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ABSTRACT

WON-TAK HONG. A Meshless method with enriched basis functions for singularity
problems. (Under the direction of DR. HAE-SOO OH)

For the last several decades, the Finite Element Method (FEM) has been a pow-

erful tool in solving challenging science and engineering problems, especially when

solution domains have complex geometry. However the mesh refinements and con-

struction of higher order interpolation fields were prominent difficulties in classical

finite element analysis.

In order to alliveate the difficulties of classical finite element method, the meshless

methods were introduced. Meshless methods appear in several different names such

as Element Free Galerkin Method (EFGM), h-p cloud Method, Partition of Unity

Finite Element Method (PUFEM), Generalized Finite Element Method (GFEM),

and Extended Finite Element Method (XFEM). In this dissertation, we are concerned

with enriched GFEM. Unlike classical finite element methods, these meshless methods

use meshes minimally or not at all. This feature becomes powerful when it comes to

model crack propagation, large deformation, etc because re-meshing is unnecessary.

A partition of unity is an essential component of GFEM. The partition of unity

function employed in this dissertation, is unique in the following sense: First, the

partition of unity functions are highly regular, whereas most GFEM in the literature

use piecewise C0-partition of unity functions. The highly regular partition of unity

functions with appropriate smooth local approximation functions enables us to have

highly regular global basis functions. Second, if polynomial local approximation func-

tions that satisfy the Kronecker delta property are chosen, the global basis functions

become smooth piecewise polynomials, and hence numerical integrations become ex-

act and imposing essential boundary conditions become simple. Third, the partition

of unity shape functions designed to have flat-top do not yield an ill-conditioned stiff-
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ness matrix. Furthermore, a partition of unity for a non-convex domain is introduced

to deal with an elasticity problem on a cracked elastic medium.

The most powerful aspect of GFEM is the freedom to choose any desired local

approximation functions. By choosing highly smooth local basis functions, it would

be possible to solve high order PDEs such as biharmonic and polyharmonic partial

differential equations without using Hermite finite elements that are extremely diffi-

cult to implement. Moreover, when a given problem has strong singularities, using

various types of singular functions, the approximation space can be enriched to cap-

ture the singularities without regenerating the whole mesh or refining the meshes in

the adaptive way.

In this dissertation, GFEM with enriched basis functions is used to solve elliptic

boundary value problems containing singularities. In Chapter 2, our meshless method

is applied to solve the Motz problem that has jump boundary data singularity. In

Chapter 3, we use our method to get highly accurate stress analysis of cracked elastic

domains. We demonstrate that the proposed approach yields highly accurate numer-

ical solution of the Motz problem as well as accurate stress analysis of cracked elastic

domains. We also will show that the meshless method, GFEM with enriched basis

functions, yields the improved results, compared with performance of other existing

methods. Finally, we introduce a new approach to estimate the stress intensity factor.
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CHAPTER 1: ENRICHED GENERALIZED FINITE ELEMENT METHODS

1.1 Introduction

Since it was introduced in the 1950s, the Finite Element Method (FEM) has be-

come the most popular and powerful tool in solving challenging science and engi-

neering problems, especially when solution domains have complex geometry (Ciarlet,

1991, Szabo and Babuska, 1991). However, the construction of higher order interpo-

lation fields and mesh refinement has been a prominent difficulty in the finite element

method.

In order to alleviate the constraints of the conventional method, generalized finite

element methods (GFEM) have been introduced. These new approaches use meshes

minimally or not at all. To name few of them : GFEM (Babuska et al., 2003,

2008), Element Free Galerkin Method (EFGM) (Lancaster and Salkauskas, 1981,

Levin, 1998), h-p Cloud Method (Duarte and Oden, 1996), Partition of Unity Finite

Element Method (PUFEM) (Babuska et al., 2003, Melenk et al., 1996, Strouboulis

et al., 2003). Another non conventional FEM, closely related to GFEM, are Meshfree

Particle Methods, such as Reproducing Kernel Particle Method (RKPM) (Han and

Meng, 2001, Li and Liu, 2004) and Reproducing Kernel Element Method (RKEM)

(Li and Liu, 2004, Li et al., 2004, Liu et al., 2004).

A partition of unity (PU) is an essential ingredient in the construction of approxi-

mation functions in GFEM. In this dissertation , highly smooth piecewise polynomial

PU functions are used to make GFEM more effective in handling singularity problems.
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1.2 Preliminaries

Let Ω be a domain in Rn. Throughout this dissertation α, β, · · · ∈ Zn indicate

multi-indices and x, y, · · · ∈ Rn denote points in Rn if there is no confusion. We

adapt the conventional notation for a point x in Rn as x = (x1, x2, · · · , xn) and for

the multi-index α in Zn as α = (α1, α2, · · · , αn). For any non negative integer m, let

Cm(Ω) denote the space of all functions f such that f together with all its derivatives

Dαf = Dα
xf =

∂|α|f

∂α1x1∂α2x2 · · · ∂αnxn

of all orders |α| ≤ n, are continuous on Ω. In the following, a function f ∈ Cm(Ω) is

said to be a Cm- function.

In the following definition, Hk = Hk(Ω) represents the Sobolev space.

Definition For f ∈ Hk(Ω), the norm and the semi-norm, are defined by

‖f‖k,Ω =
{ ∑
|α|≤k

∫
Ω

|Dαf |2dx
}1/2

, and |f |k,Ω =
{ ∑
|α|=k

∫
Ω

|Dαf |2dx
}1/2

.

respectively. The maximum norm of f is defined by

‖f‖∞,Ω = ess sup
{
|f(x)| : x ∈ Ω

}
.

Definition For given index set Λ, a family {Ok : k ∈ Λ} of open subsets of Rn is

said to be a point finite open covering of Ω ⊆ Rn if there is a number M such

that any x ∈ Ω lies in at most M open sets Ok and Ω ⊆
⋃
k Ok.

Definition The support of f is defined by

supp f = {x ∈ Ω : f(x) 6= 0}.

Definition {φk : k ∈ Λ} is called a partition of unity (PU) subordinate to the

covering {Ok : k ∈ Λ} if there is a family {φk : k ∈ Λ} of Lipschitz functions in Ω

that satisfy the following three conditions:
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(1) ∃ C such that ‖φk‖∞,Rd ≤ C for all k.

(2) supp (φk) ⊆ Ok, for each k ∈ Λ.

(3)
∑
k∈Λ

φk(x) = 1, ∀x ∈ Ω.

Here {Ok : k ∈ Λ} is a point finite open covering of a domain Ω, and Λ is an index

set. The members of the covering {Ok} are called patches.

Definition The uniform B-spline bn of degree n is defined by the recursion

bn(x) =

∫ x

x−1

bn−1(t)dt,

starting from the characteristic function b0(x) of the unit interval [0, 1).

The B-splines have the following properties (Höllig, 2003):

• bn ∈ Cn−1(R) is positive on (0, n+ 1) and vanishes outside this interval.

• bn is a piecewise polynomial: it is a polynomial of degree n on each interval

[k, k + 1], k = 0, · · · , n.

• The B-spline of degree n is symmetric about y = (n+ 1)/2.

• (Recurrence Relation)

bn(x) =
x

n
bn−1(x) +

n+ 1− x
n

bn−1(x− 1).

• (Convolution Property)

bn+m+1(x) =

∫
R
bm(x− y)bn(y)dy.

• (Marsden’s Identity) For x, t ∈ R,

(x− t)n =
∑
k∈Z

(k + 1− t) · · · (k + n− t)bn(x− k).
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From the Marsden identity, we have

∑
k

bn(x− k) = 1,

which shows that bn is a PU shape function. Moreover, the same identity can

be applied to show the next property:

• Any monomial xl, 0 ≤ l ≤ n can be represented by bn(x− k), k ∈ Z, and hence,

they are linearly independent.

Definition A weight function (or window function) w(x), is a non-negative

continuous function with compact support that is defined as follows:

w(x) =

 (1− x2)l, |x| ≤ 1,

0, |x| > 1,
(1)

where l is a positive integer.

Remark w(x) is a Cl−1-function.

Definition Let Λ be a finite index set and Ω be a bounded domain in Rn. Let {xj :

j ∈ Λ} be a set of a finite number of uniform or non-uniformly spaced particles in Rn.

Assume that k is a non-negative integer. Then the function φj(x) corresponding to the

particles xj, j ∈ Λ is called the reproducing polynomial particle (RPP) shape function

with the polynomial reproducing property of order k (or simply, “of reproducing order

k”) if it satisfies the following condition:

∑
j∈Λ

(xj)
αφj(x) = xα, for x ∈ Ω ⊂ Rn and for 0 ≤ |α| ≤ k.

It is important to note that the RPP shape functions with the property of polyno-

mial reproducing order k exactly interpolate all polynomials of degree ≤ k.

An one dimensional example of a piecewise polynomial RPP shape function intro-

duced by (Oh et al., 2007a,b) is as follows:
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A C2-RPP shape function of reproducing order 2, φ([−2,2];2;2)(x) is defined by (2). The

graph of φ([−2,2];2;2)(x) and d
dx
φ([−2,2];2;2)(x) are depicted below :

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.4

0.4

0.8

1.2

φ([−2,2];2;2)(x)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.6

-0.8

0.8

1.6

d

dx
φ([−2,2];2;2)(x)

φ([−2,2];2;2)(x) =



−1
2
(x+ 2)3(x+ 1)(2x+ 1) : x ∈ [−2,−1],

1
2
(x+ 1)(6x4 + 9x3 − 2x+ 2) : x ∈ [−1, 0],

−1
2
(x− 1)(6x4 − 9x3 + 2x+ 2) : x ∈ [0, 1],

1
2
(x− 2)3(x− 1)(2x− 1) : x ∈ [1, 2],

0 : x /∈ [−2, 2]

(2)
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Both Cr-RPP funtions (Oh et al., 2007a,b) and B-spline (Höllig, 2003) are piece-

wise polynomials. The Cr-RPP funtions satisfy almost all of the properties of B-

splines, except the positivity and the convolution property. It is noteworthy that the

piece-wise polynomial Cr-reproducing polynomial particle shape function introduced

in (Oh et al., 2007a,b) satisfies the Kronecker delta property. However the B-spline

functions have no Kronecker delta property.

The Galerkin Methods that uses Cr-RPP shape functions associated with particles

are called the Meshfree Method. Web-spline (Weighted extended b-spline: extension

of B-spline) is another popular meshless method. Other methods such as Element

Free Galerkin Method (EFGM) and Reproducing Kernel Particle Method (RKPM)

are also meshfree method(Atluri and Shen, 2002, Li and Liu, 2004). These methods

do not use any mesh at all.

In contrast to meshfree methods, the Generalized Finite Element Method (GFEM)

introduced in the next section, uses a background mesh. Thus, it is not completely

meshfree. However, it is widely known as a meshless method because the usage of

a background mesh is completely different from the mesh usage in the conventional

finite element method. The former is for constructing partition of unity and the

latter is for constructing basis. Unlike B-spline and Cr-RPP shape functions, the

piecewise polynomial partition of unity shape functions do not have polynomial re-

producing properties. However, in conjunction with appropriate local interpolation

functions one can create highly regular basis functions. This enables us to solve higher

order differential equations such as bi-harmonic or poly-harmonic problems (Oh et al.,

2008) without the use of Hermite finite elements that are extremely difficult to im-

plement. If local approximation functions are polynomials and have the Kronecker

delta property, then the numerical integration becomes exact and imposing essential

boundary conditions becomes simple. Moreover, having wide flat top partition of

unity shape functions leads to a smaller matrix condition number. Finally, the ro-
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bustness and simple assembling procedure of this method enables 3D implementation

in a much simpler manner than the conventional finite element methods which makes

this method more attractive(Oh et al., 2009). The next section is devoted to this

piecewise polynomial partition of unity shape functions.
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1.3 Methods of constructing partition of unity

A partition of unity is an essential ingredient in the Generalized Finite Element

Method(GFEM). Let us consider various methods to construct a partition of unity.

[A] Linear Finite Element Mesh

A popular choice of partition of unity is the linear Finite Element Mesh. Let {ΨI , I =

1, 2, · · · ,M} be a linear finite element basis, then
M∑
I=1

ΨI = 1 on Ω. Hence {ΨI , I =

1, 2, · · · ,M} is a partition of unity subordinate to the finite element mesh. It is easy

to use; however, the basis functions are only C0 and result singular or almost singular

stiffness matrix.

[B] The Shepard PU function

Shepard PU function is also widely known, however numerical integration becomes

very expensive due to its fractional form (Babuska et al., 2004, Li and Liu, 2004).

Definition The Shepard PU shape function φ(ss)(x) is defined by

φ(ss)(x) =
w(x)

w(x− 1) + w(x) + w(x+ 1)
, for all x ∈ R

where w(x) is a weight function. Then

{φj(x) = φss(x− j) : j ∈ Z}

is partition of unity.

Note that the regularity of φ(ss)(x) depends on the regularity of w(x). Although

it is easy to construct a PU shape function in this way, we avoid using it because

of the following limitations. First of all, due to the fact φ(ss)(x) is a rational func-

tion, numerical integration becomes expensive; so it leads to lengthy computing time.

