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ABSTRACT

ELIJAH EVERETTE RAY. A random hierarchical laplacian. (Under the direction
of DR. STANISLAV A. MOLCHANOV)

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his

theory of one-dimensional ferromagnetic phase transitions, has a discrete spectrum

with each eigenvalue having infinite multiplicity [14]. As a result, the integrated

density of states is piecewise constant and the density of states is a sum of point-

masses located on its spectrum.

To correct these “defects,” we present a modification of the Hierarchical Lapla-

cian obtained by allowing its deterministic coefficients to instead vary randomly, but

without changing the eigenfunctions. The resulting spectrum is deterministic but

the eigenvalues are now random with finite multiplicity and we obtain an absolutely

continuous density of states. We will examine the eigenvalue statistics near an indi-

vidual point of the spectrum and show that, locally, the spectrum is approximately

a Poisson point process.
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CHAPTER 1: INTRODUCTION

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his

theory of one-dimensional ferromagnetic phase transitions, has a discrete spectrum

with each eigenvalue having infinite multiplicity [14]. As a result, the integrated

density of states N(λ) is piecewise constant and the density of states does not exist—

or more precisely, it is a sum of point-masses located on the spectrum of −∆. When

the probabilistic weights for the Hierarchical Laplacian are given by a geometric

progression, the Hierarchical Laplacian can have an arbitrary spectral dimension sh

and as a result, it is similar to the classical fractals, e.g., the Sierpiński Lattice.

Usually in Mathematical Physics, after considering the Laplacian, we move on to

consider the Schrödinger operator—in two different directions.

First in the classical spectral theory, the negative Laplacian typically has discrete

non-negative spectrum which accumulates to the point zero. When we add a negative

decreasing potential (potential well), the spectrum below zero will be discrete. The

central questions are: under what conditions are there only finitely many negative

eigenvalues and how can we estimate the number of negative eigenvalues [15, 16, 17].

Let us formulate several classical results. Consider in Rd, d ≥ 3, the Schrödinger

operator H = −∆− V (x), where V (x) ≥ 0 and V (x)→ 0 as |x| → ∞ in some sense.

In this situation, the spectrum of H covers the half axis [0,∞) but for negative
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energies the spectrum is discrete. Letting N0(V ) = # {λi < 0}, we have the Lieb-

Thirring Estimate:
∑

i:λi<0

|λi|γ ≤ Cd,γ

∫

Rd
V d/2+γ(x) dx (1.1)

and taking γ = 0 in (1.1), we have the Cwikel-Lieb-Rozenblum (CLR) Estimate:

N0(V ) ≤ Cd

∫

Rd
V d/2(x) dx. (1.2)

In particular, the CLR estimate implies that the operator H = −∆ + σV (x) has

non-negative spectrum whenever the coupling constant σ is small and V ∈ Ld/2(Rd).

For small dimension, we have N0(σV ) > 0 for any non-vanishing V and any σ > 0.

Instead of (1.2), in the popular literature, one is often presented with Bargmann’s

estimate (see [18])

N0(V ) ≤ 1 +

∫ ∞

−∞
|x|V (x)dx. (1.3)

Another direction is the spectral theory of the random Schrödinger operator, i.e.,

H = −∆ + σVω(x), σ is a coupling constant, V (x) i.i.d. One might conjecture that,

in this case, classical Anderson phase-type transitions would be observed for small

σ and sh > 2, and that together with pure point spectrum, there exists some kind

of continuous spectrum, i.e., Anderson delocalization [1]. Unfortunately, this natural

conjecture appears to have been wrong [14]. In [9], it is shown that for more or

less general distributions, for arbitrary spectral dimension sh and arbitrary σ, the

spectrum of the random Schrödinger operator is pure point. One can propose the

following physical explanation of this fact. It is well known from the literature that the

spectrum of the random Schrödinger operator on the lattice Zd is pure point outside
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the spectrum of the Laplacian for arbitrarily small σ in any dimension [13]. Since

the spectrum of the self-similar Hierarchical Laplacian consists of isolated points, all

energies are outside the spectrum. Taking into account all these facts, it is important

to modify the self-similar Hierarchical model in such a way that — instead of the

isolated eigenvalues of infinite multiplicity — we will get spectrum which is dense on

some interval and obtain a continuous density of states.

The goal of the thesis is the analysis of a random Hierarchical Laplacian obtained

by allowing the deterministic eigenvalues of the Hierarchical Laplacian to instead

vary randomly. The way in which we allow the eigenvalues to be random does not

change which functions are eigenfunctions but it does have the effect of breaking

each isolated (deterministic) eigenvalue of infinite multiplicity into a countable dense

set of eigenvalues each having (the same) finite multiplicity. The spectrum remains

deterministic but the isolated points of spectrum become widened into spectral bands

supporting a continuous density of states. These spectral bands may or may not

overlap depending on the value of a parameter 0 < σ < 1 — for values of σ closer

to one, the spectrum will be an interval while for σ = 0 we obtain the original

(deterministic) Hierarchical Laplacian. In the last section, we examine the eigenvalue

statistics near an individual point of the spectrum and show that, locally, the spectrum

is approximately a Poisson point process.



CHAPTER 2: HIERARCHICAL LATTICE

2.1 Definitions

A hierarchical lattice is an ultrametric space (X, dh) where X is an infinite set and

the hierarchical distance dh is an integer-valued ultrametric with the property that

for each integer r ≥ 1, there exists an integer νr ≥ 2 such that every closed metric

ball of radius r (which we refer to as a cube of rank r)

Q(r)(x) = B(x, r) = {y ∈ X : dh(x, y) ≤ r} (2.1)

contains exactly νr balls of radius r − 1. We call a hierarchical lattice self-similar if

each νr = ν for some integer ν ≥ 2. To say dh is an ultrametric means, instead of

just the triangle inequality, dh satisfies the stronger condition that for all x, y, z ∈ X,

dh(x, y) ≤ max
{
dh(x, z), dh(y, z)

}
. (2.2)

Because dh is an ultrametric, each element of a cube can serve as its center. As a

result, two cubes are either disjoint or one is a subset of the other. In particular,

because two different cubes of the same rank/radius must be disjoint, the hierarchical

distance can be expressed as

dh(x, y) = min
{
r : Q(r)(x) = Q(r)(y)

}

= max
{
r : Q(r−1)(x) ∩Q(r−1)(y) = ∅

}
.

(2.3)
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Observe that the sequence
{
Q(r)(x)

}
r≥0

increases to X, i.e.,

x ∈ Q(0)(x) ⊆ Q(1)(x) ⊆ Q(2)(x) ⊆ · · · ⊆
∞⋃

r=0

Q(r)(x) = X. (2.4)

It follows that for each r ∈ N = {0, 1, 2, 3, . . .}, the collection of all cubes of rank r

Πr =
{
Q(r)(x) : x ∈ X

}
(2.5)

forms a partition of X into finite subsets where every cube belonging Πr is a disjoint

union of νr cubes belonging to Πr−1. Then the cardinality or volume of a cube is

given by
∣∣Q(r)(x)

∣∣ = ν1ν2 · · · νr.

Since each νr ≥ 2, it follows that each inclusion in (2.4) is strict and |Q(r)(x)| is of at

least exponential order as r →∞.

The requirement that dh be integer-valued implies X is discrete as a topological

space. In fact, the definition implies the set X—being a countable union (2.4) of

finite sets, must itself be countable. More generally, we could have simply required

dh to take as its values the terms of some strictly increasing sequence, 0 = t0 < t1 <

t2 < · · · . For any such sequence, we can define a renormalized hierarchical distance

by taking ρh(x, y) = tdh(x,y). In this case, the cubes remain the same but the dh-balls

of radius r become ρh-balls of radius tr. In a self-similar hierarchical lattice, taking

tr = βr for some β > 1 and all r ≥ 1, the volume of a renormalized metric ball

becomes, essentially as in Rd, a power function of its radius, i.e., if R = βr, we have

| {y ∈ X : ρh(x, y) ≤ R} | = |Q(r)(x)| = νr = Rlogβ ν .
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For each r ≥ 0, we denote the collection of all cubes of rank ≥ r by

Vr =
∞⋃

k=r

Πk.

For each r ≥ 0, Vr forms a simple connected graph with edges

Er =
{
{Q,Q+} : Q ∈ Vr

}

where we write Q+ = Q(r+1)(x) whenever Q = Q(r)(x). The graph distance dg

between two cubes Q ∈ Πm and Q′ ∈ Πn is given by

dg(Q,Q
′) =





n−m if Q ⊆ Q′

2r −m− n if dh(Q,Q′) = r > 0

. (2.6)

Note that for y /∈ Q, the mapping Q 3 x 7→ dh(x, y) is constant. Therefore, whenever

Q and Q′ are disjoint we have dh(Q,Q′) = dh(x, x
′) for all x ∈ Q and x′ ∈ Q′.

Equation (2.3) shows that the hierarchical distance can be recovered from a knowl-

edge of the partitions (2.5). To see this, let’s start from scratch and suppose we are

given an abstract countably infinite set X and a sequence {Πr}r≥1 of partitions of X

into finite subsets where every set belonging to Πr is contained in some set belonging

to Πr+1 and contains at exactly νr ≥ 2 subsets belonging to Πr−1. Assume further

that for each x ∈ X,
∞⋃

r=0

Q(r)(x) = X (2.7)

where Q(r)(x) is the unique set from Πr containing x and Q(0)(x) = {x}. If dh(x, y)

is defined by (2.3) then (X, dh) is a hierarchical lattice. We assume (2.7) in order to

ensure that dh(x, y) <∞ for all x, y ∈ X.



7

Figure 2.1: Cube of rank 4 in a self-similar hierarchical lattice where ν = 3.

The simplest example of a self-similar hierarchical lattice is given by X = N with

Q
(r)
i =

{
n ∈ N : iνr ≤ n < (i+ 1)νr

}
for all r ≥ 0 and i ∈ N (2.8)

We denote the hierarchical distance on N by d̂h(m,n).

2.2 Enumeration of Self-similar Hierarchical Lattice

Proposition 2.1. In a self-similar hierarchical lattice, we can enumerate the points

X = {x0, x1, . . .} in such a way that for all m,n ∈ N,

dh(xm, xn) = d̂h(m,n).

As a result, we can enumerate the cubes of rank r

Πr =
{
Q

(r)
0 , Q

(r)
1 , Q

(r)
2 , . . .

}
, (2.9)

by defining for each i = 0, 1, 2, 3, . . .,

Q
(r)
i =

{
xn : iνr ≤ n < (i+ 1)νr

}
(2.10)

First, we need a lemma.

Lemma 2.2. In a self-similar hierarchical lattice, every cube can be enumerated

Q = {xn : 0 ≤ n < |Q|}

in such a way that dh(xm, xn) = d̂h(m,n) for all m,n < |Q|.
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5

Q
(3)
0︷ ︸︸ ︷

Q
(2)
0︷ ︸︸ ︷

Q
(1)
0︷ ︸︸ ︷

x0 · · · xν−1
Q

(1)
1︷ ︸︸ ︷

xν · · ·x2ν−1 · · ·
Q

(1)
ν−1︷ ︸︸ ︷· · ·xν2−1

Q
(2)
1︷ ︸︸ ︷

Q
(1)
ν︷ ︸︸ ︷

xν2 · · · · · ·
Q

(1)
2ν−1︷ ︸︸ ︷· · · x2ν2−1 · · · · · ·

Q
(2)
ν−1︷ ︸︸ ︷

Q
(1)
(ν−1)ν︷ ︸︸ ︷

x(ν−1)ν2 · · · · · ·
Q

(1)

ν2−1︷ ︸︸ ︷· · · xν3−1

Proof. For m < n, we have d̂h(m,n) = r if and only if there exist i, j ∈ N with

iνr ≤ m < jνr−1 ≤ n < (i+ 1)νr. (1.11)

But if (1.11) holds we will also have

(i+ 1)νr ≤ m+ νr < (j + ν)νr−1 ≤ n+ νr < (i+ 2)νr

hence d̂h(m+ νr, n+ νr) = d̂h(m,n). It follows by induction that

d̂h
(
m+ kν d̂h(m,n), n+ kν d̂h(m,n)

)
= d̂h(m,n) for all k ≥ 1 (1.12)

Now, let Q ∈ Πr+1 and assume the result holds for all cubes of smaller rank

contained in Q. Then there exist Q(r)
0 , . . . , Q

(r)
ν−1 ∈ Πr with Q =

⋃ν−1
i=0 Q

(r)
i and for

0 ≤ i < ν, we have

Q
(r)
i =

{
x(i)n : 0 ≤ n < νr

}
with dh(x

(i)
m , x

(i)
n ) = d̂h(m,n).

Now, for each N = iνr + n ∈ {0, 1, 2, . . . , νr+1 − 1}, we define xN = x
(i)
n . Then

Q =
{
xN : 0 ≤ N < νr+1

}
and each Q

(r)
i = {xN : iνr ≤ N < (i+ 1)νr} .

Figure 2.2: Cube of rank 3 in a self-similar hierarchical lattice.

Proof. For m < n, we have d̂h(m,n) = r if and only if there exist i, j ∈ N with

iνr ≤ m < jνr−1 ≤ n < (i+ 1)νr. (2.11)

But if (2.11) holds we will also have

(i+ 1)νr ≤ m+ νr < (j + ν)νr−1 ≤ n+ νr < (i+ 2)νr

hence d̂h(m+ νr, n+ νr) = d̂h(m,n). It follows by induction that

d̂h
(
m+ kν d̂h(m,n), n+ kν d̂h(m,n)

)
= d̂h(m,n) for all k ≥ 1. (2.12)

Now, let Q ∈ Πr+1 and assume the result holds for all cubes of smaller rank

contained in Q. Then there exist Q1, . . . , Qν ∈ Πr with Q =
⋃ν
i=1Qi hence for

1 ≤ i ≤ ν, we have

Qi =
{
x(i)
n : 0 ≤ n < νr

}
with dh(x

(i)
m , x

(i)
n ) = d̂h(m,n).

