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ABSTRACT 

 

KANG NI. Areal gear metrology with modified flanks. (Under the direction of DR.-ING. 

GERT GOCH) 

Gears are critical mechanical components in power transmission systems, used 

across a board spectrum of industries such as automobile, aerospace and renewable energy. 

Given the advancement of design and manufacture of gears in the past decades, the current 

gear inspection based on line oriented geometric description and tactile measuring 

technology has shown several deficiencies (lack of areal information, high cycle time etc.), 

when assessing complex geometries on gears flanks. Advanced sensing methods can 

capture dense point clouds on a complete gear body, but no evaluation method is available 

to extract areal information from these point clouds. This imposes a technical gap for gear 

manufacturers and users since no quantitative parameters characterize the gear’s deviations 

from its nominal geometry.  

An implicit equation, which analytically describes the complete gear geometry 

including both flanks on all teeth is obtained, as a new interpretation of the plumb line 

distance equation. No nominal points are needed to obtain an areal distance map, which 

contains gear modification and deviation information. A set of new areal parameters are 

defined as an extension of standardized line oriented parameters. A novel evaluation 

method based on the principle of orthogonal decomposition using 2D Chebyshev 

polynomials is proposed to extract areal gear characteristics from an areal distance map. 

Numerical simulations are carried out by three numerical integration algorithms on four 

types of spatial point distributions, to obtain the areal parameters from discrete areal 

distance maps. Experimental verification using a calibrated gear modification artifact 
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compared the new areal parameters with the standardized line oriented parameters. A 

conformance of ± 1.5 μm between the evaluated areal parameters and the given certified 

line oriented parameter, obtained on four flank modifications and two pitch modifications, 

is achieved. 

This dissertation offers a foundation for a paradigm shift of gear metrology, 

particularly gear evaluation algorithms. The proposed method enables an improved 

evaluation of areal flank data, collected by various sensing principles: tactile, optical and 

even computed tomography. It can form the basis for further studies of microstructure and 

surface topography of gear flanks. Thus, the developed evaluation method can improve 

future gear manufacturing processes and provide a holistic quality assessment of gear 

products.  
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CHAPTER 1 : INTRODUCTION AND LITERATURES REVIEW 

 

1.1 Motivation and background 

Gears are decisive components in power transmission system across automobile, 

machine tool, aviation and renewable energy industries. The types of gears can be classified 

by the geometry, namely spur gears, helical gears, bevel gears and worm gears [1]. The 

cylindrical gear (spur and helical) is one of the most widely used types of gear. Gear 

designers are confronted with the functional requirements of the gear system such as longer 

life time, higher power density, lower noise emission and less failure rate [2]. Much 

research has been performed on gear manufacturing technologies from cutting to finishing, 

aiming at more efficient, reliable and effective methods to produce gears of high quality 

[3] [4] [5] [6]. Challenges from the design and manufacturing of gears gradually push the 

advancement of gear metrology towards the goals of faster, more reliable and more flexible 

measurement with better accuracy.  

Production metrology aims to close the loops between function, design and 

production by generating quantitative information and knowledge (see Figure 1.1) [7]. 

Undoubtedly, gear metrology [8] [9] must benefit the whole gear production life cycle 

economically. Before the introduction of CNC technology in the 1970s, gears were 

measured by electro-mechanical devices and manual gauging tools. CNC based tactile 

measuring methods dominate today’s industrial solution for gear inspection, which is 

facing the challenge of micrometer level accuracy grade required by the gear designers and 

manufacturers. 
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Figure 1.1: Role of metrology in production engineering (after [7]). 

To integrate the capability of measuring gears to Coordinate Measuring Machines 

(CMM), Lotze [10] proposed a mathematical model of 3D helical gear geometry, 

separating the gear reference elements (center bore, gear axis) from the substitute gear 

flanks.  The pressure angle and the axial position were selected by Lotze as a pair of 

Gaussian surface parameters to model the nominal flank geometry [10], shown in Figure 

1.2. This work established the foundation of using CMMs to measure gears and evaluate 

gear deviation parameters, since spatial coordinates can be captured on the flanks of a gear. 

 

Figure 1.2: 3D nominal gear model: (a), geomeric illustration of a nominal flank; (b), 

mathematical formation of geometric parameters for 3D nominal flank model [10]. 
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However, mathematical methods for obtaining the gear deviations, namely by 

conventional optimization methods [11], can only be applied to the chosen parameters in 

the 3D model.  

Pfeifer et al. introduced a series of function oriented quality parameter aiming to 

characterize different global form deviations from 3D surface measurement data on bevel 

gears [12]. As shown in  Figure 1.3 (a), the separation of topography data measured by a 

CMM is illustrated. However, the mathematical tool used for this purpose is based on 

typical second order surfaces (e.g. elliptic paraboloid, hyperbolic paraboloid, ellipsoid) in  

Figure 1.3 (b), which is not intuitive. In addition, those entities do not resemble the real 

geometry of the involute gear flank and the implementation algorithm did not offer the 

calculation of standardized gear parameters.  

 

Figure 1.3: Separation of geometric deviation for function-oriented evaluations (after  

[12]). 

Dantan et al. proposed a new way to categorize gear metrology into two types: one 

is geometrical metrology and the other one is kinematic metrology [13], with an impact on 

gear specification and tolerancing theories [14]. To meet the specified geometrical 

tolerances of a gear, the deviations of an individual flank, the deviations between flanks 
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and the deviations of flanks with respect to the center bore must be measured to meet the 

conformance requirement of a gear.  

As the functional performance (noise emission, transmission error, life time etc.) of 

a gearing system has become more demanding over the past decades, gear flank 

modifications were introduced in gear design and application [15]. However, the three 

geometric modeling methods of gear flank and topography mentioned did not include the 

analytic description of flank modifications, which have become ubiquitous in today’s gear 

manufacturing practice. Guenther et al. introduced a set of explicit equations for the 

nominal gear flank modifications in the 2D domain, including profile slope deviation, 

profile crowning, helix slope deviation and helix crowning [16]. The typical amplitude of 

a flank modification varies from 1 micrometer to 100 micrometers, depending on the size 

of a gear and the types of modification. Modified tooth geometry in early stages of a 

manufacturing process can be used to compensate form deviations, caused by subsequent 

processes such as hardening or continuous generation grinding [4]. A finished gear with 

modified tooth geometry can provide smooth and quiet meshing conditions under varying 

loading circumstances. For example in wind energy system [17], the concentration of 

contact area near the transverse edges of the tooth caused by misalignment and 

misplacement can be mitigated by modifications, which leads to an increased lifetime and 

reduced failure rate. To obtain reliable information of the quality of a gear and to 

understand the process footprint of a gear manufacturing process, it is essential to 

quantitatively check the desired flank modifications as well as to assess undesired flank 

deviations in gear inspection. 
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1.2 Conventional measurement and evaluation principles 

1.2.1 Measurement and evaluation of flank deviations 

To measure the deviation of a gear profile, one translational motion (denoted by 

“Y” in Figure 1.4 (a) and a rotational motion (denoted by “C”) are required. The nominal 

path of the tactile probe forms a straight line, tangent to the base circle and synchronized 

with the angular motion of the rotary axis. Therefore, deviations in the surface normal 

direction of an involute profile are detected by one dimensional (1D) displacements 

(magnitude and sign) of the tactile sensor. This movement is known as “Tangential 

scanning” or “rolling method”. Similarly, a linear motion with another two axes is used for 

measuring the helical deviation of a gear flank, as shown in Figure 1.4 (b), where the 

translational motion is in vertical direction (denoted by “Z”). These two mechanical 

motions serve as the fundamental principle of conventional gear inspection by tactile 

sensor. They were applied even before the emergence of CNC technology [2].  

 

Figure 1.4: Basic kinematic pricniples for conventional gear measurement, (a) profile 

measurement in transverse plane; (b), al helix/lead measurement (source: Mahr).  

Numerous parameters were developed to assess deviation characteristics in 

conventional measurement. Figure 1.5 and Figure 1.6 show the graphical representations 
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of geometric features and the associated deviation parameters for a measured profile and a 

helix respectively. In Figure 1.5, αL  is the profile evaluation length, and αg  is the length 

of path of contact. In Figure 1.6, the Roman numerals I and II indicate the datum and non-

datum faces of a gear, respectively. The helix evaluation length and face width are denoted 

by βL  and b , respectively. These evaluations are referred to as “line oriented evaluation”, 

since an ideal profile or helix should be represented by a constant zero line in those 

evaluation charts. 

 

Figure 1.5: Evaluation of profile deviation with unmodified involute [18].  

 

Figure 1.6: Evaluation of helix deviation with unmodified helix [18]. 
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1.2.2 Measurement and evaluation of tooth-to-tooth deviations 

One tooth is arbitrarily selected as the reference tooth (e.g. tooth #1) with a defined 

counting direction (clock wise or counter clock wise) due to the rotational symmetry of the 

gear. The relative position of a certain tooth (either right or left flank) with respect to other 

teeth (corresponding right or left flank) is characterized by the pitch deviation [18]. Figure 

1.7 shows three typical mechanical methods of measuring the pitch deviations by tactile 

instruments, depending on the mechanical configuration of the measuring device and the 

probing stylus [19]. The arrows show the motion engaged during a probing procedure of 

the pitch points on certain flanks. 

 

Figure 1.7: Pitch measurement by tactile sensors: (a), direct measurement of single pitch 

by relative linear measurment; (b), pitch measurement with single flank contact; (c), pitch 

measurement with two flank contact [20]. 

Specific pitch deviations such as single pitch deviation ( pif ) and cumulative pitch 

deviation ( piF ) are evaluated by a set of points probed on each left and right flanks. Thus, 

a diameter on the gear body must be specified as the measurement diameter (denoted by

Md ) to guide the data collection by a tactile probe, as shown in Figure 1.8.  



8 

 

 

Figure 1.8: Individual single pitch deviation and cumulative pitch deviations [18]. 

Clearly, the measured feature for evaluating the pitch deviation is a point (1D) on 

a 2D plane (typically a transverse plane in the middle of the facewidth) for a 3D gear tooth. 

This requires a different motion control method for the measurement strategy and a unique 

evaluation strategy, making the pitch measurement an independent measurement task, 

compared to the profile and helix measurements. Recently, new measurement systems 

based on tactile technology including double flank rack probe [21], surface profiling sensor 

[22] and articulated arm CMM [23] have been developed in academia and national 

metrology institutes (NMIs), offering new opportunity for more robust and user-friendly 

solutions in the gear industry. 

Figure 1.9 (a) shows a CMM based gear measurement without using a rotary table. 

Instead a tactile sensor composed of eight styli is configured to measure all teeth of the 

gear sample as well as the pitch and runout deviations. The scanning motions are realized 

directly by the three linear axes of the CMM. Figure 1.9 (b) shows how a combination of 

one single stylus and one rotary table is utilized to measure both the flank deviations and 

the pitch deviations of the gear sample by a CMM. Figure 1.9 (c) shows a Gear Measuring 

Instrument (GMI) with similar mechanical configuration as the CMM with rotary table. 
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Figure 1.9: Three typical measurement configuration of industrial gear measurement: (a), 

CMM without rotary table (Leitz PMMF302016); (b), CMM with rotary table (Zeiss 

Prismo); (c), GMI with rotary table (Klingelnberg P26). 

1.3 Traceability, gear artifact and calibration of gear measuring instruments 

To calibrate a gear measuring device, physical standards (i.e. artifacts) are needed 

to realize the unit (meter) of the measurand for specific geometric features of a gear [2]. 

Figure 1.10 illustrates the traceability chain of gear measurement from a NMI to a produced 

gear. It is kept unbroken via certified gear artifacts and calibrated instruments. The choice 

of artifact for a specific measurement task is based on the similarity principle: the geometry 

of the artifacts should be similar to the geometrical and mechanical properties of the 

product gear in terms of size, number of teeth, material, weight etc. [24]. 

 

Figure 1.10: Hierarchy chain for maintaing traceability of artifacts based gear metrology. 
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Figure 1.11 (a) to (c) show the profile, helix and pitch artifact used in the 

intercomparison of gear measurement among major NMIs [25]. If the size of a gear sample 

is significantly larger or smaller than an available artifact, the artifact must be replaced due 

to the similarity principle. For example, the gear segment artifact shown in Figure 1.11 (d) 

is developed to calibrate measuring instruments used for the inspection of wind energy 

gears with a diameter of larger than 1 meter [17].  

 

Figure 1.11: Feature oriented gear artifacts: (a), involute artifact; (b), helix artifact; (c), 

pitch artifact; (d), gear segement artifact. 

The trend of using gear-like artifacts and simple geometry artifacts to calibrate gear 

measurement system have gained awareness in both academia and industry since the 1990s. 

This concept was first realized by Pfeifer [26], who used cylinders with gridded coordinates 

as a nominal bevel gear flank geometry to calibrate a bevel gear measurement instrument 

with quantifiable metrological characteristics. Komori et al. used a wedge artifact and a 

ball plate to represent helix and pitch, respectively, for calibrating tactile instruments [27] 

[28] [29], as shown in Figure 1.12 (a) and (b). Moreover, Guenther et al. applied a ball 

plate to represent the geometry of bevel gear flanks [30], as shown in Figure 1.12 (c). Lanza 

et al. developed a cylindrical standard for involute profile and pitch calibration of micro 

gears [31], as shown in Figure 1.12 (d). 
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Figure 1.12: Geometry oriented artifacts: (a), wedge artifact for helix calibration [27] ; 

(b), ball plate artifact for pitch calibration [29]; (c), ball plate for bevel gear flank 

measurement [30]; (d), cylinder artifact for involute measurement [31].  

However, none of those developed artifacts have been applied in area oriented gear 

measurement, let alone areal evaluation of areal measurement data. Thus, new artifacts 

should be developed to close the gap for measuring principles other than tactile probing, 

namely optical [32] and computed tomography based systems  [33].  

1.4 Areal measurement of gear flanks 

1.4.1 Mechanical methods 

A mechanical flank measurement system developed by FRENCO [34] is able to 

capture an areal map of a helical gear sample through the measurement of a flank at 

multiple sets of transverse planes. As shown in the left side of Figure 1.13 (a), the roll 

master is equipped with several “insert teeth” distributed along the axial direction such that 

the gear sample (right side) can be measured at various transverse planes driven by the 

rotational motion. The corresponding evaluation method is called “Reality Analysis” 

(REANY in short), aiming to visualize all the measured teeth with topography data (see 

Figure 1.13 (b)). However, limited areal parameters (except total deviation) are given by 

the evaluation software, even the areal topographical information of all flanks is available.  
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Figure 1.13: Areal flank measurement and evaluation by mechanical rolling test [34]: (a), 

measurement setup; (b), a measured areal flank map.  

1.4.2 Optical methods 

Compared to tactile based measurement methods, optical measuring systems offer 

non-contact, fast and high-density data acquisition capability for production metrology 

[35]. To measure the geometry of gear flanks, several instrumentation efforts have been 

developed aiming at collecting surface data on gear flanks. Takeoka et al. developed a laser 

interferometer system (beam spot diameter 6 μm) to measure the profile form deviation of 

an involute artifact [36].  

To measure a complete flank surface of gear, Lu et al. proposed the optical 

measurement of gear flanks based on the principle of phase shift optical triangulation. A 

surface topography at micrometer level resolution was obtained by a phase unwrapping 

algorithm. However, the system did not provide any characteristic parameters used in gear 

industry [37]. Peters et al. developed a fringe projection system to measure the entire flank 

(several square centimeter) of a helical gear [38].  
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Figure 1.14. Optical gear flank measurement system: (a), configuration of the fringe 

projection system and gear sample; (b), a tooth with areal flank measurement (after [38]).  

S. Fang et al. developed a laser interferometric system to measure the flank surface 

of a spur gear and a helical gear [39], as shown in Figure 1.15.  The oblique-incidence 

based method has evolved from measuring spur gears to helical gear flanks by using 

improved instrumentation [40] [41]. 

 

Figure 1.15: Instrument configuration of gear measurement systrem and image of 

measured flank by laser interferometry (after [39]). 

However, no gear deviation parameters were reported in the mentioned optical 

techniques. Instead, with the improved performance of laser triangulation technology, 

several commercial instruments have been developed with different opto-mechanical 
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configurations since 2015. For example, instruments developed by MS3D [42], Nikon [43] 

and  Gleason  [44] offer the capability to capture data on the entire flank surface of all teeth.  

 

Figure 1.16: Commercial non-contact gear measuring instruments: (a) MS3D [42]; (b) 

Nikon HN-C3030 [43]; (c) Gleason 300GMSL [44]. 

For example, Figure 1.17 shows the measurement setup and captured point clouds 

of a helical gear, realized with a Nikon HN-C3030 instrument.  

 

Figure 1.17: Measurement of a gear sample by Nikon HN-C3030: (a), measurement 

setup; (b), measured point clouds of the gear sample, covering both flanks of all teeth. 

However, line oriented evaluation parameters are still used for those instruments, 

even with hundreds of thousands of spatial points that are captured across an entire gear. 



15 

 

There is an urgent need to provide areal gear parameters for optical gear instrument 

manufactures to fully exploit the advantages of optical gear measuring systems. 

Moreover, the standard measurement strategy has a severe limitation, when applied 

to characterize the geometric information of large gears e.g. in wind energy system, 

compared to their counterparts in the automobile industry, if only several line oriented 

features are measured and evaluated. Firstly, because of the longer time used for machining 

a large gear, environmental conditions such as room temperature and vibration, machine 

tool thermal load and tool wear are most likely to leave different geometric deviations on 

different locations of a flank. Secondly, distortion caused by residual stress can be released 

during heat treatment, leading to local deformation of flanks of the whole gear [45], which 

might not be noticeable on three or four teeth of the gear. Lastly, deformation caused by 

gravitational load at different mounting conditions for the measuring object can also 

influence quantitatively the inspection results, carried out by standard measurement [46]. 

Areal measurement of gear flanks is more suitable to offer point cloud data that 

cover the entire flank and all teeth of a gear. Those type of data offer the possibility to 

extract areal characteristics from the point cloud representing the shape, form and location 

information of a flank and a whole gear. It is necessary to develop corresponding evaluation 

methods and areal gear parameters to assess the geometric information of the measured 

gear, taking advantage of high density point clouds. 

1.5 Contributions of this dissertation 

Because of the mentioned limitations and deficiencies of conventional gear 

inspection methods, a paradigm shift of gear metrology is necessary concerning both the 

applied measuring strategies and the evaluation procedures. This shift can enable a holistic 
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gear evaluation for improving gear manufacturing processes and predicting gear 

performances, based on the area oriented metrology of a complete gear. This dissertation 

investigates and implements a novel computational method based on a 3D geometric model 

of a complete gear, aiming at a paradigm shift towards areal cylindrical gear metrology. 

This method is concerning with the following aspects: 

• a 3D geometric model for cylindrical gears with flank modifications, including 

an implicit analytical equation describing the nominal cylindrical gear 

(individual flank and complete gear), based on the plumb line distance [16];  

• a newly proposed set of areal evaluation parameters, aiming at the extension of 

current line oriented gear parameters to characterize the 3D geometry of entire 

gear flanks; and 

• an orthogonal decomposition method for calculating the proposed areal gear 

deviation and modification parameters, based on 2D Chebyshev polynomials 

and their numerical implementation. 

The proposed 2D Chebyshev method is explained in detail in Chapter 4 and verified 

by simulated gear data throughout this dissertation. Experimental validation by the 

measurement of a calibrated precision gear artifact show the effectiveness of this novel 

method, which demonstrates the applicability for industrial gear inspections.  

1.6 Dissertation layout 

Chapter 1 has introduced the background, motivation and significance of this work. 

The state-of-the-art in gear metrology technologies are reviewed from the perspectives of 

both measurement and evaluation. As complex flank modifications become prevalent on 

gears, line oriented measurement and evaluation methods lead to potential ambiguity, and 
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even deficiencies in characterizing the geometry of a gear flank. Thus, areal gear 

measurements applying optical measuring principles have shown an increasing importance 

as an alternative for future gear inspection. But the lack of an evaluation method, namely 

the missing capability to extract areal flank information from areal spatial point clouds, 

imposes a severe technical gap for further adaption of optical areal measurement systems 

in industry.  

