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ABSTRACT

XIAOFAN ZHANG. Towards large-scale and fine-grained image recognition. (Under
the direction of SHAOTING ZHANG)

In this dissertation, we aim to investigate the problem of large-scale and fine-grained

image recognition, which focuses on the differentiation of subtle differences among

subordinate classes and a large number of images. Particularly, we tackle this problem

by answering three inter-related questions: 1) how to learn robust and invariant fea-

ture representations that can differentiate subtle and fine-grained differences among

subordinate classes, 2) how to index these features for efficient image analysis (e.g.,

classification, content-based retrieval) at a large scale, and 3) how to fuse different

type of features to get better results. We propose a series of methods to solve these

three problems. Regarding feature representation learning, we design an architecture

of convolutional neural networks (CNNs), by unifying the classification constraint

and the similarity constraint in a multi-learning framework. Also, structured labels

are embedded in this framework, so the similarity of images can be defined at differ-

ent levels of relevance, e.g., the number of shared attributes, through learned feature

representations. Regarding feature indexing, we propose multiple methods based on

hashing and binary coding, enabling real-time image retrieval and classification for

high-dimensional features and/or a large number of features. Regarding feature fu-

sion, we employ a graph-based query-specific fusion approach where multiple retrieval

results (i.e., rank lists) are integrated and reordered based on a fused graph. We have

evaluated these methods on both natural images and medical images, as we advocate

that medical image recognition (e.g., cancer grading by histopathological images)

needs ultra-fine-grained differentiation. The experimental results demonstrate the

efficacy of our methods, in terms of both accuracy and efficiency.
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CHAPTER 1: INTRODUCTION

Recent efforts (in both academia and industry) in machine learning and computer

vision, particularly the convolutional neural networks (CNNs) [45, 53, 100, 95], have

led to large-scale, data-driven methods for robust tagging [40, 36, 31], object clas-

sification [17, 91, 48], and semantic segmentation [27, 33, 78, 69]. Such “Internet

scale” algorithms have been adapted and applied to the problem of fine-grained

image recognition, which focuses on the differentiation of subtle differences among

subordinate classes, such as different models of cars [50, 52, 65, 124], breeds of an-

imals [49, 82, 18, 5, 51, 63], types of food dishes [7, 126], and even different stages

of cancer [29, 88, 106], which could be ultra-fine-grained. Compared to generic im-

age recognition, fine-grained tasks have huge potentials to be applied in practical

applications, such as image-based recommendation system in e-commerce (e.g., given

a picture of a food dish, one can return a set of dishes with similar flavor), city

landmark localization and recognition for tourism, face recognition and/or verifica-

tion for security requirements, and computer-aided diagnosis (e.g., cancer grading by

thoroughly analyzing histopathological images). However, this task also has several

main challenges: 1) Many fine-grained classes are highly correlated and are difficult

to distinguish due to their subtle differences, i.e., small inter-class variance. 2) On

the other hand, the intra-class variance can be large, partially due to different poses

and/or viewpoints. This is particularly true in medical image analysis, since differ-

entiating stages of diseases may rely on a thorough examination of subtle changes

in local regions. Traditional methods often cannot discriminate among semantically

different, but visually similar (or vice-versa) medical images. Fig. 1.1 shows exam-

ples of generic, fine-grained and ultra-fine-grained image recognition, illustrating the
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(a) Google Image Search (b) Fine-Grained Visual Mining (c) Ultra-Fine-Grained Medical Mining 

Figure 1.1: Methods designed for generic image retrieval are not well-suited to the
challenges of fine-grained and ultra-fine-grained image recognition. For example, (a)
a Google Image Search for a San Francisco restaurant returns buildings, but not the
same as the query. (b)Recent work for fine-grained indexing of millions of images
returns more relevant matches, even with occlusions and viewpoint or illumination
changes [133, 134]. It is much better than the approaches for generic image recogni-
tion. However, for a query over a large database of histopathological images for breast
cancer diagnosis, the results show a mix of images from benign (blue) and actionable
(green) cases, even though the query is benign.

challenges of this task and limitations of existing methods. Therefore, in the cur-

rent era of image recognition, there is an urgent need to improve the performance of

fine-grained and even ultra-fine-grained image recognition.

Another important requirement of image recognition in the current scenario is the

scalability, i.e., the ability to conduct large-scale image analysis with high efficiency.

Take content-based image retrieval (CBIR) as an example, and use medical image

analysis as the use case, traditional CBIR methods in this field usually focus on

small data sets that have only tens or hundreds of images. New opportunities and

challenges arise with the ever-increasing amount of patient data in the current era. In-

tuitively, larger databases provide more comprehensive information and may improve

the accuracy of CBIR systems. On the other hand, achieving an acceptable retrieval

efficiency is a challenging task for large-scale data, especially when very large numbers

of features are required to capture subtle image descriptors. In fact, CBIR methods
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Figure 1.2: Framework of large-scale and fine-grained image recognition, through
feature representation learning and indexing. Based on deep neural networks, we
learn effective feature representations to differentiate fine-grained differences among
images. For scalable analysis, we index a large number of features, either learned or
hand-crafted, through hashing methods as binary codes. Then, we could fuse multiple
features on the rank-level for better results. Therefore, image recognition tasks such
as classification and retrieval can be achieved efficiently.

usually suffer from the “curse of dimensionality” and low computational efficiency

when using high-dimensional features in large databases. Although cloud and grid

computing are a potential solution for efficient computing [122, 30], few efforts have

been made to develop computational and scalable algorithms for large-scale medical

image analysis, which is still an urgent need. For more accurate results, we could

try to fuse the results of different types of information, e.g. local and holistic feature

of images. However, their characteristics, algorithmic procedures and representations

can be dramatically different, making them nontrivial to fuse.