We define xN = x(i)
n for

N = (i− 1)νr + n ∈
{

0, 1, 2, . . . , νr+1 − 1
}
.

Then we have

Q =
{
xN : 0 ≤ N < νr+1

}
and Qi = {xN : (i− 1)νr ≤ N < iνr} .
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For M = (i− 1)νr +m and N = (j − 1)νr + n with 1 ≤ i, j ≤ ν and 0 ≤ m,n < νr,

dh(xM , xN) = dh(x
(i)
m , x

(j)
n ) =





d̂h(m,n) if i = j

r + 1 if i 6= j

.

If i = j then by (2.12), we have

d̂h(M,N) = d̂h(m,n) = dh(xM , xN).

If i < j then 0 ≤M < iνr ≤ N < νr+1 hence

d̂h(M,N) = r + 1 = dh(xM , xN).

Proof of Proposition 2.1. It is clear from the construction in Lemma 2.2 that we may

recursively construct an infinite sequence {xn}n≥0 with dh(xm, xn) = d̂h(m,n) for all

m,n ≥ 0 and with the first νr terms of this sequence enumerating Q(r)(x0)

Q(r)(x0) = {xn : 0 ≤ n < νr} for each r.

For the first step of the recursion, we may choose x0 ∈ X (the origin) arbitrarily. At

the rth step, we generate the next νr − νr−1 terms of the sequence which enumerate

Q(r)(x0)�Q(r−1)(x0). By (2.7), this sequence must enumerate all of X.

2.3 Hierarchical Addition

Enumerating each partition Πr as in (2.9–2.10) we have

Q
(m+r)
i =

νr−1⋃

k=0

Q
(m)
iνr+k =

νm−1⋃

k=0

Q
(r)
iνm+k (2.13)

and in particular, taking m = 0, we have Q(r)(xn) = Q
(r)
i where i = bn/νrc.
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Now let’s define a mapping n : X → N by putting n(x) = n if x = xn in the

enumeration of X. Let’s further define, for each r ≥ 0, the rth-coordinate mapping

nr : X → {0, 1, . . . , ν − 1}

by putting nr(x) = nr if, in the enumeration of Πr, Q(r)(x) is the (nr + 1)th cube

of rank r contained in Q(r+1)(x). Then nr(x) is the (r + 1)th digit of the base-ν

representation of n(x), i.e.,

n(x) =
∞∑

r=0

nr(x)νr =

|x|h−1∑

r=0

nr(x)νr

where |x|h = dh(x0, x). Notice that

|x|h = r if and only if νr−1 ≤ n(x) < νr

or equivalently, |xn|h = 1 + dlogν ne. We also have

n0(xiνr) = n1(xiνr) = · · · = nr−1(xiνr) = 0

and

nk(xiνr) = nk−r(xi) for k ≥ r,

hence

|xiνr |h = r + |xi|h.

Define an additive group (hierarchical addition, see [3, 11]) on X by putting

nr(x +̇ y) = nr(x) + nr(y) mod ν

for each r ≥ 0. It means that we add the indices for x and y in base-ν except
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that we “forget to carry the tens” over to the next digit whenever nr(x) + nr(y) ≥ ν.

Proposition 2.1 says that no matter how (X, dh) has been constructed, we may as

well assume (X, dh) = (N, d̂h). Accordingly, we will identify xn ∈ X with n ∈ N and

write x +̇n instead of x +̇xn.

The first cube Q(r)
0 of each rank is a subgroup of (X, +̇) whose cosets are given by

Q(r)(x) = x +̇Q
(r)
0 .

As a result, we have

Q(r)(x) +̇Q(r)(y) = Q(r)(x +̇ y).

Furthermore, since Q(m)
0 is a subgroup of Q(m+r)

0 , we have

Q
(m)
0 +̇Q

(m+r)
0 = Q

(m+r)
0

so that

Q(m)(x) +̇Q(m+r)(y) = Q(m+r)(x +̇ y).

Similarly, because iνr +̇ jνr = (i +̇ j)νr and Q(r)
i = Q(r)(iνr), we have

Q
(r)
i +̇Q

(r)
j = Q

(r)

i +̇ j

and it follows from (2.13) that

Q
(m)
iνr+k +̇Q

(m+r)
j = Q

(m+r)

i +̇ j
for 0 ≤ k < νr.

Now (2.13) becomes

Q(m+r)(x) =
νr−1⋃

k=0

Q(m)(x +̇ kνm) =
νm−1⋃

k=0

Q(r)(x +̇ kνr). (2.14)



CHAPTER 3: HIERARCHICAL LAPLACIANS

3.1 Averaging Operators and Associated Subspaces of CX

We define an operator Ar : CX → CX , the rth-rank averaging operator, in the space

CX of complex-valued functions defined on X by putting

Arf(x) =
1

νr

∑

z∈Q(r)(x)

f(z) (3.1)

for f : X → C. Equivalently,

Arf =
∑

Q∈Πr

fQ1Q (3.2)

where 1Q : X → {0, 1} is the indicator function of a set Q ⊆ X and

fQ =
1

|Q|
∑

x∈Q
f(x).

is the average value of f on the cube Q.

To motivate this definition consider a random walk {xn}n≥0 beginning at the

point x ∈ X which at each step, jumps with equal probabilities to another point

y ∈ Q(r)(x) = x +̇Q
(r)
0 . In other words,

xn = x +̇ z1 +̇ · · · +̇ zn

where {zn}n≥1 is an i.i.d. sequence of uniformly distributed random elements of Q(r)
0 .

It means that, beginning at x ∈ X, the probability, at the nth step, of arriving at
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y ∈ X is given by

Px(xn = y) =
1r(x, y)

νr

where

1r(x, y) = 1Q(r)(x)(y) = 1Q(r)(y)(x) = 1r(y, x).

Then Px-almost surely, {xn} never leaves the cube Q(r)(x) hence for every f ∈ CX

and n ≥ 1 we have

Exf(xn) =
∑

y∈Q(r)(x)

f(y)Px(xn = y) = Arf(x).

We say that Ar generates a symmetric random walk on cubes of rank r.

It is clear from (3.2) that Ar : CX → Mr where Mr is the subspace of functions

which are constant on cubes of rank r. Observe that f ∈Mr if and only if Arf = f .

Since every cube of rank k < r is contained in a cube of rank r, we see that

k < r implies Mr ⊆Mk. (3.3)

Since every cube of rank r is a disjoint union of exactly νr−k cubes of rank k < r,

considering the average of averages, we see that

k < r implies AkAr = ArAk = Ar. (3.4)

Proposition 3.1. For 1 ≤ k ≤ r, if f ∈Mr then for every g ∈ CX , we have

Akfg = fAkg. (3.5)

In other words, Ak treats functions f ∈Mr like constants.
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Proof. If f ∈Mr then by (3.3), f is constant on cubes of rank k ≤ r hence for g ∈ CX ,

(Akfg)(x) =
1

νk

∑

y∈Q(k)(x)

f(y)g(y) =
1

νk

∑

y∈Q(k)(x)

f(x)g(y) = f(x)(Akg)(x).

Now we must describe two subspaces related to Mr and corresponding operators

related to Ar which are needed in the sequel.

First, the subspace Lr consists of all f ∈ CX which are constant on cubes of rank

< r with
∑
f = 0 on cubes of rank ≥ r, i.e.,

Akf = f for 1 ≤ k < r and Akf = 0 for all k ≥ r. (3.6)

We have f ∈ Lr if and only if Erf = f where Er : CX → Lr is defined by

Er = Ar−1 − Ar. (3.7)

It follows from (3.4) that

k < r implies EkEr = ErEk = 0. (3.8)

Next, for each Q ∈ Πr (each cube of rank r), the subspace LQ consists of all f ∈ Lr

which vanish outside of Q. Then f ∈ LQ if and only if EQf = f where EQ : CX → LQ

is defined by EQ = 1QEr. Since 1X =
∑

Q∈Πr
1Q, it follows that

Er =
∑

Q∈Πr

EQ. (3.9)

If we write Q =
⋃ν
i=1Qi where Q1, Q2, . . . , Qν are the cubes of preceding rank

contained in Q then LQ consists of all functions which vanish outside of Q and are

constant on each subcube Qi with the sum of these constants being zero, i.e., functions



15

of the form

f = EQf =
ν∑

i=1

ci1Qi with
ν∑

i=1

ci = 0. (3.10)

We obtain the following corollary to Proposition 3.1.

Corollary 3.2. For 1 ≤ k ≤ r, if f ∈Mr and g ∈ Lk then fg is constant on cubes

of rank k − 1 and
∑
fg = 0 on cubes of rank k hence fg ∈ Lk. In other words, Lk

absorbs multiplication from functions in Mr.

Next, we consider the subspace of functions which can be continuously extended

to the one-point compactification of X, i.e., functions f ∈ CX having a limit as x

approaches the point at infinity. We will prove, in Proposition 3.3, that Ar is invariant

on this subspace.

Whenever we write lim
x→∞

f(x) = c or f(x)→ c as x→∞, it is equivalent to saying

that for every ε > 0, there exists n such that |x|h > n implies |f(x)− c| < ε.

Proposition 3.3. If lim
x→∞

f(x) = c then lim
x→∞

Arf(x) = c.

Proof. Because Ar(f − c) ≡ Arf − c we may assume c = 0. Let ε > 0. Then there

exists n > r such that |x|h > n implies |f(x)| < ε. If |x|h > n then |y|h > n for every

y ∈ Q(r)(x) hence

|Arf(x)| ≤ 1

νr

∑

y∈Q(r)(x)

|f(y)| < ε.

Therefore, lim
x→∞

Arf(x) = 0.

Notice that whenever z ∈ Q(r)
0 , since Q(r)(x +̇ z) = Q(r)(x), we have

Arf(x +̇ z) = Arf(x)
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for all x ∈ X, i.e., each z ∈ Q(r)
0 is a period for Arf . Similarly, we have

f(x +̇ z) ≡ f(x) for all f ∈Mr and z ∈ Q(r)
0 .

It means we may think of Mr as the space of Q(r)
0 -periodic functions defined on the

group (X, +̇). From (2.14) we obtain

Am+rf(x) =
1

νr

νr−1∑

k=0

Amf(x +̇ kνm) =
1

νm

νm−1∑

k=0

Arf(x +̇ kνr).

In particular,

Arf(x) =
1

ν

ν−1∑

k=0

Ar−1f(x +̇ kνr−1)

and therefore

−Erf(x) = Arf(x)− Ar−1f(x) =
1

ν

ν−1∑

k=1

Ar−1f(x +̇ kνr−1).

Lemma 3.4. If lim
x→∞

f(x) = c then lim
r→∞

Arf(x) = c for every x ∈ X.

Proof. Again we may assume c = 0. First observe that for r ≥ m we have

Arf(x) =
1

νr−m

νr−m−1∑

k=0

Amf(x +̇ kνm).

If m > |x|h and k > 0 then we have x +̇ kνm ≥ νm−1 so that |x +̇ kνm|h ≥ m hence

|Amf(x +̇ kνm)| ≤ max
|y|h≥m

|f(y)|.

Now let ε > 0 and choose m > |x|h so large that max
|y|h≥m

|f(y)| < ε
2
. Then we have

|Arf(x)| ≤ |Amf(x)|
νr−m

+
νr−m−1∑

k=1

|Amf(x +̇ kνm)|
νr−m

≤ ‖f‖∞
νr−m

+
ε

2

so that |Arf(x)| < ε for all r > m+ logν(1 + 2
ε
‖f‖∞).
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Proposition 3.5. If lim
x→∞

f(x) = c then we have

f(x) = c+
∞∑

r=1

Erf(x) = c+
∑

Q∈V1

EQf(x)

for every x ∈ X.

Proof. Since we have

n∑

r=1

Erf(x) =
n∑

r=1

(Ar−1 − Ar)f(x) = f(x)− Anf(x),

the result follows from Lemma 3.4.

3.2 Averaging Operators and Associated Subspaces of `2(X)

Let `2(X) be the Hilbert space of square-summable functions on X with inner

product and norm

〈ψ, ϕ〉 =
∑

x∈X
ψ(x)ϕ(x) and ‖ψ‖2 =

∑

x∈X
|ψ(x)|2.

The matrix element for Ar is given by

〈Arδx, δy〉 = ν−r1r(x, y) = 〈δx, Arδy〉 (3.11)

hence Ar is self-adjoint. Because A2
r = Ar, it follows that Ar is the orthogonal

projection onto the subspace Mr of `2(X). Similarly, Er is the orthogonal projection

onto Lr and it follows from (3.3) that

Lr = Mr−1 ∩M⊥r .
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For r < s, since Ms−1 ⊆Mr,

Lr ∩ Ls ⊆Mr ∩M⊥r = {0} hence Lr ⊥ Ls for r 6= s. (3.12)

For each cube Q ∈ Πr, EQ is the orthogonal projection onto LQ. Furthermore, (3.12)

implies that LQ is orthogonal to LQ′ for Q,Q′ ∈ V1 with Q 6= Q′. It follows from

(3.9) that

Lr =
⊕

Q∈Πr

LQ. (3.13)

It follows from (3.10) that LQ is finite dimensional with

dimLQ = dim {(c1 . . . , cν) ∈ Cν : c1 + · · ·+ cν = 0} = ν − 1.

Together with the second equation in (3.13), this further implies that dimLr =∞.

