with probability 1.



exponentially dist.
g . . ’
waiting time with /

J
/

/
S ith loop chosen ;
;

// with probability p; /‘

density 7 (t) = Ae M5

Figure 4.2: Continuous-time Loop Markov chain with countable phase space

Therefore, the transition probabilities at the moments of jumps are the same as

the discrete-time Loop Markov chain, i.e.,

p(0,,1)) = p;and p(0,x) = 0ifx # (1)

p (), +1)) = 1and p((i,f),x) =0ifx # (i,j+1), j <n;

p((i,n;),0) = land p((i,n;),x)=0if x # 0.

Now recall from chapter 2 that A = [A,_,, x,y € X] is the generator matrix for

the chain. Then, we define the infinitesimal generator £ of the continuous-time

39
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Loop Markov chain as

(£f) () = tim TSI _ ppy (o) = A 49)

At—0+ A

which is given by the formula

(e ]

() (£)(©) = A L pilf (1) ~ £ (0]
(i) (LF) () =AU Gj+ D)~ fG)], j=12..,m—1 (410

(iii) (Lf) (i, ni) = A[f(0) = f (i, mi)] -

Remark 4.10 Transition of the chain is similar to the discrete case. The only difference is

that each jump requires the exponentially distributed waiting time.

The invariant distribution 77 (-) now exists without arithmetical conditions on

{n;, i > 1}, and has the same form as in the discrete case:

n((i,j)) =pi 7(0), j=1,2,.., 1.

In the discrete case, the random variable 7,9, moment of first return from position
0 to 0, had values (1+mn;),i > 1, j = 1,n; with probabilities p;. Differently from

the first model, it has the density

[e0]

Proo(t) = ¥ pi (ma (1))

i=1



41

where 71, (t) = Ae M50, ie.,

[e%e) A(1+n;) ti’ll‘ B
pToﬂo(t) = I1920 { B pi—— ¢ AL
i=1 nj:

Then the corresponding Laplace transform

I _ & A\
Proo (k) =E [e kTOHO] = ‘21 pPi <m)
1=

Note that

- o .(ni—l—l)_l o N\ 1
Ex[to—0] = Ex[l{] = El S (1 +i§1 pln1> = 0 (4.11)

Both Doblin method and Martingale approach apply to this model. Since the
phase space X is still countable, we have the functional spaces ¢! (X, 7t), 2 (X, ),

and 2 (X, 7t):

0 (x,m) = {f(x) XS RIIFO1+ Ly & )] < oo}
£(x,m) = {f(x) X RSO+ Ep LIS < oo}

G (X,m) = {f € LX) | fO+ E i L 1G] = o}

Consider the additive functional of continuous-time Loop Markov chain on the

time interval [0, T] given by
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For each function f € ¢3 (X, ), if we again assume
- 1 &
i) =Fi=— Y f))
ij=1

oneachloopi =1,2,..., then the asymptotic behavior of S(T') is similar to the dis-
crete case since we have the same countable phase space X. Therefore, the presen-
tation of CLT looks virtually almost identical to the CLT in the case of the discrete-
time Loop Markov chain. However, for the general functions, the situation is dif-
ferent.

First, we will explore the Doblin method. Assume that f(x) € 2 (X, ) is a

general function. The dissection formula has the form

T T1 T
S(T) = [Fla()de= [Fla@)dt+ [Fl@)de+e+ [ flxp)) a
0 0 1

T1

"/

Ts+1

I(T)-1
f&ﬁ»ﬂ+§;{/

Ts

T
ﬂﬂmﬂ}+/ﬂﬂmﬂ

Tin)

Let

Xy = 7f(x(t)) dt, 1<s<I(T).

Ts

We already know that X;’s are random variables which are independent and iden-

tically distributed with a common distribution. Therefore, we may represent S(T)
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as

T1

I(T)—1 T
S(T):/f(x(t))dt+ 21 Xs+/f(x(t)) dt
= Ti(r)

0
where [(T) be a unique nonnegative integer satisfying 7;(r) < t < Tj(7)41. Since
asymptotic behavior of S(T) is related to asymptotic behavior of X;, we will exam-

ine this variable to construct the CLT.