Second, a large condition number is a well known fact for this PU function which re-

quires nontrivial treatment such as special solver design. In order to overcome these

limitations, polynomial based partition of unity methods were introduced.
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[C] Smooth piecewise polynomial partition of unity

An optimal choice of a PU function in GFEM depends on the function being approx-

imated. In appropriate circumstances, we have the followings:

1. A C0-PU function is the hat function.

2. A C1-PU function is the bubble function defined by

f(x) =

 (cos(πx
2

))2 if |x| < 1

0 if |x| ≥ 1,

or the piecewise polynomial φ
(pp)
g2 defined below.

3. Piecewise polynomial Cn-PU functions φ
(pp)
gn+1 for each positive integer n are con-

structed as follows :

Definition For integers n ≥ 1, we define a piecewise polynomial function by

φ(pp)
gn

(x) =


φLgn

(x) := (1 + x)ngn(x) : x ∈ [−1, 0]

φRgn
(x) := (1− x)ngn(−x) : x ∈ [0, 1]

0 : |x| ≥ 1,

(3)

where gn(x) = a
(n)
0 + a

(n)
1 (−x) + a

(n)
2 (−x)2 + · · ·+ a

(n)
n−1(−x)n−1 whose coefficients are

inductively constructed by the following recursion formula:

a
(n)
k =



1, if k = 0
k∑
j=0

a
(n−1)
j , if 0 < k ≤ n− 2,

2(a
(n)
n−2), if k = n− 1.

(4)

The coefficients a
(n)
k can also be obtained by the following recursion formula:

a
(n)
k =

 1 if k = 0,

(
n+ k − 1

k
)a

(n)
k−1 if 1 ≤ k ≤ n− 1.

(5)

Let us note the following:
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-1 0 1

1
φ

(pp)
gn , n = 3

-1 0 1

-2

2 d

dx
φ(pp)
gn

, n = 3

FIGURE 1: Two piece polynomial Cn partition of unity function, φ
(pp)
gn .
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FIGURE 2: φ
(pp)
gn for various n = 1, 7, 20, 30.



12

1. The second recurrence relation implies that a
(n)
1 = n for each n.

2. Using the recurrence relation (4), gn(x) is as follows:

g1(x) = 1

g2(x) = 1− 2x

g3(x) = 1− 3x+ 6x2,

g4(x) = 1− 4x+ 10x2 − 20x3,

...
...

...

φ
(pp)
g1 , φ

(pp)
g7 , φ

(pp)
g20 , and φ

(pp)
g30 that are C0, C6, C19, C29- functions. φ

(pp)
gn for n =

1, 7, 20, 30 are depicted in Figure 2.

3. φ
(pp)
g1 is the hat function which is a C0-piecewise linear PU function. φ

(pp)
g2 is a

C1-piecewise cubic polynomial PU function.

Lemma 1 For all n ≥ 1, gn(x) satisfies the following relation :

ngn(x) + (1 + x)g′n(x) = (2n− 1)a
(n)
n−1(−x)n−1, (6)

Proof.

ngn(x) + (1 + x)g′n(x)

= n
(
1 +

n−1∑
k=1

(−1)ka
(n)
k xk

)
+

n−1∑
k=1

(−1)kka
(n)
k xk−1 +

n−1∑
k=1

(−1)kka
(n)
k xk

= n+
n−1∑
k=1

(−1)kna
(n)
k xk +

n−2∑
k=0

(−1)k+1(k + 1)a
(n)
k+1x

k +
n−1∑
k=1

(−1)kka
(n)
k xk

= n− a(n)
1 +

n−2∑
k=1

[
(n+ k)a

(n)
k − (k + 1)a

(n)
k+1

]
(−x)k + (2n− 1)a

(n)
n−1(−x)n−1

= (2n− 1)a
(n)
n−1(−x)n−1
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By using the above lemma, we can prove the following.

Lemma 2 For all n ≥ 1, the function above, gn(x), satisfies the following relation:

1− xngn(x− 1) = (1− x)ngn(−x). (7)

Proof. Let F (x) = xngn(x− 1) + (1−x)ngn(−x)− 1. Then, using Eqt. (6): ngn(x) +

(1 + x)g′n(x) = (2n− 1)a
(n)
n−1(−x)n−1, we have

F ′(x) = xn−1(ngn(x− 1) + xg′n(x− 1))− (1− x)n−1(ngn(−x) + (1− x)g′n(−x))

= xn−1((2n− 1)a
(n)
n−1(1− x)n−1)− (1− x)n−1((2n− 1)a

(n)
n−1x

n−1) = 0.

Since F (1) = 0, F (x) = 0, which implies the lemma.

The following theorem proves that the piecewise polynomial functions defined by

expression (3) are indeed basic PU functions.

Theorem 1 For all n ≥ 1, the piecewise polynomial functions φ
(pp)
gn defined by (3)

satisfy the following.

(i) φ(pp)
gn

(x) ∈ Cn−1(R),

(ii) φ(pp)
gn

(x− 1) + φ(pp)
gn

(x) + φ(pp)
gn

(x+ 1) = 1 for x ∈ (−1, 1),

(iii) The degrees of the polynomial on each subinterval are (2n− 1),

(iv) φ(pp)
gn

(x) is symmetric about the y-axis,

(v)

∫
R
φ(pp)
gn

(x)dx = 1.

Proof. (i), (iii), and (iv) are not difficult to show.

If x ∈ [0, 1], then applying (7), we have the following:

∑
k∈Z

φ(pp)
gn

(x− k) = (1− x)ngn(−x) + xngn(x− 1)

=
[
1− xngn(x− 1)

]
+ xngn(x− 1) = 1,
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which proves (ii).

Now let us prove (v).

∫ 0

−1

(1 + x)ngn(x)dx =

∫ 1

0

(1− x)ngn(−x)dx (by the symmetry property)

=

∫ 1

0

[
1− xngn(x− 1)

]
dx (by Eqn. (7))

=

∫ 1

0

1dx−
∫ 1

0

xngn(x− 1)dx

Thus, ∫ 0

−1

(1 + x)ngn(x)dx+

∫ 1

0

xngn(x− 1)dx = 1.

By substitution: x− 1 = −t, the second integral becomes∫ 1

0

xngn(x− 1)dx =

∫ 1

0

(1− t)ngn(−t)dt.

This is the property (v).

The converse of Theorem (1) is also true which implies the uniqueness.

Theorem 2 If a piecewise polynomial ψ(x) satisfies the following conditions:

(i) ψ(x) is symmetric about the y-axis.

(ii) ψ(x) is composed of exactly two polynomials of degree 2n− 1.

(iii) ψ(x) is a Cn−1 − PU function.

(iv) ψ(0) = 1, and supp(ψ(x)) = [−1, 1].

then

ψ(x) = φ(pp)
gn

.

Proof. Since ψ(x) is symmetric, it is sufficient to investigate only ψ+(x). ψ+(x) is

the restriction of ψ(x) onto [0, 1]. Because ψ(x) is a PU function,

ψ(x+ 1) + ψ(x) + ψ(x− 1) = 1, for x ∈ [−1, 1].



15

Moreover, ψ(x) ∈ Cn−1(R), we have the following:

djψ(x)

dxj
|x=0 = 0, for j = 1, · · · , n− 1,

ψ(x)|x=0 = 1,

ψ+(x) = (1− x)n(b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1).

Consider the difference of two functions:

G(x) = (1− x)ngn(−x)− ψ+(x)

= (1− x)n[(a
(n)
0 − b0) + (a

(n)
1 − b1)x+ · · ·+ (a

(n)
n−1 − bn−1)xn−1]

Then, we have

G(0) = G′(0) = G′′(0) · · · = G(n−1)(0) = 0,

which implies that

ψ+(x) = (1− x)ngn(−x), for all x ∈ [0, 1].

Remark The gradient of the scaled basic PU function is bounded as follows:

d

dx

[
φ(pp)
gn

(
x

2δ
)
]
≤ C

δ
(8)

Whenever n ≤ 3 the constant C ≈ 1. Detailed proof is given in (Oh et al., 2008).

If there is no flat-top region in the partition of unity shape function, it is well known

that the resulting stiffness matrix has a large condition number. Note φ
(pp)
gn does not

have a flat top region for small n (Figure 1) but as n gets larger one can observe

φ
(pp)
gn starts to become flat near the center (Figure 2). However, a large n makes the

gradient of φ
(pp)
gn bigger and could cause instability. A simple modification of the two

piece polynomial partition of unity shape function φ
(pp)
gn can result in a wide flat-top

region.
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Now we define a three piece polynomial PU function with a wide flat-top that has

compact support in the following way.

Definition For integers n ≥ 1, we define a piecewise polynomial function ψ
(δ,n−1)
[a,b] (x)

as follows:

ψ
(δ,n−1)
[a,b] (x) =



φLgn
(x−(a+δ)

2δ
) if x ∈ [a− δ, a+ δ]

1 if x ∈ [a+ δ, b− δ]

φRgn
(x−(b−δ)

2δ
) if x ∈ [b− δ, b+ δ]

0 if x /∈ [a− δ, b+ δ].

(9)

where δ ≤ (b− a)/3, φLgn
(x) := (1 + x)ngn(x), and φRgn

(x) := (1− x)ngn(−x).

Figure 3 shows ψ
(0.15,2)
[−1,1] (x) and its derivative d

dx
ψ

(0.15,2)
[−1,1] (x). Note the wide flat-top

region in the partition of unity shape function. It is also important to see that the

derivative of ψ
(0.15,2)
[−1,1] (x) is also smooth. In fact, ψ

(0.15,2)
[−1,1] (x) is a C2 function. The

above definition is an extension of a two-piece polynomial shape function that was

first introduced by Oh et al. (2008). It can be shown that the partition of unity

shape function ψ
(δ,n−1)
[a,b] (x) is a special case of the convolution partition of unity when

a scaled conical window function (1) is used for the convolution. The definition of

convolution partition of unity follows.

Definition Let Qk = (xk, xk+1) be an interval with |xk+1− xk| ≥ 3δ and the charac-

teristic function of Qk is defined by

χQk
(x) =

 1, if x ∈ Qk,

0, if x /∈ Qk.
(10)
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The convolution PU function of χQk
and w

(l)
δ is defined by

ψ
(δ,l)
k (x) =

∫
R
w

(l)
δ (x− y)χQk

(y)dy =

∫
Qk

w
(l)
δ (x− y)dy

=



fk+1(x) =

∫ δ

x−xk+1

w
(l)
δ (t)dt, if x ∈ [xk+1 − δ, xk+1 + δ],

1, if x ∈ [xk + δ, xk+1 − δ],

fk(x) =

∫ x−xk

−δ
w

(l)
δ (t)dt, if x ∈ [xk − δ, xk + δ],

0, if x ∈ R\[xk − δ, xk+1 + δ].

(11)

Since the scaled window function is a polynomial, ψ
(δ,l)
k (x) becomes a piecewise

polynomial. In fact, ψ
(δ,n−1)
[a,b] (x) is the convolution, χ[a,b](x) ∗ wn−1

δ (x), of the charac-

teristic function χ[a,b], and the scaled window function wn−1
δ , defined by (1).

Although the convolution partition of unity is very useful, especially in constructing

non-rectangular patch partition of unity in 2D, it is numerically inefficient, and it is

not easy to extend the two dimensional construction of the convolution PU functions

to the three-dimensional case. An obvious choice for higher dimensional PU functions

is the tensor product of one dimensional PU functions. The tensor product of these

one-dimensional PU functions yields higher dimensional PU functions with a flat-top.

Although this simple extension works well with rectangles(2D) and cubes(3D), using

tensor products one cannot make neither triangular, general quadrangular patches

(2D), nor tetrahedral, pentahedral, general hexaheral patches, arising in background

meshes for meshless methods. Until very recently (Oh et al., 2009) closed form smooth

PU functions for general polygonal patches (2D) and general polyhedral patches (3D)

have not been available. So the only way to handle complicated mesh structure was

using the convolution partition of unity (Oh and Jeong, 2009).
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ψ
(0.15,2)
[−1,1] (x)

︸ ︷︷ ︸
2δ

-1 0 1

-4

4

d

dx
ψ

(0.15,2)
[−1,1] (x)

FIGURE 3: Three piece polynomial Cn partition of unity function, ψ
(δ,n−1)
[a,b] .
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[D] The product partition of unity

Oh et al. (2009) introduced a simple unified method named the generalized prod-

uct method to construct smooth closed form partition of unity functions for general

polygonal patches (2D) and polyhedral patches (3D). In the following, we give a brief

description of the method.

Note that the two functions φRgn
, φLgn

, defined by (9), satisfy the following relation:

φRgn
(ξ) + φLgn

(ξ − 1) = 1, for ξ ∈ [0, 1]. (12)

Hence, if ϕ : [−δ, δ]→ [0, 1] is defined by

ϕ(x) = (x+ δ)/(2δ),

then we have

φRgn
(ϕ(x)) + φLgn

(ϕ(x)− 1) = 1, for x ∈ [−δ, δ].

Using the latter equation gives two basic one-dimensional Cn−1 functions

ψR0 (x) =


1 if x ≤ −δ

φRgn
(x+δ

2δ
) if x ∈ [−δ, δ]

0 if x ≥ δ,

(13)

ψL0 (x) =


φLgn

(x−δ
2δ

) if x ∈ [−δ, δ]

1 if x ≥ δ,

0 if x ≤ −δ.