From (3.10), it is immediate that the orthogonal complement of LQ consists of all

ψ ∈ `2(X) which are constant on Q. If ψ ∈
(⊕

Q∈V1

LQ

)⊥ then ψ is constant on

every cube Q ∈ V1 so by (2.4), ψ is constant on X which means ψ ≡ 0 on X. It

follows that

`2(X) =
⊕

Q∈V1

LQ =
∞⊕

r=1

Lr (3.14)

hence

I =
∑

Q∈V1

EQ =
∞∑

r=1

Er. (3.15)

Alternately, for functions in `2(X), (3.15) follows from Proposition 3.5.
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3.3 Hierarchical Random Walk and Laplacian

The hierarchical Laplacian is defined for each ψ ∈ `2(X) by

∆ψ(x) =
∑

y∈X
p(x, y)

(
ψ(y)− ψ(x)

)
(3.16)

where p(x, y) are the transition probabilities for the discrete time hierarchical random

walk {xn}n≥0 whose probability matrix is given by I + ∆ = [p(x, y)]X×X where I is

the identity operator on `2(X), i.e., for each ψ ∈ `2(X),

(I + ∆)ψ(x) =
∑

y∈X
p(x, y)ψ(y). (3.17)

It means that ∆ generates the semigroup et∆ = [p(t, x, y)]X×X for the continuous time

random walk, xt = xN(t), where N(t) is a Poisson process independent of {xn}n≥0

with intensity equal to one [5, 6]. Our definition of the hierarchical Laplacian follows

[16, 17] but sometimes I + ∆ is referred to as the hierarchical Laplacian [14, 10].

To define the discrete time hierarchical random walk, we fix an i.i.d. sequence

{ρn}n≥1 of random variables supported on the positive integers and we assume there

exist constants p ∈ (0, 1) and α > 0 such that for every r ∈ Z+,

(1/p− 1)pr+α ≤ P(ρ = r) ≤ (1/p− 1)pr−α. (3.18)

In (3.18), we always keep in mind the case where ρ is geometrically distributed, i.e.,

where α = 0. Now, at each time n, the random-walking particle jumps to the site xn

which is uniformly distributed within the cube of rank ρn containing xn−1, i.e.,

P
(
xn = y |xn−1 = x & ρn = r

)
=

1r(x, y)

νr
= 〈Arδx, δy〉 (3.19)
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Since ρn is independent of xn−1 the transition probabilities are easily computed:

p(x, y) = P
(
xn = y |xn−1 = x

)
=
∞∑

r=1

P(ρ = r)1r(x, y)

νr
. (3.20)

In particular, p(x, y) depends only on dh(x, y), i.e., p(x, x) = a1 and p(x, y) = ar for

dh(x, y) = r ≥ 1 where ar =
∑∞

k=r
P(ρ=k)
νk

. This allows us to diagonalize ∆. We do this

by summing first, for each individual rank r, the terms in (3.17) with dh(x, y) = r,

i.e., we first sum over each sphere Q(r)(x)�Q(r−1)(x) of radius r centered around x.

We have

∑

y:dh(x,y)=r

ψ(y) =
〈
ψ,1Q(r)(x)�Q(r−1)(x)

〉
=
〈
ψ,1Q(r)(x)

〉
−
〈
ψ,1Q(r−1)(x)

〉
.

Therefore, since ar − ar+1 = P(ρ=r)
νr

, summation by parts gives us

∑

y:y 6=x
p(x, y)ψ(y) =

∞∑

r=1

ar
∑

y:dh(x,y)=r

ψ(y) = −a1ψ(x) +
∞∑

r=1

P
(
ρ = r

)〈
ψ,1Q(r)(x)

〉

νr
(3.21)

so that

(I + ∆)ψ(x) =
∞∑

r=1

P
(
ρ = r

)〈
ψ,1Q(r)(x)

〉

νr
. (3.22)

Equation (3.22) now becomes

I + ∆ =
∞∑

r=1

P(ρ = r)Ar or ∆ =
∞∑

r=1

P(ρ = r)(Ar − I) (3.23)

which implies ∆ is self-adjoint. If we put λr = P
(
ρ ≥ r

)
, since Er = Ar−1 − Ar,

another summation by parts gives us

−∆ =
∞∑

r=1

(λr − λr+1)(I − Ar) =
∞∑

r=1

λrEr. (3.24)

From (3.14), we see that (3.24) diagonalizes ∆. The functional calculus for ∆ is given
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by

f(∆) =
∞∑

r=1

f(−λr)Er. (3.25)

For any function f which is bounded on Sp(∆) = {−λr : r ≥ 1} ∪ {0}, the operator

f(∆) is bounded with

‖f(∆)‖ = sup
λ∈Sp(∆)

|f(λ)|.

Since 〈Arδx, δy〉 = ν−r1r(x, y), the matrix element for f(∆) is given by

f(∆)(x, y) = 〈f(∆)δx, δy〉 =
∞∑

r=1

f(−λr)
(
1r−1(x, y)

νr−1
− 1r(x, y)

νr

)
(3.26)

The sum in (3.26) can be simplified in two ways depending on whether or not

dh(x, y) = 0 [16, 17]. We have

f(∆)(x, x) =
∞∑

k=1

(ν − 1)f(−λk)
νk

(3.27)

and for dh(x, y) = r > 0 we have

f(∆)(x, y) = −f(−λr)
νr

+
∞∑

k=r+1

(ν − 1)f(−λk)
νk

. (3.28)

Alternately, (3.26) can be rewritten in the form

f(∆)(x, y) = f(−λ1)10(x, y) +
∞∑

r=1

(
f(−λr+1)− f(−λr)

)
1r(x, y)

νr
. (3.29)

In particular, for λ > 0, taking f(x) = 1[0,λ)(−x) in (3.27), we obtain the expression

given in [17] for the integrated density of states for −∆. We have

N [0, λ) =

(
1− 1

ν

) ∞∑

r=0

1[0,λ)(λr+1)

νr
. (3.30)
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It follows that the “density” of states for −∆ is simply a sum

n(λ) =
∞∑

r=1

(ν − 1)δλr(λ)

νr

of point masses along Sp(−∆). Our assumption (3.18) allows us to find the asymp-

totics of N [0, λ) as λ→ 0+. Observe that for every r ∈ Z+, by (3.18), we have

pr+α ≤ λr+1 ≤ pr−α. (3.31)

Since 1[0,λ) is non-increasing on [0,∞), it follows that for every r ≥ 0,

1[0,λ)(p
r−α)

νr
≤ 1[0,λ)(λr+1)

νr
≤ 1[0,λ)(p

r+α)

νr
. (3.32)

The left-hand side of (3.32) is non-zero if and only if r > α + logp λ and the right-

hand side is non-zero if and only if r > −α + logp λ. Summing the geometric series

(
1− 1

ν

)∑
1
νr

over all r > ±α + logp λ (separately), we obtain

λsh/2

να+1
≤ N [0, λ) ≤ ναλsh/2 (3.33)

where sh = −2 logp ν > 0. The first inequality in (3.33) is valid for 0 ≤ λ ≤ p−α and

the second for 0 ≤ λ ≤ pα. It immediately implies we have Lifshitz tails in the strong

form (see [8, 16, 17])

lim
λ↘0

logN [0, λ)

log λ
=
sh
2
. (3.34)

Applying (3.29) to the semigroup

et∆ =
∞∑

r=1

e−λrtEr = [p(t, x, y)]X×X , (3.35)
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we obtain transition probabilities for the continuous-time hierarchical random walk

Px(xt = y) = p(t, x, y) = e−λ1t10(x, y) +
∞∑

r=1

(e−λr+1t − e−λrt)1r(x, y)

νr
, (3.36)

i.e., the solution to the parabolic problem

∂
∂t
p(t, x, y) = ∆xp(t, x, y), t > 0, p(0, x, y) = 10(x, y).

In particular, applying (3.27) to et∆, we have

p(t, x, x) =
∞∑

r=1

(ν − 1)e−λrt

νr
. (3.37)

Since p(t, x, y) > 0 for all x, y ∈ X and t > 0, it follows that either
∫∞

0
p(t, x, x)dt <∞

for all x ∈ X in which case the process xt is transient (spends a finite time in each

state), or
∫∞

0
p(t, x, x)dt = ∞ for all x ∈ X in which case xt is recurrent (spends an

infinite amount of time in each state).

From (3.36) we obtain the kernel of the resolvent operator Rλ = (λI −∆)−1

Rλ(x, y) =

∫ ∞

0

e−λtp(t, x, y) dt =
10(x, y)

λ+ λ1

+
∞∑

r=1

pr1r(x, y)

νr(λ+ λr)(λ+ λr+1)
, (3.38)

and from (3.37),

Rλ(x, x) =
∞∑

r=1

ν − 1

νr(λ+ λr)
. (3.39)

If νp > 1 (equivalently sh > 2) and dh(x, y) = r > 0, (3.38) shows that

∫ ∞

0

p(t, x, y) dt = R0(x, y) =
∞∑

k=r

pk
νkλkλk+1

.

But (3.18) and (3.31) imply

(1− p)p3α

(νp)k
≤ pk
νkλkλk+1

≤ (1− p)p−3α

(νp)k
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hence

cp3α

(νp)r
≤
∫ ∞

0

p(t, x, y) dt ≤ cp−3α

(νp)r
(3.40)

where c = νp(1−p)
νp−1

. On the other hand, if νp ≤ 1 (sh ≤ 2), we have

∫ ∞

0

p(t, x, y) dt = lim
λ↘0

Rλ(x, y) =
∞∑

k=r

pk
νkλkλk+1

≥ (1− p)p3α

∞∑

k=r

1

(νp)k
=∞.

It follows that xt is transient for sh > 2 (νp > 1) and recurrent for sh ≤ 2 (νp ≤ 1)

[16, 17]. We call sh = −2 logp ν the spectral dimension of ∆. To further justify this

terminology, we will find the asymptotics of p(t, x, x) as t → ∞. Following [17], we

will first find the asymptotics of the function

θ(t) =

(
1− 1

ν

) ∞∑

k=0

e−p
kt

νk
. (3.41)

i.e., p(t, x, x) for the case given in [16, 17] where P
(
ρ = r

)
= (1/p−1)pr. Considering

the continuous analogue of θ(t), i.e., θ̃(t) = log ν
∫∞

0
ν−xe−p

xt dx, we see that tsh/2θ(t)

is essentially the discrete analogue of an incomplete Gamma function — substituting

y = pxt, we have tsh/2θ̃(t) = sh
2

∫ t
0
ysh/2−1e−y dy → Γ

(
1 + sh

2

)
as t → ∞. Replacing

Γ(1 + sh
2

) with a logarithmically periodic function of t, the same thing holds for θ(t).

Proposition 3.6. [16, 17] There exists a periodic function h(z) =
(
1− 1

ν

)∑∞
−∞

e−p
k+z

νk+z

such that tsh/2θ(t) ∼ h
(
logp t

)
as t→∞.

Proof. First, observe that

h(logp t) = h(z) =

(
1− 1

ν

) ∞∑

k=−∞

e−p
k+z

νk+z
=

(
1− 1

ν

) ∞∑

k=−∞

e−p
k+{z}

νk+{z}

where z = z(t) = logp t and the last equality is from replacing the index k with

k − bzc. Since {z + 1} ≡ {z}, this also shows that h(z) ≡ h({z}) is periodic with
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period one. Next, since t = pz implies tsh/2 = ν−z and e−pkt = e−p
k+z , we have

tsh/2θ(t) =

(
1− 1

ν

) ∞∑

k=0

e−p
k+z

νk+z
=

(
1− 1

ν

) ∞∑

k=bzc

e−p
k+{z}

νk+{z} .

Therefore, since bz(t)c → −∞ as t→∞,

tsh/2θ(t)

h1(logp t)
=

∑∞

k=bzc
e−p

k+{z}

νk+{z}

∑∞

k=−∞
e−p

k+{z}

νk+{z}

→ 1 as t→∞

which completes the proof.

Proposition 3.7. There exists a periodic function h(z) such that

1

να+1
≤ tsh/2p(t, x, x)

h(logp t)
≤ να+1 as t→∞ (3.42)

hence p(t, x, x) � t−sh/2 as t→∞.

Proof. As in (3.32), since the function λ 7→ e−λt is decreasing, by (3.31) we have

θ(p−dαet) ≤ θ(p−αt) ≤ p(t, x, x) ≤ θ(pαt) ≤ θ(pdαet) (3.43)

where dαe = min {n ∈ Z : n ≥ α}. Dividing through by t−sh/2h(logp t) and observing

that h
(
logp(p

±dαet)
)

= h(logp t), we have

tsh/2θ(p−dαet)

h
(
logp(p

−dαet)
) ≤ tsh/2p(t, x, x)

h(logp t)
≤ tsh/2θ(pdαet)

h
(
logp(p

dαet)
) . (3.44)

As t → ∞, the left-hand side converges to ν−dαe ≥ ν−α−1 while the right-hand side

converges to νdαe ≤ να+1.
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3.4 Hierarchical Laplacian with Variable Coefficients

The diagonalization (3.24) of the hierarchical Laplacian displays the fact that each

eigenvalue λr = P(ρ ≥ r) is isolated in Sp(−∆) and has multiplicity dimLr =∞.

To correct these “defects”, we first observe that (3.15) implies we have the further

diagonalization

−∆ψ(x) =
∞∑

r=1

λr

( ∑

Q∈Πr

EQψ(x)

)
=
∑

Q∈V1

λQEQψ(x) (3.45)

where λQ = λr for each Q ∈ Πr. In essence, it seems that because the mapping

Q 7→ λQ from V1 to Sp(−∆) is constant on each Πr ⊆ V1, the finite dimensional

subspaces, LQ for Q ∈ Πr, which should have been the eigenspaces, have instead

been collapsed into the infinite dimensional eigenspace Lr.

