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ABSTRACT

ROBIN JACOB POTTATHUPARAMBIL. Best practices for building hardware
designs for living computational science applications.

(Under the direction of DR. RONALD R. SASS)

Scientific computing or Computational science, is a field of study where engineers

and scientists use computer simulations to solve equations that model the physical

world. In some cases, these equations come from the first principles of physics. In

the past, these simulations were run on a single processor machine. However, due

to various technological reasons, the performance of these machines are not likely to

improve at the same rate as in the past. In order to improve the performance per watt

of these simulations, special-purpose hardware accelerators can be used. This work

mainly focuses on using FPGA-based hardware accelerators. In order to run these

simulations on an FPGA accelerator, the application code needs to be re-factored into

software and hardware sections. These faster simulations have motivated scientists to

capture more behavior of the physical world. As additional behavior is captured, the

application code needs to be re-factored each time, and a significant effort is required

to re-build the design. Unfortunately, these multiple cycles of re-design reduces the

overall productivity of scientists and engineers.

This work proposes a set of hardware design guidelines for changing computational

science codes or living computational science codes. These guidelines co-evolve the

hardware with the software, reducing the overall effort of re-design and improving

productivity. The design guidelines are evaluated for effectiveness, communicability,

and broad applicability. Experimental results have shown that the overall re-design

effort is reduced, and these guidelines are broadly applicable to a wide variety of

scientific computing applications.



iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Ronald R. Sass, his

patience, effort, constant encouragement, constructive feedback, and for his dedicated

support for my doctoral study and research.

I am also grateful to my dissertation committee members, Dr. James M. Conrad,

Dr. Bharat S. Joshi, Dr. Ryan Adams, and Dr. Taghi Mostafavi, for their feedback

and comments.

I also thank all the Reconfigurable Computing Systems (RCS) lab members who

have directly and indirectly helped me in my research. I also thank all my lab members

for the research discussions we had during my doctoral study.

Finally, I would like to thank my parents, P.K. Jacob and Sophy Jacob, and my

brother, Justin Jacob, who have patiently supported me spiritually and financially to

complete my doctoral study.



v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF ABBREVIATIONS xiii

CHAPTER 1: INTRODUCTION 1

1.1 Computer Simulations 1

1.2 Hardware Accelerators 3

1.3 Cost of Refactoring 5

1.4 Evaluation 8

1.4.1 Experiment 1: Effectiveness 9

1.4.2 Experiment 2: Broad Applicability 12

CHAPTER 2: BACKGROUND 14

2.1 Field-Programmable Gate Arrays 14

2.1.1 Configurable Logic Blocks 14

2.1.2 Digital Clock Managers 15

2.1.3 Block RAMs 16

2.1.4 PPC 405 Processor 16

2.1.5 XtremeDSP Tile 16

2.1.6 Ethernet MAC Block 17

2.2 Related 18

2.2.1 Hardware/Software Co-Design 18

2.2.2 Scientific Application Design Methodologies 18

2.2.3 HDL Coding and Design Guidelines 19

2.2.4 C-to-HDL Conversion Tools 19

CHAPTER 3: SCOPE AND METHODOLOGY 22

3.1 Key Idea 22



vi

3.2 Scope of the Work 23

3.3 Analysis of Sequential Code 24

3.3.1 Example: Electrodynamics Application 26

3.4 Hardware Design 29

CHAPTER 4: EVALUATION AND VALIDATION 32

4.1 Effectiveness of design guideline 32

4.1.1 Design Guideline Evaluation Metrics 33

4.1.2 Applications and Kernel Under Test 37

4.2 Communicability of the Design Guidelines 58

4.3 Broad Applicability of the Design Guidelines 58

4.3.1 Guideline Fitness Plot 59

4.3.2 Computational Fluid Dynamics 60

4.3.3 Computational Molecular Dynamics 61

4.3.4 Quantum Monte Carlo Simulations 63

4.3.5 Hessenberg Reduction 63

4.3.6 Gaxpy - BLAS Routine 65

4.3.7 N-Body Simulations 66

4.4 Validation 67

CHAPTER 5: RESULTS 72

5.1 Effectiveness of design guidelines 72

5.1.1 P-V System Modeling using Neural Networks (NN) 72

5.1.2 2D-Finite Difference Time Domain 78

5.1.3 Sparse Matrix Vector Multiplication 88

5.2 Broad Applicability of the Design Guidelines 95

5.2.1 Computational Fluid Dynamics 96

5.2.2 Computational Molecular Dynamics 97

5.2.3 Quantum Monte Carlo Simulations 98



vii

5.2.4 Hessenberg Reduction 101

5.2.5 Gaxpy - BLAS Routine 101

5.2.6 N-Body Simulations 103

CHAPTER 6: CONCLUSION 107

REFERENCES 109



viii

LIST OF TABLES

TABLE 3.1: Design guidelines for living computational science applications 30

TABLE 4.1: Design guidelines for living computational science applications 35

TABLE 4.2: Version 1.0 P-V generation model HW design 39

TABLE 4.3: Version 2.0 P-V generation, regulation, and battery model design 41

TABLE 4.4: Hardware design details for version 1.0 electromagnetic application 47

TABLE 4.5: Hardware design details for version 2.0 electromagnetic application 48

TABLE 4.6: Hardware design details for version 3.0 electromagnetic application 51

TABLE 4.7: Hardware design details for version 1.0 SpMV multiply unit 53

TABLE 4.8: Hardware design details for version 2.0 SpMV multiply unit 55

TABLE 4.9: Hardware design details for version 3.0 SpMV multiply unit 56

TABLE 4.10: CFD design evaluated using the design guidelines 62

TABLE 5.1: HDL synthesis report for P-V regulator model 74

TABLE 5.2: Results for P-V Modeling Application 75

TABLE 5.3: Comparison of version 1 and 2 results for FDTD application 82

TABLE 5.4: Comparison of version 2 and 3 results for FDTD application 85

TABLE 5.5: Comparison of reported versus used resources for applications 85

TABLE 5.6: Performance for SpMV version 1 LFHD design 89

TABLE 5.7: Performance for SpMV version 2 LFHD design 90

TABLE 5.8: Performance for SpMV version 3 LFHD design 90

TABLE 5.9: Performance for SpMV Version 1 GFHD design 91

TABLE 5.10: Performance for SpMV Version 1 GFHD design 92

TABLE 5.11: Performance for SpMV Version 1 GFHD design 92

TABLE 5.12: Comparison of version 1 and 2 results for SpMV application 92

TABLE 5.13: Comparison of version 2 and 3 results for SpMV application 93

TABLE 5.14: CFD design evaluated using the design guidelines 97



ix

TABLE 5.15: MD design evaluated using the design guidelines 99

TABLE 5.16: QMC design evaluated using the design guidelines 100

TABLE 5.17: HR design evaluated using the design guidelines 102

TABLE 5.18: Gaxpy design evaluated using the design guidelines 103

TABLE 5.19: N-body design evaluated using the design guidelines 105



x

LIST OF FIGURES

FIGURE 1.1: Sequential and parallel tasks 2

FIGURE 1.2: Computing using hardware accelerators 5

FIGURE 1.3: Human effort over time due code evolution 6

FIGURE 1.4: Key idea 7

FIGURE 1.5: LFHD and GFHD evaluation 12

FIGURE 2.1: Configurable logic blocks and slices of a Virtex 4 FPGA 15

FIGURE 2.2: PPC, APU, and FCM interaction 17

FIGURE 3.1: Effort due code evolution 23

FIGURE 3.2: Key idea 24

FIGURE 3.3: Analysis and pre-design 27

FIGURE 3.4: FDTD Profile Information 28

FIGURE 3.5: Hardware design 31

FIGURE 4.1: LFHD and GFHD evaluation 36

FIGURE 4.2: Versions of P-V system modeling using NN 39

FIGURE 4.3: Version 1.0: P-V generation NN model [1] 40

FIGURE 4.4: Version 1.0: P-V generation hardware design [1] 40

FIGURE 4.5: Version 2.0: P-V generator NN model [2] 41

FIGURE 4.6: Version 2.0: P-V battery charging NN model [2] 42

FIGURE 4.7: Version 2.0: P-V regulator NN model [2] 42

FIGURE 4.8: Version 2.0: P-V generator hardware design [2] 43

FIGURE 4.9: Version 2.0: P-V battery charging hardware design [2] 43

FIGURE 4.10: Version 2.0: P-V regulator hardware design [2] 44

FIGURE 4.11: 2D-FDTD hardware design versions 46

FIGURE 4.12: Version 1.0: 2D-FDTD hardware design [3] 47

FIGURE 4.13: Version 2.0: 2D-FDTD ‘E’ field updating hardware design [4] 48



xi

FIGURE 4.14: Version 2.0: 2D-FDTD ‘H’ field updating hardware design [4] 49

FIGURE 4.15: Version 2.0: 2D-FDTD boundary updating hardware design [4] 49

FIGURE 4.16: Version 2.0: 2D-FDTD overall hardware design [4] 50

FIGURE 4.17: Version 3.0: 2D-FDTD UPML hardware design [5] 51

FIGURE 4.18: Version 3.0: 2D-FDTD UPML hardware design [5] 51

FIGURE 4.19: Version 3.0: 2D-FDTD UPML overall hardware design [5] 52

FIGURE 4.20: Sparse Matrix-Vector multiplication hardware design versions 53

FIGURE 4.21: Version 1.0: SpMV multiply hardware [6] 54

FIGURE 4.22: Version 1.0: SpMV reduction hardware [6] 54

FIGURE 4.23: Version 2.0: SpMV multiply hardware [7] 55

FIGURE 4.24: Version 2.0: SpMV reduction hardware [7] 56

FIGURE 4.25: Version 3.0: SpMV multiply hardware [8] 57

FIGURE 4.26: Version 3.0: SpMV overall hardware [8] 57

FIGURE 4.27: Guideline fitness plot 60

FIGURE 4.28: Computational fluid dynamics design [9] 61

FIGURE 4.29: Guideline fitness plot for CFD application 62

FIGURE 4.30: Molecular dynamics design [10] 64

FIGURE 4.31: Quantum Monte Carlo simulation design [11] 65

FIGURE 4.32: Hessenberg reduction design [12] 66

FIGURE 4.33: Gaxpy Routine Design [13] 66

FIGURE 4.34: N-body hardware design [14] 68

FIGURE 4.35: ∆LOC measurements for LFHD and GFHD (fictitious data) 70

FIGURE 4.36: Resource utilization for LFHD and GFHD (fictitious data) 70

FIGURE 4.37: Performance measurements for LFHD and GFHD (fictitious data) 71

FIGURE 5.1: Plot comparing lines of code changed for P-V application 76

FIGURE 5.2: Plot comparing resource utilization for P-V application 76

FIGURE 5.3: Plot comparing slice utilization for P-V application 77



xii

FIGURE 5.4: Plot comparing performance for P-V application 77

FIGURE 5.5: Electric field at receiver port for 2D-FDTD PEC Model 79

FIGURE 5.6: Electric field at receiver for 2D-FDTD LFHD PEC Model 80

FIGURE 5.7: Root mean square error value for E and H Fields for PEC model 80

FIGURE 5.8: Electric field at receiver port for 2D-FDTD Mur Model 81

FIGURE 5.9: Electric field at receiver port for 2D-FDTD UMPL Model 81

FIGURE 5.10: Electric field at receiver port for 2D-FDTD UMPL LFHD Model 82

FIGURE 5.11: Electric field at receiver port for 2D-FDTD GFHD PEC Model 83

FIGURE 5.12: RMSE values for E and H Fields for GFHD PEC model 83

FIGURE 5.13: Electric field at receiver port for 2D-FDTD Mur GFHD Model 84

FIGURE 5.14: Electric field at receiver port for 2D-FDTD UMPL GFHD Model 84

FIGURE 5.15: Plot comparing lines of code changed for FDTD 86

FIGURE 5.16: Plot comparing resource utilization for FDTD 86

FIGURE 5.17: Plot comparing slice resource utilization for FDTD 87

FIGURE 5.18: Plot comparing performance for FDTD 87

FIGURE 5.19: Plot comparing lines of code changed for SpMV operation 93

FIGURE 5.20: Plot comparing resource utilization for SpMV operation 94

FIGURE 5.21: Plot comparing resource utilization for SpMV operation 94

FIGURE 5.22: Plot comparing performance for SpMV operation 95

FIGURE 5.23: Guideline fitness plot for CFD application 98

FIGURE 5.24: Guideline fitness plot for molecular dynamics application 99

FIGURE 5.25: Guideline fitness plot for quantum Monte Carlo simulations 100

FIGURE 5.26: Guideline fitness plot for Hessenberg Reduction 102

FIGURE 5.27: Guideline fitness plot for Gaxpy - BLAS Routine 104

FIGURE 5.28: Guideline fitness plot for N-Body Simulations 105

FIGURE 5.29: Combined fitness plots for above six applications 106



xiii

LIST OF ABBREVIATIONS

FPGA field programmable gate array

LFHD literature followed hardware design

GFHD guideline followed hardware design

HW hardware design

P-V photo voltaic

NN neural networks

FDTD finite-difference time domain

SpMV sparse matrix vector multiplication

UPML uniaxial perfectly matched layer

CFD computational fluid dynamics

MD molecular dynamics

HR hessenberg reduction

GFLOPS giga floating-point operations

DDR double data rate

BLAS basic linear algebra subprograms



CHAPTER 1: INTRODUCTION

Computational science, or scientific computing, is a field of study where scientists

and engineers study the physical world by modeling it with computer simulations [15].

These simulations have led many to consider it a third branch of science1, along with

the experimental and theoretical branches. Scientists greatly depend on simulation

experiments because frequently the equivalent experiments in the physical world are

either not possible or are prohibitively expensive. For example, there is no way to

recreate the “big bang” but computer simulations can provide insight. Likewise,

many drugs can be synthesized in the lab. However, each requires the development

of process which can take months of work. Computer simulations offer the ability to

sort through numerous candidates, reducing the search space to the most encouraging

ones.

1.1 Computer Simulations

Some examples of computer simulation of the physical world include molecular

dynamics, computational fluid dynamics, and electrodynamics simulations. In some

cases, such as electrodynamics simulations, the real world is modeled using a set of

mathematical equations and are solved in a discrete time domain [17]. Sometimes

the equations are simplified models of the physical world; in other cases they come

from first principles of physics. This makes solving these mathematical equations

analytically impractical because it is tedious and time-consuming. Computer simula-

tions make the process simpler and faster by solving the equations numerically with

computer programs [18].

1A Google search for “third branch of science” results in numerous blogs, articles [16], and web
pages discussing the topic.
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Figure 1.1: Sequential and parallel tasks

As the use of computers to study the behavior of the physical world has increased,

scientists have become interested in capturing even more of the behavior of the phys-

ical world. This increases the complexity of the equations, resulting in longer simu-

lation times. In order to reduce the time of these simulations, most computational

scientists have relied upon computer engineers to produce ever-faster single proces-

sor machines. Unfortunately, for a number of technological reasons, single processor

performance is not likely to continue to improve at the same rate as in the past [19].