(14)

such that

0 ≤ ψL0 (x), ψR0 (x) ≤ 1, ψR0 (x) + ψL0 (x) = 1, for all x ∈ R. (15)

Note that the support of these two functions are unbounded.
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Two basic two-dimensional Cn−1-PU functions are defined by

ΨR(x, y) = ψR0 (x) and ΨL(x, y) = ψL0 (x), for all (x, y) ∈ R2. (16)

such that ΨR(x, y) + ΨL(x, y) = 1, for all (x, y) ∈ R2.

Remark In other words, two functions ΨR(x, y) and ΨL(x, y) are the compositions

of the coordinate projections with (13) and (14), respectively.

Suppose a domain Ω is partitioned into the m-number of convex subregions

Q1, · · · , Qm, by n-number of straight lines, rays, or broken lines L1, · · · , Ln so that,

for each j = 1, · · · ,m, Qflat
j = {(x, y) ∈ Qj|dist((x, y), Lk) > δ, k = 1, · · · , n}, the

flat-top part of Qj, has a positive measure. We assume the following rules and defi-

nitions:

1. At each vertex of the partition, no more than two lines or rays can intersect.

Exceptions are explained in (Oh et al., 2009). Only five cases and their combi-

nations are allowed.

2. The orientations of lines are as usual: the right end of a line is the positive side.

For k = 1, · · · , n, ϕk is an affine mapping on R2 that maps the line Lk onto the

y-axis so that orientations can be matched. We define two basic PU functions

by

ΨR
k = ΨR ◦ ϕk and ΨL

k = ΨL ◦ ϕk, for each k = 1, · · · , n. (17)

3. Suppose for each j, the patch Qj is surrounded by the lines Lj1, · · · , Ljα. Then

by (17), two basic PU functions correspond to each of these α lines. Define ΨPj

by the product of those basic PU functions among 2α basic PU functions that

are one on Qflat
j .

Then we have the following:
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• {ΨPj : j = 1, · · · ,m} is a partition of unity for the domain Ω ;

• The flat-top subregion of the support of ΨPj is Qflat
j . The PU function ΨPj is

the product of the same number of basic PU functions as the number of lines

surrounding the patch Qj that are not the boundary lines of Ω (the basic PU

functions are not needed for the boundary lines of the polygonal domain Ω).

• Even though the partitioning lines are broken the above rule for the construction

of the product PU function holds. Details can be found in (Oh et al., 2009).

Definition We denote the PU function ΨPj that is the product of basic PU functions

corresponding to lines surrounding the patch Qj as the product partition of unity

function.

The product partition of unity functions corresponding to a nonconvex patch, a

triangular patch, and a quadrangular patch are depicted in Figures 4 and 5. We refer

to (Oh et al., 2009) for more examples and the details.

FIGURE 4: Generalized product PU functions for a nonconvex patch.
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FIGURE 5: Generalized product PU functions for polygonal patches.
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1.4 Generalized Finite Element Method

In the previous section, we introduced the RPP shape functions with compact sup-

port corresponding to the uniformly distributed particles. In the cases when the RPP

shape functions associated with uniformly distributed particles are used for basis

functions in a Galerkin approximation, we do not need any mesh at all. However, if

the problem domain Ω is not as simple as a rectangle, it is hard to distribute particles

uniformly into Ω. Thus, if Ω is a non-rectangular polygon, we divide Ω into quad-

rangular patches QJ , J = 1, · · · , N. Then, on each patch QJ , we can plant particles

so that they can be uniformly distributed through a patch mapping from a reference

square to a quadrangle. Then the RPP shape functions can be constructed on each

patch. Next, the locally defined RPP shape functions are connected together by using

partition of unity associated with patches Q1, Q2, · · · , QN . In this section, we present

the meshless method that uses the background mesh Q1, Q2, · · · , QN .

Let us consider the following second order elliptic equation
−∆u = f in Ω,

u = ud on ΓD,

∂u
∂n

= un on ΓN ,

(18)

where Ω is a polygonal domain, n is the outward normal vector along ∂Ω and ΓD ∪

ΓN = ∂Ω. Then the corresponding variational equation is:

Find u ∈ H1(Ω) such that u = ud on ΓD and

B(u, v) ≡
∫

Ω

∇u · ∇v −
∫

ΓD

v∇u · n =

∫
Ω

fv +

∫
ΓN

unv ≡ F(v), (19)

for all v ∈ H1
D(Ω).

Now, the Generalized Finite Element Method for a numerical solution to this model

problem is described as follows:

1. (Generate Background Mesh) To construct PU functions with flat-top and highly
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smooth local approximation functions for numerical solutions of (19), the do-

main Ω is partitioned into polygonal patches. Typically we use triangular or

quadrangular patches for convenience. Unlike the conventional FEM mesh, the

background mesh is flexible. For example, we allow the hanging nodes and

pentagonal patches.

2. (Construct partition of unity functions with a flat-top) For J = 1, 2, . . . ,M, let

ΨJ be the PU function with flat-top corresponding to the patches QJ and ωJ

be the support of ΨJ .

3. (Planting particles) Let Qt be the reference triangular patch and Qr be the

reference rectangular patch. Suppose p̂k, k = 1, 2, · · · , N , are arbitrary (or

uniformly) distributed particles on the reference patches. Let φtJ : Qt → ωJ

(if the physical patch is triangular) or φqJ : Qr → ωJ (if the physical patch is

quadrangular) be the patch mappings. Then, through the patch mappings φtJ

or φqJ , we have particles pJk = (φt or q
J )−1(p̂k), k = 1, · · · , NJ that are distributed

uniformly or non-uniformly in ωJ .

4. (Local approximation functions) Suppose ĝk k = 1, · · · , N̂ are smooth RPP

shape functions corresponding to the particles planted in the reference patch

that satisfy the Kronecker delta property. Then these RPP shape functions on

the reference patch can be used to build local approximation functions on the

support wJ of the physical patch QJ as follows:

gJk = ĝk ◦ (φqJ)−1(or ĝk ◦ (φtJ)−1), k = 1, · · · , NJ . (20)

For example, we can use the tensor product of Lagrange interpolation functions

corresponding to arbitrarily spaced Nx numbers of nodes in the x-direction

and those corresponding to arbitrarily spaced Ny numbers of nodes in the y-

direction. These are RPP shape functions and satisfy the Kronecker delta prop-
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erty. In other words, let Ln,j(x) be the j-th Lagrange interpolation polynomial

of degree (n − 1) associated with n distinct nodes x1, · · · , xn in [0, 1], defined

by

Ln,j(x) =

∏n
k=1,k 6=j(x− xk)∏n
k=1,k 6=j(xj − xk)

.

Then gJk(x, y) = Ln,l(x) × Ln,m(y); 1 ≤ l,m ≤ n, k = n(l − 1) + m are RPP

shape functions with polynomial reproducing order n− 1.

5. (Smooth Global RPP basis functions) The global approximation functions with

compact support are constructed as follows:

ΦJk(x, y) = ΨJ(x, y) · gJk(x, y), J = 1, · · · ,M ; k = 1, · · · , NJ . (21)

These global approximation functions are highly smooth and correspond to

the particles:

pJk, J = 1, 2, · · · ,M ; k = 1, 2, · · · , NJ .

We also assume that each set {gJk : k = 1, · · · , NJ}, of local approximation

functions has the polynomial reproducing property and satisfies the Kronecker

delta property at the particles planted on ωJ .

6. (GFEM approximation space) The vector space spanned by those approximation

functions defined by (21), denoted by V gfem, is said to be the GFEM approxi-

mation space.

The Galerkin approximation method with use of this GFEM approximation

space V gfem is said to be the Generalized Finite Element Method. The

GFEM approximation can be written as

ugfem(x, y) =
∑
J

∑
k

cJk ·GJk(x, y) =
∑
J

ΨJ(x, y)

[∑
k

cJk · gJk(x, y)

]
. (22)
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1.5 Basis Enrichment

There are many different choices for the local approximation functions. Some of

them can be found in (Oh et al., 2008). It is important to understand this flexibility of

selecting local approximation functions is one of the most powerful aspect of partition

of unity finite element methods.

In the following chapters, we will use singular functions or special functions that

mimic the behavior of the singularity on certain patch(es) and on the rest of the

patches, Lagrange interpolation polynomials will be used as local approximation func-

tions. In cases where a special function is used, the numerical integration is not exact.

The optimal choice of local approximation spaces is discussed extensively in (Babuska

et al., 2002).

As pointed out earlier, the flexibility to choose a local approximation space enables

us to add special functions to approximation spaces. Enrichment means adding some

special functions to the sets of existing local approximation functions in the following

way.

Definition The Enriched Generalized Finite Element approximation space V enrich is

defined as follows: Suppose we want to enrich local approximation functions on the

patches

QJ1 , QJ2 , · · · , QJs

with sets of special functions:

σJi,k, k = 1, 2, · · · , NJi
for i = 1, 2, · · · , s.

Then V enrich is the vector space spanned by,

V gfem ∪ {ΨJi
σJik : k = 1, 2, · · · , NJi

, i = 1, 2, · · · , s}.

The Galerkin approximation for the second order elliptic equation with the bound-
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ary condition (18) associated with the Enriched Generalized Finite Element approx-

imation space V enrich is as follows : Find

uenrich =

M∑
J=1

[
NJ∑
k=1

cJkΨJgJk

]
+

s∑
i=1

NJi∑
l=1

dJi,lΨJi
φJi,l

 . (23)

such that

B(uenrich, v) = F(v), for v ∈ V enrich, (24)

where B and F are defined as (19).

Calculation of a stiffness matrix involves the following integration.∫
ωJ∩ωL

∇(vJ,i)
T · ∇(vL,j)dΩ (25)

where J, L indicates the patch number and ∇ = ( ∂
∂x
, ∂
∂y

)T . Also vJ,i, vL,j ∈ V enrich.

Also the components of the load vector is the following.∫
ωJ∩ωL

f · vJ,kdΩ. (26)

Remark Since the PU function Ψ is piecewise polynomial, if the local approximation

functions are chosen as polynomials. Then the integration (25) can be calculated

exactly. Note the integrations (25) and (26) could be difficult whenever the enriched

functions are singular.

The integration (25) have four different types :∫
ωJ∩ωL

∇(ΨJ · gJk)T · ∇(ΨL · gLl)dΩ, (27)∫
ωJ∩ωL

∇(ΨJ · gJk)T · ∇(ΨL · φLl)dΩ, (28)∫
ωJ∩ωL

∇(ΨJ · φJk)T · ∇(ΨL · gLk)dΩ, (29)∫
ωJ∩ωL

∇(ΨJ · φJk)T · ∇(ΨL · φLl)dΩ. (30)

where g is a RPP approximation function and φ is a singular function for enrichment.
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1.6 Error Estimate

The error estimate of GFEM can be found in several different forms. The following

theorem can be found in Oh and Jeong (2009).

Theorem 3 Let Ω be a 2D convex polygon. Also let {ΨJ(x, y) : J = 1, 2, · · · , N}

be a partition of unity corresponding to the patch {QJ : J = 1, 2, · · · , N} of Ω. Also

denote Qflat
J for the flat-top region of ΨJ(x, y). Assume there exists a positive integer

M such that for every x ∈ Ω, card{J : x ∈ ωJ} ≤ M , where ωJ = supp(ΨJ). Let a

collection of local approximation spaces VJ ⊂ H1(Ω ∩ ωJ) be given on each patch QJ .

Let us assume the local approximation space VJ has the following approximation prop-

erties on each patch QJ :

The function u ∈ H1(Ω) can be approximated by a function gJ ∈ VJ such that

1. ||u− gJ ||L2(Ω∩wJ ) ≤ ε
(0)
J ,

2. ||u− gJ ||L2(Ω∩(ωJ�ωflat
J )) ≤ ε

(0)
J,non−flat ,

3. ||∇(u− gJ)||L2(Ω∩wJ ) ≤ ε
(1)
J ,

for all J = 1, 2, · · · , N. Then ,

ugfem =
N∑
J=1

ΨJ · gJ

satisfies the following global estimates.

||u− ugfem||2L2(Ω) ≤M(
N∑
J=1

(ε
(0)
J )2) (31)

and

||∇(u− ugfem)||2L2(Ω) ≤ 2M(
N∑
J=1

(
C∇
δ

)
2

(ε
(0)
J,non−flat)

2 + (ε
(1)
J )

2
) (32)

where C∇ is a constant independent of δ.



CHAPTER 2: THE MOTZ PROBLEM

2.1 Introduction

The Motz problem was first introduced by Motz (Motz, 1947). Since it was intro-

duced the Motz problem has served as a benchmark problem to verify the efficiency

of numerical methods in the presence of boundary singularities. The Motz problem

is a Laplace equation with mixed Neumann-Dirichlet boundary conditions as follows:



−∆u = 0 in Ω = {(x, y)| − 1 < x < 1, 0 < y < 1}

u = 0 on Γ1,

u = 500 on Γ2,

∂u
∂n

= 0 at Γ \ (Γ1 ∪ Γ2)

(33)

Γ1

Γ2

FIGURE 6: The Motz Problem.
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Remark The Motz problem has a jump boundary data singularity at the origin (0, 0)

where the Neumann boundary condition and the Dirichlet boundary condition meet.