To tackle these challenging problems and to achieve fine-grained and large-scale im-

age recognition for various applications including medical images, we conduct research

on two inter-related components: 1) learning feature representations for fine-grained

differentiation, 2) indexing them for scalable image analysis, and 3) fuse multiple

features in rank level, as illustrated in Fig. 1.2. Feature learning or representation

learning is a set of techniques that transform raw data input (e.g., images) to a repre-
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sentation (e.g., vectors of values) that can be effectively exploited in image recognition

tasks, such as classification and retrieval. This is essentially an initial and impor-

tant procedure for these tasks, since without effective representations, most machine

learning methods cannot be applied on fine-grained image databases. To learn such

feature representations, we propose methods based on CNNs, by embedding label

structures [143]. More specifically, 1) A multitask learning framework is designed to

effectively learn fine-grained feature representations by jointly optimizing both clas-

sification and similarity constraints in CNNs. 2) To model the multi-level relevance,

label structures such as hierarchy or shared attributes are seamlessly embedded into

the framework by generalizing the triplet loss in CNNs. We have achieved state-of-

the-art performance on four fine-grained datasets. More importantly, it significantly

outperforms previous fine-grained feature representations for image retrieval at dif-

ferent levels of relevance. 3) In order to learn features that are invariant to the cate-

gorization irrelevant factors (such as pose, viewpoint), triplet loss could be modified

in an orthogonal way with those factors information.

Once we have obtained effective feature representations for fine-grained recogni-

tion, the remaining issue is to achieve efficient performance of image recognition even

when dealing with a large-scale dataset, i.e., scalability. As mentioned above, in this

work, we focus on CBIR methods, so we aim to achieve real-time retrieval among

large image databases. To this end, we propose a series of feature indexing methods

based on hashing and binary coding algorithms, which represent high-dimensional

features as tens of bits, without sacrificing their ability of differentiating fine-grained

differences [138, 137, 141, 139, 140]. Specifically, we design two hashing approaches,

the supervised hashing method and the weighted hashing method, to resolve the lim-

itations of previous work. In addition, we propose to use a graph-based method to

fuse multiple features in the rank level to boost the performance further [136, 135].

To validate these proposed methods, we choose histopathological image analysis as
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the use case, which is a case of the ultra-fine-grained image recognition. Using their

binary codes from hashing functions, we conduct real-time image retrieval among a

large number of high-resolution histopathological images, and they can be used to

differentiate cancer types or stages.

To summarize, our research work for large-scale and fine-grained image recognition

has the following contributions, which will be elaborated in each chapter:

1. We propose robust feature representation learning approaches, which could learn

invariant feature and embeds label structures (i.e., relevance at multiple lev-

els) in a multi-task CNN framework. Such fine-grained feature representation

can differentiate subtle differences of similar images, at multiple scales of rele-

vance [143].

2. We introduce a supervised hashing method to index high-dimensional feature

representation, enabling real-time image retrieval when dealing with large image

databases. The supervision also helps to bridge the semantic gap [138, 137].

3. To improve hashing methods for feature indexing, we propose a carefully de-

signed learning method that assigns probabilistic-based importance to different

hash values or entries. This scheme alleviates several intrinsic problems of us-

ing traditional hashing methods for classification, and significantly improves the

accuracy [139, 140, 141].

4. We describe a graph-based framework to fuse the holistic architecture feature

and the local appearance feature [136, 135].

5. In addition to the evaluation on natural images, we have also applied our meth-

ods to solve a challenging and significant problem, differentiation of cancer types

using histopathological images. Particularly, we have conducted cell-level anal-

ysis through large-scale image retrieval, by examining half million of cells in

real-time, and achieved promising accuracy with thorough experiments [142].
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The rest of this dissertation is organized as follows: We first provide a review of

related work. Then, we elaborate our contributions on learning fine-grained feature

representations in CNNs. In the following chapters, we introduce details of the super-

vised hashing method for feature indexing and real-time retrieval, with an application

of the image-guided diagnosis of intraductal breast lesions using histopathological im-

ages. We also propose a weighted hashing method that alleviates the issues of previous

work. It is able to analyze millions of cells in histopathological images in real-time,

using image retrieval. Further more, we introduce a rank level fusion method to boost

the performance. Finally, we conclude this dissertation and provide several potential

directions for future work.



CHAPTER 2: RELATED WORK

In this chapter, we review related work in different fields, including: 1) fine-grained

image recognition and feature representation learning, mainly based on deep learn-

ing approaches, 2) large-scale feature indexing and retrieval by hashing and binary

coding methods, and 3) content-based medical image retrieval. We also discuss the

limitations of current methods, and elaborate the difference and motivation of our

proposed methods.

2.1 Fine-Grained Image Recognition

Fine-grained image understanding aims to differentiate subordinate classes. In this

section, we emphasize on the methods that are most relevant to our approaches,

particularly the ones on fine-grained feature representation.

Many algorithms have been proposed to leverage parts of objects to improve the

classification accuracy. Part based models [125, 10, 4, 130, 129, 34] are proposed

to capture the subtle appearance differences in specific object parts and reduce the

variance caused by different poses or viewpoints. For example, [117, 64] proposed

to combine the part-level and object-level information together to boost the per-

formance. Different from these part-based methods, distance metric learning can

also addresses these challenges by learning an embedding such that data points from

the same class are clustered together, while those from different classes are pushed

apart from each other. In addition, it ensures the flexibility of grouping the same

category, such that only a portion of the neighbors from the same class need to be

pulled together. For example, Qian et al. [85] proposed a multi-stage metric learning

framework that can be applied in large-scale high-dimensional data with high effi-
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ciency. In addition to directly classify the images using CNN, it is also possible to

generate discriminative features that can be used for classification. In this context,

DeCAF [20] is a commonly used feature representation with promising performance

achieved by training a deep convolutional architecture on an auxiliary large labeled

object database. These features are from the last few fully connected layers of CNN,

which have sufficient generalization capacity to perform semantic discrimination tasks

using classifiers, reliably outperforming traditional hand-engineered features.

One limitation of the above mentioned methods is that they are essentially driven

by the fine-grained class labels for classification, while it is desired to incorporate sim-

ilarity constraints as well. Therefore, other than using classification constraints alone

(e.g., softmax), several similarity constraints have been proposed for feature repre-

sentation learning. For example, siamese network [13] defines similar and dissimilar

image pairs, with the requirement that the distance between dissimilar pairs should be

larger than a certain margin, while the one from similar pairs should be smaller. This

type of similarity constraint can effectively learn feature representations for various

tasks, especially for the verification [116, 93]. An intuitive improvement is to com-

bine the classification and the similarity constraints together for better performance.