Chapter 2 describes the 3D modeling of a helical gear flank based on fundamental 

gear design parameters. To evaluate the measured 3D gear data, Euclidean distance, 

projected distance and plumb line distance are introduced and compared in terms of 

mathematical definitions and metrological meanings. Afterwards, a new interpretation of 

the zero-valued, plumb line distance is presented, which can provide an implicit equation 

describing the nominal involute gear geometry. This equation defines the “pure involute” 

surface that is referred to in this dissertation. Several simulated data sets are used to verify 

the interpretation at the end of this chapter. Nominal information of an individual flank, an 

individual tooth and all teeth of a gear is included in the implicit equation. This equation 

forms the foundation for the development of a new evaluation strategy for a complete gear, 

including individual tooth and tooth to tooth deviations.  

Chapter 3 focuses on the approximation of discrete datasets by Chebyshev series. 

Main mathematical properties of the Chebyshev polynomials are reviewed with 

engineering interpretations for gear metrology. Simulations by using 2D Chebyshev series 

to approximate the coefficients of a power series describing a surface have shown the 

advantages of orthogonal decomposition in a square domain of [-1,1]2. This method is 
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referred to as the 2D Chebyshev method for approximating the areal gear parameters in the 

following chapters. 

Chapter 4 studies the relationship between low order flank geometries and the first 

six terms of 2D Chebyshev polynomials. They are analyzed in terms of geometric 

similarity and analytic connection. A new set of areal parameters is proposed as an 

extension of their counterparts in standardized line oriented parameters. Lastly, a procedure 

is presented showing the steps to obtain those areal gear parameters by the 2D Chebyshev 

polynomials, defined in a square domain of [-1,1]2.  

Chapter 5 introduces at the beginning three computational methods for calculating 

2D Chebyshev coefficients. Three types of nominal point distributions on helical gear 

flanks are tested by the three methods. Afterwards, numerical influences such as data 

density and non-orthogonality are studied in terms of computational performances based 

on simulations. Misalignment of the workpiece coordinate system of a gear with respect to 

its nominal are simulated. The correlation between the change of areal gear parameters to 

the simulated misalignment are observed. 

Chapter 6 gives the experimental verification of using the 2D Chebyshev method 

to obtain areal gear modification parameters on a calibrated gear modification artifact. Four 

flank modifications and two pitch modifications have been successfully determined with 

an agreement of no more than 2 μm between the calibrated line oriented parameters and 

the areal parameters.    

Chapter 7 presents the conclusion of this dissertation and suggests several future 

works. 
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CHAPTER 2 : COMPLETE 3D MODLES OF CYLINDRICAL GEARS  

 

In this chapter, the basic mathematics of a 2D involute geometry is introduced, 

before the development of a 3D helicoid surface for a cylindrical gear flank. Based on the 

nominal gear design parameters such as number of teeth (z), base radius ( br ), pressure 

angle ( t ) and helix angle (  ), a complete 3D nominal geometry of a cylindrical gear is 

established. Afterwards, based on the model in [16], a refined mathematical expression for 

typical low order flank modifications (i.e. profile slope, helix slope, profile crowning, helix 

crowning and flank twist) is presented, aiming to replace the original equation by the 

simplicity of mathematical treatment shown in later chapters. 

Three types of distances between a nominal and a measured point are presented as 

the common practice for calculating the deviations of measured points for the nominal 

geometric features of the measured object (i.e. gear flank surface). Those distances are 

namely the Euclidean distance, the projected distance and the plumb line distance, which 

are commonly used in gear metrology and several areas of geometry measurements. An 

implicit equation that represents the “shape” or “form” of a nominal gear flank is obtained 

by rearranging the variables in the plumb line distance formula. Further interpretation and 

applications of this implicit equation characterizing a helical gear flank will be discussed 

in detail at the end of this chapter. 

2.1 Mathematical description of pure involute geometry 

2.1.1 2D involute curve as a gear profile 

The definition of an involute traces back to 1673, given by Christiaan Huygens in 

his analysis of the motion of a pendulum. An involute is a curve generated on geometries 
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such as circles and ellipse. The involute curve generated on a circle is most widely used 

for gear profiles because of a unique property. It has been proven that an involute curve 

keeps a constant ratio of angular speeds between two meshing gears with two different 

pitch diameters.  

 

Figure 2.1: Basic geometry of a 2D involute curve. 

In a 2D Cartesian coordinate system, the coordinates of a nominal point 

nom nom nom( , )P x y  on the involute curve, starting from the base circle with the radius br , 

is given by: 
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, (2.1) 

in which   denotes the angular position of the starting point of the involute curve at the 

base circle and  nom  is the rolling angle assigned to nomP  shown in Figure 2.1.  
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The limit of the roll angle (i.e. st  and end ) are denoted by the subscripts “st” and 

“end” for the start and end, respectively. They determine the length of the involute curve, 

while the base radius br  determines the shape of the involute curve. Equation (2.1) can be 

interpreted as the parametrized form of a 2D involute curve in Cartesian coordinates with 

nom  as independent variable. Obviously, the base radius defines the general shape of the 

involute curve. It therefore determines the shape of the gear tooth. 

In a cylindrical coordinate system, the position of the nominal point nomP  is: 
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.  (2.2) 

Figure 2.2 shows a segment of a gear with teeth that are numbered in the clockwise 

direction. The size of a tooth is determined by the root form radius and tip form radius, 

denoted by Ffr  and Far , respectively.  

 

Figure 2.2: Basic geometric parameters of a nominal spur gear (viewed in transverse 

plane).  
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2.1.2 3D helical surface as gear flank 

Based on the 2D involute curve in the transverse plane, the 3D geometry of a helical 

surface (see Figure 2.3) can be generated by a “threading” model in [10] [16] as an areal 

mathematical description of a helical gear flank.  In this model, the origin (yellow dot) of 

each involute profile in a transverse plane is “threaded” along the base helix line (illustrated 

by the tilted black line with the base helix angle b ) from the bottom to the top covering 

the entire gear facewidth. Therefore, the coordinate of a nominal point on the pure involute 

surface is mathematically realized by describing the nominal initial angle nom )(z  of the 

2D involute profile on each stacked transverse plane as a function of the third dimension: 
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where, the explicit expression of nom )(z  is:  

 b
b nomnom
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) z
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   . (2.4) 

The size of a helical gear is determined by both the diameter range of the involute 

curve and its height in the Z direction: 
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where b  is the gear’s facewidth. Equation (2.3) can be interpreted as the parametrized form 

of a helical surface in a Cartesian coordinate system with nom  and nomz  as parameters, 

whose values are constrained to Equation (2.5).  
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Figure 2.3: A right flank of a helical gear in 3D space, edited after [10].   

For an individual tooth, the location of each involute is determined by the value of 

the base space width half angle 
b , which is defined in ISO 21771: 

 n
b t

4 x tan
inv

2 z

 
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  
 ,  (2.6) 

where x  is the profile shift coefficient, n  is the normal pressure angle, z  is the absolute 

value of the number of teeth and tinv  is the involute angle. In addition, throughout this 

dissertation, two assumptions are made: first, no profile shift is introduced (i.e. x 0 ); 

second, all gears are external gears (i.e. z > 0 , z z ).  The base space half angle 
b  is 

shown in Figure 2.4. 
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Figure 2.4: Definition of base space width half angle b  on base circle, tooth thickness 

half angle   on pitch circle and space half angle   on pitch circle. 

A set of nominal gear parameters are listed in Table 2.1 for simulating the nominal 

geometry of a gear in this dissertation. Figure 2.5 shows the complete gear with both right 

and left flanks, generated by the parameters in Table 2.1. Ten profile lines and five helix 

lines are highlighted in blue while the nominal gear flank is imaged in yellow.  

Table 2.1 Nominal gear parameters for generating gear flanks in Figure 2.5. 

Name Symbol Value Unit 

Number of teeth z 20 Dimensionless 

Normal module nm
 3 mm 

Normal pressure angle n   20 degree 

Facewidth           b   30 mm 

Helix angle 
  20 degree 

Helical direction Right hand 1  Dimensionless 
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Figure 2.5: Generated teeth of a gear in 3D using parameters in Table 2.1. 

The use of “pure involute” (or “pure helicoid” for helical gears) throughout this 

dissertation is to differentiate the intended modifications from the undesired deviations. 

Because both modification and deviation on a gear flank lead to a non-zero value calculated 

by the plumb line distance equation (see Section 2.3.3), it is mathematically impossible to 

distinguish them simply by the values in an areal distance map without a prior knowledge 

of basic gear parameters and the nominal amounts for modifications (see Section 2.2).  

2.1.3 Surface normal vector and u-v-d system 

Equations (2.3) to (2.5) represent the nominal surface of a helical gear in 3D space. 

However, flank modifications were not taken into consideration.  According to ISO [18], 

a flank modification is an intended geometry alteration with respect to the pure involute 

surface, and it is usually defined as a function of a characteristic length in profile and/or 

helix direction. For example, in Figure 2.6, the conventional profile slope modification 
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HαC  is defined by the distance between the tip point of the intended profile and the tip point 

of the pure involute at a tooth. 

 

Figure 2.6: Definition of profile slope modification HαC  [15].  

To extend the analytic description of the modifications on the flank of a helical gear 

from a 2D line oriented function to a 3D surface function, a pair of coordinates ( , )u v  is 

introduced. Moreover, a parametric representation of the modified flank can be established 

for an areal analysis, which will be discussed in Section 2.2. In Figure 2.7, the nominal 

point 
nomP  can be described by the surface coordinates u  and v : 
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. (2.7) 

This choice of this surface parametrization is suitable for two reasons: first, the u 

axis follows the mathematical foundation of the generation principle describing an involute 

curve; second, the combination of u and v axes accommodates the typical primary motion 

control system for generation cutting and conventional gear inspection.  
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Figure 2.7: Illustration of curved coordinates ( , )u v  for the pure involute and surface 

normal vector of a spur gear’s right flank. 

In fact, from a mathematical point of view, the coordinates (e.g. x, y and z) of a 

nominal point can be given by continuous, bivariate, single-valued functions of the form:

( , )x x u v , ( , )y y u v  and ( , )z z u v . This formation based on u and v is thus referred 

to as a parametrization of a surface [47].  

The analytic expression of the surface normal vector N  on a helical flank surface 

is obtained by the cross product of two tangential vectors along U and V directions at any 

nominal point nomP  based on the Equation (2.3) and Equation  (2.7): 
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where xN , yN  and zN  are the x, y and z components of the vector N  in the X, Y and Z 

directions, respectively. For a spur gear (i.e. b  = 0), the surface normal vector has a 

constant zero zN  component at any point on the flank since the spur gear can be simply 
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treated as a vertical “stacking” of 2D involute curve in the Z direction. A detailed derivation 

of the surface normal vector can be found in APPENDIX A. 

Dividing the vector N  by its length gives the unit vector n  in Cartesian coordinate 

system: 
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where xn , yn  and zn  are the x, y and z components of the vector n  in the X, Y and Z 

direction, respectively. Obviously, the z component of the unit vector only depends on the 

value of the helix angle, while the x and y components are determined by the angular 

location of a certain profile (i.e. nom ) and the location of a certain nominal point on that 

profile (i.e. nom ). The derivations of the analytic expression of the surface normal vector 

and its unit vector can also be found in APPENDIX A.   

2.2 Analytic formation of flank modifications of cylindrical gears 

Gear modifications can be given as functions of either the diameter (i.e. yd ), the 

roll angle y  or the length of roll y b nomL r  , in which the subscript “y” indicates an 

arbitrary value of the variable. In [16], the length of an involute curve is used rather than 

the length of roll to describe the modification function in profile direction, which leads to 

a different analytic expression and geometrical meaning of the u parameter. Instead, in this 

dissertation the value of the length of roll is the independent variable, and the amount of a 

specific modification is the dependent variable. 
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Figure 2.8: Typical flank modifications for cylindrical gears in 3D space [15]: (a) profile 

slope modification, (b) profile crowning modification, (c) tip and root relief, (d) helix 

slope modifications, (e) helix crowning modification, (f) end relief at top and bottom 

face. 

Figure 2.8 shows six typical flank modifications for cylindrical gears in 3D space. 

Figure 2.9 and Figure 2.10 depict the definitions of four flank modifications as a function 

of u and v in the profile and helix directions respectively. 

 

Figure 2.9: Slope and crowning modifications designed in profile direction. 
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Figure 2.10: Slope and crowning modifications designed in helix directions. 

The unit of flank modification is the micrometer, the amount of which can vary 

from a few micrometers to several ten micrometers. According to [16], the analytic 

expression for slope and crowning modifications in the profile direction is: 
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where αC  denotes the amount of profile crowning and HαC  the amount of profile slope; 

and the analytic expression for slope and crowning modifications in the helix direction is: 
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where βC  denotes the amount of helix crowning modification and HβC  the amount of helix 

slope modification.  

( )A u  and ( )B v  are referred to as the modification functions. The sign conventions 

of modifications for left and right flanks of left-handed or right-handed gears are 

determined according to standards such as [15]. 
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The coordinates of point modP  on a modified gear flank ( modx , mody , modz ) can be 

generated by adding the modification functions vectorially in the surface normal direction 

to the coordinates of a nominal point, as: 
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2.3 Distances for characterizing spatial deviations of gear flanks 

To assess the “closeness” of a workpiece with respect to its design intent in terms 

of size, form, orientation and position of features, a quantity must be assigned accordingly. 

This assessment usually involves calculating the distance from a measured point mP  to a 

nominal geometry, represented by various mathematical formations [48] [49]. Various 

distances are used in production metrology for evaluating geometric deviations (size, form 

and surface topography) as well the orientation and position of a measured feature with 

respect to other entities. The distances discussed in this section are obtained under the 

assumption that at least a fine alignment (numerical alignment) of the workpiece has been 

established. Therefore, the deviation manifested by the calculated quantity (usually by a 

vector, with magnitude and direction according to sign convention) is not used for 

determining the orientation and/or position of the measured object in a given workpiece 

coordinate system. The first two types of distances include the Euclidean distance and the 

projected distance, requiring the coordinates of both nominal and measured points to be 

available. The second type of distance is the plumb line distance, representing the shortest 

distance from a measured point to the nominal geometry entity. The derived plumb line 

distance equation for cylindrical gears in [16] offers unique advantages when applied to 

evaluate geometric deviations of cylindrical gears.  
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2.3.1 Euclidean distance 

To determine the Euclidean distance, each point in the cloud of measured points 

requires a corresponding point in the cloud of nominal points. This correspondence 

relationship is straightforward for most CMM based measurement, in which tactile probing 

is carried out to obtain a measured point according to its nominal location. In this case, the 

coordinates of the nominal points are generated by the measuring software. The distance 

of a measured point to its corresponding nominal point is shown in Figure 2.11. The 

Euclidean distance in the Cartesian coordinate system is: 

 2 2 2
Euc nom m nom m nom mm nom

| | | | ( ) ( ) ( )d p p x x y y z z        .  (2.13) 

Obviously, the Euclidean distance can only be a non-negative value, defined as the 

magnitude of a vector pointing from a nominal point to a measured point. 

 

Figure 2.11: Euclidean distance between nominal point and measured point in a 2D 

Cartesian coordinate system. 
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2.3.2 Projected distance 

When the surface normal vector is available, the projected distance can be found as 

the scalar product of the deviation vector and the unit normal vector at the nominal point 

as:  

proj m nom m nom m nomm nom
( ) ( ) ( ) ( )x y zd p p n x x n x x n z z n            . (2.14) 

The relationship between the projected distance and the Euclidean distance is 

depicted in Figure 2.12.  The projected distance is a signed quantity as determined by the 

vector scalar product.  

 

Figure 2.12: Projected distance between nominal point and measured point in a 2D 

Cartesian coordinate system. 

Obviously, the coordinates of the nominal points are required to calculate those two 

types of distances, defined by Equation (2.13) and Equation (2.14). This imposes a major 

disadvantage of evaluating deviations in a point cloud based on those equations, because: 
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• a searching algorithm must be carried out to match a measured point to its 

corresponding nominal point before a distance calculation is possible; 

• the surface normal vector must be available for the calculation of a projected 

distance, which could be obtained by three different methods: first, it is 

explicitly given as a type of nominal parameter (e.g. bevel gear flank); second, 

it is evaluated according to analytic formula (e.g. Equation (2.9)); third,  it is 

estimated by the output signals of the probing system sensors (e.g. tactile 

probing head displacement vector); 

• the nominal data is usually generated by software algorithms after the 

workpiece coordinate system is established. This step, as a key part of 

measurement software, is prone to numerous sources of intrinsic errors during 

the alignment procedure of the workpiece; thus, it represents an unavoidable 

source of uncertainty contribution.  

2.3.3 Plumb line distance  

The definition and derivation of the plumb line distance for a measured point of the 

cylindrical gear was first given in [16]. For a flank surface of an involute gear (spur and 

helical), the vectorial deviation from a measured point to its corresponding nominal 

geometry (not nominal point) in the nominal surface normal direction can be modeled by:  

 lot lotm nom nom
p p d p d n    , (2.15) 

where lotd  denotes the magnitude plumb line distance. It is the magnitude of the vector 

pointing from the nominal point to the measured point. However, in the context of the 

plumb line distance of a cylindrical gear, this nominal point has a different meaning 

compared to the one mentioned in Section 2.3.1 and Section 2.3.2. As depicted in Figure 
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2.13, the nominal point is a “footprint” point, formed by a virtual “intersection” from a line 

connecting the measured point to the pure involute surface in the nominal surface normal 

direction.  

 

Figure 2.13: Plumb line distance between measured point and the nominal geometry in a 

2D Cartesian coordinate system (nominal point with dashed line box). 

The explicit expression of the plumb line distance is: 

 

2 2

b bm m
lot m b m2 2

b b
2

bb

tan
1 arctan 1

1 (tan )

r
d z

r r r

 
 



  
       

   

, (2.16) 

where m m m( , , )z   is the coordinate of the measured point in a cylindrical coordinate 

system. The derivation of the analytic expression for the plumb line distance can be found 

in Appendix B. 

The number of nominal points can be given by the number of measured points used 

in the evaluation of gear deviations. The two unique properties of the plumb line distance 

for cylindrical gears are: 
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• The plumb line distance is the shortest distance from a measured point to the 

nominal geometry (i.e. pure involute flank); 

• The plumb line distance can be directly evaluated by the coordinates of a measured 

point.  

Figure 2.14 depicts the relationship between a measured point, plumb line distance 

and a nominal point on the gear flank. Compared to Figure 2.3, the starting angle ( nom ) 

of a nominal profile in transverse plane is replaced by the base space width half angle b . 

This is because the X axis of a coordinate system can be arbitrarily chosen due to the 

rotational symmetry of the complete gear. In addition, by introducing the base space width 

half angle to the plumb line distance equation, the pressure angle and the number of teeth 

of a gear can be incorporated to an implicit equation, which will be discussed in the next 

section. 

 

Figure 2.14: Schematic of the plumb line distance of a measured point Pm in a 3D 

Cartesian coordinate system. 

Using the coordinates (in a cylindrical coordinate system) of a measured point 
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, (2.17) 

the nominal values of nom nom nom( , , )z   can also be determined, corresponding to a 

measured point by:  
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 .  (2.18) 

The triplet nom nom nom( , , )z   forms the coordinates of a “footprint” point on the 

nominal geometry (i.e. “pure” involute flank) corresponding to the measured point given 

by m m m( , , )z  . This one-to-one matching relationship marks the unique advantage of 

using the plumb line distance to characterize the actual distances from point cloud to the 

nominal flank geometry.   

