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ABSTRACT

REZA YOUSEFIAN. Transient stability enhancement of modern power grid using
predictive wide-area monitoring and control. (Under the direction of DR.

SUKUMAR KAMALASADAN)

This dissertation presents a real-time Wide-Area Control (WAC) designed based on

arti�cial intelligence for large scale modern power systems transient stability enhance-

ment. The WAC using the measurements available from Phasor Measurement Units

(PMUs) at generator buses, monitors the global oscillations in the system and op-

timally augments the local excitation system of the synchronous generators. The

complexity of the power system stability problem along with uncertainties and non-

linearities makes the conventional modeling non-practical or inaccurate. In this work

Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs)

is used to map the nonlinearities of the system in real-time. This method di�erent

from both the centralized and the decentralized control schemes, employs a number

of semi-autonomous agents to collaborate with each other to perform optimal control

theory well-suited for WAC applications. Also, to handle the delays in Wide-Area

Monitoring (WAM) and adapt the RL toward the robust control design, Temporal

Di�erence (TD) is proposed as a solver for RL problem or optimal cost function.

However, the main drawback of such WAC design is that it is challenging to deter-

mine if an o�ine trained network is valid to assess the stability of the power system

once the system is evolved to a di�erent operating state or network topology. In

order to address the generality issue of NNs, a value priority scheme is proposed in

this work to design a hybrid linear and nonlinear controllers. The algorithm so-called

supervised RL is based on mixture of experts, where it is initialized by linear con-

troller and as the performance and identi�cation of the RL controller improves in

real-time switches to the other controller. This work also focuses on transient stabil-

ity and develops Lyapunov energy functions for synchronous generators to monitor
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the stability stress of the system. Using such energies as a cost function guarantees

the convergence toward optimal post-fault solutions. This energy energy functions

are developed on inter-area oscillations of the system identi�ed online with Prony

analysis. Finally, this work investigates the impacts of renewable energy resources,

in speci�c Doubly Fed Induction Generator (DFIG)-based wind turbines, on power

system transient stability and control. As the penetration of such resources is in-

creased in transmission power system, neglecting the impacts of them will make the

WAC design non-realistic. An energy function is proposed for DFIGs based on their

dynamic performance in transient disturbances. Further, this energy is augmented to

synchronous generators' energy as a global cost function, which is minimized by the

WAC signals. We discuss the relative advantages and bottlenecks of each architecture

and methodology using dynamic simulations of several test systems including a 2-area

8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time

simulators. Being nonlinear-based, fast, accurate, and non-model based design, the

proposed WAC system shows better transient and damping response when compared

to conventional control schemes and local PSSs.
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CHAPTER 1: OVERVIEW

1.1 Introduction

In general, ensuring secure and stable operation of power systems exposed to dif-

ferent disturbances is among the most formidable challenges that power engineers

face today. Modern power system is considered to be more complex and nonlinear

than before due to signi�cant integration of distributed energy resources, severe trans-

mission congestion and growth of energy markets deregulation. Such power systems

typically exhibit multiple electro-mechanical oscillation modes. These oscillations can

be classi�ed as local or related to di�erent areas. Local oscillations are mainly due

to single generator swinging against the rest of the network, whereas area oscillations

are associated with groups of generators oscillating relative to each other. With grow-

ing demand that includes nonlinear loads and increasing penetration of distributed

energy resources power transfer capability of the electric network is constantly de-

creasing. Modern grid management also leads to closer operation of network to its

limits resulting in stressed network with smaller stability margins. During such con-

ditions, loosely damped inter-area modes of oscillations is enough to make the system

unstable.

Local oscillations are typically damped by generation excitation control using power

system stabilizers (PSSs). However, these local damping controllers were not origi-

nally designed to address the modern power system's uncertainties and unpredictabil-

ity introduced by integration of power systems [2]. These shortages of existing power

system controllers, together with desire to smarten the power grid, makes it neces-

sary to design and develop a Wide Area Control (WAC) in the power grid. The WAC

coordinates the actions of a number of distributed agents using supervisory control
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data acquisition, Phasor Measurement Unit (PMU) or other sources of Wide Area

Monitoring (WAM) [3].

Power systems in the presence of drastic system changes can encounter transient

instability due to large excursions of generator rotor angles and losing synchronism of

generators. Conventionally, algebraic and di�erential equations are used to describe

the behavior of power systems dynamics and to create mathematical models to rep-

resent these process. In general, a model is purposeful simpli�cation of a system for

solving a particular problem. However, the complexity of the power system stability

problem along with uncertainties and nonlinearities makes the modeling non-practical

or inaccurate. In this type of problems the progress of the power system transient

and oscillations are monitored, and prediction of stability of swings is done to classify

the fault in the form of Transient Stability Assessment (TSA). However, the WAM

temporal information can further be used in WAC designs to perform real-time tran-

sient stability enhancement, which can improve the power transfer capability of a

transmission system and prevent the system from generation or load disconnection,

or catastrophic failure following a sequence of disturbances in the system.

With respect to control designs in wide-area power system, multiple linear model-

based adaptive and hierarchical control schemes for damping post-disturbance os-

cillations have been reported [4�6]. Global PSS, Adaptive control, Linear Matrix

Inequality (LMI), and H∞-based damping controls have been e�ectively used. All

these classical designs require a linear model of the system, which is not obtainable

with an acceptable degree of accuracy in practice. These control systems can perform

well enough during smaller disturbances or small signal stability analysis of the grid.

An adaptive controller which covers wide area system and is capable of learning and

tracking the extreme nonlinear and unpredictable dynamic behavior of the system

and can optimally coordinates actions of generating units as agents is a most ideal

type of control and decision making in the modern power grid.
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Machine learning-based or Arti�cial Intelligence (AI)-based control architecture

utilized under the umbrella term measurement-based techniques has been long pro-

posed to overcome some of the aforementioned issues. Most notable of them is the

method of Neural Networks (NNs), which is based on mimicking the intelligence by

which the human brain represents information.

It is known that, learning controllers such as Neural Networks (NNs) can improve

tracking performance through repeated trials of interaction with environment and

overcome the nonlinearity problem of the system [7]. Reinforcement Learning (RL),

considered as a distinct method in this area, is often applied to sequential dynamics

problems and optimization of action in the course of the process [8] with approximated

model of the system. This method uses NNs to develop optimal controllers from

measurements of available system inputs and outputs and has shown more reliability

and stability than classical control methods [9�17]. NN-based approaches, being

strongest benchmark for RL tasks [16], has utilized features of back propagation to

model and solve the cost function of the system [17]. Further, NN structure can be

investigated to gain more e�ciency in terms of modeling the nonlinearity of the system

dynamics and uncertainty regarding the wide area monitoring and communications.

This work mainly focuses on the optimality and generality concerns of NNs in the

WAC of power system. Such a design can be implemented in real-time environment,

which along with transient energy functions, can monitor the stability level of the

system and optimally solve for control actions.

1.2 Contribution

This thesis shows that WAM measurements around a power system can track bulk

stresses after disturbances and NN-based WAC in control center can mitigate or damp

the corresponding transient oscillations. One important advantage of this approach is

that the controller can mitigate global transient oscillations. That is, our formulation

in terms of NN-based regression allows the WAC to model and control nonlinear
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dynamics of the power system. Furthermore, through adaptation of RL the control

scheme is employed as a multi-agent modeling, which ensures optimal control solution

in real-time.

There are mainly two concerns when employing such a RL-based control technique

as a WAC system, in general, with AI techniques. First, the design should reach to

optimal solution in time; i.e. as the control actions in transient domain are needed

to be applied fast (usually less than 1 sec) the NN-based controller should provide

timely convergence of the weights in new operating regions. This problem becomes

more complex in WAC domain as they are highly dependent on the performance

of the communication infrastructure, without which the functionality of them will

not be achieved. Knowing that time delay a�ects wide-area power system stabilizer

design, the consequence of delayed input data and output signals in WAC systems

should be considered and modeled. Also, the performance requirements posed on

by time availability for decision making and control actuation needs to be elicited.

For �rst swing transient stability, control actions must be taken prior to the peak

of the forward inter area angle swing (around 1s) [18, 19]. This thesis shows that,

RL algorithms are well suited to tackle these uncertainties in the system. Temporal

Di�erence (TD) method is proposed to solve the RL problem, widening the window of

prediction and accounting for communication network delays as in Model Predictive

Control (MPC).

Being a learning-based technique, RL algorithm is not guaranteed to lead to global

optimal solutions until the learning is complete. Also, heuristic nature of these types

of controllers still causes stability issues thus cannot be fully trusted in real-life im-

plementation even after being tested using real-time simulations [10]. Due to these

reasons, till now, conventional linear local controllers like PSS or adaptive control has

been used as a solution to damp oscillations that occur during transient instability of

power system, even though being designed to address small signal stability. The need
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to develop a hybrid global controller taking advantage of both linear and intelligent

designs that can be performed during linearized and nonlinear system transitions, and

yet provide stable control actions under unforeseen disturbances is thus very clear.

Generality is another challenge when using such AI-based designs. Several works

have tackled this issue by designing a hybrid controller as linear and nonlinear based

controllers for power system stabilization. We propose a technique based on value pri-

oritization of controllers in the form of mixture of experts or supervised RL method.

This technique guarantees the control system convergence to optimal solution, elimi-

nating the necessity of o�ine training. It also can mitigate the problem of over-�tting

in NNs when the amount of training data is limited. The main purpose of this design

is using the known linear model to mainly control the system, and exploit the NN de-

signs to be activated in the case of nonlineairty and uncertainties. Additionally, WAC

may show destabilizing interactions with local controllers which makes the system un-

stable during certain contingency situations due to di�erence in policy or objective.

However, we propose a uni�ed objective function as a performance and identi�cation

criteria for controllers to indicate level of activation in the system. In such design,

parametric and functional adaptation has been performed, and a hybrid controller

that can be integrated with conventional PSS or WAC is designed and illustrated.

Also, in contrast to other research that considers linear objective or cost function,

our method, getting the bene�ts of nonlinear approximation, estimates the actual

nonlinear energy function in real-time and optimally minimizes such a global function.

Usually, energy functions are used to provide stability index in transient domain; i.e.

used for stability classi�cation or prediction. However, by employing our method,

such energy function could be further incorporated to real-time WAC design to damp

the oscillations. Such a method has several advantages as it is not dependent on

post-fault operating points; does not rely on parameters of the system as it can

be impractical with conventional techniques if the system topology changes after a
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fault; and it is predictive. The method is mainly based on energy increments or

energy function damping. To monitor such a function online there is need for online

eigenvalue analysis, which is performed by Prony analysis in this work.

Another consideration in this thesis is the transient dynamics of Doubly Fed Induc-

tion Generator (DFIG)-based wind generators. In general, renewable energy resources

are capable of maintaining their local stability while system is exposed to transient

inter-area oscillations, if these oscillations are not severe enough to activate their

protection devices. Further, this work proposes exploitation of DFIG in the form of

potential, reactive, and inertial energies to consume/support some energy from/to

the system. The system dynamics is represented in coupled oscillatory platform with

synchronous generators as coherent group of generators containing potential, kinetic,

and �eld energies. Through adaptation of the proposed multi-agent WAC, wind farms

power references along with synchronous generators excitation voltage references are

controlled to optimize the overall energy exchange in the system.

Finally, we summarize the contributions in terms of new formulation, analysis,

testing and practical application as follows:

• In terms of formulation, this thesis expands the existing RL problem to wider

window of optimization. Further, it introduces new formulation to �nd out

the better actions with respect to performance and identi�cation of hybrid con-

trollers. Finally, a novel energy function is developed for renewable energy

resources, which along with energy function of synchronous generators, is min-

imized forward-in-time.

• In term of analysis, this thesis establishes useful measures for rotor-angle sta-

bility, in general dynamic performance of the WAC, including damping perfor-

mance, energy functions, critical-clearing time, overshoots, and so on. These

analysis is performed in several case studies such as with/without communica-

tion delays, data drop out, tie-line short circuit, cascading failures, sudden load
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change, trained/partially-trained NNs.

• In term of testing, this thesis uses several power system case studies including

2-area 5-machine system, IEEE 39-bus 10-machine system, and IEEE 68-bus 16-

machine system which is representative of interconnected New-England New-

York power grid. Furthermore, the later is modi�ed with DFIG-based wind

farms to study the transient behaviour of such units. These dynamic models

are developed in detail in several software tools including PSCAD, RSCAD,

Power System Toolbox (PST), PSS/E, Matlab, and so on.

• In term of practical application, this thesis proposes a novel real-time bench-

mark for interconnection of the WAC with power system model. The WAC

has been implemented in TI Micro-controller and is connected to Real-Time

Digital Simulator (RTDS) through hardware in the loop to study the practical

application challenges.

1.3 Dissertation Organization

WAC designed on NNs are a way to mitigate and damp inter-area oscillations by

means of WAM measurements. We are interested in transient stability dynamics of

power system including synchronous generators and renewable energy resources to

de�ne the optimization cost function. Further, this function is minimized in real-time

addressing the robustness, optimality, nonlinearity, and generality issues of the design.

The control actions are augmeneted to the local controllers of these generating units

providing extra damping of the energy functions and leading to convergence to the

global post-fault equilibrium points.

Chapter 2 provides a brief reviews of previous work for rotor angle stability, WAC

designs, transient stability assessment techniques, and explores the possible directions

that can be further investigated.

Chapter 3 develops the WAC design on real-time benchmark addressing the opti-
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mality and robustness RL algorithm.

Chapter 4 proceeds the design to a hybrid controller in order to gain generality

for NNs. The design is applied and tested as a hybrid local and global design and a

hybrid linear and nonlinear design.

Chapter 5 focuses on transient stability enhancement problem. The carefully de-

veloped energy function of synchronous generators is linked to the RL problem. This

chapter studies the power system rotor angle stability from eigenvalue, coherency,

and transient stability perspectives.

Chapter 6 investigates and develops energy functions for renewable energy re-

sources, in speci�c DFIGs, in transient disturbances. This energy is augmented to

the global cost function to study the impacts of these units in transient stability

enhancement.

Chapter 7 discusses possible future work, summarizes, and concludes the thesis.



CHAPTER 2: REVIEW OF LITERATURE

2.1 Rotor-Angle Stability

Initially, we elaborate the power system stability problem as the ability of power

system to regain the operating equilibrium states after being subjected to a physical

disturbance, with most system variables bounded so that practically the entire system

remains intact [1].

In the context of rotor angle stability, the dynamics of each synchronous generator

bus can be can be characterized by the complex terminal voltage Vt∠δ, where δ is

the rotor angle with respect to synchronously rotating reference frame. The rotor

speed is given by ω = δ̇. Disturbances on power system components, e.g. power lines

causes the system to move away from the pre-fault equilibrium point and experience

a transition toward the post-fault dynamics. Rotor angle stability as one of the

main classi�cations of power system stability, refers to the ability of synchronous

machines to remain in synchronism after being subjected to the fault. Instability

occurs in the form of increasing angular swings of some generators leading to their

loss of synchronism with other generators. This behavior could be assessed by using

a simpli�ed 2nd order synchronous generator model as [1],

∆δ̇ = ∆ω (2.1)

M∆ω̇ = Pm − Pe −D∆δ̇ (2.2)

where, ∆δ = δ − δ∗ is the rotor angle deviation, ∆ω = ω − ω∗ the speed deviation,

the symbol "∗" denotes the post-fault operating point, M the inertia constant of the

synchronous generator, D is the damping coe�cient, Pm the mechanical power, and
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Table 2.1: Rotor angle stability [1]

Characteristic Small-signal stability Transient stability

Disturbance Small Severe
Causes Varying load Short Circuit on Transmission line
Linearity Linear Non-Linear

Dependence Initial States Initial States, Disturbance severity
Stability form Lack of damping (Periodic) Lack of synchronization (Aperiodic)

Nature Inter-Area, Local Inter-Area, Local
Time frame 10-20 sec 3-5 sec

Pe the electrical power as,

Pej =
∑

k∈Nj

BjkVjVk sin(δjk) (2.3)

where, Nj is the set of neighboring buses of the jth bus. This power represents the

power �ow through transmission lines into the power network, which follows highly

nonlinear behavior.

In general, swing equation (2.2) can be resolved into two components: synchro-

nizing power component in phase with ∆δ and damping power component in phase

with ∆ω. The stability depends on the existence of both components of torque for

each of the synchronous machines. Rotor angle stability can be characterized mainly

into two categories: small signal stability and transient stability. The consideration

is based on the size of disturbance, time span and involved devices as presented in

Table 2.1.

2.1.1 Rotor Angle Stability Assessment

Rotor angle stability assessment can be categorized into Small Signal Stability As-

sessment (SSAT) and Transient Stability Assessment (TSA). In general, small signal

stability as shown in Table 2.1 is concerned with the ability of the power system to

maintain its synchronism under small disturbances, which allows the linearization of

system equations for purposes of analysis. The stability of the system is assessed

by the characteristics of the eigenvalues of system matrix. This SSAT is usually
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performed with the purpose of improvement in damping performance of the system

through employment of frequency-based continuous controllers such as Power System

Stabilizers (PSSs).

Transient instability occurs when the power system is subjected to a severe dis-

turbance. The resulting system response involves large excursions of generator ro-

tor angles and is in�uenced by the nonlinear power-angle relationship. This type

of instability is usually due to insu�cient synchronizing torque, manifesting as �rst

swing instability [1]. TSA is performed o�ine at pre-fault stage or online during the

fault. The literature in this category is respectively rich, with various methods uti-

lized, [20�30]. TSA mainly focuses on the critical clearing time of the faults in power

system. A comprehensive simulation of faults provides useful information regarding

the vulnerable points of the system and makes sure of safe stability margin. Besides,

these evaluations can provide helpful database for real-time analysis to perform pre-

ventive or emergency control actions. In this type of problems the progress of the

power system transient and oscillations are monitored, and prediction of stability of

swings is done to classify the fault. Various conventional approaches for TSA have

been proposed in the power systems literature which is listed brie�y in Table. 2.2.

More information regarding the TSA, control techniques and methods is provided in

Appendix A.

2.2 Power System Control Hierarchy

Rotor angle stability problems may be either local or global in nature. Local

oscillations are usually associated with rotor angle oscillations of a single generator

against the rest of the power system; while, inter-area oscillations involve a group

of generators in one area swinging against another group [31]. The characteristics

of local and inter-area modes depends on the strength of the transmission system,

generator excitation, control, and plant output.
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Table 2.2: Transient Stability Assessment (TSA) techniques

Technique Characteristic

Numerical • Weak performance in real-time implementation, as they require accu-
rate information of the power network topology [29].

• It requires the post-fault system simulation to conclude the stability
status [20].

Direct
• Based on direct calculation of the Transient Energy Function (TEF)
[20].

• The numerical integration is required only on the fault-on state tra-
jectory.

• Analytical TEF with detailed device models cannot be derived for
multi-machine power system. Hence, such problem formulation may
lead to excessive simpli�cations.

Hybrid
• These approaches are mainly based on equivalent modeling, which can
be integrated much faster than real-time [30].

• Their algorithms is complex.

Intelligent
• These approaches are fast and simple.
• Excessive o�ine training.

2.2.1 Local Controllers

Local control is the �rst control level in the control hierarchy and has the fastest

response [32]. This control responds to local system dynamics and ensures that the

variables track their reference values. Synchronous generators supply most of the

electrical energy in the power system, and are mainly responsible for maintaining the

stability of the electrical network. Therefore, e�ective control of these devices is very

critical [18]. Local continuous feedback controls are depicted in Fig. 2.1.

2.2.2 Secondary and Tertiary Controllers

In order to maintain the power quality and stability of the generating units for

longer term variables, the next level controller is deployed to determine the set points

for the primary control. The secondary control works as a centralized Automatic Gen-

eration Controller (AGC) and compensates the steady-state errors of the voltage and
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frequency. This controller makes use of communications and Wide-Area Monitoring

(WAM) systems to coordinate the action of all the generation units within a given

area. The time response of this control level is in the range of minutes, thus having

a slow dynamic if compared with the local control. Finally, the tertiary control level

could be utilized for optimizing the operation of the system [32].

2.2.3 Wide-Area Controllers

Generally, Wide-Area Control (WAC) coordinates the actions of a number of dis-

tributed agents using Supervisory Control and Data Acquisition (SCADA), Phasor

Measurement Unit (PMU), or other sources of WAMs [3,18,19,33,34]. Several control

architecture is designed ( [35�38]) for such applications in the form of hierarchical de-

signs, distributed control methods, central designs, or multi-agent-based techniques.

Overall such designs have better controlability on inter-area modes of oscillations

due to better observability than local controllers. Most of them use frequency do-

main methods and root-locus criteria with signals including changes in tie line �ows,

inter-area angles and/or machine speeds. For instance, in [4] a global PSS has been
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presented with a supplementary input from PMUs, geographically spread over coher-

ent areas of power system. This design is built on top of the existing local controller,

resulting in a hierarchical control architecture with signi�cant advantages in terms

of reliability and operational �exibility. Several other conventional techniques has

also been used to be applied for this application, such as robust techniques [39] and

optimal control methods [31].

In addition, it is known that transient instability may happen in further swings

due to lack of damping torques [1]. The continuous control actions can also be used

as the input to the excitation system, to make the problem dynamic mitigating and

damping control. This type of control schemes are designed not only to provide a

stable �nal state but also minimize state excursions along the trajectory and increase

the power system stability margins [40]. Due to nature of this problem, nonlinear

designs should be applied for this application [41]. In [41] a new structures for stability

enhancing excitation controllers is designed using a nonlinear multi-machine system

model and Lyapunov's direct method. The controller is design to ensure the negativity

of the derivative of Lyapunov function de�ned on third-order model of synchronous

generator.

2.3 Machine Learning Algorithms

In general, the term "learning" means adjusting the parameters or in the case of

NNs, weights, to reduce the error between the target outputs and the actual outputs.

In this thesis, two main methods of SL and RL are investigated for their application

in power system control. Initially, a brief overview of these methods is presented:

2.3.1 Supervised Learning (SL) Algorithm

SL methods are referred to problems involving static I/O mappings and minimiza-

tion of a vector error signal, with no explicit dependence on how training examples

are gathered. In this category full knowledge of the problem context is available.
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The system learns to perform its designated task with assistance of a teacher. Avail-

ability of data pairs as an input and desired outputs helps the system to update its

parameters in order to minimize the error. Generally, SL can be categorized as:

• Regression problem

• Classi�cation Problem

These two types are discussed later for their application in power system stability.

2.3.1.1 Neural Network (NN) Classes

There are mainly two classes of NNs with several types each investigated in power

system control scheme:

• Static Neural Network

� Multi-Layer Perceptron Neural Network (MLPNN)

� Radial Basis Functions Neural Network (RBFNN)

� Functional link (FNL)

• Dynamic Neural Network

� Recurrent Neural Network (RNN) (Fig. 2.2)

� Simultaneous Recurrent Neural Network (SRN)

� Time Delay (TDL) Neural Network (Fig. 2.3)

Static NNs are characterized by node equations that are memoryless; However,

Dynamic NNs can be described by di�erential equations. As a static network, it is

shown that the RBF is superior in classi�cation and pattern recognition problems,

while the MLP is more e�cient in function approximation [42].
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In general, MLP is the simplest type of SL consisting of Feed Forward Neural

Networks (FFNNs) constructed with three main layers of input, hidden, and output

layers, each consisting of input, feature, and decision units in the form of perceptron

architecture [43]. The FFNN is based on feed forward activation, in which units of

each layer pass on their activation to next layer, until the output layer where the

actual response to the input layer is generated. Then, these outputs are compared

with the desired responses in the form of training patterns. If we keep the �rst-layer

weights of FFNN �xed and with only the second-layer weights tuned, the NN has

only one layer of tunable weights. Then, the output values are computed by inner
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product between the weight vector W and a state-dependent feature vector Φ(.) as,

Ŷ = Ŵ TΦ(X) + ε (2.4)

where, Φ(.) ∈ <h is the corresponding nonlinear mapping function of the states,

Ŵ ∈ <h,j is the parameter vector of approximated weights of the FFNN, with h, j ∈ N

are dimensional space of the feature vector representing the hidden and output layers

of the NN, and ε is the NN functional approximation error.

2.3.1.2 Training

The SL is based on the back-propagation of the error through the NN. In order to

start the training process, all the weights are initialized with small values. The output

values is computed based on the inputs in training set and the weights. Further, the

error is calculated in the form of norm 2 of output error

e(t) = Ŷ (t)− Y ∗(t) (2.5)

Then, the error at the output layer is used to compute for the error at the hidden

layer. Error back-propagation learning uses the gradient decent algorithm since the

activation functions used are di�erential. Gradient descent means that the parameter

vector is updated along the negative gradient direction of the mean square error. As

a result, change of each NN weights can be derived from the deviation of NN's output

to its optimal value e by means of gradient descent via back-propagation through the

NN model. This training could be in the form of

• Online learning:

∆W (t) = αe(t)Φ(X(t)) (2.6)
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• Batch learning:

∆W = α
∑
t

e(t)Φ(X(t)) (2.7)

where, α is small step size learning parameter. In the �rst one, the training data

becomes available in a sequential order and is used for training at each time t. On

the other hand, in batch learning the training is performed once the the entire training

data set is available.

2.3.2 Reinforcement Learning (RL) 0Algorithm

RL is often applied to problems involving sequential dynamics and optimization

of a scalar performance objective, with online exploration of the e�ects of actions

[7,8,44,45]. The key feature of RL is that training information from the environment

is used as an evaluative signal. This method has taken the attention in power system

control studies since it can achieve optimal solution requiring no prior knowledge

about the system and it can adapt itself to �t the changing environment [44]. In spite

of SL, there is no desired output available in this category. However, interacting with

environment can provide evaluative feedback, which can further be used to update the

learning system toward improving its quality of performance. In other words, action

system maps from states to actions that optimizes some performance criterion. The

goal in RL is to �nd a single input value that maximizes the total amount of rewards

over the sequence of decision [45]. Taking actions in RL, the agent has to balance

two con�icting objectives, exploitation and exploration.

2.3.2.1 Adaptive Critic Designs (ACDs)

ACDs are common approach to handle RL, which are capable of optimization over

time and under conditions of noise and uncertainty. Since actions should be taken

at each time step and their e�ect is not known until the end of the sequence, it is

not possible to design an optimal controller using the traditional SL. Several research
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works have been done in this area, proposing di�erent types of critics [7]. In essence,

the adaptive critic method determines optimal control policy for a system by suc-

cessively adapting two NNs, called critic NN and action NN which learn respectively

the desired cost function and desired control value based on the cost function. These

two NNs approximate the Hamilton Jacobi Bellman (HJB) equation associated with

optimal control theory [7]. The cost-to-go function is given as follows:

J(t) =
∑∞

k=0
γkU(t+ k) (2.8)

where, U is the utility function used for reward or punishment in terms of RL concept

or incremental cost function. This function can be represented as,

U(t) = −∆x(t)TQ∆x(t)− u(t)TRu(t) (2.9)

where, x is the states of the system, u is the control action, the weighting matrix

Q > 0 ∈ <m×m is required to be positive-de�nite, and ∆x = x − x∗, x∗ being the

operating points derived from the reference model, and γ is the discount factor needed

to maintain the solution as a �nite horizon problem with a limit on the upper bound

of the solution. By selecting an appropriate value of γ ∈ (0, 1], we can weight the

future values of the utility function and a�ect the convergence process [46].

2.3.2.2 Solutions to the Problem

Dynamic Programming (DP) has gained much attention from many researchers

in order to obtain approximate solutions of the RL problem and the HJB equa-

tion [47�49]. Various techniques have been presented in this area which use the (2.8)

or derivatives of that as optimization goal to be solved. An alternative way of distin-

guishing ACD methods is to consider the role of system models in the training loops

of each method [7, 48]. In general, ACD methods are categorized based on the critic
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training methods and e�ect of system model in the training process. Various versions

are proposed which are Heuristic Dynamic Programming (HDP), Dual Heuristic Pro-

gramming (DHP), Action Dependent HDP and DHP (ADHDP, ADDHP).

All these provided structures can realize the same function that is to obtain the

optimal control policy, while the computation precision and running time are di�erent

from each other. The model based methods have been shown to be much more

e�cient for training neuro-controllers and to produce superior designs to non-model

based methods. Generally speaking, the computation burden of HDP is low but

the computation precision is also low. On the other hand, DHP and ADDHP have

an important advantage over the simple ACDs since their critic networks build a

representation for derivatives of through by being explicitly trained on them and area

of model-based control we usually have a su�ciently accurate and well-de�ned model

network. Ref. [7] provides a full description and analysis on these models.

2.3.2.3 Training

Considering HDP as a main method of ACD technique, critic network represents

the cost function by being trained explicitly and directly based on the states of the

system. Three NNs are implemented in this method: identi�er NN, critic NN, and

action NN. General scheme of the ACD controller is provided in Fig. 2.4. In particular,

the training process of the critic NN is based on DP, which estimates J by updating

its policy with respect to error, eC , with elements of the rewards obtained from the

environment, U(t), the cost functions at current time step, J(t), and future time step,

J(t+ 1). This can be written as,

eC(t) = Ŵ T
CΦC(x(t))− γŴ T

CΦI(x(t+ 1))− U(t) (2.10)
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where, critic NN future outputs is based on predicted states derived from identi�er

NN. Training of the identi�er NN is derived as,

eI(t) = x(t)− Ŵ T
I ΦI(x(t)) (2.11)

and, the action training is based on minimizing the derivative of the cost function

to the chosen action. The purpose is to have the action error asymptotically goes to

zero in an iterative process. This can be derived as,

eA(t) =
∂U(t)

∂u(t)
+ γ

∂J(t+ 1)

∂x(t+ 1)
.
∂x(t+ 1)

∂u(t)
(2.12)

It should be noted that back-propagation is one of the main computational algo-

rithms required to e�ectively train NNs in this scheme. Essentially, this algorithm

uses the chain rule for calculating derivatives within the elements of the NN. It allows

the error existing in the NN output introduced above to be used to correctly adjust

the weights of the NNs. As the learning procedure progresses with respect to itera-

tions, it should be able to achieve better representation of the model or policy that
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is being implemented.