A hierarchical Laplacian ∆̃ with variable coefficients is a modification of ∆ where,

in (3.45), we instead require λQ to vary for different Q ∈ Πr. We accomplish this by

replacing each constant λr in (3.24) with a function λ(r) : X → R which is single-

valued on cubes of rank r with different values on different cubes of rank r, i.e.,

λ(r)(x) = λ(r)(y) if and only if dh(x, y) ≤ r. (3.46)

Furthermore, we require that

|λ(r)(x)− λr| ≤ σλr for all x ∈ X and r ≥ 1 (3.47)

where σ ∈ (0, 1) is a coupling constant (measure of disorder) — the condition σ < 1

ensures that we do not gain any negative spectrum. It means ∆̃ is an operator of the
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form

− ∆̃ψ(x) =
∞∑

r=1

λ(r)(x)Erψ(x) =
∑

Q∈V1

λQEQψ(x) (3.48)

where λQ = λ
(r)
i is now the single value of the function λ(r)(x) on the cube Q = Q

(r)
i .

If we put ξ(r)(x) = λ(r)(x)− λ(r+1)(x), then

λ(r)(x) = ξ(r)(x) + ξ(r+1)(x) + ξ(r+2)(x) + · · ·

and ∆̃ takes a form similar to (3.23),

− ∆̃ψ(x) =
∞∑

r=1

ξ(r)(x)(I − Ar)ψ(x). (3.49)

The functions ξ(r)(x) are the variable coefficients of −∆̃.

Proposition 3.8. If ∆̃ is defined by (3.48), then

Sp(−∆̃) ⊆ {0} ∪
∞⋃

r=1

[
(1− σ)λr, (1 + σ)λr

]
, (3.50)

∆̃ is self-adjoint, ∆̃ ≤ 0 and ‖∆̃‖ ≤ 1 + σ.

Proof. The “if” part of (3.46) means λ(r) ∈Mr. Then by Proposition 3.1, we have

Er(λ
(r)ψ) = λ(r)Erψ

so that

〈λ(r)Erϕ, ψ〉 = 〈ϕ, λ(r)Erψ〉.

Therefore, since λ(r)(x) is real valued, ∆̃ is self-adjoint. Since the right-hand side of

(3.50) is closed, the condition (3.47) implies (3.50) which further implies ∆̃ ≤ 0 and

‖∆̃‖ ≤ 1 + σ.



28

This modification of the Hierarchical Laplacian has the effect of breaking each

eigenvalue λr ∈ Sp(−∆) with eigenspace Lr into a collection of eigenvalues

range(λ(r)) = {λQ : Q ∈ Πr} ⊆ Sp(−∆̃) (3.51)

whose eigenspaces are properly contained in Lr. If the mapping Q 7→ λQ turned out

to be one-to-one, each subspace LQ for Q ∈ V1 would itself be an eigenspace of −∆̃

and the multiplicity of each eigenvalue λQ would be exactly dimLQ = ν − 1. Note

that our definition falls short of requiring the mapping Q 7→ λQ to be one-to-one

on all of V1 — it only requires that λQ 6= λQ′ for cubes Q 6= Q′ of the same rank.

Because the functions λ(r)(x) take values in intervals which may overlap, it remains

possible for subspaces LQ1 , . . . ,LQn , corresponding to cubes Q1, . . . , Qn, with no two

of the same rank, to be collapsed into a single eigenspace LQ1 ⊕ · · · ⊕LQn . However,

because the right endpoints of the intervals in (3.50) decrease to zero as r →∞, the

multiplicity of an eigenvalue λ is at most (ν − 1)|I(λ)| where

I(λ) =
{
r : (1− σ)λr ≤ λ ≤ (1 + σ)λr

}
=
{
r : λ

1+σ
≤ λr ≤ λ

1−σ
}

hence, all eigenvalues of −∆̃ have finite multiplicity. We will compute a bound on

the number |I(λ)| which is uniform for all λ ∈ Sp(−∆̃). If we write m+ 1 = min I(λ)

and M = max I(λ), we have

λM+1 <
λ

1+σ
≤ λM < · · · < λm+2 < λm+1 ≤ λ

1−σ < λm

so that, letting β = logp
1−σ
1+σ

, by (3.31), we have

pα+1 λ
1+σ
≤ pM < p−α λ

1+σ
and pα+1 λ

1+σ
< pm+β ≤ p−α λ

1+σ
. (3.52)
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Taking logarithms in (3.52), we have

−α < M − logp
λ

1+σ
≤ α + 1 and − α ≤ m+ β − logp

λ
1+σ

< α + 1.

Since |I(λ)| = M −m, it follows that

β − (2α + 1) < |I(λ)| ≤ β + (2α + 1) (3.53)

hence the multiplicity of an eigenvalue for −∆̃ is at most (ν − 1)(2α + β + 1).

In order to rid the spectrum of isolated points, we would like to define the functions

λ(r)(x) in such a way that for each r ≥ 1, the eigenvalues {λQ : Q ∈ Πr} form a dense

subset of the interval of length 2σλr centered around λr. In this case, because Sp(−∆̃)

is closed, we will have

Sp(−∆̃) ⊇
∞⋃

r=1

[
λr(1− σ), λr(1 + σ)

]
,

and because λr → 0 as r → ∞, 0 ∈ Sp(−∆̃), hence we will have equality in (3.50).

This way, Sp(−∆) is contained in Sp(−∆̃) but each isolated eigenvalue λr ∈ Sp(−∆)

is replaced its corresponding interval in (3.50). Furthermore, as σ → 0, Sp(−∆̃)

shrinks to Sp(−∆) and we obtain ∆ as a special case of ∆̃.

These observations are summarized in Propositions 3.9–3.10.

Proposition 3.9. Every eigenvalue for −∆̃ has finite multiplicity.

If the mapping Q 7→ λQ from V1 to Sp(−∆̃) is one-to-one, the eigenspaces for −∆̃

consist of LQ for Q ∈ V1 with each eigenvalue having multiplicity ν − 1.

Otherwise, the multiplicity of an eigenvalue for −∆̃ is a multiple of ν − 1 which

does not exceed (ν − 1)(2α + β + 1) where β = logp
1−σ
1+σ

.
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Proposition 3.10. If for each rank r, the range of λ(r) is a dense subset of the

rth interval in (3.50), then we have equality in (3.50) and ‖∆̃‖ = 1 + σ.

In the next chapter, we will construct a random mapping Q 7→ λQ which, almost

surely, is one-to-one and satisfies the hypotheses of Proposition 3.10.

3.5 Integrated Density of States

Here we will introduce some notation and give the general framework for computing

the density of states. In Proposition 3.11, we will prove that the hierarchical Lapla-

cian with variable coefficients has the same spectral dimension as the Hierarchical

Laplacian with constant coefficients.

For a measurable set A, let NL(A) be the number of eigenvalues for the problem

− ∆̃ψ = λψ, ψ ≡ 0 on X�Q(L)
0 . (3.54)

The density of states measure, N(A), for −∆̃ (whenever it exists), is defined to be

the limit as L→∞ of the finite volume approximation

NL(A) =
NL(A)

NL(R)
. (3.55)

Then the integrated density of states for −∆̃ is the function λ 7→ N [0, λ).

If we let SL be the set of all non-degenerate sub-cubes of Q(L)
0 , i.e.,

SL =
L⋃

r=1

S
(r)
L where S

(r)
L =

{
Q ∈ Πr : Q ⊆ Q

(L)
0

}
, (3.56)

then the eigenvalues for (3.54) are given by {λQ : Q ∈ SL}. Since the multiplicity of

each eigenvalue is a multiple of ν − 1 and since we are ultimately concerned with the

proportion (3.55), we may as well assume that each time λQ ∈ A, it contributes a 1
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rather than a ν − 1 to the sum NL(A), i.e., we compute NL(A) by the formula

NL(A) =
∑

Q∈SL
1A(λQ) =

L∑

r=1

N (r)
L (A) (3.57)

where

N (r)
L (A) =

∑

Q∈S(r)L

1A(λQ) =
∑

i<νL−r

1A(λ
(r)
i ). (3.58)

Then for 1 ≤ r ≤ L, since there are νL−r cubes of rank r contained in Q(L)
0 ,

NL(R) =
∣∣SL
∣∣ =

L∑

r=1

∣∣S(r)
L

∣∣ =
L∑

r=1

νL−r =
νL − 1

ν − 1
.

Note that if we exponentiate the inequalities (3.52) by sh
2

= − logp ν, we obtain

1
να+1

(
λ

1+σ

)sh/2≤ 1
νM

< να
(

λ
1+σ

)sh/2 and 1
να+1

(
λ

1+σ

)sh/2< 1
νm+β ≤ να

(
λ

1+σ

)sh/2 . (3.59)

These inequalities allow us to obtain (3.33–3.34) for the integrated density of states

whenever it exists.

Proposition 3.11. Let N∗[0, λ) = lim inf
L→∞

NL[0, λ) and N∗[0, λ) = lim sup
L→∞

NL[0, λ).

Then there exist constants c1, c2 > 0 such that

c1λ
sh/2 ≤ N∗[0, λ) ≤ N∗[0, λ) ≤ c2λ

sh/2 (3.60)

for all λ > 0 hence

lim
λ↘0

logN∗[0,λ)
log λ

= lim
λ↘0

logN∗[0,λ)
log λ

= sh
2
. (3.61)

Proof. Writing I(λ) = {m+ 1,m+ 2, . . . ,M}, we see that for r ≤ m,

λ < (1− σ)λr ≤ λQ
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for all Q ∈ S
(r)
L so that N (r)

L [0, λ) = 0. On the other hand, for r > M , we have

λ > (1 + σ)λr ≥ λQ

for all Q ∈ S
(r)
L so that N (r)

L [0, λ) = νL−r. It follows that

NL[0, λ) =
M∑

r=m+1

N (r)
L [0, λ) +

L∑

r=M+1

νL−r =
M∑

r=m+1

N (r)
L [0, λ) +

νL(ν−M − ν−L)

ν − 1
.

But since

0 ≤
M∑

r=m+1

N (r)
L [0, λ) ≤

M∑

r=m+1

νL−r =
νL(ν−m − ν−M)

ν − 1
,

we have

νL(ν−M − ν−L)

ν − 1
≤ NL[0, λ) ≤ νL(ν−m − ν−L)

ν − 1
<
νL−m

ν − 1
.

Therefore, since 1 < νL

(ν−1)|SL| < 1 + ν1−L, it follows that

ν−M − ν−L < NL[0, λ) < ν−m + ν−L

so by (3.59), for c1 = ν−α−1(1 + σ)−sh/2 and c2 = να(1 + σ)−sh/2, we obtain

c1λ
sh/2 − ν−L < NL[0, λ) < c2λ

sh/2 + ν−L (3.62)

which proves (3.60). Finally, it follows from (3.60) that for λ < 1,

log c2
log λ

+ sh
2
≤ logN∗[0,λ)

log λ
≤ logN∗[0,λ)

log λ
≤ log c1

log λ
+ sh

2
.

Letting λ↘ 0, we obtain (3.61).



CHAPTER 4: RANDOM HIERARCHICAL LAPLACIAN

4.1 Definition

To define a random hierarchical Laplacian, let {ωQ : Q ∈ V1} be an independent

family of symmetric random variables where for each r ≥ 1, the random variables

{ωQ : Q ∈ Πr} corresponding to cubes of rank r, are identically distributed with

a continuously differentiable density fr(x) supported on the interval [−1, 1] with

supr≥1 ‖f ′r‖∞ < ∞. Then for any two different cubes Q and Q′, we have ωQ
law
= ωQ′

when Q and Q′ have the same rank but we allow for the possibility that ωQ and ωQ′

are distributed differently whenever Q and Q′ have different ranks.

For each r ≥ 1 we define ω(r) : X → [−1, 1] by ω(r)(x) = ωQ(r)(x) and we define a

random coefficient function ξ(r) : X → [(1−σ)pr, (1 +σ)pr], where pr = P(ρ = r), by

ξ(r)(x) =
(
1 + σω(r)(x)

)
pr (4.1)

Then ξ(r)(x) and ξ(r)(y) are independent for dh(x, y) > r but ξ(r)(x) = ξ(r)(y) when-

ever dh(x, y) ≤ r. For each ψ ∈ `2(X) we define

−∆ωψ(x) =
∞∑

k=1

ξ(k)(x)(I − Ak)ψ(x) =
∞∑

r=1

λ(r)(x)Erψ(x). (4.2)

where

λ(r)(x) =
∞∑

k=r

ξ(k)(x) = λr + σ

∞∑

k=r

pkω
(k)(x). (4.3)
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Observe that (3.18) implies

pα
∞∑

k=r

qpk−1
(
1 + σω(k)(x)

)
≤ λ(r)(x) ≤ p−α

∞∑

k=r

qpk−1
(
1 + σω(k)(x)

)
(4.4)

where q = 1 − p. Let λQ = λ
(r)
i denote the single random value assumed by the

function λ(r) : X → R on the cube Q = Q
(r)
i of rank r. It is important to note

that λQ − λQ′ is independent of λQ′ whenever Q $ Q′. Since {λQ : Q ∈ V1} is a

continuous family of random variables, it means, almost surely, the mapping Q 7→ λQ

is one-to-one. Therefore, each LQ is an eigenspace for −∆ω with eigenvalue λQ having

finite multiplicity dimLQ = ν − 1.

In Proposition 4.1, we will prove that, almost surely, the functions λ(r)(x) satisfy

the conditions of Proposition 3.10. Thus, even though the eigenvalues for −∆ω are

random, it follows from Proposition 3.10 that Sp(−∆ω) is deterministic.