Theorem 4.11 If f(x) € (3 (X, ), then

T
S(T) - 1 law 2
== O/ fx(6) = N (0,6%(f)
where o .
O+ X pi ¥ £ )
o(f) = —

A2 [1 + .Of; p,-nl}

i=1
Proof. Assume that transition of the chain starts at point 0. Then it jumps to
the i loop with probability p; where it spends exponentially distributed waiting
time To_o on the loop before it reaches central position 0 again. Then for any

f(x) € £3 (X, ) under condition x (0) = 0, random variable

can be expressed in terms of independent exponential random variables with pa-

rameter A, i.e.,, Exp (1) . Here assumption f(x) € £3 (X, ) is equivalent to
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f(0)+ipii;f(i,j)=0 = iﬁii%f(i,j)=—f(0) (4.12)
i= j= i= j=

Then, it is clear to see that

Eclt) = L i) =" Y p| 0+ if(i,j)]
xe 1= j=
= 100 {f(O)iPHripian(l ])}
A |:1 + Z pini:| i=1 i=1 j=1
=1
- L _FO)-FO)
A {1 —+ Z pﬂ’li]
=1
— 0

[o°]
for ). p; = 1. This implies that variance is equivalent to the second moment and,
i=0

we have

Varg [X1] = Egx [Xﬂ = Z 7 (i, ) Xlz
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By substituting f (0) found in (4.12) in the last equation, we get

= L ipi [fZ (0) —2ir)z Y £ (i) £ (ik)
)\2 |:1 + Z pzni:| =0 i=1 jk=1
i=1
+Zl;f2 (i,j)+2 Z f(lz])f(lfk)]
j=1 jk=1;k#j
1 %) 0 2 1
_ _ {fz 0) -2 (2 m) Y FGNFGR @)
42 {1 n ;1 Pinz} i=0 i=1 jk=1

+ ipi gfz (i,]) +Zipi Z f(i,j)f(i,k)] :
i= j=

i=0  jk=lLk<j

Since ) p; = 1, by substituting (4.11), equation (4.13) yields to

1=0
Varg [X1] = 100 [fz (0) + i pi Zifz (i,j)]
A2 {1 + L Pi”z’] =0 j=1
i=1
PO+ p L £ G))
o i=0 j=1
B )\31E7r [TOHO] .

Here we have 02(f) > 0 because even tough transitions are deterministic, the time
spent in each position is random. Therefore, the contribution of each loop into
variance is strictly positive. Also, 0?(f) < co forany f € (3 (X, 7). m

Secondly, we will examine the Martingale approach to prove CLT. The exis-
tence of the martingale differences and the variance o ( f) for the continuous case

are studied extensively by Bhattacharya [1] and Holzmann [13]. Consider the ho-
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mological equation for the continuous-time model which has the form

flx) == (£Lg) (x) (4.14)

where f(x) € £2 (X, 7). Equation (4.14) has a unique solution but this solution is
not necessarily from ¢2 (X, r) . In the case g(x) € (3 (X, ), we have the CLT in

the following form.

Theorem 4.12 If f(x) € (3 (X, 7v) and the solution g (x) of (4.14) is in £3 (X, 7v) , then

T
s (o)
ST JT (O/f( (1) dt) e N(0,02(f))

and

o (f) = — (£g(x),8(x)).

Proof. Consider the additive functional

T
S(T) = [ fx(t)) d.
0

Since f(x) € (3 (X, ), we have (f,1), = 0. Then due to ergodicity of the chain

x (t) with continuous time 0 < t < T, we get
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The additive functional S (T) can be approximated by the integral sum

5]
Sa(T) =) Of (xka)

k=0

The sequence xxa, k = 0,1, ..., for fixed A is a Markov chain with discrete time,

therefore we can apply the standard Martingale approach introduced in section

4.1.

Firstly, we will solve the homological equation for fixed A :

g (x)— (i’ag) (x) = —(Lag) (x) = f(x)

for any x € X. Then using this presentation of the homological equation, we ex-

pand the additive sum as

SA(T) = f(x(0)+ f(xa)+-+ f(xn_1)a)
= 1 {8(x(0) ~ (Pag)(x (0)) + 8(xa) ~ (Prg)(xa)
o+ g(xnona) — (Pag)(xv-1)a) |

8(xn) — (Pag)(x0)] n 8(x2n) — (Pag)(xA)]
AN AN A

Mg\ Mgy
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g(x(0)) = (Pag)(x(n-1)A)
[ ( ) + MCA + MCzA +o Tt MC(N—1)A

for N = | -L| . The first term in (2?) tends to g(x (0)) — g(x (t)) as A — 0, and the
A 8 8

remaining terms yield to

(Lag)(x) = EIZTAID gy

A—0

for any x € X, where L is the generator given by (4.9) . Here we observe that, the

sequence Mg,k =1,2,...,forms a martingale difference which yields to

N

T
— Y A(LAZ) (xkn) / s)) ds + 0 (1 1) P-as.

Finally, we can rewrite the additive sum as

S() = [ flx(s)) ds = glx(0)) —glx (1) = [(£g)(x(s)) ds
0

Here the additive functional

S(1) = [ (£g)(x (s)) ds
0

is a martingale with continuous time 0 < t < T, and g (x) is the solution of

the homological equation given by (4.14), that is,
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— (£8) () = — lim (£ag)(x) = f(x)

This is true due to the fact that, the conjugated equation £*7r = 0, equivalently
L = 0, has a unique solution up to the constant factor since for invariant distrib-

ution 7t (x), the assumption f € ¢3(X, 7r) implies

(fl),=—(£g1),=~(8L£1),=0

Note that, we use the Fredholm alternative here.