2.4 Implicit equation for cylindrical gear 

By substituting the base space half angle 
b  in Equation (2.16) by Equation (2.4), 

the plumb line distance is rewritten in terms of pressure angle t  and helical angle  : 
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. (2.19) 

Setting the Equation (2.19) to zero leads to an implicit expression of the pure 

involute gear geometry. In other words, if 
lot 0d  , the coordinate m m m( , , )z   is equal to 

the corresponding nominal point nom nom nom( , , )z  . The zero-valued Equation (2.19) 

contains all information about the geometry of the entire flank and the nominal coordinate 

nom nom nom( , , )z   on the flank, for the following reasons: 

• the basic shape of the involute is determined by base radius br  of the base circle; 

• the size of the gear (e.g. reference radius) is determined by base radius br  and 

the transverse pressure angle ( t ) at the pitch diameter: b t/ cosr r  ;  

• the shape of the flank surface is determined by the helix angle  ; 

• the volume of the size is determined by the face width of the gear, as the 

maximum value of nomz  (i.e. b); and 

• the relative angular position of each tooth (including its left and right flank) is 

determined by the integer (indexed from 1 to the number of teeth z).   

Writing Equation (2.19) to an implicit form: 

 nom nom nom b t( , , ; , , ) 0,zF z r      (2.20) 

leads to three significant implications:  

• first, it proves the advantage of direct calculation of the distance from a 

measured point to the nominal gear flank without using the nominal coordinates, 
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which is analogeous to the implicit equations describing simple geometries such 

as circles, cylinders and spheres in CMM technologies;  

• second, it provides a theoretical guide to determine, which fundamental gear 

parameters could be selected as the degrees of freedom, if an approximation 

method is used to obtain the deviation of them from measured point clouds; 

• third, if nom nom nom b t( , , ; , 0,, )zF z r a      , the measured point cloud forms 

an equidistant surface shifted from the nominal flank in the surface normal 

direction, which can be practically interpreted as a pitch deviation and can be 

used for rotational alignment within areal evaluation (see Section 4.2.1).  

Throughout this dissertation, both b t ,, z, )( ; , ,F z r     and b t ,, z, )( ; , ,F x y z r    

can be equally interpreted as the implicit representation of a flank, regardless of the choice 

of coordinate systems. 

Figure 2.15 (a) summarizes the relationship between the pure involute flank and the 

actual flank from a geometric perspective, while Figure 2.15 (b) illustrates the numerical 

consequence of calculating the deviation based on the plumb line distance equation. 

 

Figure 2.15: Relationship between nominal geometry and measured areal distance map: 

(a), superimposed deviation and/or modification to a nominal cylindrical gear flank; (b), 

mathematical conequences of (a) towards the implicit equation of cylindrical gear flank. 
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2.4.1 Implicit equation of individual flank 

A set of nominal points with coordinates nom nom nom( , , )x y z  on a gear flank are 

generated by Equation (2.3) based on the gear parameters in Table 2.1. As shown in Figure 

2.16 (a), those points constitute a right flank of the gear in 3D space. Afterwards, these 

coordinates are evaluated by the plumb line distance equation, which leads to an areal 

distance map shown in Figure 2.16 (b). This result verifies the prediction of zero-valued 

output (10-14 mm, machine precision of MATLAB®) of all the plumb line distances 

calculated from the coordinates of those nominal points. 

 

Figure 2.16: Simulated nominal points on a flank: (a), in 3D Cartesian coordinate system; 

(b), the plumb line distance plotted as a function of spatial location in the X-Y plane. 

2.4.2 Implicit equation for a complete gear teeth system 

To evaluate the tooth-to-tooth features of a gear, an analytic model of the complete 

gear (including both flanks of all teeth) is essential. Extending the implicit individual flank 

equation for a complete gear, extra parameters are needed, such as: the flank direction (left 

or right), the tooth number index (tooth #1, #2, …, #z) and the tooth counting direction 

(clock wise, CW or counter-clock wise, CCW).  The tooth index number is defined as indt , 

an integer varying from 1 to the number of teeth z. The flank direction is denoted as f, 
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taking the values of 1 and -1 for right and left flank, respectively. The gear tooth counting 

direction, denoted as tc , is defined as the direction of counting from the first to the second 

tooth, when the gear datum surface is facing out of the paper. The choice of tc  is 1 and -1 

for counter-clock-wise (CCW) and clock-wise (CW), respectively. 

Due to the rotational symmetry of a gear body, the nominal location of an individual 

tooth is uniquely determined by the value of its nominal starting angle. The choice of using 

base space half width angle of the first gear tooth (indicated as #1) can be extended for the 

succeeding teeth. For an arbitrary tooth-gap pair, confined in an arbitrary circle with 

diameter yd , an invariant quantity exists as: 

 
y y

2
2( )

z


   , (2.21) 

where y  and y  are the tooth thickness half angle and the space width half angle, 

respectively. A specific case is shown in Figure 2.17 for the corresponding angles on the 

pitch diameter.  

 

Figure 2.17: The half space angle ( )  and the tooth thickness half angle ( ) on the pitch 

circle of a counter-clock-wise indexed gear: left flank (dotted line) and right flank (solid 

line). 
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In nominal gear geometry, the start and end values of the roll angle determine the 

range of all profiles of right flanks of each tooth. The location of each profile is uniquely 

determined by the nominal starting angle nom ind t( , , )t f c .  

For simplicity, it is assumed that the workpiece coordinate system’s X axis is 

located in the middle of the space between the first and last tooth of the gear, as shown in 

Figure 2.18. The analytic equation of the nominal starting angle of the right flank on the 

tooth #1 in CCW direction is: 

 
t

nom nom b nom

b

tan
(1,R,CCW)= (1,1,

c
1

os
) z

r

 
   .  (2.22)  

Apparently, by substituting the invariant quantity on the right side of Equation- 

(2.21), Equation (2.22) can be extended to any right flanks on all teeth, as: 

 
t

nom ind b nom ind

b

cotan 2
( ,R,CCW) (

s
1)

z
t z t

r

  
    ,  (2.23) 

where ind 2,3,..., zt    is the tooth index number.   

 

Figure 2.18: Schematic of the nominal starting angles on right flanks of tooth #1 and #2. 
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For the left flank, as shown in Figure 2.19, the nominal starting angle of tooth #1 is 

shifted in counter-clock-wise direction by the angular amount of b2 / z - 2   as: 

 t
nom nom b nom b

b

tan
(1,L,CCW) = (1, 1,1)

cos 2
-2

z
z

r

  
     .  (2.24) 

Similarly, Equation (2.24) can be extended to a general form for all the left flanks 

of all teeth as: 

 t
nom ind b nom ind

b

b

tan cos 2
-2

z

2
( ,L,CCW) = ( 1)

z
t z t

r

   
     . (2.25) 

 

Figure 2.19: Schematic of the nominal starting angles on left flanks of tooth #1 and #2. 

Combining Equation (2.23) and Equation (2.25) the analytic form of the nominal 

starting angle nom ind t( , , )t f c  for both left and right flanks can be written as: 
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nom ind t b nom b t ind
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Substituting Equation (2.26) to the plumb line distance equation in Section 2.3.3, 

the whole gear teeth system can be written as: 
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where, b t ttan/ z      .  

Equation (2.27) leads to the following implicit representation of the whole gear 

teeth system is: 

 nom nom nom t b ind t( , , ; , , z, ,, , ) 0F x y z fr t c   , (2.28) 

which contains all nominal geometric information of every flank of a complete gear. 

Moreover, the formation of equation (2.28) fulfills the geometric angular closure 

principle, as analogous to the conservation laws in physics. As mentioned, if the function 

equals a non-zero valued constant, 
indm m m ind( , , ; ,...) tF x y z t a , for an individual flank, then 

the summation of each value 
indta  should always be zero: 

 
ind

ind ind

m m m ind

z z

1 1

( , , ; ,...) 0
t

t

t

F x y z t a
 

     (2.29) 

 In fact, this relationship is readily reasonable, when each individual constant value 

indta  is interpreted as the individual single pitch deviation for the corresponding flank. More 

detailed discussion of single pitch deviation will be presented in Chapter 4.  
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CHAPTER 3 : APPROXIMATION BY CHEBYSHEV SERIES 

 

3.1 Introduction and basic concepts 

Similar to the prevalent application of Fourier series to approximate periodic 

functions in harmonic analysis, Chebyshev series play a vital role in approximating 

nonperiodic functions in numerical analysis [50]. In computational metrology, the concept 

of Chebyshev approximation is applied to obtain the minimum zone fit of geometric 

features (such as planes, circles, cylinders, etc.) from a measured data set [51]. One reason 

for its popularity in dimensional metrology is that the Chebyshev approximation keeps the 

maximum error to a minimum. This is of particular importance in the study of Geometric 

Dimensioning and Tolerancing (GD&T), when a measured feature on a workpiece must be 

compared to its designed intent [52] with a quantitative value of deviation. Another 

advantageous property of using the Chebyshev polynomials to approximate arbitrary 

functions is its orthogonality, which uniquely facilities the calculation of Chebyshev 

coefficients. A comparison of the properties of Chebyshev polynomials with other 

orthogonal polynomials was investigated in [53]. However, the rigorous mathematical 

discussion of the popularity of Chebyshev polynomials is beyond the scope of this 

dissertation.   

The first sub-section of this chapter is focused on basic definitions and key 

properties related to the Chebyshev approximation of functions with a single independent 

variable (referred to as 1D Chebyshev polynomials). Afterwards, interpretations of 

applying 1D Chebyshev series and their mathematical properties to approximate gear flank 

surfaces are presented. Lastly, the analytic expressions of the 2D Chebyshev polynomials 
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are introduced. Simulation results for approximating an arbitrary bivariate function by 2D 

Chebyshev series are studied.  

3.1.1 Chebyshev norm and Chebyshev approximation 

In physics and engineering, the concept of distance is ubiquitous. From a rigorous 

mathematical perspective, the definition of a distance in dimensional metrology is of 

critical importance. One commonly used quantity is the point-to-point distance in a 3D 

Euclidean space. Alternatively, the concept “norm” can be used to extend the interpretation 

of a distance from its geometrical meaning to an algebraic abstraction. A norm is defined 

on a space that consists of points, vectors or even functions, attributed with a list of 

properties. It is a function that assigns a positive value of length to the mathematical objects 

of interest. How the norm is calculated depends on the way it is defined. For example, the 

pL  norm used in functional analysis is defined by:  

 
1

1/

1 2, with 1, ( , ,..., )
n

p

p

i np
i

x p x x x


 
   
 
x x ,  (3.1) 

where 1x , 2x  and nx  can be coordinates, points, vectors or functions. In practice, the most 

common values for the parameter p are 1, 2 and   , which are known as the “absolute 

norm”, the “Euclidean norm” or “Gaussian norm” and the “infinity norm” respectively. 

The Chebyshev norm ( p  =   ) can also be referred to as supremum norm, uniform norm 

and infinity norm.  

In geometry measurement, Chebyshev approximation is the approximation that 

minimizes the maximum distance (i.e. Chebyshev norm) between the measured data and 

the approximated function that characterizes the measured object. Various searching 

methods and optimization algorithms were developed to implement the Chebyshev 
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approximation with reasonable computational efforts [54]. The implementation of a 

Chebyshev approximation according to its definition is a challenging optimization problem, 

raising numerical difficulties in dimensional metrology practice [55]. An alternative 

solution to this challenge is based on an iterative algorithm and a reasonably large value of 

p (e.g. 50   p   100) [56].  

In this chapter, the Chebyshev series in 1D and 2D are used as an implementation 

method for Chebyshev approximation on measured discrete dataset in gear inspection. 

3.1.2 Chebyshev polynomials (1D) 

Chebyshev polynomials form a family of orthogonal polynomials in numerical 

analysis and scientific computing. For an integer 0k  , the Chebyshev polynomial of 

degree k  is denoted as ( )kT x  and is given by: 

 ( ) cos[ arccos( )], 0,1, 2, ... , . [ 1,1]kT x k x k x       (3.2) 

This integer k  also refers to a corresponding “term”, which is a member of the 

Chebyshev polynomials. Each Chebyshev term satisfies a three-term recurrence relation: 

 1 1( ) 2 ( ) ( ), 1k k kT x xT x T x k    , (3.3) 

with 
0 ( ) 1T x   and 1( )T x x  as the first and second term respectively.  

The first six terms of the 1D Chebyshev polynomials are: 
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The term index k  is equal to the number of zeros of the polynomial ( )kT x  as shown 

graphically in Figure 3.1. 

 

Figure 3.1 The first six terms ( )kT x  (k = 0, 1, 2,…, 5) of 1D Chebyshev polynomials. 

3.1.3 1D Chebyshev points 

1D Chebyshev points are the extreme points of 1D Chebyshev polynomials [57]. 

For a 1D Chebyshev polynomial of maximum degree of N, there are N+1 1D Chebyshev 

points given by: 

 1D( ) cos / ) 0( ,x j j N j N   ,  (3.5) 

where  j is an integer varying from 0 to N. In Figure 3.2, 17 Chebyshev points are generated 

and represented by red dots on the interval of [-1,1]. Obviously, the Chebyshev points 

cluster near the edge of -1 and 1. The black dots represent the 17 points, which are 

equispaced on the unit circle, corresponding to the Chebyshev points.  
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In numerical analysis, it is well known that polynomial interpolation by 1D 

Chebyshev points by the barycentric interpolation formula has an advantage over the 

equispaced points interpolation [50]. However, in this dissertation another form of 

approximation by Chebyshev series is used rather than an interpolation at Chebyshev 

points.  

 

Figure 3.2: Location of 17 Chebyshev points (red dots) on the interval [-1,1]. 

3.1.4 Chebyshev series and 1D Chebyshev expansion 

Trigonometric functions (sine and cosine) are the default choices as base functions 

to approximate a periodic function in harmonic analysis. Similarly, the Chebyshev 

polynomials can serve as base functions to approximate any non-periodic function on an 

interval in numerical analysis. Mason et al. provided a rigorous presentation of the 

mathematical properties of Chebyshev polynomials in [58].  

If a function ( )f x  is Lipschitz continuous on the interval [-1,1], it has a unique 

representation as a series, summed by infinite terms of Chebyshev polynomials: 

 
0

( ) ( )k k

k

f x c T x




 ,  (3.6) 

which is absolutely and uniformly convergent [50]. The coefficient kc  associated with each 

term of the Chebyshev polynomial is called the Chebyshev coefficient of term k. The series 
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given by Equation (3.6) is known as Chebyshev series or Chebyshev expansion, which can 

be an alternative to the Chebyshev approximation of the function ( )f x  [58].  

However, truncation of an infinite series in Equation (3.6) after a certain number of 

terms N, is of more practical importance, particularly when a uniform tolerance band is 

predefined for the approximation problem. This truncation, denoted by ( )Nf x  is given by: 

 
0

( ) ( ) ( )
k

N

N

k kf x f x c T x


  .  (3.7) 

In addition, the truncation after the Nth term of a Chebyshev polynomial ( )NT x  

approximately satisfies the equioscillation property of the best approximation [57] as: 
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in which ( )NE x  is the residual error due to truncation.   

The value of the kth Chebyshev coefficient in Equation (3.7) is explicitly given by 

the integral: 
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where, 1k  . For k=0, the factor changes from 2 /  to 1/ .  

3.2 Properties of 1D Chebyshev series and physical interpretation 

3.2.1 Orthogonality 

The orthogonality of the Chebyshev polynomials is given by the integral:  
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where K  is known as the normalization factor for the 1D Chebyshev polynomials. 

This property leads to the fact that, the value of each coefficient kc  corresponding 

to each base function ( )kT x  can be calculated independently, which offers two practical 

advantages: 

• The value of an invidiual coefficient kc  does not depend on the total number of 

terms (N in Equation (3.7)) used for the approximation; 

• The removal of certain compnoents (e.g. ( )k kc T x ) from the mesasured data set 

does not affect the values of other coefficeints (i.e. j kc  ) calcuated from the data 

set after removing ( )k kc T x .  

3.2.2 Near best approximation 

The definition of a near best approximation is given in [50], which states that the 

norm of an approximation based on the truncated 1D Chebyshev series is no larger than a 

bounded factor of the best approximation: 

 
*

2

4
( ) ( ) 4 log( 1) ( ) NNf x f x N f x p

 

 
     

 
,  (3.11) 

where ( )f x  is the function to be approximated, ( )Nf x is the truncation of a 1D Chebyshev 

series to degree N as in Equation (3.7), and 
*

Np  is the theoretical best approximation by a 

polynomial with the maximum degree of N, respectively.  

3.2.3 Parseval’s theorem  

In harmonic analysis, the summability property of an infinite Fourier series 

expansion of a function is given by Parseval’s theorem, which asserts that the sum of the 
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squares of the Fourier coefficients of a function is equal to the integral of the square of the 

function. The counterpart theorem for the infinite Chebyshev series holds [57]:  

 
1

2 2

0
1

1

2

2

2 ( )
2

1
k

k

f x
c c dx

x






 


  ,  (3.12) 

where the scaling factor 2 on 2

0c  is used, when each coefficient is evaluated by an integral: 

 
1 2

12 ( ) ( )

1

k
k

f x T x
c dx

x 



 .  (3.13) 

The Parseval’s theorem is a direct consequence of the completeness nature of using 

Chebyshev polynomials as the base functions [58] [59]. Parseval’s theorem can be used as 

a tool to quantify the “energy” contribution of each Chebyshev term, represented by its 

corresponding coefficient.  

Beyond the mathematical properties of using Chebyshev polynomials to 

approximate a function in an interval, several advantages from an engineering perspective 

are summarized in Table 3.1.  

Table 3.1: Interpretation of mathematical properties and applications of Chebyshev 

polynomials on areal gear flanks. 

Mathematical property Geometric interpretation Engineering application 

Near best approximation Minimized max errors Reconstruction of form 

Equal ripple residue Symmetric deviation band Uniform tolerance zone 

Base functions and 

orthogonality 

Independent surface spatial 

components 

Low order flank 

modifications/deviations 

Coefficient for each base 

function 

Contribution of a surface 

component 

Magnitude of each flank 

modification/deviation  

Parseval’s theorem Conservation of energy of 

all surface components 

Percentage of certain 

modification/deviation 
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3.3 Approximation of discrete data by power series 

The fundamental theorem, proven by Weierstrass in 1885, states that any 

continuous function defined on a closed interval can always be approximated to any degree 

of accuracy by power polynomials. However, it is not guaranteed that an approximating 

polynomial can be obtained based on equidistant data, a widely met practical case when 

analyzing engineering measurement data. A phenomenon discovered by Runge in 1901, 

signifies the divergence issue, even when a simple analytic function is approximated on 

equidistant points within a real interval.  

 
0

( ) ( )
N

N k

k

kf x p x a x


   (3.14) 

As shown in Equation (3.14), the power series ( )Np x  at the highest order of N is 

defined as a finite sum of monomial kx  at the order of k , associated with a corresponding 

coefficient ka .  

The coefficient ka  is usually determined by interpolation, based on a set of M 

equally spaced sampling values ix  and the corresponding observation values ( )if x , with

1,2,...,i M . Equation (3.15) shows the formation of the interpolation problem to 

calculate the N+1 coefficients with values ka : 

 

2

1 1

2

2 2

1 0 1 1 2

2 0 1 2

0 1

2

2

2

( )

( )

( )

N

N

N

M M M

N

N

M N

f x a a x a x a x

f x a a x a x a x

f x a a x a x a x

     


    


     

.  (3.15) 

 

 



54 

 

3.3.1 Least squares solution of normal equation 

The Least squares method is often used to solve the overdetermined system of 

Equation- (3.15), since the number of measured points M is usually much larger than the 

highest order N of the polynomial ( )Np x : 

 

1 1 1

2 22

2

1 1

2

2 2

2

1 ( )

( )1

( )1

N

N

N
NM MM M

x x x a f x

a f xx x x

a f xx x x

     
     
      
     
     
     

.  (3.16) 

Severe issues arise, when a set of discrete data is approximated by power series to 

arbitrary orders, formulated to the least square problem and solved by a normal equation: 

• the choice of the highest order N is subjectively decided, if no prior information 

such as the allowable maximum residue errors is given;  

• the coefficients for the individual mononic power terms (i.e. base functions) can 

not be obtained independently since they are not orthogonal with respect to each 

other; 

• the widely used algorithm “polyval/polyfit” in MATLAB for solving a 

Vandermonde linear system determining the coefficeint of a vector normal 

equation is unstable in the presence of rounding errors [50]; and, 

• even though the equidistant abscissa of ix  is ubiquitous (preferred from a data 

acquisition perspective), an interpolation on equidistant points is numerically 

ill-conditioned, when a high order power function is used [50]. 