Proposition 4.1. For r ≥ 1, almost surely, {λQ : Q ∈ Πr} =
[
(1−σ)λr, (1 +σ)λr

]
.

Proof. For (a, b) ⊆
[
(1− σ)λr, (1 + σ)λr

]
, let

(z − ε, z + ε) = (a,b)−λr
σλr

=
(
a−λr
σλr

, b−λr
σλr

)
.

Then z ∈ (−1, 1) and we have

λ(r)(x) ∈ (a, b) if and only if |λ(r)(x)− (1 + σz)λr| < σελr.

In view of (4.3),

|λ(r)(x)− (1 + σz)λr| ≤ σ
∞∑

k=r

pk|z − ω(k)(x)| ≤ 2σλr+n + σ
r+n−1∑

k=r

pk|z − ω(k)(x)|. (4.5)

Note that by (3.31), λr+n ≤ pn−2αλr. Choose an integer n > 2α + 1 + logp
ε
2
so that
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2λr+n < pελr. For each cube Q ∈ Πr+n let ηQ be the indicator for the event that

|z−ωQ′ | < (1− p)p2αε for every subcube Q′ ⊆ Q whose rank is between r and r+ n.

Then
{
ηQ : Q ∈ Πr+n

}
is an i.i.d. sequence of Bernoulli random variables with

P
(
ηQ = 1

)
=

r+n∏

k=r

P
(
|z − ω(k)| < qp2αε

)νr+n−k
> 0, where q = 1− p,

hence there almost surely exists a cube Q ∈ Πn+r with ηQ = 1. Then

|z − ω(k)(x)| < qp2αε for all x ∈ Q and r ≤ k ≤ r + n.

Continuing (4.5), we have

|λ(r)(x)− (1 + σz)λr| < σpελr + σqp2αε
r+n−1∑

k=r

pk

= σpελr + σqp2αε(λr − λr+n) < σpελr + σqελr = σελr.

Then, almost surely, λ(r)(x) ∈ (a, b) so that (a, b) ∩ {λQ : Q ∈ Πr} 6= ∅. Now by

considering (a, b) ⊆
[
(1 − σ)λr, (1 + σ)λr

]
with rational endpoints it follows that,

almost surely, {λQ : Q ∈ Πr} is dense in
[
(1− σ)λr, (1 + σ)λr

]
.

4.2 Dependence of Eigenvalues

The eigenvalues are dependent but in a sense we will make precise, λQ and λQ′ are

nearly uncorrelated if the graph distance (2.6) between Q and Q′ is large.

Proposition 4.2. Let g(r)(λ) be the density for λ(r) and for each n ≥ 1, let g(r)
n (λ)

be the density for λ(r) − λ(r+n). Then

∣∣g(r)
n (λ)− g(r)

n (µ)
∣∣ ≤ c

(σpr)2
|λ− µ| (4.6)

for all λ, µ ∈ R, r ≥ 1, and 1 ≤ n ≤ ∞ where c = 8
π

(
supr≥1 ‖f ′r‖∞

)2.
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Proof. Observe that g(r)
1 is the density for ξ(r) = pr(1 + σω(r)) hence

g
(r)
1 (x) = 1

σpr
fr
(
x−pr
σpr

)
so that ‖(g(r)

1 )′‖∞ ≤ 1
(σpr)2

‖f ′r‖∞ ≤ C
(σpr)2

.

where C = supr≥1 ‖f ′r‖∞. Then because ξ(r), ξ(r+1), . . . , ξ(r+n−1) are independent,

ĝ(r)
n (t) = Eeit(λ

(r)−λ(r+n)) =
r+n−1∏

k=r

ĝ
(k)
1 (t).

By the Mean Value Theorem, for all λ, µ, we have

∣∣g(r)
1 (λ)− g(r)

1 (µ)
∣∣ ≤ C

(σpr)2
|λ− µ|.

Similarly, since g(r)
2 = g

(r)
1 ∗ g(r+1)

1 , we have

∣∣g(r)
2 (λ)− g(r)

2 (µ)
∣∣ ≤

∫
g

(r)
1 (z)|g(r+1)

1 (λ− z)− g(r+1)
1 (µ− z)| dz ≤ C

(σpr)2
|λ− µ|.

For n ≥ 3, observe that since λ(r) − λ(r+n) is symmetric around λr − λr+n,

∣∣g(r)
n (λ)− g(r)

n (µ)
∣∣ =

1

2π

∣∣∣∣
∫ ∞

−∞
(e−itλ − e−itµ)ĝ(r)

n (t) dt

∣∣∣∣ ≤
|λ− µ|
π

∫ ∞

0

∣∣tĝ(r)
n (t)

∣∣ dt.

But we have

ĝ
(r)
1 (t) = Eeitξ

(r)

=

(1+σ)pr∫

(1−σ)pr

eitx

σpr
fr
(
x−pr
σpr

)
dx =

1

it

(1+σ)pr∫

(1−σ)pr

eitx

(σpr)2
f ′r
(
x−pr
σpr

)
dx

so that
∣∣tĝ(r)

1 (t)
∣∣ ≤ C

(σpr)2

(1+σ)pr∫

(1−σ)pr

dx = 2C
σpr

hence
∣∣tĝ(r)

n (t)
∣∣ =

∣∣∣∣tĝ
(r)
1 (t)

r+n−1∏

k=r+1

ĝ
(k)
1 (t)

∣∣∣∣ ≤ 2C
σpr
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and
∣∣tĝ(r)

n (t)
∣∣ =

∣∣∣∣tĝ
(r)
1 (t)ĝ

(r+1)
1 (t)ĝ

(r+2)
1 (t)

r+n−1∏

k=r+3

ĝ
(k)
2 (t)

∣∣∣∣ ≤
(

2C
σpr

)3
t−2

so that for A > 0,

∫ ∞

0

∣∣tĝ(r)
n (t)

∣∣ dt ≤ 2C
σpr

∫ A

0

dt+
(

2C
σpr

)3
∫ ∞

A

t−2 dt = 2C
σpr
A+

(
2C
σpr

)3
A−1.

Taking A = 2C
σpr

minimizes the right-hand side and we obtain

∫ ∞

0

∣∣tĝ(r)
n (t)

∣∣ dt ≤ 2
(

2C
σpr

)2

so that for n ≥ 3,
∣∣g(r)
n (λ)− g(r)

n (µ)
∣∣ ≤ 8C2

π(σpr)2
|λ− µ|

hence (4.6) is valid.

Proposition 4.3. If |h− 1| ≤ σ and f is bounded on [(1− σ)λr, (1 + σ)λr] then

∣∣Ef
(
λ(r) − λ(r+n) + hλr+n

)
− Ef

(
λ(r) − λ(r+n)

)∣∣ ≤ cpn ‖f‖∞ (4.7)

and
∣∣Ef

(
λ(r) − λ(r+n) + hλr+n

)
− Ef

(
λ(r)
)∣∣ ≤ 2cpn ‖f‖∞ (4.8)

where c =
16(1+σ)(supr≥1 ‖f ′r‖∞)

2

πσ(qp2α)2
.

Proof. Let C = 8
π

(
supr≥1 ‖f ′r‖∞

)2 as in Proposition 4.2. Since

Ef
(
λ(r) − λ(r+n) + hλr+n

)
=

∫
f(x)g(r)

n (x− hλr+n) dx,
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by (4.6), (3.18), and (3.31), we have

∣∣Ef
(
λ(r) − λ(r+n) + hλr+n

)
− Ef

(
λ(r) − λ(r+n)

)∣∣

≤
∫ ∣∣f(x)

∣∣∣∣g(r)
n (x− hλr+n)− g(r)

n (x)
∣∣ dx ≤ C|h|λr+n

(σpr)2

∫ (1+σ)λr

(1−σ)λr

∣∣f(x)
∣∣ dx

≤ C|h|λr+n
(σpr)2

2σλr ‖f‖∞ ≤ 2C(1+σ)p2r+n−2α−2

σ(qpr+α−1)2
‖f‖∞ = cpn ‖f‖∞

so that (4.7) is proven. Next, since λ(r) − λ(r+n) and λ(r+n) are independent,

E
(
f
(
λ(r)
) ∣∣ λ(r+n)

)
= ϕ

(
λ(r+n)

)

where for ` ∈ suppλ(r+n), ϕ(`) = Ef
(
λ(r) − λ(r+n) + `

)
. Then, by (4.7), we have

∣∣Ef
(
λ(r) − λ(r+n)

)
− ϕ

(
λ(r+n)

)∣∣ ≤ cpn ‖f‖∞ ,

almost surely, so that

∣∣∣Ef
(
λ(r) − λ(r+n) + hλr+h

)
− ϕ

(
λ(r+n)

)∣∣∣

≤
∣∣∣Ef

(
λ(r) − λ(r+n) + hλr+h

)
− Ef

(
λ(r) − λ(r+n)

)∣∣∣+ cpn ‖f‖∞ ≤ 2cpn ‖f‖∞ .

Taking expectations, we obtain (4.8).

Proposition 4.4. For f(λ), g(λ) bounded, for all Q ∈ Πm and Q′ ∈ Πr, with Q $ Q′,

∣∣Cov
(
f(λQ), g(λQ′)

)∣∣ ≤ cpr−m ‖f‖∞ ‖g‖∞ (4.9)

and for all Q ∈ Πm and Q′ ∈ Πn, with 1 ≤ m ≤ n < r = dh(Q,Q
′),

∣∣Cov
(
f(λQ), g(λQ′)

)∣∣ ≤ cpr−n ‖f‖∞ ‖g‖∞ (4.10)

where c =
32(1+σ)(supr≥1 ‖f ′r‖∞)2

πσ(qp2α)2

(
1 +

16(1+σ)(supr≥1 ‖f ′r‖∞)2

πσ(qp2α)2

)
.
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Proof. Let C =
16(1+σ)(supr≥1 ‖f ′r‖∞)2

πσ(qp2α)2
. Because λQ − λQ′ and λQ′ are independent,

E
(
f(λQ)g(λQ′)

∣∣ λQ′
)

= E
(
f(λQ)

∣∣ λQ′
)
g(λQ′) = ϕ(λQ′)g(λQ′)

where ϕ(`) = Ef(λQ − λQ′ + `) for ` ∈ suppλ(r). By (4.8) we have

∣∣ϕ(`)− Ef(λQ)
∣∣ ≤ 2Cpr−m ‖f‖∞ ≤ cpr−m ‖f‖∞ (4.11)

so that, almost surely,

∣∣E
(
f(λQ)g(λQ′)

∣∣ λQ′
)
− g(λQ′)Ef(λQ)

∣∣ ≤ cpr−m ‖f‖∞ |g(λQ′)| . (4.12)

Taking expectations in (4.12) and using E|g(λQ′)| ≤ ‖g‖∞, we obtain (4.9).

Now to prove (4.10), let x ∈ Q, y ∈ Q′, and write λ(r) = λ(r)(x) = λ(r)(y). By

independence of λQ − λ(r), λQ′ − λ(r), and λ(r), we have

E
(
f(λQ)g(λQ′)

∣∣ λ(r)
)

= ϕ(λ(r))ψ(λ(r))

where ϕ(`) = Ef(λQ − λ(r) + `) and ψ(`) = Eg(λQ′ − λ(r) + `) for all ` ∈ suppλ(r).

Let s = Ef(λQ) and t = Eg(λQ′). Then just like in (4.11) we have

|ϕ(`)− s| ≤ 2Cpr−m ‖f‖∞ and |ψ(`)− t| ≤ 2Cpr−n ‖g‖∞

so that

|ϕ(λ(r))ψ(λ(r))− st| ≤
(
2Cpr−m + 2Cpr−n + 2Cpr−m2Cpr−n

)
‖f‖∞ ‖g‖∞

≤ 4C(1 + C)pr−n ‖f‖∞ ‖g‖∞ ≤ cpr−n ‖f‖∞ ‖g‖∞ .
(4.13)

Since Cov
(
f(λQ), g(λQ′)

)
= E

(
ϕ(λ(r))ψ(λ(r)) − st

)
, taking expectations, in (4.13),

we obtain (4.10).
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Corollary 4.5. For any two measurable sets A and B we have

∣∣Cov
(
1A(λQ),1B(λQ′)

)∣∣ ≤ cpr−m (4.14)

for all Q ∈ Πm, Q′ ∈ Πr, with Q $ Q′, and

∣∣Cov
(
1A(λQ),1B(λQ′)

)∣∣ ≤ cpr−n (4.15)

for all Q ∈ Πm, Q′ ∈ Πn, with 1 ≤ m ≤ n < r = dh(Q,Q
′), where

c =
32(1+σ)(supr≥1 ‖f ′r‖∞)2

πσ(qp2α)2

(
1 +

16(1+σ)(supr≥1 ‖f ′r‖∞)2

πσ(qp2α)2

)
.

Proof. Apply Proposition 4.4 to f(λ) = 1A(λ) and g(λ) = 1B(λ).