This is forcing more computational scientists who want faster simulations to rely on

parallel processing using parallel machines [20]. Instead of a single processor, parallel

machines use multiple processors concurrently. This can be visualized in Figure 1.1

(time advances down the figure): (a) illustrates a single processor while (b) shows a

collection of processors executing tasks concurrently. It also means more complicated

parallel architectures because each processor has parallel cores.

In parallel processing, computational scientists divide their simulation experiments

into smaller, independent tasks and execute their tasks concurrently (Figure 1.1b).

These tasks are run on several processors simultaneously. In applications that scale
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well, computational scientists can use more processors in parallel to improve the

performance and reduce the computation time.

As more and more parallel processors are used to improve the performance of ap-

plications, the communication between tasks, components utilized, space, and power

requirements are increasing [21]. The increase in the power requirements also increases

the cooling requirements. To reduce these growing requirements due to computing us-

ing parallel processors, and to increase performance per watt, computational scientist

are always looking for alternative ways.

1.2 Hardware Accelerators

One of the active research areas to improve the performance per watt of a computa-

tional science application is the use of special-purpose hardware accelerators [22, 23].

These hardware accelerators have shown to improve the performance per watt of or-

dinary applications [24, 25, 26]. For example, graphic processor units (GPUs) are

used to accelerate the construction of images in a frame buffer. The improvement

in performance per watt of ordinary applications using hardware accelerators have

motivated researchers and computational scientists to explore using these accelera-

tors for their applications [27, 28, 29, 30, 31]. Similarly, most supercomputers in (1

– 5) of Top 500 list are built using hardware accelerators [32, 33]. Thus, the use of

hardware accelerators improves performance per watt and reduces the run time of

the application. That is, given a power constraint, hardware accelerators improves

the performance of the application.

Presently, hardware accelerators for scientific applications are built either using

Application-Specific Integrated Circuits (ASICs) [29, 34], Graphic Processor Units

(GPUs) [35, 36], Cell/B.E. [27, 30, 37], Intel’s Many Integrated Core (MIC) [38,

39], or Field Programmable Gate Arrays (FPGAs) [40, 41, 11].The choice of ASIC,

GPU, Cell, Intel’s MIC, or FPGA-based hardware accelerator will depend on the

application, the availability of hardware, and the developer’s interests. However, as
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a practical matter we only consider FPGA devices in this work. An FPGA is an

integrated circuit that has programmable logic and can be configured by the end

user to perform special-purpose operations. A complete description is provided in

Chapter 2.

A single node FPGA accelerator consists of a single FPGA-based hardware ac-

celerator connected to the main (host) system via a system bus. However, in most

cases a tighter coupling is required with the host system. Presently, the Peripheral

Component Interconnect (PCI) bus and CPU socket plug-in boards configurations

are used to achieve the coupling with the host system [22].

Once the computational scientists can justify the use of an single node FPGA-

based hardware accelerator and build hardware designs for their application, then

they can improve the performance per watt of their application by employing multi-

ple FPGA-based accelerator nodes running in parallel, as shown in Figure 1.2. These

multiple FPGA nodes could be connected using an interconnect. Such nodes con-

nected together to form a single entity is referred to as an FPGA cluster. An ex-

ample of such an FPGA cluster is the Spirit reconfigurable computing cluster built

at Reconfigurable Computing Systems (RCS) Lab, University of North Carolina at

Charlotte [42]. This type of parallel computing with multiple FPGA nodes and host

processors is called as hybrid or heterogeneous high-performance computing [43, 44].

For the purpose of evaluation, only a single node of the Spirit cluster will be used.

The ideas and concepts presented in this dissertation can be extended to an FPGA

cluster.

As the computational scientists build better systems with hardware accelerators

to simulate the behavior of the physical world, the performance per watt improves,

and thus the run time of the simulation experiment decreases. For example, case

studies such as molecular dynamics [10], finite difference time domain (FDTD) [45],

and acceleration of quantum Monte Carlo simulations [11] shows a performance per
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Figure 1.2: Computing using hardware accelerators

watt improvement using an FPGA-based accelerator. The performance per watt im-

provement of the applications aids computational scientists to increase the fidelity of

their simulation or are interested in capturing more behavior of the physical world.

These increases lead to an understanding of the changes needed in the next experi-

ments. These additions in successive experiments evolves the application code. As

the application code evolves, the hardware engineers refactor the application code

into serial and accelerator code. This refactoring of the application code introduces

a huge cost for the accelerator design.

1.3 Cost of Refactoring

We define a living computational science application as an application whose

source code evolves over time, as computational scientists increase the fidelity of their

simulation or reduce execution time or wish to explore new phenomena. However,

once the changes or additions are incorporated in the application code, the next

major step would be to run these application codes on an FPGA-based hardware

accelerator. In order to run these new application codes, the hardware engineer
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needs to refactor the application code into software and hardware sections. These

hardware code sections are computed using an accelerator. As more phenomena

are discovered, there are more revisions of the application code. Every revision of

the application code introduces a new refactoring followed by a hardware redesign.

Figure 1.3 illustrates this evolution of the source code over time. The critical point

is that each time the code is revised (for example, going from version 1.0 to version

2.0), the serial application has to be refactored.

In a scenario where computational scientists are using FPGA-based hardware

accelerator nodes in parallel to improve performance of their application, a small

change in their application code introduces a refactoring of the application code.

This refactoring forces the hardware engineer to re-design the hardware for every

parallel node. As a result, a huge effort is required to re-build designs for an FPGA-

based accelerator. This frequent design change considerably increase the wait time

of the computational scientist to perform additional experiments, thereby reducing
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their productivity.

Our hypothesis is that the frequent redesigns can be avoided by co-evolving the

hardware design with the software. That is, as illustrated in Figure 1.4, only changes

(or differences) from previous version is communicated, and the hardware is incremen-

tally evolved or adapted. The overall effort is reduced by doing so, and productivity

is improved. This key idea is not as simple as it sounds. However, we believe that

if the hardware designers follow a set of design rules or guidelines for designing the

initial hardware, the refactoring can be completely avoided, and performance and

human effort can be preserved.

Thus, the thesis question we are trying to address is:—

Is there a set of hardware design guidelines for living computational science

applications that can be easily communicated and is broadly applicable?

If the answer is affirmative, then the guidelines help designers efficiently accommo-

date the evolving changes in the living computational science application and achieve
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better performance and faster changes in the hardware design. If the answer is no,

we have learned that these design guidelines cannot help designers efficiently accom-

modate the evolving changes. However, if these design guidelines are effective, then

it could be used to formulate design guidelines for other hardware accelerator tech-

nologies.

As a computer engineer, we built hardware designs for several applications, such

as exponential core design [46, 47], 3D-FDTD compute engine [48], N-body simulator

[49], financial data feed handler [50], SpMV design [51], and Neural Network design

[52]. In the process of building hardware designs for computational science applica-

tions, we realized that these applications could change. As we anticipated several

design changes in these applications, we were motivated to formulate a set of design

guidelines that could help the computer engineers or an FPGA specialist to co-evolve

the hardware with the software. If this set of design guidelines is effective for living

computational science codes for an FPGA accelerator, then these design guidelines

can be used to experiment and formulate design guidelines for different accelerator

technologies, such as GPUs, Cell/B.E, Intel’s MIC, and ASICs.

1.4 Evaluation

To answer the thesis question, we propose a set of twelve design guidelines for

hardware engineers to follow, with the expectation that it will help hardware designers

to design hardware for living computational science applications. The set of design

guidelines are then evaluated for its effectiveness, communicability, and its broad

applicability. These design guidelines are simple and straight forward that fits in one

page and are explained in 3.4. The guidelines can be easily understood and used by a

hardware engineer to build FPGA hardware designs for living computational science

applications. The set of twelve design guidelines are arranged in an order, so that, by

following each guideline in the given order, they will help the hardware engineer to

quickly understand the design guidelines and implement the hardware design. Thus,
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we argue that “easily communicated” is self-evident.

In order to evaluate the guidelines for effectiveness and its broad applicability, we

will conduct two major experiments. The first experiment evaluates the design guide-

lines for its effectiveness using two applications and an operation from the literature.

The second experiment evaluates the guidelines’ broad applicability.

1.4.1 Experiment 1: Effectiveness

To evaluate the set of design guidelines for its effectiveness, two computational

science applications and a computational science kernel is chosen from the literature.

These applications are photo-voltaic (PV) system modeling and electromagnetic wave

analysis using finite difference time domain (FDTD). The computational science ker-

nel is sparse matrix-vector (SpMV) multiplication operation. This kernel is widely

used in many computational science applications. These computational science ap-

plications are created by the computational scientists, and the hardware for these

applications and the kernel are created by hardware engineers (FPGA specialist).

Hence, these applications and the kernel are designed by a co-design team involving

computational scientists and hardware engineers. A software version (version 1.0)

of these applications and kernel exists (or will be recreated). The software version

will capture the behavioral findings of the application and the kernel from the lit-

erature. Real datasets will be used to test the functionality of these applications

and kernel. However, if real datasets are not available, synthetic data will be used,

provided the performance of the application does not change. The software version

1.0 code of each application is refactored into serial and accelerator code section, as

shown in Figure 1.3. The accelerator code section is implemented on the accelerator

referring to the literature, and this design is termed as literature followed hardware

design (LFHD) or control group. These LFHD designs are derived from similar best

designs that are existing in the literature. The accelerator code section of version 1.0

serial code is also built using the set of design guideline and is referred to as guideline
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followed hardware design (GFHD) or experimental group.

Historical changes or additions from literature are introduced into version 1.0 soft-

ware code to generate new versions (version 2.0, and 3.0) of software code. These

historical changes or additions are chosen from the literature for respective applica-

tions and the kernel. These changes or additions are incorporated into the LFHD

and into GFHD. Since these changes are historical, the hardware or the FPGA part

used for their implementation could be old and outdated. As these FPGA parts are

outdated, and cannot be used in the current computing platform, these LFHDs are

to be designed and evaluated on a currently available FPGA (Virtex-4 FX60). In

order to evaluate the designs effectively, and to maintain the fidelity of the designs,

the architecture of the design, performance, and resource count has to be preserved

when the LFHDs are built on a currently available Virtex-4 FX60 FPGA.

In order to preserve the architecture of the design, the design is reproduced to

furthest extent possible on the Virtex-4 FX60 FPGA. The key point is that even

though many of the older systems are not available, we are recreating the same

environment. Similarly, to preserve the resource count, we constrain the design on

Virtex-4 FX60 FPGA to recreate what was possible historically. In order to evaluate

the designs effectively, the performance of the designs under evaluation (version 1.0,

2.0, and 3.0) needs to be preserved. Since the performance of an FPGA design mainly

depends on the frequency of operation, the designs are operated at the reported

frequency. Thus, the performance of the LFHDs are preserved, to maintain the

fidelity of the design.

As the changes or additions from the literature is incorporated into the LFHD

and into the GFHD, three key measurements are made. These measurements are

(1) performance, (2) resource usage, and (3) lines of code changed and/or added (∆

LOC). Lines of code changed is an approximate measure of effort involved in changing

a hardware design. These measurements are tabulated and plotted, and comparisons
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are made, as shown in Figure 1.5. Plots are drawn for all the measurements compar-

ing LFHD with GFHD (control group versus experimental group). The effectiveness

of the design guidelines is measured by comparing the data points in the plots (perfor-

mance, resource usage, and lines of code changed). If the data points for performance

of GFHD and LFHD track each other with GFHD data points having higher or equal

values, then the set of design guidelines is considered effective in terms of perfor-

mance. That is, it is considered effective when the performance of guideline followed

design (all versions) tracks the performance of literature design (all versions) as the

scientific application changes (or new versions are created).

If the data points for resources of GFHD and LFHD track each other, then the

set of design guidelines is considered effective in terms of resources. That is, as

new versions of scientific code is created, if the resources used for guideline followed

design is similar to the resources used for building literature followed design, then it

is considered as effective in terms of resources. Similarly, if the data points for lines

of code change for GFHD and LFHD diverge with GFHD data points having lower

values, then the set of design guidelines is considered effective in terms of lines of

code changed. When the data point diverge, there is large difference in the lines of

code between literature design and guideline followed design to implement a change.

That is, the effort involved in building guideline followed design is lesser than building

literature followed design as the scientific application code changes.

If the performance and resource utilization data points for GFHD and LFHD track

each other, and the lines of code diverge for GFHD and LFHD, then the degree of

effectiveness is further used to affirm or deny the thesis question. On the contrary,

if the performance and/or resource utilization data points do not track, and/or the

lines of code data points do not diverge, then we can deny the thesis question.

If the plots show effectiveness, the degree of effectiveness is then calculated by

classifying the effectiveness into bad, good, and excellent. If the performance and
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Figure 1.5: LFHD and GFHD evaluation

lines of code changed are classified as good or excellent, and the resources as bad or

good or excellent for all the applications and the kernel, then we can ascertain that

the set of guideline helps designers to effectively accommodate the evolving changes in

the living computational science application. On the other hand, if the performance

and lines of code changed are classified as bad, then the set of guidelines does not

effectively accommodate the evolving changes in the living computational science

application.

1.4.2 Experiment 2: Broad Applicability

To answer the question of broad applicability, besides the applications and kernel,

a set of six applications are drawn from the literature and are evaluated using the set

of guidelines. A guideline fitness plot is introduced to relate the number of guidelines

followed to the performance of the application. The guideline fitness plot is plotted

for each application, and each of these plots are combined to show the trend of

application’s performance with respect to the guidelines.

In order to answer the thesis question, the design guidelines needs to be evalu-

ated, and these evaluations are carried out on a hardware platform. To get a better
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understanding of the hardware platform, the readers can go through Chapter 2. This

chapter also provides an insight of the various existing tools and practices for living

computational science applications. Once the readers have a better understanding

of the hardware platform and the existing practices, Chapter 3 gives the scope of

the design guidelines, and the methodology to implement these guidelines. The eval-

uation and validation of these guidelines are carried out on two applications and a

kernel, and is discussed in Chapter 4. The results are presented in Chapter 5 with

the conclusion in Chapter 6.



CHAPTER 2: BACKGROUND

The designs and experiments in this dissertation are performed using an FPGA

hardware platform. This section gives a brief description of FPGAs.

2.1 Field-Programmable Gate Arrays

An FPGA is an integrated circuit that mainly consists of logic blocks and inter-

connects. As the name suggests, an FPGA is configured by the end-users and not

by the manufacturer. This feature gives end-users the ability to configure the device

according to their needs. The term configuration is defined as the process of config-

uring the logical blocks and connecting them in a desired fashion to achieve a desired

logical function. The work related to the dissertation was done using a Xilinx Virtex

4 FPGA device. This section will give a brief idea of the major components of a

Virtex 4 FPGA that are listed below:

• Configurable logic blocks (CLBs)

• Digital clock managers (DCMs)

• Block RAMs (BRAM)

• PPC 405 processor

• XtremeDSP tile

• Ethernet MAC

2.1.1 Configurable Logic Blocks

Configurable logic blocks (CLBs) are the main building blocks of the FPGA that

are used to build sequential and combinational circuits. A CLB consists of four
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Figure 2.1: Configurable logic blocks and slices of a Virtex 4 FPGA

interconnected slices, shown in Figure 2.1. These slices are grouped in pairs and

named as SLICEM and SLICEL. Both SLICEM and SLICEL have two look-up tables

and two flip-flops. The SLICEM group has a distributed RAM and a 16-bit shift

register. These SLICEL group can only be used for logic, however, SLICEM can be

used to store a 64-bit word. The look-up table is a 4-input look-up table, and it is

used to realize the digital logic functions.