3.3.2 Coefficients of 1D Chebyshev series and 1D power series 
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For instance, a non-periodic function P ( )f x  is defined in a finite interval by a 

power series with a maximum order of 5 as: 

 
2 3 4 5

P 0 52 41 3( )f x a a x a x a x a x a x      .  (3.17) 

It is straightforward that a Chebyshev series T ( )f x  with the same order of 5 can be 

used to describe the same function P ( )f x  by:  

 T 0 0 1 1 2 2 3 3 4 54 5( ) ( ) ( ) ( ) ( ) ( ) ( )f x c T x c T x c T x c T x c T x c T x      .  (3.18) 

By setting P T( ) ( )f x f x , the relationship between the coefficients of the 1D power 

series and the 1D Chebyshev coefficients can be uniquely determined by comparing the 

order of each monomial term in Equation (3.17) and Equation (3.18): 

  

2 4
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3 5
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c


  


   


  


  


 






.  (3.19) 

Equation (3.19) can be written in a matrix form: 
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0 0

1 1

2 2

3 3

4 4

5 5

1 0 1/ 2 0 3 / 8 0

0 1 0 3 / 4 0 5 / 8

0 0 1/ 2 0 1/ 2 0

0 0 0 1/ 4 0 5 /16

0 0 0 0 1/ 8 0

0 0 0 0 0 1/16

c a

c a

c a

c a

c a

c a

   
    
    
    
    

     
    
    
    
    

   

,  (3.20) 

which can be expressed as:  

 C MA ,  (3.21) 

where C is the vector of 1D Chebyshev coefficients, A is the vector of 1D power 

coefficients and M is the square matrix with a size of 5 by 5. This relationship can be 

generalized to any arbitrary order of N, and the matrix M is an upper-triangular matrix with 

a size of N by N.  

In addition, for the highest order (i.e. k N ), the coefficients obtained by 

approximating an unknown function by both a power series and a Chebyshev series, satisfy 

the following relationship: 

 
12

N
N N

a
c


 ,  (3.22) 

which indicates that the Chebyshev series converges more rapidly than the power series. 

In fact, the speed of convergence when an analytic function is approximated by Chebyshev 

series is geometric [50], thus less terms are needed to approach a given approximation 

criteria such as a given band of truncation error.   

As a unique type of a family of orthogonal polynomials (i.e. the Jacobi 

polynomials), the Chebyshev polynomials distinguish themselves by several advantages as 

summarized by Boyd [53]. From a mathematical perspective, the two most important 

advantages of choosing Chebyshev polynomials over other types of polynomials (e.g. 
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Legendre polynomials) in this dissertation are the “Minimal 𝐿∞ error for a general function” 

and the “convertible to Fourier Cosine” property as stated in Figure 3.3 

 

Figure 3.3: Comparisons of Chebyshev, Legendre, Jacobi and Gegenbauer polynoimals 

[53]. 

3.4 Chebyshev polynomials defined on 2D domain 

3.4.1 Generation of 2D Chebyshev polynomials 

The 2D Chebyshev polynomials can be generated by the multiplication of two 1D 

Chebyshev polynomials in two perpendicular directions by: 

 ( , ) ( ) ( )n p qC x y T x T y  , (3.23) 

where ( )pT x  and ( )qT x  are the 1D Chebyshev polynomials in the X direction and the Y 

direction, respectively. This leads to the bivariate representation ( , )nC x y , defined on the 

square domain 2[ 1,1] , where both x and y vary in the interval [ 1,1] . 
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The subscript n of ( , )nC x y  represents the term number of the 2D Chebyshev 

polynomials ascendingly. The expressions of the first nine terms (n = 0, 1, 2, …, 8) of 2D 

Chebyshev polynomials are given in Equation (3.24):  

 

0 0 0

1 1 0

2 0 1

2

3 2 0

4 1 1

2

5 0 2

3

6 0

2

7 2 1

8 1 2
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( , ) ( ) ( ) 1

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( ) 2 1

( , ) ( ) ( )

( , ) ( ) ( ) 2 1

( , ) ( ) ( ) 4 3

( , ) ( ) ( ) (2 1)

( , ) ( ) ( )

C x y T x T y

C x y T x T y x

C x y T x T y y

C x y T x T y x

C x y T x T y xy

C x y T x T y y

C x y T x T y x x

C x y T x T y x y

C x y T x T y

 

 

 

  

 

  

  

  

  2(2 1)

...

y x

.  (3.24) 

The graphical representation of the first nine terms of 2D Chebyshev polynomials 

are shown in Figure 3.4. 
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Figure 3.4: First nine terms of low order 2D Chebyshev polynomials. 

The orthogonality of 2D Chebyshev polynomials are defined by the interval: 

 

1

2 2

1

1 1 2

( , ) ( , ) 0,

,1 1

i jC x y C x y i j
dxdy

K i jx y 


 

  
  ,  (3.25) 

where the normalization constant for 2D Chebyshev polynomials 2K  is determined by the 

chosen values of p and q in Equation (3.23): 
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.  (3.26) 
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3.4.2 Approximation of a bivariate function by 2D Chebyshev series 

The properties of using 1D Chebyshev series to approximate 1D non-periodic 

functions can be extended to its bivariate counterparts. The truncated 2D Chebyshev series

( , )Nf x y , consistent with a one term index (i.e. n) in Equation (3.23), is used to 

approximate bivariate function ( , )f x y : 

  
0

2,( , ) ( , ) ( , )N n n

N

n

f x y f x y c C x y


  ,  (3.27) 

where each coefficient 2,nc  is calculated by: 

 2,
2 2

2

1 1

1 1

( , ) ( , )1

1 1

n
n

f x y C x y
c dxdy

K x y 


 
  .  (3.28) 

3.4.3 Coefficients of 2D Chebyshev series and 2D power series  

The relation between the coefficients of a bivariate function approximated by a 2D 

Chebyshev series, and 2D power series is also uniquely determined. For example, a surface 

defined on a square domain in the 1 1x    and 1 1y    directions with a height of z 

can be represented by: 

 
P ( , )z G x y , (3.29) 

where the subscript “P” represents the power series. The same function can also be 

represented by: 

 
C( , )z G x y , (3.30) 

where the subscript “C” indicates the base function is 2D Chebyshev polynomials.  

For instance, assuming a surface is given as: 

 2 2

P 2,0 2,1 2,2 2,3 2,4 2,5( , )G x y a a x a y a x a xy a y      ,  (3.31) 
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where the six terms of 2D power base functions are linearly summed and weighted by six 

coefficients 2,na  for 0,1,2,...,5n  .  

P ( , )G x y  represents a surface with highest order of two. The same surface can also 

be represented by a set of 2D Chebyshev base functions with six terms and weighted by 

six 2D Chebyshev coefficients 2,nc , for 0,1,2,...,5n  : 

 
C 2,0 0 2,1 1 2,2 2 2,3 3

2,4 4 2,5 5

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

G x y c C x y c C x y c C x y c C x y

c C x y c C x y

   

 
. (3.32) 

Setting 
P C( , ) ( , )G x y G x y , the relation between the values of the 2D power 

coefficients in Equation (3.31) and the 2D Chebyshev coefficients in Equation (3.32) can 

be uniquely determined by the matrix equation: 

 

2,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,4

2,5 2,5

1 0 0 1/ 2 0 1/ 2

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1/ 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1/ 2

c a

c a

c a

c a

c a

c a

    
    
    
    
     
    
    
    
       

, (3.33) 

which can be written as: 

 2 2 2C M A , (3.34) 

where 2C is the vector of the first six 2D Chebyshev coefficients, 2M  is the matrix 

mapping the 2D power coefficients to the 2D Chebyshev coefficients and 2A  is the vector 

of the first six 2D power coefficients respectively. 

 Inversely, a set of 2D Chebyshev coefficients can be used to calculate the 

corresponding 2D power coefficients by matrix inversion: 
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1

2 2 2( )A M C . (3.35) 

This relationship described by Equation (3.32) and Equation (3.35) between the 2D 

power coefficients and 2D Chebyshev coefficients still holds when more terms of base 

functions are used. 
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CHAPTER 4 : FLANK GEOMETRY AND 2D CHEBYSHEV POLYNOMIALS 

 

Besides the aforementioned properties of the Chebyshev polynomials (1D and 2D), 

another important reason of using the 2D Chebyshev polynomials as the base functions for 

approximating areal gear distance map is the geometric resemblance between the 2D 

Chebyshev polynomials and the form of the gear flank modifications and (or) deviation. In 

this chapter, a new set of areal parameters is introduced as an extension of the current line 

oriented parameters, listed in the current ISO standards [18]. The relationship between the 

areal modification (and/or deviation) parameters and the first six terms of 2D Chebyshev 

polynomials are illustrated graphically. Afterwards, detailed steps of calculating the areal 

gear parameters based on 2D Chebyshev coefficients are explained. Lastly, the analytic 

linkage between the first six 2D Chebyshev coefficients and the low order areal flank 

parameters are established.  

4.1 Areal distance map of gear flank 

The areal distance map is a collection of the values of individual plumb line 

distance of each measured point in a point cloud. Figure 4.1 (a) shows the measured gear 

flank represented by a measured point cloud in 3D space. The plumb line distances form 

an areal distance map as shown Figure 4.1 (b). To extract quantitative information from 

the areal distance map, Stoebener et al. [45] reported a method to calculate the areal gear 

parameters suggested in ISO based on least square method. 

However, as explained in Section 2.4, without prior information such as nominal 

flank modification parameters, it is impossible to mathematically distinguish the sources 

that lead to the areal distance map in Figure 4.1 (b). 
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Figure 4.1: Cacluation of areal distance map: (a), raw measured point cloud on a flank; 

(b), obtained areal distance map, formed by the calculated plumb line distances from (a). 

In the following section, a new set of areal gear parameters is defined to characterize: 

• low order form information of individual flank, such as: slope, crowning, twist;  

• relative location information from tooth to tooth: single pitch deviation, 

cumulative deviation. 

4.2 Areal gear parameters 

Conventional line oriented gear parameters are defined in standards such as [9]. To 

adapt area oriented evaluation methods, it is necessary to revise those parameters to areal 

ones, which retain the geometrical meanings of their conventional counterparts. This 

revision is analogous to the revision proposed by K. Stout [60], by changing conventional 

line oriented surface parameters to area oriented surface parameters in surface metrology. 

Table 4.1 summarizes several conventional gear evaluation parameters and their 

revised areal gear parameters, which will be used for areal gear evaluation. Compared to 

the standardized conventional parameters, the revised areal parameters are indicated by the 
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superscript “A”, indicating the evaluation of those parameters is carried out on areal flank 

distance map.  

Table 4.1: Conventional line oriented evaluation parameters [18]  and proposed areal 

evaluation parameters. 

Definition Conventional parameter Areal parameter 

Intended profile slope modification HαC
  

A

HαC
 

Profile slope deviation αHf   
A

Hαf
  

Profile slope modification deviation Not defined 
A

CHαf
  

Intended profile crowning 

modification                    αC
 

A

αC
  

Profile crowning modification 

deviation 
Not defined 

A

Cαf
  

Helix slope modification βHC
  

A

HβC
  

Helix slope deviation βHf   
A

Hβf
  

Helix slope modification deviation Not defined 
A

CHβf
  

Intended helix crowning modification βC
  

A

βC
  

Helix crowning modification 

deviation 
Not defined 

A

Cβf
  

Profile form deviation fαf
  

A

ff areal form 

deviation Helix form deviation fβf
  

Total profile deviation αF
  

A

fF
total areal 

deviation Total helix deviation βF
  

Individual single pitch deviation pif
  

A

pif
  

Individual cumulative pitch deviation piF
  

A

piF
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In addition, when a flank surface is measured by areal methods, it is unnecessary 

to characterize the form deviation of the whole surface by two types of form deviation, 

namely the profile form deviation fαf  and helix form deviation 
fβf . Thus, a replacement 

parameter, defined as areal form deviation (denoted by 
A

ff ) is introduced to unify the areal 

form deviation. Similarly, this revision can be applied to unify the total profile deviation 

( αF ) and total helix deviation ( βF ) by a new areal parameter, defined as total areal deviation 

(denoted by 
A

fF ). The areal individual single pitch deviation and the areal cumulative pitch 

deviation are also introduced at the end of  Table 4.1, denoted by A

pif  and A

piF , respectively. 

4.2.1 Areal pitch deviations and zero order 2D Chebyshev polynomial 

In a transverse plane, pitch is defined as the arc length between two virtual 

intersection points of the pitch circle with two consecutive right flanks (or right flanks). 

The nominal pitch can be calculated by different basic gear parameters, such as: 

 n
t

co

2

s z
p r

m r 



  , (4.1) 

where tp , r  and   are the transverse pitch, reference radius and the angular pitch 

respectively. 
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Figure 4.2: Schematic of the pitch circle (black dashed) and the pitch points on 

consecutive flanks (left and right) in transverse plane. 

As pointed out in Section 2.4, a constant non-zero plumb line distance for an entire 

gear flank can be mathematically treated as a constant planar offset with respect to the pure 

involute flank. Geometrically, this constant offset plane is caused by a rotational offset 

with respect to the axis of gearing. The rotational offset has two applications: the first one 

is to use the offset as an alignment quantity for all teeth; the other one is to treat the 

calculated offset as angular pitch deviation, when the angular position of an arbitrary tooth 

is compared with respect to a reference tooth. Therefore, the areal cumulative pitch 

deviation of an arbitrary tooth can be established based on the latter application. 

In Figure 4.3 (a), two nominal involute profiles (black solid curve) are shown, 

starting at different circumferential locations (i.e. different initial angles on the base circle). 

A 5 mm shift of the plumb line distance is converted to the angular offset and added to 

simulate the measured points (blue dot, connected by dashed curve). The calculated plumb 

line distance for the two sets of simulated measured points are shown in Figure 4.3 (b). 
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Clearly, the calculated plumb line distances for both sets of simulation are nearly 5 mm. 

As shown in the figure, the last digit of the calculation is to the machine precision (i.e. 5 

±10-13).  

 

Figure 4.3: Angular offset and constant plumb line distance: (a), nominal and measured 

points of two involute profiles; (b), calculated plumb line distances for the two sets of 

simulated involute profiles. 

Figure 4.4 depicts the geometrical similarity between the first term of 2D 

Chebyshev polynomial, 0 ( , )C x y  and the areal single pitch deviation of a flank in 3D space. 

The quantitative relationship of the areal single pitch deviation between the coefficients of 

2D Chebyshev polynomials will be presented in the next section. 

 

Figure 4.4: Geometric similarity between 2D Chebyshev polynomial and flank 

modification:  (a), the 2D Chebyshev term #0; (b), 3D schematic of the individual 

cumulative pitch of a right flank, edited after [15]. 
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4.2.2 Linkage between 2D Chebyshev terms and 1st order flank features 

The 2D Chebyshev polynomial term #1, 1( , )C x y  defined on [-1,1]2 is shown in 

Figure 4.5 (a) and the first order areal profile deviation and/or modification in a 3D solid 

model is given in Figure 4.5 (b). The 2D Chebyshev polynomial term # 2, 2 ( , )C x y  defined 

on [-1,1]2 is shown in Figure 4.6 (a) and the first order areal helix deviation/modification 

in a 3D solid model is shown in Figure 4.6 (b). Because 1( , )C x y  and 2 ( , )C x y  are the only 

two first order 2D Chebyshev terms based on its definition, it is appropriate to use them to 

represent the first order flank deviation/modification on gear flanks. 

The quantitative relationship between the amount of the areal gear parameters and 

the value of the corresponding 2D Chebyshev coefficients (i.e. 1A  and 2A ) will be 

presented in next section. 

 

Figure 4.5: Geometric similarity between 2D Chebyshev polynomial and flank 

modification: (a), The 2D Chebyshev term #1; (b), 3D schematic of a modified flank with 

only profile slope modification, edited after [15]. 
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Figure 4.6: Geometric similarity between 2D Chebyshev polynomial and flank 

modification: (a), The 2D Chebyshev term #2; (b), 3D schematic of a modified flank with 

only helix slope modification , edited after [15]. 

4.2.3 Linkage between 2D Chebyshev terms and 2nd order flank features 

The 2D Chebyshev polynomial term #3, 3( , )C x y  defined on [-1,1]2 is shown in 

Figure 4.7 (a) and the second order areal profile deviation/modification in a 3D solid model 

is shown in Figure 4.7 (b).   

 

Figure 4.7: Geometric similarity between 2D Chebyshev polynomial and flank 

modification: (a), the 2D Chebyshev term #3; (b), 3D schematic of a modified flank with 

only profile crowning modification, edited after [15]. 

In addition, the geometric similarity of the 2D Chebyshev term 4 ( , )C x y for areal 

flank twist, 5( , )C x y for areal helix deviation/modification are shown in Figure 4.8 and 
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Figure 4.9 as well. The quantitative relationship between the amount of the areal gear 

parameters and the value of the corresponding 2D Chebyshev coefficients will be presented 

in the next section. 

 

Figure 4.8: Geometric similarity between 2D Chebyshev polynomial and flank 

modification: (a), The 2D Chebyshev term #4; (b), 3D schematic of a modified flank with 

flank twist, edited after [15]. 

 

Figure 4.9: Geometric similarity between 2D Chebyshev polynomial and flank 

modification:  (a), The 2D Chebyshev term #5; (b) 3D schematic of a modified flank with 

only helix crowning modification, edited after [15]. 

4.3 Orthogonal decomposition of areal distance map  

Cylindrical flank modifications have several properties intrinsic to the way they are 

defined. Modifications are superimposed on the pure involute surface in the surface normal 

direction and are independently specified on a flank. Hereby, an areal distance map 

containing all modifications and/or deviations can be mathematically decomposed into 
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different surface components represented by different 2D Chebyshev terms. This ideal is 

graphically depicted in Figure 4.10.  

 

Figure 4.10: Decomposition areal distance map into the first six 2D Chebyshev terms. 

4.3.1 Analytic description of flank modifications  

The slope and crowning modifications of a flank A

nom ( , )M u v  can be collectively 

expressed based on Equation (2.10) and (2.11): 

β β Hβα α Hα

α

A A AA A A
A

no

α

m

β β

( , ) ( ) ( )
C C CC C C

M u v A u B v u u v v
L L L L


      

2

2

2

2
4 44 4

. (4.2) 

The areal flank twist can be described by introducing a new parameter A

αβS  [61]. 

A

αβS  appears in the coefficients of a bivariate function A ( , )T u v , which is defined on the 

evaluation zone 
α β[0, ] [0, ]L L : 

 

A A A

αβ αβ αβA

α β α β

( , )
2 2

S S S
T u v uv u v

L L L L
    ,  (4.3) 

such that the characteristic form of areal twist at four boundaries are: 



73 

 

 

αβA

α

αβA

β

αβA

β α

α

αβA

α β

β

A

A

A

A

( ,0)
2
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2
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2
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



 




  



  


. (4.4) 

Combining Equation (4.2) and Equation (4.3), the low order form 

modification/deviation of a gear flank can be expressed as: 

 m

A

o

AA

n( , ) ( , ) ( , )M u v M u v T u v  .  (4.5) 

A ( , )M u v  can be expressed by the 2D power series 
P ( , )D u v  defined on the domain 

of α[ , ]u L 0  and 
β[ , ]v L 0 : 

 
A 2 2

P 0 1 2 4 53( , ) ( , ) ( , )M u v D u v p p u p v p u p uv p v H u v        , (4.6) 

where 0 1 5, ,...,p p p  are the first six coefficients and ( , )H u v  denotes terms that have order 

higher than two. Derivation in the following section shows that, the first six coefficients of  

P ( , )D u v  can be calculated by the 2D Chebyshev coefficients after mapping P ( , )D u v  into 

p ( ', ')D u v  in which 
2( ', ') [ 1,1]u v   . 