Remark : Optimal convergence of HDP or Approximate Dynamic Programming

(ADP) in the case of general nonlinear systems has been discussed and proved in [49].

Additionally, It has been shown [50] that RL could be used as an optimal controller

guaranteeing global optimal conditions for a non-convex functions.

2.4 AI-based Controller

Intelligent controllers are capable of learning and modifying their behavior while

interacting with the system in form of regression. Here, We will focus speci�cally

upon NNs as a type of AI-based controller that is capable of learning and controlling.

With su�cient neurons and training process, NN is able to learn and represent any

function [51]. This type of nonlinear control problem has been shown in literature

that has considerable potential in power system stability study.

2.4.1 Application of Supervised Learning (SL)

The main application of SL-based NN control designs is the modeling of nonlin-

eaities inherited in power system network equations. As a SL algorithm, the target

or desired value for a controller is known at the time. This desired control action can

be derived in the context of model reference adaptive control [52]. In the work of [52],

two schemes of nonlinear control system have been presented:

• Direct methods

• Indirect methods

In direct method, the weights of NN controller is directly adjusted by the error of plant

output and the reference. In the later, the controller training is performed based on

the estimated parameters of the plant. Similar method has been employed in [53]

to design an adaptive NN-based PSS. The input to the controller is the rotor speed

of the generator and the output is the damping control fed to the excitation system.

Controller is trained based on the NN identi�er output error from desired speed, which
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is constant. In [54] the idea has been applied to one-step ahead predicted output

error. The same training is then performed by the chain rule through identi�cation

and control NNs. It should be noted that several NN models have been proposed in

this area such as Generalized Neuron (GN) [54] or RNN [55] to address the generality,

robustness, and e�ciency requirements of such designs.

Another sets of designs in this area is devoted to employing the NNs to tune the

conventional synchronous generators, such as in [56] for PSS. In [56] a RBFNN is used

to generate the desired PSS parameters in real-time based on input vector of generator

real power, reactive power output and terminal voltage. This type of adaptive design

is trained o�ine for excessive number of operating points.

2.4.2 Application of Reinforcement Learning (RL)

The key advantage of RL-based controllers over SL methods is that the new knowl-

edge in the online process can improve the training for further events or recursively at

each iteration [45]. This feature manifests itself in the stability problem as a damping

control schemes in addition to the case of cascading failures. Additionally, they are

well-suited to perform optimal control algorithms, especially when multiple agents

are involved. This technique has been center of attention for the wide range of power

system applications in recent years. However, the research in this area is still weak

due to reliability and practicality issues. RL-based designs such as ACDs have been

shown to be more robust for wider operating regions and contingencies in comparison

to the classical methods. In general, their main characteristics are:

• Requiring partial model of the system.

• I/O measurements of the system being su�cient for designing the controller.

• Wide operating regions and disturbances without prior knowledge.

• Depending on disturbance measurements that are not readily available.

• System measurements can be used but noisy measurements requires an extra
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attention.

• The o�ine phase requires higher computational e�orts.

The application of RL has been mainly investigated in wide-area control domain when

coordination of multiple units is needed. This is presented in next section.

2.5 AI-based Wide-Area Control (WAC)

The only feasible way to implement the WAC has been to monitor and communi-

cate states and control signals between each local substation and the control system

through Wide-Area Monitoring (WAM) system [33]. Integration of monitoring and

controlling systems in the power grid electricity infrastructure, has shown promising

possibilities for more advanced stability control schemes based on timely detection

of disturbances as they propagate through the network. With these improvements,

new ideas on power system stability control specially in large scale oscillations has

emerged [57]. In recent years, monitoring requirements, itself, has gained considerable

attention by researchers [58, 59]. In these works, the requirements and challenges of

WAC designed on WAM systems and the challenges in implementation is discussed.

Overall, WAC coordinates the actions of several units in power system including

synchronous generators, FACTS devices, or renewable resources to gain global sta-

bility. It is very di�cult for an analytical control techniques to perform a continuous

supervisory level control of the system. This is partly due to

• Classical control schemes depend on a mathematical model of the plant, and

this model is often based on linearization at a speci�c operating condition.

• Non-accurate component model parameters such as lines [60] or exciters [61]

may be prone to variation due to the fault and have various impacts on the

response of the system.

• As the control scheme moves from a local controller to a wide-area scheme, the

complexity of the control system is increased. This makes such designs more
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impractical.

• WAC performance is highly dependent on the quality of data provided by WAM

systems. Wide-area designs are adversely a�ected by uncertain communication

channels, packets drop, time delays and lack of global power system models and

their time constants. Most of the works proposed in this area ( [10,12,62]) treat

the unknown parameters as constants.

In general, for classical methods stability and generality is not guaranteed. On the

other hand, AI-based techniques can handle such problems, which will be discussed

next.

2.5.1 Application of Reinforcement Learning

RL has been widely proposed in literature for Wide-area power system stabiliza-

tion. For instance, [63] has applied ACD for a UPFC that provides auxiliary signals

to the real and reactive power references of a UPFC series inverter in order to achieve

enhanced damping of system oscillations. Further, this approach is used in [11] as

a computational tool as an optimal damping controller for a gate-controlled series

capacitor. The controller, using WAMs, for a gate-controlled series capacitor is used

to provide damping of system modes. The design yields a �xed weight nonlinear

controller, which is easier to implement in practical systems in comparison to conven-

tional controllers. Further, [14] has focused on the design of the controller based on

development time and hardware requirements for real-time implementation. A wide-

area nonlinear damping controller is designed in this work using an existing Static Var

Compensator (SVC). Particle swarm optimization is applied to tune the parameters

of the SVC external damping controller but based on some linearized mathematical

models of power systems. In [15] Q-Learning based real-time decentralized control

scheme is proposed based on WAMs for excitation control of generators. Overall in

these works, the transient stability of the power system is enhanced by mitigating
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angle instability, meanwhile damping of power system oscillations is improved.

2.5.2 Wide-Area Identi�cation

Application of NNs in nonlinear system identi�cation, in particular in WAM-based

designs is reviewed here. The e�cient and accurate training of NNs to approximate

functions has been an open topic for many years. It depends on several parameters

such as choosing appropriate model, learning rate, noise in the data, size of the

database, training algorithm, minimization algorithm, and so on. For instance in [10]

an annealing learning rate scheme is used for NNs in order to ensure that NNs adapt

themselves to the plant dynamics quickly and converge to new operating points.

As mentioned in section 2.3.1, the main characteristic of MLP is that there are

no connections between the neurons on the same layer [64]. Additionally, in such

a network every output error has a direct impact on all the weights of the input

weight matrix, i.e. the outputs of MLP interact with one another and the error in

each one a�ects the others. Hence, a control network designed using NNs creates

unwanted interactions between the controllers, whereas, the idea behind the WAC

is to augment each local controller based on the e�ect of only that controller on the

global cost function or objective function [10]. Ref. [10] has tackled this issue by using

a FNL NN.

The error back-propagation algorithm can be utilized to solve RL problems. Usu-

ally, FFNN is used that can only gain a static mapping of the I/O space. In order

to be able to model dynamic systems, development of a NN that is able to store

internal states is required. These types of NNs are called RNN under the umbrella

term Dynamic NN, and their main characteristic is the internal feedback or time-

delayed connections. Although RNN is biologically more realistic than FFNN, it is

more di�cult to train them due to the problems of exploding or vanishing gradients.

The di�erence between a conventional RNN and SRN is that the feedback in RNNs

are time-delayed, whereas, in SRNs they are instantaneous [65]. The SRN uses much
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higher sampling rates to emulate instantaneous feedback. In order to implement a

SRN in real-time, the simultaneous recurrences have to be carried on several times

within one time step of the measurements. The SRN-based WAC system have been

implemented with a new training algorithm and two step training approach in [65].

Further, [66] has expanded the design to a novel four dimensional scalable multi-rate

cellular NN architecture as WAMs. RNN is used as computational engine for each cell

as they have dynamic memory. By using information from PMUs that are optimally

located in a power system, each layer predicts a state variable for one or more time

steps.

2.5.3 Scalable Designs

One of the main challenges of WAC designs, in speci�c AI-based systems, is the

problem of scalability and dimensionality. Depending on the number of WAM mea-

surements and the signals to be analyzed, the volume of data for a typical system

could be enormous. Various techniques has been proposed in power system research

groups to tackle this problem based on clustering and model reduction techniques to

overcome the problem of excessive data analysis for model reduction. Using Feature

selection or unsupervised learning techniques signals can be grouped according to

their resemblance to each other reducing the computational cost. Due to the nature

of rotor angle stability, most of the WACs proposed are designed based on center of

inertia (COI), center of angle (COA), or center of speed (COSP) [67].

The common coherency method based on pre-speci�ed number of areas is also

used for the purpose real-time ACD based WACs. For instance, in [13], a new con-

cept called a "virtual generator" is introduced which is simpli�ed representations of

groups of coherent synchronous generators in a power system. It allows WACs to

exploit the realization that a group of coherent synchronous generators in a power

system can be controlled as a single generating unit for achieving wide-area damping

control objectives. This implementation is made possible by the availability of WAMs
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from PMUs. Also, in [68] we have used the COI-based signals to monitor and con-

trol the pre-de�ned areas of the system, which limits the observability to inter-area

oscillations.

2.5.4 WAM Constraint Consideration

WAC systems are highly dependent on the performance of the communication in-

frastructure, without which the functionality of them will not be achieved. Knowing

that time delay a�ects wide-area power system stabilizer design, the consequence of

delayed input data and output signals in WAC systems should be considered and

modeled. Also, the performance requirements posed on by time availability for deci-

sion making and control actuation needs to be elicited. The characteristics of time

delays could be constant, bounded, or even random, depending on the network proto-

cols adopted, distance, and the chosen hardware and could be in the range of 7ms to

1s. PMU data delay in WAM systems and their nature has been analyzed in several

research works; see [18,19,69,70] and references therein.

RL algorithms are well suited, as mentioned before, to tackle these uncertainties

in the system. Ref. [10] has designed an ACD-based controller to improve the damp-

ing of the rotor speed deviations of the synchronous machines by providing auxiliary

reference signals for the AVR of the generators as well as the line voltage controller

of the STATCOM. RBFNN-based identi�er is presented in this work to predict the

states in real-time in presence of transport lags associated with the present communi-

cation technology for WAM. The results provided indicates that the proposed WAC

improves the damping of the rotor speed deviations of the generators during large

scale disturbances. Ref. [12] take advantage of ACDs in including the communica-

tion delays in implementation of real-time WAC design with a single SRN. The NN

serves a dual purpose of continuous identi�cation of the power system dynamics and

generation of appropriate damping control signals. Through such design damping of

several modes of oscillations in power system is provided.
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2.5.5 Real-time Implementation

Real-time implementation aims at bringing these AI-based designs one step closer

to practical applications. This technique has been successfully developed in real-

time benchmark in several works [10, 12, 71]. For instance, in [71] the RL-based

neuro-controllers for turbo generators in a multi-machine power system has been

implemented on the Innovative Integration M67 card consisting of the TMS320C6701

processor. The results showed robustness in presence of system operation changes.

Overall, these works have encountered some challenges including data communication

quality, WAC calculation speed, and so on.

2.5.6 Transient Stability Enhancement Controller

As discussed in previous sections TSA is mainly used for corrective or emergency

control actions. It is shown in literature that, the WAM temporal information can

further be used in WAC designs to perform real-time transient stability enhancement,

which can improve the power transfer capability of a transmission system and prevent

the system from generation or load disconnection, or catastrophic failure following a

sequence of disturbances in the system. Article [72] have used the RL for preventing

cascading failure (CF) and blackout in smart grids by acting on the output power of

the generators in real-time. This article makes use of the state-action policy update

feature of RL algorithm, as it can learn from interactions with the system.

2.6 AI-based Techniques in Modern Power System

With the increased penetration of renewables in transmission system, the e�ective

inertia of the system will be reduced and system rotor-angle stability following large

disturbances could signi�cantly be a�ected [73]. Several works have been done to

address the impacts of renewable resources on power system stability [73�79]. Gener-

ally, it is believed that the renewable type do not signi�cantly a�ect the power system

oscillations. Rather, the penetration level will have a damping e�ect due to reduction
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in the size of synchronous generators that engage in power system oscillations [77].

The majority of these resources are interfaced to the grid using Voltage-Sourced

Converter (VSC) units. Voltage control of a VSC in the dq-framework can be achieved

in a nested loop based on an inner current control loop and an outer voltage control

loop. The controller of the inner loop regulates the converter current, and controller

of the outer loop regulates the output voltage [80�82]. Furthermore, Maximum Power

Point Tracking (MPPT) is usually applied to the generation control to extract the

maximum allowable power from the wind turbines or PV arrays [83], along with power

sharing controllers.

The type of power control employed for the renewable generation directly a�ects

the rotor angle and speed of synchronous generators [80]. For instance, [84] shows that

when active power �ows change, the way that the wind turbine provides reactive power

support to the system is critical in maintaining rotor angle stability of conventional

units in the system and minimizing the deviation of �eld voltage. Same applies to the

active power control, since the oscillations are produced by active power di�erences

between generation and consumption. Therefore, the implementation of appropriate

control strategies in renewable sources, particularly the terminal voltage control, can

lessen the power requirements of conventional synchronous units and help to mitigate

large rotor angle swings. There are several techniques applied for this purpose such

as optimal control methods, robust methods, Energy function methods, and so on.

Additionally, AI-based designs have been investigated for the renewable-integrated

power system rotor angle stability control.

2.6.1 Supervised Learning (SL) Control

In the area renewable control, AIs such as NN and FL methods have been also

successfully applied in di�erent applications [85�90]. Generally, in the area of re-

newable energy resources, NNs are mainly used as the prediction tool for generation

forecasting along with load prediction in microgrid application [85]. A comprehensive
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review on the application of NN in renewable energy systems can be found in [86].

As a controller, in [87], a neuro-fuzzy gain tuner is proposed to control a laboratory

DFIG. The input for each neuro-fuzzy system is the error value of generator speed,

active or reactive power. In [88], a method to design an adaptive fuzzy system for

for maximum energy extraction from variable speed wind turbines is proposed and

tested. The proposed control techniques have low memory occupancy and high learn-

ing capability, having advantage over classical control methods; thus, could be well

implemented on a micro-controller. In [89], NN has been employed as rotor and grid

side convertor controllers gaining better dynamic characteristics in comparison to con-

ventional PID controllers. In the [90] application of NNs to control a grid-connected

recti�er/inverter is investigated. A NN-based control strategy is presented and tested

in this work in a more practical nested-loop control condition. The NN implements

a DP algorithm and is trained by using back-propagation through time. Overall,

NNs has been shown in these works that have better performance in comparison to

conventional techniques regarding system's dynamic responses.

2.6.2 Reinforcement Learning (RL) Control

RL has also been subject of renewable control in recent years. The application

of NNs as an intelligent control algorithm has been shown in [91] in microgrid with

multiple renewable resources. In general RL can provide predictive, optimal, adap-

tive control designs for renewable-integrated power systems. A DHP-based control

system in a system wide adaptive predictive WAC scheme is used to ensure the dy-

namic performance and voltage dynamics of the micro grid as the system operation

conditions change. Ref. [80] has proposed controller based on ADP techniques on

the bench mark of NNs to approximate the optimal control policy according to the

interaction between the controller and the power plant. The method is developed for

the DFIG-based wind farm to improve the system transient stability under fault con-

ditions and has shown e�ective results. Furthermore, in [92], a RBFNN is designed
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for WAM that identi�es the I/O dynamics of the nonlinear power system with power

system stabilizers, a large wind farm, and multiple �exible ac transmission system

(FACTS) devices. the proposed WAC design has shown better performance during

transient events, but without considering either multiple wind farms or communica-

tion time-delay compensation.



CHAPTER 3: OPTIMAL AND ROBUST WIDE-AREA CONTROL DESIGN

3.1 Introduction

Wide-Area Control (WAC) systems, as mentioned in previous chapter, are highly

dependent on the performance of the communication infrastructure, without which

the functionality of them will not be achieved. Knowing that time delay a�ects wide-

area power system stabilizer design, the consequence of delayed input data and output

signals in WAC systems should be considered and modeled. Also, the performance

requirements posed on by time availability for decision making and control actuation

needs to be elicited. PMU data delay in WAM systems and their nature has been

analyzed in several research works; see [18,19,69,70] and references therein. The aim

of this chapter is to design a WAC that is robust to such delays and data quality,

predictive, and optimal as it involves several agents.

In general, Reinforcement Learning (RL) problems are well suited to tackle afore-

said issues. This chapter focuses on the solving method for such problem in order to

achieve optimal and robust performance of WAC system. Unlike the works done by

other researchers in power system for RL-based WAC designs [5, 10, 12, 17, 71, 93�95]

which focuses on Dynamic Programming (DP) to solve the sequential optimization

problem, this chapter uses average Temporal Di�erence (TD(λ)) method [96�100] to

achieve the cost function forecasting and learning requirements of WAC design. TD

methods are considered as a bridge between DP and Monte Carlo (MC) based de-

signs. By adjusting coe�cients of future returns, λ, TD(λ), constitutes this bridge by

controlling the bias/variance trade-o�, and signi�cantly speeding up the learning. It

is understood that, larger values for the TD parameter su�ers larger variance in the

updates, but also enjoys lower bias [101]. This technique, shown to be implementable
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online in an inexpensive manner [102], makes the approximation of the cost function

naturally converge faster to optimal value in forward view. On the other hand, Eli-

gibility Trace (ET) method, as in backward view, uses a memory parameter to mark

states that are eligible for learning, reduces the process load. Thus together with ET

and TD, the learning speed, priority weights for states, and convergence of learning

can be optimized.

In this chapter, we present a uni�ed optimization method, where the cost function

is approximated by the online TD algorithm. A new online method is proposed in

Adaptive Critic Design (ACD) context to achieve the same updating algorithm as of

o�ine TD(λ) in order to do the estimation during the episode. Chapter focuses on

ACD controllers with new critic scheme based on moving target learning approach.

The theoretical and application framework of this design for WAC applications in

power grid is the main contribution of this chapter. A new implementation method

is discussed based on the proposed architecture and the framework is evaluated using

an experimental test bed with real-time digital simulator (RTDS).

The chapter is organized as follows. Section 3.2 provides a brief mathematical

preliminaries and problem formulation and section 3.3 discuss the proposed method-

ology. In section 3.4, a WAC architecture is illustrated and Section 3.5 discusses the

implementation method on 2-area system. Section 3.6 presents the real-time imple-

mentation and case studies and section 3.7 concludes the chapter.

3.2 Mathematical Preliminaries and Problem Formulation

Consider a general class of nonlinear system at time t of the following form:

ẋ(t) = af(x,W, t) + bg(x,W, t)u(t) + d(t) (3.1)

u(t) = h(x(t)) (3.2)
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where, x ∈ <n is the state vector, f(.) ∈ <n, g(.) ∈ <n×m, h(.) ∈ <m are unknown

nonlinear functions, W is the unknown parametric change, u ∈ <m is the control

input, a and b are parametric coe�cients that are not changing, and d is unknown

bounded disturbance (‖d‖ ≤ dm). The objective is to track the system output to a

reference command.

ẋ∗(t) = a∗x∗(t) + b∗r(t) (3.3)

where, r is the input command and a∗ and b∗ are reference coe�cient matrices. The

task of the controller is to track a desired state vector as speci�ed by the reference

input with the state vector remaining bounded.

Based on RL approach, it is desired to �nd the control action which minimizes the

cost-to-go function given as

J(x(t)) =
∑∞

k=0
γkU(x(t+ k), u(t+ k)) (3.4)

where, γ ∈ (0, 1] is the discount factor, and,

U(x(t), u(t)) = ∆x(t)TQ∆x(t) + u(t)TRu(t) (3.5)

where ∆x(t) = x(t)− x∗(t).

3.2.1 Solutions to the Reinforcement Learning Problem

In RL-based control, the objective is to develop an optimal control action u∗ with

convergence to the optimal policy or cost function, J∗. In general, TD estimates J∗

by updating its policy with respect to estimation error designing e in the direction of
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Figure 3.1: Return weights in TD(λ)

the n-step return of x, denoted as R(n) as,

∆J(x(t)) = αe(t) (3.6)

e(t) = R(n)(x(t))− J(x(t)) (3.7)

R(n)(x(t)) =
∑n−1

k=0 γ
kU(x(t+ k), u(t+ k)) + γnĴ(x(t+ n)) (3.8)

where, α is a constant step-size parameter. In particular, DP is equivalent to 1-

step TD, considering just one time step ahead prediction, and n-step TD (n = T

as the terminal stage) is the same as MC using the latest possible prediction as the

target which allows less dependency on system model. Fig. 3.1 shows the parameter

λ characterizes how fast the exponential weighting in each time steps TD error falls

o� in backward and forward views.

∆J(x(t)) = e(t) (3.9)

e(t) = U(x(t), u(t))− γJ(x(t+ 1)) (3.10)
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3.2.1.1 Forward View

Forward view of TD(λ) could be used for providing backups toward any average of

n-step returns.

Rf = (1− λ)
T−n−1∑
n=1

λn−1R(n) + λT−n−1R(T−t) (3.11)

By rearranging the above equation, change of policy in TD(λ), denoted as, ∆Jf is

estimated by TD error, e(k), in forward view as

∆Jf (x(t)) ≈ α
T−1∑
k=t

(λγ)k−te(k) (3.12)

e(k) = U(x(t+ k), u(t+ k)) + γJ(x(t+ 1 + k))− J(x(t+ k)) (3.13)

3.2.1.2 Backward View

In the backward view, the ET for state x(t) is denoted as et(x(t)), and is de�ned

as,

et(x(t)) = γλet(x(t− 1)) + 1. (3.14)

leading to,

∆J b(x(t)) = αet(x(t))e(t) (3.15)

At each step, the ET for states that are not visited are decayed by λγ. The traces are

said to indicate the degree by which each state is eligible for undergoing learning. The

reinforcing events are the moment-by-moment one-step TD errors. Full description

of forward and backward views of TD(λ) can be found in [8].
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3.3 Proposed Moving Reference TD(λ)

Let us split the cost function derivative as,

∆J(x(t)) = ∆Jfb(x(t)) + ∆J i(x(t)) (3.16)

where, the �rst element is the update due to forward and backward views, and the

second one is with respect to action and its relation to the estimated cost function

toward optimal value. For on-line implementation, we hypothesize that the forward

view can be related to the backward view if a moving reference of optimization horizon

is considered. With this property, the reference for policy update can be set at any

time step before the current time and can be added to the forward view from the

current time. This is similar to a Receding Horizon Control (RHC) problem, but

with a moving window that can be enabled forward and backward in time. With this

in mind from (3.11), a truncated Rf at time k, denoted as Rf
k can be de�ned as

Rf
k(x(t)) = (1− λ)

k−n−1∑
n=1

λn−1R
(n)
t+n−1(x(t)) + λT−n−1R

(k−t)
k−1 (x(t)) (3.17)

where, k is the time step that TD(λ) is truncated and R
(n)
k (x(t)) is de�ned as the

n-step return of U and J corresponding to the episode k as

R
(n)
k (x(t)) =

k−1∑
j=0

γjU(x(t+ j), u(t+ j)) + γkJk(x(t+ k)) (3.18)

where, Jk is the estimated cost function at step k, set as terminal state of the op-

timization window. The policy used in the n-step returns is now a speci�c time

index. By setting k, the current time step, the truncated λ-returns from all previous

time steps are updated, such that they are now truncated at the current time step.

Thus, reference of the policy can be adjusted at any time step before the current time
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step, making the learning from the backward view more practical. Rearranging the

equations above, leads to change of policy, as

e(k) = U(x(t+ k), u(t+ k)) + γJk(x(t+ 1 + k))− Jk−1(x(t+ k)) (3.19)

∆Jf (x(t)) ≈ α

T−1∑
k=t

(λγ)k−te(k) (3.20)

Using (3.14) to refer to et, we can get the error of estimation over time for backward

view as follows:

∆J b(x(t)) = αe(t)
t∑

k=0

(λγ)t−kIx(k) (3.21)

where, Ix(t) is an identity indicator function, equal to 1 if x = x(t) and equal to 0

otherwise. The combination of forward and backward views at the time t leads to:

∆Jfb(x(t)) = α
T−1∑
k=t

(λγ)k−te(k)
t∑

k′=0

(λγ)k
′−tIx(k′)

= α
t∑

k=0

T−1∑
k′=t

(λγ)k
′−ke(k)Ix(k′) (3.22)

After reaching to the terminal state, the next update sequence is started as iteration

for action calculation. The iteration scheme is in a form of incremental optimization

that requires iterating between a sequence of action policies ui that optimizes the J i.

Algorithm is initialized with action policy, u0, derived from previous time step. This

can be represented as

∆J i(x(t)) = J i+1(x(t))− J i(x(t)) (3.23)

J i+1(x(t)) = U(x(t), ui(t)) + J i(x(t+ 1)) (3.24)

ui+1(t) = argminu(J
i+1(x(t), u)) (3.25)

Note that i is the value iteration index, whereas k is the time index.
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Figure 3.2: Elements of forward and backward views in proposed architecture

The architecture can be compared with RHC, in the sense that it performs the

optimization of the control sequence over a �nite time horizon length instead of in�nite

time span [103]. Considering forward and backward view a window around the current

time, t0, can be developed with the proposed method. Fig. 3.2 shows the key elements

of the proposed control scheme in a moving reference framework with predicted errors,

ET, include the impact of this approach on learning algorithm. Viewing T as a

control window, and current time step, t at the center of this window, (λγ)k would be

coe�cients of the error at each time step. Upon analyzing the �gures, it can be noted

that the proposed method can provide weighted values for the value function based

on the moving reference. In other words, time steps closer to current time would have

more in�uence on learning than farther time values. Also, as the time horizon can

be changed along with the time step, the method has more bandwidth to move from

temporal to spatial complexity architectural patterns.

3.4 Proposed TD-based WAC Design

In this section, NN design for RL problem is illustrated, proposing the backward

and forward views in TD on a �nite horizon around the current time step. The archi-

tecture discussed in this section is evolved from the ACD approach. The fundamental

equations and algorithm in this architecture is developed based on the moving target

TD(λ) methodology in previous section towards a WAC design for power grid with

better applicability. Three NNs have been implemented in the WAC: Wide-Area NN

Identi�er (WANNID), Critic NN, and Action NN. Each network training and control
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Figure 3.3: Proposed WAC architecture based on moving reference TD(λ)

functions are discussed next. Then the training algorithm, and their relationship

them as depicted in Fig. 3.3 will be discussed in detail.

The purpose of the WANNID is to model the equivalent power grid of the area

of interest with multiple generators and estimate the desired states through WAM.

WANNID is used to predict the future behavior of the system which is then used

to control the system through cost function approximation. To start, WANNID is

trained o�-line with a random set of inputs. Further, it is trained on-line tracking the

actual output of the system, and updating the weights based on identi�cation error,

as

em(t) = x(t)− fM(x(t− 1), u(t− 1)) (3.26)

The Critic NN learns the objective function that is used by Action NN to optimize

the overall goal. The goal is expressed as a form of Lyapunov stability function for

the system, in this case, the power system. The inputs to the Critic NN are action
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and states, and the output is the cost function. The Critic learns this approximation

by minimizing the error expressed by the summation of

||E|| =
∑

t
e(t)T e(t) (3.27)

over time period t, where the error value of e at each time period using the proposed

TD(λ) based on (3.22) is given by,

e(t) = α∆Jfb(x(t)) (3.28)

As a result, change of Critic weights, ∆WC(t), at time t can be achieved from the

change of policy rate by means of gradient descent via back-propagation through the

NN. This,

∆WC(t) = e(t)
∂Jfb(x(t))

∂WC(x(t))
(3.29)

where, WC(t) is the weight vector of the Critic NN, which estimates the cost function

at time t. Further, considering FFNN structure,

∆WC(t) = e(t)Φ̂(x(t)). (3.30)

From (3.22) it can be seen that, we are capturing the changes in the estimated states

and back up state transitions, with respect to state returns, priorities of the state,

and state predictions. The weight update feature is proportional to a decaying ET,

where the backward update for ET can be de�ned as,

et(x(t)) = λγet(t− 1) + ΦC(x(t)) (3.31)

Applying (3.22) in (3.30), the weight vector of the current time step WC|k(t) is de-
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termined by sequentially performing TD backups and can be incrementally de�ned

as,

WC|k+1(t) = WC|k(t)

+ αet(x(t)){U(x(t+ k), u(t+ k)) + γ[WC|k(t)]
TΦC(x(t+ 1))

− [WC|k−1(t)]TΦC(x(t))}ΦC(x(t)) (3.32)

where, k is to indicate the time step when the true on-line TD(λ)-returns are trun-

cated. This represents the moving reference TD(λ) backward view of the truncated

λ-return algorithm.