This is particularly relevant to our framework. For example, [99, 127] proposed to

combine the softmax and contrastive loss in CNN via joint optimization. It improved

traditional CNN because contrastive constraints might augment the information for

training the network.

Different from these approaches, our method leverages the triplet constraint [80, 11]

instead of the contrastive ones, since triplet can preserve the intra-class variation [90],

which is critical to the learning of fine-grained feature representation. Note that triplet

constraint has been used in feature learning [111, 58, 105], face representation [90],

and person re-identification [19]. Particularly, there are also efforts on combining

this with the softmax. A representative example is that [83] proposed to learn a
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face classify first, and then use the triplet constraint to fine-tune and boost the

performance. It achieved promising accuracy in face recognition. Although we also

integrate triplet information with the traditional classification objective, our method

jointly optimizes these two objectives simultaneously, which is different from [83]. As

shown in the experiments, this joint optimization strategy generates better feature

representations for fine-grained image understanding. In addition, our algorithm

can also easily support eleminating recognition irrelevant factors or embedding of

label structures, e.g., hierarchy or shared attributes, which have been proven useful

in various studies [6, 23, 2, 103, 118, 128, 12], but not well explored in learning

fine-grained feature representation that can model similarity at different levels. Our

proposed algorithm is elaborated in Section 3 and 4.

2.2 Hashing for Large-Scale Image Retrieval

Given fine-grained features extracted from massive image databases, either through

the hand-crafted feature design or the above-mentioned deep learning-based feature

engineering, the next goal is to index them to enable large-scale analysis (e.g., im-

age retrieval) in real time. Recently, hashing methods have been intensively investi-

gated in the machine learning and computer vision community for large-scale image

retrieval [110]. Representative methods include, but are not limited to, locality-

sensitive hashing [16] and its extension in kernel space [55, 56], spectral hashing [114],

iterative quantization method [37], weakly-supervised hashing in kernel space [72],

semi-supervised hashing [109] supervised hashing [66], compact kernel hashing with

multiple features [67], and supervised discrete hashing [94].

Among these methods, kernelized and supervised hashing (KSH) [66] is generally

considered the most effective, achieving state-of-the-art performance with a moderate

training cost. Therefore, this was chosen in our framework for scalable image retrieval.

The central idea of KSH is to reduce the gap between low-level hash code similarity

and high-level semantic (label) similarity by virtue of supervised training. In doing so,
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a similarity search in the binary code space can reveal the given semantics of examples.

In other words, KSH does well in incorporating the given semantics into the learned

hash functions or codes, while the other hashing methods are inadequate in leveraging

the semantics. Specifically, compared to the unsupervised kernel hashing method [56,

66] and the semi-supervised linear hashing method [108, 109], KSH shows much higher

search accuracy, as it takes full advantage of supervised information (originating from

the semantics) that is not well exploited by those unsupervised and semi-supervised

methods. Even compared against competing supervised hashing methods such as

binary reconstructive embedding (BRE) [54] and minimal loss hashing (MLH) [79],

KSH still shows clear accuracy gains yet with much shorter training time.

However, hashing methods, including KSH, tend to generate an unordered set

for the same hash value, adversely affecting the classification accuracy when using

majority voting, i.e., deciding the category of the query image via the retrieved images.

This is particularly true for fine-grained image categorization, since the differences of

these images are very subtle. Therefore, we propose the weighted hashing to alleviate

this problem and it can accurately classify a large number of images, which will be

elaborated in Section 6.

2.3 Content-Based Medical Image Retrieval

Medical images are special cases of fine-grained or even ultra-fine-grained images,

since their differences (e.g., cancer grading) could be quite subtle and hard to differ-

entiate even for human experts. Therefore, medical image analysis is chosen as the

main use case to validate our algorithms. In fact, CBIR already shows its impor-

tance in medical image analysis by providing doctors with diagnostic aid in the form

of visualizing existing and relevant cases, along with diagnosis information. Clinical

decision-support techniques such as case-based reasoning or evidence-based medicine

have a strong need for retrieving images that can be valuable for diagnosis.

For example, Comaniciu et al. [14] proposed a content-based image-retrieval sys-



11

tem that supports decision making in clinical pathology, in which a central module

and fast color segmenter are used to extract features such as shape, area, and texture

of the nucleus. System performance was assessed through a ten-fold cross-validated

classification and compared with that of a human expert on a database containing

261 digitized specimens. Dy et al. [25] described a new hierarchical approach of CBIR

based on multiple feature sets and a two-step approach. The query image is classi-

fied into different classes with best discriminative features between the classes. Then

similar images are searched in the predicted class with the features customized to

distinguish subclasses. El-Naqa et al. [26] proposed a hierarchical learning approach

that consists of a cascade of a binary classifier and a regression module to optimize re-

trieval effectiveness and efficiency. They applied this to retrieve digital mammograms

and evaluated it on a database of 76 mammograms. Greenspan et al. [38] proposed

a CBIR system that consists of a continuous and probabilistic image-representation

scheme. It uses GMM and information-theoretic image matching via the Kullback-

Leibler (KL) measure to match and categorize X-ray images by body region. Song et

al. [98] designed a hierarchical spatial matching–based image-retrieval method using

spatial pyramid matching to effectively extract and represent the spatial context of

pathological tissues. In the context of histopathological images from breast tissues,

Schnorrenberg et al. [89] extended the biopsy analysis support system to include in-

dexing and content-based retrieval of biopsy slide images. A database containing 57

breast-cancer cases was used for evaluation. Zheng et al. [144] designed a CBIR sys-

tem to retrieve images and their associated annotations from a networked microscopic

pathology image database based on four types of image features. Akakin et al. [1]

proposed a CBIR system using the multi-tiered approach to classify and retrieve mi-

croscopic images, which enables both multi-image query and slide-level image retrieval

in order to protect the semantic consistency among the retrieved images.

As emphasized in [145], scalability is the key factor in CBIR for medical image anal-
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ysis. However, owing to the difficulties in developing scalable CBIR systems for large-

scale data sets, most previous systems have been tested on a relatively small number of

cases. With the goal of comparing CBIR methods on a larger scale, ImageCLEF and

VISCERAL provide benchmarks for medical image-retrieval tasks [73, 74, 123, 59, 41].