2.1.2 Digital Clock Managers

The digital clock manager (DCM) generates clock signals for various modules in

the FPGA. They provide a wide range of functions. It has a delay-locked loop (DLL)

to eliminate clock delays, and it has features for doubling the clock and dividing

the clock according to the requirements of the design. The DCM can also generate

a phase-shifted clock that is required for designs and for interacting with the main

memory.
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2.1.3 Block RAMs

Block RAMs are used for on-chip storage. Each block RAM can store up to 18

Kbits of data. Writes and reads are synchronous to the clock. The data in the block

RAM can be accessed using two ports that can be used for writing or reading. The

block RAMs can be combined to form any wide or any deep memory blocks. For

some combinations of block RAM, a small amount of fabric logic may be used.

2.1.4 PPC 405 Processor

The PowerPC (PPC) processor core is a hardware IP in the Virtex 4 FX series

FPGA. The PPC405 can work at a maximum frequency of 400 MHz. The PPC

405 processor can interface the user-defined cores through the processor local bus

(PLB). It is a 32-bit address and 64-bit data bus. The PPC 405 can also interface

using the device control register (DCR) and the on-chip memory (OCM) controller

interface. The DCR helps in interfacing on-chip registers for device control. The

OCM helps in adding more main memory to the processor. A joint action test group

(JTAG) port is also provided to facilitate debugging of the software code running

on the processor. The PPC 405 has an auxiliary processor unit (APU) that helps

the designer to extend the PPC 405 instruction set. An instruction that is issued, is

decoded both by the processor unit and by the APU. If the processor unit is able to

generate the control signals, then the instruction is executed. However, if the APU

recognizes the instruction, then the operands are forwarded to the fabric co-processor

module (FCM). The FCM then computes on the operands, and the results are written

back to the processor’s registers for a write back. The complete process is shown in

Figure 2.2

2.1.5 XtremeDSP Tile

Each XtremeDSP tile in a Virtex 4 FPGA device has two DSP48 slices. A DSP48

slice can support many functions, such as multiplication, multiplication-accumulation

(MACC), multiplication followed by addition, three input addition, barrel shift-
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ing, and magnitude comparison. Each DSP48 slice has a 18-bit×18-bit 2’s com-

plement multiplier followed by a 48-bit signed adder/subtractor/accumulator. Each

XteremeDSP can be cascaded without the use of fabric logic. The XteremeDSP tile

can be used for building floating-point operations, such as addition and multiplication.

Since these XtremeDSP tiles are hardware IP, their operating speeds are high.

2.1.6 Ethernet MAC Block

The Virtex 4 FPGA Ethernet Block contains two Ethernet MACs. Each Ethernet

MAC supports 10/100/1000 Mbps data rates. Each Ethernet MAC has an address

filter to accept or reject packets. The Ethernet block has a clock management module

that configures the output clock frequency according to the Ethernet MAC speed

setting and the mode settings.

As the scientific application code grows or changes, it becomes difficult and time

consuming to build hardware designs using hardware description languages (HDLs).

These factors motivated researchers, scientists, and companies to build C-to-HDL
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conversion tools and formulate design methodologies for FPGA designs.

2.2 Related

2.2.1 Hardware/Software Co-Design

For many years hardware engineers are building designs with hardware and soft-

ware components. A huge time and effort is required to design a system with hard-

ware and software components. Moreover, a large design problem makes it unlikely

for human designers to optimize all the objectives of the design. In order to meet and

optimize the system level objectives, hardware and software are designed concurrently

through hardware/software co-design [53]. This co-design methodology is generally

applied to embedded system designs, system on chip designs, and others with rapid

prototyping requirements. Computational scientists and hardware engineers can take

advantage of hardware/software co-design methodology to design hardware for com-

putational science applications. However, a change or additions in the code due to

improving the fidelity of experiments or reducing the execution time or exploring new

phenomena could result in introducing a new cycle of hardware/software co-design.

2.2.2 Scientific Application Design Methodologies

The work by Herbordt et al. [41] discusses a set of design methodologies for high

performance reconfigurable computing (HPRC) applications. This work lists a set

of twelve methods to improve performance of non-trivial HPRC applications. The

work uses computational biology and molecular dynamics application as a case study

for developing the design methods. Some of the key methods discussed are applica-

tion restructuring, design and implementation, arithmetic operations, and integration

issues. The work discusses general methods involved in improving throughput and

performance of HPRC applications; however, it does not discuss design methodologies

for code changes in living computational science applications.
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2.2.3 HDL Coding and Design Guidelines

There are many manuals and techniques to code a hardware description language

(HDL). These are published in various books [54], articles, and websites. The set of

design guidelines are complementary to the existing HDL coding guidelines. Similarly,

there are many design techniques and guidelines for building FPGA-based hardware

design, and these set of design guidelines are followed in addition to the existing

HDL design techniques. These set of design guidelines augment specifically living

computational science applications.

2.2.4 C-to-HDL Conversion Tools

C-to-HDL conversion tools converts C or C-like code to a HDL. The converted code

can then be synthesized to configure an FPGA. The conversion tools help to overcome

the issues related to application growth and changes in functionality of a scientific

computing application. Over the past two decades, there has been a continuous effort

made by different companies and researchers to build C-to-HDL conversion tools. A

few of them are listed below, and their advantages and disadvantages are also listed.

SystemC [55] was an effort made by an open systemC initiative (OSCI) that is an

open source extension of C++ for hardware/software co-design. The syntax of Sys-

temC is a mix of C++ and VHSIC hardware description language (VHDL). One of the

major advantage of SystemC is that the programmer can co-design and co-simulate

a system. The drawback of SystemC is that it does not generate synthesizable HDL.

However, a two step process is required to generate synthesizable HDL.SystemC is

system-level modeling language. However, there has been lot of effort [56] to generate

hardware synthesizable code and to generate transparency in the algorithm, which

exposes the relationship between inputs and outputs.

Handel-C [57] is a high level programming language from Celoxica. Handel-C

uses C-like constructs for inherent parallelism. The communication between paral-

lel blocks is done using channels or first-in first-out (FIFO) hardware. Handel-C
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does not support floating-point operations; however, library calls can be made for

floating-point operations. An interface construct is used to communicate with ex-

ternal devices and external logic. Every interface construct has port definitions for

communication. Handel-C supports pointers and pointer-to-functions and it code can

also be simulated.

Dime-C was developed by Nallatech [58] and generates VHDL that can be port-

mapped into other hardware designs. It supports American National Standards In-

stitute (ANSI) C constructs; however, some special constructs help in optimizing

the output VHDL code and support floating-point operations. The resources are

shared between parallel processes, and it automatically optimizes code for parallel

and pipeline implementation. Dime-C designs can be simulated, and, whenever pos-

sible, Dime-C uses DSP48 slices instead of fabric logic for IP cores. It can create two

reads/writes or one read/write interface for the BRAM blocks. The major disadvan-

tage of Dime-C is that it does not create optimized HDL[59].

ImpulseC was developed by Impluse Accelerated Technologies [60]. Impulse CoDe-

veloper is the integrated development environment (IDE) used for coding and sim-

ulation. This IDE includes ImpulseC, interactive parallel optimizer, and platform

support packages (PSP) that can be configured for a wide range of FPGA-based

computing systems. PSPs specify the type of FPGA on the board and how Impulse

CoDeveloper can convert the code for that particular FPGA. A PSP is created to

configure Impulse CoDeveloper for a specific FPGA board. Once Impulse CoDevel-

oper is configured through a PSP for a particular FPGA board, the end-user can

write C code to design systems. The designs built using ImpulseC can be partitioned

into software and hardware blocks. The software block runs on the processor of the

FPGA, and the hardware block is converted into HDL to be synthesized. The user

can transfer data between software and hardware blocks using co streams, co regis-

ters, and co signals. Co streams are FIFOs, co registers are registered signals and co
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signals are used for handshaking and interrupts. The user can design systems com-

pletely that are written in ImpulseC or can design using VHDL and Impulse C. In

cases where the designs are mixed (i.e., VHDL and Impulse C), the user can interface

the ImpulseC system using co streams and co registers to the VHDL design.

Although C-to-HDL tools help hardware engineers to build deigns for FPGA, some

of these tools don’t support floating-point, some of them are used for simulation, and

most of them do not generate resource optimized HDL. Some of C-to-HDL tools do

not allow fine-grain control of the built hardware [61]. As computational scientist

improve the fidelity of the code or reduce execution time or wish to explore new

phenomena, the code changes or grows. As these scientific code grows, additional

FPGA resources may be required. If C-to-HDL tools are used to build designs for

growing computational science codes, these designs could use more resources when

compared to designs built using VHDL.

The next section discusses scope and methodology for the thesis question we are

trying to answer.



CHAPTER 3: SCOPE AND METHODOLOGY

As scientists try to simulate real world problems, their application code will con-

tinue to change overtime due to two facts: a new discovery lead to new questions

and a desire to study new phenomena. If the scientists use a hardware accelerator to

increase the rate of execution, then every new version would require substantial effort

to accomplish the changes in the accelerator code. In this work, we assume that the

accelerator is an FPGA device, and the following sections discuss the key idea, scope

of the work, pre-design, and hardware design for living scientific applications.

3.1 Key Idea

Using a hardware accelerator core poses a real disadvantage to scientists whose

scientific code is changing or evolving over time. Whenever, there is a change in the

code, a refactoring is required. Every refactoring causes a computer engineer to in-

spect the source code and create accelerator-specific code plus some sequential code.

This process is illustrated by the graphic originally shown in Chapter 1 and repro-

duced in Figure 3.1. In order to reduce the effort of refactoring, the hypothesis of this

thesis is that designs can be built such that there is minimum effort for incorporating

the changes. The changes from the new code, and the previous version of sequential

code and accelerator code, is used to generate a new version of sequential and ac-

celerator code. The key idea is illustrated by the graphic reproduced in Figure 3.2.

The dotted lines represent that only the changes are extracted, and the arrow from

the previous serial and accelerator block shows that the previous version of serial and

accelerator code is used for creating the new version of serial and accelerator code.

The overall effort is reduced by doing so, and the productivity is also improved. In

order to accomplish the key idea, the designers need to design the hardware in a cer-
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tain style. This dissertation offers hardware design for the above discussed hardware.

Before discussing the design, the next section discusses the scope of the design/work.

3.2 Scope of the Work

In order to answer the thesis question, the dissertation offers a set of design guide-

lines that, when followed, helps the hardware engineer to build designs that are ef-

fective when the design changes due to changes in the scientific application code.

As discussed earlier, these design guidelines are applicable to FPGA designs that

has shown consistent speed-up when compared to other hardware platforms used for

scientific computing. This set of design guidelines is also specific for living computa-

tional science applications. In order to answer the thesis question, two applications

and an operation are chosen from the literature, and the guidelines are evaluated for

effectiveness, communicability, and broad applicability. These applications and the

operation are built on a single-node FPGA, and the guidelines are evaluated using

the single-node FPGA infrastructure. The next section gives a brief idea of analyzing

the application code, and dividing the application code into serial and accelerator
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code.

3.3 Analysis of Sequential Code

In order to speed-up a living scientific code, the code is profiled and analyzed, and

the time consuming section/sections are identified, shown in Figure 3.3. One or more

time consuming sections constitutes the accelerator code section. Once the accelerator

section is identified, the number of parallel paths are identified, and the approximate

time taken to marshal data between the software and hardware is calculated. With

the number of parallel paths, marshaling time, and fraction of time spent (from

profile information) in the accelerator code, an approximate speed-up is computed

using Amdahl’s law. The speed-up computed is just an approximate value as the

actual value can be only calculated after the accelerator code is implemented using

an FPGA. If the computed speed-up is not acceptable to the user, then the accelerator

section coverage is increased so that the time spent in the section is increased. The

increase in the coverage of the accelerator section is achieved by increasing the lines

of code or by adding more time consuming sections. An approximate speed-up due
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to the new accelerator section is again computed using Amdahl’s law.

Assuming the speed-up is achieved using several time consuming sections, the

speed-up of an individual time consuming section is defined by equation 3.2:

γ =
hardware speed

software speed
=

1
hardware time

1
software time

=
software time

hardware time
(3.1)

γ(i) =
s(i)

h(i) +m(i)
(3.2)

Where h(i) and s(i) are the time spent in hardware and software sections, respectively,

for the time consuming section i. The time spent to marshal data between the

processor and the FPGA is m(i). Assuming that we use a single time consuming

section to form the accelerator section, and knowing the fraction of time spent in

a time consuming section (k(i)) from the profile information, we can calculate the

overall speed-up using Amdahl’s law. Amdahl’s law states that if F is the fraction

that can be enhanced and (1 − F ) is the fraction that cannot be enhanced, then the

maximum speed-up that can be achieved can be computed using equations 3.3 and

3.4. Rewriting equation 3.4 with time consuming section k(i) and its speed-up γ(i)

results in equation 3.5.

Speedupoverall =
1

(1 − Fractionenhanced) + Fractionenhanced

Speedupenhanced

(3.3)

Speedupoverall =
1

(1 − Fenhanced) + Fenhanced

Speedupenhanced

(3.4)

Γ =

[
(1 − k(i)) +

k(i)

γ(i)

]−1
(3.5)

If the accelerator section consists of a set of time consuming sections D, then the

overall speed can calculated, as shown in equation 3.6.
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Γ(D) =

[
1 +

∑
iεD

(
k(i)

γ(i)
− k(i)

)]−1
(3.6)

If the new speed-up is not acceptable, then the accelerator section coverage is

again increased. This process is continued until an acceptable speed-up is achieved.

If such a speed-up cannot be achieved, then the acceleration of the application is

not possible. If the application can be sped-up using an accelerator, an FPGA part

is selected. The accelerator section’s parallel paths are identified, and it is then

divided into small hardware blocks that could fit the FPGA. These hardware blocks

are chosen in such a way that the blocks can be reused. If possible, the hardware

blocks are pipelined. The hardware blocks could be a simple arithmetic operation or

a compound operation.

Once the hardware design is decided, the resource count is calculated. If the total

resource count is less than the FPGA resources, a speed-up computation is again

performed using equations 3.4, 3.5, and 3.6. If a desired speed-up can be achieved,

then the set of guidelines is followed. If the resource requirement is more than the

FPGA resources, then a better FPGA is chosen, and the hardware blocks are again

designed for the new FPGA. The next section gives a detailed example of a living

computational science application hardware design.

3.3.1 Example: Electrodynamics Application

For demonstration purposes, let us profile electrodynamics application for ana-

lyzing microstrip discontinuities (FDTD). The profile output is shown in Figure 3.4.