The goal of the Action training is to minimize the sum of the derivative of the

costs derived from the Critic NN, with respect to the Action network. This can be

represented as:
∂J(t)

∂u(t)
= 0 (3.33)

Hence, error is de�ned as,

eA(t) = (1− λ)
N∑
n=0

(γλ)k
[
γ
∂J(x(t+ k + 1))

∂u(t)
+
∂U(x(t+ k), u(t+ k))

∂u(t)

]
(3.34)

eA(t) = (1− λ)
N∑
n=1

[
γkλk−1(

∂J(t+ k)

∂u(t)
+
∂U(t+ n)

∂u(t)
) +

∂U(t)

∂u(t)

]
(3.35)

where,

∂U(x(t+ 1), u(t+ 1))

∂u(t)
= 2x(t+ 1)

∂x(t+ 1)

∂u(t)
(3.36)

Applying the chain rule for derivatives results in

∂J(x(t+ k))

∂u(t)
=

N∏
k=0

(
∂J(t+ k)

∂x(t+ k)
+

M∑
m=1

∂J(x(t+ k))

∂um(t+ k)

∂um(t+ k)

∂u(t+ k)
)(
∂x(t+ 1)

∂u(t)
) (3.37)
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where, m is the number of the outputs of the Action NN, and N is the window length

of the forward view, and, ∂x(t+1)/∂u(t) and ∂J(x(t))/∂x(t) are respectively, derived

through back-propagation of WANNID and Critic NN. The update to the weights of

the Action NN, applying least mean square minimization, may be written as:

W i+1
A (t)−W i

A(t) = −α(
∂u(t)

∂W i
A(t)

)eA(t) (3.38)

where, α is a small positive learning rate, and W i
A is the Action weight at iteration i

in action-cost function sequence leading to new cost function.

In order to perform the TD-based ACD Critic and Action training, an iterative

procedure is used (Table 3.1), where the Critic weights at each iteration, WC|k, are

adjusted while holding the Action's weights, WA, �xed, and vice-versa. It should be

noted that, conventional TD(λ) is an update target that is based on the full experi-

ence of sequence, while, the proposed TD(λ) algorithm is an inexpensive incremental

method, and doesn't require storage of all observed states and rewards based on ET.

The entire process can be de�ned as a simultaneous optimization problem. Here,

an iterative procedure is used to get the optimization of the Critic and Action to

converge.

3.5 Implementation as a WAC

In this section implementation of the proposed WAC is assessed on a two area test

system shown in Fig. 3.4. As a WAC, the proposed architecture is tested to reduce

local and inter area oscillations in the power system generators.

3.5.1 Two Area Test System

A 5-machine 8-bus power system with dynamic equivalent frequency dependent

generators is modeled using electro-magnetic transient simulation (EMTP) software

PSCAD. This network consists of �ve generating units such that three generators,

G1, G2, and G4 are of larger size than G3 and G5. All generators are equipped with
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Table 3.1: Neural Network training procedure based on moving reference TD(λ)

Step Action Comment

1 i = 0, J0, u0, et(0) = 0 Initialization

2 k = 0 Initialization of time horizon

3 U(k) = U(x(t+ k), u(t+ k)) Utility function at time t+ k (3.5)

4 ui(k) = fA(x(t+ k),W i
A|k) Action output at time t+ k

5 J i(k) = fC(x(t+ k),W i
C|k−1) Critic output at time t+ k

6 x(t+ k+ 1) = fM (x(t+ k), ui(t+ k),WM ) Identi�er output at time t+ k

7 J i(k + 1) = fC(x(t+ k),W i
C|k) Critic output at time t+ k

8 e(k) Critic errors by (3.19)

9 et(x(t+ k)) ET update by (3.14)

10 Φ(x(t+ k)) State function of FFNN

11 W i
C|k Update Critic Weights by (3.32)

12 ∂J i(k)/∂ui(k) Equation (3.37)

13 ∂U(k)/∂ui(k) Equation (3.36)

14 eA Action errors by (3.35)

15 W i
A|k Update Action Weights

16 k = k + 1 Repeat until k = T

17 i = i+ 1 Repeat the loop from step 2
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Figure 3.4: Diagram of two area power system with TD(λ)-based WAC
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Table 3.2: 2-Area system PSS parameters

Generator Ks Ts T1 T2 T3 T4

G1, G2 1 3 0.3 0.1 0.3 0.1
G3 0.07 3 0.07 0.03 0.07 0.03

governors, exciters, AVRs, and conventional PSS. Parameters of all generators, gov-

ernors, exciters, AVRs, transmission lines, loads, and operating conditions are given

in [9]. An important consideration in this test is that, three of the �ve generators,

G2, G3, and G5 are considered to form one area, while generators G1 and G4 form

the second area. Under normal conditions, each area serves its own load and is al-

most fully loaded with a small load �owing over the tie-lines. The consideration and

procedure used for the PSS are similar to those found in [9] and the parameters are

given in Table 3.2 with the transfer function of,

upss = Ks
sTs

1 + sTs

1 + sT1

1 + sT2

1 + sT3

1 + sT4

∆ω(s) (3.39)

The generator, itself, is modeled as a �fth-order dynamic model. Details of the

generator model is presented in [104].

The main focus of this architecture is to show the ability to damp inter-area mode

oscillations for WAC system in presence of delays and nonlinearities of power system.

This power system is built on the infrastructure established on the WAM system with

consideration of time delay. All PMU equipped generators are monitored with rotor

angle (δ) and the rotor speed (ω) measured and transmitted to the WAC center via

the PMU data collection system, Phasor Data Concentrator (PDC). The horizon of

backward and forward views of the truncated λ-return algorithm is set based on the

delays in the WAM system. Considering receiving measurement signals being delayed

for td, and sending action signals through the WAM system encountering time delay

td as well, one can set the horizon of the optimization as [-td; td]. Signals are selected

to monitor the the rotor angle stability. The utility function for quantifying the
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Table 3.3: Con�guration of Neural Networks for 2-Area TD(λ)-based WAC

NN Inputs Delays Hidden Outputs Input Signals Output Signals

WANNID 9 3 25 6 w,δ,u w,δ

Action 6 3 15 3 w,δ u

Critic 6 3 20 6 w,δ J

stability level of the power system is proposed as summation of utility function for

each monitored generator as,

U(t) =
3∑
i=1

Ui(t) (3.40)

where,

Ui(t) = −0.8(∆δi(t))
2 − 0.4(∆ωi(t))

2 (3.41)

where, i is the generator index.

3.5.2 WAC Training Methodology and Assessment

Fig. 3.4 shows the block diagram for the proposed controller architecture. Training

method is as follows.

3.5.2.1 O�ine Training

O�ine training is performed to set the initial weights for online implementation.

For this a batch learning structure with random inputs and related outputs of the

power system model is captured. The training of Action is initialized with the target

of local PSS. Next, Critic NN is updated based on the proposed method, followed

by Action update, alternatively. Once the Critic NN's and Action NN's weights have

converged, the Action NN is connected to the generator's exciter to replace the PSS.

Table 3.3 provides the NNs parameters used which are identi�ed in a heuristic manner.
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3.5.2.2 Online Training

The process of online training starts by monitoring the states to incrementally

train the WANNID followed by Critic and Action update iterations (Fig. 3.4). For

all the simulations, a real-time experimental test bed is used, which will be presented

later. Parameters of the moving reference TD update method such as et, λ, and γ are

set, initially to positive constants. Then, future states and actions are calculated by

the trained WANNID and Action NN, for the use in the forward view of the Critic.

Subsequently, these variables, alongside with calculated utility functions and ET as

the backward view are fed to the Critic training process. Future cost functions are

calculated and Action training is performed to optimize the cost function over the

moving horizon. Process terminates when the Action and Critic errors are within

acceptable range.

In order to assess the performance of the proposed method, �rst a mechanical torque

change has been implemented onG3 at t = 6s in PSCAD causing the states to oscillate

as shown in Fig. 3.5-a. As mentioned in section IV, Critic training in backward view

has been implemented using ET to eliminate the redundant computation. At each

time step, the ET for all states are decayed by λγ, and the ET for the active states

are incremented by Φ(x(t)) (Fig. 3.5-b). In this simulation, λ is set to 0.7, and γ is

0.4. As it is shown, when there is a local fault in the area 1, the states related to this

area are activated. On the other hand, forward view in Critic training has predictive

feature. Considering the time step of 2.5 ms for the controller process, and total

transmission delays of 0.02 s, the horizon of 4 time steps ahead and before has been

used to develop proper time horizon. In Fig. 3.6, returns for current time step and 3

next steps has been shown. As it can be seen, return for further steps can predict the

cost function, J∗, better than one step prediction. In order to improve the accuracy of

n-step prediction, TD(λ) for predicted and previous states are considered. Critic and

Action's update errors of the conventional Critic of WAC, TD(0), and the proposed
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one for a horizon window from optimal values are presented in Fig. 3.7. J∗ has been

derived o�ine for 1000 epochs for this case study, and Critic and Action NN optimal

weights, W ∗, has been calculated based on this value. Fig. 3.8 depicts the deviation

of the weights in conventional and proposed method from the optimal value, W ∗. As

it can be seen, the proposed method showed less error in weight changes.

3.6 Real-Time Implementation

In order to study the response of the system during inter-area mode of oscillations,

we next adapted the controller in real-time to the two power system models. In

previous section, simulations were performed for a control architecture in a MATLAB

coding environment and power system modeling in PSCAD (Path4 in Fig. 3.9). To
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perform simulations in real-time benchmark, power system modeling has been done in

RSCAD (Path3). The modeled power systems is then connected with exciter acting

as a 'nominal' controller. The input of the exciter is then connected to the control

architecture implemented in Texas Instrument (TI) Controller board, Piccolo C28335.

For this, MATLAB codes was �rst converted to SIMULINK (Path1) and then to C

language by means of Code Composer Studio software (Path2) which is then deployed

to TI controller board (Path3).

In the modern power grid, WASCCO can be located at the energy management

center, and the communication to local controllers can be developed using secured

protocol. As in Fig. 3.10, the signals from generators are communicated to a TI board

running the WASCCO algorithm via LAN in the analog format (Path8). This has

been accomplished using 12 channel Gigabit-Transceiver Analogue Output (GTAO)

block provided in RSCAD. The control signals after the computation are adopted

using TI in the format of discrete and binary signals that are sent back to the power

system model represented in RSCAD (Path7). Then, Gigabit-Transceiver Digital

Input (GTDI) block, digital input processor, provided in RSCAD is set to get the

binary control signals for the generators these are then converted to real values.

The WANNID, Action and Critic training has been initially performed o�-line in

PSCAD and then applied online in the real-time simulator. The signals implemented

to augment the PSS in each of the three generators are then analyzed for damping

the inter-area mode oscillations. The test bed consists of a real-time digital simulator

(RTDS) controlled by a controller board in which control algorithms resides. The

power system model is running in real-time at 50 micro seconds time stamp. The

generator data is sampled and sent to the controller during this sample time and the

controller performs the action every 20 micro seconds.
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Figure 3.10: Real-time implementation benchmark

3.6.1 Real-Time Test Results on a Two Area Power System

Using the described real-time platform, the proposed WAC performance in two

non-linear time domain case studies is simulated. In these simulations, four controller

algorithms including local PSS, local RL-based controller, RL-based WAC and the

proposed WAC have been implemented and tested. Local and inter-area oscillations

have been monitored to analyze the performance of the controllers.
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3.6.1.1 Case A.1: Short Circuit

In this case study, a 100ms three-phase short circuit at one of the transmission

lines is simulated. In order to access the performance of the controllers, the line is

disconnected by means of breakers on the sides of line. This case study e�ects all

oscillatory modes of the system and changes the topology of that as well. Inter-area

and local oscillations in this case are presented in Fig.3.11a and 3.11b. As it can be
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seen, a notable damping improvement is gained, when the proposed control algorithm

has been used. In addition, overshoots and undershoots of oscillation are reduced as

well.

3.6.1.2 Case A.2: Power Transfer Capability

In further studies, power transfer capability has been the subject of the analysis.

When there is a fault on one of the lines, the parallel line would encounter a power

�ow oscillation. As depicted in Fig. 3.12a, by utilizing this controller, power transfer

margin can be increased by 124 MW. In addition, duration of fault (DoF) is increased

for the proposed WAC to gain the same power transfer margin as PSS, which indicates

increasing critical fault clearing time by applying the proposed controller.

3.6.1.3 Case A.3: Sudden Torque Change

In this case, frequency regulation capability in presence of sudden torque change has

been studied. A 0.258 pu torque step decrease, ∆PL, has been generated the terminal

of G3 in the system with conventional PSS. This action causes a mismatch between

mechanical and electrical powers of generator which leads to frequency increment.

The inter area oscillations would have same undershoot as the system with proposed

controller with 0.3 pu torque change. In addition, with the same amount of ∆PL for

PSS the inter area oscillation undershoot is increased by 38% (Fig. 3.12b).

3.6.2 Real-Time test Results on a 39 bus Power System

In order to investigate the capability of the proposed control architecture in damp-

ing the inter area oscillations, the 10-machine 39-bus New England test system was

implemented in real-time test bed (Fig. 3.13). The importance is to illustrate that the

approach can be implemented on a large scale system, since the dynamic equivalent

areas are considered for control. The network reduction and dynamic equivalence

model development can be achieved by means of model order reductions or similar

methods in WAMs [105]. In addition, one of the main focuses of this method is to
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reduce the training load by means of ET. The states that are not activated are con-

sidered as redundant measurements and would not participate in the training, which

results in less training data processing for NNs. Based on the dynamic data of the

generators and the parameters of the transmission systems [106], the generators can

be grouped into a desired number of groups. In this simulation, the test system has

been grouped as 3 areas as depicted in Fig. 3.13 based on slow coherency grouping



56

method [107]. It is assumed that each bus or substation has a PMU sensor that

transmits signal to the local Phasor Data Concentrators (PDC).

1
24

35

22

21

16

439

5

14

15

126

7

8

9
31

11

10

32

34 33

23

2013

19

2

30

37

26

27

2928

38

17

18

3

G8

G10

G9

36

G7

G6

G4G5

G3
G2

G1

Area 1

Area 2

Area 3

Figure 3.13: New England 39-bus test system.

A utility function composition approach is adopted that helps speeding up the

training process of the NNs by commonly using center of angles and center of speed.

For each area, an average angle and speed is found from measurements through the

PMUs in that area as,

δCOIj =

∑
i δiHi∑
iHi

, ωCOIj =

∑
i ωiHi∑
iHi

(3.42)

where, j is representative of the areas and i denotes the generator in that area. The

WANNID, action and critic NNs are trained on the aggregated area signals, and

control signals are calculated according to the energy of each area. The training is



57

based on utility function of each area de�ned as,

UCOI
j (t) = −0.8(∆δCOIj (t))2 − 0.4(∆ωCOIj (t))2. (3.43)

Three transient case studies has been performed to evaluate the e�ectiveness of the

proposed damping controller in comparison to local PSS and conventional WAC.

3.6.2.1 Case B.1: Short Circuit Test

100 ms self-clearing 3-In this case, phase fault in the middle of the tie line between

buses 16 and 17 connecting areas 1 and 2 at t = 1s has been performed.

3.6.2.2 Case B.2: Sudden Load Change Test

In this case, Load at bus 20 has been decreased to 50% of the base value 628 MW

at t = 1s. This case evaluates the validity of the proposed controller, even though

the fault is inside an area.

To evaluate the validity of this grouping, actual utility function trajectory of each

generator is presented in Fig. 3.14, which con�rms the similarity of attributes of the

generators in each group for these case studies. The simulation results in Fig. 3.15

demonstrates the performance of the proposed WAC during inter-area oscillation

between areas 1 and 2. Speed deviation for the area 1 is depicted as well, which

shows the performance of the WAC in comparison to the local controller, in this case

the PSS. As it can be seen, the system is capable of reaching to a new stable operating

point quickly and with less oscillations and higher damping.
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j ) for the case studies
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Figure 3.15: Case B. IEEE 39-bus power system inter-area and local speed response
comparisons between the proposed TD(λ)-based controller and local and conventional
controllers (a) Case B.1 (b) Case B.2
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Table 3.4: Case B. IEEE 39-bus system transient Energy Index Comparisons

Case B.1 Case B.2
Energy (pu) Prop. WAC Conv. WAC PSS Prop. WAC Conv. WAC PSS

Area 1-2 0.16 0.5 1 0.34 0.66 1
G4 0.48 0.66 1 0.50 0.75 1
G5 0.46 0.68 1 0.50 0.70 1
G6 0.58 0.87 1 0.25 0.625 1
G7 0.44 0.60 1 0.28 0.71 1

For the transient tests carried out, the transient energies of individual generators

of area 1 (G4, G5, G6, and G7) and inter-area energy between area 1 and area 3

within the �rst 4 s after the disturbances are calculated by accumulation of the

utility function in the course of time. This value as a energy or cost function is the

identi�cation of performance of the controllers. Table 3.4 provides this value for the

controllers employed in the case studies with PSS value as the base. the results shows

that in the presence of proposed controller, transient energy is reduced for inter area

and local oscillations indicating better damping when compared to the conventional

controllers.

3.6.2.3 Case B.3: Inter Area Bulk Power Transfer

In this case study, the proposed architecture is applied to real-time power sharing

scenario between the areas. In normal conditions, there is a power exchange of 180

MW between area 1 and 2, 380 MW between area 1 and 3, and 160 MW between area 2

and 3. The WAC monitoring the inter area speed is able to balance the power transfer

to mitigate any frequency deviation between the areas. This could be highlighted in

the case of disturbance in the system e�ecting the power exchange between the areas.

Let us assume a renewable source is connected to the area power grid. Assuming that

bus 36 is connected to 560 MW renewable source with the load of 460 MW, a three

phase fault has been applied to tie line connecting area 1 to 2 causing oscillations on

the other tie lines as well (Fig. 3.16). As it can be seen, the proposed controller has

lead to lower overshoots and less oscillations improving the power transfer between
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Figure 3.16: Case B.3: IEEE 39-bus system inter area disturbance and power transfer
oscillations

the areas during dynamic changes. This di�erence (104 MW) could be critical, since

this may cause a the renewable source mismatch between the generation and load

leading to switch it to islanding mode. This incident can produce a cascading e�ect

mismatch which leads to further decrease in generator power eventually leading to

load-shedding.

3.7 Conclusion

In this chapter, an intelligent controller for real-time power system stabilization and

transient voltage control is being proposed and implemented. The proposed archi-

tecture develops a hybrid reinforcement and temporal di�erence learning framework

which allows the system to learn from interactions and predict future states. The

developed algorithm is evaluated using real-time digital simulation on a benchmark

two area power system model and tested on a real feeder using hardware. The main

advantage of this design is its ability to learn from the past using eligibility traces and

predict the optimal trajectory through temporal di�erence learning. The control al-

gorithm is evolved from ACD performed on-line at a �nite horizon through backward

and forward view. Results shows that the proposed method can be implemented in

real life and have better capability to damp oscillations than conventional schemes.



CHAPTER 4: SUPERVISED REINFORCEMENT LEARNING

4.1 Introduction

As discussed in previous chapters, local oscillations are typically damped by gen-

eration excitation control using power system stabilizers (PSS) [1]. However, these

local damping controllers cannot damp and stabilize inter-area oscillation modes un-

less tuned for that purpose [108]. Inappropriate o�ine tuning of local controllers can

also adversely a�ect the system operation. For instance, such tuning may lead to high

gain feedback for some network but this may destabilize some other networks [109].

Wide Area Control (WAC) is often proposed to mitigate such oscillations.

There are mainly two major issues that a�ects the performance of a WAC:

• First, such WAC shows destabilizing interactions with local controllers, which

makes the system unstable during certain contingency situations.

• Second, WAC actions are adversely a�ected by uncertainties, e.g. communica-

tion channels, lost packets, time delays, and lack of accurate and detailed global

power system models and their time constants.

Ideally, a WAC design should mitigate the aforementioned issues and as such should

augment the local controllers, thus contributing towards inter-area damping.

Classical WAC models mainly based on frequency domain methods usually treat

the unknown parameters as constants [12, 62]. In general, for such methods stability

is not fully guaranteed. The second set of designs are measurement based. Mostly

these designs uses machine learning techniques that can be trained using WAM. In

previous chapters we discussed about the RL-based WAC design, which had the ca-

pability of dealing with uncertainties. RL, di�erent from both the centralized and
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the decentralized control schemes, employs a number of semi-autonomous agents to

collaborate with each other to perform optimal control theory. Although, RLs look

promising in theory, host of problems make them di�cult to implement in real life.

These problems roots in heuristic nature of such controllers, which causes reliability

issues and cannot be fully trusted to implement. These designs are thus not guaran-

teed to possess global optimal properties.

In general, Neural Network (NN) as a distinct learning-based function approximator

has been e�ectively implemented as a power system intelligent controller in several

works, and their ability to adapt during nonlinear transient conditions have been

discussed [10, 66, 68, 71, 110]. These architectures use NNs in the form of supervised

learning as an intelligent PSS for damping generator oscillations. However, majority

of these works have used the intelligent controller by itself. For such designs perfect

training of NNs are required for overall stability which may not be achievable all the

time.

One solution will be to develop a hybrid architecture that uses a local controller

along with a learning-based architecture as a global controller. Several works have fo-

cused on designing a hybrid linear and nonlinear based control architecture [110�113]

and robust control techniques [111], for power system stabilization. Combination of

a linear and NN-based nonlinear adaptive controller through switching law is studied

in [113]. In [110], we have used linear adaptive and a NN-based controller as local

controllers with explicit neuro-identi�er to augment the performance of the adaptive

controller. In this work a new architecture that prioritize the local and global con-

troller and at the same time ensures robustness, stability, and optimality of the closed

loop system is proposed.

In this chapter, the controller scheme of 2-level combination of local and global

parts is proposed initially as: (a) The supervised local feedback, (b) The RL-based

global wide-area signal. The global control feedback is designed to enhance the wide-
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area behavior of the system that suppress inter-area oscillations based on Lyapunov

energy function.

The main advantages of the proposed architecture are:

• A value priority structure that makes sure that the closest global optimal solu-

tion is achieved for a given time horizon.

• The structure ensures quality of performance, stability and identi�cation using

an energy function that is stable.

• The design monitors the system with WAM constraints such as transmission

delay and data dropout and makes sure that the overall system stability is

maintained.

• The method adapts based on system changes and ensures stability when the

NN controller fails to perform.

Next, the value priority scheme is applied to two global controller: (a) Adaptive

control, and (b) learning-based control. Conventional adaptive control [6] can provide

damping of inter-area oscillation modes. However, it is a well known fact that the

response of a dynamic nonlinear system cannot be tracked using a linear model-based

controller. Such a design is capable of adapting to the normal varying operating

points only when the variations can be represented as a linear parametric set [6] as

these controllers are not designed for nonlinear uncertainties especially in the WAC

designs.

Another method proposed in this chapter is the augmentation of global linear

controller as a supervisor with global nonlinear WAC as a RL. The approach inspired

by [44,114] is based on the combination of experts to enhance optimality of the control

and generality of NN learning. Our choice of performance criterion is on the basis

of direct Lyapunov stability analysis that encourages minimization of the composite
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identi�cation and closed-loop errors. The uniqueness of the proposed method is its

softmax value priority network that makes sure that the closest stable optimal solution

at a given time horizon is achieved. The linear MRAC works well especially when the

control objective is to make the output follow a particular path, and the NN controller

is employed in tracking the unknown nonlinearity and uncertainity of the system. The

learning-based controller seamlessly evolves based on system changes from a simple

supervised structure to a full RL-based controller. Moreover, additional source of

exploration is provided that eliminates the necessity of o�ine training for RL. The

proposed method allows the system to dynamically shift between linear and intelligent

controllers and thus can be e�ectively utilized on any practical set up. The global

controller can also interact between two or more local controllers thus operating as a

wide-area control system.

The chapter is organized as follows. Section 4.2 provides a brief overview of math-

ematical preliminaries and theoretical design of local and global control. In section

4.3, implementation aspects of the design is covered. Test results on a 8-bus and

68-bus 16-machine power systems are presented in Section 4.4. Furthermore, sections

4.5 to 4.9 provide the hybrid design for adaptive and learning based control designs,

and �nally section 4.10 concludes the paper.

4.2 Hybrid Global and Local Control Structure

In this section, a methodology to construct a stabilizing trajectory, k(t), as a value

priority on control output is proposed and is presented in Fig. 4.1. With k as a value

indicator, a hybrid control action can be de�ned as,

u(t) = (1− k(t))ul(t) + k(t)ug(t) (4.1)

where k ∈ [0, 1] is an interpolation parameter that determines the level of control or

autonomy on the part of each controller. ul is the local controller that estimates the
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Figure 4.1: Structure of the wide-area global control center

action based on linear parametric design, which in this section is the conventional

PSS

uli(t) = Ksi
sTsi

1 + sTsi

1 + sT1i

1 + sT2i

1 + sT3i

1 + sT4i

1 + sT5i

1 + sT6i

δ̇i(t) (4.2)

where, uli(t) is the local control of generator i at time t. The area j control signal u
g
j

is the global action of RL controller based on nonlinear adaption of NN as,

ugj (t) = WA(t)TΦA([δ̇1(t), ..., δ̇Nj
(t)]) + εA (4.3)

where, δ̇ is the rotor speed and Nj is total number of areas.

4.2.1 Proposed Value Priority Function

To qualify and distinguish the controllers, �rst a value priority function J̇vp and a

system space in the form of Ω-regions for the controllers are de�ned. Let Ωg∪Ωl covers

the state space related to J̇gvp and J̇
l
vp with Ωg∩Ωl 6= 0. The problem entails searching

for a Lyapunov-like function for controllers whose associated Ω-regions covers the state
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space. Additionally, the problem formulation requires that whenever there is a system

trajectory movement towards Ωg, then J̇gvp < J̇ lvp, meaning that the RL has learned

the optimal solution. The following hybrid shifting rule is initialized at t0 by k = 0

as a representation of local control activating the system so that x0 ∈ Ωl; Then,

k̇(t) = k(t) + β(J̇ lvp(t)− J̇gvp(t)) (4.4)

The RL starting with the nonlinear region eventually advances to cover the linear

part as well, as long as J̇gvp < J̇ lvp, which reduces the supervised region.

A value priority function J̇vp to prioritize local and global controllers is proposed

here, which is derived from the Lyapunov energy function of the system, J̇ . The

proposed function is,

J̇vp = J̇id + J̇p (4.5)

where, J̇id is representative of the identi�cation of the global controller and J̇p is

performance criteria for both controllers.

4.2.1.1 Identi�cation of the global controller

If the identi�er predicts the output with a smaller error, this index decreases, and

hence the RL-based global controller may be chosen to control the system. The

signi�cance of identi�er is that it plays an important role in predicting the future

energy function and estimating the optimization policy. For this purpose, εid is de�ned

as aggregation of eid in backward window with decay factor of ζid as,

εid(t) =

∫ t

0

exp(−ζid(t− τ))‖eid(τ)‖dτ (4.6)

J̇id(t) =
1

2
εTid(t)Qεid(t) (4.7)
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4.2.1.2 Performance of the controllers

The performance value priority function of the controllers is de�ned based on the

action error in a backward view as,

εp(t) =

∫ t

0

exp(−ζp(t− τ))‖u(τ)− u∗(τ)‖dτ (4.8)

J̇p(t) =
1

2
εTp (t)Rεp(t) (4.9)

In order to derive this element, considering the current time as the terminal state, the

performance of each controller with respect to the previous time steps can be found.

Calculations are done backward for u∗ and J∗, and forward for x∗ for t = [t0− kT, t0]

with t0 being the current time such that

u∗(t) = min
u

(J(t)) (4.10)

J∗(t) = U(x(t), u∗(t)) + J(x(t) + ∆x(x(t), u∗(t))) (4.11)

x∗(t+ T ) = x∗(t) + ∆x(x∗(t), u∗(t)) (4.12)

∆u(t) is then calculated as,

∆u(t) =
∂J(t)

∂u(t)
=
∑k

j=i
γj−i

∂Uj
∂u(t)

≈ R.u(t) + γ
∂x(t)

∂u(t− T )
Q∆x(t− T ) (4.13)

4.2.2 Value Priority Implementation Algorithm

Algorithm 1 presents the the value priority implementation algorithm and its link to

local and global controllers. The value priority computes the action, u, as a weighted

sum of the actions received by both component policies, ug and ul, based on (4.1).

In this method, the value priority parameter, k, not only provides u, but also plays
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an important role to modify the RL's policy, Jg. The RL policy is given by (2.10),

uses an update parametric law of (2.6) derived for critic NN weights, WC . After each

state transition, the parameters of RL-based global controller is updated according

to the update rule derived below. This feature leads the RL to merge faster towards

supervised local controllers, during the period when the RL is still not fully capable of

performing optimal control action based on the value priority criteria. This is written

as,

ẆC = α[keC + (1− k)(J l − Jg)]∇WC
Jg (4.14)

ẆA = α[keA + (1− k)(ul − ug)]∇WA
ug (4.15)

where Jg and J l are critic NN output with control inputs of ug and ul, respectively.

Upon converging to a solution for RL, global controller performance is �rst compared

to the local controller with respect to its action chosen, ug(t) and ul(t), during pre-

vious time steps. Furthermore, an identi�cation index is calculated with respect to

Lyapunov function and input-output stability of the system. The parameters of value

priority function, Q and R, are set o�ine based on linear characteristic equation of

the system and the reference model. More accurate calculation of these coe�cients,

based online monitoring is possible, though this would a�ect only the �nal numeri-

cal results not the methodology presented. The shift rate between local and global

controller is taken as β = 0.01.

4.2.3 Stability of the Proposed Method

Lemma: Let Jgn and ugn be the RL sequence at iteration n that performs weights

updates per (4.14) and (4.15) as

Jgn+1(t) = k(t)[U(t) + 3Jgn(t+ T )] + (1− k(t))[J l(t)] (4.16)

ugn+1(t) = k(t)[arg min Jgn(t)] + (1− k(t))[ul(t)] (4.17)



69

Algorithm 1. Value priority

1) Start of the value priority, t0.

2) Initialization: k(t0) = 0, J̇gvp(t0) = 0, J̇ lvp(t0) = 0.