4.3.2 Conversion from evaluation zone to square zone 

The decomposition of the measured point cloud into a 2D Chebyshev series 

requires a mapping of the surface coordinates ( , )u v , determined by the boundary of the 

evaluation range in the profile and helix direction ( s e s e[ , ] [ , ]u u v v ), to square coordinates 

( ', ')u v , which are the coordinates defined on the domain 
2[ 1,1]  as shown in Figure 4.11. 
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Figure 4.11: Converting from evaluation range domain:  (a) areal flank evaluation range; 

(b) square domain for calculating the 2D Chebyshev coefficients.  

The conversion between surface coordinates to the square coordinates can be 

modeled as a linear mapping: 

 

e s

e s

e s

e s

2
'

2
'

u u u
u

u u

v v v
v

v v

 
 


  

 

,  (4.7) 

and conversely: 

 

e s e s

e s e s

'
2 2

'
2 2

u u u u
u u

v v v v
v v

 
 


   



.  (4.8) 

For a full flank, the start and end values for profile and helix direction are set to: 

 
e βe

ss

α

00
and 

vu

v Lu L

  
 

  
,  (4.9) 
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such that the conversion relation in Equation (4.7) and Equation (4.8) are simplified to: 

 
α

β

2
' 1

2
' 1

u u
L

v v
L


 



  


, (4.10) 

and reversely, 

 

α α

β β

'
2 2

'
2 2

L L
u u

L L
v v


 


  


.  (4.11) 

4.3.3 Calculation of 2D Chebyshev coefficients 

After the conversion, the 2D Chebyshev series is defined on ( ', ')u v  and truncated 

at order N to approximate the 2D distance map ( ', ')D u v  on the square domain 
2[ 1,1] : 

 
0

( ', ') ( ', ')n n

N

n

D u v A C u v


 ,  (4.12) 

where the coefficients nA  for each term ( ', ')nC u v  can be evaluated by the double integral: 

 
2

1 1

2 21 1

'( ', ') ( ', ')1
' '

1 ( ') 1 ( ')

n
n

D u v C u v
A du dv

K u v 


 
  .  (4.13) 

In the following chapters, the first six terms (n = 0, 1, 2, …, 5) of 2D Chebyshev 

polynomials are used for approximating the areal distance map.  

After converting the areal distance map from the areal evaluation domain to the 

squared domain 2[ 1,1] , an interim bivariate function P ( ', ')D u v  is introduced in the form 

of a power polynomial on the square domain 2[ 1,1]  as: 

 
' ' ' ' ' '

0 1 2 3 4 5

2 2

P ( ', ') ' ' ( ') ' ' ( ')D u v a a u a v a u a u v a v      .  (4.14) 
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By comparing the coefficients in Equation (4.12) and Equation (4.14), the 

relationship between the interim coefficients ( ' ' '

0 1 5, ,...,a a a ) and the first six 2D Chebyshev 

coefficients (
0 1 5, ,...,A A A ) is established as: 

 

0 3 5

1

2

'

0

'

1

'

2

'

3

4

3

'

4

5

'

5

2

2

a A A A

a A

a A

a A

a A

a A

   









 

 

.  (4.15) 

Table 4.2 summarizes the relationship between the areal gear feature and the first 

six 2D Chebyshev terms and the corresponding 2D Chebyshev coefficients. 

Table 4.2: First six low order 2D Chebyshev terms and areal gear features. 

Term  Order Coefficient Analytic expression Influenced areal gear features 

0 ( ', ')C u v
 

0 
0A
  

1 Pitch 

1( ', ')C u v
  

1 
1A
  

'u
  

Profile slope 

2( ', ')C u v
  

1 
2A
  

'v
  

Helix slope 

3( ', ')C u v
  

2 
3A
  

22( ') 1u 
  

Profile crowning, pitch 

4( ', ')C u v
  

2 
4A
  

' 'u v
  

Flank twist 

5( ', ')C u v
  

2 
5A
  

22( ') 1v 
 

Helix crowning, pitch 

 

4.3.4 Converting 2D Chebyshev coefficients to areal gear parameters 

Substituting Equation (4.11) into Equation (4.6) and comparing the coefficients in 

Equation (4.6) and Equation (4.14) leads to the relationship between the two sets of 

coefficients of power series in two different domains: 



77 

 

 

0

1

α α α

2

β β

' ' ' ' ' '

0 1 2 3 4 5

' ' '

1 3 4

' ' '

2 4 5

β

3

α

4

α β

5

β

'

32

'

4

'

52

2 4 2

2 2 4

4

4

4

p a a a a a a

p a a a
L L L

p a a a
L L L

p a
L

p a
L L

p a
L

      

   


   
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
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

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





.  (4.16) 

Afterwards, substituting the interim coefficients ' ( 0,1,2,...,5)na n   in Equation 

(4.15) into the power coefficients ( 0,1,2,...,5)np n   in Equation (4.16), the relationship 

between the first six 2D Chebyshev coefficients ( 0,1,2,...,5)nA n   and the areal flank 

modification (and/or deviation) can be established as: 

 

α β

α α 1 α 3 4 1

α β

β β 2 β 5 4 2

α
α 3 3

αβ α

A 2 '

H 1

A 2 '

H 2

2
A '

β 4 4
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β 5
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A '

4
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2 2
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4 4
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C L p L p p a A

L L
C L p L p p a A
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C p a A

S L L p a A
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C p a A


    




    



     

      



     



,  (4.17) 

which can be written in a matrix form: 
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α
1

β

α 3

4αβ

5
β

A

H

A

H 2

A

A

A

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 4 0

0 0 0 0 2
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C A

C A

AS
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 
   
   
   
    
                 

 

.  (4.18) 

The above derivations encapsulate the essential advantage of using the first six 2D 

Chebyshev coefficients to completely and uniquely describe the areal form information of 

a gear flank from its areal distance map. 

The areal gear parameters on the left side of Equation (4.18) are defined on the 

domain formed by the gear evaluation range 
α β[0, ] [0, ]L L ; on the right side, the 

corresponding 2D Chebyshev coefficients are obtained in the domain 
2[ 1,1] . 

In addition, the coefficients for the zero order component in Equation (4.16) can be 

calculated by the 2D Chebyshev coefficients as: 

 0 0 1 2 3

' ' ' ' ' '

0 1 2 3 4 4 55p a a a a a a A A A A A A            .  (4.19) 

which can be converted to the areal single pitch deviation A

pif  by: 

  
2

M t

0 1 2 3

A

p 4i 5

b

1 (cos tan

2

)d
f A A A A A A

r

 
      ,  (4.20) 

where Md  is the measurement diameter for conventional pitch deviation. This equation can 

be directly used to compare the conventional point-oriented pitch evaluation and the areal 

pitch evaluation for three reasons:  

• first, the conventional pitch deviation ( pif ) is measured on a certain diameter (i.e. 

Md );  
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• secondly, the conventional pitch deviation is usually expressed in the unit of 

arclength on the measured diameter; 

• lastly, the conventional pitch deviation is given on a transverse plane for helical 

gears. 

Obviously, the areal single pitch deviation is a linear combination of the first six 

2D Chebyshev coefficients when the first six 2D Chebyshev terms are used for 

reconstructing the areal distance map. For a gear without any flank deviation/modification, 

the areal single pitch deviation is determined by the constant value 
0A .  

The relationship between different types of coefficients mentioned above and the 

low order areal flank modification are depicted Figure 4.12, which represents the internal 

mathematical links of the proposed 2D Chebyshev method.  

 

Figure 4.12: Relationship between the coefficients of bivariate power polynomials, 2D 

Chebyshev polynomials and the flank modification and deviation. 

4.3.5 Numerical verification on a simulated flank  

Figure 4.13 shows the simulated modifications in profile and helix directions as 

well as the simulated “noise” across the entire flank, on a matrix with grid size of 128 by 

128. The relative error is defined as the difference between the approximated value of a 

parameter to its nominal value, divided by the nominal value.  
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Figure 4.13: Simulated gear flank with profile slope modification, profile crowning 

modification, helix slope modification, helix crowing modification, twist and pointwise 

deviation.  

Table 4.3 shows the simulated values of each modifications and their approximated 

values. A grid size of 128 by 128 is used for simulating an areal flank by five modifications. 

A deviation with amplitude of ±1 μm (uniform distribution) is added to the simulated flank 

in a pointwise manner in the sense of “noise”.  

The relative error is defined as: 

 
app sim

sim

. . 100%
C C

R E
C


  ,  (4.21) 

where 
appC  and simC represent the approximated values and the simulated values for the 

five types of flank modifications in the third and fourth columns in Table 4.3.   

More detailed investigation of the influential factors such as point density on the 

flank, numerical algorithm and spatial distribution of points on the flank will be 

investigated in the next chapter. 
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Table 4.3: Simulated nominal and approximated areal flank parameters. 

Type of modification Symbol 
Simulated 

value [μm] 

Approximated 

value [μm] 

Relative Error 

(%) 

Profile slope  
A

HαC
  

5 5.042 0.84 

Helix slope 
A

αC
  

10 9.963 -0.37 

Profile crowning 
A

HβC
  15 15.006 0.04 

Flank twist 
A

αβS
  25 24.934 -0.26 

Helix crowning 
A

βC
  20 19.932 -0.34 

 

4.4 High order 2D Chebyshev polynomials and balancing terms 

In the earlier chapters, the first six terms (term #0 to #5) are used for reconstructing 

the areal distance map, and the corresponding 2D Chebyshev coefficients are used to 

calculate the areal flank parameters. However, higher order terms of 2D Chebyshev 

polynomials as listed in Table 4.4 can also have low order components known as the 

“balancing terms”. Suppose that higher order 2D Chebyshev terms are used during the 

orthogonal decomposition of an areal distance map and the non-zero higher order 2D 

Chebyshev coefficients are used for reconstructing the approximated areal map, then the 

balancing terms will collectively contribute to the low order gear parameters. 

For example, the 3

6( ', ') 4( ') 3 'C u v u u   term has a balancing term of 3 'u . Thus, 

if the 6C  term is included in the 2D Chebyshev series, then the coefficient 
6A  will 

backwardly contribute the first order information represented by 'u  weighted by a factor 

of -3. Because no Chebyshev terms higher than 5C  are used during the decomposition, all 

remaining surface components between the reconstructed areal map and the input areal 

map is treated as a residual map. 



82 

 

Another reason not to apply higher order 2D Chebyshev polynomials to 

approximate higher order, periodic surface components on a gear flank is that there is 

neither a directly geometric nor an analytic connection between those components with the 

higher order 2D Chebyshev polynomials. 

Alternatively, after removing the low order form components from the areal 

distance map, it is possible to apply analysis techniques in surface metrology [62] to assess 

the spatial frequency components on the gear flank.  

Table 4.4: Higher order 2D Chebyshev terms and balancing terms n = 6,7,8,…,15. 

Term Order Coefficient Expression Influenced areal gear 

parameters 

6C
  

3 
6A
   

34( ') 3 'u u
  

Profile slope 

7C
  

3 
7A
  

22( ') ' 'u v v
  

Helix slope 

8C
  

3 
8A
  

22( ') ' 'v u u
  

Profile slope 

9C
  

3 
9A

  
34( ') 3 'v v

  
Helix slope 

10C
  

4 
10A

  
4 28( ') 8( ') 1u u 

  
Profile crowning, pitch 

11C
  

4 
11A

  
34( ') 3 ' 'u u v

  
Twist 

12C
  

4 
12A

  
4 2 24( ' ') 2( ') 2( ') 1u v u v  

 
Profile and helix crowning, 

pitch 

13C
  

4 
13A

  
34( ') ' 3 ' 'v u u v

  
Twist 

14C
  

4 
14A

  
4 28( ') 8( ') 1v v 

  
Helix crowning, pitch 

15C
  

5 
15A

  
5 316( ') 20( ') 5 'u u u 

  
Profile slope 

… … … …   … 
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CHAPTER 5 : COMPUTATION OF 2D CHEBYSHEV COEFFICIENTS 

 

Based on the fact that the 2D Chebyshev coefficients can be used to obtain low 

order modifications/deviations of a gear flank, it is important to study the calculation 

process of 2D Chebyshev coefficients. Firstly, the 2D Chebyshev coefficients are directly 

related to the measurands, namely the proposed areal gear parameters. Secondly, various 

factors could influence the results of evaluating the double integral of the 2D Chebyshev 

coefficients in a discretized dataset, as given by Equation (4.13).  

From a computational perspective, this chapter first investigates several numerical 

factors that influence the values of coefficients evaluated by numerical integration, such as: 

• grid size, 

• choice of algorithm for numerical integration, and 

• interpolation methods. 

In addition, task specific issues in areal gear metrology are investigated, for example: 

• spatial distribution of point clouds on a cylindrical gear flank, 

• post-sampling strategy on areal distance map, and 

• influence of misalignment of the nominal gear coordinate system (CSY) with 

respect to a simulated CSY.   

5.1 Evaluation of double integral on discrete dataset  

Three different algorithms for calculating 2D Chebyshev coefficient from a discrete 

set of data are used in this chapter. The investigation is focused on Equation (4.13). 
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5.1.1 2D Empirical edge method 

The upper and lower integration limits (i.e. ±1) impose a numerical singularity for 

the evaluation of the double integral in the denominator of Equation (4.13).  

An empirical edge method is proposed to replace the original integral limits by a 

pair of numbers, denoted by 'u  and 'v  for the 'u  and 'v  variables, respectively. Thus, 

Equation (4.13) evolves to: 

 
' '

' ' 2 2
2

'( ', ') ( ', ')1
' '

1 ( ') 1 ( ')

u v

u v

n
n

D u v C u v
A du dv

K u v

 

  


 
  .  (5.1) 

The value of the empirical edge is determined by the following empirical equation: 

 '

a

'

dat

1
1

5
u v

N
    ,  (5.2) 

where dataN  is the number of points within an areal distance map. 

5.1.2 2D Cosine variable method 

The singularity issue can also be eliminated by replacing the variable x and y in the 

original double integral with a pair of angular variables 
x  and 

y , which are defined as: 

 x

y

cos

sin










x

y
,  (5.3) 

such that:  
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. (5.4)  

Clearly, no empirical edge is needed for evaluating this form of double integral, 

thus Equation (4.13) is replaced by: 

 ' ' ' ' ' '

2
0 0

1
(cos ,cos ) cos cosn u v u v u vA f p q d

K
d

 

         ,  (5.5) 

in which, 

 
'

'

arccos( ')

arccos( ')

u

v

u

v



 





 (5.6) 

are the angular variables after mapping u and v to u’ and to v’, respectively. 

5.1.3 Delaunay Triangulation and numerical integration 

In calculus, a double integral can be treated as the calculation of the volume under 

a surface (i.e. integer function) over its definition region in the plane (i.e. integral area). 

The numerical calculation of Equation (5.1) and Equation (5.5) can be implemented by 

trapezoidal method for gridded data in MATLAB® [63] . However, in practice, raw point 

clouds are usually non-collinear, imposing an issue of using trapezoidal algorithms. This 

type of data is known as scattered data. Scattered measured point clouds are usually stored 

in a matrix, which has three columns (representing the coordinates for X, Y and Z axes) 
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and numerous rows (point index). The order of each element in the matrix does not 

represent the order of collection during data acquisition.  

To implement the double integral, a preprocessing of the scatted data is needed, 

which is known as triangulation in the field of computational geometry. Depending on the 

triangulation criterion, various types of triangulations can be built upon a given set of 

scattered data. Figure 5.1 illustrates a triangulation of six points (black dots, labeled by P1 

to P6). The grey dots are the projected points, whose (u’, v’) coordinates are the same as 

those of P1 to P6. This triangulation generates four pentahedrons, whose bases are formed 

by the projected points. Because the base triangles of each pentahedron are coplanar, the 

area of each triangle can be directly calculated by the coordinates of its vertices (u’, v’). 

The height of each pentahedron (marked by yellow dots) is approximated by averaging the 

values of each vertex of those points that form the triangles of the pentahedron.    

 

Figure 5.1: Illustration of a 2D triangulation of six spatial points in u’-v’ plane for the 

cacluation of the volume of hexahedron. 

The most commonly used triangulation technique is the Delaunay Triangulation, 

which maximizes the smallest interior angles between two edges of a triangle [64]. A 
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MATLAB® function “delaunayTriangluation(x,y)” can be used to create a Delaunay 

Triangulation on a 2D dataset. It is used as the default tool for the numerical integration of 

Equation (5.1) and Equation (5.5) to calculate the 2D Chebyshev coefficients of a scattered 

dataset for the first two methods described in Section 5.1.1 and Section 5.1.2. 

5.1.4 2D Discrete cosine transform method 

The third method to get the 2D Chebyshev coefficients is based on the 2D discrete 

cosine transform (2D DCT). DCT has been widely applied in the image processing field 

for image compression due to its strong “energy compaction” properties [65]. 

For an arbitrary two-dimensional matrix (e.g. M columns and N rows), the 2D 

discrete cosine transform, denoted by dct2( , )F p q   is: 
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and 
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are the two scaling factors corresponding to the indices p and q (see Equation (5.5)), 

respectively.  

Converting the continuous form of the double integral in Equation (5.5) to a 

discrete form, the 2D Chebyshev coefficients can be calculated by: 
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where m and n are the index number for M and N discretized values of 'u  and 'v , 

respectively. Equation (5.10) is the discrete form of Equation (5.7). The implementation of 

2D DCT in MATLAB can be realized by the built in function “dct2”[66].  

In order to apply the 2D DCT function, two more steps are needed, the first one is 

to interpolate a function out of the scattered data; the second one is to generate a 2D grid 

based on 2D Chebyshev points for sampling the interpolated function.  

As shown in Figure 5.2 (a), six Chebyshev points are generated in both X and Y 

axes for sampling the function of interest. Using the same scattered data in Section 3.4.3, 

the sampled points after interpolation are displayed in Figure 5.2 (b), together with the 

original scattered data.  

 

Figure 5.2: Illustration of the calculation of 2D DCT at Chebyshev points: (a), location of 

2D Chebyshev points in x and y axes; (b), interpolated surface and sampled data on 2D 

Chebyshev points. 



89 

 

Comparing the right sides of both equations, the relationship between the first six 

2D Chebyshev coefficients and the values of transformed matrix 
dct2( , )F p q  are given by: 

 

0 dct2 1 dct2

2 dct2 3 dct2

4 dct2 5 dct2

1 2
(1,1), (2,1),

2 2
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2 2
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 

 

.  (5.11) 

Obviously, a three by three interpolation grid is enough to output the first six matrix 

entities in dct2F . The number of Chebyshev points in one axis is selected to be six for 2D 

DCT calculation.  

5.2 Distributions of nominal points on flank 

Non-uniform spacing and distribution of measured points on a surface can lead to 

different results of calculated metrological characteristics [67]. Without prior information 

regarding the spatial amplitude and frequency components on a gear flank, a calculated 

parameter is prone to discrepancy under different point density and point distribution. 

According to VDI 2607 [20], three data acquisition procedures are used to collect the raw 

data on the flank before software evaluation: 

• “A certain number of measuring points are specified for the taking of measured 

data, independent of module and facewidth”; 

• “The spacing of the measured data is constant related to the roll path or axial 

way”; 

• “The data are taken with a specified frequency, i.e. the measuring point density 

is dependent on the tracing velocity”. 
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These procedures are usually selected during the planning phase of a gear 

inspection task before the measurement procedure is executed. In conventional tactile gear 

inspection, three types of measured point distribution are specified as illustrated in Figure 

5.3 (a).  

 The start and end values of the roll angle are determined by the start and end values 

of diameters as: 
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Figure 5.3 (b) illustrates the location of the start and end points on an involute. 