Now consider the discrete-time homological equation given by
§—Prg=f
which has a solution in ¢3(X, 1) given as

§=(1-Ps) ' f

Now adapting this form for the current case, we have

I-1P
( < A) gn=f (4.15)

where

A = Of + APAf + APopaf +--- (4.16)
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for ]PkA = Pya, k=1,2,... Thenas A — 0, equation (4.15) yields to

—(£8) (x) = f (x)

by the definition of the infinitesimal generator, and the solution in (4.16) has the

form

g:/]Psde.
0

4.3  Continuous-time Loop Markov Chain on Continuous Phase Space

Construction of this model is the same as the first two models. In this model,
the phase space X is a subset of R? and time is continuous with deterministic mo-
tion along each loop. Consider the family of semicircles of length ¢, = 7, a > 0.
The transition of the Markov chain occurs as follows. It starts from the central po-
sition 0 and jumps along the a — axis with the distribution density function p(a).
Here we will assume that the function p(a) is continuous and fast decreasing func-

tion for a | 0 to avoid the possibility of having a large number of short jumps.

2

Then from point a, it moves along the circle S, with constant speed v = £, and

4

ey . 2
then returns to central position 0 after time To_o = 71 = ¢ = 4. Therefore, p(a)

is the distribution of the moment of first return 77 , too. Once the chain x () returns
to central position 0, it jumps to another semicircle and a similar scheme occurs.

We call this process the continuous-time Markov chain on continuous phase space.
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semicircle S,

a
to/ length [, = %

0 7 > a— aris

Figure 4.3: Continuous-time Loop Markov chain with continuous phase space

Now consider the function f(-) defined on the set of semicircles {S,, a > 0} .
Without loss of generality, one can assume that this function is constant on each

Sa. Therefore, we assume it equals to the mean value of f(-) on S, i.e.,

Consider the integral on time interval [0, T|

T

T T
[ fxodt = [Faxoyat— [ [feew) = fxen]ar @17)
0 0

0

The last integral in equation (4.17) is the only part that has a non-zero contribution

to the process since it is the last and the only incomplete loop. Thus, it has no

significant contribution to the limiting distribution. Now consider the dissection

formula
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T T1 To T
STy = [ fax@)dt=[Fle®) e+ [flxm) -+ [ flx)a
0 0 T1 Ti()

where 0 < 7; < T,i = 1,...,n, are consecutive return times to the central posi-
tion 0, namely motion times on semicircles. Then, for finite number of functions
fi(a),..., fu(a) and n loops with motion times 7,..., T, we have the additive

functionals

T1+...+Tn

5;(n) = / Filx(8)dt = Fi(T1) + ...+ fi(Ta) for i=T,n

o

which are the sums of i.i.d. random vectors. These i.i.d. random vectors form the

following system

X; = (71(71.),...,7”(@-)) for i=1,...,n

which depends only on the single random variable 7;. This random variable T;
has a very degenerated distribution in R", i.e., it only takes a single value in R".

However, under some non-degeneracy conditions of the curvature of the curve

n
the sum ?n =) z will satisfy the local CLT for the densities which opens the
i=1

possibility to prove the limit theorem with stable limiting distribution for the vast

class of the additive functionals on the Loop Markov chain. The central technical



53

tool here is the stationary phase method.

44 Random Number Generators

A Random Number Generator (RNG) is a computational or physical device
that outputs sequences of numbers that can be predicted only by a random chance.
It has applications in gambling, cryptography (security), statistical sampling, com-

puter simulation, etc. The most efficient LCG’s have a modulo equal to a power of

2, most often 232 or 2, because this allows the modulus operation to be computed

by merely truncating all but the right-most 32 or 64 bits. Microsoft Visual C++ uses

modulo 232, and MMIX (by Donald Knuth) uses modulo 264 while Java uses 2%,
In the case of Loop Markov chain with countable phase space, we will have the

following situation. Consider the phase space {¢;, €, ..., €32} such that

X = 81.231 +e20 4+ 831.21 + €30.