The time consuming sections (kernel) of the application are amp1, amp2, amp3, far1,

far2, and far3 subroutines. Let’s compute the speed-up using equation 3.5. If the

amp1 kernel is implemented on an FPGA accelerator, then the value of k(i) is 16.97%.

Assuming we achieved a speed-up of 10x compared to the software using an FPGA

accelerator, the overall speed-up is computed as 1.094x. However, if amp2, amp3,

far1, far2, and far3 are also implemented on an FPGA accelerator with an average
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speed-up of 10x compared to the software, then the overall speed-up is computed as

5.29x, using equation 3.6. The k(i) values for each kernel are shown in Figure 3.4.

Figure 3.4: FDTD Profile Information

In this application, the material under experiment is spatially divided into small

cubes (unit cells) along three dimensions. The problem is computing the magnetic

and electric field in a leap frog fashion. In practice, the material is divided into

a huge number (order of 100K) of tiny cubes (unit cells), and the computation is

repeated 10,000 times over each unit cell. In order to perform the computation, the

computational domain is chosen such that every computational sub-domain consists

of thousands of similar unit cells. That is, the whole region under test is divided

into smaller regions along one axis. Electromagnetic properties are then computed in

parallel over these smaller regions to improve performance. As discussed above, the

kernel is shown in equations 3.7 – 3.12, and it is broken down into smaller hardware

blocks that can be reused. To build an efficient design for the FPGA, two important

questions are to be addressed. The first question is the number of parallel cores and

its dataset.
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3.4 Hardware Design

As scientists discover new phenomena of their application code, they incorporate

these new findings in the code. If scientists have an accelerator to accelerate their

code, it becomes more difficult to incorporate those changes into the accelerator code.

As discussed in the key idea section, the goal is to come up with a hardware design

that can handle these changes. The design of such a hardware is not as simple as

it sounds. We believe that if the initial hardware is built following a set of design

guidelines or rules as tabulated in Table 3.1, then the successive hardware changes

due to application code changes which can be easily incorporated.

This set of design guidelines form the basis of this work. These design guidelines

are followed when the hardware for the scientific application is designed. A high-level

design is shown in Figure 3.5. As shown in the figure, the serial code is divided

into serial and accelerator code. The accelerator code and the design guidelines

are then used to build the hardware design. The accelerator code is also used to

build the software code that runs on the processor of the FPGA. The main function

of software code is to configure or to connect the various resources in the FPGA,

according to the requirements of the application. The resources are chosen according

to the initial version (version 1.0) of the application. As the application code or the
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Table 3.1: Design guidelines for living computational science applications
1 Arrange and optimize input/output data for all compute blocks
2 Adhere to a widely accepted method of computation for arithmetic function-

s/operations
3 Build controller for every not likely to change compute blocks
4 Introduce a configurable dataflow path to connect resources of likely to change

compute blocks
5 Introduce on-chip memory with configurable read/write logic, if necessary
6 Introduce dependency indicators to enhance parallel computations, if neces-

sary
7 Use microcode to specify dataflow path, memory read/write, and parallel com-

putations
8 Maximize resource utilization by improving runtime parallelism
9 Forward results between compute blocks/resources, if possible

10 Achieve functionality, and optimize design & resources to improve perfor-
mance

11 Maximize computation until maximum memory bandwidth is utilized
12 Use a large and real dataset for test cases

serial code changes, the accelerator code also changes. These changes (or differences)

are communicated to the next version of serial and accelerator code. The changed

accelerator code is then used to build the new software code for the processor in the

FPGA. The next section discusses the evaluation of the set of design guidelines and

its validation.
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CHAPTER 4: EVALUATION AND VALIDATION

The set of design guidelines can be evaluated and validated by measuring the

effort, performance changes, and resource usage as the hardware design evolves with

the application. It is also required to evaluate the design guidelines for easy commu-

nicability and broad applicability. Hence, this section will discuss in detail about the

various evaluations and their methods. To summarize, the key evaluations that will

be performed in this section are:

• Effectiveness of design guideline

• Communicability of design guideline

• Broad applicability of design guideline

4.1 Effectiveness of design guideline

The set of design guidelines that is used to built hardware designs, can be evaluated

by recording the lines of code added or changed, change in performance, if any, and

resource utilization as the application evolves from one version to the next. These

measurements are then compared to the recorded measurements of existing designs

in the literature. For the sake of simplicity, the hardware design built using the set

of design guidelines will be referred as guideline followed hardware design (GFHD) or

controlled group. Similarly, the hardware design built from literature will be referred

as literature followed hardware design (LFHD) or experimental group. The important

part of the evaluation is to determine effectiveness of the set of design guidelines. To

be more specific, the effectiveness of the design guideline is measured by finding the

lines of code that is required to incorporate a change or addition in the hardware
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design due to new findings. By implementing these set of design guidelines, it is also

important to measure whether there is any performance changes between the LFHD

and the GFHD. The performance changes, if any, due to additions or changes in the

application will also be recorded for both the LFHD and GFHD to give the hardware

designers an idea of performance changes.

The hardware engineer who is following the set of guidelines would be interested to

know whether there is any additional resource usage introduced by the set of design

guidelines. To be specific, this dissertation is focused on FPGA designs, and the

resource usage will be indicated as slices, DSP blocks, BRAM blocks. The resources

used due to additions or changes in the application will also be recorded for both

the LFHD and GFHD to give the hardware designer an idea of overhead, if any. To

summarize, the key measurements that will be recorded to evaluate the effectiveness

of the solution are:

• Performance

• Resource usage

• Lines of code added or changed

4.1.1 Design Guideline Evaluation Metrics

This dissertation offers a set of twelve guidelines, as shown in Table 4.1 for hard-

ware engineers. It also shows the order in which the set of guidelines needs to be

followed. This order has been established by considering the design path an FPGA

designer would normally follow. A change in the order of the design guideline will

introduce multiple design cycles. In order to evaluate the set of design guidelines,

two computational science applications and a computational science kernel is chosen

from the literature. These scientific applications are designed by computational sci-

entists, and the hardware for the application and the kernel is designed by hardware
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engineers. Hence, these designs are team co-designs consisting of hardware engineer

and computational scientists.

The applications are photo-voltaic (P-V) system modeling and electromagnetic

wave analysis using finite difference time domain (FDTD). The computational sci-

ence kernel is sparse matrix-vector multiplication (SpMV) operation. Photo-voltaic

modeling and simulation application models the power generation of solar panels us-

ing neural networks (NNs). Software and hardware versions (1.0 and 2.0) of P-V

generation model is created from the literature. The version 2.0 model adds battery

model and regulator model for overall P-V system performance. Electromagnetic

wave analysis application uses FDTD method to compute electric and magnetic field

values of a material under test. Software and hardware versions (1.0, 2.0, and 3.0)

of electromagnetic wave analysis created from the literature consists of 2D transverse

magnetic (TM) model of FDTD with different types of boundary conditions. Sparse

matrix-vector multiplication operation provides optimized routines to compute mul-

tiplication of a large sparse matrix with a vector of values. Software and hardware

version (1.0, 2.0, and 3.0) are created from the literature. Each version provides a

better multiplication computation to reduce the overall execution time.

Each of the above application consists of three versions of software code. The

software version (version 1.0) of these applications exists (or will be recreated) and

will be tested with real datasets. The software version 1.0 code of each application

is refactored into serial and accelerator code. The accelerator code is implemented

on the accelerator, and is termed as literature followed hardware design (LFHD) or

control group. These LFHD designs are derived from the existing designs in the

literature. A GFHD is also built for the version 1.0 accelerator code and is termed

as experimental group.

In order to introduce changes or additions into version 1.0 software code, historical

changes from the literature is used. These changes to the version 1.0 code generates
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Table 4.1: Design guidelines for living computational science applications
1 Arrange and optimize input/output data for all compute blocks
2 Adhere to a widely accepted method of computation for arithmetic function-

s/operations
3 Build controller for every not likely to change compute blocks
4 Introduce a configurable dataflow path to connect resources of likely to change

compute blocks
5 Introduce on-chip memory with configurable read/write logic, if necessary
6 Introduce dependency indicators to enhance parallel computations, if neces-

sary
7 Use microcode to specify dataflow path, memory read/write, and parallel com-

putations
8 Maximize resource utilization by improving runtime parallelism
9 Forward results between compute blocks/resources, if possible

10 Achieve functionality, and optimize design & resources to improve perfor-
mance

11 Maximize computation until maximum memory bandwidth is utilized
12 Use a large and real dataset for test cases

new versions (version 2.0, and 3.0) of software code. These changes or additions are

incorporated into LFHD and into GFHD. As the changes or additions are incorporated

into LFHD and into GFHD, three metrics will be used to compare the performance,

resource utilization, and lines of code between LFHD and GFHD. The method of

comparison is clearly outlined in Figure 4.1.

As the software code changes from one version to the next version, the perfor-

mance, resource used, and lines of code changed for the LFHD and GFHD for each

version is tabulated and plots are drawn for all measurements comparing the LFHD

with GFHD. The tabulated values of performance, resource used, and lines of code

changed are further used to measure the degree of effectiveness. For every version, If

the GFHD’s measured performance is equal and less than 1.1x times the performance

of LFHD, then the set of design guidelines is effective in terms of performance and

is classified as good. If the GFHD’s performance is more than 1.1x times the perfor-

mance of LFHD, then the set of design guidelines is effective in terms of performance

and is classified as excellent. However, If the performance of the GFHD is less than
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the LFHD, the set of design guidelines is non-effective in terms of performance and

is classified as bad.

The resource utilization of an FPGA design has a vital role in understanding

whether the changes in the application code increase the resource count, and if so,

what percentage increase in the resources. For every version, if the GFHD requires

less than 25% additional resources when compared with LFHD, then the set of design

guidelines is effective in terms of resources, and is classified as excellent. If the GFHD

requires between 25% and 50% of additional resources then the set of design guidelines

is effective in terms of resources, and is classified as good. However, if the GFHD

requires more than 50% of additional resources when compared to LFHD’s resources,

then the set of design guidelines is non-effective in terms of resources, and is classified

as bad.

The effectiveness of the design guidelines is also determined by the lines of code

added (or changed) to incorporate the changes or additions in the hardware of scien-

tific application code. To be very specific the lines of code measurement will measure

the lines of code added or changed in the new hardware due to application code
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change. The lines of code is an approximate measure of effort required to implement

a change in the hardware design. For every version, if the LFHD’s lines of code

changed is less than 25% additional code change when compared to GFHD, then

the set of design guidelines is non-effective in terms of lines of code changed, and is

classified as bad. If the LFHD’s additional lines of code changed is between 25% and

50% when compared to GFHD, then the set of design guidelines is effective in terms

of lines of code changed and is classified as good. If the LFHD’s additional lines of

code changed is more than 50% when compared to GFHD, then the set of design

guidelines is effective in terms of lines of code changed and is classified as excellent.

To evaluate the design guideline with the help of metrics, this dissertation will use

two applications and a computational science kernel as test cases. The results of the

above metrics on each of the following applications and kernels will help to identify

whether the design guidelines is a solution to tackle the problem of design changes in

living computational science application code.

4.1.2 Applications and Kernel Under Test

The following section discusses about modeling and simulation of Photo-Voltaic

system, electrodynamic analysis, and sparse matrix vector multiplication operation.

This section presents the hardware design used for evaluation with its design param-

eters.

4.1.2.1 Modeling and Simulation of Photo-Voltaic (P-V) System

Computational scientists have conducted studies on modeling and simulating

photo-voltaic (P-V) systems for several decades. They try to model P-V systems

with the help of neural networks (NNs). NN is a computational model that is in-

spired by the structure of a brain neuron [62]. It consists of an interconnected group

of neurons that process information and, in most cases, adapts itself to the changes

based on the internal or external information by learning. NN is used to model com-

plex input-output relationships that are then used to find similar patterns in any
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given data. Likewise, NNs are used to capture the relationship between temperature,

sunlight duration, relative humidity, and the power generated per day [63]. The infor-

mation of temperature, sun light duration, and relative humidity is discretized over

time and is fed into the NN to predict the power generated.

To evaluate the set of design guidelines, an P-V system modeled using NN will

be used. The application’s NN will be built using an FPGA and will have three

layers: input, hidden, and output. Every node in the input, hidden, and output layer

generates an output signal that is a function of a linear combination of the incoming

signals. This function is called as the activation function. In this application, the

activation function is a sigmoid function. The output of the nodes in the first layer

are connected to the hidden layer. The training of the prediction model is done off-

line using software, and the information is used to process the input data. Since the

training is not required often, it would be appropriate to perform the training off-line

[64]. The performance of the prediction model is measured as the rate at which the

output is generated. In order to improve the prediction accuracy of the PV system,

computational scientists find new ways to predict. As new ways are discovered,

additions in the prediction model is required. This dissertation will introduce one

addition to the basic version of P-V generation model. The basic version (version

1.0) and version 2.0 are taken from the literature. Figure 4.2 shows the versions of

P-V generation model. These two models are then used to evaluate the set of design

guidelines. The following sub-sections explain all the versions.

The version 1.0 P-V power generation model is modeled by Mellit et al. [65]

and Mekki et al. [1]. The NN model takes temperature and total solar radiation as

inputs. An overall configuration of the NN model is shown in Figure 4.3. The software

version of this NN model will be built and tested using Matlab. The hardware block

diagram of this NN model is shown in Figure 4.4. The number of clock cycles for the

hardware based NN is 13 clock cycles. The computation is performed using 18-bit



39

Serial

Code

V 1.0

Serial

Code

V 2.0

Serial

Code

V 3.0

Refactor

(big effort)
Serial

Accel-

erator

T
i
m
e Serial

Accel-

erator

Serial
Accel-

erator

Refactor

Refactor

(big effort)

(big effort)

[Mellit '10]

[Mellit '08, Mekki '10]

[Mellit '10]

[*] [*]

* - New version not available in the literature

[Mellit '08, Mekki '10]

Figure 4.2: Versions of P-V system modeling using NN

Table 4.2: Version 1.0 P-V generation model HW design
Details Values
FPGA Virtex-II XC2v1000 FPGA
Frequency of operation 100 MHz
Clock cycles for computation 13 Cycles
Network Size 2×7×9×2
Computation Precision 18-bit fixed point
Activation function Look-up table sigmoid

input values. The design is built on a Virtex-II FPGA. The hardware details are

tabulated in Table 4.2. For the purpose of evaluation, the hardware designs (LFHD

and GFHD) will be built on a Virtex-4 FX60 FPGA using 18-bit fixed point hardware

cores.

The version 2.0 P-V power generation model is modeled by Mellit et al. [2] in 2011.