4.3 Density of States Measure

As in (3.56), let SL be the set of all non-degenerate sub-cubes of Q(L)
0 so that the

eigenvalues of the spectral problem

−∆ωψ = λψ, ψ ≡ 0 on X�Q(L)
0 (4.16)

are given by {λQ : Q ∈ SL}. Then as in (3.57–3.58), NL(A) is the random number of

eigenvalues for (4.16) which belong to a measurable set A ⊆ Sp(−∆ω), and N (r)
L (A)

is the random number of eigenvalues of rank r which belong to A. We see that

EN (r)
L (A) =

∑

Q∈S(r)L

P(λQ ∈ A) = νL−rP(λ(r) ∈ A) (4.17)

and

ENL(A) =
L∑

r=1

νL−rP(λ(r) ∈ A). (4.18)
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Similarly, if we put

NLf =

∫
f(λ)NL(dλ) =

∑

Q∈SL
f(λQ) (4.19)

and

N (r)
L f =

∫
f(λ)N (r)

L (dλ) =
∑

Q∈S(r)L

f(λQ), (4.20)

we have

EN (r)
L f = νL−r Ef(λ(r)) = νL−r

∫
f(λ)g(r)(λ) dλ (4.21)

and

ENLf =
L∑

r=1

νL−r Ef(λ(r)) =
L∑

r=1

νL−r
∫
f(λ)g(r)(λ) dλ. (4.22)

Theorem 4.6. For bounded functions f(λ) and g(λ) on Sp(−∆ω) we have

∣∣Cov
(
NLf,NLg

)∣∣
_
< νL

(
L2 + (νp)L

)
‖f‖∞ ‖g‖∞ (4.23)

and for 1 ≤ k ≤ r ≤ L we have

∣∣Cov
(
N (k)
L f,N (r)

L g
)∣∣

_
< νL

(
L+ (νp)L

)
‖f‖∞ ‖g‖∞ (4.24)

where x
_
< y means x = O(y) as L→∞.

Proof. Replacing f and g by f/ ‖f‖∞ and g/ ‖g‖∞ if necessary, we may, without loss

of generality, assume ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1.

For i, j < νL−k, considering the isometry ϕ : X → X which swaps the cubes Q(k)
i

and Q(k)
j , we see that

(
λ

(k)
i ,N (r)

L g
) law

=
(
λ

(k)
j ,N (r)

L g
)
. This means we have

Cov
(
N (k)
L f,N (r)

L g
)

=
∑

i<νL−k

Cov
(
f(λ

(k)
i ),N (r)

L g
)

= νL−kCov
(
f(λ

(k)
0 ),N (r)

L g
)
.
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But

Cov
(
f(λ

(k)
0 ),N (r)

L g
)

= Cov
(
f(λ

(k)
0 ), g(λ

(r)
0 )
)

+
L−r∑

n=1

νn−1∑

i=νn−1

Cov
(
f(λ

(k)
0 ), g(λ

(r)
i )
)
.

Since Q(k)
0 ⊆ Q

(r)
0 , by (4.9), we have

∣∣Cov
(
f(λ

(k)
0 ), g(λ

(r)
0 )
)∣∣

_
< pr−k.

For νn−1 ≤ i < νn we have dh
(
Q

(k)
0 , Q

(r)
i

)
= r + n so by (4.10),

∣∣Cov
(
f(λ

(k)
0 ), g(λ

(r)
i )
)∣∣

_
< p(r+n)−r = pn

hence ∣∣∣∣∣
νn−1∑

i=νn−1

Cov
(
f(λ

(k)
0 ), g(λ

(r)
i )
)
∣∣∣∣∣ _< (νn − νn−1)pn < (νp)n.

It means that

∣∣Cov
(
N (k)
L f,N (r)

L g
)∣∣

_
< νL−k

(
pr−k+

L−r∑

n=1

(νp)n

)
= νL

(
pr

(νp)k
+

1

νk

L−r∑

n=1

(νp)n

)
. (4.25)

Now, because we have

Cov
(
NLf,NLg

)
=

L∑

r=1

r∑

k=1

2Cov
(
N (k)
L f,N (r)

L g
)

it follows from (4.25) that

∣∣Cov
(
NLf,NLg

)∣∣
_
< νL

L∑

r=1

[
r∑

k=1

pr

(νp)k
+

(
r∑

k=1

1

νk

)(
L−r∑

n=1

(νp)n

)]

≤ νL
L∑

r=1

[
r∑

k=1

pr

(νp)k
+

L−r∑

n=1

(νp)n

]
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For νp 6= 1 we have

r∑

k=1

pr

(νp)k
+

L−r∑

n=1

(νp)n = νp
|νp−1|

(
1
νp
|pr − ν−r|+

∣∣(νp)L−r − 1
∣∣
)

_
< L+ (νp)L−r

and for νp = 1 we have

r∑

k=1

pr

(νp)k
+

L−r∑

n=1

(νp)n = rpr + L− r ≤ L+ (νp)L−r

so that

∣∣Cov
(
NLf,NLg

)∣∣
_
< νL

L∑

r=1

(
L+ (νp)L−r

)
= νL

(
L2 +

L−1∑

r=0

(νp)r

)

_
< νL

(
L2 + (νp)L

)
.

From (4.25) we also find that

∣∣Cov
(
N (k)
L f,N (r)

L g
)∣∣

_
< νL

(
1 +

L−r∑

n=1

(νp)n

)

_
< νL

(
L+ (νp)L

)

which completes the proof.

Corollary 4.7. For any two measurable sets A,B ⊆ Sp(−∆ω) we have

∣∣Cov
(
NL(A),NL(B)

)∣∣
_
< νL

(
L2 + (νp)L

)
(4.26)

and for 1 ≤ k ≤ r ≤ L we have

∣∣Cov
(
N (k)
L (A),N (r)

L (B)
)∣∣

_
< νL

(
L+ (νp)L

)
(4.27)

where x
_
< y means x = O(y) as L→∞.

Proof. Apply Theorem 4.6 to f(λ) = 1A(λ) and g(λ) = 1B(λ).
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The empirical measures for {λQ : Q ∈ SL} and {λQ : Q ∈ S
(r)
L } are given by

NL(A) =
NL(A)

|SL|
=

(ν − 1)NL(A)

(1− ν−L)νL
and N

(r)
L (A) =

N (r)
L (A)∣∣S(r)
L

∣∣ =
N (r)
L (A)

νL−r
,

hence

NLf =

∫
f(λ)NL(dλ) =

1

|SL|
∑

Q∈SL
f(λQ) (4.28)

and

N
(r)
L f =

∫
f(λ)N

(r)
L (dλ) =

1∣∣S(r)
L

∣∣
∑

Q∈S(r)L

f(λQ). (4.29)

Observe that by (4.17) and (4.21),

EN
(r)
L (A) =

EN (r)
L (A)∣∣S(r)
L

∣∣ = P(λ(r) ∈ A) and EN
(r)
L f =

EN (r)
L f∣∣S(r)
L

∣∣ = Ef(λ(r)).

Therefore, since

VarN
(r)
L (A)

_
<
νL
(
L+ (νp)L

)
∣∣S(r)
L

∣∣2 _
<

L

νL
+ pL → 0 as L→∞,

and similarly, VarN
(r)
L f _

< (Lν−L + pL) ‖f‖2
∞, we see that, almost surely, as L→∞,

N
(r)
L (A)→ P(λ(r) ∈ A) and N

(r)
L f → Ef(λ(r)) =

∫
f(λ)g(r)(λ) dλ. (4.30)

Also, by (4.18), we have

ENL(A) =
ENL(A)

|SL|
=

1

1− ν−L
L∑

r=1

(ν − 1)P(λ(r) ∈ A)

νr

and by (4.22), we have

ENLf =
ENLf
|SL|

=
1

1− ν−L
L∑

r=1

(ν − 1)Ef(λ(r))

νr
.
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Let

N(A) := lim
L→∞

ENL(A) =
∞∑

r=1

(ν − 1)P(λ(r) ∈ A)

νr
(4.31)

and

Nf := lim
L→∞

ENLf =
∞∑

r=1

(ν − 1)Ef(λ(r))

νr
(4.32)

Then because

VarNL(A)
_
<
νL
(
L2 + (νp)L

)

|SL|2 _
<
L2

νL
+ pL → 0 as L→∞,

we see that almost surely, NL(A)→ N(A) as L→∞.

Proposition 4.8. For each measurable set A ⊆ Sp(−∆ω), lim
L→∞

Var
[
NL(A)

]
= 0.

Therefore, with probability one, lim
L→∞

NL(A) = N(A).

It is clear from (4.31) that the measure N(dλ), which depends on the parameter

0 < σ < 1, is supported on Sp(−∆ω) and has a continuous distribution function and

density given by

N(0, λ] =
∞∑

r=1

ν − 1

νr
P
(
λ(r) ≤ λ

)
(4.33)

and

n(λ) = d
dλ
N(0, λ] =

∞∑

r=1

ν − 1

νr
g(r)(λ). (4.34)

Since almost surely, λ(r) lies between (1± σ)λr, we may write

suppλ(r) = (1 + σ)[pβλr, λr]

where β = logp
1−σ
1+σ

, and we have

Sp(−∆ω) = (1 + σ)
∞⋃

r=1

[pβλr, λr]. (4.35)
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Observe that (3.31) implies that for all r ≥ 1,

p1+2α ≤ λr+1

λr
≤ p1−2α. (4.36)

The expression (4.35) shows that Sp(−∆ω) is connected, i.e., Sp(−∆ω) = [0, 1 + σ],

if and only if pβ ≤ infr≥1
λr+1

λr
which by (4.36) is the case whenever

1−p1+2α

1+p1+2α ≤ σ < 1.

On the other hand, whenever

0 < σ < 1−p1−2α

1+p1−2α ,

the union in (4.35) is disjoint and it is impossible for two eigenvalues of different rank

assume the same value. Notice that the set

I(λ) = {r ≥ 1 : (1− σ)λr ≤ λ ≤ (1 + σ)λr}

contains every rank for which it is possible that some eigenvalue λ(r)
i assumes the

value λ ∈ Sp(−∆ω), i.e., {r : g(r)(λ) > 0} ⊆ I(λ). In particular, (3.53) implies there

are approximately β ± (2α + 1) values of r where g(r)(λ) > 0 and for each of these,

− α− β ≤ r − logp
λ

1+σ
≤ α + 1. (4.37)

It follows that the sum for n(λ) is actually finite — if we write

I(λ) = {m+ 1,m+ 2, . . . ,M}

then (4.34) becomes

n(λ) =
M∑

r=m+1

ν − 1

νr
g(r)(λ)
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(see also Lemma 5.7 below).

The inequalities (3.59) allow us to obtain Lifshitz tails for the integrated density

of states in the strong form (see [8]).

Proposition 4.9. There exist constants c1, c2 > 0 such that

c1λ
sh/2 ≤ N(0, λ] ≤ c2λ

sh/2

for all λ ∈ Sp(−∆ω) hence lim
λ↘0

logN(0,λ]
log λ

= sh
2
.

Proof. Proposition 3.11.

4.4 Hierarchical Random Walk in a Random Environment

The semigroup et∆ω generates a continuous time Markov process xt on (X, dh), i.e.,

Exf(xt) = et∆ωf(x) =
∑

Q∈V1

e−λQtEQf(x) =
∞∑

r=1

e−λ
(r)(x)tErf(x).

Starting at the point x, the process waits for an exponentially distributed time τ with

P(τ ≥ t) = e−(1+σ)t and then jumps uniformly into the cube of rank ρx ∈ {0, 1, 2, . . .}

containing x, where ρx is independent of τ and has the random distribution

P(ρx = 0) = 1− λ(1)(x)

1 + σ
and P(ρx = r) =

ξ(r)(x)

1 + σ
for r > 0.

The transition probabilities p(t, x, y) = Px(xt = y) are found to be given by

p(t, x, x) =
∞∑

r=1

(ν − 1)e−λ
(r)(x)t

νr
and p(t, x, y) = −e

−λ(r)(x)t

νr
+

∞∑

k=r+1

(ν − 1)e−λ
(k)(x)t

νk

for dh(x, y) = r > 0. Computations similar to those in Section 3.3 and in [16, 17]

show that this process is transient if sh > 2 (νp > 1) and recurrent if sh ≤ 2 (νp ≤ 1).



CHAPTER 5: EIGENVALUE STATISTICS

5.1 Preliminaries

In this section we will study the distribution of eigenvalues for −∆ω in the near

vicinity of a given point λ ∈ Sp(−∆ω) (see [12, 10]). Ignoring multiplicities (since

they are all the same), there are |SL| = 1 + ν + ν2 + · · · + νL−1 eigenvalues for the

spectral problem (4.16). The set of these eigenvalues is a point process (see [7, 2]) in

the interval [0, 1+σ]. We will apply the transformation x 7→ |SL|(x− λ) to center and

scale this process so that the length of the smallest interval almost surely containing

it is approximately |SL| and this interval is situated about the origin in the same way

Sp(−∆ω) is situated about λ. Another way to look at it is, we are really looking at

the spectrum

Sp(Hλ
L) = {|SL|(λQ − λ) : Q ∈ SL} (5.1)

of the operator

Hλ
L = −|SL|(λ+ ∆ω)1QL0 .

For a bounded measurable set A ⊆ R, let

AλL = λ+ 1
|SL|A =

{
λ+ x

|SL| : x ∈ A
}
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and observe that

µλL(A) := NL(AλL) =
∑

Q∈SL
1AλL(λQ) =

∑

Q∈SL
1A
(
|SL|(λQ − λ)

)
=
∣∣A ∩ Sp(Hλ

L)
∣∣ (5.2)

gives the number µλL(A) of eigenvalues for Hλ
L belonging to A. We will prove that

the expected number EµλL(A) = ENL(AλL) of eigenvalues for Hλ
L belonging to A

becomes proportional to |A| (the Lebesgue measure of A) and for pairwise disjoint

measurable sets, A1, . . . , An, the random numbers µλL(A1), . . . , µλL(An) of eigenvalues

for Hλ
L converge in distribution to independent integer-valued random variables as

L → ∞. In other words, the set Sp(Hλ
L) converges to a Poisson point process. In

view of Proposition 4.8, we should expect that as L→∞,

ENL(AλL) = |SL|ENL(AλL) ≈ |SL|
∫

AλL

n(x) dx =

∫

A

n(λ+ x
|SL|) dx ≈ n(λ)|A|,

i.e., the intensity measure of this limiting Poisson process is simply n(λ) times Lebesgue

measure. It means that µλL converges weakly as L→∞ to an integer-valued random

measure µλ which possesses the property that for any collection A1, . . . , An of pairwise

disjoint measurable sets, µλ(A1), . . . , µλ(An) is a collection of independent Poissonian

distributed random variables with

Eµλ(A) = n(λ)|A|.