Note that, here Card {X} = 232 Next, consider the random number generator

given by the recursive formula

Xp41 = (ax, +b) mod 2% (4.18)

under the condition xop = 0 This RNG provided by equation (4.18) is called Linear
Congruential Generator (LCG). In this generator, if b = 0 then the generator is
often called a Multiplicative Congruential Generator (MCG) or Lehmer RNG. If

b # 0 then it is referred to as a Mixed Congruential Generator (MCG).
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However, the problem even with the most efficient generators is that after long
runs of randomness, the process repeats itself or the memory usage grows with-
out bound. In the case of discrete-time Loop Markov chain with countable phase
space, we can consider the Compound RNG’s. Compound RNG’s compounds
or intermixes different sequences of random numbers to create a new sequence.
Therefore, this type of generators has very efficient randomness properties. More-
over, they have longer periods which are not periodic. Hence, they are the best fit
for our model.
Now assume that we have a family of the generators G/) that is defined by the

recurrence relation
P (aix,(ﬁ + bi> mod 2V, N = 32,36,48

for countable loops i = 1,2, ... The sequence of the real random numbers gener-
ated by this particular model is uniformly distributed on (0, 1) . Then by choosing
an appropriate transformation, we can map these real values to the positions on

the i*" loop.



CHAPTER 5: STABLE LIMITING LAWS FOR THE LOOP MARKOV CHAINS

5.1  Stable Limiting Laws on Countable Phase Space

The major property of Loop Markov chain is the fact that all additive function-
als are the functions of the moment of first return 7. We will illustrate this idea on
the following example. Assume that ny = k, k > 1, i.e.; the successive loops have
linearly increasing length. Now let py, k > 1, be the transition probabilities from 0
to (k,1) . Here for our purposes, we will consider the Pareto type model which is

given in the form

c(a)

Pk = fari for « >0
where
1
‘=TT
and
> 1
Clat1) = Z ja+l (5.1)
k=1

is the Riemann ¢ —function. Then random variable T will have the distribution

1
pk:P{TZk}:W, kzl (5~2)
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Next consider the function f (k, j) on the states of the Loop Markov chain. It can

be presented, as we did in Chapter 4, in the form

which yields to
k
Flo)=F®) =1 Y. (ki)

i.e., the mean value of f (-) on the k' loop. This implies that

k ~
Y. flki)=0
j=1
and for the additive functional
S(T)=Y_ f(x(t),

the only part that has non-zero contribution is the last incomplete loop. However,
under the minimal condition of the boundedness of f, this contribution will be

neglected. Therefore, we will assume f (k, j)= f (k) from now on.

Next, consider the moment of returns T() from 0 to 0. If 74, ..., T, are succes-

sive returns, then
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For example, if f (k) = 1 then

Yo f(x) =KTF ete

Now we will assume that the first return time 77 = 7 belongs to the domain of

attraction of the Gaussian law N (0, 1), i.e., it has the finite second moment. Let

p=E[t]=) kpg (5.3)
k=1
and
=Y (k=—p)® pe=Y K p— 1. (5.4)
k=1 k=1

Especially, in discrete Pareto law under the condition « > 2, we have the following
results. By plugging (5.1) and (5.2) in equation (5.3), we get the first and the

second moments as

B o 1 o 1  C(w)
”—]E[T]—,;kg(aﬂ)kw—kzzlg(aﬂ)ka—g(aﬂ) (5:5)

and
N o0 ’ 1 o o 1 _g(lX—
E|7] = LF e~ L e e fa

k=1
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Thus, the variance in (5.4) becomes

_ C(z—D_(gC(“) )>2 (5.6)

Next, we will introduce some notations and basic facts about the Renewal the-

ory by Cox [7] . Consider the sum of moment of returns

Sn:T1+"'+Tn.

Let

N(T)=min{n | S, < T < S,11},

that is, N (T) is the number of returns from central position 0 to 0 at the time
interval [0, T| under the condition that the chain started transition at point 0. For
the random variable N (T), one can apply the Law of Large Numbers (LLN) and

the Central Limit Theorem (CLT), i.e.,

Sw P, (57)
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N(T) P—as. 1
T Toeopi (8)

and
. Sp—pun 1 [ 2
%ﬂaPr{W < x} — ¢ (x) = E[e e 7dy
These results are well known. However, the CLT for N (T) is less trivial. In this
case, we have the following result. First of all, note that from (5.7) and (5.8),
nT

N(T) = 5, we have

T S
N(T) <rr < Z—<rT — 7"?T>T<:> Spp>T
n

This leads to
Pr{N(T) <rr} = Pr{S, >T} (5.9)
_ Pr{SrT_WT > T_WT}
/1T o\/TT

T
ST — y.rT ﬁ —rr
Pr¢ —L >
{ U\/ﬁ % rr
. T | T .
By letting rr = i +yo e in (5.9), we have

Pr{N(T) <rr} = Pr{N(T)—§<y<f %}
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It means that

i.e., the random variable N (T) for large T is asymptotically normal with mean

2

T o
value — and the variance ET.