3) Local controller: ul(t), J l(t).
4) RL with value priority:

a) Critic:ẆC = α[keC + (1− k)(J l − Jg)]∇WC
Jg.

b) Action:ẆA = α[keA + (1− k)(ul − ug)]∇WA
ug.

c) if |ẆC |&|ẆA| < ε proceed to 5.

d) if |ẆC |&|ẆA| > ε: Update WA and WC and proceed to 4.a.
5) At global controller:

a) Calculate J̇gvp(t)&J̇ lvp(t), Eq. (4.5-4.16).

b) Update k(t) = func(k(t− 1), J̇gvp(t), J̇ lvp(t)) Eq. (4.4).

c) u(t) = (1− k(t))ul(t) + k(t)ug(t).
6) next time step, t = t+ T .

Assuming,

Jg0 = 0 ≤ J l ≤ J∗ ≤ Jmax (4.18)

as n → ∞, Jgn → J∗ and ugn → u∗. Hence, the sequence of Jgn converges to the

solution of the HJB.

Proof: Knowing that critic training is based on the combination of errors of self

exploration and supervised action as de�ned in (4.14), this feature may imply the

possibility of contradiction between the policies, while the boundedness is yet proven.

Here we prove that, the update method will always converge to the optimal value.

Based on [49] it is proven that RL policy Jgn stand alone is a non-decreasing sequence

for HDP. This means Jgn+1 ≥ Jgn. Knowing that, the boundary conditions of k, k = 0

and k = 1 are stable, since they have one target to update, the focus is the stability

of the controller when 0 < k < 1. We investigate three cases:

1. If Jgn−1 ≤ J l, then, based on assumption (4.16) the target update is in the same

direction as the incremental update. This makes the output to converge to

optimal value faster, and k remains zero.

2. If Jgn−1 > J l and |eC | ≤ |(J l − Jgn), then, k is increased, and since Jgn+1 ≥ Jgn is
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non-decreasing, then for the following time sequence Jgn > J l holds.

3. If Jgn−1 > J l and |eC | > |(J l − Jgi ), then the RL policy will get closer to the

optimal value after few iterations of delay till k = 1 and then latches to the RL

controller.

The same method implies action convergence since they are directly connected to

each other.

Theorem 1: Let the optimal control u∗ be bounded by |u∗| < umax on a compact

set Ω, where umax > 0. Then, for power system (2.1)-(2.2) with PSS and HDP as

the controllers with adaptation law of (2.10) for NNs, and value priority trajectory

of (4.4) and value priority function de�ned in (4.5), all the signals in the closed-loop

switching system described above are bounded. Therefore, as t→∞, ∆u(t)→ 0 and

∆x(t)→ 0.

Proof: Considering the state space of the error vector as,

Ė = Ae+Bũ(x) (4.19)

where, e = x− x∗ is the tracking error, E is the error vector, ∆u(x) = u(x)− u∗(x),

and based on (4.3) ∆u(x) = W̃AΦA(x) + εA with ∆WA = WA − W ∗
A. Lyapunov

stability function can be de�ned as,

V =
1

2
eTPe+

kγ

2
∆W T

A∆WA (4.20)

where,

AP + PA = −Q, Pbce
T = P1e

T (4.21)

P is a symmetric matrix, and P1 > 0 is the solution to the Lyapunov equation for

some Q1 > 0, a positive de�nite matrix. Let P1 be the last column of P and derivative
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of Lyaunov function is gained,

V̇ = −eTQe− eTP1b(kεA + (1− k))ũl) + kγ∆W T
A∆ẆA (4.22)

Now, let eA = f(u(t), x(t + T ), J(t + T )) based on (2.12), then ∆WA = f(εA, εI , εC ,

εidQεid, εpRεp). The �rst three elements are the action, identi�er, and critic approx-

imation errors, which using approximation theory can be reduced by changing the

number of neurons in the network hidden layer. Moreover, error of J(t + T ) is due

to the identi�er and action's error in previous time steps, which is projected in the

value priority function. And �nally, based on the previous Lemma,

∆W T
An∆ẆAn = (WAn −W ∗

A)T (WAn+1 −WAn) < 0 (4.23)

Hence, it can be assumed that ∆W T
An∆ẆAn = −|εg(x)|, where εg = max{εA, εI , εC}.

If the desired states are bounded and in a compact set, εg is �nite for a given set of

neurons, and, boundedness of the local controller is given by εl(x), then, V̇ can be

demonstrated to be negative such that,

V̇ ≤− |e|λminQ|e| − |e|Pbλmax max{εA(x), εl(x)} − |εg(x)|

≤ − |e|λminQ|e| − |e|Pbλmax max{εA(x), εl(x)} (4.24)

and the upper bound will be,

|e| ≤ λmaxPb

λminQ
max{εA(x), εl(x)} (4.25)

This completes the proof.
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4.3 Implementation Aspects of the Proposed WAC

The proposed 2-level value prioritized control structure is a hybrid combination

of local/decentralized controllers which are conventional PSS and the wide-area cen-

tral controller. As a measurement-based control design, performance of the proposed

WAC is highly dependent on the WAM infrastructure. In this section we investi-

gate implementation aspects and challenges of such design considering currently used

centralized communication architecture, the supervisory control and data acquisition

(SCADA) system [10], PMUs and other support systems.

4.3.1 WAM Infrastructure

In the modern power grid infrastructure, WAM system consists of three main el-

ements: PMU, Phasor Data Concentrator (PDC), and communication network (see

Fig. 4.2a).

4.3.1.1 PMUs

We assume that each generator located at di�erent areas of power system has a

PMU that transmits remote signals to the PDC located at the control center over

a communication channel. Generally, such units can transmit time-tagged phasor

measurements to WAC at the speed of 100 frames/s; therefore, for the proposed

control architecture time step is considered as T =10 ms.

4.3.1.2 Communication Network

The global control can only be calculated after the PMU signals are transferred

to the control center. This may incur certain time-delay and potential missing data

information and may degrade the performance of the proposed control scheme jeop-

ardizing even the closed loop system stability. Allowable time for control actions for

a transient stability problem considering inter-area oscillation frequency prior to the

�rst swing are usually considered to be less than 1 s. Depending on the distance and

the network media, a time delay of today's wide-area communication networks (prop-
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agation delay) can be in the range of 6 ms to 1 s. For instance, �ber optic latency for

the BPA system is considered to be less than 26ms [18]. Also, Synchronous Optical

Network (SONET) architecture deployed by many utilities is capable of delivering

messages from one area to multiple nodes on the system in approximately 6 ms [57].

It is worth noting that, by using dedicated channels the communication delay could

be minimized.

4.3.1.3 Control Center

At the control center, PDC is responsible for collecting the PMU measurements and

sorting them into a single time-synchronized data-set [115]. Subsequently, PDC sends

the data in the form of packets to the WAC using local Ethernet. After processing
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Algorithm 2. Implementation Design

1) Each PMU transmits the signals to the control center

via communication network (Fig. 4.2)

2) At control center: Communication

a) Calculate transmission delay (td) using PDC.

b) Compute transmission delay threshold value (tmaxd ).

c) If td < tmaxd : proceed with the existing communication.

d) If td > tmaxd : divide system into several sub-systems

based on coherency grouping (Fig. 4.2b).

e) Implement distributed architecture.

f) Locate PDC at each sub-system and

communicate with other PDCs or a Super PDC.

3) At control center: Control

a) Calculate computational delay in WAC (tc).

b) Set computational delay threshold value (tmaxc ) as

packet delay (10 ms).

c) If tc < tmaxc : proceed with the existing WAC.

d) If tc > tmaxc : use aggregate signals for proposed controller

based on coherency grouping (Fig. 4.2b, Eq. 4.26).

and performing control action, the WAC outputs in the form of auxiliary signals to

the voltage references of generators is then sent to the substations. This may also

include delay due to computational time [18].

4.3.2 Implementation Considerations

Considering this WAM infrastructure, there are mainly two constraints in imple-

menting the proposed WAC system. First, the controller should be robust enough to

accommodate the communication delays and losses and at the same time should be

stable. Second, the system stability should be evaluated for scalable models and the

models should be validated for controller implementation. Each of these challenges

and proposed solution methods are discussed next.

4.3.2.1 Robustness

In the implementation design stage, transmission delays are taken into account to

�nd the practical requirements of WAM infrastructure. As presented in Algorithm 2,

at �rst the design is developed considering a centrally controlling WAC. Then the



75

delay in the present communication network is considered. To con�rm that the de-

lays are within the limit, threshold is found empirically based on inter-area energy

deviation. Further, the system is divided into separate sub-systems with a poten-

tial communication media between them if the delays are found above the threshold

level. This results in a distributed platform. Considering the total number of PMUs

as i = m× n, m signals are sent to the sub-system PDC throughout this platform, n

being the number of sub-systems. Then, the sub-system PDC is linked to communi-

cate with other PDCs or a super PDC. Overall, in this approach, based on the length

of communication channel the time delays would be the same, if the central controller

is located between the sub-systems. However, the number of data points will be de-

creased to m for each sub-system, and n for the overall system assuming all of them

are connected to a super PDC. Thus, this method makes sure that the controller is

robust and at the same time implementable in large system keeping the number of

signal and delays within the threshold. Recently several works have focused on such

a distributed design [19]. There are issues in implementing such a communication

architecture such as designing multiple PDC's and communication channels. These

issues are out of the scope of this thesis and is left for future investigations.

Given such a WAM infrastructure, WAC design should be robust for online im-

plementation. For this, in this chapter, delay-free channels are assumed in WAC

design stage, and constant unknown transmission delays are taken into account in

the simulations to demonstrate the robustness of the design. Ref. [10] has shown the

applicability of the NNs for compensating known static delays. However, we adopt

the value priority mechanism of the two-level control strategy to guarantee system

nominal operation in the case of communication failures. If data packet is lost, miss-

ing sensor sends zero values to identi�er NN leading to an increase in eid. In addition,

this packet will be held until the next packet arrives. In the case of delay compen-

sation, this block estimates states for 2td to calculate the eid, accounting for both
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sending and receiving delays. The goal of identi�er NN is to predict the states at

each time step t + (td + 1.T ) with given data at time step t − td. The di�erence

of time steps between input and output of identi�er NN is 2td + 1.T , which implies

that more the delay, more the block waits for calculation of the error, yielding higher

values. This process thus proves the validity of the proposed model and robustness

of the control architecture considering communication delays.

4.3.2.2 Scalability

Scalability could be viewed from two stand-points. First, a WAM with scalable

communication infrastructure needs to be established that can accommodate the

signal transactions and control especially with appropriate speed, bandwidth and

required accuracy. Through the current state-of-the-art centralized communications

16 PMUs are able to stream data to a super PDC handling about 6250 data points

per second [19]. Beyond which distributed approach as discussed in the above sub-

section could be utilized as a future solution. Second main challenge is the curse

of dimensionality in RL and in general with any NN as the high number of state

variables increases the learning and approximation time needed for optimal control

policies. This issue also imposes some computational delay on WAC. However, in our

approach, due to the supervision of local controllers, the heuristic nature of the RL

is not of a concern. The reason is as follows. The architecture does not fully depend

on the model except for the initial conditions or not-trained condition of the learning

controller. However, one of the challenges in hybrid control design is compromises

and trade-o�s between con�icting objectives. Considering this, the proposed value

priority scheme is designed to provide global performance, identi�cation, and stabil-

ity objective which are in the same direction of minimization of overall Lyapunov

function. The stability is achieved if the learning weights error of NNs is minimized

over speci�ed time period, which is projected as a value priority metric.

Moreover, the nature of the WAC and coherent areas grouping can reduce the size
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of data set. In this chapter, conventional slow coherency technique is used which is

based on eigenvalue analysis and further transformation of the original state variables

into a set of area and local variables [107]. Hence, the commonly used center of area

speed can be found from WAMs sensors to construct the utility function as,

δ̇COIj =
∑

i
δ̇iMi/

∑
i
Mi (4.26)

where, j is representative of the areas and i is the generator index in that area. The

Wide-Area NN Identi�er, action and critic NNs are trained using the aggregated area

signals, and control signals are calculated according to energy transfer in each area.

The training is based on utility function of all the areas de�ned as,

U(t) = −
3∑
l=0

nj∑
j=1

Qj(∆δ̇
COI
j (t− l))2 +Rj(uj(t− l))2 (4.27)

where, l is the time delay index, j area index, nj the number of monitored coherent

areas or sub-areas.

Remark : This aggregation method addresses the modeling dimensionality issue and

reduces the computational time of WAC to packet delay. It should be noted that,

this approach also allows seamsless integration of the proposed WAC in a distributed

mode as presented in Algorithm 2 and Fig. 4.2b; i.e. by cutting o� the hierarchical

clustering dendrogram in any level based on the infrastructure of the system, and

providing the necessary channels between the sub-system.

4.4 Simulation Results on Test Power Systems

In order to analyze the evaluate the performance of the proposed 2-level controller,

we will consider two multi-machine power systems: an 8-bus 5-generator power system

(Fig. 4.3) and 68-bus 16-generator of New England/New York power system (Fig. 4.4).

For analysis, dynamic equivalent frequency dependent models of the generators is
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Table 4.1: NN parameters for the test power systems

8-bus system Nodes 68-bus system Nodes
NN Input Hidden Output Input Hidden Output Input Output

Identi�er 13 25 2 47 80 9 δ̇,u δ̇

Action 7 15 2 28 50 9 δ̇ ug

Critic 7 15 2 28 50 9 δ̇ J

developed using electromagnetic transient simulation (EMTP) software PSCADTM

and transient stability program PSTTM . Four control schemes, the proposed value

prioritized global controller, RL-based controller acting alone and conventional local

and global controllers are deployed on the test power systems in order to evaluate the

e�ciency of the proposed method. The parameters of the local controllers and for the

two systems are provided in previous chapters. Parameters of the global controller is

presented in Table 4.1.

4.4.1 Case A.1. 8-bus system: Identi�cation Component

The purpose of this study is to show that, proposed value priority will merge to

global stabilizer as soon as it has identi�ed the system and optimal transient energy

policy e�ectively. A 0.2 p.u. torque step decrease has been generated in G3 at t = 4s

and returned to initial point after 4s. At the beginning of �rst period, t = 4s, RL with

partially random weights (50%) is utilized, and at the beginning of second period,

t = 8s, the trained one is used (Fig. 4.5a). It can be seen from the Fig. 4.5a that

there is signi�cant weight change at 4s when random weights are used, and small

change at 8s when the weights are trained. It should be noted that each time step

consists of maximum 500 epochs of supervised RL training, and Wide-Area Identi�er

NN (WANNID) is able to reach to close to local optimal solution (in terms of weight)

for this speci�c case study.

The inter-area speed response in Fig. 4.5d shows that in comparison to local

controller, oscillation is less damped in the �rst period using the global controller

with partially-trained WANNID weights, and opposite in the second period with the



80

W
A

N
N

ID
 W

e
ig

h
ts

In
te

r-
ar

e
a 

Sp
e

e
d  

(r
a

d
/s

)

Partially-trained Training Trained

V
a

lu
e 

P
ri

o
ri

ty
 (

p
u

)

K

𝑱 𝒗𝒑
𝒈

 

𝑱 𝒊𝒅 

En
e

rg
y 

fu
n

ct
io

n
 (

p
u

)

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

1.2

Estimated cost 
function Actual Lyapunov 

function

2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

-0.5

0

0.5

 

 

LC

2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12

t (s)

t (s)

t (s)

t (s)

(a)

(b)

(c)

(d)
Value prioritized GC=RL

Value prioritized GC=LC

RL with Value priority

Figure 4.5: Case A.1. results. (GC= Global controller, LC=Local controller)

trained WANNID weights. As discussed before, improvement in the state dynamic

prediction that is gained by WANNID, leads to better approximating the cost func-

tion by means of Critic NN. The value priority design, captures the error in the form

of J̇id and J̇gvp, and computes the value priority parameter k. It can be concluded from

the �gure that, when the identi�cation error is reduced, value priority switches to the

global controller. In this case the proposed value priority design has been validated

that can make sure that the closest global optimal solution is achieved.

4.4.2 Case A.2. 8-bus system: Performance Component

In this case study, a 100 ms three-phase short circuit in the middle of one of the tie-

lines between area 1 and 2 is simulated. The line is disconnected by means of breakers
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located on either ends and then reclosed after 4s. In this case, Action NN weights

are initialized as partially random at t = 4s and further trained online, making two

periods of partially-trained and trained Action (Fig. 4.6). Like the previous test case,

the trained Action NN has led to better performance in comparison to local PSS with

respect to inter-area oscillation when the trained weights are deployed. It can be

noted from the �gure that the global controller's action is closer to the optimal value

in second period, though, RL alone was unstable in the �rst period due to partially-

trained weights. As it can be seen, the proposed architecture performs as one of the

controllers operating alone at each time period with a transition value of k. At 4s the

value priority sets the action target as the local controller, and further, in the course

of time and training, when J̇p and J̇gvp is reduced, value priority made a gradual shift



82

from full supervision to full autonomy of the global controller. This case validates

the e�ectiveness of the value priority scheme, as it not only maintains the stability of

the system, but also improves the learning capability of the RL.

4.4.3 Case B.1. 68-bus system: Data transmission delay and loss

In this case study, a self-clearing 50 ms three-phase short circuit at the middle

of the tie-line connecting buses 26 and 29 between sub-area 1 (G9) and sub-area 2

(G1 and G8) in area 1 is simulated. This event activates oscillatory mode between

these two regions, causing the energy of these sub-areas to change. This test mainly

evaluates the data transmission delay and the packet loss e�ect on the proposed value

prioritized global controller. Fig. 4.7a depicts the changes in the energy deviation

between the sub-areas under study with respect to time delays. It can be seen that

the performance of fully trained RL controller is worsen with time delays increment.

However, for delays more than 200ms, the value priority algorithm directs the control

action to local controllers. Further analysis is done on data discontinuation or missing

packet (Fig. 4.7b). As it is shown, packet loss for 120ms (12 time steps) and above

leads to deteriorated performance of the global controller, which is recognized by value

prioritization algorithm. The method then shifts the control signal giving priority to

local controllers and keeping the overall system resilient and the design robust and
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present power output of the generators, their frequency, and inter-area frequency
oscillations for local control, proposed global control both without delay and in pres-
ence of 100 ms delay. A three phase fault at 0.1 s in the middle of tie-line between
sub-area 1 and 2 is occurred, which clears at 0.2 s.

reliable.

Furthermore, time-domain performance of the proposed controller with fully acces-

sible WAM and 100 ms delayed data is provided in Fig. 4.8: see Figs. 4.8a and 4.8b

for comparisons on the generators power output, Figs. 4.8d and 4.8e for local speed

oscillations, and Figs. 4.8g and 4.8h for speed oscillations between sub-areas. As it

can be concluded from these �gures the proposed controller has higher damping capa-

bilities especially on G9 leading to mitigating inter-area oscillations. Yet, Figs. 4.8c,

4.8f, and 4.8i shows the e�ect of transmission delay of 50 ms in both sending and

receiving data to WAC from WAM. It has been demonstrated in previous tests that

the proposed global controller outperforms the local controllers when an inter-area

disturbance occurs. The same conclusions also hold in the presence of this severe

delay as the global controller can predict the dynamics of the system in a forward
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view and compensate for the delay. It can be seen that with the deterioration of the

quality of the data transmission, oscillation overshoot increases and the damping is

decreased. This test validates the value priority capability in recognizing the negative

delay impact, and mitigating it through the WANNID adaptation as described before.

4.4.4 Case B.2. 68-bus system: Comparison with conventional controllers

The purpose of this test is to compare the e�ectiveness of the proposed value pri-

oritized global controller with the conventional local controller PSS and conventional

global power system stabilizer (GPSS) [4, 116] with the transfer function of:

uGPSS = 1
10s

1 + 10s
(
1 + 0.6280s

1 + 0.1025s
)3∆δ̇jk (4.28)

GPSS designed as a wide-area controller, is based on global loop which involves a

single di�erential frequency signal between two suitably selected areas of j and k.

The parameters are tuned based on small-signal analysis.

This case as a transient test study a�ects the oscillatory mode between area 1 and

2. Three tie-lines connecting areas 1 and 2 are disconnected sequentially, which �-

nally generates two separate areas. First lines 1-27 and 8-9 are disconnected, allowing

the proposed global controller with initial random weights to gain enough knowledge

about the topology and optimal policy. The events are 40 sec long, allowing the

system to converge to post-fault equilibrium points. Furthermore, line 1-2 is discon-

nected due to a self-clearing 100 ms 3-phase fault, which leads to severe mismatch

between the energies and complete separation of these two areas. An eigenvalue

analysis of the open-loop and closed-loop system with di�erent control schemes was

carried out for the events to examine the performance of the designed controller in

terms of improving the frequency and damping ratios of the corresponding inter-area

mode. Parameters of the oscillations is derived by means of prony analysis, which is

summarized in Table 4.2. It can be seen that the damping ratios of oscillations fol-
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Table 4.2: Case B.2. oscillations parameters for sequence of tie-line outages.

Event
No control LC GPSS Value prioritized GC

f(Hz) ζ(%) f(Hz) ζ(%) f(Hz) ζ(%) f(Hz) ζ(%)

Event 1
(8-9)

0.5899 0.0321 0.5967 0.1324 0.5764 0.1543 0.5961 0.1324

Event 2
(1-27)

1.1494 0.0177 1.1998 0.0344 1.2011 0.0358 1.2023 0.0382

Event 3
(1-2)

1.9014 0.0164 1.8905 0.0324 1.8558 0.0389 1.8502 0.0511

lowing the sequence of tie-lines outages has decreased and the frequency of inter-area

oscillation has increased. At the �rst event, GPSS's damping (0.1543) is better than

that of value prioritized GC (0.1324). However, in the presence of the value priori-

tized global controller with initialized random weights these characteristics improves

during the course of events. This sheds light on the RL advantage, as it can rein-

force the performance and allows the supervised RL to gain more knowledge about

the optimal policy of action and energy during the course of events. Moreover, it is

apparent that direct and predictive nature of the proposed global controller over the

static linear design of GPSS can signi�cantly enhance damping support in transient

cases. This study validates the reliability and speed of convergence of the proposed

architecture.

Time-domain performance of the proposed value prioritized global controller for

the last outage, fault on line 1-2, is compared to local PSS and conventional GPSS.

Figs. 4.9a, 4.9b, and 4.9c depicts the energy function changes of each generator with

respect to time, in the presence of di�erent control architecture. This �gure indicates

that considerable energy damping has been gained by the proposed architecture.

4.4.5 Case B.3. 68-bus system: Real-time Simulation

In order to investigate the performance of the proposed global controller for real-

time transient stability improvement, a real-time power system simulation using the

Hypersim simulator has been analysed [117]. The New England part of the test
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(a) Local controller (PSS)

(b) Conventional global controller (GPSS)

(c) Value priorized global controller

Figure 4.9: Case B.2. energy function of IEEE 68-bus system in the case of separation
of area 1 and 2 in event 3 of Table 4.2 with di�erent controllers

system, so-called IEEE 39-bus system, has been developed using the software library.

The modeled power systems generators is then connected with exciter and PSS acting

as a local controllers. These controllers run at the speed of real-time simulation,

which is 50 us. The model is then imported from Matlab-Simulink through the C-

code conversion and deployed in the Hypersim environment. The input of the exciter

is then augmented by the global control actions running at the time step of 10 ms.

Also, a conventional GPSS is simulated for comparison purpose.

Using the described real-time platform, the proposed controller performance in a
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Figure 4.10: Case B.3. real-time response of the system and controllers

non-linear time domain case is simulated. For this purpose, self-clearing three-phase

short circuit faults at bus 17 with duration of 100 ms, 120 ms, and 130 ms are initiated.

These faults a�ect the inter-area modes of the system, speci�cally, sub-area 2 and 3.

The fault with the duration of 130 ms can cause the system with the local and global

PSS have unstable behavior. Fig. 4.10 shows the performance of the controllers as the

local speed deviation at G9, inter-area speed between sub-area 2 and 3, and control

action chosen. In this case, the value prioritized global controller has maintained the

stability of the system and damped the oscillation considerably. It shows that the

value priority not only has chosen the closest to optimal solution, also, has maintained

stability of the system.
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4.5 Learning-based Adaptive Controller Topology

Furthermore, we expand the proposed hybrid design to a learning-based adaptive

control system as shown in Fig. 4.11. As demonstrated in the �gure, the control

architecture develops a signal u (a combination of an adaptive controller signal uad

and a neuro-controller ur) that can control the system in presence of parametric

changes and functional nonlinearities and uncertainties. Both controllers are updated

based on a speci�c adjustment mechanism developed using a reference model. For

the adaptive controller, reference model generates a stable reference output to be

tracked by the system. The adaptation rule is on the basis of a Lyapunov function,

a linear model of the system, and the closed-loop error. As a measurement-based

tool, neuro-controller is updated based on RL algorithm and ACD technique. In this

method, using the Identi�er NN, the Critic NN for current and future time steps, and

controller NN, the optimal cost function in approximated. The combined identi�ed

and reference model consist of utility and cost functions that are optimized in a

predictive manner. The adaptive controller, here MRAC, forces the system output to

track the reference model during parametric changes. Theoretically this task bounds

the deviation in the system function. Thus the NN RL learns the system functional

changes in this bounded region. The main advantage of this approach is that NNs

can perform the functional adaptation without excessive tuning and saturation.

The value priority block acts as a manger to generate a performance trajectory,

which tracks the stability and optimality of the closed-loop system. Receiving the

data needed, RL performance is �rst compared to adaptive controller with respect

to optimal action backward-in-time. Further, identi�cation and stability indexes are

calculated in Lyupunov function and input-output stability framework. The approach

thus guarantees quadratic stability of the system (J̇adk < 0), while improving opti-

mal performance (∂J
r
k

∂urk
= 0). Overall, the technical issues addressed by the hybrid

architecture are: allocating di�erent networks to learn di�erent tasks based on value
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Figure 4.11: Learning-based adaptive controller topology

priority probabilistic rules, detecting the RL training patterns and operating regions,

and shifting the control output toward RL as it has gained knowledge from the system

and the linear controller.

4.6 Mathematical preliminaries

4.6.1 System Identi�cation, Energy Function, and Control

Let x ∈ Rn and u ∈ Rm denote the system states and control inputs vectors,

respectively. The discrete system dynamics are separated into two components of

a linear parametric and an unknown nonlinear functional adaptation. Consider a

general class of nonlinear system as

xk+1 = Axk +Buk︸ ︷︷ ︸
linear model

+ f(xk) + g(xk)uk︸ ︷︷ ︸
nonlinear model

+dk (4.29)

where, k refers to the kth time step, f(.) ∈ Rn and g(.) ∈ Rn×m are unknown bounded

nonlinear functions and f(0) = 0 and g(0) = 0, A ∈ Rn×n and B ∈ Rn×m are the

unknown parametric change, and d is unknown and bounded uncertain disturbance.

The goal of this work is to �nd an estimate of A, B, f(.), and g(.) and an associated
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con�dence interval of this estimation from measurement data. This information is

furthermore used to design a hybrid adaptive nonlinear controller that stabilizes the

system despite the uncertainty in the estimates. In general, the control task is to

determine optimal control law for the system state vector x to converge the system

from a known initial state x0 to a new stable equilibrium x∗. To accomplish this task,

we use a linear and nonlinear direct energy function methods, which focuses on the

transient dynamics of the system. In other words, the goal of the chapter is to develop

computationally tractable optimal control and transient stability cost function policy

guaranteeing system convergence to the optimal equilibrium. The energy function of

the overall system (4.29) can be de�ned as a superposition of linear and nonlinear

Lyapunov functions proposed on tracking error ∆x = x− x∗ as,

J(xk) = ∆xTkP∆xk + Jnl(∆xk) (4.30)

The �rst element in the above equation refers to energy of the linear part. The second

element, Jnl, is a function mapping Rn to R for nonlinear Lyapunov function [22,118].

It can be proved that the system is asymptotically stable in the sense of Lyapunov

stability criteria such that:

J(xk) ≥ 0, ∆J(xk) ≡ J(xk)− J(xk−1) ≤ 0 (4.31)

For this, the weighting matrix P is of appropriate dimension and required to be

positive-de�nite (λi(P ) > 0), and,

AP + PAT +Q0 = 0 (4.32)

where Q0 > 0. Also, f(x) in (4.29) should satisfy f(x)TNx > 0 for some constant

real matrix N , Jnl(x) ≥ 0, and ∇Jnl(x) = QTf(x) for some constant real matrix
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Q [118]. Then,

∆J(xk) = ∆xTkQ0∆xk + uTkRuk + ∆xTkPf(xk) +QTf(xk)(xk − xk−1) (4.33)

Overall, as long as the e�ect of nonlinearity is relatively small and bounded, smaller

cone of Lyapunov function can be de�ned to clarify the stability of x∗ and estimate

the domain of attraction [22].

To this end it is desired to �nd the control policy π = {u0, u1, ...} that satis�es the

aforementioned Lyapunov stability criteria. Moreover, an optimal control policy u∗

can be found that minimizes the in�nite-horizon cost function Jπ(x0). Considering

that dynamics of the system can be identi�ed, controller action can be presented

as linear and non-linear parts. Denoting uad as initial controller around the plant

equilibrium point which is adaptive in nature, a nonlinear-based controller can be

used to approximate the system functional dynamics. The RL-based controller can

be activated to learn the nonlinear subsystem dynamics of f(.) and g(.) for which no

prior knowledge is available.

4.6.2 MRAC Adaptation

In general, MRAC works so that the state vector x tracks a desired state vector

as speci�ed by the reference input under the condition of the state vector remaining

bounded. Let the tracking reference model be represented as

xrefk+1 = −Amxrefk +Bmrk (4.34)

where, r is the input command, and Am and Bm are reference coe�cient matrices.