Recently, Foran et al. [30] designed a CBIR system named ImageMiner for compar-

ative analysis of tissue microarrays by harnessing the benefits of high-performance

computing and grid technology. However, few attempts have been made to design

computational and scalable retrieval algorithms in this area. Therefore, we introduce

hashing methods and binary coding methods for large-scale medical image retrieval,

elaborated in Section 5 and 6.

Anohter important respect in CBIR is integrating multiple features for accurate

image retrieval. For example, accurate analysis of histopathological images requires

to examine cell-level information for accurate diagnosis, including individual cells

(e.g., appearance [9, 137] and shapes [24]) and architecture of tissue (e.g., topology

and layout of all cells [3]). These features cover both local and holistic informa-

tion, all benefiting the diagnosis accuracy of histopathological images. Therefore, the

complementary descriptive capability of local and holistic features motivates us to in-

tegrate their strengths to yield more satisfactory results. The proposed graph-based

query-specific fusion approach is described in Section 7.



CHAPTER 3: LEARNING FINE-GRAINED FEATURE REPRESENTATION

WITH LABEL STRUCTURES

3.1 Motivation

Owing to the success of convolutional neural networks (CNN) [45, 53, 100, 95,

91], models of fine-grained image categorization have made tremendous progress in

recognizing subtle differences among subordinate classes, such as different models of

cars [50, 52, 65, 124], breeds of animals [49, 82, 18, 5, 51, 63, 107, 121], and types of

food dishes [7, 126]. Most of previous methods focus on improving the classification

accuracy, by learning critical parts that can align the objects and discriminate between

neighboring classes [125, 10, 4, 130, 129, 34], or using distance metric learning to

alleviate the issue of large intra-class variation [113, 105, 111, 85, 62].

However, such studies have rarely been dedicated to learn a structured feature

representation that can discover similar images at different levels of relevance. Fig. 3.1

shows examples of similar cars from a fine-grained dataset [50]. Having the same fine-

grained labels indicates exactly the same make, model and year, while cars are still

similar even they have different labels, e.g., the same make but different year, or the

same body style (e.g., SUV, Coupe) from different make. In other words, different

fine-grained categories may still share the same semantic information, such as coarse-

level labels or attributes. Such shared information in the hierarchy of similarity should

be explored in fine-grained feature representation, since it is applicable to various use

cases such as the recommendation of relevant products in e-commerce, e.g., products

have to be visually and semantically similar, but not necessarily belong to the same

fine-grained category.

To obtain the fine-grained feature representation, one solution is to incorporate
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Figure 3.1: Examples from a fine-grained car dataset [50], where the similarity can
be defined at different levels, i.e., body type, model, and even viewpoint, indicated
by the distance to the query in the center. Images within the circle have exactly the
same fine-grained labels, i.e., make and model, and the closest two also have the same
viewpoint. Since images from different fine-grained categories may share the same
coarse-level labels, such shared information should be leveraged to learn structured
features.

similarity constraints (e.g., contrastive information [13] or triplets [80, 11]). For ex-

ample, Wang et al. [111] proposed a deep ranking model to directly learn the similarity

metric by sampling triplets from images. However, these strategies still have several

limitations in fine-grained datasets: 1) Although the features learned from triplet con-

straints are effective at discovering similar instances, its classification accuracy may

be inferior to the fine-tuned deep models that emphasize on the classification loss,

as demonstrated in our experiments. In addition, the convergence speed using such

constraints is usually slow. 2) More importantly, previous methods for fine-grained

features do not leverage shared information in label structures, which is critical to

locate images with relevance at different levels.

We propose two contributions to solve these issues: 1) A multi-task deep learn-

ing framework is designed to effectively learn the fine-grained feature representation

without sacrificing the classification accuracy. Specifically, we jointly optimize the
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classification loss (i.e., softmax) and the similarity loss (i.e., triplet) in CNN, which

can generate both categorization results and discriminative feature representations.

The integration of two constraints not only boosts the classification accuracy, but

also produces effective features that are able to discover visually and semantically

similar instances in fine-grained datasets. 2) Furthermore, based on this framework,

we propose to seamlessly embed label structures such as hierarchy (e.g., make, model

and year of cars) or attributes (e.g., ingredients of food), which is achieved by de-

signing generalized triplets. Therefore, shared information in label structures (e.g.,

same coarse-level labels or same attributes) can be effectively leveraged as extra con-

straints and augmented data. Such strategy of embedding label structures is able to

effectively discover relevant images with respect to different levels of similarities. We

evaluate our methods on four fine-grained datasets, i.e., the Stanford car, the Car-

333, the CUB200-2011 and a fine-grained food dataset, containing either hierarchical

labels or shared attributes. The experimental results demonstrate that our feature

representation can precisely differentiate fine-grained or subordinate classes, and also

effectively discover similar images at different levels of relevance, both of which are

challenging problems.

3.2 Methodology

In this section, we introduce the joint optimization strategy for learning fine-grained

feature representation. Then, we extend the algorithms to effectively embed struc-

tured labels, such as the hierarchy or shared attributes. The overall framework is

shown in Fig. 3.2. We also provide important details in terms of implementation.

3.2.1 Multi-Task Learning for Joint Optimization

Traditional classification constraints such as softmax with loss are usually employed

in CNN for fine-grained image categorization, which can distinguish different subor-

dinate classes with high accuracy. Suppose that we are given N training images
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Figure 3.2: Our framework takes the triplets (i.e., the reference, the positive and
the negative images) and the label of the reference image as the input, which pass
through the three networks with shared parameters. The label structures are em-
bedded in the loss layer, including the hierarchy or shared attributes. Two types of
losses are optimized jointly to obtain the fine-grained classifier and also the feature
representation.

{ri, li}Ni=1 of C classes, where each image ri is labeled as class li. Given the output of

the last fully connected layer fs(ri, c) for each class c = 1, · · · , C, the loss of softmax

can be defined as the sum of the negative log-likelihood over all training images {ri}i:

Es(r, l) =
1

N

N∑
i=1

− log
efs(ri,li)∑C
c=1 e

fs(ri,c)︸ ︷︷ ︸
P (li|ri)

, (3.1)

where P (li|ri) encodes the posterior probability of the image ri being classified as

the lith class. In a nutshell, Eq. 3.1 aims to “squeeze" the data from the class into a

corner of the feature space. Therefore, the intra-class variance is not preserved, while

Algorithm 1: Joint Optimization Framework.
Input : Training samples ri, pi, ni, learning rate η(t)

1 while not converge do
2 t← t+ 1 ;
3 Calculate fs(ri), ft(ri), ft(pi), ft(ni) by forward propagation ;
4 Calculate OWs = λs · ∂Es(ri,li)

∂Ws
;

5 Calculate OWt = (1− λs) · ∂Et(ri,pi,ni,m)
∂Wt

;
6 OW = OWs + OWt ;
7 Update W = W + η(t)OW
8 end

Output: Parameters W
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such variance is essential to discover both visually and semantically similar instances.