Figure 5.3 (c) shows the values of seven simulated start and end roll angles corresponding 

to each the three types of point distribution within the range of str  (29.77 mm) and endr  

(34.93mm). 

 

Figure 5.3: Illustration of nominal points distributions on a pure involute profile in the 

transverse plane: (a), three characteristic distance features for defining the location of a 

nominal point; (b), locations of the start and end roll angle on a pure invoute; (c), values 

of seven simulated start and end roll angles corresponding to each type of point 

distribution. 
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5.2.1 Three types of equidistant distribution of spatial points  

5.2.1.1 Equidistant distribution on roll angle (i.e. length of roll) 

This type of equidistant distribution of points is specified on the length of roll on a 

nominal involute, which can be derived by dividing the length of roll (denoted by AEL ) 

into a given number of sampling intervals. The value of the length of roll is determined by 

the start and end of roll angle, as:  

 AE b end st( )L r    .  (5.13) 

Thus, the value of each roll angle (denoted by AE )  at the corresponding evenly 

spaced length of roll is: 
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where j  is the index number of each roll angle and n  is the total number of roll angles 

in the discrete data set.  

Figure 5.4 (a) illustrates the locations of a set of nominal points generated in a 

nominal profile.  The u and v values for generating the spatial coordinates of those points 

are shown in Figure 5.4 (b), where each intersection point of the horizontal and vertical 

lines represent a pair of (u, v). The locations of those simulated points in the 3D Cartesian 

coordinates are illustrated in Figure 5.4 (c).  
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Figure 5.4： Illustration of equidistant distribution of nominal points on roll angle (i.e. 

length of roll): (a) on transverse plane, (b) values of (u, v), (c) locations in 3D Cartesian 

coordinate system. 

5.2.1.2 Equidistant on involute arc length 

This type of nominal point distribution is the equidistant distribution of the points 

on the involute arc length. Based on the parametric representation of an involute curve in 

Equation (2.1), the arc length of an involute (denoted by 
invL ) can be calculated by the 

definite integral using the start and the end values as the upper and lower integration limits: 
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Thus, the value of each roll angle (denoted by inv ) for equidistant involute arc 

length at the corresponding evenly spaced involute arc length is: 
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where j  is the index of each roll angle and n is the total number of discretized roll angles. 

 Figure 5.5 (a) illustrates the locations of individual points on a nominal involute 

for equidistant distribution of involute arc length. The u and v values for generating the 
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spatial coordinates of those points are shown in  Figure 5.5 (b), where each intersection 

point of the horizontal and vertical lines represent a pair of (u, v). The locations of those 

simulated points in the 3D Cartesian coordinates are illustrated in  Figure 5.5 (c).  

 

Figure 5.5: Illustration of equidistant distribution of nominal on involute arc length: (a), 

points on transverse plane; (b), values of (u, v) for each nominal point; (c), locations in 

3D Cartesian coordinate system. 

5.2.1.3 Equidistant distribution in radial direction 

The third type of nominal points distribution of nominal points are specified with 

respect to the radial distance of the points on the nominal involute. The origin of the base 

circle coincides with that of the coordinate system for determining the values of the indexed 

roll angle. Therefore, the radial distance from the origin of the base circle to a point on the 

nominal involute (denoted by radL ) is: 

 2 2

nom

2

ra nomd nom b 1L yx r   .  (5.17) 

Thus, the value of each roll angle (denoted by rad )  for equal radial distance 

distribution is: 
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where, j  is the index of each roll angle, n  is the total number of discretized roll angle, 

2

st b st1r r    and 2

end b end1r r   are the values of the start and the end radius 

respectively. Figure 5.6 (a) illustrates the locations of individual nominal points on the 

involute based on the equidistant distribution of radial distance. The u and v values for 

generating the spatial coordinates of those points are shown in Figure 5.6 (b), where each 

intersection points of the horizontal and vertical lines stand for a pair of (u, v). The locations 

of those simulated points in the 3D Cartesian coordinates are illustrated in  Figure 5.6  (c).  

 

Figure 5.6: Illustration of equidistant distribution of nominal points on radial distance: 

(a), points on transverse plane; (b), values of (u, v) for each nominal point; (c), location of 

simulated nominal points in 3D Cartesian coordinate system. 

5.2.2 Comparisons of numerical algorithms 

The three algorithms discussed in Section 5.1 are used to compare the influence of 

point distribution type and point density of a flank to the computational time of the 2D 

Chebyshev method. Numerical simulations were implemented through MATALB® 2016b 

on a Dell Precision T5810XL desktop computer, equipped with Intel® Xeon® CPU E5-

1620 v3 @ 3.50 GHz and RAM 16.0 GB. 
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The number of points per flank is specified as an exponential of 2 for a square 

matrix with equal row and column length for the profile and helix directions, respectively. 

For example, the number of points of 210 per flank means that a square matrix (25 rows and 

25 columns) is used for simulating the coordinates of points on a flank. The computational 

time is calculated by the MATLAB functions “tic” and “toc”.  

The concept of using an iteration loop to resolve non-orthogonality related issues 

will be discussed in Section 5.3.1, together with the choice of convergence criteria. It is 

assumed that the following discussion about the number of iterations in this section is based 

on the same convergence criteria used to study the influence of point distributions, the 

number of points per flank and the calculation algorithms etc. 

Figure 5.7 (a) shows the computation time of three different point distributions as 

a function of points per flank by the empirical edge method. The more points per flank, the 

more computation time is needed. It is noticeable that the starting number per flank for 

equidistant roll involute arc length and radial distance are 212 and 214 respectively. This is 

because insufficient points per flank leads to a loss of orthogonality issue, which may cause 

the iteration fail to converge. 

Figure 5.7 (b) shows the corresponding number of iterations as a function of points 

per flank. As the number of points per flank increases, the number of iterations decreases 

for all three types of point distributions. The number of iterations are the same when the 

points per flank is at 218. This trend is due to the improvement of numerical orthogonality 

as the number of points per flank is increased. A similar performance of using the 2D 

Cosine variable method is shown in Figure 5.8.  



96 

 

 

Figure 5.7: Computational performance on simulated three types of points distributions: 

(a), computing time (by the empirical edge method) as a function of points per flank; (b), 

number of iterations as a function of points per flank. 

 

Figure 5.8: Computational performance on simulated three types of points distributions: 

(a), computational time (by the 2D Cosine variable method) as a function of points per 

flank; (b), number of iterations as a function of points per flank. 

As shown in Figure 5.9, the 2D DCT method provides a significant computational 

performance improvement, compared to the other two methods. Firstly, for all three types 

of point distributions, this method offers convergent results when the number of point per 

flank is changing from 210 to 218 as shown in Figure 5.9 (a). Secondly, the computation time 

is about 4 times shorter compared to the other two methods. Lastly, the number of iterations 

needed for all three types of point distributions are all less than 10 as shown in Figure 5.9 

(b). 
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Figure 5.9: Computational performance on simulated three types of points distributions: 

(a), computational time (by the 2D DCT method) as a function of points per flank; (b), 

number of iterations as a function of points per flank. 

5.2.3 Random distributed points on flank 

Moreover, a point cloud with randomly distributed u-v values is used to test the 

capability and limitations of each calculation method. A simulated gear with flank 

modifications is shown in Figure 5.10 (a). The simulated points are randomly located on 

the flank and the amount of modification with respect to the pure involute surface is color-

coded. The right flanks of all teeth are shown in Figure 5.10 (b).  

 

Figure 5.10: Randomly distributed points (210 points per flank) with simulated 

modifications: (a), points on a flank; (b), points on a complete gear view (only right 

flanks are shown). 
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Figure 5.11 shows the relationship between the number of points per flank and the 

number of iterations needed for convergence, when the points are randomly distributed on 

each flank. A comparison of the corresponding time cost of each computation method is 

shown in Figure 5.12. In Figure 5.12 (b), it is possible to achieve the convergence in nearly 

half a minute when the number of points per flank is set to 28, 210 and 212, respectively.   

The selected criterion for terminating the iteration loop is based on the relative error, 

calculated as the ratio between the improved value of each areal gear parameters in the 

current iteration with respect to the approximated value them from last iteration. No noise 

was added to the simulated areal distance map and the relative error was set to 0.1%. 

 

Figure 5.11: Relationship between number of iterations for convergence of the three 

algorithms as a function of the number of points per flank (random spatial points 

distribution). 
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Figure 5.12: Computational performance on simulated randomly distributed points on 

flank: (a), computing time (by the three algorithms) as a function of the number of points; 

(b), a zoomed in view of (a).  

For randomly distributed points, the 2D Empirical edge method and 2D Cosine 

variable method can also reach to a convergence. This result is neither achieved for the 

distribution of equidistant involute arc length nor the distribution of equidistant radial 

distance.  

5.3 Non-orthogonality and post-sampling related issues 

5.3.1 Loss of orthogonality on pixelated data  

When a set of orthogonal functions are used to approximate an unknown measured 

dataset, the loss of orthogonality is a typical issue due to the discrete nature of the pixelated 

data. In the 1D case, discrete orthogonality can be obtained only if the sampling and 

evaluation points are located exactly at the Chebyshev points on the interval of [-1,1] [57]. 

This condition is rarely satisfied in metrology practice, since raw data are either uniformly 

sampled or randomly sampled in an area for evaluation. One typical solution to the non-
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orthogonality issue is to increase the number of pixels. For example, in optical 

interferometry, using an imaging detector with a higher number of pixels can mitigate the 

numerical issues caused by the non-orthogonality, when Zernike polynomials are applied 

[68]. The same strategy is used here to improve the relative error, when the 2D Chebyshev 

coefficients are to be evaluated on a pixelated dataset, namely an areal distance map.  

However, an increased number of points per flank leads to a longer computation 

time. Therefore, it is a tradeoff to select a reasonable number of points, given an acceptable 

value of numerical accuracy from a computational perspective. Table 5.1 shows the values 

of the simulated and approximated six 2D Chebyshev coefficients from areal distance maps 

of different sizes. The point distribution is random and no noise was added in this 

simulation. The algorithm used in the following comparison is the 2D DCT algorithm. 

Table 5.1: The nominal and calculated values of the first five 2D Chebyshev coefficients 

from a simulated flank with different grid size (unit: μm).   

Coefficient Nominal value 
Grid size 

32 by 32 64 by 64 128 by 128  256 by 256 

1A
  2.5 2.4812 2.4988 2.4997 2.4997 

2A
  5 5.0194 5.0086 5.0002 5.0001 

3A
  -7.5 -7.5325 -7.4987 -7.5001 -7.4999 

4A
  -6.25 -6.2249 -6.2419 -6.2494 -6.2501 

5A
  -10 -9.9562 -10.0000 -9.9990 -10.000 

 



101 

 

The relative errors for each calculated 2D Chebyshev coefficients in Table 5.1 are 

plotted in Figure 5.13. When the pixel size is increased to 128 by 128, all the relative errors 

are below ± 0.01%. 

 

Figure 5.13: The relative errors of the calculated 2D Chebyshev coefficients with respect 

to the nominal values in Table 5.1. 

Another way to reduce the relative error caused by non-orthogonality is to use a 

looped algorithm that iteratively extracts the low order components from an areal distance 

map.  

As illustrated in the flow chart in Figure 5.14, this algorithm starts with basic gear 

geometric parameters to form the plumb line distance equation and a predetermined 

convergent criteria (usually a relative error or a maximum number of iterations). Then, the 

raw point clouds are fed into the plumb line distance and generate an areal distance map in 

the u-v domain. Afterwards, the 2D Chebyshev method is used to obtain areal flank 

parameters and reconstruct the areal map based on the calculated 2D Chebyshev 

coefficients. Lastly, a residual map is obtained by point wise comparison between the 
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reconstructed areal map to the original areal map. If a convergence criterion is not met, 

then the residual map will be fed back as the original areal map for the next iteration.  

 

Figure 5.14: Flow chart for iterative improvement of areal parameters for single flank. 

Two types of criteria are used to terminate the iteration loop. The first one is the 

relative error of the improved value of the areal parameters to the previous value. Usually 

1% is sufficient. The other type is the total number of iterations. Usually 10 iterations are 

sufficient.  
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5.3.2 Sub-flank areal evaluation 

A complete flank is bounded by the evaluation range in both profile and helix 

direction during areal evaluation. As shown in Figure 5.15, a portion of a complete flank 

with different size and located arbitrarily on the flank is referred to as a sub-flank. An 

analogous concept is called “sub-aperture” used in optical surface metrology [69]. A sub-

flank can be of arbitrary shape as shown in Figure 5.15 (a); in this dissertation, only sub 

flanks of rectangular shapes whose two sides are aligned in the profile and helix evaluation 

range respectively are used as shown in Figure 5.15 (b).  

 

Figure 5.15: Illustration of sub-flank sampling: (a), schematic of a sub-flank of arbitrary 

shape on the full flank; (b), schematic of a rectangular sub-flank of the full flank.  

The study of sub-flank evaluation has two major impacts for future areal gear 

metrology. If an instrument has difficulty accessing a full flank, or it is too time-consuming 

to be captured, then it is necessary to investigate the feasibility of the 2D Chebyshev 

method for extracting full flank information from a sub-flank. In particular, as far as the 
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low order form information is concerned, it is important to know how well the areal 

parameters for a full gear flank can be retained on its sub-flanks. Lastly, it is essential to 

determine the critical characteristics of a sub-flank for obtaining reliable sub-flank 

evaluation results. Those characteristics could be the shape of the sub-flank, the location 

of the sub-flank as described on the u-v plane; the relative size of the sub-flank with respect 

to the full flank and the number of points within the sub-flank compared to the full flank 

etc.  

As shown in Figure 5.16 (a), six sub-flanks are specified in the u-v plane and 

assigned a zone number. Figure 5.16 (b) shows the spatial location of each sub-flank in the 

Cartesian coordinate system. The basic information of the full-flank is summarized in  

Figure 5.16 (c), including the evaluation range in the profile and helix directions, the full-

flank area, the number of points in the full flank and the type of point distributions in the 

full flank. 

 

Figure 5.16: Design of sub-flank for simulation: (a), full flank and the locations of six 

sub-flank zones on a gear flank in u-v domain; (b), locations of sub flank zones on the 

right flank of a gear in Cartesian coordinate system; (c), evaluation and modification 

parameters.  
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Table 5.2 shows the values of start and end locations denoted by su , eu , sv  and ev  

for each sub-flank, area percentage, number of points in sub-flank and the number of point 

percentage for the corresponding sub-flank. 

Table 5.2: Information of rectangular sub-flank zones. 

Zone 

# 

su
 

[mm] 

eu
 

[mm] 

sv
 

[mm] 

ev
 

[mm] 

Area 

percentage 

Points in 

zone 

Number of points 

percentage 

1 0 5.84 19.6 28 12% 4129 7% 

2 8.76 14.6 16.8 28 16% 13492 22% 

3 0 14.6 9.8 14 15% 8898 15% 

4 0 5.84 0 14 20% 6927 12% 

5 10.22 14.6 0 8.4 9% 8014 13% 

6 5.11 8.03 0 28 20% 11256 19% 

 

The following results listed from Table 5.3 to Table 5.5 were obtained on the three 

algorithms by five iterations respectively. The relative error between the nominal areal 

parameters and the calculated sub-flank parameters by three different algorithms are 

summarized from Figure 5.17 to Figure 5.19.  

It is noticeable that the areal profile slope parameter is much more sensitive in sub-

flank evaluation compared to other areal parameters regardless which evaluation algorithm 

was applied. Moreover, in sub-flank zone #4, the areal profile slope parameter from the 

first two algorithms show significant deviation compared to that from the 2D DCT method. 
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Table 5.3: Areal gear parameters calculated from sub-flank data on a simulated gear flank 

using empirical edge method (5 iterations, unit: μm). 

Zone # 
A

HαC
  

A

HβC
  

A

αC
  

A

αβS
  

A

βC
  

Full flank 5 10 15 25 20 

1 5.62 9.58 14.84 25.13 19.86 

2 5.19 9.81 14.93 25.6 19.91 

3 5.19 10.00 14.99 24.98 19.98 

4 3.48 9.63 15.53 25.36 20.12 

5 5.22 9.96 15.02 25.03 20.01 

6 5.01 9.99 15.25 25.06 20.00 

 

Table 5.4: Areal gear parameters calculated from sub-flank data on a simulated gear flank 

using change of cosine variable method (5 iterations, unit: μm). 

Zone # 
A

HαC
  

A

HβC
  

A

αC
  

A

αβS
  

A

βC
  

Full flank 5 10 15 25 20 

1 5.77 9.37 14.79 25.24 19.79 

2 5.23 9.85 14.94 25.05 19.93 

3 5.19 10.03 14.99 24.97 19.93 

4 3.69 9.67 15.48 25.20 20.13 

5 5.23 9.95 15.02 25.02 20.02 

6 4.97 9.99 15.31 25.06 20.00 

 

Table 5.5: Areal gear parameters calculated from sub-flank data on simulated gear using 

2D DCT method (5 iterations, unit: μm). 

Zone # A

HαC
  

A

HβC
  

A

αC
  

A

αβS
  

A

βC
  

Full flank 5 10 15 25 20 

1 5.24 9.99 15.00 25.00 20.00 

2 5.36 9.98 15.00 25.00 20.00 
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3 5.19 9.99 15.00 25.00 20.00 

4 5.00 10.00 15.00 25.00 20.00 

5 5.18 9.99 15.00 25.00 20.00 

6 5.14 9.99 15.00 25.00 20.00 

 

 

Figure 5.17: Relative errors of obtained sub-flank areal parameters with respect to full 

flank areal parameters (2D Emprical edge method).  

 

Figure 5.18: Relative errors of obtained sub-flank areal parameters with respect to full 

flank areal parameters (2D Cosine variable method). 
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Figure 5.19: Relative errors of obtained sub-flank areal parameters with respect to full 

flank areal parameters (2D DCT method). 

The computation time is the time spent on five iterations to obtain the areal 

parameters of the simulated complete gear (right flanks). For each sub-flank zone, the 

computation time is linearly proportional to the corresponding number of points percentage 

as shown in Figure 5.20 (a) and Figure 5.20 (b). 

 

Figure 5.20: Computation time for each sub-flank: (a), computation time for each sub-

flank zone by three algorithms; (b), number of points percentage for each sub-flank zones 

with respect to the full flank. 

5.4 Influence of misalignment  

In coordinate metrology, alignment has two meanings in different technical 

contexts. For example, alignment could refer to the procedure of setting up a workpiece 
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coordinate system according to the engineering drawing of a workpiece. The completion 

of this process establishes a workpiece coordinate system (CSY) for the measuring 

instrument to generate, measure and evaluate geometric features on the workpiece in a 

digital environment autonomously [67]. In addition, after a feature is measured, it is 

imperative to know the comparison between the nominal and the measured according to 

defined deviations (e.g. the defined distance functions in Section 2.3), which is frequently 

referred to as matching, registration, or correspondence in different disciplines [70]. This 

procedure usually involves iterative calculation, using the six degree of freedom as iteration 

parameters to obtain an optimized objective function, which leads to a numerically aligned 

measured feature and an evaluated deviation simultaneously [49]. The latter alignment is 

therefore purely mathematical and no mechanical operation is involved. 

When measuring a gear, the workpiece CSY (e.g. Figure 5.21) can be built on 

datum features on the gear body such as the center bore and the datum face. In practice, 

numerous factors can lead to a misaligned workpiece CSY based on the measured datum 

features with respect to the nominal one. For example, the form deviation of the center bore 

might lead to an eccentricity error between the origin of the measured CSY to its nominal; 

the tip or tilt motion of the rotary table, on which the gear sample is clamped, might result 

in an orientation error of one of the measured CSY’s axis etc.  

In this section, a variety of kinematic motions are simulated to investigate the 

change of areal gear parameters under their influence. The abstraction of kinematic motions 

(three linear translations and three angular rotations) is denoted by T  in Figure 5.21, which 
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has six components of X , Y , Z , X , Y  and Z  representing the linear translation 

and angular rotations in and with respect to the X, Y and Z axes, respectively. 