In this chapter, direct adaptive approach is employed, where plant parameters are

considered as known and the control parameters are adjusted directly to minimize

the closed-loop error between system and reference model states [119]. Based on
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(4.29), the �rst-order linear time-invariant system can be described by

xadk+1 = Axk +Buadk (4.35)

With the knowledge of system dynamics, an adaptive linearizable control feedback

can be estimated as

uadk = θxxk + θrr (4.36)

The closed-loop error equations for ∆x = x − xref can then be derived in terms of

adaptation parametric set of θ = [θx, θr]
T as,

∆xk+1 = −Am∆xk +B∆θxxk +B∆θrr (4.37)

where, ∆θ = θ− θ∗ are controller parameter error. An adaptive law can be generated

based on Lyapunov function candidate to converge these estimates to the actual

parametric values denoted with the superscript ∗. At every time step, the aim is to

determine adaptive law for θ updating continuously so that the overall system has

bounded solution and the state error ∆x tends to zero asymptotically. This adaptive

law can be derived as,

∆θx = −sgn(B)∆x.x, ∆θr = −sgn(B)∆x.r (4.38)

where ∆θk = θk − θk−1 is the parameter update at time step k. From the de�nition

of the closed-loop error and adaptive laws it can be shown that a Lyapunov function

exists as linear parts of (4.30). This proves the stability of the controller. It should

be noted that an additional augmentation of growth rate of parameters can also be

used to ensure the boundedness of the signals [119].
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Figure 4.12: Feed forward neural network structure

4.6.3 ACD Adaptation as Reinforcement Learning

In general, ACDs can perform optimal control policy for a given system based on

RL by means of ADP principles. Essence of ACD is approximation of the Hamilton-

Jacobi-Bellman (HJB) equation associated with optimal control theory and meeting

a certain objective function, here, Lyapunov stability function [7]. The HJB equation

is developed using ∆x = x−xref around the reference point for present time step and

future window. System nonlinear identi�cation is carried out by means of adapting

FFNN presented in Fig. 4.12, represented as

x̂rk+1 = Ŵ T
I ΦI(V

T
I [xk, uk]) + εI(xk, uk) (4.39)

where, Φ ∈ <h is the corresponding nonlinear mapping function of the states which

is usually considered as sigmoidal function, W ∈ <h,j and V ∈ <i,h are the parameter

vector of weights of the FFNN where i, h, j ∈ N are dimensional space of the feature

vector representing the input, hidden, and output layers of the NN, and ε is the NN

functional approximation error. If we �x the �rst-layer weights, then NN has only

one layer of tunable weights. Thus the identi�cation error can be de�ned as,

eIk = xk − Ŵ T
I ΦI(V

T
I [xk, uk]) (4.40)

The design of an optimal controller is based on the fact that the cost function
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or policy approximation is converged to a best optimal value, J∗, with an optimal

control action, u∗. In the ACD architecture this task is performed by,

ûrk = Ŵ T
AΦA(V T

A xk) + εA(xk) (4.41)

Ĵr(xk) = Ŵ T
CΦC(V T

C xk) + εC(xk) (4.42)

where Jr represents the nonlinear mapping in (4.29). It is required to Jr(x0) = 0 as

a boundary condition to serve as a Lyapunov function [49].

4.7 Hybrid Global Control Structure

In this section we expand the value priority scheme developed in previous sections

for local and RL-based WAC toward global adaptive and RL-based WAC. This will

allow us to build a hybrid controller that provides quadratic stability, while improving

the performance of the overall closed loop system. The RL, the expert and the value

priority networks form a hybrid scheme that provides a composite control action to

the system as,

uk = ϑadk u
ad
k + ϑrku

r
k (4.43)

where, ϑr and ϑad ∈ [0, 1] are value priority trajectory of controllers. The RL network

competes with the expert to learn the training patterns and the value priority net-

work mediates this competition. The learning policies used to train the RL and the

value priority networks are based on the minimization of HJB equation, respectively,

forward and backward in time. For this, intuition is expressed mathematically as

follows.

4.7.1 Value Priority Network Update

As discussed before, the value priority computes the action, u, as a weighted sum

of the actions received by both component policies, ur and uad (see Fig. 4.13). The
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activation of these output units must be non-negative and sum to one. To meet these

constraints, we use Softmax activation function [114] at the output layer of the FFNN

as depicted in Fig. 4.14 and represented as,

ϑr = ez
r

/(ez
r

+ ez
ad

), ϑad = 1− ϑr (4.44)

where z is the total weighted inputs received by the corresponding output as,

z = Ŵ T
vpΦvp(V

T
vpx) (4.45)

The training value priority error function for the controllers, Jvp is derived from the

Lyapunov stability function of the system, (4.29). Evaluating the total energy, which
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is the cumulative e�ect of changes in the energy ∆J from previous states and the

two control actions, the sensitivity of each controller with respect to the total energy

can be extracted. Hence, the priority of each controller that reduces this energy

function can be learned. The proposed function is combination of the identi�cation

and controllers performance as,

Jvpk =
∑k

n=0
λk−n(eInQ0e

I
n + ũnRũn) (4.46)

The �rst part is a measure of the identi�cation error of the controllers over a �nite

backward window n ∈ (0, k] in order to distinguish the operating region. The sig-

ni�cance of this element as a part of value priority function is that, as the error of

identi�cation for RL gets smaller, it can provide closer to optimal estimate of the cost

and control policies. On the other hand, if the system is known to MRAC, it can

take control of the system.

The second part is the performance function developed on ũn = un − u∗n as the

estimated control error at time step n. In order to derive this element, quality of the

controllers is iteratively evaluated with respect to u∗. Towards this, considering the

current time as the terminal state, calculations are done backward for J and u as,

Ji(xn) = U(xn, uni) + Ji(xn+1) (4.47)

uni = arg min
u

(Ji(xn)) (4.48)

where, i is iteration number indicating the number of times the window has been

swiped, and un is estimated as,

un ≈ R−1(
∂xn+1

∂un
)T
∂U(xn+1, un+1)

∂xn+1

≈ R−1(
∂xn+1

∂un
)T (Q0xn+1 +Run+1

∂xn+1

∂un
) (4.49)



97

The state estimation is carried on in forward manner, to estimate the new trajectory

and sensitivity by

xn+1 = ϑadk−1(Axn +Buni) + ϑrk−1(f(xn) + g(xn)uni) (4.50)

∂xn+1

∂un
= ϑadk−1B + ϑrk−1g(xn) (4.51)

It is assumed that the estimation of the model is accurate enough for the visited

states based on identi�cation value priority criteria, and the HJB equation converges

to a solution in this window. If we di�erentiate the value priority function with

respect to the outputs of the value priority network we get a signal for training the

network. Overall, the problem formulation requires that whenever there is a system

trajectory movement towards RL, then ϑr is raised, meaning that the RL has learned

the optimal cost function and generates less than the average squared error of the

controllers. The rate of this learning is

∂Jvp

∂zr
= ϑr(Jvp|r − Jvp|ad) (4.52)

Furthermore, back-propagation of this error function yields update to the weights,

which generate the value priority trajectory. The hybrid shifting rule is initialized by

ϑr0 = 0 as representation of adaptive control activating the system.

4.7.2 Operating Region and Identi�cation Update

The goal of the hybrid control problem considered in this work is to stabilize the

system around a �xed desired operating point through the energy function mini-

mization. Due to the fact that a priori operating points are given by the adaptive

controller and associated steady-state inputs are known, we can iteratively update the

operating point for the unknown dynamics of the ACD controller as ∆xrk = xk−xrefk .

Hence, for the ACD combination, the reference model output will act as a predictive
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stable reference output. The neuro-identi�er predicts plant output that needs to be

tracked at time k + 1, and the action NN will generate control signal accordingly in

a predictive manner.

Furthermore, the goal of RL is to eventually evolve to learn both linear and non-

linear regions. This yields to operating region of x̂k+1 = ϑadx̂adk+1 + ϑrx̂rk+1. The

aforementioned rule thus makes the action NN independent of the adaptive controller

in the case of learned scenarios.

4.7.3 Supervised Reinforcement Learning Update

In this part we present an iterative supervised ADP algorithm, where the cost

function and the control law are updated recursively. In the proposed method the

cost-to-go function is given based on the Lyapunov stability function as follows:

Jr(xk) =
∑∞

n=k
γn−kU(xn, un) (4.53)

where, U is the utility function and γ is the discount factor [7]. An explicit utility

function is used for reward/punishment for RL, or as incremental cost function in

Lyapunov stability concept based on,

U(xt, ut) = ∆xTt Q0∆xt + uTt Rut +QTf(xk)(xk − xk−1) (4.54)

which is equal to ∆Jk in (4.33) with neglection of linear and nonlinear interaction

element.

The process of training a NN, as the implementation benchmark of this method,

requires computing an error value that describes how the NNs output varies from

the target value. In the proposed method, the value priority parameter, ϑ, not only

provides u, but also plays an important role to modify the RL's policy as well. After

each state transition, the parameters of RL are updated according to the update rule
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derived as

∆WC = α[ϑreC + ϑad(Jad − Jr)]∇WC
Jr (4.55)

∆WA = α[ϑreA + ϑad(uad − ur)]∇WA
ur (4.56)

where, α is small step size learning parameter, Jad and uad are adaptive references

for Critic and Action NNs, eC and eA are critic and action error in RL algorithm.

This feature leads the RL controller to merge faster towards supervised controller

especially early in the learning process when the critic has a poor estimate of the

optimal cost function based on the value priority criteria. Furthermore, it is proven

that the update method for the proposed structure of supervised RL yields to optimal

value and is converging to a compact optimal set.

4.8 Case A. Implementation as a Power System Stabilizer

The states chosen for monitoring the rotor angle stability to provide damping and

synchronizing forces for oscillations as mentioned before are rotor angle and speed of

G3 (δ3, δ̇3) and the control action is excitation voltage reference (Ve3). The output

of the controller is augmented to the excitation system, mitigating the kinetic energy

of the synchronous generator through the �eld energy control. The input to the

adaptive controller is the reference command based on linear characteristic equation

of the system, the reference model and the plant output. The reference model ensures

that the generator is stable at all times and incorporates the dynamic preferences such

as rise time and damping. Since the degree of the system is n = 2 the error polynomial

can be represented as s2 + z1s + z0 = 0. Setting z0 = 3.56 and z1 = 2.67, the roots

can be placed at left-half plane in the frequency domain. The reference model was

chosen to have a settling time of 3 seconds and a damping ratio of 0.707, which is

an industry accepted standard. Choosing Q0 = diag(1, 1), and then by solving (4.33)

we get P = [0.6149,−0.5000;−0.5000, 0.8539]. Control coe�cient is considered as
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R = 0.1 and nonlinear coe�cient Q = [1; 0].

Speci�cation of the ACD is as follows. The Action NN architecture consists of a

three layer FFNN with two inputs, and a single hidden layer with 15 neurons and

one output. The inputs are the generator angle and speed. These inputs are time

delayed by 20 ms and, together with two previously delayed values, comprise the three

inputs. The number of neurons in the hidden layer is identi�ed in a heuristic manner.

Critic NN has the speci�cation with the output of one cost function. As discussed

in previous sections, Identi�er NN is used to learn the plant linear and nonlinear

dynamics. The input to this NN is the states and the hybrid control. These inputs

are time delayed by 20 ms and together with two previously delayed values, are used

for learning.

For NN o�ine training, �rst, a set of random control inputs and respective outputs

of the power system model for 100 sec (5000 time steps) is fed into the identi�er,

and the outputs (the next time step's states) are extracted. The o�ine training as

a batch learning algorithm is stopped when the Root Mean Square Error (RMSE)

between the actual plant states and the identi�ed ones, represented as eI , reaches a

user de�ned small number (ε = 0.01). The learning rate of the NNs is α = 0.01.

During online training, incremental learning is performed, in which, the identi�er

weights are adjusted based on the plant output and the reference model at each

iteration. The same methodology is used for training the Action NN and Critic NN

with their respective targets. Action training is started with the target output of

MRAC. Furthermore, it is trained alongside the Critic NN, to perform optimization

of the cost function. Utility function is developed based on Q0, R, and Q to monitor

the energy function deviation and the power system stabilizers is updated to mitigate

the oscillations. Once the critic weights have converged, the Action NN is connected

to the generator's exciter to augment the MRAC. These controller's outputs are then

fed to the plant through value priority NN block.
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The e�ectiveness of the proposed hybrid controller is evaluated on G3 of the 5-

machine 8-bus power system. For this, dynamic equivalent frequency dependent mod-

els of the generators is developed using electromagnetic transient simulation (EMTP)

software PSCADTM .

4.8.1 Case A.1. Short Circuit

In this case study, a 100ms three-phase short circuit at the middle of one of the

transmission lines between area 1 and area 2 is simulated. In order to assess the

performance of the controllers, the transmission line is disconnected by means of

breakers at each ends of the line. This line is then re-closed after 7s. This case

study as a transient test e�ects all oscillatory modes of the system and the system

topology. During this time, the system moves away from the pre-fault operating

points δ0
2 = 0.257 and δ0

3 = 0.1962 and experiences a nonlinear post-fault transition

dynamics after the re-closer action. This action causes a mismatch between generator

reference and electrical powers, which leads to frequency increment and change in the

tie-line reactance. This yields to new operating points of δ∗2 = 0.3683 and δ∗3 = 0.3111.

From Fig. 4.15a it can be observed that the initial and �nal operating points satisfy

the nonlinear Lyapunov function constraints, and the energy is strictly decreasing

in the region and converges to the post-fault optimal points. The reference value

is obtained by means of the reference model response de�ned in previous section.

Fig. 4.15b shows the G3 rotor angle response of the system with the MRAC and

the proposed adaptive learning-based controller. The NN-based RL controller is able

to track the nonlinear dynamics and energy function, and enhance the performance

of the controllers with respect to damping capability of δ̇3 oscillation, as shown in

Fig. 4.15c. As it can be seen from the �gure, a notable damping improvement is

gained, when the proposed controller with trained RL is installed on G3.
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Figure 4.15: Case A.1. (a) linear and nonlinear energy function landscape as a
function of δ2 and δ3, (b) G3 rotor angle deviation, δ3, (c) G3 rotor speed deviation,
δ̇3, with di�erent controllers.

4.8.2 Case A.2. Voltage Reference Change

In this case, a 0.05 p.u. step increase in exciter reference voltage of G3 is applied at

t = 1s and removed after 7s. The main purpose of this study is to show the capability

of the value priority network in recognition of identi�cation and performance criteria.

In this case study, NNs with initial random weights is utilized for the RL-based

controller. The terminal voltage response of G3 in the case of di�erent controllers is
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Figure 4.16: Case A.2. (a) dynamics of the G3 as terminal voltage deviation with
di�erent controllers, (b) value priority trajectory and elements, (c) RMSE of the
control weights from the optimal weights.

shown in Fig. 4.16a.

It can be seen that the proposed control scheme provides a quick, well-damped

response in voltage. It can be noted that, the gain scheduler made a gradual shift

from full supervision to full autonomy as the NNs acquired enough knowledge to

reach the optimal performance target. Fig. 4.16b shows the corresponding proposed

value priority functions for adaptive and RL controllers (Jvp|ad, Jvp|r) and RL value
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priority trajectory (ϑr). As it can be noted, initially Jvp|r is larger than Jvp|ad due to

identi�cation error. However after learning it will lean towards RL controller. It can

also be seen that this method allows the RL to reach the optimal weights faster with

the help of supervisor, leading to lower RMSE of Action NN weights (Fig. 4.16c).

The optimal weights are calculated based on 100 epochs of batch learning for this

speci�c scenario.

4.9 Case B. Implementation as a Wide-Area Controller

To illustrate the performance of the proposed approach as a WAC, tests are carried

out on the 68-bus 16-machine IEEE test power system simulated in PST toolbox. To

reduce the size of the data set for training, generator coherent groups are developed

based on section 4.3.1.3. The tie-line 1-27 is disconnected due to a self-clearing 100 ms

three-phase short circuit fault, which leads to severe mismatch between the energies

of the two systems and angle deviation of 3.12◦. Proposed controller and MRAC are

designed based on global loop, which involves a multiple di�erential frequency signals

of the selected areas with the uncertainty of the transmission delay. In this case study,

it is assumed that the wide-area system consists of 100 ms transport delay. In order

to predict the plant state vector at time step k+ 10, the values of state at time steps

k, k − 10, and k − 20 are used. Fig. 4.17 depicts the time-domain performance of

the controllers with 100 ms delayed data set. The local PSS acts on the local modes

of oscillation with the frequency of 0.9824Hz, while the proposed WAC tracks the

inter-area oscillation with the frequency of 0.6492Hz. Further, Fig. 4.18 depicts the

Action and Critic NN performance in tracking their respective linear references and

learning evoluation that minimize the actual Lyapunov function.
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4.10 Conclusion

In this chapter, a new value prioritized global damping controller based on super-

vised reinforcement learning for transient stability improvement has been proposed.

The proposed architecture shows better damping and transient response than the

traditional local and global controllers. The design has been implemented in two

scenarios. In the �rst scenario, the nonlinear learning-based controller has been im-

plemented as a WAC design to augment the conventional local controllers. In the

second scenario, the learning-based controller has been augmented to an adaptive

controller which could model linear domain. The main advantage of this algorithm is

that it is precise, feasible, and more reliable than other nonlinear adaptive controllers.

Simulation results are presented for various contingency scenarios of stable and unsta-

ble cases including WAM constraints to show the e�ect of the proposed architecture

in augmenting the local PSS installed on the generators on a 8-bus system and 68-bus

IEEE system to damp the oscillations.



CHAPTER 5: TRANSIENT STABILITY ENHANCEMENT CONTROL

5.1 Introduction

As discussed in previous chapters, most of the works in the area of wide-area rotor-

angle stability have utilized classical frequency domain based techniques in the form of

Global PSS (GPSS) by incorporating additional remote signals to the local controllers

[4]. Such methods rely on modal controllability and observability residues with a-

priori passivity information for sensor and actuator locations [120]. However, the

complexity of the large scale power system makes such analytical control techniques

impractical. In addition, majority of these works are designed based on the model

of the system linearized around a particular operating point. This arises the issue of

generality, i.e. the proposed techniques are suitable only for a speci�c application.

Additionally, these model-based techniques are not able to damp the oscillations in

transient domain when power system is subjected to severe disturbances. Application

of WAM in real-time disturbance analysis and electro-mechanical mode estimation

has been studied in literature [121, 122]. The temporal information available from

WAM can be used in Wide Area Damping Control (WADC) designs to perform

transient stability enhancement, which can improve the power transfer capability of

a transmission system and prevent the system from generation or load disconnection,

or catastrophic failure following a sequence of disturbances in the system [72].

Traditionally, numerical methods and energy function based direct methods have

been the most important conceptual frameworks for real-time transient stability as-

sessment. However, numerical methods have shown considerably weak performance

in real-time implementation, as they require accurate information of the power net-

work topology; while, direct methods may lead to excessive simpli�cations. Such



108

problem formulation provides only the su�cient conditions for assessing the stability

using direct calculation of the transient energy function [29]. Although some control

techniques based on energy methods have been proposed, such as the Boundary of

stability region based Controlling Unstable equilibrium point (BCU) [20], still the

computational modeling complexity is considered as a challenge. With the advent of

technology new techniques and approaches based on combination of these methods

have been developed. These approaches mainly rely on equivalent modeling which

can actually be integrated much faster than real-time. Further, direct energy meth-

ods can be utilized to predict the transient stability status of the system, as well as,

the stability margins [30]. Another hybrid method to tackle the problem is early-

termination criteria, allowing simulation of stable cases to be aborted as soon as

possible [123]. This criteria for numerical simulations can be de�ned on the basis of

coherency, transient energy conversion between kinetic energy and potential energy,

and the product of system variables [124].

On the other hand, application of intelligent-based techniques has been successfully

investigated in recent literature for post-fault transient stability assessment and power

system control [28,124�126]. Decision Tree algorithms, Fuzzy Logic techniques, Neu-

ral Networks (NNs), and Support Vector Machines (SVMs) are among these methods

that e�ectively learn and map the system dynamics from the relationship between

speci�ed inputs and outputs without any prior knowledge of the system. Most of the

works in this area has been designed for classi�cation and remedial action schemes

using supervised learning algorithm in order to predict the post-fault stability status.

This chapter aims at designing an optimal WADC to enhance the transient stability

of the system in online/real-time application. There are mainly three issues critical

to such a measurement-based control designs.

• First, the design should have the capability of dealing with nonlinear and non-

stationary power system dynamics in the presence of uncertainities.
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• Second, the method should satisfy closed loop system stability and global opti-

mality conditions.

• Finally, the it should be able to project actual stability condition of the system,

guaranteeing the stability of the power system augmented with the online con-

trol schemes; i.e. ensuring the gradient of the cost-to-go function is decreasing

over the time.

In order to address the �rst issue, Reinforcement Learning (RL) technique is used

to train the arti�cial intelligence. This approach, as opposed to supervised method

can make use of the new knowledge to inturn improve learning in real-time during

the course of events and actions. This technique can �nd optimal solution to the

cost function by means of Adaptive Dynamic Programming (ADP) forward-in-time

and provide an e�ective benchmark to construct an optimal controller by exploiting

function approximators, e.g. NNs [127, 128], and has been implemented as power

system controller in several research works presented in chapter 2. In chapter 3,

RL has been employed as a WADC on real-time benchmark with wider horizon of

prediction to take account for WAM delays. Major disadvantages noted in such

designs are strictness of global optimal solution, the objective function de�nition,

and the need for extensive o�ine training requirements.

Recently it has been shown that RL could be used as an optimal controller guar-

anteeing global optimal conditions for a non-convex functions [50]. Taking advantage

of such a design, in this chapter, we show a method that mitigates the last afore-

mentioned issue. In the proposed hybrid approach, the cost function in RL problem

is de�ned based on the energy function damping and tuned online based on Prony

method to ensure that the most suitable energy function is estimated. The controller

is designed in order to ensure that the gradient of the cost function is strictly negative

and minimized over this time period. Consideration of RL based method is due to

the fact that for a given time duration it can reach to the global optimal solutions
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in a nonlinear and uncertain environment [50]. Since the cost function is derived

based on energy functions, unlike in conventional methods where it is updated by the

Euclidean norm of the desired states, this method guarantees the system convergence

to post-fault equilibrium. This is due to the fact that the proposed energy function

is utilized to screen the level of stability of the system.

Fig. 5.1 present the overall scheme of the proposed WAC connection to optimal

control theory and direct energy function method. In summary, the construction of

WADC is initialized based on o�ine data derived from direct energy method and

supervised learning. This design is further adapted to RL for online implementation

and policy iteration with only partial knowledge of system dynamics. One of the

main advantages of the proposed method, also shown in [28], is that the NNs would

be able to capture the underlying relationship with smaller sized training data set and

with higher accuracy when meaningful energy features are used as inputs. Moreover,

through deployment of RL and by monitoring the system modes online the control

scheme can be performed in real-time as well. This method is evolved from our

preliminary work [129] for real-time wide-area monitoring and control of large power

system.

The remainder of the chapter is organized as follows. The second section presents

system modeling and direct energy function development and Section 5.3 discusses the

proposed optimal WADC design. Section 5.4 and 5.5 present the power and control

systems implementation test bed and simulation results followed by conclusions in

section 5.6.

5.2 System Modeling and Energy Function Development

Considering x∗ is the reference equilibrium point of the dynamic system expressed

in the form of nonlinear continuous-time equations

ẋ(t) = f(x(t)) + g(x(t))u(t) (5.1)
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𝐽 𝑥𝑘 = ∑𝜆𝑘𝑔 𝑥𝑘 , 𝑢𝑘  

𝑔 𝑥𝑘 , 𝑢𝑘   = 𝑥𝑘𝑄𝑥𝑘 + 𝑢𝑘𝑅𝑢𝑘  

 

𝐽 𝑘 = ∑𝜆𝑘𝑈 𝑘   

𝑈 𝑘 = 𝑥𝑘𝑄𝑥𝑘 + 𝑢𝑘𝑅𝑢𝑘  

𝐽 𝑥𝑘 = ∑𝜆𝑘𝐽  𝑥𝑘 , 𝑢𝑘    

𝐽  𝑥𝑘 , 𝑢𝑘   = 𝑥𝑘𝑄𝑥𝑘 + 𝑢𝑘𝑅𝑢𝑘  

𝐽 𝑥𝑘 ≥ 0 

𝐽  𝑥𝑘 , 𝑢𝑘   ≤ 0 

𝑢∗ 𝑡𝑘 = min(𝐽(𝑘)) 𝑢∗ 𝑡𝑘 = min(𝐽(𝑡𝑘)) 

Figure 5.1: Integration of adaptive critic design to optimal control theory and direct
transient stability

then f(x∗(t)) = 0. x(t) ∈ Rn and u(t) ∈ Rm are the state vector and the control

action vector at time t, respectively, and f and g are nonlinear functions. Let J(x(t))

be an energy function of trajectory x at a particular time t, the system (5.1) is

asymptotically stable in the sense of Lyapunov stability criteria when

J(x(t)) ≥ 0, J̇(x(t), u(t)) ≤ 0 (5.2)

Based on this, the su�cient conditions for stability assuming this energy function

model can be evaluated and the candidates Lyapunov function can be developed to

mathematically prove convergence of the system to the reference operating points

x∗. This dynamic and energy function is developed next for synchronous genera-

tors in transient disturbances. Furthermore, J̇ is studied to investigate the damping

performance of the oscillations in time.
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5.2.1 Area Oscillation Modeling

In the context of rotor angle stability, the dynamics of each synchronous generator

bus can be can be characterized by the complex terminal voltage Vt∠δ, where δ is the

rotor angle with respect to synchronously rotating reference frame. The rotor speed is

given by δ̇. A weakly coupled power network does not display any coherent oscillation

behavior, whereas a strongly coupled network with su�ciently homogeneous natural

frequencies is amenable to synchronization in the form of coherent areas. Hence, slow

coherency technique based on Center Of Inertia (COI) can be employed to cluster

the generators in one area [107]. Let a state space vector x = [δ1, ..., δN , δ̇1, ..., δ̇N ]T

be composed of the vector of coherent generators rotor angle and speed, with N

being the total number of areas. The dynamics of the equivalent generators can

be described through the expansion of the electro-mechanical single generator model

[130]. Additionally, in order to incorporate the impacts of damping controller the

third order dynamics of the generator is also included in this chapter as:

mj δ̈j + dj δ̇j = Pj −
∑

k∈Nj

BjkE
′
qjE

′
qk sin(δjk) (5.3)

T ′dojĖ
′
qj = ∆Efj −∆Eqj (5.4)

with

δj = (1/mj)
∑ngj

i=1
miδi, δ̇j = (1/mj)

∑ngj

i=1
miδ̇i (5.5)

mj =
∑ngj

i
mi, Pj =

∑ngj

i
Pi (5.6)

where,

δj Area j rotor angle in COI frame;

δ̇j Area j rotor (electrical) speed in COI frame;
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i, j Generator and area index;

ngj Number of generators in the area j;

Nj Set of neighboring buses of the jth bus

m, d Inertia and damping parameters;

Pj The power injection from area j;

Bjk (j, k)th entry of the reduced lossless admittance matrix;

Eq, E
′
q The q-axis internal voltage and transient emf;

T ′do The open-circuit transient time constant;

Ef Excitation voltage;

∆ Deviation of the variables from the reference.

The transient instability, in general rotor angle oscillations, is caused by a mismatch

between injected power Pj of each unit and the power �ows along the transmission

lines
∑

k∈Nj
BkjE

′
qjE

′
qk sin(δjk). This mismatch is usually due to a fault on power

system lines or other components, which is followed by the action of protection system.

These actions may change or restore the topology of the system, which leads to

a transition from pre-fault to post-fault equilibrium points. The transition can be

viewed from energy landscape to investigate the convergence as well as damping

performance.

5.2.2 Energy Function

Power system rotor angle stability can be assessed by the ability of the synchronous

machines in absorbing or releasing the energy accumulated during a disturbance to

reach a post-fault equilibrium points. An energy-type Lyapunov function for such a

system model comprises of the sum of the system kinetic energy and potential energy
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with respect to the relevant equilibrium points δ∗j and δ̇∗j . Such a function can be

represented as,

J(δ, δ̇) =
∑
j

1

2
mj∆δ̇

2
j︸ ︷︷ ︸

JKj

(5.7)

−
∫ δj

δ∗j

Pjdδj +

∫ δj

δ∗j

∑
k∈Nj

BjkE
′
qjE

′
qk sin δjkdδj︸ ︷︷ ︸

JPj

where, ∆δj = δj − δ∗j denotes the deviation from post-fault equilibrium point.

It should be noted that, decreasing nature of the energy function provides the main

certi�cate of local stability; however, it is not the only function that can be linked to

decrease in the energy dynamics around a given equilibrium point δ∗ = [δ∗1, ..., δ
∗
N ].

Thus the key is to �nd a Lyapunov function and verify that it has the required

stability properties regarding the domain of state trajectory. It could be understood

from (5.7) that the stability depends on the system pre- and post-fault conditions.

It can be shown that these equilibrium points satisfy the net power in each area

as Pj =
∑

k∈Nj
BjkE

′
qjE

′
qk sin δ∗jk. If the changes of the states are in small-signal

domain the nonlinear part of potential energy could be linearized around the operating

point as ∆δ2
j = (δj − δ∗j )2; whereas, in the case of severe transient changes the post-

fault points falls into a nonlinear region. The transient problem involves �nding

the stability boundary which is highly nonlinear. This feature shown in Fig. 5.2, is

important for convergence and stability certi�cate as it can be proved that there exist

a boundary that nonlinear energy function has positive and strictly decaying behavior

in the region, meaning here the δj converges to the stable global optimal point δ∗j .