Now consider the random variable T along with the functions of T which are

given as
N(T)
¢, (T) = k§1 Tk f1 (Tk)

N(T)
¢, (T) = k§1 Tk f2 (k)

N(T)
Prm (T) = kgl Tk fm (Tk)

We want to find their joint distribution for T — oo. In chapter 4, we have already
discussed the cases of the attraction to the Gaussian law. Now we will study the
case of stable limiting laws. First of all, we will study the behavior of the polyno-

mial vector (7, 7%, 7°) in detail. To do this, we let

N(T)
?1 (T)= ¥ T
k=1

N(T)

¢ (T)= ¥ T%
k=1
N(T)

o3 (T) = ¥ T}
k=1

and assume that 7. has the discrete Pareto law with parameter «, that is,

1
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Note that for 4 — oo, we have

1 7dx 1 1\ <
Pr{””}”awl)a/xwﬂ ey () G

N—=

Pr{T2>a}:Pr{T>a

and

= 1 7dx_ 1 (1)_c_0
C(a+1)) a1t C(a+1) \wa2/) 4t

1
a2

dx 1\ oo
xetl 7 zx+1) wat ) a4

Pr{r3>a}=Pr{T>a (x+1 7
1

a3

Here note that, for negative a, thatisa = —bfor b > 0,

Pr{r2 < —b} = Pr{r3 < —b} =0

Due to the general theory of stable limiting law (see [11]), the random variable 72

belongs to the domain of attraction St <%, 1) with parameters % and B = 1 only if

% <2 <= « < 4.Similarly, T° belongs to the domain of attraction St (%, 1) with

o«
the parameter 3 <2 &< a<6b.

Next assume that « € (2,3) . Then for any real number x, we have

na_% n—oo

Pr{Tl_’_m—i_T”_ny1 <x} — ¢ (x)
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where

o C(a=1)Z(a+1)—7%(a)

C(DC) and o1 = gz( +1)
[

V1:E[T]:m

by equations (5.5) and (5.6) . Similarly,

n—00 27

24 ... 2 _
Pr{T1+ T ny2<x} — Stuq (%)
n

2N

and

2w

n n—00 37

3 3
T+t —n
Pr{ 1 L y3<x} — Staq(x)

Next, we have to find the joint distribution of

n n n
2 3
51,,1 = E Tk ,Sz/n = E Ty and 53,,1 = E T

First of all, we have to find corresponding Lévy measure £. For 72 and 7°, we

consider

@

2
n lim Pr {T_2 € [612,b2], T—i S [a3,b3]}

(ee]
n— n

=

= lim Pr {T S [azn%,bznﬂ , TE |:El37’l%,b31’l%i| }

n—oo

= (0&) (a2 A a3) (b2 A b3)
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Then the limiting Lévy measure £ contains atom 036 (A1) at the central position
0 which corresponds to the Gaussian component { generated by 7, and singular

continuous part, i.e.,

£([az, ba] x las, bs]) = (b2 A b3) — (a2 A a3) (5.10)

The limiting distribution is not a standard stable law since we used different nor-
malization for the various components; instead, it is called operator’s stable distri-
bution. It has the Gaussian component { with variance 0%, which is independent
on the vector ({,,{3) . Note that vector ({,,{3) has the infinite-divisible distribu-
tion occupied with the Lévy measure £ given by (5.10) . This measure is singular,
and there is the question of the joint distribution density for ({,, {3) -

The following lemma is based on general results by Yurinskii [20].

Lemma 5.1 The operator’s stable distribution occupied with the Lévy measure £in (5.10)

has bounded, continuous, and even of the class C* distribution density.

Proof. Consider the sequence of the i.i.d. random variables Yi,...Y},... which
have the distribution St (%,1) . It is well known that the density Psa (x) of this law
satisfies all three conditions from the fundamental Lemmas 5 and 6 by Yurinskii

20] :
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and
p &
/|x| <P%,1 (x)) dx < oo for 0 < B < >
R

Now apply these results to the sequence of the random vectors

Note that the vector

3 3
Y1_|_...+Yn_n‘u Y12+..._|_Y112
TZ% ' n

R0

has the limiting law with the Lévy measure £. Moreover, it has C* limit distribu-
tion due to Yurinskii [20]. m
Here by combining the result from Lemma 5.1 and the fact that random walk

n—1
on Z? given by kzo (Tk, T4, 77) , we will obtain the local limit theorem.

Theorem 5.2 For any integer kq, ky and ks such that

P

S
2lw|

ki —np,
o1vn

ko —n py
2
N«

S All

S A2/

IN
o
(O8]

for fixed constants A1, Ay, Az. Then as n — oo

Tl

N«

! 3 & 1 ki —n ko — n k
Pr{i_zf_kl’i_zfl_kz’;“ k3} e U)o (5 00)

where St (kz_’; B, "—3) is two dimensional operator’s stable density with the Lévy mea-
na na



sure £.