It is sufficient to prove that for every continuous function f ≥ 0 with compact support,

lim
L→∞

Ee−µ
λ
Lf = lim

L→∞
Ee−NLf

λ
L = e−n(λ)

∫
(1−e−f(x))dx



50

where

fλL(x) = f
(
|SL|(x− λ)

)

and

µλLf =

∫
f(x)µλL(dx) = NLfλL =

∑

Q∈SL
fλL(λQ) =

∑

Q∈SL
f
(
|SL|(λQ − λ)

)
.

We will further prove that the set of eigenvalues for Hλ
L of individual rank also con-

verges to a Poisson process with intensity equal to Lebesgue measure times the term

in the series for n(λ) contributed by eigenvalues of that rank.

We first need to collect some lemmas for the proof.

Lemma 5.1. Let zn,k and wn,k be two triangular arrays of complex numbers. If there

exists a constant c > 0 such that |zn,k| ≤ c
n
, |wn,k| ≤ c

n
, and |zn,k − wn,k| ≤ c

n2 for all

n, k with 1 ≤ k ≤ n, then

∣∣∣∣∣
n∏

k=1

(1 + zn,k)− exp

(
n∑

k=1

wn,k

)∣∣∣∣∣ ≤
C

n
(5.3)

for every n ≥ 1 where C = c(1 + cec)ec(2+cec).

Proof. First observe that for all z, w ∈ C, we have

∣∣ew − (1 + z)
∣∣ ≤ |w − z|+

∞∑

n=2

|w|n
n!
≤ |w − z|+ |w|2e|w|

so that
∣∣ewn,k − (1 + zn,k)

∣∣ ≤ c

n2
+
( c
n

)2

ec/n ≤ c+ c2ec

n2
.

Therefore, using the formula

∏

k∈S
xk −

∏

k∈S
yk =

∑

∅6=T⊆S

[(∏

k/∈T
yk

)(∏

k∈T
(xk − yk)

)]
(5.4)
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for a difference of products with S = {1, 2, . . . , n}, we have

∣∣∣∣∣
n∏

k=1

(1 + zn,k)−
n∏

k=1

ewn,k

∣∣∣∣∣ ≤
∑

∅6=T⊆S

(∏

k/∈T
|1 + zn,k| ·

∏

k∈T

∣∣ewn,k − (1 + zn,k)
∣∣
)
.

But using our hypotheses and the the inequality
(
1 + c

n

)n ≤ ec, we have

∏

k/∈T
|1 + zn,k| ·

∏

k∈T

∣∣ewn,k − (1 + zn,k)
∣∣

≤
∏

k/∈T

(
1 +

c

n

)
·
∏

k∈T

c(1 + cec)

n2
=

(
1 +

c

n

)n(
c(1 + cec)

n2 + nc

)|T |
≤ ec

(
c(1 + cec)

n2

)|T |

hence

∣∣∣∣∣
n∏

k=1

(1 + zn,k)−
n∏

k=1

ewn,k

∣∣∣∣∣ ≤ ec
∑

∅6=T⊆S

(
c(1 + cec)

n2

)|T |
= ec

[(
1 +

c(1 + cec)

n2

)n
− 1

]
.

Finally, applying the inequality

∣∣(1 + z)n − 1
∣∣ ≤ n|z|(1 + |z|)n−1, (5.5)

we have
∣∣∣∣∣
n∏

k=1

(1 + zn,k)−
n∏

k=1

ewn,k

∣∣∣∣∣ ≤ ec · n · c(1 + cec)

n2
·
(

1 +
c(1 + cec)

n2

)n−1

≤ c(1 + cec)ec

n
· ec(1+cec)/n ≤ C

n

which establishes (5.3).

Lemma 5.2. Let
{
zQ, wQ : Q ∈ S

(r)
L

}
⊆ C and assume there exists a constant c > 0

such that |zQ| ≤ 1 + c
νL
, |wQ| ≤ c

νL
, and |zQ − (1 +wQ)| ≤ c

ν2L
for all Q ∈ S

(r)
L . Then

∣∣∣∣∣
∏

Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤
ec/ν

r+1

νr−1
ν2−L.
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Proof. Using the formula (5.4) for a difference of products, we have

∣∣∣∣∣
∏

Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤
∑

∅6=T⊆S(r)L


∏

Q/∈T
|zQ|ν ·

∏

Q∈T

∣∣(zQ)ν − (1 + νwQ)
∣∣

 .

But since

∣∣(zQ)ν − (1 + wQ)ν
∣∣ ≤

∣∣(zQ)− (1 + wQ)
∣∣
ν−1∑

k=0

|zQ|ν−k|1 + wQ|k ≤
νc

ν2L

(
1 +

c

νL

)ν

and
∣∣(1 + wQ)ν − (1 + νwQ)

∣∣ ≤ ν2|wQ|2(1 + |wQ|)ν−2 ≤ ν2c2

ν2L

(
1 +

c

νL

)ν

we have

|(zQ)ν − (1 + νwQ)| ≤ νc

ν2L

(
1 +

c

νL

)ν
+
ν2c2

ν2L

(
1 +

c

νL

)ν
≤ ν2(c+ 1)2

ν2L

(
1 +

c

νL

)ν

so that

∏

Q/∈T
|zQ|ν ·

∏

Q∈T

∣∣(zQ)ν − (1 + νwQ)
∣∣

≤
∏

Q/∈T

(
1 +

c

νL

)ν ∏

Q∈T

(
ν2(c+ 1)2

ν2L

(
1 +

c

νL

)ν )
=
(

1 +
c

νL

)νL−r+1
(
ν2(c+ 1)2

ν2L

)|T|

hence
∣∣∣∣∣
∏

Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤
(

1 +
c

νL

)νL−r+1 ∑

∅6=T⊆S(r)L

(
ν2(c+ 1)2

ν2L

)|T|

=
(

1 +
c

νL

)νL−r+1
[(

1 +
ν2(c+ 1)2

ν2L

)νL−r
− 1

]
.

Finally, applying the inequalities
(
1 + c

n

)n ≤ ec and (5.5), we obtain
∣∣∣∣∣
∏

Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤ ec/ν
r+1

νL−r
1

ν2L−2

(
1 +

ν2(c+ 1)2

ν2L

)νL−r−1

≤ ec/ν
r+1

νr
eν

2(c+1)2/νL+r

ν2−L ≤ ec/ν
r+1

νr−1
ν2−L.
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Observe that if f(x) and g(x) are continuous and f has compact support then

∫
fλL(x)g(x) dx =

1

|SL|

∫
f(x)g(λ+ x

|SL|) dx ≈
(ν − 1)g(λ)

νL

∫
f(x) dx. (5.6)

It will be necessary to keep the error in the approximation (5.6) of order O(ν−2L).

Lemma 5.3. Assume f(x), g(x), and g′(x) are continuous and compactly supported.

Define an operator Tf by

Tfg(λ) =

∫
fλL(x)g(x) dx− (ν − 1)g(λ)

νL

∫
f(x) dx.

Then

|Tfg(λ)| ≤ ‖g‖∞ + ‖g′‖∞
ν2L−1

∫
(1 + ν|x|)|f(x)|dx. (5.7)

Proof. We have

|Tfg(λ)| ≤ 1

|SL|

∫ ∣∣f(x)
∣∣∣∣g(λ+ x

|SL|)− (1− ν−L)g(λ)
∣∣dx

≤ |g(λ)|
νL|SL|

∫
|f(x)|dx+

1

|SL|

∫ ∣∣f(x)
∣∣∣∣g(λ+ x

|SL|)− g(λ)
∣∣dx

≤ ‖g‖∞
∫
|f(x)|dx

νL|SL|
+
‖g′‖∞

∫
|x||f(x)|dx
|SL|2

.

Because |SL| ≥ νL−1, this implies (5.7).

Lemma 5.4. Let f ≥ 0 be a continuous function with compact support and let g(x)

be a continuously differentiable density for a random variable X. Then

Ee−f
λ
L(X) = 1− (ν − 1)g(λ)

νL

∫
(1− e−f(x))dx+ ε

where ν2L|ε| ≤ ν
(
‖g‖∞ + ‖g′‖∞

) ∫
(1 + ν|x|)(1− e−f(x))dx.



54

Proof. We observe that

Ee−f
λ
L(X) =

∫
g(x)e−f

λ
L(x)dx = 1−

∫
g(x)(1− e−fλL(x))dx

= 1− (ν − 1)g(λ)

νL

∫
(1− e−f(x))dx− Tf̃g(λ)

where f̃(x) = 1− e−f(x), and then we apply Lemma 5.3.

Lemma 5.5. Let f, g, h ≥ 0 be continuous functions with compact support with h and

g continuously differentiable and g the density for some random variable X. Then

E
[
h(λ−X)e−f

λ
L(X)

]
= (h ∗ g)(λ)− (ν − 1)g(λ)h(0)

νL

∫
(1− e−f(x)) dx+ ε

where ν2L|ε| ≤ ν
(
‖g‖∞ + ‖g′‖∞

)(
‖h‖∞ + ‖h′‖∞

) ∫
(1 + ν|x|)(1− e−f(x))dx.

Proof. We have

E
[
h(λ−X)e−f

λ
L(X)

]
= (h ∗ g)(λ)−

∫
g(x)h(λ− x)(1− e−fλL(x))dx

= (h ∗ g)(λ)− (ν − 1)g(λ)h(0)

νL

∫
f̃(x)dx− Tf̃ϕ(λ)

where f̃(x) = 1− e−f(x) and ϕ(x) = g(x)h(λ− x). But

‖ϕ‖∞ + ‖ϕ′‖∞ ≤ ‖g‖∞‖h‖∞ + ‖g′‖∞‖h‖∞ + ‖g‖∞‖h′‖∞

=
(
‖g‖∞ + ‖g′‖∞

)(
‖h‖∞ + ‖h′‖∞

)
− ‖g′‖∞‖h′‖∞,

hence by Lemma 5.3,

∣∣Tf̃ϕ(λ)
∣∣ ≤

(
‖g‖∞ + ‖g′‖∞

)(
‖h‖∞ + ‖h′‖∞

)

ν2L−1

∫
(1 + ν|x|)f̃(x)dx

which is our claim.
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Lemma 5.6. Let f , g, h, and X be as in Lemma 5.5 with h(0) = 0. If

νγ/5 ≥ max
{
ν, ‖g‖+ ‖g′‖, ‖h‖+ ‖h′‖,

∫
(1 + ν|x|)(1− e−f(x))dx

}
,

and z =
∫

(1− e−f(x))dx then

E

[
e−f

λ
L(X)

(
1− (ν − 1)h(λ−X)z

νL−1

)]
= 1− (ν − 1)

[
g(λ) + ν(h ∗ g)(λ)

]
z

νL
+ ε

where |ε| ≤ νγ−2L.

Proof. According to Lemma 5.4, Ee−fλL(X) = 1− ν−L(ν − 1)g(λ)z + ε1 where

|ε1| ≤
ν
(
‖g‖∞ + ‖g′‖∞

) ∫
(1 + ν|x|)(1− e−f(x))dx

ν2L
≤ ν3γ/5

ν2L

and since h(0) = 0, according to Lemma 5.5,

(ν − 1)z

νL−1
E
[
e−f

λ
L(X)h(λ−X)

]
= ν1−L(ν − 1)(h ∗ g)(λ)z + ε2

where

νL−1|ε2|
(ν − 1)z

≤ ν(‖g‖∞ +‖g′‖∞)(‖h‖∞+ ‖h′‖∞)
∫
(1 + ν|x|)(1− e−f(x))dx

ν2L
≤ ν4γ/5

ν2L

so that

|ε2| ≤ (ν − 1)zν1+4γ/5−3L ≤ (ν − 1)ν1+γ−3L.

Then

E

[
e−f

λ
L(X)

(
1− (ν − 1)h(λ−X)z

νL−1

)]
= 1− (ν − 1)

[
g(λ) + ν(h ∗ g)(λ)

]
z

νL−1
+ ε1 − ε2

and we have |ε1 − ε2| ≤ ν3γ/5−2L + (ν − 1)ν1+γ−3L ≤ νγ−2L.
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Lemma 5.7. Let f be continuous with compact support and let A = {x : f(x) 6= 0}.

If M is an integer which exceeds max I(λ) and L is taken so large that |x| ≤ pM |SL|

for every x ∈ A, then
⋃

x∈A
I(λ+ x

|SL|) ⊆ {1, 2, . . . ,M} (5.8)

hence n(λ+ x
|SL|) =

∑M
r=1 ν

−rg(r)(λ+ x
|SL|), NL(AλL) =

∑M
r=1N

(r)
L (AλL), and

NLfλL =
M∑

r=1

N (r)
L fλL almost surely. (5.9)

Proof. Since M exceeds max I(λ), we have λ > (1 + σ)λM . It means for each r > M ,

λ+ x
|SL| > (1 + σ)(λM − pM) = (1 + σ)λM+1 ≥ (1 + σ)λr

which establishes (5.8). It also implies g(r)(λ+ x
|SL|) = 0 for each x ∈ A hence

P
(
λ(r) ∈ AλL

)
= 0 for each r > M

which establishes (5.9).