Overall, nonlinear energy function can be described as a function of angular di�er-
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Figure 5.3: Boundedness of nonlinear energy function.

ences as,

Jnl(δi) =

∫ ∆δi

0

f(δ)dδ (5.8)

= −
∑
j

Kij[cos(δij)− cos(δ∗ij)− (δij − δ∗ij) sin(δ∗ij)]

This de�nition yields to ∆Jnl(δ̃i) = f(δ̃i)δ̃i, which satis�es the constraints of nonlinear

energy boundedness 0 ≤ f(δ̃i)δ̃i ≤ δ̃2
i in the region of attraction (δi + δ∗i ) ≤ π as

shown in Fig. 5.3. This feature, also discussed in [22] is important for convergence

and stability criteria as it can be proved that the overall energy function of (5.7) has

positive and strictly decaying behavior in this region, meaning the x converges to the

x∗.
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5.2.3 Energy Function Damping

In general, rotor oscillations of increasing amplitude due to lack of su�cient damp-

ing torque can lead to instability [131]. In order to incorporate the impacts of ex-

citation control another term is added to energy function so-called �eld or control

energy [41] based on internal voltage:

JFj =
1

2
βj(∆E

′
qj)

2 (5.9)

to capture the damping of the energy with respect to time, the derivative of the ag-

gregated kinetic, potential, and �eld energy functions is derived and can be simpli�ed

as,

J̇(δ̇, Eq, Ef ) = −
∑

j
dj∆δ̇

2
j +

1

T ′d0j∆Xdj

(∆E2
qj + ∆Eqj∆Efj) (5.10)

with the assumption on higher orders of synchronous generator as ∆Ef = K∆Eq,

∆Eq = Xad∆if , and ∆if = K ′∆Vt with the gains K and K ′ > 0, ∆if as a �eld

current deviation, and ∆Vt as the terminal voltage deviation or the control input to

the �eld component, (5.10) yields

J̇(δ̇, Vt) = −
∑

j
dj∆δ̇

2
j + rj∆V

2
tj. (5.11)

with rj ≡ 1+Kj

T ′d0j∆Xdj
X2
adjK

′
j, which can be derived based on aggregated model of syn-

chronous generators [130].

This equation reveals:

• The states needed to monitor the transient energy deviation of each area is the ˙̃δ.

The impact of each area's state on the inter-area oscillation is projected by the

damping coe�cients dj. Overall, damping of inter-area oscillations depends on

the strength of the transmission system, generator control systems and dynamics
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of inertia-less generators. Even though this parameter is �xed to individual

generator, for the system as a whole the damping coe�cients may be changing

not be known precisely at given time of interest and is needed to be calculated.

Identi�cation of energy function considering the actual oscillation frequency and

damping parameters can further improve the performance of the controller.

• Another observation in the above equation is the impact of ∆Vt as the input

to the synchronous generator excitation �eld. This input without controllers

is the error between the reference and the terminal voltages of the generator

(u = ∆Vt). However, this signal can be augmented by local and wide-area

damping control actions to further improve the energy function damping.

5.3 Intelligent WADC Construction

In this section, the goal is to develop an optimal intelligent WADC to stabilize and

damp the inter-area oscillations occurring in power system.

As mentioned in previous section and shown in Fig. 5.4, the input to the syn-

chronous generator excitation �eld could be augmented with uloc as local damping

signal derived from PSS and enhanced by uwac as a wide-area level damping con-

troller. Hence, the control action can be presented as 2-level combination of local and
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wide-area parts as

u(t) = uloc(t) + uwac(t) (5.12)

as shown in Fig. 5.5. The PSS monitoring the local states is able to damp local

oscillations; while, the WADCmonitoring rotor angle and speed of all generators using

wide-area measurements in COI frame can form the system's energy function (5.7)

and its damping (5.11) as in direct methods and enhance the damping performance

by uwac.

5.3.1 Optimal Control Design

Considering the transient energy function developed in previous section as the cost

function, optimal controller can be designed to minimize this energy function forward

in time. Overall, the cost function can be implicitly speci�ed in discrete time domain
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with the time step of ∆t by

J(x(k)) =
∑∞

τ=k
J̇(x(τ), u(τ)) (5.13)

where, k is the time step index and J̇ is the short-time cost function associated with

transient state errors and control e�ort equivalent to derivative function in Lyapunov

stability concept. Hence, it can be written as,

J̇(x(k), u(k)) = −∆x(k)TQ∆x(k)− u(k)TRu(k) (5.14)

where,

x = [δ1, ..., δN , δ̇1, ..., δ̇N ]T (5.15)

u = [∆Vt1, ...,∆VtN ]T (5.16)

Q = diag(0, ..., 0, d1, ..., dN ) ∈ R2N×2N (5.17)

R = diag(r1, ..., rN ) ∈ RN×N (5.18)

which are based on actual values of coe�cient of (5.11) and are positive de�nite.

One can simply use these functions and assess transient stability based on direct

methods and design decentralized controller such as in [41]. However, such designs

are not global optimal. The optimal solution of the problem of (5.13) subjected to

the dynamic system (5.1) is given by minimization of HJB equation as,

u∗(k) = arg min
u
{J̇(x(k), u(k)) + J(x(k + 1))} (5.19)
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Applying the �rst order optimality conditions with the dynamic programming algo-

rithm leads to,

u∗(k) = −1/2R−1∂x(k + 1)

∂u(k)

∂J(x(k + 1))

∂x(k + 1)
(5.20)

It can be seen from equation above that the optimal control action u∗(k) is de�ned on

the future dynamics of the system x(k+1) and the energy function J(x(k+1)), which

implies the necessity of nonlinear identi�cation. Additionally, the energy function

itself is highly dependent on the parameters of the system such as m, B, or β, even

though simpli�ed model of the system without structure preserving is considered in

the design.

In order to overcome the aforementioned issues and cover nonlinear regions, arti-

�cial intelligence is employed for mapping from a parameter space into the space of

functions they aim to represent. A common approach is to deploy NN to map the non-

linearities of the system identi�cation, control and the cost function. In this scheme,

three networks called identi�er, critic, and action NNs are trained to approximate

the dynamics of the system, the control action, and the cost function, respectively.

In this work, using Feed Forward Neural Network (FFNN) the outputs are computed

as,

x̂(k) = ŴI(k)TΦI(x(k − 1), u(k − 1)) + εI(k) (5.21)

û(k) = ŴA(k)TΦA(x(k)) + εA(k) (5.22)

Ĵ(x(k)) = ŴC(k)TΦC(x(k)) + εC(k) (5.23)

where, sub-scripts I, A, and C denotes identi�er, action, and critic networks, re-

spectively, "ˆ" denotes estimated values, Φ(.) ∈ <h is the corresponding nonlinear

mapping function of the states, W (k) ∈ <h is the parameter vector of approximated

weights of the FFNN at time step k, with h ∈ N dimensionality of the feature vector
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representing each state, and ε is the approximation error. Based on the universal

approximation property of NN it is assumed that ε tends to zero [132, p. 52].

NNs should be trained to provide accurate approximation of their respective out-

puts and back-propagation estimation and cover whole region of operations. In gen-

eral, training the NNs means adjusting the parameters or weights in an iterative

process to reduce the error between the target outputs and the actual outputs. Intel-

ligent WADC construction could be implemented in two phases:

5.3.2 O�ine Supervised Learning Construction

This method is referred to problems involving static input/output mappings and

minimization of a vector error signal, with no explicit dependence on how training

examples are gathered. It is assumed that full knowledge of the problem context is

available. In o�ine phase the parameters and operating point are known; hence, the

target output for training the NNs could be calculated. The supervised training for

WADC are based on the following errors:

eI =
∑

k
x(k)− x̂(k) (5.24)

eC =
∑

k
J(x(k))− Ĵ(x(k)) (5.25)

eA =
∑

k
u∗(k)− û(k) (5.26)

where, "ˆ" denotes estimated values based on (5.21)-(5.23).

The training process of the critic NN is performed with the target of conventional

energy function (5.7). The post-fault equilibrium point can be calculated simply

based on the post-fault load �ow to derive this function. Further, the training of the

action NN is based on optimal control derived in (5.20). It should be noted that, the

two derivative elements in (5.20) are simply calculated by propagating the respective

output back through the identi�er and critic NNs.

Change of the NNs weights at each iteration i can be derived from the deviation of
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NN's output to its optimal value ei. In o�ine training, batch learning is performed

in which adjustment of the weights are accumulated over all training data to give an

aggregated error as,

Ŵ i+1 − Ŵ i = αeiΦ(.) (5.27)

where, α is a small learning rate. This optimization iteration is performed by means of

training the NNs through gradient descent via back-propagation. From the viewpoint

of optimal control theory, this task is the same as the �rst-order calculus of variation

to �nd the continuous-time equations derivations.

5.3.3 Online Reinforcement Learning Construction

In this chapter, RL technique is employed for adaptation of arti�cial intelligence-

based WADC in online application. By means of this method, the NNs parameters

and weights are updated based on measurements instead of conservative o�ine as-

sumptions. RL is often applied to problems involving sequential dynamics and op-

timization of a scalar performance objective, with online exploration of the e�ects

of actions as it can adapt itself to �t the changing environment. The identi�er NN

is updated online with the monitored states similar to supervised learning; however,

di�erent procedure is used for critic and action NNs training. In the RL method cost

function at each iteration i is approximated by adaptation of Approximate Dynamic

Programming (ADP) as,

eiC(k) = Ĵ i(x(k))− Ĵ i(x(k + 1))− J̇(x(k), ui(k)) (5.28)

and, training of the action NN at each iteration is based on

eiA(k) = 2Rui(k) +
∂x̂(k + 1)

∂ûi(k)

∂Ĵ i(x(k + 1))

∂x̂(k + 1)
(5.29)
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and, weight adjustment is done incrementally at each iteration and time step as,

Ŵ i+1(k)− Ŵ i(k) = αei(k)Φ(.) (5.30)

The stability properties of the ADP is discussed in [50].

5.3.4 Online Energy Function Construction

As presented in previous subsection the incremental critic NN training is based

on Ĵ(x(k + 1)) and J̇(x(k), u(k)) at each time step. The �rst element is derived

from the critic NN with the input of x̂(k + 1) which is accessible from the identi�er

NN. The later is derivative of energy function de�ned in (5.14) in quadratic form

representing the damping of energy function. This function is dependent on d which

is characteristic of damping of oscillations of each area's states and needed to be

identi�ed online.

The Prony method, the best known parameter identi�cation method in the power

system community [133], is used to determine the unknown eigenvalues of the system

and extract the damping coe�cient features. This method is based on measured

global states, x(k), being expressed in z-transform domain as a sum of n damped

complex sinusoids,

x(k) =
∑n

l=1
R̄lz

k
l (5.31)

with characteristic equation of zn+a1z
n−1 + ...+an = 0, where Rl is an output residue

corresponding to the mode λl. The vector A′ = [a1, .., an] leads to the eigenvalues,

zls, of the system which are the roots of the system characteristic equation. Once

the roots of the system characteristic equation are obtained, the eigenvalues with

high frequencies are neglected. This analysis leads to obtaining the eigenvalues of the

system which is then used to adapt the weighing matrix of the states accordingly. For

this purpose, an auto regressive (AR) model estimation method has been employed.
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One can �nd a values by solving a least squares problem de�ned on the 2-norm of a

vector with an adaptive algorithm that recursively optimizes the criterion.

min
a
‖



x(n)

x(n+ 1)

...

x(n+ l)


−



x(n− 1) . . . x(0)

x(n) . . . x(1)

...
. . .

...

x(n+ l − 1) . . . x(l)





−a1

−a2

...

−an


‖ (5.32)

After computing a at time step k, roots of the characteristic polynomial is derived to

generate eigenvalues λj = −ζjωj ± ωj
√
ζ2
j − 1 for global oscillations with ω natural

frequency and ζ damping factor. Further, damping coe�cient of area j can be derived

as

dj = ωlζlmj (5.33)

Subsequently, Q and J̇ can be updated based on dj(k) at each iteration i as,

Qi+1
n+j,n+j(k) = Qi

n+j,n+j(k) + γ(di+1
j (k)− dij(k)) (5.34)

J̇ i+1(x(k), u(k)) = x̃(k)TQi+1x̃(k) + u(k)TRu(k) (5.35)

where, γ is the scaling factor.

Remark: It is assumed that the power system is operating at the same operating

point for a certain time that enables the estimated d to converge. It is noted that

this is not a constraint in practice, since the estimated model parameters converge to

their new values fast enough compared to the dynamics [19].

5.3.5 Comparison of the Techniques

In this chapter RL method with online tuning has been employed to design the

WADC. The advantages of the proposed method over conventional methods are as

follows:
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1. Both methods of direct and supervised learning are developed directly on the

energy function J , which is de�ned on the post-fault equilibrium points of δ∗

and δ̇∗. This post-fault δ∗ maybe di�erent than pre-fault δ0 due to network re-

con�guration after a fault and protection control actions. However, RL method

is updated based on J̇ which is only de�ned on δ̇∗. This value is considered 1

pu in both pre- and post-fault conditions.

2. Direct and supervised learning methods rely on the parameters of the system

such as m and B, which may have uncertainty or be changing in time. RL

method on the other hand is capable of updating it's policies over time and

under conditions of noise and uncertainty through state-action interaction [128].

3. Since actions should be taken at each time step and their e�ect is not known

until the end of the sequence, it is not possible to design an optimal controller

in online application using the traditional SL. RL method allows the WADC

to account for the present control actions u(k) and future consequences on the

system in J(x(k+1)) term used in (5.28), and present consequences in the form

of short-time cost function in J̇(x(k), u(k)) term.

4. The term J̇ in RL is used for updating the cost function and is called perfor-

mance function. Monitoring this function directly instead of J is well-suited

for the purpose of WADC design as it shows how is the performance of the

controller in terms of transient energy function damping.

5.4 Implementation

5.4.1 Power System Test Case

In order to assess the capability of the proposed method, IEEE 68-bus 16-machine

power system has been modeled using Power System Toolbox (PST). The model is

a reduced order equivalent of the inter-connected New England and New York power
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Table 5.1: PSS parameters for power system test case

Generator Ks Ts T1 T2 T3 T4 T5 T6

G1:G8,G10:G12 20 15 0.15 0.04 0.15 0.04 0.15 0.04
G9 12 10 0.09 0.02 0.09 0.02 1 1

systems with nine areas as shown in Fig. 5.6. The New England and New York power

grids are represented by group of generators, whereas the power import from each of

the three other neighboring areas are approximated by equivalent generator models.

Grouping consideration is based on the oscillation modes, dynamic data of the gen-

erators, and the parameters of the transmission system [134]. Dominant modes of

inter-area oscillations can be derived by small-signal stability analysis, which is pre-

sented in Fig.5.6. In this simulation, the slow-dynamics of the governors are ignored.

Two types of excitation systems for the generators is considered: IEEE standard DC

exciter (DC4B) and the standard static exciter (ST1A). All generators are equipped

with PSS using the parameters in Table 5.1. The local damping controller derives

uli = ∆Vrefi to reduce the local energy function by tracking the state δ̇i as

uloci(s) = Ksi
sTsi

1 + sTsi

1 + sT1i

1 + sT2i

1 + sT3i

1 + sT4i

1 + sT5i

1 + sT6i

∆δ̇i(s) (5.36)

where, u(s) is the local control in frequency domain.

First, small signal stability analysis has been performed to derive the damping ratio,

frequency, and participation factors of the generators in the dominant oscillatory

modes (Table. 5.2). This modes has been derived without the presence of any PSS

in the system, and it is also provided in [134]. It can be seen that, all the inter-area

modes have high participation from machines G13 to G16, and the local modes have

high participation from the corresponding local machines.
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Figure 5.6: Single line diagram and polar dominant modes of the 68-bus 16-machine
New England New York power system.

5.4.2 Proposed WADC Architecture

Input vector of the WADC is the states derived from WAM (δ(k), δ̇(k)) in order

to estimate the energy function (J(x(k))), and the output is the optimal damping

control (∆Vt(k)) at time step k. Here, we assume that the communication system

can transmit the signals to the control center at the speed of 100 frames/sec; hence,

WADC communication time step is considered as ∆t = 10ms. It is also assumed

that each generating unit bus has a sensor that transmits signals to WADC system.

For synchronous generators buses signals are aggregated in WADC center in COI

frame of (5.5) to generate area's state. Fig. 5.7 presents the overall proposed WADC

architecture for o�ine and online energy function estimation, the link to intelligent
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Table 5.2: Electro-mechanical Modes and participating generators of the IEEE 68-bus
system without PSS

Damping ratio (%) frequency (Hz) Gen/pf Gen/pf Gen/pf

-0.438 0.404 G13/1 G15/0.556 G14/0.524
0.937 0.526 G14/1 G16/0.738 G13/0.114
-3.855 0.61 G13/1 G12/0.137 G6/0.136
3.321 0.779 G15/1 G14/0.305 x
0.256 0.998 G2/1 G3/0.913 x
3.032 1.073 G12/1 G13/0.179 x
-1.803 1.093 G9/1 G1/0.337 x
3.716 1.158 G5/1 G6/0.959 x
3.588 1.185 G2/1 G3/0.928 x
0.762 1.217 G10/1 G9/0.426 x
1.347 1.26 G1/1 G10/0.756 x
6.487 1.471 G8/1 G1/0.435 x
7.033 1.487 G4/1 G5/0.483 x
6.799 1.503 G7/1 G6/0.557 x
3.904 1.753 G11/1 x x

control, and the RL and supervised training process of NN blocks.

The construction of intelligent system starts with o�ine supervised learning in

order to set the initial weights for online implementation. The training is performed

based on the I/O signals for each of the NNs derived using Matlab NN toolbox.

These weights and parameters are extracted in data base for online implementation.

Table 5.3 lists the NNs parameters used for the study. It should be noted that

variables are time delayed by one time step to capture the dynamics of the system. For

identi�er NN, pseudo random inputs and related outputs of the power system model

in COI frame is captured and fed into the NN data base. Then, gradient descent

batch learning algorithm is performed with a learning rate of about 0.001. It has

been seen that eI reaches a small number in 100 epochs. Furthermore, the critic NN

is trained based on (5.7) for di�erent fault scenarios and operating points in multiple

time-domain simulations to learn the relative energy functions. Parameters of energy

function includingm, B, β can be derived from [134]. It should be noted that B is the

Kron-reduced susceptance matrix with the loads removed from consideration. Next,
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Figure 5.7: Structure of the wide-area damping control center design

action NN is trained based on optimal control theory (5.20). Once the NNs weights

have converged (eC&eA < 0.01), then the action NN is connected to the generator's
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Table 5.3: Con�guration of Neural Networks

NN Input (nodes) Output (nodes) Hidden nodes

Identi�er δ, δ̇, ∆Vt (54) δ, δ̇ (18) 70

Action δ, δ̇ (36) ∆Vt (9) 50

Critic δ, δ̇ (36) J (9) 50

exciter to augment the PSS.

The process of online training starts by monitoring the states to incrementally

train the identi�er NN. This is followed by critic and action update iterations. In the

online process, the critic NN is updated by derivative of energy function. Here, for

sake of simplicity r is considered as 0.1. Prony algorithm is applied to identify the

modes and assess the damping ratios of individual area angular oscillations. For this

purpose, the values of δj is captured at time steps of 5.∆t and used for tuning the

derivative energy function. Since there are 9 sixth-order areas, the algorithm should

ideally solve 54th order polynomial. However, our simulation showed that choosing

order of 15 yields a satisfactory estimates of the inter-area modes.

5.5 Simulation Results

5.5.1 Case A. Proposed Method vs Conventional Arti�cial Intelligence Methods

In this case study the damping performance of the proposed hybrid RL and energy-

based methodWADC design has been investigated. The load connected to bus 25 (224

MW) has been disconnected for 200 ms due to a short circuit fault, creating a local

mode of oscillation in area 1. During the fault the area 1 moves away from the pre-

fault equilibrium point (δ0
A1 = 0.22). After the re-closing action (t = 0.3s), the system

con�guration is the same as pre-fault (δ∗A1 = 0.22) and the system experiences the

post-fault transient dynamics of Fig. 5.8a. This �gure presents during- and post-fault

trajectory of the δ̇A1 in the case of di�erent control scenarios. As shown, the proposed

WADC compared to supervised learning algorithm has provided better performance

with respect to overshoots and damping. The transient energy function dynamics
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Figure 5.8: Case A. Comparison of the proposed hybrid method with conventional
supervised and RL: (a) Area 1 speed oscillation, (b) Energy function area 1, (c)
Derivative of energy function area 1.

has been demonstrated in Fig. 5.8b. As it can be seen the proposed WADC is able

to provide more damping than supervised learning due to online optimal control

adaptation and exploration.

Additionally, the proposed method has been compared to conventional RL-based

WADC. The RL method being implemented in several works as a WADC such as

in [10, 13, 15], where the cost function is de�ned in the form of quadratic function

of states with heuristic coe�cients based on linearized model of the system. This

de�nition, however, is not representative of energy function damping as opposed to

the proposed hybrid method. The proposed method with the help of Prony analysis

can estimate the actual damping coe�cient (d1 ≈ d̂1 = 0.821) and subsequently

energy function damping performance as shown in Fig. 5.8c.
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Table 5.4: Case B. performance of NNs in trained dataset

Event
Identi�er Action Critic

RMSE Max Iter. RMSE Max Iter. RMSE Max Iter.

1 0.010 100 0.021 100 0.016 100
2 0.010 71 0.010 83 0.010 84
3 0.010 43 0.010 54 0.010 55

5.5.2 Case B. Robustness to Parameters

This test presents a case study to demonstrate one of the motivations for choosing

the RL algorithm as the benchmark to perform the online optimal function approxi-

mation. Initially, a scenario of cascading failures due to faults on inter-area tie-lines

has been performed. In this test, three tie-lines connecting New England and New

York power systems are disconnected sequentially, separating the two grids at the end.

Under nominal condition 1170 MW is transferred to New England system through

these tie-lines. First, line 1-27 is disconnected (event 1) followed by line 8-9 (event

2) allowing the RL to gain enough knowledge about system dynamics and optimal

policy. Finally, line 1-2 is disconnected due to a self-clearing 100 ms three-phase short

circuit fault (event 3), which leads to complete separation of these two systems and

huge energy mismatch. The WADC is independently validated for performance and

accuracy using two data sets of trained and non-trained NNs. Tables 5.4 and 5.5

reveal the advantage of the RL method by allowing the NNs to gain more knowledge

about the optimal policy of action and energy during the course of events. In the case

of trained NN set, identi�er, action, and critic NNs have been trained o�ine and then

used in the WADC. In the other data set, the NNs weights are assigned randomly. In

this table, the Root Mean Square Error (RMSE) of the latter is higher; however, it

improves with each course of event because of online RL learning. Also it can be seen

that the number of iterations during last fault occurrence is less than the �rst event

implying the faster convergence of NNs. For this test, maximum number of iteration

at each time step is 100 and minimum error assigned is 0.01.
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Table 5.5: Case B. performance of NNs in not trained dataset

Event
Identi�er Action Critic

RMSE Max Iter. RMSE Max Iter. RMSE Max Iter.

1 0.530 100 0.476 100 0.489 100
2 0.110 100 0.153 100 0.112 100
3 0.021 100 0.064 100 0.053 100

5.5.3 Case C. Proposed WADC vs Linear Controllers

Further, performance of the proposed WADC for the last event in case B, i.e. fault

on line 1-2, is compared to PSS and conventional GPSS with the parameters ofKs = 1,

Ts = 10, T1 = T3 = 0.6280, and T2 = T4 = 0.1025 [4,116] (see Fig. 5.9). For this test,

GPSS uses a single di�erential frequency signal between two selected areas of 1 and

5 (δ̇A1 − δ̇A5). The parameters are tuned based on small-signal analysis. Fig. 5.9a

demonstrates the modes of the inter-area oscillation with frequency of 0.830 Hz and

damping factor of 0.605%. As it can be seen, modes of area 5 has been shifted closer to

the area 1 with the proposed WADC. This result is validated for inter-area oscillation

as well as local speed deviation as they have been better damped in presence of the

proposed WADC. Fig. 5.9d shows the derivative of energy function with respect to

time and in terms of elements of control, local and area states.

5.5.4 Case D. Robustness to Delays

It is worth noting that transfer of WAM measurements to the control center may

incur certain time-delays. As a measurement-based control design, neglecting this

property of WAM may degrade the performance or even destabilize the control sys-

tem. Usually, the delay of the WAM signals in a high-bandwidth communication

system is expected to be small for the purpose of the WADC design. In [70] the

WAM infrastructure and various possible communication delays have been covered.

In this case study the robustness of the proposed WADC to possible communication

delays has been investigated. All the PMU signals are delayed by 100 ms, which is

larger than the expected delay in the realistic system. Fig. 5.10 shows the system
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dynamic response of a the system (local and inter-area oscillations) with the same

fault scenario as Case C. It can be seen that delays has deteriorated the WADC per-

formance, however, the system oscillations still damp faster than the case without

WADC. Moreover, the performance of proposed WADC in the most extreme scenario

is evaluated by increasing the delay time in PMU signals. Further simulations showed
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A5.

that the WADC is robust to delays of 350 ms in communication network.

5.5.5 Case E. Real-Time Simulation

In order to investigate the performance of the proposed WAC for real-time tran-

sient stability improvement, the New England part of the test system, so-called IEEE

39-bus system has been modeled using real-time simulator Hypersim [117]. The simu-

lation is based on EMTP nodal method capable of running the simulations by parallel

computation. The modeled power system generators are connected to exciter and PSS

acting as local controllers. These controllers run at the speed of 50 us. For real-time

development of the WAC, the o�ine pre-training stage of NNs is obtained from the

power system modeled in PST. The WAC model is then imported from Matlab-

Simulink through the C-code conversion and deployed in the Hypersim environment.

The input of exciter is augmented by the WAC actions running at the simulation

time step of 10 ms.

In order to analyze the performance of the proposed architecture, a self-clearing

125ms three-phase short circuit at bus 17 is simulated. This scenario a�ects all the



136

0 2 4 6 8 10

u
(p
u
)

-0.2

0

0.2

0.4

0.6

0.8
(b)

PSS+Prop. WADC

PSS

[t(s)]

0 2 4 6 8 10

e
(p
u
)

0

0.01

0.02

0.03

e
A

[t(s)]

(c)

e
C

e
I

0 2 4 6 8 10

d̂
A
(p
u
)

-0.5

0

0.5

1

1.5

2
(d)

[t(s)]

Figure 5.11: Case E. real-time dynamic performance of the power and control system,
(a) Area Oscillations, (b) control signals, (c) NNs errors, (d) damping coe�cient
approximation with Prony analysis.

oscillatory modes of the devices and the network topology. Area speed oscillations of

the 4 areas of the test system are presented in Fig. 5.11a. As shown, a considerable

damping improvement is gained when the proposed architecture is adopted. In addi-

tion, overshoots and undershoots of oscillation are reduced as well. The local control

action of PSS and the WADC are presented in Fig. 5.11b. Further, Fig. 5.11c presents
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(a) area 2 Oscillation, (b) control signals of Area 2.

the WADC NNs error. As it can be seen the identi�er, action, and critic NNs have

performed satisfactory in real-time with the maximum error limited to 0.025 pu. It is

worth noting that as mentioned before, the critic tuning is performed in real-time us-

ing the proposed Prony analysis. The method is capable of identifying the oscillation

parameters, the damping coe�cient, as shown in Fig. 5.11d and developing the tuned

energy function. The initial values of Q is extracted from mode 1 and participation

factors.

5.5.6 Case F. Unstable Case

Further, in order to show the e�ciency of the proposed WADC during unstable

disturbances, the fault duration of previous case study in real-time simulator has

been increased to 135 ms. It can be seen that this condition has led to system

instability with the presence of the local PSS acting alone or with the GPSS re-tuned

based on inter-area modes of oscillation frequencies as shown in Fig. 5.12a. However,

the proposed WADC has maintained the system stability. The respective controller

contributions are shown in Fig. 5.12b. This case study demonstrates the e�ectiveness
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of the proposed technique in enhancement of the transient stability as the CCT or

duration of the fault has been increased.

5.6 Conclusion

In this chapter a new intelligent energy-based wide-area damping control design

for improved power system transient stability is presented. The algorithm adapts

the reinforcement learning to optimally solve for a control action policy through

approximate dynamic programming. The cost function is de�ned to improve the

inter-area oscillations and de�ne transient energy function candidate. Furthermore,

an o�ine and online tuning method is designed based on extracted eigenvalues using

small signal stability analysis and Prony analysis and is linked to performance index

generation. More in depth information about the proposed methods in this chapter

could be found in our recently published journal papers [70, 135]. Results on IEEE

68-bus 16-machine system showed that the proposed method is able to guarantee the

generalized energy function in real-time and converge it to optimal operating point

with higher damping.



CHAPTER 6: DFIG IMPACT ON TRANSIENT STABILITY ENHANCEMENT

6.1 Introduction

It has been shown in previous chapters that Wide-Area Control (WAC) designs,

thanks to recent advances in the Wide-Area Monitoring (WAM) technologies such as

Phasor Measurement Units (PMUs), can e�ectively mitigate these oscillations and im-

prove wide-area system stability. Further, Optimal enhancement of transient stability

using WAC was capable of improving the power transfer capability of a transmission

grid and preventing the system from generation or load disconnection, or catastrophic

failure following a sequence of disturbances. This chapter seek to investigate the im-

pact of renewable energy resources in transient stability enhancement.