All previous results are related to the summation of i.i.d. random vectors with

the degenerated distribution. However, our primary goal here is to construct the

limit theorem for the functionals ¢, (T), ¢, (T), ¢ (T) where the summation of

the random vectors is performed up to the random moment N (T) which has its

Gaussian limit distribution. Fortunately, the distribution is relatively simple due to

asymptotic independence of S; ,, from the pair (Sz,, S3) , that is, the factorization

of the limit distribution on Gaussian component for S ,, and operator’s stable law

for (SZ,n/ 53,71) .

Theorem 5.3 Consider the additive functionals

N(T) N(T)
p2(T)= ) % and ¢3(T) =} T
k=1 k=1

Then for T — oo the random vector

T

P> (T) - ‘uzy_l 3 (T)

)G

converges in law to the operator’s stable distribution with the Lévy measure £.
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Proof. Consider the probability

n>1

2N

n+1

— ZPI‘{ZTk<T ZTk>T Zrk<y2‘u + a1 (‘uz) ’
1 1

n>1
T 3
2:1%<<£Q (——)
k=1 H1

T
= Y Y Pr{uu+-+T=x T >T—x, (5.11)
n>1x>n
3
n T T I
Z 2 nyzgyz——ny2+a1( > }:Tk<a2< )
k=1 M1 Hq

Due to asymptotic independence of S1 , and (S, S31) , the probability in (5.11) is

equivalent to

T
Y)Y {(Pr{ti+ -+ 1 =x}Pr{t, =T —x}

n>1x>n
T T+
ZTk_”:”z<P‘2__”V2+al< ) 27k<a2< )
k=1 K M1 M1

But we know that with arbitrary probability close to 1, we have
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ie.,

() -2l

T
Since T4 > /T, we can neglect the term yZH— — 1 U, in the second factor which
1

leads finally to the desired form of the theorem. m

Remark 5.4 These results can be extended for the general polynomial vectors (T, 72,73, %) ;

(T, 72,7, 4, 1), ete.

52  Stable Limiting Laws on Continuous Phase Space

In this case, we assume that semicircles s have linearly increasing lengths s,
¢ > 1. Then the chain starts from the central position 0, jumps along the a — axis,

see Figure 4.3, with the distribution density function p (¢) such that
p(£)dé=Pr{Too€ ({,L+dl)}

and moves along the semicircle with constant speed v = %, i.e., after some time it
returns to the point 0, etc. Here for our purposes, we will consider the continuous
symmetric Pareto type model which is given in the form

c(a
p(ﬁ):%for x>0

where

1
ARAATERY
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and

Z(a+1) / arrd (5.12)
1

is the Riemann ¢ —function. Then random variable T will have the distribution
pl)y=p(—0)=P{rt=1(}= gog+31|€|>1 for « >0and ¢ > 1 (5.13)

Next consider the function f (¢,s) on the semicircles of the continuous-time Loop
Markov chain on the continuous phase space. Similar to the situation in Section

5.1, it can be written in the form

—
I
|
+
\.\
—
I
\"\
|
\.\

which yields to
Flts)=Fy= [fna

S¢
0

i.e., mean value of f (-) on the s loop. This implies that

7f(£t dt =
0

and for S (T) given as

T
/fétdt-I—R
0

where R is the only part that has non-zero contribution since it is the last incom-

plete semicircle. However, under minimal condition of the boundedness of f this
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contribution will be neglected. Therefore, we will assume f (¢,s)= f (¢) from now

on.
Next, consider the moment of returns T() from 0 to 0. If 74, ..., T, are succes-

sive returns, then for f (¢) = +/F, we have

T+ +Tm

5¢
Fyde =Yy gt
i=1

where ¢; are symmetric Bernoulli random variables. By assuming that the first
return time 71 = T belongs to the domain of attraction of the Gaussian law A/ (0, 1),

we can calculate the mean and the variance since the second moment exists. Let

u=E[td = / () dt (5.14)
=1
and
o = / (6~ )2 p(0)de = / 2p(0)dl — 2. (5.15)
(=1 (=1

Especially, in continuous Pareto law under the condition & > 2, we have the fol-
lowing results. By plugging (5.12) and (5.13) in equation (5.14), we get the first

and the second moments as
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Thus, the variance in (5.15) becomes

_ C(z—U_(gé(“) )>2 (5.17)

Next, we will introduce some notations and basic facts about the Renewal the-

ory by Cox [7] . Consider the sum of moment of returns

Ss, =T1+:+ Ts,.

Let

N(T) = min{sz | SS@ <T< Ssg-i-l}

that is, N (T) is the number of returns from central position 0 to 0 at the time
interval [0, T] under the condition that the chain started transition at point 0. Recall

from Section 5.1; we already know that

N(T)-1L
Ny mg N(0,1)
o 1 T—o0
VS

i.e., the random variable N (T) for large T is asymptotically normal with mean
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2

T o
value — and the variance ET.