To address these limitations, we explicitly model the similarity constraint in CNN

using a multi-task learning strategy. Specifically, the triplet loss is fused with the

classification objective as the similarity constraint. A triplet consists of three images,

denoted as (ri, pi, ni), where ri is the reference image from a specific class, pi an image

from the same class, and ni an image from a different class1. Given an input image

ri (similarly for pi and ni), this triplet-driven network can generate a feature vector

ft(ri) ∈ RD, where the hyper-parameter D is the feature dimension after embedding.

Ideally, for each reference ri, we expect its distance from any ni of different class is

larger than pi within the same class by a certain margin m > 0, i.e.,

D(ri, pi) +m < D(ri, ni), (3.2)

where D(·, ·) is the squared Euclidean distance between two `2-normalized vectors

ft(·) of the triplet network. To enforce this constraint in CNN training, a common

relaxation [80] of Eq. 3.2 can be defined as the following hinge loss:

Et(r, p, n,m) =

1

2N

N∑
i=1

max{0,D(ri, pi)−D(ri, ni) +m}.
(3.3)

In the feature space defined by ft(·), it can group the r and p together while

repelling the n by minimizing Et(r, p, n,m). The gradient can be computed as:

OWt = 2(ft(ri)− ft(pi))
∂ft(ri)− ∂ft(pi)

∂Wt

− 2(ft(ri)− ft(ni))
∂ft(ri)− ∂ft(ni)

∂Wt
, (3.4)

1Note that such triplet loss has been used in feature embedding [90, 111], but not with a joint
optimization strategy or label structures.
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if D(ri, ni) − D(ri, pi) < m, otherwise 0. Different from the pairwise contrastive

loss [13] that forces the data of the same class to stay close with a fixed margin,

the triplet loss allows certain degrees of intra-class variance. Despite its merits in

learning feature representation, minimizing Eq. 3.3 for recognition tasks still has sev-

eral disadvantages. For example, given a dataset with N image, the number of all

possible triplets is N3, and each triplet contains much less information (i.e., similar

or dissimilar constraints with margins) compared with the classification constraint

that provides a specific label among C classes. This can lead to slow convergence.

Furthermore, without the explicit constraints for classification, the accuracy of dif-

ferentiating classes can be inferior to the traditional CNN using softmax, especially

in fine-grained problems where the differences of subordinate classes are very subtle.

Given the limitations of training with the triplet loss (Eq. 3.3) solely, we propose

to jointly optimize two types of losses using a multi-task learning strategy. Fig. 3.2

shows the CNN architecture of our joint learning. The R,P,N networks share the

same parameters during training. After the `2 normalization, the outputs of the three

networks (i.e., ft(r), ft(p), ft(n)) are transmitted to the triplet loss layer to compute

the similarity loss Et(r, p, n,m). In the meantime, the output of the network R, fs(r),

is forwarded to the softmax loss layer to compute the classification error Es(r, l).

Then, we integrate these two types of losses through a weighted combination:

E = λsEs(r, l) + (1− λs)Et(r, p, n,m), (3.5)

where λs is the weight to control the trade-off between two types of losses. This

framework of unifying three networks through Eq. 3.5 not only learns the discrim-

inative features but also preserves the intra-class variance, without sacrificing the

classification accuracy. In addition, it resolves the issue of the slow convergence when

only using the triplet loss. We optimize Eq. 3.5 using the standard stochastic gradient
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descent with momentum. The optimization procedure is summarized in Algorithm 1.

Regarding the sampling strategy, one can either follow the methods in FaceNet [90],

or employ hard mining approaches to explore challenging examples in the training

data. Both of them are effective in our framework, since jointly optimizing Es(r, l)

facilitates the searching of good solutions, allowing certain flexibility for the sampling.

During the testing stage, this framework takes one image as an input, and gen-

erates the classification result through the softmax layer, or the fine-grained feature

representation after the `2 normalization. This discriminative feature representation

can be employed for various tasks such as classification, verification and retrieval,

which is more effective than solely optimizing the softmax with loss.

3.2.2 Embed Label Structures

As discussed before, an effective feature representation should be able to search

relevant instances at different levels (e.g., Fig. 3.1), even not within the same fine-

grained class. Our multi-task framework serves as a baseline to naturally embed label

structures, without sacrificing the classification accuracy on fine-grained datasets. In

particular, we aim to handle two types of label structures, i.e., hierarchical labels and

shared attributes, both of which have wide applications in practice.

3.2.2.1 Generalized Triplets for Hierarchical Labels

In the first case, the fine-grained labels can be naturally grouped in a tree-like hier-

archy based on semantics or domain knowledge. The hierarchy can contain multiple

levels. For simplicity purpose, we explain the algorithm with a two-level structure,

and then generalize to multiple levels. Fig. 3.3 illustrates an example of two-level

labels from a car dataset [50], where the fine-grained car models in the leaf nodes

are grouped according to their body types in the roots. Two cars with different fine-

grained categories may share the same coarse-level label, e.g., both of them are SUV

or Sedan in Fig. 3.3. Intuitively, sharing the same body types should attain higher
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Figure 3.3: The hierarchy of labels in the fine-grained car dataset [50]. Blue (ri)
means the reference image, green (p+i ) denotes the image with the same fine-grained
label (i.e., the same make, model and year), green-red (p−i ) represents different fine-
grained labels but the same coarse label (i.e., the body type), and red (ni) indicates
different coarse labels.

similarity than having different ones.