The asymptotic solution of (33) can be expressed as an infinite series :

u(r, θ) =
∞∑
i=0

dir
i+ 1

2 cos(i+
1

2
)θ. (34)

Therefore, for an approximate solution of the Motz problem, we consider the partial

sum of (34):

uN(r, θ) =
N∑
i=0

d̃ir
i+ 1

2 cos(i+
1

2
)θ. (35)

On the other hand, the exact solution of the Motz problem is available byconfor-

mal mapping methods (Rosser and Papamichael, 1975). They also obtained highly

accurate approximations up to the first 20 coefficients.

Remark The functions ri+
1
2 cos(i+ 1

2
)θ for each i satisfies the Dirichlet boundary

condition along the negative x-axis and the Neumann condition along the positive

x-axis.

Special finite difference methods (J.R.Whiteman, 1971) and global element meth-

ods (Hendry and Delves, 1979, Kermode et al., 1985) were introduced to determine

the singular coefficients d̃i. Other methods such as one-zone blending (Morley, 1973),

combination of two-zone blended singular basis functions (Wait and Mitchell, 1971),

Boundary methods (Li et al., 1987), the method of auxiliary mapping (MAM) and

mesh refinement (Lucas and Oh, 1993) are available for this problem, however ap-

proximations for the actual values d̃i were not available at all or were unsatisfactory.

On the other hand, a finite difference approach (Wigley, 1988) as well as collocation

trefftz method (Lu et al., 2004) successfully estimated the first several coefficients.

Especially, the collocation trefftz method gives the highly accurate leading coefficient

for the Motz problem.
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2.2 Implementation

For an approximate solution of (33),Ω is partitioned into 39 patches as shown

in Figure 7: 38 rectangular patches along the boundary and one rectangular patch

containing the singularity. We will call the big center patch an enriched patch where

singular functions are used as local approximation functions. On the remaining 38

small patches, the RPP local approximation functions defined by (21) are used. Note

that the oscillatory behavior of the singular functions ri+
1
2 cos(i+ 1

2
)θ increases as i

increases. Hence, to take account of this fact in the numerical integration, one would

need to split the domain of integral into many smaller pieces. Note as the number

of singular functions used as enrichment functions increases, so does the number of

subdivisions in order to obtain accurate results. For a good numerical integration,

the enriched patch is divided in the angular direction as well as the radial direction.

In this dissertation, in terms of polar coordinate, the θ-direction was subdivided into

32 pieces and the r-direction is divided into two pieces to work with 40 singular

functions, rk+ 1
2 cos(k + 1

2
)θ, k = 0, · · · , 39, for local approximation functions.

Two PU functions corresponding to two neighboring patches may have overlapping

supports. The overlapping parts are strips of 2δ-width. In the following numerical

computation, we use δ = 0.01. In Figure 7, the thin strips represent the overlapping

regions. Except on the overlapping regions, PU functions have a flat top on each

patch, which implies the linear independence of the local approximation functions.

In other words, PU functions with flat-tops make the condition number of the stiffness

matrix reasonably small.

Remark It is important to note that the partition of unity that is utilized in this

example allows hanging nodes in background mesh; whereas hanging nodes are not

allowed in the conventional finite element method. This is one of the advantages of

the GFEM. The best way to handle singularity problems by the conventional FEM is

by using adaptive mesh refinement. Since hanging nodes are not allowed, the mesh
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FIGURE 7: Partition of Unity.

should be globally refined. i.e. to avoid hanging nodes, there needs to be some extra

work done to refine the mesh, and the degrees of freedom are increased by this mesh

refinement. Moreover, if the singularity is strong, the convergence could be slow even

if the mesh becomes extremely fine (Lucas and Oh, 1993).

Special attention is needed for numerical integration (28) − (30) on the enriched

patch. Since all local approximation functions on the enriched patch are singular

functions, we do not have the integration (27) on the enriched patch. On the other

hand, at first glance, (28) and (29) seem to have problems because these have singular

integrands. However, these integrations do not cause any trouble due to the fact that

the integration is only performed on overlapping regions with 2δ of width near the

boundary of the patch. Since the overlapping region is far away from the singular

point (0, 0), the integrands are not singular. The numerical integration may not

be exact. Nevertheless, it can be treated well with a reasonable number of Gauss
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FIGURE 8: Region D and Dc.

points. Now integration (30) is the only integral left to consider. The following

theorem shows the boundness of (30). It also gives an idea of how to get an accurate

numerical integration.

Theorem 4 ∫
Ωflat

(∇x,ygi(r, θ))
T (∇x,ygj(r, θ)) dxdy

=

(
1

2
+ i

)(
1

2
+ j

)∫
Ωflat

ri+j cos ((i− j) θ) drdθ,

where Ωflat denotes the flat top region of the PU function corresponding to the enriched

patch shown in Figure 8, and gk(r, θ) = rk+ 1
2 cos((k + 1

2
)θ).

Proof. By a coordinate transformation, the gradient operator is transformed as fol-

lows:

∇x,y=


∂

∂x
∂

∂x

=

cos θ −1

r
sin θ

sin θ
1

r
cos θ

 ∇r,θ = M


∂

∂r
∂

∂θ

,
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where M =

cos θ −1

r
sin θ

sin θ
1

r
cos θ

. For simplicity, we suppress (r, θ) in g(r, θ). Then,

∫
Ωflat

(∇x,ygi(r, θ))
T (∇x,ygj(r, θ)) dxdy

=

∫
Ωflat

(M∇r,θgi)
T (M∇r,θgj) rdrdθ

=

∫
Ωflat

(∇r,θgi)
TMTM(∇r,θgj) rdrdθ

=

∫
Ωflat

(
∂gi
∂r

,
∂gi
∂θ

)1 0

0
1

r2



∂gj
∂r
∂gj
∂θ

 rdrdθ

=

∫
Ωflat

(
∂gi
∂r

∂gj
∂r

)
+

1

r2

(
∂gi
∂θ

∂gj
∂θ

)
rdrdθ. (36)

Since gk(r, θ) = r( 1
2

+k) cos
((

1
2

+ k
)
θ
)

,

∂gi
∂r

=

(
1

2
+ i

)
ri−

1
2 cos

(
1

2
+ i

)
θ,
∂gj
∂r

=

(
1

2
+ j

)
rj−

1
2 cos

(
1

2
+ j

)
θ (37)

∂gi
∂θ

= −
(

1

2
+ i

)
r

1
2

+i sin

(
1

2
+ i

)
θ,
∂gj
∂θ

= −
(

1

2
+ j

)
r

1
2

+j sin

(
1

2
+ j

)
θ. (38)

Plugging (37) and (38) into (36), we have the following.∫
Ωflat

(∇x,ygi(r, θ))
T (∇x,ygj(r, θ)) dxdy

=

∫
Ωflat

(
1

2
+ i

)(
1

2
+ j

)
ri+j cos

((
1

2
+ i

)
θ

)
cos

((
1

2
+ j

)
θ

)
drdθ

+

∫
Ωflat

(
1

2
+ i

)(
1

2
+ j

)
ri+j sin

((
1

2
+ i

)
θ

)
sin

((
1

2
+ j

)
θ

)
drdθ

=

(
1

2
+ i

)(
1

2
+ j

)∫
Ωflat

ri+j
(

cos

((
1

2
+ i

)
θ −

(
1

2
+ j

)
θ

))
drdθ

=

(
1

2
+ i

)(
1

2
+ j

)∫
Ωflat

ri+j cos ((i− j) θ) drdθ. (39)

which proves the theorem.

Let I, J be the global indices corresponding to the local enrichment functions gi, gj,
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respectively, and SIJ be the (I, J)th component of stiffness matrix S. Then SIJ is

given by the following integration.

SIJ =

∫
Oi∩Oj

(∇x,yΨi(x, y)gi(r, θ))
T (∇x,yΨj(x, y)gj(r, θ)) dxdy, (40)

where Oi and Oj are the supports of the partition of unity functions Ψi and Ψj,

respectively. Recall that the functions gi and gj are globally defined functions. Then,

the overlapping region Oi∩Oj can be decomposed as Oflat∪̇Ononflat: a disjoint union

of Oflat and Ononflat . Since ∇Ψi = ∇Ψj = (0, 0)T on Oflat, SIJ of (40) can be

written;

SIJ =

∫
Oflat

(∇x,yΨigi)
T (∇x,yΨjgj)dxdy +

∫
Ononflat

(∇x,yΨigi)
T (∇x,yΨjgj)dxdy

=

∫
Oflat

(∇x,ygi)T (∇x,ygj)dxdy

︸ ︷︷ ︸
(A)

+

∫
Ononflat

(∇x,yΨigi)
T (∇x,yΨjgj)dxdy

︸ ︷︷ ︸
(B)

,

where Ψi = Ψi(x, y),Ψj = Ψj(x, y) and gi = gi(r, θ), gj = gj(r, θ).

Let us examine (B) first. Note that Ψj is a piecewise polynomial and the integral

region Ononflat is far away from the singularity of gj. Also it is important to note that

the integral region has a rectangular shape. Therefore, the integral (B) is straight

forward to evaluate. With enough Gauss points, the integral (B) should be nearly

exact.

Let P : (r, θ)→ (x, y) be the coordinate transformation:

x = r cos θ, y = r sin θ

and TR : (s, t) → (x, y) be the patch mapping from the reference patch P to a

quadrangle patch R (Figure 9). Then we have,
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∂

∂x
(Ψigi) =

(
∂Ψi

∂x

)
gi + Ψi

(
∂gi
∂r

∂r

∂x
+
∂gi
∂θ

∂θ

∂x

)
=

(
∂Ψi

∂x

)
gi◦P−1+Ψi

(
∂gi
∂r

cos θ − ∂gi
∂θ

1

r
sin θ

)
◦P−1. (41)

Similarly,

∂

∂x
(Ψjgj) =

(
∂Ψj

∂x

)
gj◦P−1+Ψj

(
∂gj
∂r

cos θ − ∂gj
∂θ

1

r
sin θ

)
◦P−1, (42)

∂

∂y
(Ψigi) =

(
∂Ψi

∂y

)
gi◦P−1+Ψi

(
∂gi
∂r

sin θ +
∂gi
∂θ

1

r
cos θ

)
◦P−1, (43)

∂

∂y
(Ψjgj) =

(
∂Ψj

∂y

)
gj◦P−1+Ψj

(
∂gj
∂r

sin θ +
∂gj
∂θ

1

r
cos θ

)
◦P−1. (44)

Note ∂
∂x

(Ψjgj),
∂
∂x

(Ψjgj),
∂
∂y

(Ψigi), and ∂
∂y

(Ψjgj) are all function of x, y. Let us

define G(x, y) = ∂
∂x

(Ψigi)
∂
∂x

(Ψjgj) + ∂
∂y

(Ψigi)
∂
∂y

(Ψjgj). Then,

(B) =

∫
Ononflat

∂

∂x
(Ψigi)

∂

∂x
(Ψjgj) +

∂

∂y
(Ψigi)

∂

∂y
(Ψjgj) dxdy

=

∫
Ononflat

G(x, y)dxdy =

∫
P

G ◦ TR|J(TR)|dsdt

=

Ng∑
n=1

Ng∑
m=1

G ◦ T kB(gn, gm)|J(TRB )(gn, gm)|WnWm,

where Ng is the number of Legendre-Gauss quadrature points, gn is the Legendre-

Gauss point, and Wn is the n-th quadrature weight.

On the other hand, by Theorem 4, Part (A) is as follows:

(A) =

(
1

2
+ i

)(
1

2
+ j

)∫
Oflat

ri+j cos ((i− j) θ) drdθ.

Oflat of the enriched patch can be further decomposed into two separate regions D

and Dc. D = {(r, θ)|0 ≤ r ≤ R, 0 ≤ θ ≤ π} in Figure 8 is the half disk and Dc is its
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FIGURE 9: Rectangular Mapping TR.

complement. i.e. Oflat = D∪̇Dc (See Figure 8). On D, the integral of part (A) can

be obtained exactly.

Then, the integral (A) over D can be simplified as follows:
(

1

2
+ i

)
πR2i+1

2
if i = j,

0 if i 6= j.

(45)

Using (45), we have

(A) =

(
1

2
+ i

)
πR2i+1

2
δij +

(
1

2
+ i

)(
1

2
+ j

)∫
Dc

ri+j cos ((i− j) θ) drdθ︸ ︷︷ ︸
(C)

,

where δij is the Kronecker delta. Now over theDc region, we need to perform numerical

integration because of its irregular shape. Since the Dc region is arch-shaped, we need

to use the patch mapping of the blending type for this integration.

Remark Note the integrand cos ((i− j) θ) becomes highly oscillatory as the value of

|i− j| increase. For instance, for i = 40, j = 1 the integrand oscillates about 20 times

when the angle moves from 0 to π. Therefore, we need to divide the integral domain

in the θ-direction. In an actual computation, the θ-direction integral was subdivided

into 32 integrals to achieve a reasonable numerical accuracy.
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FIGURE 10: Blending Mapping TB.