Next, consider the random variable T along with the functions of T which are

given as
N(T)

¢ (T) = z—fl T f1(Te) Al

N(T)

¢, (T) = ef1 T fa(T¢) dl

N(T)

9 (T) = | e fu (7o) dl
(=1

Similar to the previous case, we want to find their joint distribution for T — oo,
and then we want to study the case of stable limiting laws. We will start with the

analysis of the behavior of the polynomial vector (7,72, 7°) in detail. We let

N(T)

¢ (T)= [ 7dl
(=1

N(T)

¢, (T) = [ T5dl
=1
N(T)

@3 (T) = efl T d¢

and assume that 7. has the symmetric Pareto law with parameter & > 0, that is,

p(l)=p(—0)=P{r. =1} = 2‘5—?21'”21 for ¢ > 1



Note that for 4 — oo, we have

1 7dx 1 1\ <
Priv> o)~ e | g (o) ~

N—=

Pr{T2>a}:Pr{T>a

and

1
a2

Pr{r3>a}=Pr{T>a (x+1 7
1

a3

Here note that, for negative a, thatisa = —bfor b > 0,

Pr{r2 < —b} = Pr{r3 < —b} =0

= 1 7dx_ 1 (1)_c_0
C(a+1)) a1t C(a+1) \wa2/) 4t

dx 1\ oo
et 7 zx—l—l) war)

72

Due to the general theory of a—stable limiting law, the random variable 7> be-

long to the domain of attraction St (%,O) with parameters * and B = 1 only if

2

2
the parameter g <2 &< a<6b.

P2 = a<a Similarly, T° belongs to the domain of attraction St (%, O) with

Remark 5.5 Since T. has the symmetric Pareto law we have B = 0. This means T> and

73 has a—stable limiting law.

Next assume that « € (2,3) . Then for any real number x, we have

PT{T1+N+TSZ_SW1 <X} — ¢ (x)
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where

o C(a=1)Z(a+1)—7%(a)

C(DC) and o1 = gz( +1)
[

V1:E[T]:m

by equations (5.5) and (5.6) . Similarly,

Sp—00 27

2 2

T4+ T2 —

Pr{ - L th 4 Sta o (x)
5y

and

3 3
™t +T, =S
Pr{ ! — M/l3<x} — Stag(x)

S[*)OO
A ’
5y

Next, we have to find the joint distribution of

Sy Sy Sy
Sts = [ Tedl, Sp, = [THal and Sy, = [T}l
0 0 0

Note that, the Lévy measure £ has the form

£([az, ba] x las, bs]) = (b2 A b3) — (a2 A a3) (5.18)

similar to the first case. Then Lemma 5.1 can be restated as follows.

Lemma 5.6 The operator’s stable distribution occupied with the Lévy measure £in (5.18)

has bounded, continuous, and even of the class C* distribution density.

Proof. Consider the sequence of the i.i.d. random variables Yi,...Y;, ... which
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have the distribution St (§,0) . Then by Yurinskii [20] :

Psa (x)‘ <0

and

/

R

p’%/l (x)) dx < oo

Now apply these results to the sequence of the random vectors

Note that the vector

3 3
Yi+- Y, —sep Y7+ Y
2 7

2 3
[ [
Sy Sy

has the limiting law with the Lévy measure £. Moreover, it has C* limit distribu-

tion. m

Here by combining the result from Lemma 5.6 and the fact that random walk
50
on Z3 given by [ (14, 13, Tg) dl, we will obtain the local limit theorem.
0

Theorem 5.7 For any integer k1, ky and k3 such that

ks
3| =
14

o
5¢ 5y

ki —sppy
014/8¢

ko —s¢
< Al/ —2]/l2 < A2/
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for fixed constants Ay, Ay, Az. Then as sy — o0

8¢ 8¢ 8¢ 1
- T 3 g o ki—sy p ko—sp up, k
Pr{{ridz—kl,gri dl—kz,bfTi dz—k3}_ %+§+2(P<101\%1>5t*<2 1 2,—3)

sk sk
S[ l l

where St <k252’3 = k—;) is two dimensional operator’s stable density with the Lévy mea-
¢ sy

sure £.