 

Figure 5.21: Schematic of global coordinate system and workpiece coordinate systems. 

T can be represented by a four by four matrix, known as a homogeneous 

transformation matrix (HTM). Equation (5.19) is the HTM representations for rotational 

matrices with respect to the X, Y and Z axis (denoted by 
X

T  , 
Y

T  and 
Z

T ) respectively.  
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Equation (5.20) is the HTM representations of the three translational matrices in 

the X, Y and Z axes (denoted by 
X

T  , 
Y

T  and 
Z

T ) respectively: 
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A simulation process is proposed to investigate the influence of a misalignment 

between the nominal workpiece coordinate system to the areal gear parameters. A 

simulated misalignment is mathematically represented by a HTM including either 

translational errors or rotational errors. The steps of this simulation are: 

• Step 1 : generate nominal point clouds of the flanks of a complete gear (left and 

right flanks) without deviations and modifications and store the spatial 

coordinates of the nominal points into matrices of multiple rows and three 

columns;  

• Step 2: simulate translational or rotational errors and form them into a HTM, 

representing the effect as if an alignment error between the nominal workpiece 

coordinate system to the established workpiece cooridnate system in 

measurement process; 

• Step 3: apply matrix multiplication on the nominal spatial coordinates by the 

HTM and store the new spatial coordinates after multiplication; 

• Step 4: apply the 2D Chebyshev method on the new spatial coordinates (i.e. 

transformed point clouds) to obtain the areal gear parameters under the 

influence of a specific simulated kinematic error. 

The purpose of this study is aimed at investigating the pattern of different areal 

parameters of each flank on all teeth, under the influences of various kinematic errors. 
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Therefore, it would offer insights regarding how to apply the information exhibited in the 

pattern to identify the influence of misalignment to areal parameters.  

5.4.1 Areal parameters influenced by translational errors 

Figure 5.22 shows the location of the new coordinate system after two translational 

errors in the X axis direction. It is worthwhile to point out that if the shift of the origin of 

the new CSY with respect to the original one is in the negative direction, then the HTM 

which maps the old spatial coordinates of nominal points in the original CSY should have 

an opposite positive sign for the corresponding translational components.  

The following observations and discussion are made regarding the simulated 

configuration of the CSY and the tooth counting direction. For the areal cumulative pitch 

deviation, it is a convention to set the cumulative pitch deviation of the first tooth (both left 

and right flanks) to zero and plot the rest of teeth with respect to the first tooth. For gear 

flank deviations other than pitch deviations, the conventional gear inspection method only 

measures four teeth (also marked by #1, #6, #11 and #16) on a gear sample with line 

oriented deviations. Thus, the following simulation can provide extra information such as 

a systematic global pattern (including amplitudes, peak to valley and phase change) as a 

function of teeth number, when the areal parameter from all teeth are available.  

5.4.1.1 Translational error in X direction 

Figure 5.23 and Figure 5.24 show the change of six areal gear parameters under the 

influences of the translational errors simulated in Figure 5.22 (a) and Figure 5.22 (b) 

respectively. Obviously, the areal cumulative pitch has the biggest peak to valley difference 

in response to the simulated translational errors. The peak and valley are found at teeth #6 
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and #16 because the cumulative pitch on those two flanks (regardless of left or right) are 

most sensitive to the translational error in the X axis.  

Moreover, a 180-degree phase change between the left and right flanks can be 

observed on the areal cumulative pitch and areal helix slope parameters ( A

HβC ). This is 

because the surface normal vector is pointing out of the material and the plumb line 

distance is a vectorial quantity, pointing from a measured point to its counterpart on the 

nominal gear flank. A shift will affect a pair of left and right flank in the opposite direction 

in terms of the sign of the plumb line distance. The same pattern shown in Figure 5.24 is 

observable, when the translational error in the X axis is in the opposite direction.  

 

Figure 5.22: Simulated translational errors of the origin of the new CSY, relative to the 

nominal origin of the gear sample in the X directions:  (a), -5 μm; (b),+5 μm. 
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Figure 5.23: Change of areal gear parameters under a HTM of simulated translational 

error by +5 μm in the X axis, according to Figure 5.22 (a). 
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Figure 5.24: Change of areal gear parameters under a HTM of simulated translational 

error by -5 μm in the X axis, according to Figure 5.22 (b). 

5.4.1.2 Translational error in Y direction 

When the translational error is induced in the Y direction as given in Figure 5.25,  

the areal cumulative pitch deviation has a different pattern for both right and left flanks. 

Starting from the first tooth, the areal cumulative pitch curve is a sine wave, whose mean 

value of the cumulative pitch remains either positive or negative for right flanks and left 

flanks, respectively, as shown in Figure 5.26. The same pattern shown in Figure 5.27 is 

observable, when the translational error in the Y axis is in the opposite direction. 
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Figure 5.25: Simulated translational error of the origin of the CSY, relative to the 

nominal origin of the gear in the Y directions: (a), +5 μm; (b), -5 μm.  

 

Figure 5.26: Change of areal gear parameters under a HTM of simulated translational 

error by -5 μm in the Y axis, according to Figure 5.25 (a). 
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Figure 5.27: Change of areal gear parameters under a HTM of simulated translational 

error by +5 μm in the Y axis, according to Figure 5.25 (b). 

5.4.1.3 Translational error in both X and Y directions 

The last scenario is a combined translational error in both X and Y directions as 

shown in Figure 5.28. Two specific cases are simulated, namely the equal translational 

errors (same magnitude and same signs) for the two perpendicular axes. The areal 

parameter pattern plotted in Figure 5.29 and Figure 5.30 collectively indicate that tooth #8 

is the most sensitive one under this translational error.  
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Figure 5.28: Simulated translational error of the origin of the new CSY, relative to the 

nominal origin of the gear in both the X direction and the Y direction: (a), -5 μm; (b), +5 

μm.  

 

Figure 5.29: Change of areal gear parameters under a HTM of simulated translational 

error by +5 μm in both the X axis and the Y axis according to Figure 5.28 (a). 
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Figure 5.30: Change of areal gear parameters under a HTM of simulated translational 

error by -5 μm in both the X axis and the Y axis according to Figure 5.28 (b). 

Despite its exploratory nature of the three cases above, this study offers several 

insights into the influence of translational error to the areal gear parameters: 

Firstly, the response of the zero order and first order areal parameters (e.g. areal 

pitch, areal slope) is more significant than the second order areal parameters (e.g. crowning 

and twists). Thus, the zero order and the first order parameters should be more suitable as 

indicators for identifying which translational error is present. Secondly, on individual 

flanks, different areal parameters exhibit different magnitudes and signs under the same 

translational error. Thus, on all teeth, they collectively show a distinguishable pattern 

caused by different translational errors.  
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5.4.2 Areal parameters influenced by rotational errors 

Besides the three translational error motions between the nominal coordinate 

system and the simulated measured coordinate system, there are three rotational error 

motions, usually referred to as, pitch, roll and yaw in CMM technology. To maintain a 

consistent description of the coordinate system in this section (i.e. as shown in Figure 5.21), 

the rotation angle is referred to as “with respect to the X axis”, “with respect to the Y axis” 

and “with respect to the Z axis” instead of pitch, roll and yaw.   

5.4.2.1 Rotation of new CSY with respect to the X axis of the nominal CSY by 0.01 degree 

The rotational error between CSYs with respect to the X axis is denoted by X . 

Therefore, the corresponding value of 
X

 in a HTM should have the opposite sign. The 

calculated areal parameters are shown in Figure 5.31 under the influence of this HTM. 

Compared to the change of areal cumulative pitch deviations, the areal helix slope 

parameters, areal profile parameters and the areal flank twist parameters are more 

significant under the same rotational error.  
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Figure 5.31: Change of areal gear parameters under a HTM of simulated rotational error 

by -0.01 degree with respect to the X axis. 

5.4.2.2 Rotation of new CSY with respect to the Y axis of the nominal CSY by 0.01 degree 

The rotational error between two CSYs with respect to the Y axis is denoted by 
Y

. 

Therefore the corresponding value of Y  in a HTM should have the opposite sign. The 

calculated areal parameters are shown in Figure 5.32 under the influence of this HTM. 

Compared to the change of areal cumulative pitch deviations, the areal helix slope 

parameters, areal profile parameters and the areal flank twist parameters are more 

significant under the same rotational error. 
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Figure 5.32: Change of areal gear parameters under a HTM of simulated rotational error 

by -0.01 degree with respect to the Y axis. 

The rotational error with respect to the Z axis is not simulated for two reasons: 

firstly, a complete gear geometry rotation is symmetrical with respect to the gearing axis 

(usually selected as the Z axis); secondly, when specify the angular location of each tooth 

and flank, the angular deviation can be treated to the pitch deviations as discussed earlier 

in this chapter. 

No deterministic modeling and compensation method has been investigated in this 

section. In fact, the dynamic nature of kinematic errors during a measurement process 

might be too complex to model by first principles, namely a HTM with multiple time-

dependent kinematic errors. When prior information about the kinematic errors of an 
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instrument is available, this study can provide opportunities to characterize the contribution 

to measurement uncertainty of areal gear parameters from instrument kinematic error. If 

no prior information is available, this study can be utilized as a tool to measure a calibrated 

artifact and retrieve the influence of the kinematic errors of an instrument. 
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CHAPTER 6 : VALIDATION ON GEAR MODIFICATION ARTIFACT 

 

In this chapter, conventional line oriented and areal measurements are carried out 

to verify the effectiveness of characterizing gear modification by the developed 2D 

Chebyshev method. Areal parameters evaluated from measured point clouds are compared 

to the conventional line oriented parameters.   

6.1 Conventional measurement of a calibrated modification artifact 

A calibrated modification artifact (referred to as “M”) manufactured by FRENCO 

is shown in Figure 6.1 (a). This artifact is an “Identity Condition” artifact, since it is 

designed and manufactured to have the closest geometry similarity to a helical gear [71]. 

The basic geometry information of “M” is listed in Figure 6.1 (b). A variety of flank 

modifications on 28 left flanks and pitch modifications on 3 right flanks are intentionally 

introduced to this part.  

Four modified left flanks on the tooth (referred to as “L#10”, “L#19”, “L#20” and 

“L#30”) with profile slope, profile crowning, helix slope and helix crowning, respectively, 

are used in this chapter to verify the effectiveness of the 2D Chebyshev method. The 

locations of different amplitude and signs of modifications are shown in Figure 6.2. 
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Figure 6.1: Calibrated gear modification artifact: (a), measurement setup of the artifact 

“M” on Leitz PMMF; (b), basic geometry information of the artifact “M” [71]. 

 

Figure 6.2: Specifications of slope and crowning modifications on artifact “M” (selected 

tooth and amount of modifications in yellow box) [71]. 
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The artifact was measured on a gear measuring instrument, which has been 

calibrated by national masters (involute, helix, pitch and tooth, provided by the PTB) to 

maintain the traceability of the measurement results claimed in the certificates of “M”.  

According to the calibration certificate, the intended, measured value and the 

extended measurement of four flank modifications are summarized in Table 6.1. All 

measurements were carried out in an environment of temperature of 20 ˚C ± 1 ˚C and a 

humidity of 50% ± 10%.   

Table 6.1: Certificated line oriented evaluation results of four modifications on “M” [71] 

(unit: μm). 

Feature  Intended 

value 

Measured 

value 

Feature form 

deviation  

Extended 

uncertainty 

Profile slope (flank: L#10)  10 10.2 0.9 ± 3.0 

Helix slope (flank: L#19) -20 -17.6 0.8 ± 3.0 

Profile crowning (flank: L#20) 5 5.7 1.7 ± 3.0 

Helix crowning (flank: L#30) 10 9.5 1.7 ± 3.0 

 

6.1.1 Alignment and measurement process on Leitz PMMF302016 

The same selected teeth were measured by the CMM without using a rotary table. 

Two types of measurements including standard measurements (on profile line, one helix 

line on each flank) and multiple lines (in profile and helix directions) were selected to 

compare the results by conventional line oriented evaluation with the areal evaluation. A 

star probe configuration was selected, to ensure the accessibility for the measurement of 

this artifact on the CMM. The typical probe qualification results are shown in Table 6.2. 
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Table 6.2: Typical qualification results (stylus sphericity deviation) of  an eight-star 

probe with eight 1.5 mm diameter styli (unit: μm). 

Name of stylus StarPrb(21) StarPrb(22) StarPrb(23) StarPrb(24) 

Result 0.8 0.7 0.7 0.7 

Name of stylus StarPrb(25) StarPrb(26) StarPrb(27) StarPrb(28) 

Result 0.6 0.9 0.6 0.5 

  

The process of mechanical alignment for a workpiece coordinate system is shown 

in Figure 6.3 and Figure 6.4.  The reference plane was manually probed by four styli with 

29 probed points (indicated by the red dots in Quindos 7 graphical interface) in total. These 

probed points were calculated and evaluated as a plane for z = 0. The datum circle “C” and 

circle “D” were measured and the two calculated center coordinates were used to build the 

center axis. The origin of the workpiece coordinate system is obtained by intersecting the 

center axis to the reference plane. 

 

Figure 6.3: Measurement of datum features on the gear artifact using 8-star-probe: (a), 

measurement of datum reference plane; (b), locations of the probed points. 



128 

 

 

Figure 6.4: Measurement setup for mechanical alignment of artifact “M”: (a), probing 

datum circle C and D on artifact “M”; (b), locations of the probed points. 

The “GEAR” measurement function embedded in Quindos 7 with the CMM is 

developed by Hexagon Manufacturing Intelligence and certificated by PTB for gear 

evaluation. In the following sections, oriented evaluation results from the CMM is cited 

without any statement regarding the measurement uncertainty of conventional measurands. 

6.1.2 Conventional evaluation on Leitz PMMF302016 

Three standard measurements were repeated on artifact “M” by the CMM. The 

average values listed on the third column of Table 6.3 are calculated based on these three 

measurement results for each feature. At each repetition, the alignment routine was 

automatically carried out for building a new workpiece CSY, before the measurement of 
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gear deviations. The measured values are used as a baseline reference for comparing the 

areal evaluation of areal measurement data in the next section. 

Table 6.3. Standard measurements of modification on artifact “M” measured by the 

CMM (3 repetitions).  

Modification feature Location of measurement Average [μm] 

Profile slope (L#10) z = 35 mm 9.9 

Helix slope (L#19) dM = 114.9312 mm -17.7 

Profile crowning (L#20) z = 35 mm 5.5 

Helix crowning (L#30) dM = 114.9312 mm 9.8 

 

6.2 Areal measurement of artifact “M” using Leitz PMMF302016  

The certificate provides only one profile and one helix line measured on each flank, 

therefore no calibrated areal evaluation information is available to support the quality of 

the entire flank. For this reason, a measurement strategy for capturing areal data of the 

modified flanks are used. It includes both conventional measurement of multiple profile 

and helix lines and conventional evaluation of multiple line oriented features.  

As shown in Figure 6.5, 99 profile lines (denoted by P1, P2, P3 and P99) and 23 

helix lines (denoted by L1, L2 and L23) were measured on both flanks of all teeth. The 

scanning speed for each line feature (helix and profile) was set to 2 mm/sec. The time spent 

on measuring 99 profile lines for both left and right flanks on all teeth is 17.9 hours. The 

time spent on measuring 23 helix lines for both left and right flanks on all teeth is 13.8 

hours.  
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Figure 6.5: Illustration of the workpiece CSY of artifact “M” and the locations of 

multiple lines on flanks. 

For areal evaluation of helix modification, 23 helix lines were measured on the left 

flanks of tooth #19 and tooth #30. The measured helix lines are distributed with equidistant 

diameter increments from 109 mm to 121 mm. The average value of each helix feature by 

conventional evaluation of three repeated measurements are shown in the third column of 

Table 6.4. The standard deviation calculated from the 23 evaluation results shows the 

uniformness of a manufactured helix modification across the whole flank.  
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Table 6.4: Summary of the conventional evaluation of 23 helix lines by Quindos 7 (3 

repetitions). 

Modification and 

location 

Average of 23 measured 

helix features [μm] 

Standard deviation from 23 

measured helix features [μm] 

Helix slope  

(L#19)  

repetition 1 -17.87 repetition 1 0.29 

repetition 2 -17.86 repetition 2 0.30 

repetition 3 -17.88 repetition 3 0.27 

Helix crowning 

(L#30) 

repetition 1 9.80 repetition 1 0.21 

repetition 2 9.81 repetition 2 0.20 

repetition 3 9.82 repetition 3 0.21 

 

For areal evaluation of profile modification, 99 profile lines were measured 

covering the entire helix evaluation range, as shown in Figure 6.5. The measured 99 profile 

lines are distributed equidistantly from z = -5 mm to z = -65 mm.  The average value of 

each profile feature by conventional evaluation of three repeated measurements are shown 

in the third column of Table 6.5. The standard deviation calculated from the 99 evaluation 

results show how uniform the manufactured profile modification is over the whole flank.  

Table 6.5: Summary of the conventional evaluation of 99 profile lines by Quindos 7 (3 

repetitions). 

Modification and 

location 

Average of the 99 evaluated 

profile features [μm] 

Standard deviation of the 99 

evaluated profile features [μm] 

Profile slope  

(L#10) 

repetition 1 10.4 repetition 1 0.21 

repetition 2 10.3 repetition 2 0.22 

repetition 3 9.9 repetition 3 0.21 

Profile crowning  

(L #20) 

repetition 1 5.5 repetition 1 0.14 

repetition 2 5.5 repetition 2 0.13 

repetition 3 5.9 repetition 3 0.14 
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6.2.1 Areal evaluation of flank modifications by 2D Chebyshev method 

As shown in Figure 6.6, the scanned spatial points of 99 profile lines are used for 

areal evaluation.  

It is worthwhile mentioning that, the coordinates of each measured point used in 

this areal evaluation are the center coordinates of the sphere on each stylus. No radius 

correction was applied to the coordinates of those points. The widely used radius correction 

method for a CMM measured point is carried out in the measured surface normal vector of 

that point. Since the surface normal vector is the deflection vector of the tactile probe head 

during probing or scanning, the radius correction is prone to the uncertainty of the 

numerical values of those vectors. In addition, no digital filtration was applied to those 

measured coordinates. Therefore, the calculated form deviation can reflect the quality of 

the raw data quality, collected by the CMM instrument. 

 

Figure 6.6: Raw data on artifact “M”: (a), point cloud of 36 measured left flanks; (b), 

point cloud of 36 measured right flanks. 

The following figures from Figure 6.7 to Figure 6.10 show the 99 profile 

measurements and areal evaluation results of the four selected left flanks on artifact “M”.  
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Each areal map (for a flank) contains nearly 31280 raw points with all points from 

the 99 profile lines combined. A blue dot represents the calculated plumb line distance 

value from each measured point with respect to the pure involute flank. The red dots 

represent the reconstructed areal map by using the first six terms of 2D Chebyshev 

coefficients. The green dots are the difference between the areal distance map and the 

reconstructed map, which is known as the residual map.  

The 2D DCT method was used to calculate the 2D Chebyshev coefficients, and the 

number of iterations for each flank was 9 in this chapter. 

 

Figure 6.7: Approximation of areal measurement data of L#10 flank; (a), the original 

(blue), reconstructed (red), and the residual (green) areal maps; (b), the residual map 

(green) and reconstructed residual map (red). 
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Figure 6.8: Approximation of areal measurement data of L#19 flank; (a), the original 

(blue), reconstructed (red), and the residual (green) areal maps; (b), the residual map 

(green) and reconstructed residual map (red). 

 

Figure 6.9: Approximation of areal measurement data of L#20 flank; (a), the original 

(blue), reconspectued (red), and residual (green) areal maps; (b), the residual map (green) 

and reconstructed residual map (red). 
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Figure 6.10: Approximation of areal measurement data of L#30 flank; (a), the original 

(blue), reconstructed (red), and residual areal maps (green); (b), the residual map (green) 

and the reconstructed residual map (red). 