Among the various renewable energy resources,DFIG-based wind power is assumed

to have one of the most favorable technical and economical prospects [73]. Consid-

erable research e�ort have been devoted to investigate the performance of these re-

sources in the presence of disturbances [73, 77, 79, 136]. These e�orts have de�ned

the problem from the renewable energy resource view. In [79], a local control scheme

has been developed for grid connected wind turbines aiming at transient stability

restoration. Also several research works has been reported for the design of local or

WAC for the DFIG-integrated power system, in order to improve the performance

of the overall system [78, 137]. Generally, the wind farms connected to the grid do

not actively take part in damping of power system oscillations. However, it has been

illustrated that as the penetration level of these wind generators increases, the overall

inertia 'seen' by the system decreases. Also when the tie-line power �ow changes,

damping of power system oscillations are adversely e�ected [77]. Ref. [78] shows that

when active power �ow changes due to a disturbance in the system, the way the wind
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turbine provides active or reactive power is critical in maintaining rotor-angle sta-

bility of synchronous generators. Conventional control techniques using small-signal

stability methods are widely used for the power management of renewable resources,

mimicking the excitation control of a synchronous generator design such as in [138].

However, these models are based on large number of parameters of power system

network, synchronous and wind generators which are not available in practice. Addi-

tionally, these techniques depends on linear models of the system that cannot be used

in transient stability domain. Appendix B provides more discussion and literature

review in this area.

Generally, transient stability analysis involves numerically solving large number of

nonlinear di�erential equations [21]. The most straightforward approach in this area

is based on direct or time-domain simulations of transient dynamics following a distur-

bance. Direct methods are based on energy or Lyapunov functions, which guarantees

the system convergence to stable equilibrium points without the knowledge of post-

fault trajectory. These techniques has been successfully used in conventional power

systems [21,22,28]. In these works, the stability is assessed based on the potential and

kinetic energies required at a speci�c time. Energy function has also been considered

in renewable energy resource controller designs. In [139], active and reactive power

support capability of DFIG is exploited using Lyapunov function based control laws

in order to increase the damping of the oscillation modes of power systems. Here,

the dynamics of DFIGs are simpli�ed to load models and a control scheme is devel-

oped based on negative derivative of energy function. Excessive simpli�cations are

also performed in these methods to make the approach computationally e�cient [28].

However, these non-optimal methods only provide the su�cient conditions for assess-

ing the stability and are mainly used as preventive or emergency control schemes.

An alternative set of approaches deemed promising to address the above issues

are machine learning, generally termed as measurement-based techniques. Neural
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Networks (NNs) has been successfully investigated in literature for post-fault tran-

sient stability assessment and control [140], conventional power system WAC de-

sign [10], wind farm local control [89], or dynamic energy management system for

micro grids [141]. The supervised learning methods are very fast but again their ac-

curacy highly depends on o�ine training. Reinforcement Learning (RL) as one of the

algorithms in this area possesses the ability to learn from the interaction with system

and update its policy during state-action interactions [7]. Additionally, they can �nd

the optimal solution to the approximated cost function using ADP, thus dealing with

non-stationary power system dynamics.

In this chapter a novel method based on combination of energy functions with ma-

chine learning techniques has been exploited to design the WAC for wind integrated

power grid. In order to address the transient stability, we propose a method to link

the energy function estimates to the cost function of the RL approach. The controller

is designed in order to ensure that the gradient of the cost function is strictly negative

andminimized forward-in-time. The advantage of this method is that, it not only pro-

vides transient stability index which guarantees the system convergence to post-fault

equilibrium, but also can enhance the transient performance of the system by increas-

ing the damping of the oscillation, transfer capacity, and critical clearing time (CCT).

Another consideration is the transient dynamics of DFIG-based wind generators. In

this work, it is shown that wind farms are capable of maintaining their local stability

while system is exposed to transient inter-area oscillations, if these oscillations are not

severe enough to activate the protection devices in wind farms. Further, this chapter

proposes exploitation of DFIG in the form of potential, reactive, and inertial energies

to consume/support some energy from/to the system. The system dynamics is repre-

sented in coupled oscillatory platform with synchronous generators as coherent group

of generators containing potential, kinetic, and �eld energies. Through adaptation of

the proposed multi-agent WAC, wind farms power references along with synchronous
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generators excitation voltage references are controlled to optimize the overall energy

exchange in the system.

Overall, the proposed strategy:

• is based on the Lyapunov stability theory deriving an energy function for the

DFIG which can be used as a cost function in the WAC,

• is independent on the network topology and the post-fault equilibrium points,

• is optimal,

• is robust in handling WAM uncertainty such as delays and system parameters,

• can be easily incorporated to the local wind farm controller as an added control

function.

The rest of the chapter is organized as follows. The second section provides the

theoretical framework for the system modeling and energy function development for

synchronous generators and wind farms. In section 6.3, the control hierarchy and

the proposed WAC design is illustrated. Section 6.4 presents the power system test

case and WAC architecture implementations details. Then, the simulation results is

provided in Section 6.5, followed by conclusion in section 6.6.

6.2 Theoretical Framework

Transient rotor angle stability, focuses on the angular oscillations of coherent ma-

chines and their related transient energies during disturbances. In this chapter, gen-

erator buses with a strong coupled network which display coherent behavior are ag-

gregated as one equivalent generator [130]. Consider N ≡ {1, 2, ..., |N |} as the set of

reduced order buses of the power system network, A ≡ {1, 2, ..., |A|} as the sets of

areas aggregated buses and W ≡ {|A|+ 1, ..., |N |} as wind farm buses. The dynam-

ics of each bus j ∈ N can be characterized by the complex voltage Vj∠δj, where δj
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Figure 6.1: Coupled oscillatory system

is the phase angle with respect to synchronously rotating reference frame. The bus

frequency is given by ωj = δ̇j.

Mathematically, the inter-area oscillations can be described by a coupled oscillator

network of Fig. 6.1, where each oscillatory element has a speci�c natural frequency and

synchronization-enforcing coupling [142]. Considering the generating units (j ∈ N ) as

the oscillatory elements the transient instability of the system is caused by a mismatch

between injected power of each unit and the power �ows along the transmission lines.

This mismatch is usually due to a fault on power system lines or other components,

which is followed by the action of protection system. These actions may change

or restore the topology of the system, which leads to a transition from pre-fault to

post-fault equilibrium points. The transition can be viewed from energy landscape

or transient energy function. Considering δ and ω as the states of the oscillators and

J as the energy function in the form of combination of Lyapunov function candidate

of all oscillatory elements, the system is asymptotically stable when [21],

J(δ, ω) ≥ 0, J̇(δ, ω) ≤ 0 (6.1)

Based on this, the su�cient conditions for stability assuming this energy function

model can be evaluated and the candidates for proposed Lyapunov function can be
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developed. This work aims to develop an energy function to capture dynamics of

synchronous generators and wind farms as the oscillators and minimize it by means

of WAC in order to damp systems oscillations.

6.2.1 Synchronous Generators Areas

In the context of transient stability assessment due to slow variation of voltage

magnitude (V ) in comparison to the angle, for synchronous generators, it is assumed

that E = V with E being the internal voltage magnitude. The third order model of

synchronous generator is utilized [41] such that the e�ects of generator control and

excitation system in damping the oscillations of coherent generators can be studied.

This is given by:

mjω̇j + djωj +
∑

k∈Nj

BjkE
′
qjE

′
qk sin(δjk) = Pj, j ∈ A (6.2)

T ′dojĖ
′
qj = ∆Efj −∆Eqj, j ∈ A (6.3)

where, δjk = δj − δk is the inter-area angle, δj and ωj are bus angle and angular

frequency in Center Of Inertia (COI) frame [143] as

δj = 1
mj

∑N

i
miδi, ωj = 1

mj

∑N

i
miωi, mj =

∑N

i
mi (6.4)

where, i is the generator index in the area j, mj and dj are the equivalent inertia

constant and damping coe�cient of the area, Pj =
∑N

i Pi is the power injection,

E ′q the q-axis component of transient internal voltage, Bjk is the (j, k)th entry of

the reduced lossless admittance matrix;
∑

k∈Nj
BkjE

′
qjE

′
qk sin(δjk) is the power �ow

along the transmission lines connected to bus j, Nj is the set of neighboring buses of

the jth bus, Eq is the internal voltage in q-axis, Ef the excitation voltage, and T ′do

the equivalent transient time constant. In these equations, operator ∆ denotes the

deviation of the variables from the reference equilibrium point.
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An energy function for such an aggregated synchronous generator model comprises

of the sum of the kinetic energy, potential energy, and �eld or control energy with

respect to the relevant equilibrium points [41]. Such a function can be represented

for each area as,

Jj(δ, ω, Eq) = −
∫ δj

δ∗j

Pjdδj +

∫ δj

δ∗j

∑
k∈Nj

BjkE
′
qjE

′
qk sin δjkdδj︸ ︷︷ ︸

PEj

+ 0.5mj∆ω
2
j︸ ︷︷ ︸

KEj

+ 0.5βj(∆E
′
qj)

2︸ ︷︷ ︸
FEj

, j ∈ A (6.5)

where, ∆ωj = ωj−ω∗j , β is a parametric coe�cient based on equivalent Xd and X ′d as

synchronous and transient reactances. Next, the derivative of J with respect to time

along the trajectory of the system (6.2) and (6.3) is evaluated [41]. The derivative of

such a function after simpli�cations can be represented as,

J̇j(ω,Eq, Ef ) = −dj∆ω2
j − 1

T ′d0j∆Xdj
(∆E2

qj + ∆Eqj∆Efj) (6.6)

with the assumptions on higher orders as ∆Ef = K∆Eq, ∆Eq = Xad∆if , and ∆if =

K ′∆Vref with the gains K and K ′ > 0, Xad the d-axis armature reaction reactance,

∆if as a �eld current deviation, and ∆Vref = Vref − Vt as the terminal voltage

deviation or the control input to the �eld component, (6.6) yields

J̇j(ω, Vref ) = −dj∆ω2
j − rj∆V 2

refj , j ∈ A (6.7)

with rj ≡ 1+Kj

T ′d0j∆Xdj
X2
adjK

′
j. Equation (6.7) reveals that the states and actions a�ecting

the transient energy deviation of each area in time are ∆ωj and ∆Vrefj, and the

respective parameters dj and rj.
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6.2.2 DFIG-based Wind Farms

It is known that wind generators are not much a�ected by the low frequency os-

cillations due to fast control capability of power electronic-based controllers [144].

However, as components in the coupled oscillator model they can have an impact on

the oscillations and transient energy of synchronous generators. Considering the wind

farm buses as the PQ buses, the concept of controllable loads can be applied to the

wind farms. Let Pj and Qj denote the total real and reactive power leaving the jth

bus via transmission lines, and P ss
j and Qss

j as steady state power outputs and ∆Pj

and ∆Qj as changes in power due to control references, then Pj = P ss
j + ∆Pj and

Qj = Qss
j + ∆Qj. The power equations on the wind farm buses could be written as

∑
k∈Nj

BjkVjVk sin(δjk) = Pj , j ∈ W (6.8)

−
∑

k∈Nj

BjkVjVk cos(δjk) = Qj , j ∈ W (6.9)

The output power from internal point of view in DFIG is generated from stator and

rotor as P = Ps + Pr or P = ωrPs at steady state operating point, where Ps and Pr

are stator and rotor powers and ωr is the rotor speed. This power in dynamic and

transient domain considering the impacts of ωr state can be derived as follows:

mjω̇rjωrj = Pmj − Pj , j ∈ W (6.10)

where, mj is the rotor inertia and Pmj is the mechanical reference based on the wind

speed, wind turbine speed and pitch angle.

An energy-type Lyapunov function for such a wind farm includes the potential



147

Δδ 

δ 

Vg
*

Vt
0

Vg
0

It
0

Vt
f

Vt
*

-Vx
*

-Vx
f

It
*δ* -Vx

0

(a)

Vg0
Vg*

Vt*

It*

Itf

It0
Vt0

-Vx*

-Vx0

-Vx*

(b)

Figure 6.2: Vector diagram of (a) angle deviation (b) voltage deviation. Vg: grid
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energy, reactive energy, and kinetic energy based on δ, V , and ωr as,

Jj(δ, V, ωr) =

∫ δj

δ∗j

∑
k∈Nj

BjkVjVk sin(δjk)dδj −
∫ δj

δ∗j

P ss
j dδj︸ ︷︷ ︸

PEj

+

∫ Vj

V ∗j

∑
k∈Nj

BjkVjVk cos(δjk)dVj −
∫ Vj

V ∗j

Qss
j dVj︸ ︷︷ ︸

QEj

+ 0.5mj∆ω
2
rj︸ ︷︷ ︸

KEj

, j ∈ W (6.11)

where, ∆ω2
r is the deviation of rotor speed from its MPPT reference. The �rst two

elements, PE and QE, are based on power outputs and the respective states which

are terminal voltage angle and magnitude.

Due to asynchronous nature of the DFIG, the wind generator voltage angle and

grid angle are decoupled. Fig. 6.2a shows the operation of DFIG in PQ control mode

during a sudden change in the grid voltage angle (due to a transient fault). It can be

observed from the �gure that the DFIG control can adjust its terminal voltage such

that the active and reactive power can be maintained at the same level before the grid

disturbance. Fig. 6.2b shows the operation of DFIG during a grid voltage deviation.
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It can be seen that even after the voltage sag in the grid, DFIG tries to maintain

the reference active and reactive power, by changing its terminal voltage and current

based on changes in the grid. In the above case, it can be observed that after the

grid voltage changed from V 0
g to V ∗g , the DFIG terminal voltage changes from V 0

t to

V ∗t , and current changes from I0
t to I∗t such that the initial value of the active and

reactive power is maintained. It should be noted that for the above phasor diagram,

the severity of the changes in grid voltages is not large enough to cause DFIG wind

generator to be disconnected from the grid or any of its maximum allowable operating

limit to be violated. Hence, the energy function de�ned above yields:

Jj(δ, V, ωr) =−
∑

k∈Nj

BjkVjVk(cos(δjk)− cos(δ∗jk)) + P ss
j ∆δj

+
∑

k∈Nj

0.5BjkVk cos(δjk)(V
2
j − V ∗2j ) +Qss

j ∆Vj

+ 0.5mj∆ω
2
rj, j ∈ W (6.12)

The third element in this equation, KE, is released and extracted automatically from

the rotating mass for a change in power reference and consequently the rotor speed.

The proposed method exploits the kinetic energy stored in the rotating mass of wind

turbines, such that the additional amount of power supplied by the wind generator

to the grid is proportional to ∆ω2
r .

From the network point of view, DFIG buses behave like negative active and reac-

tive power loads, hence, active and reactive powers are considered as control variables.

With the assumption of energy stored in the outer and inner control loops as negligi-

ble ∆P = ∆Pref and ∆Q = ∆Qref , then the derivative of wind farm energy function
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could be written as a function of these control actions as,

J̇j(δ, V, ωr, Pref , Qref ) = ∆Prefj∆δ̇j + ∆Qrefj∆V̇j

+ [
∂Pmj
∂ωrj

− ∂Pj
∂ωrj

]∆ω2
rj, j ∈ W (6.13)

Further, characteristics of the output power can be linearized around the ω∗rj, as the

initial rotor speed set point as

Pj = Pmjωrj/ω
∗
rj + ∆Psjωrj , j ∈ W (6.14)

where ∆Psj = ∆Prefj. Without loss of generality, considering the Maximum Power

Point Tracking (MPPT) operation of DFIG, the sensitivity of the mechanical power

to rotor speed could be assumed as zero as long as rotor speed deviation is limited.

However exact value could be extracted through the MPPT curve and estimated by

initial set point. Hence,

J̇j(δ, V, ωr, Pref , Qref ) = ∆Prefj∆δ̇j + ∆Qrefj∆V̇j

+ ∆Pref∆ω2
rj, j ∈ W (6.15)

This equation reveals that, whenever ∆P is injected from wind farm along with

increase in the angular speed, the wind farm deviates from the equilibrium point in

the form of increase in the energy or positive J̇ . Similar e�ect happens to the voltage

and ∆Q. With respect to kinetic energy, any deviation from ω∗r introduces an energy,

which has increasing (ascending) or decreasing (descending) behavior based on the

sign of ∆P and the electrical and mechanical powers di�erence.

6.3 Proposed Hierarchical Controller Design

The controller action of overall system including the synchronous and wind gen-

erators can be presented as 3-level combination of local, wide-area, and steady state
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Table 6.1: WAC's state, control, and energy signals

Signals Area (A = 1, ..., |A|) Wind Farm (W = 1 + |A|, ..., |N |)
x = [xA, xW ] xA = [δA, ωA] xW = [δW , VW , ωrW ]

J =
∑
JA + JW JA = PEA +KEA + FEA JW = PEW +QEW +KEW

uwac = [uA, uW ] uA = ∆V wac
refA uW = [∆PwacrefW ,∆Q

wac
refW ]

counterparts as

u(t) = uloc(t) + uwac(t) + uss(t) (6.16)

The WAC tracks the generators and wind farms states x = [xA, xW ] through wide-area

measurements, derives wide-area feedback uwac = [uA, uW ], to minimize the energy

function J = JA + JW and enhance the global system behavior. Table 6.1 presents

the states, control action, and energy functions de�nition for areas and wind farms.

6.3.1 Overall Architecture

Local control is the �rst control level in control hierarchy that has the fastest re-

sponse. This control responds to local system dynamics and ensures that the variables

track their reference values. In the case of synchronous generator, input to the excita-

tion �eld without damping controllers is the error between steady state reference V ss
ref

and the terminal voltage of generators as shown in Fig. 6.3. This voltage error could

be augmented with ∆V loc
ref as local damping signals derived from PSS and enhanced

by ∆V wac
ref as a wide-area level controller. In the case of DFIG, conventional vector

control as shown in Fig. 6.3 is designed as local controller, where the q-axis of the

rotor current controls the stator active power Ps and d-axis of the rotor current con-

trols the stator reactive power Qs. The controller consists of the inner loop current

control and outer loop power control. The active power reference P ss
ref comes from the

MPPT, which takes rotor speed ωr as its input. The reactive power reference Qss
ref is

supplied by the grid operator based on the reactive power needs of the grid. In addi-

tion, a frequency based droop control has been implemented such that the terminal
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Figure 6.3: Structure of the proposed integrated WAC hierarchy considering syn-
chronous generator and DFIG: WAC signals for wind farms and areas uwac =
[uwacW , uwacA ] where uwacW = [∆Pwac

ref ,∆Q
wac
ref ], uwacA = ∆V wac

ref , synchronous generator local
control: uloc = ∆V loc

ref and steady state reference:u
ss = ∆V ss

ref ; wind generator primary
control: uloc = [∆P loc

ref ,∆Q
loc
ref ], and steady state reference: uss = [∆P ss

ref ,∆Q
ss
ref ].

voltage frequency can be maintained around the nominal value and a voltage based

droop controller has been used in the reactive power control loop such that it helps

faster recovery of the stator terminal voltage following a disturbance. On top of the

existing power control loops, a supplementary damping WAC has been used in this

work. The detailed control loops implemented in DFIG is shown in Fig. 6.3.

6.3.2 WAC Design

Decreasing nature of the energy function provides the main certi�cate of local

stability; If the energy function is less than the critical energy, the system is stable
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and the system might be unstable otherwise. The direct method of Lyapunov stability

based on derived J and J̇ in section II provides only the su�cient conditions for

assessing the stability. Additionally, these energies are nonlinear functions of multiple

parameters of the generating units, post-fault operating points, and network topology.

To overcome these issues machine learning techniques could be utilized in conjunction

with the energy functions in WAC design to cover all possible operating conditions

and topology changes by learning system parameters.

A common approach is to deploy NNs to map the nonlinearities and uncertainties

of the system identi�cation, control and the cost function. Here, Feed Forward Neural

Network (FFNN) is used as

Y (k) = W (k)TΦ(X(k)) + ε(k) (6.17)

where, X(k) and Y (k) are the vector input and output of NN, Φ(.) ∈ <h is the

corresponding nonlinear mapping function of states, W (k) ∈ <h is the parameter

vector of weights at time step k, with h ∈ N dimensionality of the feature vector

representing each state, and ε is the approximation error.

In general, the task of the controller is to generate a control action policy u that

transfers the states from known initial values x0 to speci�ed �nal equilibrium points

x∗ with the minimum cost-to-go or energy as objective. Using the described NN

structure, the critic, action, and identi�er NN blocks are constructed to approximate

the cost function J(k), the control action u(k), and the dynamics of the system

x(k), respectively, at each time step k. The architecture employed in this chapter to

construct the WAC as the RL approach. It should be noted that simple supervised

learning algorithm could be used to train the critic NN with the target of the energy

function presented in Table 6.1. Even though the parameters of the generating units

and network are known for the system as a whole, some parameters may be changing
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with time. Thus, the trained critic NN could show short-comings in online application

and does not project precise energy functions of the system. On the other hand, RL is

capable of dealing with the noise and uncertainty through state-action interactions [7].

Besides, RL can learn the Hamilton-Jacobi-Bellman equation associated with optimal

control theory through a critic NN, and �nd the optimal control through action NN.

Training of action NN is based on selecting sequence of actions that minimize the

estimated cost function (J). Using RL approach, the energy function at time step k

is given as

J(k) =
∑∞

n=0
J̇(k + n) (6.18)

where, J̇ is the utility function used for reward/punishment in terms of RL concept,

or incremental cost function in Lyapunov stability concept. This function based on

(6.7) and (6.15) can be represented as,

J̇(k) = −xA(k)TQxA(k)− uA(k)TRuA(k) (6.19)

+ uTW (k)R′(xW (k + 1)− xW (k)) + xW (k)Q′xW (k)R”uTW (k)

where, coe�cient matrices are in the form diagonal matrix with the elements of

Qjj = [0|A|×1, d1, ..., d|A|]

Rjj = [r1, ..., r|A|]

R′jj = [12|W|×1, 0|W|×1]

Q
′

jj = [02|W|×1, 1|W|×1]

R”
jj = [1|W|×1, 0|W|×1]

Another advantage of using RL over supervised learning in online process is that

J̇ is not dependent on δ∗ which could be di�erent than δ0 and not known in practice.
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In this chapter, an iterative learning scheme is used for �nding the optimal control

solution u∗ corresponding to the optimal cost function J∗. The algorithm starts with

J0 and u0 at iteration i = 0 based on o�ine tuning, and then solves for u and J as

follows:

∂J̇(k)

∂ui+1(k)
+
∂x(k + 1)

∂ui(k)
.
∂J i(x(k + 1))

∂x(k + 1)
= 0 (6.20)

J i+1(x(k)) = J̇(x(k), ui(k), xi(k + 1)) + J i(x(k + 1)) (6.21)

where,

∂J̇(k)

∂u(k)
= 2RuA(k) +R′(xW (k + 1)− xW (k)) + xW (k)Q′xW (k)R” (6.22)

This optimization iteration is performed by means of training the NNs through gra-

dient descent via back-propagation which is discussed in detail in previous chapters.

6.4 Implementation and WAC Construction

In order to assess the capability of the proposed method, a modi�ed IEEE 68-

bus 16-machine power system has been modeled using PSCAD and is presented in

Fig. 6.3. The original IEEE test system is a reduced order equivalent of the inter-

connected New England and New York power systems [134]. The New England and

New York power grids are represented by group of generators. Grouping consideration

is based on the dynamic data of the generators and the parameters of the transmission

system [134]. Preliminary results on the real-time simulation of 2-area model in

OPAL-RT and the proposed method in this chapter have recently been reported in

our conference paper [145].

6.4.1 Wind Integrated Power System Test-Bed

In the modi�ed system, W4 and W5 are replaced with the same size conventional

generators in original system accounting for 9.75% penetration in area 1 and 15.53%



155

Figure 6.4: Modi�ed IEEE 68-bus New England New York power system test network
including three areas (|A| = 3, j = 1 : 3) and three wind farms (|W| = 3,j = 4 : 6).

penetration in area 2. The standard test network also contains three large generators

representing external networks which import approximately 2.1 GW into area 2 under

nominal loading. In the modi�ed network, two of these generators (G14 and G15) are

replaced with a wind farm (W6). This unit generates 2.8 GW, supporting 800 MW

to the neighboring areas. The impact of increased DFIG penetration in the form of

inertia change is investigated in the small signal stability domain performed using

Power System Toolbox and is presented in Fig. 6.5. It has been observed that the

system modes of oscillation shows considerable change with increased penetration of

wind farms especially with respect to the damping capabilities and frequencies. For

instance, damping of inter-area oscillation between area 1 and 2, has been decreased

from 0.142% to 0.104%. The main purpose of this thesis is to capture these oscillations

in the form of transient energy and enhance the damping with WAC.

For EMTP simulations the time step is considered as 50 us. All synchronous

generators are represented by detailed full sixth-order model equipped with governors,

exciters, and PSS. Two types of excitation systems for the synchronous generators

is considered: IEEE standard DC exciter (DC4B) and the standard static exciter
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Figure 6.5: Electro-mechanical modes of the original 68-bus system as a function of
reduced inertia of G5, G11, G14, G15.

(ST1A). The governor model for all generators is the standard TGOV1. The generator

local damping control architecture is conventional PSS design with the consideration

and procedure of washout �lters and lead/lag elements. Full system details and

generator and controllers parameters can be found in [134,146].

The wind farms are modeled as an equivalent single machine. It has been shown

in [147] that the equivalent aggregated machine representation of DFIG will accu-

rately depict the dynamic performance of wind farms. In this work, a detailed model

of DFIG with the power capacity of 500 MW, 1000 MW, and 2800 MW at maximum

rated speed are used including Grid Side Converter (GSC), Rotor Side Converter

(RSC), dynamic model of the Wound Rotor Induction Generator (WRIG), two mass

model for the wind turbine, and aerodynamic model of the turbine to get the me-

chanical torque from wind speed, as well as the associated controls for each of the

components. The converters used in this work are three phase two level converters.

The parameters of the DFIG used are obtained from NREL's report [148] and are

scaled accordingly to the power requirements. The controllers are optimized based on

the p.u. model of the 1.5 MW turbine used in the report. Qss
ref for wind generators

are set based on load �ow analysis which are: 116 MVar, 122 MVar, and 780 MVar.

The frequency droop control is neglected; however, the voltage droop controller has
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been used with the gain of 1 such that it helps in faster voltage establishment during

the start-up of the simulation as well as faster recovery of the terminal voltage fol-

lowing disturbances. The outer loop PI controllers have a proportional gain of 0.01,

0.04, 0.04, and integral time constant of 0.01, 0.08, 0.012 for W4, W5, and W6, re-

spectively. Additionally, pitch control loop time step has been considered as 1 s. The

rest of the DFIG parameter can be found in [148]. It should be noted that, all the

operating limits of the DFIG are addressed in this work so that realistic operations

can be captured. The rotor and stator currents are limited to 1.2 p.u. for dynamic

overloading of the machine. The maximum allowed rotor speed is 1.2 p.u. and the

minimum allowed rotor speed is 0.7 p.u. Also, it has been assumed that the DFIG

turbine shaft can bear the short term stress applied to its ends because of the devi-

ation between mechanical power and electrical power. Another consideration in this

thesis is on the wind speed, which is assumed to be constant during transient events.

6.4.2 Proposed WAC Architecture

Input vector of the WAC is the states derived from WAM in order to estimate the

energy function, and the output is the optimal damping control presented in Fig.6.6.

Here, we assume that the communication system can transmit the signals to WAC

at the speed of 100 frames/sec; hence, WAC communication time step is considered

as ∆t = 10 ms. It is also assumed that each generating unit bus has a sensor that

transmits signals to WAC system. For the synchronous generators buses, signals are

aggregated at WAC center based on COI frame (see (6.4)) to generate states of each

system area. It is considered that WAM is able to transmit the ωr as the aggregated

rotor speed of wind generators in a wind farm.

The construction of the WAC starts with o�ine supervised learning algorithm in

order to set the initial weights. The training is performed based on the I/O signals for

each of the NNs derived using Matlab NN toolbox. Table 6.2 lists the NNs signals used

for the study. To capture the dynamics of the system, input signals are accompanied
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Figure 6.6: Proposed online WAC design.

with 10 time step delayed signals. For identi�er NN, pseudo random inputs and

related outputs of the power system model is captured and fed to the NN data base.

Then, gradient descent batch learning algorithm is performed with a learning rate

of 0.001. It has been observed that eId reaches its threshold in 100 epochs. Initial

training of the action NN is based on local controllers references described in the

previous subsection. Critic NN is trained based on (6.5) and (6.11) for di�erent fault

scenarios and operating points to learn the relative energy functions. Parameters of

energy function including m, B, β are given in [134]. It should be noted that B is the

Kron-reduced susceptance matrix with the loads removed from consideration. Once

the NNs weights have converged (e < 0.01), then the action NN is connected to the

generator's exciter and wind farm's power loops to augment the local controllers. The

Table 6.2: Con�guration of Neural Networks

NN Input (nodes) Output (nodes) Hidden nodes

Identi�er [x(k), x(k − 10), u(k), u(k − 10), 1] (49) x(k + 1) (15) 70
Action [x(k), x(k − 10), 1] (31) u(k) (9) 50
Critic [x(k), x(k − 10), 1] (31) J(k) (1) 50
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process of online training starts by monitoring the states to incrementally train the

identi�er. This is followed by critic and action update iterations. The weights of critic

NN in each iteration is updated by means of derivative of energy function J̇(k) and

estimated future energy function J(k + 1). Without lose of generality, parameters of

J̇(k) are assumed as dj = 0.1 and rj = 0.01. Furthermore, action NN is tuned online

to minimize the estimated energy function.