The NN model takes temperature, and daily solar radiation as inputs. An overall

configuration of the NN model is shown in Figure 4.5, 4.6, and 4.7. The software

version of this NN model will be built and tested using Matlab. The hardware block

diagram of this NN model is shown in Figure 4.8, 4.9, and 4.10. The number of clock
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Figure 4.3: Version 1.0: P-V generation NN model [1]

Figure 4.4: Version 1.0: P-V generation hardware design [1]
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Table 4.3: Version 2.0 P-V generation, regulation, and battery model design
Details Values
FPGA Virtex-II XC2v1000 FPGA
Frequency of operation 100 MHz
Network 1 Size 2×7×9×2
Network 1 clock cycles for computation 13
Network 2 Size 2×14×10×1
Network 2 clock cycles for computation 19
Network 3 Size 3×7×12×1
Network 3 clock cycles for computation 15
Computation Precision 18-bit fixed point
Activation function Look-up table sigmoid

Figure 4.5: Version 2.0: P-V generator NN model [2]

cycles for the hardware based NN is 13 clock cycles for P-V NN model, 19 clock cycles

for battery NN model and 15 clock cycles for regulator NN model. The computation

is performed using 18-bit input values. The design is built on a Virtex-II FPGA

(XC2v1000). The hardware details are tabulated in Table 4.3. For the purpose of

evaluation, the hardware designs (LFHD and GFHD) will be built on a Virtex-4 FX60

FPGA using 18-bit fixed point hardware cores.

Design Parameters:

1. FPGA : As hardware designs cannot built using older FPGA parts, all the

hardware designs (LFHD and GFHD) will be built on a Virtex-4 FX60 FPGA
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Figure 4.6: Version 2.0: P-V battery charging NN model [2]

Figure 4.7: Version 2.0: P-V regulator NN model [2]
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Figure 4.8: Version 2.0: P-V generator hardware design [2]

Figure 4.9: Version 2.0: P-V battery charging hardware design [2]
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Figure 4.10: Version 2.0: P-V regulator hardware design [2]

for evaluation purposes.

2. Input Data : All the software, LFHD, and GFHD versions (version 1.0, 2.0,

and 3.0) will be tested using the data observed by Florida Solar Energy Center

(FSEC). The NN Matlab model will be trained using data from 2010 to 2011

(12 months). The NN hardware will be tested using 2010 to 2011 (6 months)

data.

3. Activation Function : The activation function used in all the NN models dis-

cussed above are sigmoid activation function. The NN models described in the

literature uses a table look-up method to compute the sigmoid function. The

same sigmoid activation function will be used in the LFHD and GFHD.

4. Computation Precision : The NN models discussed above uses 18-bit fixed-point

for computation. The LFHD and GFHD are also built using 18-bit fixed-point

hardware cores
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4.1.2.2 Electromagnetic Analysis using Finite-Difference Time Domain

Computational electrodynamics (electromagnetic wave analysis) is considered one

of the important scientific application domains. It is used in many areas of research,

such as radio frequency (RF) analysis in printed circuit board (PCB) analysis design,

wave propagation in antennas, and microstrip discontinuities analysis. Electromag-

netic wave analysis is performed by solving Maxwell’s equations. These equations are

partial differential equations that govern the propagation of electromagnetic waves.

They are discretized over a finite volume, and the derivatives are approximated using

central difference approximations. These finite-difference equations are then solved

in a leap-frog manner to compute the electric and magnetic fields (E and H, respec-

tively) in the finite-difference time domain (FDTD) method [17]. The performance of

the FDTD application is measured as the rate at which the E and H are computed

over a finite volume.

In the late 1960’s, FDTD computation was first carried out on an unbounded

boundary. In 1981, Mur [66] introduced highly absorbing boundary conditions (ABCs)

to simulate the unbounded boundary. This boundary condition was achieved by trun-

cating the mesh and using absorbing boundary conditions at its artificial boundaries

to simulate the unbounded surroundings. In 1995-96, Sacks et al. [67] and Gedney et

al. [68] introduced Uniaxial Perfectly Matched Layer (UPML) boundary conditions.

The evaluation of the guidelines can be performed by building a basic version (version

1.0) of 2D-FDTD as discussed in [17]. In order to create version 2.0 and version 3.0,

Mur’s second order and UPML boundary conditions will be introduced to the ver-

sion 1.0 model. Figure 4.11 shows the versions of 2D-FDTD hardware design. These

three models are then used to evaluate the set of design guidelines. The following

sub-sections explain all the versions.

The version 1.0 FDTD model is taken from the work conducted by Yee [17] in 1966.

The discussed model is an 2D-FDTD model used to compute electromagnetic wave
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Figure 4.11: 2D-FDTD hardware design versions

properties of materials. The software version of this model will be built and tested

using ‘C’. The hardware version of this model will be built referring to the design in

[3, 69]. The block diagram of design is shown in Figure 4.12. The design was built

on a Virtex-II Pro FPGA (XC2VP50-7). A total of nine compute engines were built.

The design was clocked at 100 MHz. The computation was performed using single

precision floating-point cores. A single iteration for a grid size of 1003×1012 took

2.4 ms for ‘E’ computation and 2.38 ms for ‘H’ computation. The hardware details

are tabulated in Table 4.4. For the purpose of evaluation, the hardware designs

(LFHD and GFHD) will be built on a Virtex-4 FX60 FPGA using single precision

floating-point hardware cores.

The version 2.0 FDTD model is a modification of version 1.0 FDTD model with

Mur’s second order boundary conditions as discussed in [66]. The software version

of this model will be built and tested using ‘C’. The hardware version of this model

will be built referring to the design in [4, 70]. The block diagram of design is shown

in Figure 4.13, 4.14, and 4.15. The design was built on a Xilinx Virtex-E XCV2000E
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Table 4.4: Hardware design details for version 1.0 electromagnetic application
Details Values
FPGA Virtex-II Pro FPGA (XC2VP50-7)
Resources used 59% Slices, 7% Multiplier blocks, and 32% BRAM blocks
Frequency of operation 100 MHz
Performance 1003×1012 grid (2.4 ms for ‘E’ and 2.38 ms for ‘H’ computation)
Computation Precision Single precision floating-point
Input Excitation Delta pulse
Test Cases Free Space
Boundary Conditions Perfect Electrical Conductive (PEC) boundary conditions

Figure 4.12: Version 1.0: 2D-FDTD hardware design [3]
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Table 4.5: Hardware design details for version 2.0 electromagnetic application
Details Values
FPGA Virtex-E XCV2000E FPGA
Resources used 46% of slices and 54% of BRAM blocks
Frequency of operation 70 MHz
Performance 100×100 took 0.145 seconds for 200 iterations
Computation Precision 26-bits after binary point and 3-bits for integer part
Input Excitation Electromagnetic wave from ground penetrating radar
Test Cases Free Space
Boundary Conditions Second-order Mur boundary conditions

Figure 4.13: Version 2.0: 2D-FDTD ‘E’ field updating hardware design [4]

FPGA and consumed 46% of slices and 54% of BRAM blocks. A total of 227 com-

pute engines were built. The design was clocked at 70 MHz. The computation was

performed using fixed-point (26-bits after binary point and 3-bits for integer part)

cores. A grid size of 100×100 took 0.145 seconds for 200 iterations. The hardware de-

tails are tabulated in Table 4.5. For the purpose of evaluation, the hardware designs

(LFHD and GFHD) will be built on a Virtex-4 FX60 FPGA using single precision

floating-point hardware cores.

The version 3.0 FDTD model is a modification of version 1.0 FDTD model with

UPML boundary conditions as discussed by Sacks et al. [67] and Gedney et al. [68].

The software version of this model will be built and tested using ‘C’. The hardware
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Figure 4.14: Version 2.0: 2D-FDTD ‘H’ field updating hardware design [4]

Figure 4.15: Version 2.0: 2D-FDTD boundary updating hardware design [4]
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Figure 4.16: Version 2.0: 2D-FDTD overall hardware design [4]

version of this model will be built referring to the design in [5]. The block diagram

of design is shown in Figure 4.17, 4.18, and 4.19. The design was built on a Xilinx

Virtex II-Pro FPGA. The design is operated at 120 MHz. The computation was

performed using fixed-point (33-bit field and 2-bit coefficient values) cores. A grid

size of 481×481 took 13.1 seconds for 3,026 iterations. The hardware details are

tabulated in Table 4.6. For the purpose of evaluation, the hardware designs (LFHD

and GFHD) will be built on a Virtex-4 FX60 FPGA.

Design Constraints for Evaluation :

1. FPGA : As hardware designs cannot built using older FPGA parts, all the

hardware designs (LFHD and GFHD) will be built on a Virtex-4 FX60 FPGA

for evaluation purposes.

2. Test Material: All the software, LFHD, and GFHD versions (version 1.0, 2.0,

3.0, and 4.0) will be tested using a standard material of a fixed size, whose
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Table 4.6: Hardware design details for version 3.0 electromagnetic application
Details Values
FPGA Xilinx Virtex II-Pro FPGA
Resources used 47% of Slices, 28% Multipliers, and 50% BRAM blocks
Frequency of operation 120 MHz
Performance 481×481 took 13.1 seconds for 3,026 iterations, 53.4 MNodes/second
Computation Precision 33-bits after binary point and 2-bits for integer part
Input Excitation Electromagnetic wave from ground penetrating radar
Test Cases Free Space
Boundary Conditions UPML boundary conditions

Figure 4.17: Version 3.0: 2D-FDTD UPML hardware design [5]

Figure 4.18: Version 3.0: 2D-FDTD UPML hardware design [5]
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Figure 4.19: Version 3.0: 2D-FDTD UPML overall hardware design [5]

parameters will be stored in off-chip memory.

3. Input Excitation : The input excitation wave will be stored as look-up table

values and will be loaded at each computation cycle.

4.1.2.3 Sparse Matrix-Vector Multiplication (SpMV)

Sparse matrix vector multiply (SpMV) routine does a matrix-vector multiplication

of sparsely filled matrix, and the complexity of the routine is O(n2). SpMV routine

is an important routine in many scientific applications that deals with matrix com-

putations. As better computation methods are discovered, computational scientists

implement those methods to reduce the execution time of their applications. In order

to evaluate the design guidelines, three versions (version 1.0, 2.0, and 3.0) of SpMV

is taken from the literature. Each version reduces the computation latency and im-

proves throughput. Figure 4.20 shows the versions of SpMV hardware design. These

three models are then used to evaluate the set of design guidelines. The following

sub-sections explain all the versions.

The version 1.0 design computes sparse matrix vector product as described by

Zhuo et al. [6]. The work discusses about a high throughput sparse matrix vector
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Figure 4.20: Sparse Matrix-Vector multiplication hardware design versions

Table 4.7: Hardware design details for version 1.0 SpMV multiply unit
Details Values
FPGA Xilinx Virtex-II Pro XC2VP70
Resources used 16,613 Slices
Frequency of operation 160 MHz
Performance 350 MFLOPs at 8.0 GB/s

multiply unit. The software version of the SpMV routine will be built and tested

using ‘C’. The hardware version of the SpMV will be built referring to the design in

[6]. The block diagram of design is shown in Figure 4.21 and 4.22. The design was

built on a Xilinx Virtex-II Pro XC2VP70. The design was clocked at 160 MHz. The

design uses University of Florida sparse matrix collection for testing. A sustainable

performance of 350 MFLOPs was observed. The hardware details are tabulated in

Table 4.7. For the purpose of evaluation, the hardware designs (LFHD and GFHD)

will be built on a Virtex-4 FX60 FPGA.

The version 2.0 design computes sparse matrix vector product as described by Sun

et al. [7]. The work discusses about a high throughput sparse matrix vector multiply

unit. The software version of the SpMV routine will be built and tested using ‘C’.
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Figure 4.21: Version 1.0: SpMV multiply hardware [6]

Figure 4.22: Version 1.0: SpMV reduction hardware [6]
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Table 4.8: Hardware design details for version 2.0 SpMV multiply unit
Details Values
FPGA Xilinx Virtex-II X2CV6000-6
Resources used 10,050 Slices, 11 BRAM Blocks, and 12 multipliers
Frequency of operation 95 MHz
Performance 118.77 MFLOPs

Figure 4.23: Version 2.0: SpMV multiply hardware [7]

The hardware version of the SpMV will be built referring to the design in [7]. The

block diagram of design is shown in Figure 4.23, 4.24. The design was built on a

Xilinx Virtex-II X2CV6000-6. The design was clocked at 95 MHz. The design uses

University of Florida sparse matrix collection for testing. A sustainable performance

of 118.77 MFLOPs was observed. The hardware details are tabulated in Table 4.8.

For the purpose of evaluation, the hardware designs (LFHD and GFHD) will be built

on a Virtex-4 FX60 FPGA.

The version 3.0 design computes sparse matrix vector product as described by

Kuzmanov et al. [8]. The work discusses about a high throughput sparse matrix vec-

tor multiply unit. The software version of the SpMV routine will be built and tested
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Figure 4.24: Version 2.0: SpMV reduction hardware [7]

Table 4.9: Hardware design details for version 3.0 SpMV multiply unit
Details Values
FPGA Xilinx Virtex-4 LX200
Resources used 22,700 Slices
Frequency of operation 100 MHz
Performance 1104 - 1571 MFLOPs at 8.0 GB/s

using ‘C’. The hardware version of the SpMV will be built referring to the design in

[8]. The block diagram of design is shown in Figure 4.25, 4.26. The design was built

on a Xilinx Virtex-4 LX200. The design was clocked at 100 MHz. The design uses

University of Florida sparse matrix collection for testing. A sustainable performance

of 1104 - 1571 MFLOPs was observed. The hardware details are tabulated in Ta-

ble 4.9. For the purpose of evaluation, the hardware designs (LFHD and GFHD) will

be built on a Virtex-4 FX60 FPGA.

Design Constraints for Evaluation :

1. FPGA : As hardware designs cannot built using older FPGA parts, all the

hardware designs (LFHD and GFHD) will be built on a Virtex-4 FX60 FPGA
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Figure 4.25: Version 3.0: SpMV multiply hardware [8]

Figure 4.26: Version 3.0: SpMV overall hardware [8]
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for evaluation purposes.

2. Test Data : University of Florida sparse matrix collection will be used for

testing.

3. Computation Precision : All the computations will be done in double precision

floating-point.

4.2 Communicability of the Design Guidelines

This section answers the question of whether these guidelines can be easily com-

municable. Table 4.1 describes the set of design guidelines. As seen, these design

guidelines can be easily followed and understood by computer engineers. Each design

guideline is self explanatory, and, by following the design guideline, one could achieve

a hardware design for a living scientific application.

4.3 Broad Applicability of the Design Guidelines

In order to answer the broad applicability of the design guidelines, six applications

are chosen from the literature, and the design guidelines are validated on the applica-

tions to understand the applicability of the design guidelines. A guideline fitness plot

is plotted for each application to understand the relation between the performance

and the number of design guidelines followed. The six applications that are chosen

from the literature are:

• Computational Fluid Dynamics

• Computational Molecular Dynamics

• Quantum Monte Carlo Simulations

• Hessenberg Reduction

• Gaxpy - BLAS Routine

• N-Body Simulations
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4.3.1 Guideline Fitness Plot

In order to find out the applicability of the design guidelines, a guideline fitness

plot is introduced. This plot is shown in Figure 4.27. The x-axis represents the de-

sign guidelines followed, and the y-axis represents the performance of the application.

A +1 value on the x-axis denotes that all the guidelines have been followed, and a

−1 shows none of them have been followed. A +1 on the y-axis shows the antici-

pated performance is equal to the peak performance, and −1 on the y-axis shows no

performance. A value of zero on the y-axis specifies 50% of the anticipated or the

theoretical performance.