The blending mapping TB : (s, t)→ (x, y) , Figure 10, maps the reference patch P

onto a quadrangle Q with a curved side. Let P1 = (R, θ2), P2 = (R, θ1) in terms of

polar coordinates and P3 = (x3, y3), P4 = (x4, y4) in rectangular coordinates. The

blending patch mapping TB is defined as follows:
x =

1− t
2

(
R cos

(
θ1 − θ2

2

)
(s+ 1) + θ2

)
+

1 + t

2

(
x3

(
1 + s

2

)
+ x4

(
1− s

2

))
,

y =
1− t

2

(
R sin

(
θ1 − θ2

2

)
(s+ 1) + θ2

)
+

1 + t

2

(
y3

(
1 + s

2

)
+ y4

(
1− s

2

))
.

Also its partial derivatives are as follows.

∂x

∂s
=

t− 1

2

(
R sin

(
θ1 − θ2

2

)
(s+ 1) + θ2

)(
θ1 − θ2

2

)
+

1 + t

4
(x3 − x4) ,

∂x

∂t
= −1

2

(
R cos

(
θ1 − θ2

2

)
(s+ 1) + θ2

)
+

1

2

(
x3

(
1 + s

2

)
+ x4

(
1− s

2

))
,

∂y

∂s
=

1− t
2

(
R cos

(
θ1 − θ2

2

)
(s+ 1) + θ2

)(
θ1 − θ2

2

)
+

1 + t

4
(y3 − y4) ,

∂y

∂t
= −1

2

(
R sin

(
θ1 − θ2

2

)
(s+ 1) + θ2

)
+

1

2

(
y3

(
1 + s

2

)
+ y4

(
1− s

2

))
.
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The determinant of Jacobian (TB), denoted by |J(TB)|, is
∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s
. Hence

integral over region Q can be transformed over region P .∫
Q

F (x, y)dxdy =

∫
P

F ◦ TB
(
∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s

)
dsdt.

As pointed out earlier to obtain accurate numerical integration, the Dc region should

be partitioned into many pieces to capture the oscillatory behavior of the integrand.

Let us say Dc is partitioned into N pieces. Also let T kB be the transformation from

the reference square P into the integral region Dc
k, where Dc =

⋃N
k=1D

c
k. Then the

integral (C) becomes the following.

(C) =
N∑
k=1

∫
Dc

k

ri+j cos ((i− j) θ) drdθ

=
N∑
k=1

∫
P

(
ri+j cos ((i− j) θ)

)
◦ T kB|J(T kB)|dsdt

=
N∑
k=1

∫ 1

−1

∫ 1

−1

(
ri+j cos ((i− j) θ)

)
◦ T kB|J(T kB)|dsdt

=

N∑
k=1

Ng∑
n=1

Ng∑
m=1

(
ri+j cos ((i− j) θ)

)
◦ T kB(gn, gm)|J(T kB)(gn, gm)|WnWm

where Ng denotes the number of Legendre-Gauss quadrature points, gn denotes the

Legendre-Gauss point, Wn is the n-th quadrature weight. Thus, we have completed

the calculation of SIJ .

On the other hand, since the Motz problem is a Laplace equation, calculating the

load vector is straightforward. Using the Kronecker delta property of the basis func-

tions, imposing essential boundary condition is as simple as in the conventional finite

element method. Therefore, unlike other meshless methods, our GFEM solution of the

Motz problem does not have any error related to the Dirichlet boundary conditions

because the essential boundary conditions are constants, and local approximation

functions have the polynomial reproducing property.
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2.3 Numerical Results

The numerical tests are carried out by using the RPP shape functions of polynomial

reproducing orders 2,4,6, and 8 on each of the 38 rectangular patches that do not

contain the singularity and 40 enriched singular functions on the enrichment patch

containing the singularity. Figure 11 and Figure 12 shows that the singular behavior

of the Motz problem was removed by the use of 40 enriched approximation functions.

On the enrichment patch, one can see that for order 6 and 8 there is virtually no

error because of using the enriched basis functions in Figure 12. It is worthwhile to

note that the degrees of freedom to capture the singularity at the enrichment patch

is only 40. Also the condition number for each case is comparably small and does not

grow quickly due to the wide flat-top of the partition of unity function.

Table 1 contains the numerical results obtained by GFEM with the use of enriched

approximation functions for the Motz problem. It is known that the numerical solu-

tion of the Motz problem obtained by Li et al. (1987) is the most accurate one. In

Table 1, the errors in the max norm as well as the energy norm are computed using

the best known solution (Li et al., 1987) as the true solution. The maximum errors

of our method are depicted in Figures 11 and 12.

The strain energy of u ∈ H1(Ω), is U = 1
2
B(u, u). The error in the energy norm is

defined by ∣∣∣∣Ugfem − ULi

ULi

∣∣∣∣ 1
2

,

where Ugfem is the strain energy obtained by the method that is used in this disserta-

tion and ULi is the energy that is obtained by the solution provided in the literature

(Li et al., 1987).

When the structure of the singularity is known, RSPM(Reproducing Singularity

Particle Methods) is more effective than the adaptive RPPM(Oh and Jeong, 2009).

RSPM is a Galerkin approximation method associated with the use of RSP shape
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TABLE 1: GFEM with enriched basis function results.

rpp order dof ‖err‖max ‖err‖energy
2 349 2.75×10−3 7.24×10−5

4 940 5.69×10−7 1.87×10−6

6 1830 2.13×10−8 1.74×10−7

8 3019 5.37×10−9 4.37×10−8

functions on the patches containing singularities and with the use of RPP shape

functions on other patches for local approximation functions. Thus, RSPM is similar

to the Method of Auxiliary Mapping (Lucas and Oh, 1993, Oh and Babuska, 1995,

Oh et al., 1998, 2001) in the framework of the p-version FEM. Table 2 compares the

best performance of enriched GFEM, RSPM, and p-FEM with MAM. We conclude

GFEM with basis enrichment is superior to both RSPM and p-FEM with MAM for

the Motz problem. Therefore, when the nature of the singularity is known, GFEM

with enrichment is preferred. Also it is important to note that both p-version FEM

with MAM and RSPM can not estimate di in (34) but enriched GFEM can.

TABLE 2: Relative energy norm error comparison with other methods.

p-FEM with Meshless GFEM with
p degree MAM RSPM enrichment

2 9.00×10−3 1.54×10−2 7.24×10−5

4 2.38×10−4 3.17×10−4 1.87×10−6

6 3.42×10−6 2.40×10−5 1.74×10−7

8 4.83×10−8 7.23×10−7 4.37×10−8
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FIGURE 11: RPP order 2 and 4 with 40 Enriched Basis.
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FIGURE 12: RPP order 6 and 8 with 40 Enriched Basis.
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Let us note that our enriched GFEM solution has no errors along Γ2 because

the local approximation functions on the patches along Γ2 have the Kronecker delta

property and exactly interpolate polynomials (the reproducing polynomial property).

Hence, in terms of boundary condition imposition enriched GFEM solution is clearly

better than Li et al. (1987)’s solution. Figure 12 shows the maximum difference

between enriched GFEM solution and Li et al. (1987)’s solution is less than 6× 10−9.

To compare the accuracy of d̃i in our approximate solution (35) with that of Li et al.

(1987), we compare the errors of
39∑
i=0

d̃gfem
i ri+

1
2 cos(i+

1

2
)θ and

34∑
i=0

d̃Li
i r

i+ 1
2 cos(i+

1

2
)θ

along the boundary Γ2 where the true solution is 500. Result is given in the Figure

13. Here d̃gfem
i , i = 0, · · · , 39 is the coefficient that was obtained by the GFEM with

enrichment, and d̃Li
i , i = 0, · · · , 34 is the coefficient that is listed in Li et al. (1987).

Note
39∑
i=0

d̃gfem
i ri+

1
2 cos(i+

1

2
)θ is not GFEM solution itself but d̃gfem

i , i = 0, · · · , 39

can be obtained because we used ri+
1
2 cos(i+ 1

2
)θ, i = 0, · · · , 39 as enriched basis

functions. i.e. having 40 singular basis functions on the enriched patch, it is possible

to obtain accurate coefficients d̃i in the partial sum (35). The d̃i can be directly

obtained from the finite element solution (23). The Table 3 shows the coefficients d̃i,

i = 1, · · · , 40.

Remark Those existing numerical methods, Table 4, such as Boundary Methods

(Li et al., 1987), Collocation Trefftz Methods (Lu et al., 2004), Integrated Singular

Basis Function Methods (Georgiou et al., 1996), needs special treatment to accurately

impose boundary conditions. However, imposing the essential boundary conditions in

our method is straight forward because our basis functions near Γ2 not only satisfy

the Kronecker delta property but also reproduce polynomial.

The numerical methods, proposed for the Motz problem, include the finite differ-

ence, the global element, the boundary element, and the finite element. The best

numerical solution for the Motz problem that is known so far (Li et al., 1987) has

maximum absolute error 5.47 × 10−9 on Γ2. In this dissertation, using GFEM with
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use of enriched basis functions, the absolute maximum error reaches 6.89 × 10−9 on

Γ2. The two solutions have almost the same accuracy along Γ2. Let us note that Li’s

solution has 35 coefficients, and the numerical solution by the proposed method has

40 coefficients.

However, we claim that GFEM with the use of enriched basis functions can effec-

tively handle not only monotone singularities (of type rα with α < 1) but oscillating

singularities (of the type rα sin(ε log r)) (Oh et al., 2001). On the other hand, the

method used in (Li et al., 1987) is not effective in handling oscillating singularities.

FIGURE 13: Comparison between the best known solution on Γ2.

Since our local approximation functions have the Kronecker delta property and

the polynomial reproducing property, it is possible to impose essential boundary

conditions exactly along Γ2. Figure 12 shows that the GFEM solution has no error

along Γ2, even though the partial sum
∑39

i=0 d̃ir
i+ 1

2 cos(i+ 1
2
)θ can not be 500 along

Γ2.

Remark In the maximum norm, Li’s solution is slightly better than our solution:

That is, ||error||Γ2,∞ = 5.47 × 10−9 (Li et al.) and ||error||Γ2,∞ = 6.89 × 10−9
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(Our method). Moreover, if we compare those errors in the mean square norm

along Γ2, the accuracy of our solution is closer to that of Li’s solution : That is,

||error||Γ2,L2 = 2.26 × 10−9 (Li et al.) and ||error||Γ2,L2 = 2.78 × 10−9. Although

the accuracy of Li’s solution on Γ2 is slightly better, the GFEM method with 40 en-

richment functions has more significant digits for leading coefficients d̃i (See Table 4).

In order to show the effectiveness of the GFEM with enrichment, the first 25 coeffi-

cients d̃j of the partial sum (35) obtained by various numerical methods are compared

in Table 4. We conclude that the proposed method results in highly accurate coef-

ficients d̃i, for the first several terms. Especially, the first coefficient has at least 13

significant digits.

Later in Chapter 3, we will estimate the stress intensity factor using GFEM with

enrichment. Linear elasticity is nothing but coupled elliptic equations. Hence, the de-

scribed method should work well for the elasticity problem. The highly accurate lead-

ing coefficient enables us to compute the stress intensity factor in a non-conventional

way.
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TABLE 3: Computed coefficients d̃i of
∑40

i=1 d̃ir
i+ 1

2 cos((i+ 1
2
)θ).

ith Coefficients ith Coefficients

1 + 401.1624537452345 21 + 2.290744823584897e-06

2 + 87.65592019508790 22 + 1.063692985558411e-06

3 + 17.23791507944674 23 + 5.314980562968453e-07

4 − 8.071215259682478 24 − 2.454035587720472e-07

5 + 1.440272717022879 25 + 1.094258200815170e-07

6 + 3.310548859207677e-01 26 + 5.204123234110838e-08

7 + 2.754373445087275e-01 27 + 2.594548101382485e-08

8 − 8.693299465893235e-02 28 − 1.091753910227160e-08

9 + 3.360487861931393e-02 29 + 5.274360833540486e-09

10 + 1.538437428404088e-02 30 + 2.733609395521398e-09

11 + 7.302301728215649e-03 31 + 1.354076917219339e-09

12 − 3.184113774923665e-03 32 − 1.816851682230465e-10

13 + 1.220646385725587e-03 33 + 2.266480380995557e-10

14 + 5.309652968145126e-04 34 + 1.541467769079195e-10

15 + 2.715121558566150e-04 35 + 7.396367522015557e-11

16 − 1.200455757406748e-04 36 + 5.058240306963314e-11

17 + 5.053973008462738e-05 37 + 6.165507191581204e-12

18 + 2.316701639900009e-05 38 + 6.544346229722119e-12

19 + 1.153538904754159e-05 39 + 2.943942531164191e-12

20 − 5.293975100353315e-06 40 + 5.127853852958069e-12
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TABLE 4: Comparison of the calculated coefficients to other methods.
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CHAPTER 3: STRESS ANALYSIS ON CRACKED ELASTIC DOMAINS

3.1 The Elasticity Equations

Let Ω be an elastic medium in R2 with boundary Γ = ∂Ω. The state variables

(the displacement vectors) are denoted by u = {ux(x, y), uy(x, y)}T and stress tensor

are denoted by {σ(u)} = {σ(u)
x , σ

(u)
y , τ

(u)
xy }T . Let us denote the strain tensor {ε(u)} =

{ε(u)
x , ε

(u)
y , γ

(u)
xy }.