To model such shared information in the hierarchy of coarse and fine class labels,

we propose to generalize the concept of triplet. Specifically, quadruplet is introduced

to model the two-level structure. Each quadruplet, (ri, p
+
i , p

−
i , ni), consists of four

images. Similar to triplet, p+i denotes the image of the same fine-grained class as

the reference ri. The main difference is that in quadruplet, all negative samples

are classified into two sub-categories: the more similar one p−i that shares the same

coarse class with ri, and the more different one ni sampled from different coarse

classes. Given a quadruplet, this hierarchical relation among the four images can be

described in two inequalities,

D(ri, p
+
i ) +m1 < D(ri, p

−
i ) +m2 < D(ri, ni), (3.6)

where the two hyper-parameters, m1 and m2, satisfying m1 > m2 > 0, control the

distance margins across the two levels. It is worth to mention that if Eq. 3.6 is

satisfied, then D(ri, p
+
i ) + m1 < D(ri, ni) automatically holds. Compared to triplet,

quadruplet is able to model much richer label structures between different levels, i.e.,

coarse labels and fine-grained labels. As a result, the learned feature representation
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can discover relevant instances that are appropriate in specific scenarios, e.g., locating

a car with specific model and year, or finding SUVs from different body types.

Regarding the sampling strategy, all training images are used as the references

in every epoch. For each reference image ri, we select p+i , p
−
i and ni from other

corresponding classes, depending on both fine and coarse labels. To incorporate this

quadruplet constraint in CNN training, we propose to decompose Eq. 3.6 into two

triplets, (ri, p
+
i , p

−
i ) and (ri, p

−
i , ni), phrased as generalized triplets. Similar to Eq. 3.3,

our approach seeks for the optimal parameters that minimize the joint loss over the

sampled quadruplets:

Eq(r, p
+, p−, n,m1,m2) =

1

2N

N∑
i=1

max{0,D(ri, p
+
i )−D(ri, p

−
i ) +m1 −m2}

+
1

2N

N∑
i=1

max{0,D(ri, p
−
i )−D(ri, ni) +m2}. (3.7)

Clearly, this generalized triplets can be naturally incorporated into our multi-task

learning framework (Eq. 3.5).

So far we have mainly discussed in the scenario of a two-level label hierarchy,

through the generalized triplet representation of quadruplet. In fact, our method

is also applicable to the more general multi-level case using the same strategy, i.e.,

representing a “tuplet" with generalized triplets. Similar to the quadruplet sampling

strategy, each tuplet is formed by selecting the classes at different similarity levels,

from which training images are sampled (one image at each level). Therefore, a tu-

plet from an x-level hierarchy contains x + 2 images (e.g., the quadruplet from a

two-level hierarchy has four images). This tuplet is decomposed into x triplets, by

taking the reference image and two more images from two adjacent levels. Intuitively,

this means that multiple triplets are sampled to represent different levels of similar-
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Figure 3.4: The shared attributes in our food dataset, where the attributes (A1-A4)
mean the ingredients.

ity, i.e., images with the same finer-level labels are more similar than ones sharing

the same coarser-level labels. Same as the two-level case, it can be optimized using

the multi-task learning framework based on triplets. Even though this is not ex-

haustive sampling or exact decomposition for the tuplet, the generalized triplets are

representative enough to ensure a good performance, which is demonstrated in our

experiments (Section 3.3.2). It is also worth mentioning that the traditional triplet

is a special case of the generalized triplet, i.e., only one-level hierarchy.

3.2.2.2 Generalized Triplets for Shared Attributes

In the second case, fine-grained objects can share common attributes with each

other. For instance, Fig. 3.4 illustrates that fine-grained food dishes can share some

ingredients, indicating relevance at different levels. Intuitively, classes that share more

attributes should be more similar than the classes sharing less attributes. Therefore,

such shared information should also be explored in our multi-task learning framework.

Unlike the tree-like hierarchy in the first case, we are not able to directly model the

label dependency as Eq. 3.6, because some fine-grained classes can own multiple

attribute labels. Instead, we model this graph dependency using a modified triplet

idea. To have a better understanding of our method, we can consider the first three
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dishes shown in Fig. 3.4. Although both the second and third dishes belong to

different classes compared to the first one, the second dish shares more attributes

(beef, carrots) with the first dish. This difference in attribute overlapping inspires us

to re-define the margin m, i.e., the distance between D(ri, pi) and D(ri, ni), as the

Jaccard similarity [43] of attributes from different classes:

m = mb

(
1− |Ap ∩ An|
|Ap ∪ An|

)
, (3.8)

where mb is a constant factor specified as the base margin, Ap and An are the sets of

attributes belonging to the positive and negative categories, respectively. Therefore,

the more attributes these classes share, the smaller margin this triplet has. Using

such adaptive margin for the triplet loss, the learned feature can discover images

containing common attributes as the query images. Similarly, Eq. 3.8 can be naturally

incorporated in our multi-task learning framework based on the triplet loss. In fact,

the original triplet constraint is also a special case of the multi-attribute constraint,

when each fine-grained label only connects to one attribute, i.e., no shared labels.

3.2.3 Implementation Details

In terms of implementation details, all CNNs are based on GoogLeNet [100], and

are fine-tuned on these fine-grained datasets for the best performance and fair com-

parisons. Note that our method is very general and also applicable to other networks,

such as AlexNet [53] or VGGNet [95], discussed in the experiment section.

The input data is organized in the following way. A list, (ri, pi, ni, li,m), is gener-

ated and can be dynamically updated during runtime, in which li is the label of image

ri, and m is the margin that is fixed in traditional triplet loss or adjustable as per

the hierarchical or shared attribute structure in our proposed method. Such data is

sent into R,P,N networks (Fig. 3.2), which share the parameters during the training

procedure. Different from P and N , the last fully connected layer of R is connected



24

with two modules. One is combined with the label li to compute the softmax with

loss, and the other is sent to the `2 normalization layer to generate ft(ri) for the

generalized triplet loss. Finally, the two losses are combined by the weight λs and

used for back propagation.

Regarding our hyper-parameters, we empirically set the feature dimension as 200,

the margin m and base margin mb as 0.2, and the weight λs as 0.8, with discussions

of the parameter tuning and sensitivity in the experiment section.