The guideline fitness plot has four quadrants. The first quadrant is the area

between +x axis and +y axis, the second quadrant is between −x axis and +y axis, the

third quadrant is between −x axis and −y axis, and the fourth quadrant is between

−y axis and +x axis. If the fitness of an application falls in the first quadrant,

then the application at least follows 50% of the design guidelines and has 50% of

the anticipated or theoretical performance at a particular operational frequency or

a better match to a good design. If the fitness of the application falls in the third

quadrant, then less than 50% of the guidelines are followed, and the performance is

less than 50% of the anticipated or theoretical performance. If the application fitness

falls in the second quadrant, then less than 50% of the guidelines were followed, and

still the application has poor performance. If the application fitness falls in the fourth

quadrant, then more than 50% of the guidelines were followed, and the performance

was poor or did not match the theoretical design. The next section will discuss six

applications from the literature that will used to study the broad applicability of the

design guidelines. An example application (computational fluid dynamics) is chosen

from the six applications, and its evaluation is performed using the design guidelines

for studying broad applicability. The resultant values are plotted on the guideline

fitness plot.
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Figure 4.27: Guideline fitness plot

4.3.2 Computational Fluid Dynamics

Computational fluid dynamics (CFD) simulation is a numerical method to solve

problems involving fluid flows on discrete space and time. The problem space is

discretized into smaller regions to form a grid. The equations governing the fluid

flow is solved on the grid for discrete time steps [71]. The work presented in [9] uses

a flow-solver based on the fractional step method with finite difference schemes. In

this method, a tentative velocity is computed, and then the kinematic viscosity of the

fluid is computed using the governing equations. A systolic array approach is used

for the hardware design, shown in Fig. 4.28. The governing equations are evaluated

using the values from all the directions (north, east, west, and south). The design

is tested for a 24 × 24 grid, which is a small dataset for testing the robustness of

the design. The dataset is stored locally and is not streamed to use the maximum

memory bandwidth.

The evaluation is carried out by a rubric. Every design guideline that is followed

is given a score of +1, and those that are not followed is given a score of -1. The

evaluated design guideline values are added to get the total score. These values are
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Figure 4.28: Computational fluid dynamics design [9]

used to plot the guideline fitness plot. The CFD design is evaluated to find out

whether or not the design guidelines have been followed. Table 4.10 shows the design

guidelines that have been followed. The guideline fitness plot is used to evaluate the

application. After the evaluation, and from Table 4.10, the total score is 4. The

scaled score is 4/12=0.33. The scaled score is plotted on the x-axis. The y-axis shows

the performance. The work referred here uses a single Altera Stratix II FPGA of the

DN7000k10PCI board. The size of the implemented systolic array is 12×8 cells. The

implemented design consumes ≈50% logic cells and all of the embedded multipliers.

Every cell has a multiplier accumulate unit (MACC), which can operate at 90 MHz

but when put together can only operate at 60 MHz. The MACC has five stages,

however, if these stages are increased further, a higher frequency can be achieved.

Assuming the theoretical frequency to be 90 MHz, the performance is 0.67, and since

the MACC unit is 98% utilized, the overall performance is 0.67×0.98=0.656. The

scaled performance index (0.656*2)-1=0.31 is plotted on the y-axis of the guideline

fitness plot, shown in Figure 4.29.

4.3.3 Computational Molecular Dynamics

Molecular dynamics (MD) simulation is a study of movements of atoms and

molecules. This study is divided into two-body and three-body interactions [72].
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Table 4.10: CFD design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 4

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

4

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

4

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

4

11 Maximize computation until maximum memory bandwidth is utilized 8

12 Use a large and real dataset for test cases 8

Figure 4.29: Guideline fitness plot for CFD application
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In two-body MD, the simulation is based on the distance and force computation of

two atoms. In three-body MD, the simulation is based on the distance and force com-

putation of three atoms. A fully implemented two-body MD hardware is presented

by Chiu et al. [10]. The hardware design is shown in Figure 4.30. The hardware

design computes two-body force in reduced precision.

4.3.4 Quantum Monte Carlo Simulations

Quantum Monte Carlo (QMC) simulations studies the structural and energetic

properties of a group of atoms or molecules. There are two types of QMC simula-

tions: diffusion Monte Carlo (DMC) and variational Monte Carlo (VMC) simulations

[11]. These methods are useful for studying the ground-state wave functions, local

energies, and other ground-state properties of quantum many-body systems. DMC

is a technique for numerically solving the many-body Schrodinger equation. The

VMC method employs a set of adjustable parameters to yield a trial wave function

that approximates the exact wave function. The VMC method is simpler and faster

than the DMC method, but less accurate. The work described in [11] uses the VMC

method to perform Monte Carlo simulations. In this method, a reference configura-

tion is chosen, and a random displacement is added to the reference configuration.

The energy and wave function of the new configuration is computed. The final step is

to accept, or reject, the current configuration using the ratio of wave functions. The

two most important kernels of the application is potential energy computation and

wave function calculation. The pipeline of distance computation and wave function

computation is shown in Figure 4.31. The design compromises the accuracy of the

results by using fixed precision. Any changes in the computational algorithm would

demand a complete redesign.

4.3.5 Hessenberg Reduction

Hessenberg reduction (HR) reduces a square matrix in to an upper or lower Hes-

senberg matrix. A upper Hessenberg matrix is a matrix with zero entries below the
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Figure 4.30: Molecular dynamics design [10]
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Figure 4.31: Quantum Monte Carlo simulation design [11]

sub-diagonal matrix, and a lower Hessenberg matrix is a matrix with zero entries

above the sub-diagonal matrix. HR is a major step involved in finding the eigen

values of a matrix [73]. This is an important reduction used in many of the high

performance computing applications. A hardware for HR is discussed in [12]. The

work is demonstrated on SGIs Altix RASC RC100 reconfigurable computer with Xil-

inx Virtex-4LX200 FPGA. The hardware is shown in Figure 4.32. One of the major

design flaws of the hardware is that the dataset is stored on the local memory and

not on the main memory (DDR). This would not enable the design to scale for larger

matrices. The computation is done in a sequential fashion. Any improvements in the

algorithm can not be accommodated unless the hardware is redesigned.

4.3.6 Gaxpy - BLAS Routine

Gaxpy routine is a BLAS level 2 routine. The routine does matrix-vector multi-

plication, and the complexity of the routine is O(n2) [15]. A Gaxpy hardware built
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Figure 4.32: Hessenberg reduction design [12]

Figure 4.33: Gaxpy Routine Design [13]

on the FPGA is discussed in [13]. The hardware design is shown in Figure 4.33. The

work was demonstrated on a BEE3 FPGA board that has four V5 LX155T FPGAs.

The implementation has 16 processing elements, each computing a 4×4 matrix. The

maximum size of the matrix that can be stored on the on-chip memory is 256×256.

The peak theoretical performance at 100 MHz is 200 MFLOPs. There are 16 PEs

per FPGA, and with four FPGAs, the peak theoretical performance is 12.8 GFLOPs,

and the reported performance is 3.113 GFLOPs.

4.3.7 N-Body Simulations

N-Body simulation has been used by computer scientist to study the interaction

of atoms and molecules for past several decades. In these studies, the atoms and
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molecules are allowed to interact for a given period of time and the intermolecular

forces are computed. The atomic interactions which are governed by the basic laws of

physics are discretized and simulated using a computer program. These simulations

help scientists understand the behavior of proteins, bio-molecules, and other materials

that often cannot be observed directly. A N-body computation involves two major

computations. The first computation is the inter-atomic distances between three

atoms, followed by inter-atomic force computations for those atoms whose inter-

atomic distances are less than the cut-off distance. Since the above computations

(distance and force) involve three atoms, i.e, every atom is compared with every two

other atoms, the distance and force computations are performed in a triply nested

loop. For instance, a system with ‘n′ atoms has a computational complexity of O(n3).

A N-Body hardware is built on the FPGA and is discussed in [14]. The hardware

design is shown in Figure 4.34.

Once the evaluation for broad applicability is performed for the above six ap-

plications, a combined fitness plot will be plotted by combining the fitness plot for

all applications. The next section discusses the validation of the results from the

evaluation.

4.4 Validation

To validate this work, we must answer whether the designers can effectively ac-

commodate the evolving changes in the living computational science application and

achieve better performance and productivity by using the set of design guidelines.

We must also answer the communicability and broadly applicability of the design

guidelines. To answer the thesis question, we will use the experimental results from

the evaluation metrics to further prove or disprove our solution. To be very specific,

we will answer the following questions for each application:

• Does the performance data points of GFHD and LFHD track each other?

• Does the resource utilization data points of GFHD and LFHD track each other?
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Figure 4.34: N-body hardware design [14]
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• Does the lines of code changed data points of GFHD and LFHD diverge?

• Is the degree of effectiveness in terms of performance classified as good or ex-

cellent?

• Is the degree of effectiveness in terms of resources utilization classified as good

or excellent?

• Is the degree of effectiveness in terms of lines of code changed classified as good

or excellent?

• Is the design guideline easily communicable?

• Is the design guideline broadly applicable for many applications?

If the performance and resource utilization data points for GFHD and LFHD track

each other, and the lines of code diverge for GFHD and LFHD, then the degree of

effectiveness is further used to affirm or deny the thesis question. Example of such a

scenario is shown in Figure 4.35, 4.36, and 4.37 using fictitious data. On the contrary,

if the performance and/or resource utilization data points do not track, and/or the

lines of code data points do not diverge, then we can deny the thesis question.

If results from the evaluation for all applications show an excellent or good re-

sponse for performance, resource, and lines of code comparison, then we can strongly

affirm the solution to thesis question. On the other hand, if the classifications for all

applications generate a bad response for resources and an good, or excellent response

for performance and lines of code changed for all applications, then we can conclude

that the set of design guidelines helps hardware designers to design hardware for liv-

ing scientific codes, but it requires more resources. If the degree of effectiveness for

comparison of lines of code changed is bad for any application, then we can deny the

thesis question.
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Figure 4.35: ∆LOC measurements for LFHD and GFHD (fictitious data)
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Figure 4.37: Performance measurements for LFHD and GFHD (fictitious data)

If the results from evaluation confirms easy communicability of the design guide-

lines, and broad applicability to various applications, then we can affirm that there

exists a design guideline that is easily communicable and is broadly applicable.



CHAPTER 5: RESULTS

This section discusses the results obtained from effectiveness and broad applica-

bility evaluation. The first section discusses the results from effectiveness evaluation

followed by broad applicability evaluation.

5.1 Effectiveness of design guidelines

The evaluation of photo-voltaic (P-V) modeling using Neural Networks, electro-

magnetic wave analysis using finite difference time domain (FDTD), and the com-

putational science kernel sparse matrix-vector (SpMV) multiplication operation is

discussed in this section. Observations are made from the results and is presented in

this section. The following sections present the results of evaluation for each of the

application.

5.1.1 P-V System Modeling using Neural Networks (NN)

The P-V system modeling using neural networks helps in predicting the amount of

electrical energy that could be made available from sunlight. This application takes

solar irradiation and ambient temperature to predict voltage and current of the P-V

system. In order to evaluate the design guidelines, two versions of this application

are built using software, literature, and using the design guidelines. The following

sections discusses about the designs.

5.1.1.1 Software Design

The software designs (version 1.0 and 2.0) were built using Matlab following the

guidelines presented in [65, 1] (version 1.0), and [2] (version 2.0). The neural network

based design was trained and evaluated using the data observed at Florida Solar

Energy Center (FSEC). The center provides data from July 18, 2010 to the present

day. The data is downloaded and divided into training set and evaluation set. The
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training set consists of 12 months of data and the evaluation set consists of 6 months

of data. The authors of the literature design have used five and ten years of data for

training and one year for evaluation. As the data used does not affect the evaluation

parameters (performance, resources, and lines of code changed) we decided to use

the most accurate available data for training and evaluation of the literature based

designs. The inputs, weights, and the results of the software based neural networks

are used for testing and validation of the results with the literature and guideline

followed hardware design.

5.1.1.2 Literature Followed Hardware Design

The literature followed hardware design is built using the guidelines presented in

[65, 1] (version 1.0), and [2] (version 2.0). The main component of the design is the

neuron. The VHDL code of the neuron is presented in the appendix of the paper.

The VHDL code is used to design the neuron followed by the design of the multi-

layered perceptron (MLP). The design is built as closely as possible. For example,

the Table 5.1 shows the synthesis report taken from the synthesis log. The report has

20 ROMs, 40 multipliers, and 3 multiplexers. The literature design has 20 ROMs, 40

multipliers and 3 multiplexers in total. This confirms that the design is built as close

as possible. The performance of the literature based design depends on the largest

number of inputs of any layer and the latency of the neuron. As the number of inputs

for each layer is known, and the neuron design is available, the performance can be

computed. Thus, the performance of the design is also preserved. Once the designs

(version 1.0 and 2.0) are built, the lines of code added or changed, performance, and

the resources used are tabulated in the Table 5.2.

5.1.1.3 Guideline Followed Hardware Design

The guideline followed hardware design is built using the design guidelines and the

input-output characteristics of neural networks presented in [65, 1] (version 1.0), and

[2] (version 2.0). The neuron component is redesigned following the design guidelines,
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HDL Synthesis Report

Macro Statistics

# ROMs : 20

16x18-bit ROM : 1

4x18-bit ROM : 7

8x18-bit ROM : 12

# Multipliers : 40

18x18-bit multiplier : 40

# Adders/Subtractors : 80

18-bit adder : 40

36-bit adder : 40

# Registers : 56

1-bit register : 10

18-bit register : 23

2-bit register : 1

3-bit register : 1

36-bit register : 20

4-bit register : 1

# Latches : 20

18-bit latch : 20

# Comparators : 340

18-bit comparator greatequal : 20

18-bit comparator less : 320

# Multiplexers : 3

18-bit 16-to-1 multiplexer : 1

18-bit 4-to-1 multiplexer : 1

18-bit 8-to-1 multiplexer : 1

Table 5.1: HDL synthesis report for P-V regulator model
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Table 5.2: Results for P-V Modeling Application

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD (G-L)/L LFHD GFHD (G-L)/G Bad/Good/Xlnt
Lines of code
-Delta LOC 0 0 N.A 437 233 -87.55% Xlnt

Resource Utilization
-Slices 4,806 5,026 4.57% 18,471 20,298 9.89% Xlnt
-BRAM blocks 40 36 -10% 118 108 -8.47% Xlnt
-DSP48 slices 36 36 0% 158 158 0% Xlnt

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD G/L LFHD GFHD G/L Bad/Good/Xlnt
Performance
-Million decisions/sec 8.27 9.85 1.19 6.47 7.39 1.14 Xlnt

Xlnt - Excellent

and the redesigned neuron is used to build the MLP. Once the guideline followed de-

signs (version 1.0 and 2.0) are built, the lines of code added or changed, performance,

and the resources used are tabulated in the Table 5.2.