The strain-displacement and stress-strain relations are given by

{ε(u)} = [D]{u}, (46)

{σ(u)} = [E]{ε(u)}, (47)

respectively, where [D] is the following differential matrix,

[D] =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

 , (48)

and [E] = [Eij], 1 ≤ i, j ≤ 3, is a symmetric positive definite matrix of material

constants.

For a isotropic elastic medium, the matrix [E] is given as :

[E] =
E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2

 (49)
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when plane stress is the quantity of interest, or

[E] =


ζ + 2µ ζ 0

ζ ζ + 2µ 0

0 0 µ

 (50)

when plane strain is the quantity of interest. Here, µ and ζ are defined as follows:

µ =
E

2(1 + ν)
, ζ =

νE

(1 + ν)(1− 2ν)
. (51)

Note that E is the modulus of elasticity and ν (0 ≤ ν < 1
2
) is Poisson’s ratio.

The equilibrium equations of elasticity are given by

[D]T{σ(u)}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (52)

where {f} = {fx(x, y), fy(x, y)}T is the vector that describes body force per unit

area.

Using the stress-strain relation, (46) and (47), (52) can be expressed in terms of the

displacement vector {u}. Let us consider the following system of partial differential

equations in terms of the displacement vector,

[D]T [E][D]{u}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (53)

subject to the following boundary conditions,

[N ]{σ(u)}(s) = {T̃}(s) = {T̃x(s), T̃y(s)}T , s ∈ ΓN , (54)

{u}(s) = {ũ}(s) = {ũx(s), ũy(s)}T , s ∈ ΓD, (55)

where Γ = ΓN ∪ΓD = ∂Ω, {nx, ny}T is an outward unit normal vector to the traction

boundary ΓN , and

[N ] =

nx 0 ny

0 ny nx

 . (56)

Let H1
D(Ω) = {{w} = {wx, wy} ∈ [H1(Ω)]2 : {w} = 0 on ΓD}. Then the varia-
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tional form of (53)-(55) become the following:

Find the vector {u} = {ux, uy} such that ux, uy ∈ H1(Ω), {u} = {ũ} on ΓD, and

B({u}, {v}) = F({v}) for all {v} ∈ H1
D(Ω), (57)

where,

B({u}, {v}) =

∫
Ω

([D]{v})T [E]([D]{u})dxdy, (58)

F({v}) =

∫
Ω

{v}T{f}dxdy +

∮
ΓN

{v}T{T̃}ds. (59)

U({u}) = 1
2
B({u}, {v}) is the strain energy of the displacement vector {u}.

Let us denote the basis functions defined on Ω by Φi(x, y), i = 1, 2, · · · , n. The

components of the displacement vector in terms of basis functions Φi are given as the

following forms:

ux(x, y) =
n∑
k=1

ckΦk(x, y), (60)

uy(x, y) =
n∑

k=n+1

cn+kΦk(x, y), (61)

where ci (i = 1, 2, · · · , 2n) are called the amplitudes of the basis functions Φi. Let

{Φk} =

Φk(x, y)

0

 , k = 1, 2, · · · , n, (62)

{Φk} =

 0

Φk(x, y)

 , k = n+ 1, 2, · · · , 2n. (63)

Then the displacement vector {u} can be written as

{u} =
2n∑
k=1

ak{Φk}.

Substituting (62) and (63) into (58), we have the following.
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Lemma 3 The bilinear form B({u}, {v}) on an element e becomes,

∫
e

(∇Φj)
T

E11 E13

E31 E33

 (∇Φi) if {v} = {Φi, 0}T{u} = {Φj, 0}T , (64)

∫
e

(∇Φj)
T

E33 E32

E23 E22

 (∇Φi) if {v} = {0,Φi}T{u} = {0,Φj}T , (65)

∫
e

(∇Φj)
T

E13 E12

E33 E32

 (∇Φi) if {v} = {Φi, 0}T{u} = {0,Φj}T , (66)

∫
e

(∇Φj)
T

E31 E33

E21 E23

 (∇Φi) if {v} = {0,Φi}T{u} = {Φj, 0}T . (67)

3.2 Partition of unity for edge-cracked domains

Constructing a partition of unity for a background mesh of a non-convex domain

such as an edge-cracked domain was not obvious. For this purpose, recently Oh et al.

(2009) introduced a new method called the almost everywhere partition of unity.

Instead of using the almost everywhere partition of unity, we use a polar mapping to

construct a partition of unity on edge-cracked domains.

To illustrate how to construct a partition of unity on a non-convex single edge-

cracked domain, let us consider the background mesh in Figure 14 (a). We use eight

patches QJ , J = I, II, · · · ,VIII as shown in Figure 14 (a). For each patch QJ , we

construct a partition of unity function ΨJ that corresponds to the patch QJ . The

support of the partition of unity function ΨJ is illustrated by dotted lines in Figure

14 (b). For example, the support of ΨIII is the shaded region in Figure 14 (c). The

thin strips that are enclosed by dotted lines are the overlapping region of the partition

of unity functions. Note that the supports of the partition of unity functions do not

overlap along the negative x-axis where the crack line is located.
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Let P : (r, θ)→ (x, y) be the coordinate transformation:

x = r cos θ, y = r sin θ.

Then, as shown in the Figure 14, through the mapping P , the partition of unity on

the cracked domain in the polar coordinate system (Figure 14 (c) left) is generated

by using the partition of unity of the reference domain in the rectangular coordinate

system (Figure 14 (c) right).

Let the partition of unity function on the reference coordinate system be Ψ̂J(r, θ)

(J=I,II,· · · ,VIII). This reference partition of unity functions Ψ̂J(r, θ) can be easily

constructed by using the tensor product of (9). Then the partition of unity functions

ΨJ(x, y) on the physical coordinate system is given by,

ΨJ(x, y) = Ψ̂J ◦ P−1(x, y), J = I, II, · · · ,VIII.

Note that P is not one-to-one. To define P−1, we assume P−1(0, 0) = (0, 0). Then in

this configuration, ΨJ(0, 0) = 1, J = 1, 2, · · · , 8. That is,

8∑
J=1

ΨJ(0, 0) = 8 6= 1.

ΨJ(x, y) fails to be a partition of unity at one point. We call ΨJ(x, y), the almost

everywhere partition of unity (Oh and Jeong, 2008).

Because of the mapping P , the gradient of the four partition of unity functions

ΨJ(x, y) J=I,II,· · · ,IV become arbitrary large on the overlapping region when
√
x2 + y2 →

0. However, due to the nodal constraint, this fact does not cause any computational

problems. For more general and detailed analysis, we refer to (Oh and Jeong, 2008).

As shown in Figure 14 (c), the four outer patches, QJ , J = I, II, · · · ,VIII are

mapped to quadrangles, Q̂J , J = I, II, · · · ,VIII with one curved side. All calculations

are straight forward except the line integral on the curved boundary.
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FIGURE 14: Partition of Unity for the Edge-Cracked Domain.
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3.3 Elasticity problems containing singularities

For the numerical tests of GFEM with enriched basis functions, we choose the

following approximation space V enrich
h .

V enrich
h = span{bJk(x, y), sJi(x, y) : k = 1, .., NJ , i = 1, .., SJ , J = 1, ..,M} (68)

where bJk and sJ,i are as follows:

bJk(x, y) := ΨJ(x, y)fk(x, y), sJi(x, y) := ΨJ(x, y)gi(x, y).

Remark SJ = 0 if the patch QJ is not enriched.

Here fk(x, y) are RPP local approximation functions, gi(x, y) are singular enriched

functions, and also ΨJ(x, y) is the PU function on the patch QJ .

Then the Galerkin approximation,{uh} = {uxh, u
y
h}, for each component of the

vector {u} = {ux, uy} is the following.

uxh(x, y) =

M∑
J=1

(

NJ∑
k=1

cJkbJk +

SJ∑
i=1

dJisJi) (69)

uyh(x, y) =

M∑
J=1

(

NJ∑
k=1

cJ+1kbJk +

SJ∑
i=1

dJ+1isJi) (70)

Example 1 Let us consider the equation of elasticity on a domain Ω = {(x, y) :

−2 ≤ x, y ≤ 2} with a crack along the negative x-axis. Assume that Young’s modulus

E = 1000, and the poisson’s ratio ν = 0.3. We also assume that the following true

stresses are imposed along all boundaries of the given domain.

σx =
1

4
√
r

(3 cos
θ

2
+ cos

5θ

2
),

σy =
1

4
√
r

(5 cos
θ

2
− cos

5θ

2
),

τxy =
1

4
√
r

(sin
5θ

2
− sin

θ

2
).
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(0,0)

(2,2)

(2,-2)

(-2,2)

(-2,-2)

Furthermore, in order to prevent rigid body motion, the following constraints are

imposed:

• The displacement vector {u} is fixed at the crack tip (0, 0).

• The y-component of the displacement vector, uy(x, y), is fixed at (2, 2).

Let G be the following singular functions :

G = {
√
rcos(

θ

2
),
√
rsin(

θ

2
),
√
rcos(

5θ

2
),
√
rsin(

5θ

2
)}.

We pick singular functions gi for basis enrichment from the set G.

It is important to understand that we have the freedom to choose the set G. For

any choice for G, one can obtain a solution that is as good as that of p-FEM that is

comparable to p-version of FEM because members of G are additional basis functions

added to the existing FEM basis.

In the extreme case, when G = ∅, we get the RPP approximation which is com-

parable to the conventional p-FEM. Let us assume that g ∈ G was not a good choice

for the given problem. That is, it does not represent the crack singularity. Then, the

coefficients dJi, dJ+1i in (69) and (70) comes out close to zero in the finite element ap-

proximation which indicates that the corresponding enriched functions gi, gi+1 were

a poor choice. Hence, a prior knowledge to the solution behavior or a numerical

experiment could provide an optimal or nearly optimal choice for G.
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Adding or removing one or more singular function for enrichment into G does

not alter the background mesh that was needed to create the partition of unity. If

the set G does generate almost exactly the stress functions σx, σy, τxy then from the

coefficients dj and dj+1, one can immediately obtain the stress intensity factor (SIF)

without extra cost for sophisticated post-processing.

Remark Let us assume the set G can only generate the stress functions close but

not exactly, then it may be possible to obtain reasonable approximation for the dis-

placement vectors. However, the stress intensity factor does require post processing.

In order to show the effectiveness of the proposed method, Figures 15 and 16

compare the true stress, the computed stress obtained by GFEM with enrichment,

and the computed stress by the RPPM which is comparable to the standard p-version

finite element methods on [0.001, 0.01] × [−π, π]. In Figure 15, comparisons are for

the stress σy, whereas Figure 16 compares the shear stress τxy.
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θ
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σy

GFEM with enrichment

θ

r

σy

RPPM with order 4 RPP Functions

θ

r

σy

True

FIGURE 15: Stress σy comparison.
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GFEM with enrichment

θ

r

τxy

RPPM order 4

θ

r

τxy

True

FIGURE 16: Stress τxy comparison.
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From Figures 15 and 16, one can easily see the effectiveness of the proposed method

in handling crack singularities. In other words, there is virtually no difference between

the true stress and the computed stress obtained by using GFEM with enrichment.

However, there is a significant difference between the computed stress and true stress

by the polynomial approximation. Note the discrepancy between GFEM with enrich-

ment and without enrichment is get larger as r → 0.

Example 2 Let us consider the equations of elasticity on a domain shown below,

which is isotropic with material constants: E = 1000 and ν = 0.3. The boundary

conditions are given as follows:

• un = 0, ut = 0 along Γ1 ∪ Γ2,

• Tn = 10, Tt = 2 along Γ5,

• Tn = 0, Tt = 0 along ∂Ω ∩ (Γ1 ∪ Γ2 ∪ Γ5)c.

(0,0)
Γ1 fixed

Γ7 free
(2,0)

(2,2)

(2,-2)

(-2,2)

(-2,-2)

Γ2 fixed

Γ6 free

Γ3 free

Γ5

Γ
4

fr
ee

Note that this problem has a weak singularity at (2, 2) and a strong singularity

at the crack tip. For the conventional finite element method, two meshes, Mesh

I and Mesh II, (Figure 17) are used. Mesh II is obtained from Mesh I by adding

graded layers of radii 0.5, 0.5σ, 0.5σ2, 0.5σ3 centered at crack tip and and layers of

radii 0.5, 0.5σ, 0.5σ2 centered at top right corner, (2, 2), where σ = 0.15. Mesh I and

Mesh II have 22 and 48 elements, respectively.
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Mesh I (22 elements) Mesh II (48 elements)

MAM with Mesh I GFEM with Enrichment

FIGURE 17: Meshes for FEM and background mesh for GFEM.

TABLE 5: Total Strain Energy Comparison.

p-FEM with p-FEM with p-FEM with GFEM with
p Mesh I Mesh II MAM enrichment
2 1.60551078343838 2.01871772810441 1.70213202981048 2.01441397717771
4 1.81518650351132 2.08274831820450 2.11004639654621 2.11266479436991
6 1.89915218378087 2.09344129702200 2.11356074177201 2.11380305100008
8 1.94532926077425 2.09816367972923 2.11378584006680 -
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In Table 5, p-FEM with MAM (Method of Auxiliary Mapping) on Mesh I is used.

For Mesh I and Mesh II, the standard p-FEM is used, without any special treatment.