3.3 Experiments

In this section, we conduct thorough experiments to evaluate this proposed frame-

work on four fine-grained datasets with label structures. We aim to demonstrate that

our learned feature representations can discover similar instances at different levels of

relevance, without sacrificing the accuracy of differentiating fine-grained or subordi-

nate classes. To this end, CNNs are chosen as the baseline, owing to its tremendous

success in fine-grained image categorization. Note that we do not emphasize on the

comparison with part-based systems [130, 34, 125, 129], since our method does not

use any information from parts, i.e., the scope of the research is different. Partic-

ularly, we have evaluated the retrieval precision of four methods that can generate

fine-grained feature representation: 1) deep feature learning by triplet loss [90, 111],

2) triplet-based fine-tuning after softmax [83], i.e., not joint optimization, 3) our

multi-task learning framework, and 4) our framework with label structures. In terms

of the classification task, besides these four methods, we also report the accuracy of

using CNN with traditional softmax. We carefully follow the specifications from these

compared papers for their settings and parameters.

3.3.1 Stanford Car with Two-Level Hierarchy

The first experiment focuses on the efficacy of embedding hierarchical labels, using

the Stanford car dataset [50]. It contains 16,185 images (with bounding boxes) of 196
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Figure 3.5: Comparison of retrieval precision on the Stanford car, with two levels of
labels.

car categories, with 8,144 for training and the rest for testing. The categories, i.e.,

fine-grained class labels, are defined as make, model and year, such as Audi S4 Sedan

2012. Following [50], we have assigned each fine-grained label to one of nine coarse

body types, such as SUV, Coupe and Sedan (Fig. 3.3 in [50]), resulting in a two-level

hierarchy.

Fig. 3.5 shows the retrieval precision using feature representations extracted by

various CNNs, at both the fine-grained level and the coarse level. At the fine-grained

level, results from our multi-task learning methods are better than the others, i.e., at

least 13.5% higher precision at top-40 retrievals (using top-40 since each fine-category

has around 40 images). The reason is that the joint optimization strategy leverages

the similarity constraints via triplets, which can augment the training information,

assisting the network to reach better solutions. No matter using the traditional or

generalized triplets (i.e., without or with the label structures) in our framework, the

difference of precision is within 0.5%, which can be caused by the sampling strategies.

At the coarse level, our method without label structures also fails to achieve high pre-

cision at top-100 retrievals, while using generalized triplets significantly outperforms
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(a) Without Label Structures (b) With Label Structures

Figure 3.6: Visualization of features after dimension reduction. Different colors rep-
resents different coarse-level labels, and intensities (or transparency) from the same
color indicate fine-grained labels.

Table 3.1: Comparison of the classification accuracy on four fine-grained datasets,
from methods following the similar framework as ours. The best result in each column
is highlighted. Note that embedding label structures aims to enhance the retrieval
precision (our main contribution, shown in Fig. 3.5, 3.7, 3.8 and 3.9), while the
improvement of classification may depend on datasets. Overall our classification
results of joint optimization with or without label structures are 1.5-10% higher than
works under the similar framework.

Stanford Car Car-333 CUB200-2011 Food

Softmax with Loss 86.9% 87.9% 76.7% 87.1%
Traditional Triplets 78.7% 61.2% 72.4% 78.2%

Triplet FT after Softmax 83.0% 81.7% 75.3% 86.1%
Multi-Task W/O Struct. 88.4% 88.9% 78.2% 88.5%
Multi-Task W/ Struct. 88.3% 89.4% 78.8% 89.0%

the others, i.e., at least 12.4% higher precision, demonstrating the efficacy of our

embedding scheme. To provide insights of our promising results on this coarse-level

retrieval, we extract features from our multi-task learning framework using traditional

and generalized triplets, and visualize them in Fig. 3.6 after dimension reduction. Six

coarse-level classes are randomly chosen, and five fine-level classes are sampled from

each coarse one. The features from generalized triplets are consistently much better

separated than ones from traditional triplets, benefited from the embedding of label

structures.

Table 3.1 shows the classification accuracy of CNN methods using the Stanford Car
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dataset, comparing with methods following similar framework as ours. A fine-tuned

GoogleNet achieves 86.9%. Learning deep features via triplets alone [90, 111] attains

78.7%, which is worse than GoogleNet. The reason is that softmax with loss can ex-

plicitly minimize the classification error, while triplets attempt to implicitly separate

classes by constraining the similarity measures. Fine-tuning with triplets after the

softmax [83] also aims to integrate the classification and similarity constraints, same as

ours. This identification and verification framework achieves promising performance

in face recognition. However, different from our framework, it embeds the triplet loss

after learning a face classifier, i.e., not a joint optimization strategy as ours. This

may adversely affect the classification accuracy in fine-grained image categorization,

since triplet loss only implicitly constrains the classification error, which may not be

sufficient in further differentiating subordinate classes during fine-tuning. As a re-

sult, it achieves 83.0%, which is worse than the fine-tuned GoogleNet. Our multi-task

learning framework achieves 88.3% and 88.4% when jointly optimizing both types of

losses2, which are higher than the other methods for learning feature representations,

and among state-of-the-art that do not use parts. Note that our methods with or

without the label structures have very similar accuracy for the fine-grained classes,

since the purpose of embedding label structures is to discover similar instances at

different levels of relevance, i.e., our main contribution shown in (Fig. 3.5), not to

improve the fine-grained classification. It is possible that such augmented information

can benefit the classification process (demonstrated on the other datasets), while this

is not always guaranteed.

Note that part-based models still achieve the best classification accuracy (e.g.,

92.8% in [51] using around thirty parts), owing to the discriminative part regions and

augmented training data. However, these methods possibly require additional labels

and/or computational time to train networks for parts, while our framework takes
2Classification in our framework is achieved by using the extracted features with Support Vector

Machine (SVM) or k-nearest neighbors, both of which achieve very similar accuracy.
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Figure 3.7: Comparison of retrieval precision on the Car-333 dataset. Top-level means
the car make only. Mid-level represents both make and model. Fine-level denotes the
fine-grained labels of make, model and year range.

whole images as input to learn feature representations. We believe that two directions

of research, i.e., part-based methods and our framework, are both important, and can

potentially benefit each other.