5.1.1.4 Results

The results of the designed hardware from literature and using the guidelines

are presented in Table 5.2. Plots 5.1, 5.2, 5.3, and 5.4 are drawn for lines of code

changed, resources, and performance respectively. Guidelines 1, 4, and 10 were used

for designing the GFHD. The (G-L)/L or (GFHD-LFHD)/LFHD column represents

the percentage increase or decrease in the lines of code and resources used for every

version (version 1.0 and 2.0). The degree of effectiveness column presents the classifi-

cation for degree of effectiveness. Similarly, for the performance, decisions computed

per second is reported in Table 5.2. The (G/L) or (GFHD/LFHD) column presents

the final performance factor between the literature followed design and guideline fol-

lowed design for every version.

5.1.1.5 Observations

Plots are drawn for the lines of code changed, resource usage, and performance

measurements, as shown in Figures 5.1, 5.2, 5.3, and 5.4. The plot for lines of

code changed (Figure 5.1) show that the data points for GFHD and LFHD diverge.

Similarly, the plots for performance and resources used (Figures 5.4, 5.2, and 5.3) show

that data points of GFHD and LFHD for performance and resource utilization track
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Figure 5.1: Plot comparing lines of code changed for P-V application
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each other. The last column of the Table 5.2 indicates the degree of effectiveness, and

shows good or excellent for the lines of code changed, resources, and performance.

Hence, we can infer that guideline followed design is effective in terms of lines of code

changed, resources, and performance for the P-V system modeling application. The

performance of the guideline followed design is better than literature followed design,

and the guideline followed design requires an additional 5% resources.

5.1.2 2D-Finite Difference Time Domain

Electromagnetic wave analysis is performed by solving Maxwell’s equations. These

equations are partial differential equations that govern the propagation of electromag-

netic waves. They are discretized over a finite volume, and the derivatives are ap-

proximated using central difference approximations. These finite-difference equations

are then solved in a leap-frog manner to compute the electric and magnetic fields (E

and H, respectively) in the finite-difference time domain (FDTD) method [17]. The

performance of the FDTD application is measured as the rate at which the E and H

are computed over a finite volume.

5.1.2.1 Software Design

The software designs are created following the specifications described in [3, 69]

(version 1.0), [4, 70] (version 2.0), and [5] (version 3.0). Each design has a source

and a receiver port. A source signal is given at the source port and the response

is measured at the receiver port. Results from the receiver port is then compared

with the hardware designs. The software designs are built around perfect electric

conductor (PEC) model, Mur model, and uniaxial perfectly matched layer (UMPL)

model.

5.1.2.2 Literature Followed Hardware Design

The literature followed designs were built following the designs presented in [3, 69]

(version 1.0), [4, 70] (version 2.0), and [5] (version 3.0). The designs are recreated as

close as possible, with the resources and performance closely matched to the resources
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Figure 5.5: Electric field at receiver port for 2D-FDTD PEC Model

and the performance reported in the literature. The plots 5.5, and 5.6 shows the

receiver port electric field values for PEC model. An error plot is shown in Figure 5.7

for 5000 iterations. For every iteration root mean square error (RMSE) is computed

for all the Ez, Hx, and Hy field values. There were few error due to Ethernet packet

drop and, these points were removed from the final plot to show the exact root mean

square error of the fields for every iteration.

Plot 5.8 shows the electric field values, and the error between software and LFHD

hardware electric field values. Similarly, 5.9, and 5.10 shows the electric field values

for UMPL model. The resource used, performance and the lines of code for each

version is presented in Tables 5.3 and 5.4.

5.1.2.3 Guideline Followed Hardware Design

The guideline followed design follows the design guidelines to build the designs

presented in [3, 69] (version 1.0), [4, 70] (version 2.0), and [5] (version 3.0). Plots 5.11,

5.13, and 5.14 show the electric field values and the values are similar to the results

from the software and the literature followed design results. An error plot is shown in
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Figure 5.6: Electric field at receiver for 2D-FDTD LFHD PEC Model
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Figure 5.9: Electric field at receiver port for 2D-FDTD UMPL Model
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Figure 5.10: Electric field at receiver port for 2D-FDTD UMPL LFHD Model

Figure 5.12 for 5000 iterations. For every iteration root mean square error (RMSE)

is computed for all the Ez, Hx, and Hy field values. The resource used, the perfor-

mance, and the lines of code for each version after removing the resources for Ethernet

core and its peripherals is presented in Tables 5.3 and 5.4.

5.1.2.4 Results

The results of the designed hardware from literature and using the guidelines are

presented in Tables 5.3 and 5.4. Plots 5.15, 5.17, 5.16, and 5.18 are drawn for lines of

Table 5.3: Comparison of version 1 and 2 results for FDTD application

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD (G-L)/G LFHD GFHD (G-L)/G Bad/Good/Xlnt
Lines of code
-Delta LOC 0 0 N.A 2718 1570 -73.12% Xlnt

Resource Utilization
-Slices 12,582 12,111 -3.88% 11,616 10,471 -10.93% Xlnt
-BRAM blocks 77 77 0% 93 93 0% Xlnt
-DSP48 slices 16 16 0% 0 0 0% Xlnt

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD L/G LFHD GFHD L/G Bad/Good/Xlnt
Performance
-Computation time (ms) 21 21 1.0 159 158 1.0 Good

Xlnt - Excellent
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Figure 5.11: Electric field at receiver port for 2D-FDTD GFHD PEC Model

 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

E
rr

o
r

Iteration

E and H Field Error Measurements

Ez
Hx
Hy

Figure 5.12: RMSE values for E and H Fields for GFHD PEC model



84

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 3e-09  6e-09  9e-09  1.2e-08  1.5e-08

E
le

ct
ri

c 
fi

el
d

 (
V

/m
)

Simulation time step (Secs)

Electric Field Measurements
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Figure 5.14: Electric field at receiver port for 2D-FDTD UMPL GFHD Model
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Table 5.4: Comparison of version 2 and 3 results for FDTD application

Measurements
Version 2.0 Version 3.0 Effectiveness

LFHD GFHD (G-L)/G LFHD GFHD (G-L)/G Bad/Good/Xlnt
Lines of code
-Delta LOC 2718 1570 -73.12% 4842 3703 -30.75% Good

Resource Utilization
-Slices 11,616 10,471 -10.93% 15,750 14,452 -8.98% Xlnt
-BRAM blocks 93 93 0% 197 161 -22.36% Xlnt
-DSP48 slices 0 0 0% 84 64 -31.25% Xlnt

Measurements
Version 2.0 Version 3.0 Effectiveness

LFHD GFHD G/L LFHD GFHD G/L Bad/Good/Xlnt
Performance
-Computation time (ms) 159 158 1.0 7350 7350 1.0 Good

Xlnt - Excellent

Table 5.5: Comparison of reported versus used resources for applications

Application
Slices BRAMs DSP48 Slices

Reported LFHD GFHD Reported LFHD GFHD Reported LFHD GFHD
FDTD Ver 1 7,640 15,712 15,241 6 12(77) 12(77) 16 16 16
FDTD Ver 2 8,832 14,746 13,601 20 40(93) 40(93) 0 0 0
FDTD Ver 3 15,787 18,880 17,582 166 197 161 92 84 64
SpMV Ver 1 16,613 19,125 19,163 ND 185 185 ND 64 64
SpMV Ver 2 10,050 12,933 13,429 ND 69 69 ND 16 16
SpMV Ver 3 2,140 11,354 11,203 ND 85 85 9 16 16

ND - No Data

code changed, resources, and performance respectively. Guidelines 4, 5, and 10 were

used to design GFHD. The (G-L)/G or (GFHD-LFHD)/GFHD column represents

the percentage increase or decrease in the lines of code and resources used for every

version (version 1.0, 2.0, and 3.0), and the degree of effectiveness column presents

the classification for effectiveness. Similarly, for the performance, execution time

in milliseconds (milli secs) is reported in the Tables 5.3 and 5.4. The (G/L) or

(GFHD/LFHD) column presents the final performance factor between the literature

followed design and the guideline followed design for every version. Table 5.5 shows

the reported resource usage from the literature, and the resources from the place and

route report for LFHD and GFHD for FDTD and SpMV applications.

5.1.2.5 Observations

The observations from the plots 5.18 and 5.17, 5.16 shows that data points of

GFHD and LFHD for performance and resource utilization track each other. Simi-

larly, plot 5.15 for lines of code changed shows that the data points for GFHD and

LFHD diverge. The observations from the plots shows that the design guidelines are
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effective for FDTD design. The observations made from the last column of the Ta-

bles 5.3 and 5.4 shows the degree of effectiveness, and shows good or excellent for the

lines of code changed, resources, and performance. Hence, we can infer that guideline

followed design is effective in terms of lines of code changed, resources, and perfor-

mance for the FDTD application. The performance of the guideline followed design

is as close as literature followed design, and the guideline followed design requires an

additional 10% resources.

5.1.3 Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMV) is an operation that is very commonly

used in many computational science application. Each version computes Ax = y,

where ‘A’ is a sparse matrix and ‘x’ is a vector. The result of the computation

is stored in ‘y’. In order to evaluate the design guidelines, three versions of this

application is built using software, literature, and using the design guidelines. The

following sections discusses about the designs.

5.1.3.1 Software Design

Every version of sparse matrix design has a small percentage of software pre-

processing. The software pre-processing consists of converting the raw matrix into

compressed sparse row (CSR) format. Once the CSR format is obtained, the matrix

is stored in the required format. Every version uses its own format for matrix com-

putation. The matrix data is copied to FPGA’s DDR2 SDRAM, and from where the

data is then copied (DMA) for actual computation. The first design (version 1) is a

row major design, the second design (version 2) is column major, and the third one

(version 3) is multiple row format. Once the data is copied to the hardware, a matrix

multiplication is performed in software. The software code is written in ‘C’, and the

results are used to compare the results from the hardware.
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Table 5.6: Performance for SpMV version 1 LFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

raefsky3 21200×21200 1488768 0.331 438843 1085.59
bcsstk35 30237×30237 740200 0.081 331010 715.58

rdist1 4134×4134 94408 0.552 30767 981.91
memplus 17758×17758 126150 0.040 102014 395.71
gemat11 4929×4929 33185 0.137 16881 629.06
lns3937 3937×3937 25407 0.164 13488 602.78

sherman5 3312×3312 20793 0.190 11041 602.64
mcfe 765×765 24382 4.166 7472 1044.20

jpwh991 991×991 6027 0.614 3248 593.79
bp1600 822×822 4841 0.716 2655 583.47
str600 363×363 3279 2.488 1465 716.23

5.1.3.2 Literature Followed Hardware Design

The literature followed hardware design is built using the design guidelines pre-

sented in [6] (version 1.0), [7] (version 2.0), and [8] (version 3.0). The designs are

recreated as close as possible. The designs are recreated such that the resources and

performance are closely matched. The designs are tested for all the matrices presented

in the literature. In cases where matrices are not specified, matrices of similar char-

acteristics are taken from University of Florida sparse matrix collection. The results

of the test are presented in Tables 5.6, 5.7, and 5.8. Tables 5.12 and 5.13 presents

the resource used, performance, and the lines of code changed for each version.

5.1.3.3 Guideline Followed Hardware Design

The guideline followed hardware design is built using the design guidelines pre-

sented in Table 4.1, and were used to design the hardware presented in [6] (version

1.0), [7] (version 2.0), and [8] (version 3.0). The designs are tested for all the matrices

presented in the literature. In cases where matrices are not specified, matrices of
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Table 5.7: Performance for SpMV version 2 LFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

ex40 7740×7740 456188 0.761 674381 128.53
ex19 12005×12005 259577 0.18 414105 119.10

raefsky 21200×21200 1488768 0.331 2198718 128.65
thread 29736×29736 2237308 0.253 3310498 128.41

mark3jac 45769×45769 268563 0.013 925710 55.12
TSOPF 56814×56814 4391071 0.136 6531825 127.73

Chebyshev 68121×68121 5377761 0.116 8142439 125.49
consph 83334×83334 3046907 0.044 4860309 119.11
s3dkq 90449×90449 2259087 0.028 3732869 114.99
m t1 97578×97578 4925574 0.052 7525506 124.36
x104 108384×108384 4410993 0.038 6879856 121.82
torso 116158×116158 8516500 0.063 13004952 124.42
bone 127224×127224 2821913 0.017 5111085 104.90

bmwcr1 148770×148770 5395186 0.024 8429385 121.61
Si02 155331×155331 5719417 0.024 11467648 94.76

PR02R 161070×161070 8185136 0.032 14638567 106.24
Si41G 185639×185639 7598452 0.022 14504176 99.54
pwtk 217918×217918 5871175 0.012 9399439 118.68
bmw3 227362×227362 5757996 0.011 10193641 107.32

BenElachi 245874×245874 6698185 0.011 10816490 117.66

Table 5.8: Performance for SpMV version 3 LFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

gemat12 4929×4929 33044 0.136 34774 190.05
k3plates 11107×11107 378927 0.307 379763 199.56
wang3 26064×26064 177168 0.026 183550 193.05

jnlbrng1 40000×40000 119600 0.007 123631 193.48
epb3 84617×84617 463625 0.006 482792 192.06

cont-300 180895×180895 539396 0.002 587866 183.51
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Table 5.9: Performance for SpMV Version 1 GFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

raefsky3 21200×21200 1488768 0.331 438839 1085.60
bcsstk35 30237×30237 740200 0.081 331020 715.56

rdist1 4134×4134 94408 0.552 30767 981.91
memplus 17758×17758 126150 0.040 102007 395.74
gemat11 4929×4929 33185 0.137 16881 629.06
lns3937 3937×3937 25407 0.164 13488 602.78

sherman5 3312×3312 20793 0.190 11041 602.64
mcfe 765×765 24382 4.166 7472 1044.20

jpwh991 991×991 6027 0.614 3248 593.79
bp1600 822×822 4841 0.716 2655 583.47
str600 363×363 3279 2.488 1465 716.23

similar characteristics are used from University of Florida sparse matrix collection.

The results of the test are presented in Tables 5.9, 5.10, and 5.11. The resource

used, performance, and the lines of code for each version after removing resources for

additional peripherals is presented in Tables 5.12 and 5.13.

5.1.3.4 Results

The results of the literature followed hardware design and guideline followed hard-

ware design are presented in Tables 5.12 and 5.13. Plots 5.19, 5.21, 5.20, and 5.22 are

drawn for lines of code changed, resources, and performance respectively. Guidelines

4, 5, and 10 were used for designing GFHD. The (G-L)/G or (GFHD-LFHD)/GFHD

column in Tables 5.12 and 5.13 represents the percentage increase or decrease in the

lines of code and resources used for every version (version 1.0, 2.0, and 3.0), and the

degree of effectiveness is presented in the last column. Similarly, for the performance,

floating point operations per second (FLOPS) is reported in the Tables 5.12 and 5.13.