For the p-FEM with MAM, special mappings are used on shaded regions. The shaded

region on GFEM with Enrichment is where the singular functions are used. The true

energy Uexact = 2.113815563245032 is obtained by the extrapolation approach given

in Chapter 4 of Szabo and Babuska (1991).

For this example, only one singular enrichment function is used for enrichment,

r
1
3 sin 1

2
θ. The eigenvalue λ = 1

3
is chosen because of the Dirichlet BC on Γ1 and the

Neumann BC on Γ7. The degrees of freedom are compared in Table 6.

TABLE 6: DOF Comparison.

p-FEM with p-FEM with GFEM with
p Mesh I & MAM , DOF Mesh II, DOF enrichment DOF
2 120 280 128
4 376 792 328
6 808 1688 624
8 1416 2968 -

TABLE 7: Error Comparison in Energy Norm(%).

p-FEM with p-FEM with p-FEM with GFEM with
p Mesh I Mesh II MAM enrichment
2 49.04 21.21 15.81 6.67
4 37.59 12.12 4.22 2.33
6 31.87 9.82 1.10 0.24
8 28.23 8.61 0.38 -

As shown in Table 6 and Table 7, the proposed method is not only robust, but it is

highly efficient at handling elasticity problems on a cracked domain. By having the

right enrichment function, the approximate solution of the GFEM with enrichment

converges much faster than MAM with fewer degrees of freedom.
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3.4 Meshless methods for stress intensity factors

Fracture mechanics is a mechanical framework for the behavior of cracked elastic

medium under a load. Depending on what type of loading is applied to the elastic

medium, the crack propagation direction may vary. Often the propagation of cracks

result in total structural failure.

A principal interest in fracture mechanics is the stress intensity factor K which

characterizes the stress at the crack tip in an elastic medium. There are two modes

of the crack extension (Figures 18−19). Two basic modes are determined by the load

that is applied to the elastic body.

• Mode I is called the opening mode and is due to the symmetric extension of

cracked surfaces perpendicular to the plane that has crack on it. There is a

displacement jump in the perpendicular direction of the cracked plane. This

Mode I crack is related to KI .

~ww
ww�

FIGURE 18: Mode I (Opening mode).

• Mode II is called the sliding mode and is associated with skew-symmetric loading

on a cracked surface. A displacement jump arises in the parallel direction of

the crack.

Since Mode I type crack extension is the most common in practice, it is regarded as
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FIGURE 19: Mode II (Sliding mode).

the most important factor. In general, the stress distributions at the crack-tip are a

linear combination of both modes.

If one assumes isotropic linear elastic behavior and simple geometry for the crack,

it is possible to obtain closed form expression for stresses. The Westergaard’s method

is one such example. It is a well known fact that the stress field in a linear elastic

cracked medium in the vicinity of the crack tip has the following form :

σij =
K√
2πr

fij(θ) + · · · (71)

where σij are components of the stress tensor, fij is a dimensionless function of θ,

and (r, θ) is the polar coordinates that has the origin at the crack tip.

The stress distribution in the vicinity of a crack tip can be completely determined

by the stress intensity factor K when the Mode is specified. Hence, it is clear that

when K is given, all components of stress, strain, and displacements will be resolved.

It is known that the crack grows when K exceeds some critical value, Kc. As a matter

of fact, this critical value Kc does not depend on the geometry of the crack, but it is

a material property.

To determine whether a crack will grow or not is determined by Kc and K. In

practice, Kc is obtained by an experiment on cracked specimens of the elastic material.

Whereas the stress intensity factor K can be obtained by applying numerical methods
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or analytically.

The conventional finite element method is a powerful tool; however it is not efficient

for crack problems because of its slow convergence. The inefficiency is due to the

existence of the singular stress field in the vicinity of a crack-tip. Although many

approaches have been introduced, no efficient and universal approach has emerged

to estimate accurate stress intensity factor. In this dissertation, a different attempt

has been made to obtain the stress intensity factor and is compared to conventional

approaches.

Although applying the conventional finite element method is straightforward, the

obvious disadvantage is that it requires an extremely fine finite element mesh around

the crack tip in order to capture the behavior of the singular stress field. In an effort to

provide accurate and economical approximations, various attempts have been made

over the years to deal with a singularity in elasticity problems. There are three ways

the problem is approached: mesh refinement, incorporating special singular elements,

and using nonlocal special singular functions.

Of course, adding special singular functions that mimic the behavior of the sin-

gularities into the approximation space will greatly enhance the solution, but the

implementation would be extremely difficult. In addition, one must get the eigen-

values corresponding to the singular points to choose the right singular functions.

Therefore, the most popular choices would be mesh refinement or adaptive finite el-

ement methods; however its success relies on a proper choice of mesh, and it also

requires lengthy computing time.

On the other hand, the p-FEM with MAM approach is capable to yield very accu-

rate solutions successfully (Oh and Babuska, 1995). It was shown that this approach

gives superior results to other methods with almost no extra cost. Moreover, this

method gives a reasonable solution for those elasticity problems even when the h-p

version of the finite element method failed. Despite the fact that the MAM method
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has the ability to resolve an accurate stress fields in the vicinity of the crack-tip and

accurate calculation for the stress intensity factor, it has the following shortcoming:

First, to accurately estimate the stress intensity factor it requires sophisticated post

processing. Second, capturing an oscillating singularity such as in bi-material cracks

would be difficult.

Using the GFEM with enrichment, the exact singular behavior of the stress field

around the crack tip can be embedded in the basis functions whether it is an oscillating

singularity or a monotone singularity. Hence, the proposed meshless method yields

highly accurate solutions like p-FEM with MAM, but it is more robust and has the

extra ability to capture oscillating singularities.

In summary, the advantage of using the meshless method with enrichment for

elasticity problems on a cracked elastic medium is the ability to use the exact singular

functions as local shape functions. Also it is possible to obtain the stress intensity

factor directly as apposed to the conventional methods.

As mentioned in the previous chapter, the present method has the flexibility to

choose local approximation functions on each patch differently. In the vicinity of the

crack-tip region, enrichment with singular functions can be easily adopted. To that

end, we make asymptotic expansions of the displacement vector in the vicinity of

crack tip and use influential terms of this expansion as enrichment functions. Choos-

ing the correct enriched function, one can directly obtain the stress intensity factor

(SIF) without any post-processing such as is necessary in conventional finite element

methods.

For simplicity, let us assume that there is no body force. The displacement vector

can be defined as follows(Szabo and Babuska, 1991).
us(r, θ) = us0 +

∞∑
k=1

A
(1)
k u

s(1)
k (r, θ) +

∞∑
k=1

A
(2)
k u

s(2)
k (r, θ),

ut(r, θ) = ut0 +
∞∑
k=1

A
(1)
k u

t(1)
k (r, θ) +

∞∑
k=1

A
(2)
k u

t(2)
k (r, θ),

(72)
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(x, y)

(xc, yc)

x

y

s

t
r

θ

φ

FIGURE 20: Coordinate systems in the vicinity of crack-tip.

where the superscripts (1) and (2) denote symmetric and anti-symmetric parts, re-

spectively. The u
s(1)
k , u

s(2)
k , u

t(1)
k , u

t(2)
k are defined as follows.

u
s(1)
k =

1

2G
rλk [(κ−Q(1)

k (λk + 1)) cosλkθ − λk cos(λk − 2)θ] (73)

u
t(1)
k =

1

2G
rλk [(κ+Q

(1)
k (λk + 1)) sinλkθ + λk sin(λk − 2)θ] (74)

u
s(2)
k =

1

2G
rλk [(κ−Q(2)

k (λk + 1)) sinλkθ − λk sin(λk − 2)θ] (75)

u
t(2)
k =

−1

2G
rλk [(κ+Q

(2)
k (λk + 1)) cosλkθ + λk cos(λk − 2)θ] , (76)

where Q
(1)
k , Q

(2)
k , and eigenvalues λk are the following.

λ1 =
1

2
and λk =

k + 1

2
for k ≥ 2 , (77)

Q
(1)
k =


−1 for k = 2n− 1(n ≥ 2)

1− λk
1 + λk

for k = 1 and k = 2n(n ≥ 1) ,
(78)
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Q
(2)
k =


1− λk
1 + λk

for k = 2n− 1(n ≥ 2)

−1 for k = 1 and k = 2n(n ≥ 1) .

(79)

G is the shear modulus defined by Young’s modulus E and Poisson’s ratio ν as follows:

G =
E

2(1 + ν)

The constant κ shown in (73)-(76) is determined by Poisson’s ratio ν as the following.

Depending on whether plane strain or plane stress is considered. For plane strain, we

have

κ = 3− 4ν

and for the plane stress,

κ =
3− ν
1 + ν

.

The coefficients A
(1)
1 , A

(2)
1 are called the generalized stress intensity factors and are

related to the Mode I and Mode II stress intensity factors of linear elastic fracture

mechanics, usually denoted by symmetric mode KI and anti-symmetric mode KII .

The definition of KI and KII follows:

A
(1)
1 =

KI√
2π
, A

(2)
1 =

KII√
2π
. (80)

Note (73)-(76) is expressed in terms of polar coordinates but these could be easily

interchanged to rectangular coordinate using following transformations. r =
√
s2 + t2

θ = arctan ( t
s
)

;

 s = (x− xc) cosφ + (y − yc) sinφ

t = −(x− xc) sinφ + (y − yc) cosφ .

(81)

Similarly, the displacements near the crack-tip region can be transformed in the

following way:  u
x(l)
k = u

s(l)
k cosφ − u

t(l)
k sinφ

u
y(l)
k = u

s(l)
k sinφ + u

t(l)
k cosφ

(82)
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where l = 1, 2 and k = 1, · · · ,∞.

Therefore, using (82), the displacement vector (72) transforms in terms of the x-y

coordinates as follows:
ux = ux0 +

∞∑
k=1

[A
(1)
k u

x(1)
k + A

(2)
k u

x(2)
k ]

uy = uy0 +
∞∑
k=1

[A
(1)
k u

y(1)
k + A

(2)
k u

y(2)
k ]

(83)

Truncating (83) to a finite sum will reveal the enrichment functions. More specif-

ically, for the x-displacement we choose {ux(1)
k , u

x(2)
k , k = 1, · · · , N} as enrichment

functions and for the y-displacement, one may choose {uy(1)
k , u

y(2)
k , k = 1, · · · , N} as

enrichment functions. Note that the coefficients of u
x(1)
k and u

y(1)
k are the generalized

stress intensity factors. Hence, if the GFEM approximation space explicitly contains

the functions u
x(l)
k and u

y(l)
k , then the stress intensity factor(SIF) can be obtained by

reading the amplitude of the enriched functions. If the test space does not contain

u
x(l)
k and u

y(l)
k , then the stress intensity factor could be estimated as follows:

Let G be the Strain Energy Release Rate and U be the elastic strain energy. Then

in two-dimensional case where the crack extends along its own direction in a self-

similar manner, the central difference approximation (CDA) could be used for the

energy release rate as follows:

G ≈ U(a+ ∆)− U(a−∆)

2∆
, (84)

for a smaller number ∆. However, this approach has two drawbacks. First, in (84),

one is forced to divide a huge number with a small number which results in inaccuracy.

Second, to accomplish this procedure one needs to run the FE code twice.

On the other hand, there is another well known method, the virtual crack closure

technique (VCCT). The following two integrals give the energy release rates of the
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opening mode (Mode I) and the sliding mode (Mode II), respectively:

GI ≈
1

2∆

∫ ∆

0

σy(r, 0)[uy(∆− r, π)− uy(∆− r,−π)]dr, (85)

GII ≈
1

2∆

∫ ∆

0

τxy(r, 0)[ux(∆− r, π)− ux(∆− r,−π)]dr. (86)

Although the sum of GI and GII , total energy release rate G, does converge as ∆→ 0,

each of the integrals usually do not converge for the interfacial cracks between dis-

similar materials due to the oscillatory nature of the stress and displacement fields in

the vicinity of the crack tip. In this dissertation, we deal with cracks in homogeneous

materials. So both GI and GII do converge. Again, it is important to note that this

post processing is not necessary when we utilize the correct enriched functions.

Remark To get the accurate stress intensity factors, it is important to choose the

correct pairs of enrichment functions for the x and y directions. In other words, unlike

the conventional FEM basis functions constructed in section 3.1, the basis functions

for the x-displacement are different from the basis functions for the y-displacement.

However, to obtain the stress intensity factor in the proposed way, one must be ex-

tremely careful in selecting local approximation functions near the crack-tip. This will

be discussed in more detail in the following example.

Example 3 Single edge-notched specimen (SENS) : Let us consider a single edge-

notched plate [−a, b− a]× [−k, k] under uniform tension S as Figure 21. It is known

that the mode I stress intensity factor for single edge-notched plate is the following

(Gdoutos, 1993),

KI = S
√
πa{1.12− 0.23(

a

b
) + 10.55(

a

b
)2 − 21.72(

a

b
)3 + 30.39(

a

b
)4}, (87)

whenever 0 <
a

b
< 0.6.

In this example, a = 0.55, b = 1.0, k = 2.0, E = 106, and uniform traction S = 100

is used. Using (87), we have KI = 440.6271928 and GI = (1−ν2)
K2

I

E
= 0.176678. The
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b

a

S

S

FIGURE 21: Single edge-notched specimen (SENS).

results are presented in Table 8, from which we can verify the superiority of proposed

method. All entries have been calculated using (84) with ∆ = 0.5× 10−8.