Finally, we want to construct the limit theorem for the functionals ¢, (T), ¢, (T),
@5 (T) where the summation of the random vectors is performed up to the random
moment N (T) which has its Gaussian limit distribution. Recall that, the distrib-
ution is relatively simple due to asymptotic independence of S, from the pair
(S25,, S3,5,) , that is, the factorization of the limit distribution on Gaussian compo-

nent for Sy 5, and operator’s stable law for (Sys,, S35, ) -

Theorem 5.8 Consider the functionals

N(T) N(T)
¢, (T) = / T dl and ¢5(T) = / 5 dl
(=1 (=1

Then for T — oo the random vector

P> (T) o .”Zlu_Tl @5 (T)

G G

converges in law to the operator’s stable distribution with the Lévy measure £.
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Proof. Consider the probability

2 3

T T\= T\«

Pr T) <p,—+a (—) , T)<a (_)
{4’2() P‘zyl 1 m @3 (T) 2 "

N(T) N(T) :
= ) Pr {N(T) =5y, f T% ar < }lzﬂl +aq <1> ’ f T? al < ap <1) }
1

(=1 Hq (=1 Hyq

RN

S¢ s¢tl S¢ T T T T :
= Y Prq [t,dl<T, [ t,dl> T,fr%dég Hy— +aq (—> ,f12d£<a2 (—)
s¢>1 0 0 0 Hq Hq 0 Hq
T
= Y [ Pr{ni+ - +1,=%x T51>T—x, (5.19)
sp>1x>s,

2 3
5¢ T T\=z ¢ T «
[T3d0—sppy < po— — 5S¢ iy + a1 <—) , fT2d€<a2<—)

0 Hq Hq 0 H1

Due to asymptotic independence of Sy 5, and (Sz,, S35, ) , the probability in (5.19)

is equivalent to

T
= ) f {Pr{fl‘i‘"""l-se:x}Pr{Tsﬁ-l:T_x}

s¢=>1x>s,
S T T\& s s T\
Pr frng—SKyzgyz——thz%—al(—) , fréd€<a2<—)
0 H1 H 0 51

But we know that with arbitrary probability close to 1, we have
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ie.,

() -e(7)

T
Since T+ >> /T, we can neglect the term yzy— — Sy M, in the second factor which
1

leads finally to the desired form of the theorem. m

Remark 5.9 These results can be extended for the general polynomial vectors (T, 72,73, %) ;

(T, 72,7, 4, 1), ete.



78

REFERENCES

[1] R.N. Bhattacharya, On the functional central limit theorem and the law of the
iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete, 60 (1982),
185-201.

[2] G. P. Basharin, A. N. Langville, V. A. Naumov, The life and work of A.A.
Markov, Linear Algebra and Its Applications, 386 (2004), 3-26.

[3] P. Billingsley, Probability and Measure, Third Edition, John Wiley & Sons, Inc.,
New York, 1995.

[4] P. Billingsley, The Lindeberg-Lévy theorem for martingales, Proceedings of the
American Mathematical Society, 12 (1961), 788-792.

[5] K. L. Chung, Contributions to the theory of Markov Chains. Il, Transactions of
the American Mathematical Society, 76 (1954), 397-419.

[6] K. L. Chung, Markov Chains with Stationary Transition Probabilities, Second
Edition, Springer-Verlag, New York, 1967.

[7] D. R. Cox, Renewal Theory, Methuen&Co., London, 1967.

[8] Y. Derriennic, M. Lin, The central limit theorem for Markov chains started at a
point, Probability Theory Related Fields., 125 (2003), 73-76.

[9] W. Doblin, Sur deux problemes de M. Kolmogoroff concernant des chaines
dénombrables, Bulletin de la S. M. F., 66 (1996), 210-220.

[10] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
Third Edition, John Wiley & Sons, Inc., New York, 1968.

[11] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II.,
Second Edition, John Wiley & Sons, Inc., New York, 1971.

[12] M. I. Gordin, On the central limit theorem for stationary random processes,
Doklady Akademii Nauk SSSR, 188 (1969), 739-741.

[13] H. Holzmann, Martingale approximations for continuous-time and discret-time
stationary Markov processes, Stochastic Processes and their Applications, 115
(2005), 1518-1529.

[14]1. A. lbragimov, A central limit theorem for a class of dependent random
variables, Teor. Veroyatn. Primen., 8 (1963), 89-94.



79

[15] I. A. Ibragimov, Y. V. Linnik, Independent and Stationary Sequences of Random
Variables, Wolters-Noordhoff, Groningen, 1971.

[16] P. Lévy, Théorie de L’addition des Variables Aléatories, Gauthier-Villars, Paris,
1937.

[17] M. Maxwell, M. Woodroofe, Central Limit Theorems for Additive Functionals
of Markov Chains, The Annals of Probability, 28 (2000), 713-724.

[18] S. Molchanov, J. Whitmeyer, On the kernel of the covariance operator for
Markov semigroups, 1., Applicable Analysis., (2015), 1-11.

[19] D. Volny, Approximating martingales and the central limit theorem for strictly
stationary processes, Stochastic Processes and Applications, 44 (1993), 41-74.

[20] V. V. Yurinskii, Bounds for Characteristic Functions of Certain Degenerate
Multidimensional Distributions, Theory Probab. Appl., 17 (1972), 101-113.