The (G/L) or (GFHD/LFHD) column presents the final performance factor between

the literature followed design and guideline followed design for every version.
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Table 5.10: Performance for SpMV Version 1 GFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

ex40 7740×7740 456188 0.761 675346 128.34
ex19 12005×12005 259577 0.18 414469 118.99

raefsky 21200×21200 1488768 0.331 2199836 128.59
thread 29736×29736 2237308 0.253 3315660 128.21

mark3jac 45769×45769 268563 0.013 972830 52.45
TSOPF 56814×56814 4391071 0.136 6532468 127.72

Chebyshev 68121×68121 5377761 0.116 8159338 125.23
consph 83334×83334 3046907 0.044 4898070 118.19
s3dkq 90449×90449 2259087 0.028 3880403 110.61
m t1 97578×97578 4925574 0.052 7567432 123.67
x104 108384×108384 4410993 0.038 6994637 119.82
torso 116158×116158 8516500 0.063 14170591 114.19
bone 127224×127224 2821913 0.017 5375678 99.74

bmwcr1 148770×148770 5395186 0.024 8478997 120.90
Si02 155331×155331 5719417 0.024 11555164 94.04

PR02R 161070×161070 8185136 0.032 14986091 103.77
Si41G 185639×185639 7598452 0.022 14627052 98.70
pwtk 217918×217918 5871175 0.012 9612883 116.04
bmw3 227362×227362 5757996 0.011 10616153 103.05

BenElachi 245874×245874 6698185 0.011 11139398 114.25

Table 5.11: Performance for SpMV Version 1 GFHD design
Matrix name RowsxCols Non-Zeros Sparsity Clock Cycles Performance

gemat12 4929×4929 33044 0.136 34774 190.05
k3plates 11107×11107 378927 0.307 379763 199.56
wang3 26064×26064 177168 0.026 183550 193.05

jnlbrng1 40000×40000 119600 0.007 123631 193.48
epb3 84617×84617 463625 0.006 482792 192.06

cont-300 180895×180895 539396 0.002 587866 183.51

Table 5.12: Comparison of version 1 and 2 results for SpMV application

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD (G-L)/G LFHD GFHD (G-L)/G Bad/Good/Xlnt
Lines of code
-Delta LOC 0 0 N.A 1838 1422 -29.25% Good

Resource Utilization
-Slices 18,321 18,359 0.21% 9,803 10,299 5.05% Xlnt
-BRAM blocks 185 185 0% 69 69 0% Xlnt
-DSP48 slices 64 64 0% 16 16 0% Xlnt

Measurements
Version 1.0 Version 2.0 Effectiveness

LFHD GFHD G/L LFHD GFHD G/L Bad/Good/Xlnt
Performance
-Million FLOPS 395 395 1.0 114.42 112.33 0.98 (≈1.0) Good

Xlnt - Excellent
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Table 5.13: Comparison of version 2 and 3 results for SpMV application

Measurements
Version 2.0 Version 3.0 Effectiveness

LFHD GFHD (G-L)/G LFHD GFHD (G-L)/G Bad/Good/Xlnt
Lines of code
-Delta LOC 1838 1422 N.A 1804 1323 -36.36% Good

Resource Utilization
-Slices 9,803 10,299 5.05% 10,550 10,399 -1.45% Xlnt
-BRAM blocks 69 69 0% 85 85 0% Xlnt
-DSP48 slices 16 16 0% 16 16 0% Xlnt

Measurements
Version 2.0 Version 3.0 Effectiveness

LFHD GFHD G/L LFHD GFHD G/L Bad/Good/Xlnt
Performance
-Million FLOPS 114.42 112.33 0.98 (≈1.0) 183.51 183.27 0.99 (≈1.0) Good

Xlnt - Excellent
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Figure 5.19: Plot comparing lines of code changed for SpMV operation
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Figure 5.20: Plot comparing resource utilization for SpMV operation
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Figure 5.21: Plot comparing resource utilization for SpMV operation
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Figure 5.22: Plot comparing performance for SpMV operation

5.1.3.5 Observations

Observations from the plots 5.22, 5.21, and 5.20 show that the data points of

GFHD and LFHD for the performance and the resource utilization track each other.

Similarly, the data points for lines of code changed for GFHD and LFHD diverge,

as shown in plot 5.19, and the observations from the plots suggests that the design

guidelines are effective for sparse matrix vector multiplication operation. The ob-

servations made from the last column of the Tables 5.12 and 5.13 shows the degree

of effectiveness, and the results are good or excellent for the lines of code changed,

resources, and performance. Hence, we can infer that guideline followed design is

effective in terms of lines of code changed, resources, and performance for the SpMV

operation. The performance of the guideline followed design is as close as literature

followed design, and the guideline followed design requires an additional 5% resources.

5.2 Broad Applicability of the Design Guidelines

In order to answer broad applicability of the design guidelines, a guideline fitness

plot is plotted for six applications. The design guidelines are validated on the appli-
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cations to understand the applicability of the design guidelines. A guideline fitness

plot is plotted for each application to understand the relation between performance

and the number of design guidelines followed. The six applications that are chosen

from the literature are:

• Computational Fluid Dynamics

• Computational Molecular Dynamics

• Quantum Monte Carlo Simulations

• Hessenberg Reduction

• Gaxpy - BLAS Routine

• N-Body Simulations

5.2.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD) simulation is a numerical method to solve

problems involving fluid flows on discrete space and time. The set of design guidelines

is evaluated on the design presented in [9]. The evaluation is carried out by a rubric

discussed in section 4.3.1. Every design guideline that is followed is given a score of

+1, and those that are not followed is given a score of −1. The evaluated design

guideline values are added to get the total score. These values are used to plot the

guideline fitness plot. The CFD design is evaluated to find out whether or not the

design guidelines have been followed in Table 5.14, and the total score is 4. The

scaled score is 4/12=0.33, as plotted on the x-axis, and the y-axis shows the actual

performance compared to the theoretical performance. The work referred here uses

a single Altera Stratix II FPGA of the DN7000k10 PCI board. The implemented

design [9] has a systolic array with 12×8 cells that consumes ≈50% logic cells with all

of the embedded multipliers. Every cell has a multiplier accumulate unit (MACC),
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Table 5.14: CFD design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 4

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

4

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

4

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

4

11 Maximize computation until maximum memory bandwidth is utilized 8

12 Use a large and real dataset for test cases 8

which can operate at 90 MHz, but, when put together, can only operate at 60 MHz.

The MACC has five stages; however, if these stages are increased further, a higher

frequency can be achieved. Assuming the theoretical frequency to be 90 MHz and the

utilization to be 98%, the peak theoretical frequency is computed as 90/0.98 = 91.83

MHz. The performance of the design depends on the frequency and its utilization,

and the overall performance when compared to the theoretical peak is computed as

0.60/91.83 = 0.653. The scaled performance index (0.653×2) − 1 = 0.31 is plotted

on the y-axis of the guideline fitness plot, as shown in Figure 5.23.

5.2.2 Computational Molecular Dynamics

Molecular dynamics (MD) simulation is a study of movements of atoms and

molecules. A two-body simulation design is discussed in [10]. The design uses fixed

precision for computation and does not use microcode to configure the resources. Due

to these reasons, the design cannot be modified easily when there is change in the

design. Table 5.15 shows the design guidelines that have been followed. Since parallel

computations cannot be performed, only 95% performance can be achieved [10]. The
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Figure 5.23: Guideline fitness plot for CFD application

scaled performance index (0.95×2) − 1 = 0.9 is plotted on the y-axis of the guideline

fitness plot, as shown in Figure 5.24.

5.2.3 Quantum Monte Carlo Simulations

Quantum Monte Carlo (QMC) simulations study the structural and energetic

properties of a group of atoms or molecules. There are two types of QMC simulations:

diffusion Monte Carlo (DMC) and variational Monte Carlo (VMC) [11]. The design

uses fixed precision for computation and does not use microcode to configure the

datapath. Table 5.16 shows the design guidelines that have been followed. A parallel

design can be easily built using the resources and the available memory bandwidth.

This could have increased the performance by 50%, and thus the theoretical peak

performance is 1.5 times the actual performance. The actual performance compared

to the peak theoretical performance is 1/1.5 = 0.667. The scaled performance index

(0.667×2) − 1 = 0.33 is plotted on the y-axis of the guideline fitness plot, as shown

in Figure 5.25.
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Table 5.15: MD design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 4

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

8

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

4

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

4

11 Maximize computation until maximum memory bandwidth is utilized 4

12 Use a large and real dataset for test cases 4

Figure 5.24: Guideline fitness plot for molecular dynamics application
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Table 5.16: QMC design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 4

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

8

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

4

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

8

11 Maximize computation until maximum memory bandwidth is utilized 4

12 Use a large and real dataset for test cases 4

Figure 5.25: Guideline fitness plot for quantum Monte Carlo simulations
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5.2.4 Hessenberg Reduction

Hessenberg reduction (HR) reduces a square matrix in to an upper or lower Hes-

senberg matrix. An upper Hessenberg matrix has zero entries below the sub-diagonal

matrix, and a lower Hessenberg matrix has zero entries above the sub-diagonal ma-

trix. HR is a major step involved in finding the eigen values of a matrix [73]. This

is an important reduction used in many of the high performance computing appli-

cations. A hardware for HR is discussed in [12]. One of the major design flaws of

the hardware is that the dataset is stored on the local memory and not on the main

memory (DDR). This would not enable the design to scale for larger matrices. The

computation is done in a sequential fashion. Any improvements in the algorithm can

not be accommodated unless the hardware is redesigned. Table 5.17 shows the design

guidelines that have been followed. The design consumes only 63% of the FPGA, and

the local memory access could have been increased by 30%. The performance depends

on the resource utilization and the memory access; and thus, the peak theoretical per-

formance can be calculated as 1.3/0.63 = 2.06, and the performance compared to the

peak theoretical performance is computed as 1/2.06 = 0.49. The scaled performance

index (0.49×2) − 1 = −0.02 is plotted on the y-axis of the guideline fitness plot, as

shown in Figure 5.26.

5.2.5 Gaxpy - BLAS Routine

A Gaxpy routine is a BLAS level 2 routine, which computes matrix-vector multi-

plication, and the complexity of the routine is O(n2) [15]. A Gaxpy hardware built on

the FPGA is discussed in [13]. The work was demonstrated on a BEE3 FPGA board

that has four V5 LX155T FPGAs. The implementation has 16 processing elements,

each computing a 4×4 matrix, and the maximum size of the matrix that can be stored

on the on-chip memory is 256×256. Table 5.18 shows the design guidelines that have

been followed. The peak theoretical performance at 100 MHz is 200 MFLOPs. There

are 16 PEs per FPGA, and with four FPGAs, the peak theoretical performance is
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Table 5.17: HR design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 8

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

4

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

8

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

8

11 Maximize computation until maximum memory bandwidth is utilized 8

12 Use a large and real dataset for test cases 8

Figure 5.26: Guideline fitness plot for Hessenberg Reduction
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Table 5.18: Gaxpy design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 8

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

4

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

8

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 4

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

8

11 Maximize computation until maximum memory bandwidth is utilized 8

12 Use a large and real dataset for test cases 8

12.8 GFLOPs, and the reported performance is 3.113 GFLOPs. Thus, the actual

performance is 3.113/12.8 = 0.25 of the theoretical performance. The scaled perfor-

mance index (0.25×2) − 1 = −0.5 is plotted on the y-axis of the guideline fitness

plot, as shown in Figure 5.27.

5.2.6 N-Body Simulations

A N-body computation involves two major computations. The first is the inter-

atomic distances between three atoms, followed by inter-atomic force computations

for those atoms whose inter-atomic distances are less than the cut-off distance. An

N-Body hardware is built on the FPGA and is discussed in [14]. The design uses a

generic format for computation and utilizes only half the resources. Table 5.19 shows

the design guidelines that have been followed. The performance can be improved

by increasing the frequency to 75 MHz. The reported performance is 3.9 GFLOPs.

Thus, the performance improvement due to frequency improvement is computed as

3.9×(75/65) = 4.5 GFLOPs. The design uses only 50% of the resources. The perfor-

mance improvement by implementing a parallel design is calculated as 4.5×2 = 9.0
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Figure 5.27: Guideline fitness plot for Gaxpy - BLAS Routine

GFLOPs. The performance compared to the theoretical peak performance is com-

puted as 3.9/9.0 = 0.43. The scaled performance index (0.43×2) − 1 = −0.13 is

plotted on the y-axis of the guideline fitness plot, as shown in Figure 5.28.

5.2.6.1 Observations

The combined plot is shown in plot 5.29, and all the data points fall either in

the first or the third quadrant. When the data point of the applications fall in the

first quadrant, 50% or more guidelines were followed and the performance was 50%

or better. However, when less than 50% guidelines were followed, the performance

was 50% or less. Hence, the guidelines have an impact on the performance of the

application, and this is evident from the combined guideline fitness plot. This shows

that the design guidelines have an impact on the application’s performance, and

also according to the evaluation criteria discussed in section 4.3.1, the set of design

guidelines is applicable to wide variety of computational science applications.
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Table 5.19: N-body design evaluated using the design guidelines
1 Arrange and optimize input/output data for all compute blocks 4

2 Adhere to a widely accepted method of computation for arithmetic func-
tions/operations

8

3 Build controller for every not likely to change compute blocks 4

4 Introduce a configurable dataflow path to connect resources of likely to
change compute blocks

8

5 Introduce on-chip memory with configurable read/write logic, if necessary 4

6 Introduce dependency indicators to enhance parallel computations, if nec-
essary

8

7 Use microcode to specify dataflow path, memory read/write, and parallel
computations

8

8 Maximize resource utilization by improving runtime parallelism 8

9 Forward results between compute blocks/resources, if possible 4

10 Achieve functionality, and optimize design & resources to improve per-
formance

8

11 Maximize computation until maximum memory bandwidth is utilized 8

12 Use a large and real dataset for test cases 8

Figure 5.28: Guideline fitness plot for N-Body Simulations
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Figure 5.29: Combined fitness plots for above six applications



CHAPTER 6: CONCLUSION

To conclude, if the performance and resource utilization data points for GFHD

and LFHD track each other, and the lines of code diverge(do not track) for GFHD

and LFHD, then the degree of effectiveness is further used to affirm or deny the thesis

question. On the contrary, if the performance and/or resource utilization data points

do not track, and/or the lines of code data points track, then we deny the thesis

question.

If the plots show effectiveness, the degree of effectiveness is then calculated by

classifying the effectiveness into bad, good, or excellent. If the performance and lines

of code changed are classified as good or excellent, and the resources as bad, good,

or excellent for all the applications and the SpMV kernel, then we can ascertain that

the proposed set of guideline helps designers to effectively accommodate the evolving

changes in the living computational science application. On the other hand, if the

performance and lines of code changed are classified as bad, then the proposed set

of guidelines does not effectively accommodate the evolving changes in the living

computational science application.

The results section clearly states the observations made for each application. The

lines of code diverge, the resources and the performance track for all the application

and the matrix multiplication operation. Further, the classification of effectiveness,

resource used, and performance is either good or excellent. This shows that the set of

design guidelines are effective for living computational science applications. Similarly,

the combined guideline fitness plot show that, for all the applications, the score falls

into either the first or third quadrant. This shows that the set of design guidelines are

broadly applicable to computational science applications. Thus the thesis question is
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affirmative, and the set of design guidelines help scientists to improve the productivity

as code evolves. These set of design guidelines can be further used to formulate design

guidelines for other hardware accelerator technologies.
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