TABLE 8: Plain strain computation for single edge-notched plate.

p Gp−FEM GMAM GENRICH

2 0.1270484 0.1501532 0.1748723
4 0.1378598 0.1721155 0.1754336
6 0.1473620 0.1754222 0.1763207
8 0.1535316 0.1755709 -

For the conventional finite element method, eight triangular elements are used

around the crack tip and for the rest the region, 28 quadrilateral elements are used.

For MAM solutions, we choose eight inner triangular regions as the mapping zone. For

the GFEM with enrichment, the same background mesh is used as that of Example

2. The following enrichment functions are used to enrich the existing basis functions



72

around the crack tip singularity.

G = {
√
rcos(

θ

2
),
√
rsin(

θ

2
),
√
rcos(

5θ

2
),
√
rsin(

5θ

2
)}.

Although the previously used enrichment functions G are good enough to capture

the singular behavior of the stress field in the vicinity of the crack tip. To obtain the

stress intensity factor, we need to use (84) or (85) and (86) in the post processing.

These methods will certainly give correct stress intensity factors; however if we choose

an appropriate enrichment space, we can avoid this post processing to estimate the

stress intensity factor. Details follow as shown in the following example.

Example 4 Consider the elasticity problem on the cracked domain discussed in Ex-

ample 1. We directly calculate the stress intensity factor of the problem by calculating

the amplitudes of the leading coefficients. To see the effectiveness of the proposed

stress intensity factor calculation, let us revisit Example 1. Note the imposed stresses

are Mode I with KI = 1 (See Exercise 10.4, (Szabo and Babuska, 1991)).

In Figure 20, the crack is aligned parallel to the x-axis. i.e. φ ≡ 0. Hence s ≡ x

and t ≡ y. Having this fact we can rewrite (72)-(75) in the following way.


ux(r, θ) = ux0 +

∞∑
k=1

A
(1)
k u

x(1)
k (r, θ) +

∞∑
k=1

A
(2)
k u

x(2)
k (r, θ)

uy(r, θ) = uy0 +
∞∑
k=1

A
(1)
k u

y(1)
k (r, θ) +

∞∑
k=1

A
(2)
k u

y(2)
k (r, θ),

(88)

where the superscripts (1) and (2) denote the symmetric and anti-symmetric parts,

respectively. The u
x(1)
k , u

x(2)
k , u

y(1)
k , u

y(2)
k are defined as follows.

u
x(1)
k =

1

2G
rλk [(κ−Q(1)

k (λk + 1)) cosλkθ − λk cos(λk − 2)θ] (89)

u
y(1)
k =

1

2G
rλk [(κ+Q

(1)
k (λk + 1)) sinλkθ + λk sin(λk − 2)θ] (90)

u
x(2)
k =

1

2G
rλk [(κ−Q(2)

k (λk + 1)) sinλkθ − λk sin(λk − 2)θ] (91)

u
y(2)
k =

−1

2G
rλk [(κ+Q

(2)
k (λk + 1)) cosλkθ + λk cos(λk − 2)θ] (92)
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By plugging (80) into (88), we have the following. For brevity, (r, θ) is suppressed.
ux(r, θ) = ux0 +

KI√
2π
u
x(1)
1 +

KII√
2π
u
x(2)
1 +

∞∑
k=2

A
(1)
k u

x(1)
k +

∞∑
k=2

A
(2)
k u

x(2)
k

uy(r, θ) = uy0 +
KI√
2π
u
y(1)
1 +

KII√
2π
u
y(2)
1 +

∞∑
k=2

A
(1)
k u

y(1)
k +

∞∑
k=2

A
(2)
k u

y(2)
k

(93)

In this specific example only Mode I tractions are applied. So the displacements do

not have the terms that have superscript (2) in (93).
ux(r, θ) = ux0 +

KI√
2π
u
x(1)
1 +

∞∑
k=2

A
(1)
k u

x(1)
k

uy(r, θ) = uy0 +
KI√
2π
u
y(1)
1 +

∞∑
k=2

A
(1)
k u

y(1)
k

(94)

Also by neglecting the rigid body motion and KI = 1, (94) becomes,

ux(r, θ) =
1√
2π
u
x(1)
1 +

∞∑
k=2

A
(1)
k u

x(1)
k︸ ︷︷ ︸

(a)

uy(r, θ) =
1√
2π
u
y(1)
1 +

∞∑
k=2

A
(1)
k u

y(1)
k︸ ︷︷ ︸

(b)

.

(95)

Choosing appropriate enriched functions becomes obvious if one carefully examines

(95). If the approximation space contains,

1√
2π
u
x(1)
1 (r, θ),

1√
2π
u
y(1)
1 (r, θ)

then the amplitude of the finite element approximation of these functions will reveal

stress intensity factorKI . For this specific problem the amplitude should be 1. Indeed,

the success of this method heavily depends on how well the RPP approximation will

capture the series terms, (a) and (b), presented in (95). Therefore, for low order RPP

approximation more enrichment functions are required to get the stress intensity

factor correctly.

Remark It is important to choose a different approximation spaces for x-displacement
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and y-displacement to get the stress intensity factor in the proposed way. This, how-

ever, does not increase the computational load significantly because the non-symmetric

part only comes from the enriched functions. Note most of basis functions for x-

displacement and y-displacement are the same except for the enriched functions.

From (77)-(79), we obtain the following.

λ
(1)
1 =

1

2
, λ

(1)
2 =

3

2
, λ

(1)
3 = 2, λ

(1)
4 =

5

2
, λ

(1)
5 = 3, · · ·

Q
(1)
1 =

1

3
, Q

(1)
2 = −1

5
, Q

(1)
3 = −1, Q

(1)
4 = −3

7
, Q

(1)
5 = −1, · · · .

Therefore, we choose the following ten singular functions as enrichment for the x-

displacement and the y-displacement, respectively.

Gx = { 1

2G
√

2π
r

1
2 ((κ− 1

2
) cos

θ

2
− 1

2
cos

3θ

2
),

1

2G
√

2π
r

3
2 ((κ+

1

2
) cos

3θ

2
− 3

2
cos

θ

2
),

· · · , 1

2G
√

2π
r3((κ+ 3) cos 3θ − 3 cos θ)},

Gy = { 1

2G
√

2π
r

1
2 ((κ+

1

2
) sin

θ

2
− 1

2
sin

3θ

2
),

1

2G
√

2π
r

3
2 ((κ− 1

2
) sin

3θ

2
− 3

2
sin

θ

2
),

· · · , 1

2G
√

2π
r3((κ− 3) sin 3θ + 3 sin θ)}.

The following table shows the stress intensity factor obtained by the proposed

method without post processing. The amplitude of the 1√
2π
u
x(1)
1 (r, θ) is listed in

Table 9 with respect to various RPP orders. The exact stress intensity factor KI for

this specific example is 1. Table 9 support that the proposed method to compute the

SIF is reliable.

TABLE 9: Stress Intensity Factor of Example 4.

p SIF (KI)
2 0.99543
4 1.00178
6 1.00024
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Höllig, K. Finite Element Methods with B-Splines. Society for Industrial and Applied

Mathematics, 2003. ISBN 0898715334.



76

Kermode, M., A. McKerrell, and L. M. Delves. The calculation of singular coefficients.

Computer Methods in Applied Mechanics and Engineering, 50(3):205 – 215, 1985.

ISSN 0045-7825.

Lancaster, P. and K. Salkauskas. Surfaces generated by moving least squares methods.

Mathematics of Computation, 37(155):141–158, 1981. ISSN 00255718.

Levin, D. The approximation power of moving least-squares. Math. Comput., 67

(224):1517–1531, 1998. ISSN 0025-5718.

Li, S. and W. K. Liu. Meshfree Particle Methods. Springer, 2004. ISBN

9783540222569.

Li, S. H. Lu, W. Han, W. K. Liu, and D. C. Simkins. Reproducing kernel element

method part ii: Globally conforming im/cn hierarchies. Computer Methods in

Applied Mechanics and Engineering, 193(12-14):953 – 987, 2004. ISSN 0045-7825.

Li, Z. R. Mathon, and P. Sermer. Boundary methods for solving elliptic problems with

singularities and interfaces. Siam Journal On Numerical Analysis, 24(3):487–498,

JUN 1987.

Liu, W.K., W. Han, H. Lu, S. Li, and J. Cao. Reproducing kernel element method.

part i: Theoretical formulation. Computer Methods in Applied Mechanics and

Engineering, 193(12-14):933 – 951, 2004. ISSN 0045-7825.

Lu, T. T., H. Y. Hu, and Z. C. Li. Highly accurate solutions of motz’s and the

cracked beam problems. Engineering Analysis with Boundary Elements, 28(11):

1387 – 1403, 2004. ISSN 0955-7997.

Lucas, T.R. and H. S. Oh. The method of auxiliary mapping for the finite element

solutions of elliptic problems containing singularities. Journal of Computational

Physics, 108(2):327 – 342, 1993. ISSN 0021-9991.

Melenk, J.M., I. Babuska, E. T. Hochschule, and E. T. Hochschule. The partition of

unity finite element method: Basic theory and applications, 1996.

Morley. Finite element solution of boundary-value problems with non-removable sin-

gularities. Phil. Trans. R. Soc. Lond. A, 275(463), 1973.

Motz, M. The treatment of singularities of partial differential equations by relaxation

methods. Q Appl Math, 4:371–377, 1947.

Oh, H.-S. and I. Babuska. The method of auxiliary mapping for the finite element so-

lutions of elasticity problems containing singularities. Journal of Computational



77

Physics, 121(2):193 – 212, 1995. ISSN 0021-9991. doi: DOI: 10.1016/S0021-

9991(95)90017-9.

Oh, H.-S. and J. W. Jeong. Reproducing polynomial (singularity) particle methods

and adaptive meshless methods for two-dimensional elliptic boundary value prob-

lems. Computer Methods in Applied Mechanics and Engineering, 198(9-12):933 –

946, 2009. ISSN 0045-7825. doi: DOI: 10.1016/j.cma.2008.11.005.

Oh, H.-S. and J. W. Jeong. Almost everywhere partition of uninity to deal with

essential boundary conditions in meshless methods. Computer Methods in Applied

Mechanics and Engineering, submitted, 2008.

Oh, H.-S. , J. G. Kim, and S. S. Yum. The weighted finite element method for elastic-

ity equations on unbounded domains. Computer Methods in Applied Mechanics and

Engineering, 152(1-2):259 – 280, 1998. ISSN 0045-7825. doi: DOI: 10.1016/S0045-

7825(97)00193-X. Containing papers presented at the Symposium on Advances in

Computational Mechanics.

Oh, H.-S. , H. Kim, and S.-J. Lee. The numerical methods for oscillating singularities

in elliptic boundary value problems. J. Comput. Phys., 170(2):742–763, 2001. ISSN

0021-9991. doi: http://dx.doi.org/10.1006/jcph.2001.6759.

Oh, H.-S. , J. G. Kim, and J. Jeong. The closed form reproducing polynomial par-

ticle shape functions for meshfree particle methods. Computer Methods in Applied

Mechanics and Engineering, 196(35-36):3435 – 3461, 2007a. ISSN 0045-7825.

Oh, H.-S. , J. G. Kim, and J. W. Jeong. The closed form reproducing polynomial

particle shape functions for meshfree particle methods. Computational Mechanics,

40(12):3435–3461, 2007b.

Oh, H.-S. , J. G. Kim, and W.-T. Hong. The piecewise polynomial partition of unity

functions for the generalized finite element methods. Computer Methods in Applied

Mechanics and Engineering, 197(45-48):3702 – 3711, 2008. ISSN 0045-7825.

Oh, H.-S. , J. W. Jeong, and W.-T. Hong. The generalized product partition of unity

for the meshless methods, http://www.math.uncc.edu/∼hso/publications.html.

Journal of Computational Physics, submitted, 2009.

Olson, L. G. , G. C. Georgiou, and W. W. Schultz. An efficient finite element method

for treating singularities in laplace’s equation. Journal of Computational Physics,

96(2):391 – 410, 1991. ISSN 0021-9991.

Rosse, J. B. and N. Papamichael. A power series solution of a harmonic mixed

boundary value problem. Technical summary report, 1975.



78

Strouboulis, T., L. Zhang, and I. Babuska. Generalized finite element method us-

ing mesh-based handbooks: application to problems in domains with many voids.

Computer Methods in Applied Mechanics and Engineering, 192(28-30):3109 – 3161,

2003. ISSN 0045-7825.

Szabo, B. and I. Babuska. Finite Element Analysis. John Wiley, 1991.

Wait, R. and A. R. Mitchell. Corner singularities in elliptic problems by finite element

methods. Journal of Computational Physics, 8(1):45 – 52, 1971. ISSN 0021-9991.

Whiteman, J.R. Finite-difference techniques for a harmonic mixed boundary problem

having a reentrant boundary. Proc. R. Soc. Lond. A, 1553(323), 1971.

Wigley, N. M. An efficient method for subtracting off singularities at corners for

laplace’s equation. Journal of Computational Physics, 78(2):369 – 377, 1988. ISSN

0021-9991.