The areal evaluation results for the above four flanks are summarized in Table 6.6. 

The discrepancy between the areal evaluation using the entire areal point cloud and the 

averaged value of line oriented evaluation is within ±1.5 μm. 

Table 6.6: Comparison of the areal evaluation and the conventional evaluation of the four 

flank modifications on artifact M. 

Feature and location Areal evaluation [μm]  Conventional evaluation [μm] 

Profile slope (L#10)  A

Hα  9.6C 
  Hα  10.3C 

 

Helix slope (L#19) A

Hβ 17.3C 
  Hβ 17.9C 

 

Profile crowning (L#20) A

α 4.6C 
  α 5.7C 

 

Helix crowning (L#30) A

β 10.9C 
  β 9.8C 

 

 

The areal form deviation, denoted by A

ff , is calculated as the peak-to-valley value 

from the residual map from Figure 6.7 to Figure 6.10. In fact, this peak-to-valley value is 
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notoriously sensitive to extreme values caused by instrument noise or dust on surface, 

given the fact that 31280 points are used in evaluation. The obtained form deviations, 

namely the peak to valley distance of the residual map after a certain modification is 

removed, for the measured areal features on the flanks are all below 3 μm, which is 

reasonable for such a measurement, conducted on the Leitz PMMF302016 CMM. 

 Table 6.7 summarizes both areal and conventional evaluation results of the form 

deviations measured on the modification features. The obtained areal form deviations are 

larger than their counterparts obtained by conventional evaluation. This is a reasonable 

phenomenon since the conventional evaluation is based on just one line oriented feature on 

the entire flank. 

Table 6.7: Comparison of the areal evaluation the conventional evaluation of form 

deviation of the four flank modifications on artifact M. 

Feature and location Areal evaluation [μm]  Conventional evaluation [μm] 

Profile slope (L#10)  A

f 2.1f 
 fα 0.9f 

  

Helix slope (L#19) A

f 1.7f 
 fβ 1.2f 

  

Profile crowning (L#20) A

f 2.9f 
 fα 2.1f 

  

Helix crowning (L#30) A

f 2.1f 
 fβ 1.3f 

 

 

6.2.2 Evaluation of pitch modifications 

The 2D Chebyshev method has also been tested on pitch modifications. As shown 

Figure 6.12 (a), three pitch modifications are introduced to the right flanks of tooth #30, 

tooth #31 and tooth #32 respectively. The modified pitch on those three teeth leads to the 

graphical representation of individual single pitch deviation and individual cumulative 

pitch shown in Figure 6.12 (b) and (c).  
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Figure 6.11: Intended pitch modications of artifact “M”: (a), location of modifications on 

the right flanks of tooth #30, #31 and #32; (b), graphical representation of nominal 

individual cumulative pitch deviation; (c), graphical representation of nominal individual 

single pitch deviation [71].  

In the following discussion, the measurement diameter for evaluating pitch 

deviation is dM = 115.769 mm. This value is used for programming conventional point 

oriented pitch measurement on two tactile instruments and for calculating the areal pitch 

deviations by the 2D Chebyshev method. Besides the above graphical representation, in 

conventional pitch evaluation standards, two parameters are used to characterize the pitch 

deviations for classification of gear quality.  

The total cumulative pitch deviation is defined as the difference between the 

maximum and minimum value of piF : 

 
p pi pimax( ) min( )F F F  . (5.21) 

The total single pitch deviation is defined as the maximum absolute value of pif : 

 
p pimax( )f f . (5.22) 
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The pitch evaluation results from the measurement certificate are shown in Figure 

6.12 and the two pitch deviation parameters in Table 6.8. The claimed measurement 

uncertainty is ± 3 μm [71]. 

 

Figure 6.12: Conventional pitch deviations from certificate issued by FRENCO [71]: 

individual cumulative pitch deviation (top); individual single pitch deviation (bottom). 

Table 6.8: Pitch deviations from certificate issued by FRENCO  [71] (unit: μm). 

Parameter Intended  
Manufacturing 

tolerance  

Evaluation 

result  

Measurement 

uncertainty 

Total cumulative pitch 

deviation  
p 35F 

  ± 7.0 p 39.5F 
  ± 3.0 

Total single pitch 

deviation   
p 35f 

  ± 2.5 p 38.0f 
  ± 3.0 

 

The graphical representation of conventional pitch evaluation from the Leitz 

PMMF302016 is shown in Figure 6.13. The corresponding values of the total single pitch 

deviation and the total cumulative pitch deviation are given in the first column of Table 

6.9. 



139 

 

 

Figure 6.13: Conventional pitch deviations measured by Leitz PMMF302012: individual 

cumulative pitch deviation (top); individual single pitch deviation (bottom). 

The graphical results of areal pitch evaluation by 2D Chebyshev method are shown 

in Figure 6.14. The raw data used in the evaluation was the same scanned 99 profile lines.  

 

Figure 6.14: Areal pitch deviations calculated by the 2D Chebyshev method from areal 

measurement point clouds: areal individual cumulative pitch deviation (top); areal 

individual single pitch deviation (bottom). 
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 Table 6.9: Comparison of conventional pitch deviations and areal pitch deviations 

measured by Leitz PMMF302016 from 3 repetitions (unit: μm). 

Parameter  Conventional (average)  Areal (average) 

Total cumulative pitch deviation 
p 39.2F 

  
A

p 39.0F 
  

Total single pitch deviation 
p 38f 

  
A

p 37.7f 
  

 

All three reported measurement results for the two pitch deviation parameters 

(conventional and areal) are within the agreement of ± 0.5 μm. This agreement confirms 

the effectiveness of the 2D Chebyshev method for areal pitch evaluations.  

In addition, Table 6.10 and Table 6.11 list values of the areal individual cumulative 

pitch and the areal individual single pitch deviation plotted in Figure 6.14. The bolded “#1” 

means the right flank of tooth #1 and the value below is the areal pitch parameters on the 

flank. 

Table 6.10: Areal individual cumulative pitch deviations ( A

piF ) of the 36 right flanks 

(tooth #1 to #36) of “M” (unit: μm; value rounded to two digits after the decimal point). 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

0 1.12 1.62 1.65 2.28 1.74 1.47 1.88 1.64 1.65 1.15 1.45 

#13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 

0.90 0.91 1.18 1.04 1.00 0.85 0.91 1.13 0.41 0.50 0.18 0.44 

#25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 

0.00 1.14 0.67 0.44 0.31 -5.72 -16.8 -37.2 0.48 0.27 0.36 -1.21 
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Table 6.11: Areal individual single pitch deviations ( A

pif ) of the 36 right flanks (tooth #1 

to #36) of “M” (unit: μm; value rounded to two digits after the decimal point). 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

0 1.12 0.5 0.03 0.63 -0.54 -0.27 0.41 -0.24 0.01 -0.51 0.31 

#13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 

-0.55 0.01 0.27 -0.14 -0.04 -0.15 0.06 0.22 -0.72 0.09 -0.32 0.27 

#25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 

-0.45 1.15 -0.47 -0.24 -0.12 -6.03 -11.0 -20.4 37.7 -0.22 0.09 -1.57 

 

Equation (5.23) gives the summation of the areal individual single pitch deviation: 

 
pi

z
A A

pi

i=1

1. μ1 m)2 (f f    , (5.23) 

where a new parameter denoted by 
pi

A

f  is defined as a measure of the evaluation results of 

areal single pitch deviations. Compared to the theoretical value of the summation (i.e. zero) 

as mentioned in Section 2.4.2, the obtained value -1.21 μm is reasonable, given the number 

of teeth of this artifact. This value might also be used as a quality measure for areal pitch 

evaluation in the future. 

In addition, other areal parameters of 36 right flanks can be evaluated from the same 

point clouds in Figure 6.6 (b). The values of deviation on each flank are given in Figure 

6.15 and Figure 6.16 for the first order parameters and second order parameters 

respectively. Since no modifications are designed on the other 33 right flanks, the value 

obtained might provide potential applications to correlate mechanical misalignment to the 

obtained areal flank parameters. 
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Figure 6.15: First order areal parameters of 36 right flanks: areal profile slope deviations 

(top); areal helix slope deviations (bottom).  

 

Figure 6.16: Second order areal parameters of 36 right flanks: areal profile crowning 

(top); areal flank twist (middle); areal helix crowning (bottom). 
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CHAPTER 7 : CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

In summary, this dissertation provides a foundation for a paradigm change of gear 

inspection technology. Based on the plumb line distance equation, a 3D geometric model 

of a cylindrical gear is derived and interpreted as the nominal implicit formula for the 

complete gear geometry including both flanks of all teeth. An areal distance map is defined 

as the aggregation of the evaluated plumb line distances evaluated from the measured point 

clouds within the zone of evaluation. Collectively, the calculated areal distance maps 

contain all geometric deviations and/or modifications of the gear, including individual 

flank deviations (both profile and helix directions) and tooth-to-tooth deviations (e.g. pitch 

deviation). A new set of areal gear parameters is developed to characterize those 

information, which offers a new mathematical tool for quantitative assessment of gear flank 

topography.  

2D Chebyshev polynomials defined on a square domain, are first recognized to 

possess geometric similarity to the shapes of low order flank modifications. The flank 

analysis method based on orthogonal decomposition and using the 2D Chebyshev 

polynomials (i.e. as base functions) is proposed as a tool, which uniquely links the 2D 

Chebyshev coefficients and the low order areal gear modification and/or deviation 

parameters. Three algorithms for evaluating the 2D Chebyshev polynomials have been 

proposed and compared with simulated flank data with a variety of spatial distributions and 

point density on the flank. The 2D DCT algorithm is preferred as the implementation 

algorithm for the method, in terms of fast computation speed among all types of points 

distributions. Several factors influencing the outcome of the areal gear parameters are 
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identified and investigated, such as the non-orthogonality of the pixelated data sets, the 

evaluation of sub-flank data and misalignment related issues. Improvement of computation 

performance includes, but is not limited to, an increasing point density on the flank, and 

using random distribution of spatial points on the flank. 

A gear modification artifact with certificated measurement uncertainty for several 

line oriented gear parameters is used to verify the effectiveness of the 2D Chebyshev 

method. A multiple line scanning strategy that collects spatial data covering the entire flank 

surface is carried out using a Leitz PMMF302016 CMM. The 2D Chebyshev method can 

extract simultaneously four areal flank modification parameters and two areal pitch 

deviation parameters from the measured point clouds. The agreement between 

corresponding areal and line oriented parameters based on conventional and areal 

evaluation is within the range of ± 1.5 μm.  

7.2 Future work 

While the potential of applying the 2D Chebyshev method for areal gear metrology 

is promising, there are still several important topics that need to be investigated thoroughly.  

7.2.1 Uncertainty analysis 

First and foremost, a new scheme for estimating the areal measurement uncertainty 

is needed for area oriented evaluation. Compared to the well-established measurement 

process by either CMMs or GMIs, areal measurement lacks a guideline to estimate the 

measurement uncertainty of areal gear parameters. Methods such as Monte Carlo might be 

suitable for estimating the areal measurement uncertainty given the high point density 

available. 
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7.2.2 Holistic evaluation 

Another important investigation should be focused on a holistic evaluation scheme 

based on the areal evaluation method. For example, one aspect of a holistic evaluation is 

to investigate the applicability of using information from individual areal distance map (of 

all flanks) to represent the quality of the gear. Beyond the low order information on the 

flank that can be represented by the first six 2D Chebyshev terms, other spatial frequency 

components such as waviness and roughness could also be extracted from in the residual 

map after removing the low order terms. Numerous mathematical tools such as Fourier 

analysis, structure function and wavelet decomposition are readily available for analyzing 

those types of surface information of gear flanks.  

In addition, flank information on different teeth may leave a signature caused by a 

specific manufacturing process deviation, which differs from tooth to tooth, such as the 

motion control errors, tool wear of the cutter and localized temperature variation on a gear. 

Flank information present uniformly on all teeth might indicate a global tendency of the 

manufacturing process variation, for example the deviation of tool geometry and 

misalignment of tool to workpiece. Thus, with this strategic classification of flank 

information, correlation could be established for better understanding of a manufacturing 

process.  

7.2.3 Function oriented analysis 

Lastly, with the completion of both individual and global information of a gear, its 

interaction with a mating gear might be assessed with the help of tools like tooth contact 

analysis. Thus, with more quantitative areal information, the correlation between gear pair 
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functional performance such as transmission error, noise emission and failure rate might 

be better estimated. 
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APPENDIX A: DERIVATION OF 3D NOMINAL HELICAL SURFACE 

 

The parametric representation is: 

{
𝑢 = 𝑟b𝜉nom = 𝑟b𝜉
𝑣 = 𝑧nom = 𝑧

 

The starting angle is : 

Λ = 𝜂b + 𝑧
tan𝛽b
𝑟b

 

Take the partial derivative at nominal point with respect to 𝑢: 

𝜕𝑃nom
𝜕𝑢

=

(

 
 
 

𝜕𝑥nom
𝜕𝑢

 

𝜕𝑦nom
𝜕𝑢

𝜕𝑧nom
𝜕𝑢 )

 
 
 

=
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𝜕𝑥nom
𝜕𝜉

𝜕𝜉

𝜕𝑢
 

𝜕𝑦nom
𝜕𝜉

𝜕𝜉

𝜕𝑢
𝜕𝑧nom
𝜕𝜉

𝜕𝜉

𝜕𝑢)

 
 
 
 

 

𝜕𝑃nom
𝜕𝑢

=

(

 
 
−sin(𝜉 + Λ) (1 +

𝜕Λ

𝜕𝜉
) + sin(𝜉 + Λ) + 𝜉 cos(𝜉 + Λ) (1 +

𝜕Λ

𝜕𝜉
)

cos(𝜉 + Λ) (1 +
𝜕Λ

𝜕𝜉
) − cos(𝜉 + Λ) + 𝜉 sin(𝜉 + Λ) (1 +

𝜕Λ

𝜕𝜉
)

0 )

 
 

 

=

(

 

𝜉 cos(𝜉 + Λ) +
𝜕Λ

𝜕𝜉
[− sin(𝜉 + Λ) + 𝜉 cos(𝜉 + Λ)]

𝜉 sin(𝜉 + Λ) +
𝜕Λ

𝜕𝜉
[cos(𝜉 + Λ) + 𝜉 sin(𝜉 + Λ)]

0 )

 = (
𝜉 cos(𝜉 + Λ)

𝜉 sin(𝜉 + Λ)
0

). 

Taking the partial derivative at nominal point with respect to 𝑣: 

𝜕𝑃nom
𝜕𝑣
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𝜕𝑧

=
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𝜕𝑃nom
𝜕𝑣

=

(

 
 
𝑟b[− sin(𝜉 + Λ)
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Taking cross product of two vectors: 

𝜕𝑃nom
𝜕𝑢

×
𝜕𝑃nom
𝜕𝑧

= (
𝜉 cos(𝜉 + Λ)
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−𝜉 cos(𝜉 + Λ)

𝜉 tan𝛽b

) 

to obtain surface normal vector: 

�⃗⃗⃗� = (

𝜉 sin(𝜉 + Λ)

−𝜉 cos(𝜉 + Λ)
𝜉 tan𝛽b

) 

which can be normalized to: 

�⃗⃗� =
�⃗⃗⃗�

|�⃗⃗⃗�|
=

1

𝜉√1 + (tan𝛽b)2
2

(

𝜉 sin(𝜉 + Λ)

−𝜉 cos(𝜉 + Λ)

𝜉 tan 𝛽b

) 

�⃗⃗� =
1

√1 + (tan𝛽b)2
2

(

sin(𝜉 + Λ)
− cos(𝜉 + Λ)

tan 𝛽b

) 
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APPENDIX B: DERIVATION OF PLUMB LINE DISTANCE  

 

Vectorial equation between nominal point and the measured point: 

�⃗�m = �⃗�nom + 𝑑lot = �⃗�nom + |𝑑lot| ∙ �⃗⃗� 

Using the explicit expression of unit surface normal vector: 

(

𝑥m
𝑦m
𝑧m
) = (

𝑥nom
𝑦nom
𝑧nom

) +
|𝑑lot|

√1 + (tan𝛽b)2
2

(−

sin(𝜉 + Λ)

cos(𝜉 + Λ)

tan𝛽b

) 

=

(

 
 
 
 
 
 
𝑟b ∙ [cos(𝜉 + Λ) + 𝜉 ∙ sin(𝜉 + Λ)] +

|𝑑lot|

√1 + (tan𝛽b)2
2

∙ sin(𝜉 + Λ)

𝑟b ∙ [sin(𝜉 + Λ) − 𝜉 ∙ cos(𝜉 + Λ)] −
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ cos(𝜉 + Λ)

𝑧 +
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ tan 𝛽b
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝑟b ∙ [cos(𝜉 + Λ) + 𝜉 ∙ sin(𝜉 + Λ) +
|𝑑lot| ∙ sin(𝜉 + Λ)

𝑟b ∙ √1 + (tan𝛽b)
22
]

𝑟b ∙ [sin(𝜉 + Λ) −𝜉 ∙ cos(𝜉 + Λ)
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

∙ cos(𝜉 + Λ)]

𝑧 +
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ tan𝛽b
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 
𝑟b ∙ [cos(𝜉 + Λ) + (𝜉 +

|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

) ∙ sin(𝜉 + Λ)]

𝑟b ∙ [sin(𝜉 + Λ) − (𝜉 +
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

) ∙ cos(𝜉 + Λ)]

𝑧 +
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ tan𝛽b
)
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The expression of the plumb line distance equation in Cartesian coordinate system 

is: 

|𝑑lot| =
𝑟𝑏

√1 + (tan𝛽b)2
{√
𝑥m2 + 𝑦m2

𝑟b
2 − 1 − atan(√

𝑥m2 + 𝑦m2

𝑟b
2 − 1) − atan (

𝑦m
𝑥m
) + 𝜂b

+ 𝑧m ∙
tan𝛽b
𝑟b

} 

Converting the plumb line distance equation from Cartesian coordinate system to 

cylindrical coordinate system 

𝜌m = √𝑥m2 + 𝑦m2
2

= 𝑟b ∙ √1 + (𝜉 +
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

)

2
2

 

𝜙m = arctan (
𝑦m
𝑥m
) 

= arctan

[
 
 
 
 sin(𝜉 + Λ) − (𝜉 +

|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

) ∙ cos(𝜉 + Λ)

cos(𝜉 + Λ) + (𝜉 +
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

) ∙ sin(𝜉 + Λ)
]
 
 
 
 

= arctan

[
 
 
 
 tan(𝜉 + Λ) + (𝜉 +

|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)
22
)

1 − (𝜉 +
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

) ∙  tan(𝜉 + Λ)
]
 
 
 
 

= arctan [tan(𝜉 + Λ − arctan(𝜉 +
|𝑑lot|

𝑟b ∙ √1 + (tan𝛽b)2
2

))]

= 𝜉 + Λ − arctan (𝜉 +
|𝑑lot|

𝑟𝑏 ∙ √1 + (tan𝛽b)2
2

) 
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𝑧m = 𝑧nom +
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ tan𝛽b 

In summary:  

{
 
 
 
 

 
 
 
 

𝜌m = 𝑟b ∙ √1 + (𝜉 +
|𝑑lot|

𝑟b√1 + (tan𝛽b)2
2

)

2
2

𝜙m = 𝜉 + Λ − arctan(𝜉 +
|𝑑lot|

𝑟𝑏√1 + (tan𝛽b)2
2

)

𝑧m = 𝑧nom +
|𝑑lot|

√1 + (tan𝛽b)2
2

∙ tan𝛽b

 

 

The expression of the plumb line distance equation is cylindrical coordinate system 

is: 

|𝑑lot| =
𝑟b

√1 + (tan𝛽b)2
{√
𝜌m2

𝑟b
2 − 1 − arctan(√

𝜌m2

𝑟b
2 − 1) − 𝜙m + 𝜂b + 𝑧m ∙

tan𝛽b
𝑟b

} 