Let g(r)
n be the density for

λ(r) − λ(r+n) = ξ(r) + ξ(r+1) + · · ·+ ξ(r+n−1)

Then g(r)
1 is the density for ξ(r) so we have

g
(r)
n+1 = g(r)

n ∗ g(r+n)
1 (5.10)

and

g(r) = g(r)
n ∗ g(r+n) (5.11)

where g(r) is the density for λ(r).
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Now put

hn =
n∑

r=1

νn−rg(r)
n−r+1 = νn−1g(1)

n + νn−2g
(2)
n−1 + · · ·+ νg

(n−1)
2 + g

(n)
1 . (5.12)

Notice that h1 = g
(1)
1 and for n > 1, by (5.10), we obtain the recursive formula

hn = νhn−1 ∗ g(n)
1 + g

(n)
1 = (νhn−1 + δ) ∗ g(n)

1 . (5.13)

By (5.11), we obtain n(λ) by convolution of ν−MhM(λ) with (ν − 1)g(M+1)(λ)

n(λ) =
M∑

r=1

(ν − 1)g(r)(λ)

νr
=

(ν − 1)(hM ∗ g(M+1))(λ)

νM
(5.14)

where M exceeds max I(λ).

Let F≥r be the σ-algebra generated by all eigenvalues of rank at least r, i.e.,

F≥r = σ
(
λQ : Q ∈ Vr

)
and similarly, F>r = σ

(
λQ : Q ∈ Vr+1

)
.

Proposition 5.8. Let f ≥ 0 be a continuous function with compact support and let

M and L be as in Lemma 5.7. Then for 2 ≤ n ≤M + 1,

E
(
e−NLf

λ
L

∣∣F≥n
)

= e
−

M∑
r=n
N (r)
L fλL

∏

Q∈S(n)L

(
1− z(ν − 1)hn−1(λ− λQ)

νL−1

)
+ εn (5.15)

where z =
∫

(1− e−f(x))dx,

‖εn‖∞ ≤ ν3−L
n−1∑

k=1

eν
γ−k

νk
(5.16)

and γ > 6 is chosen so large that

νγ/6 > max
{∫

(1 + ν|x|)(1− e−f(x))dx, ‖g1
(n)‖∞+ ‖(g1

(n))′‖∞, ‖hn‖∞+ ‖h′n‖∞
}

for all n ≤M + 1.
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Proof. The proof is by induction. We will first establish (5.15) for n = 2. Because

N (r)
L fλL is F≥2-measurable for r ≥ 2, it follows from (5.9) that

E
(
e−NLf

λ
L

∣∣ F≥2

)
= e

−
M∑
r=2
N (r)
L fλL

E
(
e−N

(1)
L fλL

∣∣ F≥2

)
. (5.17)

Note also that

e−N
(1)
L fλL =

∏

Q∈S(1)L

e−f
λ
L(λQ) =

∏

Q∈S(2)L

∏

Q(1)⊆Q
e−f

λ
L(ξ(1)+λQ).

Since E
(
e−N

(1)
L fλL

∣∣ F≥2

)
depends only on λQ for Q ∈ S

(2)
L , since the ξ(1)’s are i.i.d.

and independent of F≥2, and since each cube contains ν cubes of preceding rank,

E
(
e−N

(1)
L fλL

∣∣ F≥2

)
= ψ2

(
λQ : Q ∈ S

(2)
L

)

where for constants
{
`Q : Q ∈ S

(2)
L

}
⊆ supp(λ(2)),

ψ2

(
`Q : Q ∈ S

(2)
L

)
= E

∏

Q∈S(2)L

∏

Q(1)⊆Q
e−f

λ
L(ξ(1)+`Q) =

∏

Q∈S(2)L

(
Ee−f

λ
L(ξ(1)+`Q)

)ν
.

Since x 7→ g
(1)
1 (x− `) = h1(x− `) is the density for ξ(1) + ` and because

ν
(
‖g1

(1)‖∞+ ‖(g1
(1))′‖∞

)∫
(1 + ν|x|)(1− e−f(x))dx ≤ νγ/2,

by Lemma 5.4, we see that

∣∣∣∣Ee−f
λ
L(ξ(1)+`) −

(
1− z(ν − 1)h1(λ− `)

νL

)∣∣∣∣ ≤
νγ/2

ν2L
.

But since νγ/6 ≥ max {z, ‖h1‖∞},

∣∣∣∣
z(ν − 1)h1(λ− `)

νL

∣∣∣∣ ≤
(ν − 1)νγ/3

νL
≤ νγ/2

νL
.
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It follows by Lemma 5.2 with c = νγ/2 that

∣∣∣∣∣ψ2

(
λQ : Q ∈ S

(2)
L

)
−
∏

Q∈S(2)L

(
1− z(ν−1)

νL
νh1(λ− λQ)

) ∣∣∣∣∣ ≤
eν

γ−1

ν
ν2−L

hence taking

ε2 = E
(
e−NLf

λ
L

∣∣ F≥2

)
− e

−
M∑
r=2
N (r)
L fλL

∏

Q∈S(2)L

(
1− z(ν−1)h1(λ−λQ)

νL−1

)

=

(
ψ2

(
λQ : Q ∈ S

(2)
L

)
−
∏

Q∈S(2)L

(
1− z(ν−1)h1(λ−λQ)

νL−1

))
e
−

M∑
r=2
N (r)
L fλL

and keeping in mind that f ≥ 0, we obtain (5.15) for n = 2.

Now assume (5.15) has been proven for n. Observe that

e−N
(n)
L fλL =

∏

Q∈S(n)L

e−f
λ
L(λQ) =

∏

Q∈S(n+1)
L

∏

Q(n)⊆Q
e−f

λ
L(ξ(n)+λQ).

Subtracting εn and then dividing (5.15) by e−N
(r)
L fλL for r ≥ n+ 1, we obtain

(
E
(
e−NLf

λ
L

∣∣F≥n
)
− εn

)
e

M∑
r=n+1
N (r)
L fλL

= e−N
(n)
L fλL

∏

Q∈S(n)L

(
1− z(ν−1)hn−1(λ−λQ)

νL−1

)

=
∏

Q∈S(n+1)
L

∏

Q(n)⊆Q

[
e−f

λ
L(ξ(n)+λQ)

(
1− z(ν−1)hn−1(λ−ξ(n)−λQ)

νL−1

)]
.

(5.18)

Since F>n ⊆ F≥n, we have

E
(
e−NLf

λ
L

∣∣ F>n
)

= E
(
E
(
e−NLf

λ
L

∣∣ F≥n
) ∣∣ F>n

)
.

Re-conditioning the right-hand side of (5.18) on F>n, keeping in mind that each

e−N
(r)
L fλL is F>n-measurable for r ≥ n+ 1, we obtain

E
(
e−NLf

λ
L

∣∣ F>n
)

= ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
e
−
M∑
r=n+1
N (r)
L fλL

+ E
(
εn
∣∣ F>n

)
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where

ψn+1

(
`Q : Q ∈ S

(n+1)
L

)
= E

∏

Q∈S(n+1)
L

∏

Q(n)⊆Q

[
e−f

λ
L(ξ(n)+`Q)

(
1− z(ν−1)hn−1(λ−ξ(n)−`Q)

νL−1

)]

=
∏

Q∈S(n+1)
L

(
E
[
e−f

λ
L(ξ(n)+`Q)

(
1− z(ν−1)hn−1(λ−ξ(n)−`Q)

νL−1

)])ν

.

Since x 7→ g1
(n)(x − `) is the density for ξ(n) + ` and because hn−1(0) = 0, by (5.13)

and Lemma 5.6,

∣∣∣E
[
e−f

λ
L(ξ(n)+`)

(
1− z(ν−1)hn−1(λ−ξ(n)−`)

νL−1

)]
−
(

1− z(ν−1)hn(λ−`)
νL

)∣∣∣ ≤ νγ−2L

Furthermore, since

∣∣∣E
[
e−f

λ
L(ξ(n)+`)

(
1− z(ν−1)hn−1(λ−ξ(n)−`)

νL−1

)]∣∣∣ ≤ 1 + νγ

νL
and

∣∣∣1− z(ν−1)hn(λ−`)
νL

∣∣∣ ≤ 1 + νγ

νL
,

it follows by Lemma 5.2 with c = νγ that

∣∣∣∣∣ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
−

∏

Q∈S(n+1)
L

(
1− z(ν−1)hn(λ−λQ)

νL−1

) ∣∣∣∣∣ ≤
eν

γ−n−1

νn
ν2−L.

Finally, taking

εn+1 = E
(
e−NLf

λ
L

∣∣ F>n
)
− e

−
M∑
r=n+1
N (r)
L fλL ∏

Q∈S(n+1)
L

(
1− z(ν−1)hn(λ−λQ)

νL−1

)

=

[
ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
−
∏

Q∈S(n+1)
L

(
1− z(ν−1)hn(λ−λQ)

νL−1

)]
e
−
M∑
r=n+1
N (r)
L fλL

+ E
(
εn
∣∣F>n

)

and keeping in mind that f ≥ 0, we obtain (5.15) for n+ 1.

Corollary 5.9. Let M , L and γ be as in Lemma 5.8. Then

E
(
e−NLf

λ
L

∣∣F>M
)

=
∏

Q∈S(M+1)
L

(
1− (ν−1)hM (λ−λQ)

∫
(1−e−f(x))dx

νL−1

)
+O(ν−L) as L→∞.

(5.19)
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5.2 Proof of Poisson Statistics

Theorem 5.10. For every continuous compactly supported function f ≥ 0,

lim
L→∞

Ee−NLf
λ
L = e−n(λ)

∫
(1−e−f(x))dx. (5.20)

Proof. Apply Lemma 5.1 to (5.19). Writing z =
∫

(1− e−f(x))dx, we see that

E
(
e−NLf

λ
L

∣∣F>M
)

= exp

(
−
∑

Q∈S(M+1)
L

z(ν − 1)hM(λ− λQ)

νL−1

)
+O(ν−L).

as L→∞. We may rewrite the sum inside the exponent as an integral with respect

to the empirical measure N (M+1)
L (dx) of eigenvalues of rank M + 1. We have

∑

Q∈S(M+1)
L

hM(λ− λQ)

νL−1
=

1∣∣S(M+1)
L

∣∣
∑

Q∈S(M+1)
L

hM(λ− λQ)

νM
=

∫
hM(λ− x)

νM
N

(M+1)
L (dx)

so that, as L→∞,

E
(
e−NLf

λ
L

∣∣F>M
)

= exp

(
− z(ν − 1)

νM

∫
hM(λ− x)N

(M+1)
L (dx)

)
+O(ν−L).

By (4.30), N (M+1)
L (dx) converges weakly as L → ∞ to N (M+1)(dx) = g(M+1)(x)dx.

Therefore, applying (5.14)

n(λ) =
(ν − 1)(hM ∗ g(M+1))(λ)

νM
=
ν − 1

νM

∫
hM(λ− x)g(M+1)(x) dx,

we see that

lim
L→∞

E
(
e−NLf

λ
L

∣∣F>M
)

= e−n(λ)z = e−n(λ)
∫

(1−e−f(x))dx.

Taking expectations, we obtain our result.
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5.3 Statistics for Eigenvalues of Rank r

Theorem 5.11. lim
L→∞

Ee−N
(r)
L fλL = e−z(ν−1)g(r)(λ)/νr where z =

∫
(1− e−f(x))dx.

Proof. We may directly condition on λ(L). Observe that the random variables

λQ − λ(L) = λ(r) + λ(r+1) + · · ·+ λ(L−1), for Q ∈ S
(r)
L ,

are i.i.d. with density g(r)
L−r and independent of λ(L). Then

E
(
e−N

(r)
L fλL

∣∣λ(L)
)

= ψ(λ(L))

where for ` ∈ supp(λ(L)),

ψ(`) = E
∏

Q∈S(r)L

e−f
λ
L(λQ−λ(L)+`) =

(
Ee−f

λ
L(λ(r)−λ(L)+`)

)νL−r
.

By Proposition 4.2, there exists a constant c such that for all x and y,

∣∣g(r)
n (x)− g(r)

n (y)
∣∣ ≤ c|x− y|

(σλr)2
(5.21)

uniformly for all r ≥ 1 and 1 ≤ n ≤ ∞. From this it follows that ‖g(r)
n ‖∞ ≤ 2c

σλr
and

‖(g(r)
n )′‖∞ ≤ c

(σλr)2
for all n. Therefore, by Lemma 5.4

Ee−f
λ
L(λ(r)−λ(L)+`) = 1− z(ν − 1)g

(r)
L−r(λ− `)
νL

+ ε

where

|ε| ≤ ν1−2L
(

2c
σλr

+ c
(σλr)2

)∫
(1 + ν|x|)(1− e−f(x))dx

hence, applying Lemma 5.1, we see that

E
(
e−N

(r)
L fλL

∣∣λ(L)
)

= exp

(
− z(ν − 1)g

(r)
L−r(λ− λ(L))

νr

)
+O(ν−L) as L→∞.
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Now observe that since g(r) = g
(r)
L−r ∗ g(L), (5.21) implies that

∣∣g(r)
L−r(λ)− g(r)(λ)

∣∣ ≤
∫
g(L)(x)

∣∣g(r)
L−r(λ)− g(r)

L−r(λ− x)
∣∣dx

≤ c
∫
xg(L)(x) dx

(σλr)2
=
cEλ(L)

(σλr)2
≤ c(1 + σ)λL

(σλr)2
.

Therefore, since λL = O(pL) as L→∞, we have

∣∣g(r)
L−r(λ− λ(L))− g(r)(λ)

∣∣ ≤ cλ(L)

(σλr)2
+
c(1 + σ)λL

(σλr)2
≤ 2c(1 + σ)λL

(σλr)2
→ 0 as L→∞

hence g(r)
L−r(λ− λ(L))→ g(r)(λ), almost surely, and we obtain our result.
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