6.5 Simulation and Test Results

6.5.1 Case A: Wind Farm Contribution

In this case study, an investigation on the impacts of wind farm controls for tran-

sient stability enhancement is performed. Therefore, WAC for synchronous generators

are disabled and only the WAC for wind generators are enabled. The e�ectiveness

of augmenting the local control of wind farms using WAC is evaluated by applying

a three phase fault at tie-line 18-49 at near end of the bus 18 and comparing the

stability characteristics of the system with and without WAC. The fault is cleared

after 300 ms by opening the tie-line breakers. Initially, 450 MW is transferred from

area 3 to area 2 through this tie-line. After the fault this power is transferred through

line 18-50 and Area 1. In order to visualize the performance of the proposed WAC,

the dynamic response of the system with and without WAC is presented in Fig. 6.7.

It can be seen that with WAC on the wind farms, not only the angular oscillations of

the areas (j = 1 : 3) damps faster, but the angular deviation and magnitude of the

terminal voltage of wind farms (j = 4 : 6) are improved.

Fig. 6.8 shows the active and reactive power contribution of the wind farms along

with the WAC references during the transient period such that the overall system

moves to the new equilibrium point faster. Also it should be noted that no operating

limits of the wind farms are violated during the transient period. With respect to

active power, the WAC tries to minimize the power di�erence of the two areas in

the form of potential energy function. In addition, through reactive power control,
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the architecture provides additional voltage and reactive support is provided for the

system.

It can be seen that without the WAC, the local controllers of wind farms are able

to maintain the stability of the wind farms. This could be especially seen in active

power output of the W4 and W5 and reactive power output for W4 (P4,P5,Q4).

Reactive power control is augmented by voltage droop control to maintain the voltage

in addition to Qss, leading to reactive power changes in the case of local controllers.

In a separate simulation a test was carried out with only Q control which resulted

in constant Q output from wind, however, the settling time for wind voltages was

increased by 6 s. Further, Fig. 6.9 presents the changes in the system energies.

Fig. 6.9c shows the deviation of the operating point of the wind farms because of

the implementation of WAC. It can be observed that as the power from the W5 (P5)

increases, the wind farm rotor decelerates and also the mechanical power decreases

(at a slower rate); hence, the wind farm can reach a new equilibrium at point "x",
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but as that point is not the steady state operating point, the machine slowly moves

towards point "y" as the WAC signal is taken o� from wind farm (region "B"). As for

W6 (P6), the power reference is decreased; however, pitch control acts and resists ωr

deviation. In summary it is noticed that the proposed WAC enhances the transient

performance of the system as shown in Fig. 6.9d in the form of transient energy

reduction for synchronous generators.

The CCT is a widely-used benchmark for the transient stability assessment, which

is obtained by multiple time-domain simulations for the aforementioned fault on the

system. The comparison of the CCT with and without WAC implemented on wind

farms is presented in Table 6.3. This results shows considerable improvement in

system stability using the WAC. The e�ectiveness of the WAC could be dependent

on the wind power and initial states of the system. To investigate this criteria, CCT is

evaluated for three wind farm conditions: sub-synchronous, synchronous, and super-

synchronous with wr = 0.8pu, wr = 1pu, and wr = 1.2pu, respectively, based on the

reference wind speed. It should be noted that wind speed v is considered constant at

the period of transition. The result shows that the CCT of the system is improved

with WAC for all the conditions. However, for di�erent wind speeds and operating

points the contribution of wind farms is changed as well. Transient stability is mainly

dependent on the pre-fault operating points and post-fault conditions. As for the

system with wr = 1 it is observed that the power transfer through tie-line 18-49 is

reduced to 40 MW from 450 MW, which leads to higher CCT. However, as the power

contribution of the wind generators is reduced the WAC contribution is also reduced.

Other factors of wind generators a�ecting the transient stability enhancements are

the maximum and minimum wr limits and MPPT curve at the operating point.

6.5.2 Case B: Global WAC Performance

This test presents a transient case study to evaluate the e�ectiveness of the proposed

WAC applied to synchronous generators and wind farms for damping the inter-area
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Table 6.3: Case A. comparison of transient stability (CCT)

Scenarios CCT without WAC CCT with WAC

wr = 1.2pu v = 11m/s P ss = 100% 320 ms 410 ms
wr = 1.0pu v = 9.2m/s P ss = 58% 340 ms 390 ms
wr = 0.8pu v = 7.1m/s P ss = 27% 260 ms 320 ms

oscillations. A 300 ms short circuit fault has been applied to the tie-line 1-2 connecting

areas 1 and 2, which is followed by opening the line. Initially, considering the line

8-9 out of service, 1050 MW and 200 MW are transferred from area 1 to 2 through

tie-lines 1-2 and 1-27, respectively. The loss of the low impedance line of 1-2 causes a

transient oscillation as shown in Fig. 6.10a. One of the main reasons for choosing the

RL as the algorithm for implementation of WAC is its capability to perform optimal

control action. This multi-agent technique can be easily employed as a hierarchical

controller. Figs. 6.10b, 6.10c, and 6.10d demonstrate the WAC and PSS signals for

the aggregated generators and the WAC, primary power sharing control, and local

feedback for W5. Here droop control is enabled and the gains of droop control are

set as 1 for both voltage and frequency control. The error in WAC with respect to

time has been demonstrated in Fig. 6.10e. It can be seen that, by using the proposed

WAC the inter-area oscillations has been damped faster.

The stability enhancement is shown as the change in energy function Fig. 6.11.

After the fault, G1, G10, W5, and G15 are a�ected more than other generating

units. However, as wind farm supports optimal excitation control of generators, better

transient performance has been gained as the reduction in energy functions. To show

the e�ectiveness on stability margin, the system has been tested under higher loading

conditions. The load demand of area 2 has been increased to gain 35% increase in

tie-line 1-2 power transfer. This reduces the stability margin. Table 6.4 provides the

comparison of CCT of the system with the described fault on line 1-2. To show the

e�ectiveness as the enhanced transient stability controller, the loading of area 2 has

been increased further. It has been observed that the line loading should be equal
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Figure 6.10: Case B. system, local control, and WAC response

to 161.2% to get the CCT of 385 ms (CCT without WAC and 135% loading). This

shows extensive enhancement in active power margin.

6.5.3 Case C: Robustness

One of the main concerns in implementation of WACs is the WAM infrastructure

and uncertainty in signals and parameters. The WAC depends on the timely mea-
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Table 6.4: Case B. comparison of transient stability (CCT)

CCT without WAC CCT with WAC

385 ms 502 ms

surement and control signals to e�ciently improve the system stability. However, the

delay of the signals in the communication network can have an adverse e�ect on the

performance of the WAC which can be minimized with e�cient and robust WAM

infrastructure. Usually, the delay of the PMU signals in a high-bandwidth communi-

cation system is expected to be small for WAC. In [70] the WAM infrastructure and

various possible communication delays have been discussed.

In this case study the robustness of the proposed RL-based WAC to possible com-

munication delays has been investigated. All the PMU signals are delayed by 100 ms

and 200 ms, which is larger than the expected delay in the realistic system. Fig.6.12a

shows the system dynamic response of a 350 ms three phase fault at tie-line 8-9 in

di�erent control scenarios. It can be seen that delays has deteriorated the WAC per-

formance, however, the system oscillations still damps faster when compared to the

system without WAC. Fig. 6.12b demonstrates the identi�er NN performance as the

error in the identi�cation in these scenarios. These delays in reality is not expected to
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be larger than the simulated case; however, the performance of proposed WAC in the

most extreme scenario is evaluated by increasing the delay time in PMU signals. The

simulations showed similar results to the case without WAC, when delay in WAMs is

380 ms.

The parametric uncertainty is another challenge in WAC design. As a large scale

dynamic power system controller, considerable number of parameters are involved in
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the design. Knowing exact values of all these parameters in practice is not feasible.

However, RL technique through the concept of multi-agent based modeling and em-

ployment of NN can estimate these parameters in online process, and overcome the

necessity of needing exact values of the model. This technique has advantages over

the supervised learning. For instance, as mentioned before, the critic NN is trained

o�ine based on the energy function, which depends on several parameters which are

projected in the weights. The weights of the critic NN have been multiplied by 0.5

to make a partially trained Critic NN. Fig. 6.13 demonstrates the performance of

the WAC in these cases, as the RL can learn the energy function and yet provide

satisfactory results in comparison to the system without the proposed WAC.

6.6 Conclusion

In this chapter an energy-based WAC is proposed on a wind integrated power grid.

RL method has been employed as an optimal control for transient stability improve-

ment, augmenting the excitation system of the synchronous generator and local active

and reactive power control of DFIG. Transient stability has been quanti�ed by en-

ergy elements derived for synchronous generators and wind farms. Simulations on

the modi�ed IEEE 68-bus system showed improved system responses with the pro-

posed RL-based WAC. It has been observed that the WAC is able to damp the area

oscillations faster, increase the CCT, and stability margins of tie-lines.



CHAPTER 7: CONCLUSIONS AND FUTURE WORKS

In this dissertation, novel methods for wide-area monitoring and control of large

scale power system including renewable energy resources have been designed. A

big step forward to improve power system wide area stability is wide area power

system monitoring to communicate the speci�c-node information to a remote station

providing higher observability and controllability. In the area of large-scale power

systems, inter-area response are more e�ectively damped through the use of wide-

area measurements. The complexity, nonlinearity, and uncertainty of power system

in rotor angle stability problem led us to arti�cial Neural Networks (NNs) methods.

We �rst adapted NN based control design on WAC system. The challenges included

optimality, robustness in presence of wide-area measurements uncertainty and delay,

and generality. In order to address the �rst issue we used Reinforcement Learning

(RL) algorithm to handle the NNs and perform optimal control theory. The WAC by

means of this method could coordinate the actions of several agents, here generating

units, toward a uni�ed global cost function. Next, temporal di�erence was used in

a �nite moving average optimization horizon to improve the learning and prediction

of NNs. The WAC actions is augmented to local excitation system of synchronous

generators, which could raise several issues such as contradicting controls. In addtion,

the NNs themselves have generality issue; i.e. performing unsatisfactory if the new

operating point observed in real-time or online process may not cover the o�ine

training domain. These problems led us to the "value priority" algorithm, in which

the performance and identi�cation of controllers were quanti�ed based on Lyapunov

function. The algorithm was performed for two sets of hybrid control design (local

conventional PSS and global adaptive controller along with learning-based control
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system). In both cases, the dynamic performance of the system has been considerably

improved when the proposed WAC design has been used in terms of transient stability

and oscillation damping.

In summary such a RL method has enabled us to construct a measurement-based

WAC. However, the WAC design needed to be de�ned based on transient stability

problem as the objective of this dissertation. Hence, we used energy functions of

synchronous generator in the form of kinetic, potential, and �eld energies and linked

them to the cost function of RL problem. We aimed at minimization of such energy

function by means of WAC actions, which could further damp this energy. Finally this

energy function was observed to be a�ected by other agents such as renewable energy

resources as well. The renewable energy resources, in this thesis DFIG, could absorb

or release some energy in the form of potential, reactive, and inertial energies and

further damp the synchronous generators energy function. This transient stability

enhancement led to faster convergence of the system toward the post-fault operating

point which could be quanti�ed by reduced critical clearing time or increased power

transfer capability.

Practical Planning Aspects: As mentioned before, wind farms mainly a�ect the

power system stability through change of system?s inertia and power �ow through

the tie-lines. For many cases the systems are not able to cope with these changes

as the location of wind farms are mainly decided based on topological factors rather

than power system operational and stability criteria. Considering these impacts and

the considerable penetration of wind energy to the power system (16 GW in Ercot

as for 2016), detailed studies is needed to see the impacts of such units on the power

system stability. Each new wind project to be added to the current system should

pass stability test as well as the system steady state operating test. The stability

test includes Low Voltage Ride Through (LVRT) and transient stability criteria for

several events such as line outage, generator outage, multiple faults, and so on.
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The mitigation plans are needed to meet the standards if there are violations in

case studies. These mitigations include reactive power compensator, line addition,

or decreasing the wind dispatch. Such mitigation plans are further studied from

economic view point. Usually, the wind farms are dispatched, at their max operating

limits (MPPT), due to power generation costs. This brings up the wide-area control

problem as more critical issue in such systems. The system is planned for the worst

case scenario, which happens rarely. This issue along with the variability of the wind

makes such static plans non cost e�ective. On the other hand, the dynamic WAC can

mitigate such power �ows in the case of fault eliminating the necessity of new facility

installments. Such a WAC can support the system in such scenarios and, furthermore,

it can provide more capacity for new wind power penetration installments.

The work proposed in this manuscript leads to a number of future research plans

for developing appropriate analytical tools for in-depth information extraction from

power system networks and, thereafter, to build control methods for ensuring system-

wide stability and performance.

• Considering the recent improvement in terms of NNs learning algorithm the

control design could be enhanced in terms of scalability. This thesis tackled

this issue with slow coherency technique. This o�ine method is based on �xed

number of areas or �xed electrical distance between them. Either way, the WAC

is not able to monitor the states inside the area and perform optimization. On

the other hand, if a dynamic or online coherency technique has been used the

observability could be increased in any layer. This is achievable by modern NNs

method such as unsupervised learning methods.

• Other than scalability, a big challenge in transient stability of large scale power

system is the level of simpli�cation and consideration of power system compo-

nents. In general, when an energy-based methods are used like in this work, a

trade o� is performed for the system modeling and speed of calculation. How-
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ever, as shown in this dissertation, some components such as DFIGs could

considerably improve the performance of transient stability when included in

WAC design. This consideration could be extended to other components of

the power system, such as controllable loads, PV units in distribution system,

and in general any power system component that can have �exible active and

reactive powers.
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APPENDIX A: TRANSIENT STABILITY ASSESSMENT AND CONTROL

Synchronous generators are in essential nonlinear, non-stationary, fast acting, Multi-

Input-Multi-Output (MIMO) devices, especially, in interconnected and global as-

pect [7]. Fully reliable transient stability analysis and control, considering these

devises is, still, a challenging problem. In general, transient stability problem, with

respect to time of the calculation, outputs, and speed can be divided into four main

categories:

A.1 Transient Stability Assessment Problem

Transient Stability Assessment (TSA) is performed o�ine at pre-fault stage before

the disturbance happen actually. The literature in this category is respectfully rich,

with various methods employed, [23�27]. TSA focuses on the critical clearing time

of the faults in power system. A comprehensive simulation of faults provides useful

information regarding the vulnerable points of the system and makes sure of safe

stability margin. Besides, these evaluations can provide helpful database for real-

time analysis.

A.1.1 Prediction problem and Preventive Control

Conventionally, transient instability events are prevented by means of event based

actions. Set of unstable contingencies and respective actions are designed o�ine.

Once, one of the known contingencies is monitored, the prede�ned control action will

be triggered. Although being relatively fast, their implementation is not comprehen-

sive. Additionally, the problem of transient stability prediction based on response has

been proposed, which is simpler and more accurate than the traditional event-based

methods [149]. In this method the progress of the power system transient and oscilla-

tions are monitored, and prediction of stability of swings is carried on for classi�cation.

Nominal output of the controller represents a discrete status. This prediction results

in preventive control actions such as generation rescheduling, reactive compensation,
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or load shedding [150]. Various methods, such as numerical routines, pattern recog-

nition, direct methods, and intelligent methods have been widely proposed and used

in this area, which will be further discussed [125,151,152].

A.1.2 Emergency Control

Emergency or remedial control is used in the post-disturbance conditions. Several

utilities have developed protection schemes known as Special Protection Systems

(SPSs) or Remedial Action Schemes (RASs) [153]. This control scheme predicts the

system stability status during the disturbance, and the assessment results are used

to trigger emergency control actions such as generator tripping or load shedding to

terminate the propagation of the instability. Usually, practical remedial control are

event-based, and response-based designs are not yet adequately fast enough [154].

These systems directly detect selected faults that would lead to instability using

binary signals and take prede�ned corrective control actions. The main disadvantage

is the practicality issue in number of outages and initial states investigated [40].

A.1.3 Mitigating and damping Control

It is known that transient instability may happen in further swings due to lack of

damping. The control actions can also be used as the output, to make the problem

dynamic mitigating and damping control. This type of control schemes are designed

not only to provide a stable �nal state but also minimize state excursions along the

trajectory and increase the power system stability margins [40].

A.2 Transient Stability Assessment Methods

Various approaches to real time transient stability assessment and control have been

proposed in the power systems literature. Following detection of a fault, real time TSA

will run and prediction of stability of the system is performed. Numerical Integration

and direct methods were utilized in this category in early years, each having their own

advantages and disadvantages. Further, with the advent of technology and complexity
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of the real-time wide area transient stability problem new techniques and approaches

based on combination of these methods and integration of intelligent methods have

evolved.

A.2.1 Numerical Integration

In this method, numerical integration algorithms are utilized to solve the system

dynamics represented by huge number of di�erential equations. The most common

methods in numerical integration are Euler method, Runge-Kutta method, and Im-

plicit Integration method [155]. Given the complexity of power system models in

wide-area domain, the most e�ective analysis tool for predicting the states trajectory

and transient stability is full time domain simulations [156]. However, with real-

time operation limitations, in such simulations each fault must be treated separately,

and stability margins must be calculated by separate trials. In addition, time-step

intervals are needed to be e�ectively managed to ensure accuracy and numerical sta-

bility [156]. Considering all these issues, the overall process is considered very time

consuming. Various methods have been proposed to speed up the integration time,

such as decomposition-aggregation integration [157], or parallel computing architec-

ture [158]. One of the main break through in this area has been prediction of trajec-

tories through observed states. The real-time wide area state trajectory prediction

are performed via three methods [159]:

• Network dynamic equivalence [160]

• Curve �tting based trajectory extrapolation

� Polynomial model based prediction method [161]

� Trigonometric function model based prediction method [162]

� Auto regression prediction method [163]

• The angular velocity prediction and integration method [164]
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In reduced order methods, following fault detection, the algorithm starts and a

post-fault reduced order system model is constructed with initial variables calculated.

Then, the time domain simulation can be performed on the model in real-time speed,

and the transient stability of the power system can be predicted online [165]. However,

such methods show considerable drawbacks in real-time computation in the case of

wide area use, where, it requires accurate information of the power network topology

[29]. In another methods, the stability of the power system is detected by using the

characteristic roots the pulse transfer function of the auto regressive model of the

system [166].

A.2.2 Direct Methods

Direct methods analyze the transient stability using direct calculation of the Tran-

sient Energy Function (TEF). The Energy Functions are fully described in references

such as [21]. In these methods, it is not needed to explicitly calculate the system

solution by di�erential equation of the electric power system over time [155]. Direct

stability analysis technique has been proposed based on second method of Lyapunov's

stability theory. The objective is to de�ne an energy or Lyapunov function with cer-

tain characteristics to obtain a direct measure of the stability region [118]. At the

time of the change in the power system, the energy is captured and compared to

pre-determined critical value. The criteria of Lyapunov stability is considered suf-

�cient, and if the states are not in the boundary stability of the system cannot be

inquired. It should be noted that, integration of the system equations during fault is

still needed to obtain the post-fault initial conditions and the critical clearing time. In

general, direct methods are more preferable than time domain simulations for online

operation in dynamic stability assessment since it only requires simple mathematical

operations [167]. Literature in this category is respectfully rich. In [168], the potential

and kinetic energy functions are approximated real-time in heuristic manner to de�ne

the total energy of each generator in the system. Further, in [169], the interchange of



192

energy between areas is used to analyze inter-area oscillation. In [170], this method

is employed to �nd the location of oscillation sources in power systems.

A.2.3 Hybrid Numerical and Direct Method

considering time domain and direct methods separately, both methods are not fully

reliable and e�cient enough to be applied in real-time TSA. In order to overcome the

pitfalls of these methods, mentioned brie�y before, hybrid methods based on the

combination of these methods have been proposed.

In order to reduce the work load of time domain methods, and eliminating the

dependency on the parameters of the system, trajectory prediction is performed real

time based on the observed WAM data. This approach is based on the fact that a

equivalent model can actually be integrated much faster in real-time. Based on Single

Machine Equivalent (SIME) method, the reduced-order model is derived by observing

the post-fault swing curve data and clustering the machines into coherent groups of

critical and noncritical generators by means of SMIB can be performed. Further,

Direct energy methods, Equal-Area Criterion, can be utilized to predict the transient

stability status of the system, as well as, the stability margins [29, 30,171,172].

Another hybrid method to tackle the problem is early-termination criteria, allowing

simulation of stable cases to be aborted as soon as possible [123, 173]. This criteria

for time domain simulations is based on of coherency, transient energy conversion of

kinetic and potential energies, and the product of system variables [123,124,173].

A.2.4 Intelligent methods

Intelligent methods have shown encouraging application potential due to their

speed in TSA [174]. Various advanced arti�cial intelligent techniques as well as ma-

chine learning approaches have been proposed to develop TSA and promising results

have been gained. These methods e�ectively learn and map the process behavior

from relationship between speci�ed inputs and outputs, without any prior knowledge
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Figure A.1: Intelligent transient stability assessment/control scheme

of the process behavior. The initial idea was introduced as a pattern recognition in

1968 [175]. Decision Tree (DT) algorithm as a common method in this area, recur-

sively splits the training data in terms of class membership [125]. It clusters states

into groups with similar values for the response variable [154]. DT for transient

stability prediction and classi�cation involves considerable amount parameters and

complex mapping functions, which usually requires many processing, terminal nodes,

and training samples. moreover, Fuzzy Logic (FL) techniques have high applicability

joint with DT as a classi�er [67,124,176].

Another method that has been proposed for this purpose is Neural Networks (NNs).

NNs also, lack the capability to learn all input output mapping relationships, causing

less consideration in the industrial applications. Further, several methods such as

parallel NN and Support Vector Machines (SVMs), has been proposed to overcome

this problem [125,177].

Fig. A.1 depicts a uni�ed scheme of these TSA methods. As a machine learning

methods, o�ine training should be performed before taking any actions in real-time.
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Table A.1: Intelligent transient stability methods

Input Design Approach Ref.
δCOI , ωCOI , V , f -domain criteria DT, FL [67]

δCOI , ωCOI , f -domain indices DT, Random Forest learning [154]

δCOI , ωCOI , f -domain indices T-D Simulation, FL and NN [124]

δ, ω ANN [125]

δCOI ANN [178]

δCOI , velocity and acceleration Fuzzy hyper rectangular NN [151]

V Trajectory Fuzzy C-mean Clustering, SVM [176]

COI δ and ω SVM [179]

∆δ security Criterion NN, Particle swarm optimization [180]

State (6th order) Model-based �nite Window predictive control [40]

The source of the training so-called stability information database is constructed

based on historical data and excessive o�ine simulations to cover a wide range of

operating points. Next, Input and Output (I/O) speci�cation based on the proposed

method is set. These input speci�cation can be PMU based states, trajectories,

and indices. The outputs are classi�cation, preventive, remedial, or damping control

actions. Further, o�ine training is performed based on the I/O. In this stage, the

learning algorithms (ANN, SVM, DT, FL) are used to extract the knowledge on the

mapping relationship between input and output, and formulate the knowledge as a

classi�er, predictor, or control. These methods are very fast but again their accuracy

highly depends on o�ine learning [29]. Table 8.1, provides a brief list of real-time

intelligent TSA methods.
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APPENDIX B: RENEWABLE ENERGY RESOURCES CONTROL

B.1 Local Control of renewable resources

Local control is the �rst control level in the control hierarchy of renewable resources

that has the fastest response due to its distance to measurements. This control

monitors the local system dynamics and ensures that the variables which are frequency

and voltage track their set points. The majority of these units are connected to the

grid by Voltage-Sourced Converter (VSC) units. Voltage control of a VSC in the

dq-frame can be achieved based on inner current control and outer voltage control

loops. The controller of the inner loop maintains the converter current, and controller

of the outer loop regulates the output voltage [80�82].

Like synchronous generators power sharing is used in the renewable resources by

including virtual inertia and droop method. Each inverter has an external power

loop to share active and reactive power among the units and improve the system

performance and stability, adjusting at the the frequency and voltage. The droop

control scheme can be de�ned as [82]

ω = ω∗ −m(P − P ∗) (B.1)

E = E∗ − n(Q−Q∗) (B.2)

where, ω∗ and E∗ are the frequency and the amplitude of the terminal voltage, re-

spectively, m and n coe�cients de�ne the corresponding slopes, and P ∗ and Q∗ are

the active and reactive power references based on local feedback. Fig. B.1 depicts the

overall scheme of the control hierarchy for the renewable energy sources. Moreover,

the virtual impedance loop can be used to �x the output impedance of the inverter

by subtracting a processed portion of the output current to the voltage reference of

the inverter. The droop control is highly related to R/X ratio of the line, which is

deteriorated with a small mismatch in the grid impedance estimation [81]. In the
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Figure B.1: Structure of the adaptive critic design

case of DFIG, rotor side control is responsible for maintaining the power.

In order to maintain the stability of the renewables for longer time, the next level

controller is employed to determine the references for the power sharing control. The

secondary control works as a centralized AGC and compensates the steady-state errors

of the states. This controller using WAMs, coordinate the action of all the units within

a speci�ed area. The time response of this control level is in the range of minutes,

having a slow dynamic compared to local controllers. Finally, the tertiary control

level could be used for optimizing the operation of the system.

B.1.1 Wide-area Control in Presence of Renewable Sources

Renewables are usually far from the synchronous generators where the oscillations

happen, therefore, WAMs are used to capture the oscillations and coordinate the

control actions of these resources with the rest of network in the form of WAC.

Rotor angles and speed of synchronous generators are directly a�ected by the type

of renewable's power control [80, 84]. Reference [84] shows that when active power

�ow changes, the the way that the wind farm provides reactive power to the system
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is critical in maintaining rotor angle stability of synchronous generators. This also

applies to active power control, due to the fact that the oscillations are produced by

active power di�erences between generation and load. Therefore, the implementation

of appropriate control strategies in renewable sources can mitigate large rotor angle

swings.

B.1.1.1 Conventional Techniques

Conventional control techniques such as PI, are widely used for the active and

reactive power of renewable sources [181]. Reference [144] has used a strategy of con-

trolling the magnitude and position of the rotor �ux vector, mimicking the excitation

control of a synchronous generator design. Reference [144] has uses local signals to

design a PSS for system damping. A global PSS has also been proposed in this area,

such as [39], that exchanges information with local PSSs to improve power systems

oscillatory stability. A reduced version of the conventional PSS has been proposed

in [182], comprising a �lter and a proportional controller with the frequency as input

and the power reference as output, exhibiting an e�ective damping of oscillations.

Root locus methods has also been used to design the controllers by adding pole-zero

pairs to attract the root locus towards left of s-plane [183]. These techniques are re-

quired to identify the most adequate pair of input-output signals based on small-signal

stability analysis or controllability-observability analysis. These techniques needs ac-

curate models of the renewable and power system, with large number of parameters

to be tuned.

In order to perform the tuning of such controllers, optimal control theory could be

used to minimize stability criteria [184]. For instance, particle swarm optimization

method has been used in [185,186]. Among these methods genetic algorithm is used

in [187] to set the parameter control of DFIG. Furthermore, Reference [188] has

proposed a mixed control of eigenvalue structure and a nonlinear optimization method

for the conventional PSS of the DFIG to damp the system oscillations. Robust control
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techniques has also been used for this application. For instance, [189] has employed

a minimax linear quadratic gaussian-based power oscillation damper for PV plants.

The proposed controller works adaptively under di�erent operating conditions.

B.1.1.2 Lyapunov-based methods

Another control method in this �eld is based on the Lyapunov stability function.

This method is more e�ective in transient stability area. In order to apply the direct

method of TSA, the Lyapunov function for a renewable unit can be proposed from

the droop controller variables, which are frequency and voltage. A control strategy

in [139] is proposed based on overall Lyapunov function of the system including the

DIFGs. The advantage of such method is that the strategy is independent of the

network topology and is based on that the derivative of the energy function of the

system being negative.

B.1.1.3 Intelligent methods

Intelligent control strategies, such as NNs and fuzzy logic, has been successfully

applied to control of modern power system in di�erent applications [87,88]. In Chapter

2 we have covered such designs based on supervised and reinforcement learning.

B.2 Stability Analysis and Control for Renewable Connected Power Grid

It is known that, with the increased penetration of renewables in transmission

system, the e�ective inertia of the system is reduced and system stability following a

disturbances could be signi�cantly a�ected [73]. In the case of a DFIG-based wind

turbines the inertia of the turbine is decoupled from the system as shown in chapter

6. The power electronic converter of the DFIG controls the performance and acts

as an interface between the machine and the power grid. Transient disturbances

in the system change the speed and the angle of the rotor. However, due to the

asynchronous operation, the position of the rotor �ux vector does not rely on the

physical position of the rotor [144]. In the case of PV units, another impact is
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lack of reactive power support [74]. The PV units are mainly utilized as sources of

active power and no reactive power is generated by these resources. In general, the

introduction of renewable energy resources has the potential to change the damping

performance of the system through displacing synchronous machines; impacting line

power �ows; displacing synchronous machines that have PSSs.

Recently several works have been done to address the impacts of renewable re-

sources on power system stability [73, 75�77]. Generally, it is believed that the re-

newable type does not signi�cantly take part in power system oscillations; rather, the

penetration level has a damping e�ect due to reduction in the size of conventional

generators [77]. In addition, [75] shows that increased penetration of renewable re-

sources is accompanied by congestion at weak interconnection lines, which leads to

reduced damping. Comprehensive study on the impacts of high PV penetrations on

local oscillation mode has been provided in [76]. The article shows that there is a

threshold of PV penetration level beyond that PV tends to decrease the damping of

local oscillations mode. Ref. [190] also shows how increased PV penetrations could

in�uence the local mode of the system, and advocates that the large-scale PV tends to

increase the damping of these modes. Further, [191] has shown that the distributed

PV is better than the concentrated penetration of these units for inter-area mode

damping.