3.3.2 Car-333 with Three-Level Hierarchy

The second experiment also investigates the hierarchical labels, but using a much

larger car dataset [118] to validate the scalability. These are end-user photos from

the Craigslist, so they are more naturally photographed. It contains 157,023 training

images and 7,840 testing images, from 333 car categories. The categories are defined

by make, model and year range. Note that two cars of the same model but from

different years are considered as different classes. The bounding boxes are generated

by Regionlets [112], which produces promising results in car detection. Different

from the Stanford car, this has a three-level hierarchy: 333 fine-grained labels are

grouped into 140 models by ignoring the difference of years, and then five makes (i.e.,

Chevrolet, Ford, Honda, Nissan, Toyota).

Fig. 3.7 shows the retrieval precision at these three levels. Since the training data



29

is around 20 times larger than the previous one, we show the precision upon top-2000

retrievals (note that the number of images in a fine-level class can be less than 2000).

The results are consistent with the ones on the Stanford car, demonstrating that the

strategy of generalized triplets is applicable to multi-level hierarchies. Specifically, our

method with label structures is at least 13.2% better than other methods in terms of

the top-2000 retrieval precision at the middle level, and 12.8% better at the top level.

This is also 7.2% better than ours without embedding structures at the top level,

proving the efficacy of our generalized triplets. In addition, such promising results

also demonstrate that the scalability of our methods such as generalized triplets is

sound. Regarding the classification accuracy (summarized in Table 3.1), GoogleNet

achieves 87.9%, the deep feature via traditional triplets attains 61.2%, fine-tuning

with triplets after softmax reaches 81.7%. It is worth mentioning that the deep

feature via triplets has considerably worse performance on this dataset, compared to

the results on the Stanford car. It indicates that this method does not have good

scalability for fine-grained image categorization, although it is proven to be effective

for other tasks such as verification and ranking [90, 111]. On the other hand, jointly

optimizing the softmax with loss can alleviate this issue even on this larger-scale

dataset, as it directly tackles the classification problem. Using this strategy, our

method achieves 89.4%, which is among state-of-the-art.

3.3.3 CUB200-2011 Dataset with Shared Attributes

The third experiment aims to examine the embedding of shared attributes, the

CUB200-2011 [104], which contains attributes information. Particularly, this dataset

has 5,994 training and 5,794 testing images, 200 classes and 312 attributes, with

bounding boxes provided. Fig. 3.8 shows the retrieval precision on this bird dataset

with respect to top-30 retrievals. In addition to evaluate on the fine-grained labels, we

also define a new level of relevance: two images are similar when they share at least

50% of the attributes, since bird dataset has a large amount of attributes. Our method
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Figure 3.8: Comparison of retrieval precision on the CUB200-2011 dataset [104].
Share Attribute Level means that two images are relevant if they share at least 50%
of the attributes, since bird dataset has a large amount of attributes.

by embedding shared attributes outperforms the others by 6% at the fine-grained level,

and 4% at the attribute level in terms of the precision. This is consistent with the

other datasets, i.e., label structures can significantly improve the retrieval precision at

different levels of relevance. The classification results are listed in Table 3.1. Note that

part-based methods can achieve above 85% accuracy [8], which is better than methods

without using parts. Again, our method has different aims. It is mainly designed

for learning the fine-grained feature representation, which considerably improves the

image retrieval precision at different levels of label structures (Fig. 3.8), while still

attaining promising classification accuracy among methods that do not rely on parts.

3.3.4 Food Dataset with Shared Attributes

The fourth experiment aims to examine our newly collected food dataset that

consists of ultra-fine-grained classes and rich class relationships. To generate this

dataset, we sent multiple data collectors to six restaurants, and they took photos of

most dishes during two months. In total, we acquired 37,086 food photos from 975

menu items, i.e., fine-grained class labels. In addition, we built a list of 51 ingredients,
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Figure 3.9: Comparison of retrieval precision on the food dataset. Share Attribute
Level means that two images are relevant if they share at least one attribute.

i.e., shared attributes, to precisely describe these dishes. This dataset is divided into

32,135 training and 4,951 testing images, and testing images are collected on different

days from the training, to mimic a realistic scenario by avoiding potential correlations

of taking photos in the same day (e.g., multiple photos from the same dish at the

same time cannot be used for both training and testing).

Fig. 3.9 shows the retrieval precision on this food dataset with respect to top-50

retrievals, as each category has around 20 to 50 images. In terms of the relevance

based on attributes, we define that two images are similar when they share at least

one attribute. Our method by embedding shared attributes outperforms the others by

5.5% at the fine-grained level, and 4.2% at the attribute level in terms of the precision.

Since the precisions of these methods are already above 80%, such improvement means

a reducing of 21.7% for the errors. Compared to our method without embedding

attributes, it is nearly the same performance at the fine-grained level, while 3.1%

better at the attribute level (reducing errors by 16.9%), demonstrating the efficacy of

the generalized triplets with adaptive margins. Note that the improvement may not

be as significant as on the other two datasets using hierarchical labels. The reason is
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Figure 3.10: Comparison of the convergence rate on the Stanford car dataset. The
first 400 epoches are shown for better visualization.

that the similarity measure for attributes is more subtle, i.e., two cars having different

coarse labels could be more distinguishable than two dishes sharing no attributes. In

terms of the classification accuracy (summarized in Table 3.1), we have achieved

89.0%, comparing to 87.1% by GoogleNet, 78.2% by learning the deep feature and

86.1% by fine-tuning with triplets after softmax. This is also a promising result,

considering that this challenging dataset is ultra-fine-grained.

3.3.5 Discussions

In this section, we discuss the convergence rate, parameter sensitivity and applica-

bility to other networks.

Convergence rate: Fig. 3.10 shows the convergence rate of these methods. Since

each triplet contains much less information compared to the one of using the label

directly (i.e., softmax with loss), their convergence rates can be dramatically different.

Particularly, using softmax with loss has much faster convergence rate than using

triplet loss. Our multi-task learning framework jointly minimizes both of them, so

it harvests augmented information from both sides, resulting in a fast convergence

rate as well. Overall, our methods converge after 800 epochs on the Stanford car, 150

epochs on the Car-333, and 600 epochs on the food dataset, which are reasonably

fast in practice.
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Parameter tuning: Our framework has one important parameter, the weight λs

to balance two types of losses, and setting λs to be 0 or 1 degenerates our framework

to deep feature learning by triplet loss [90, 111] or GoogleNet (softmax with loss),

respectively, which will either fail to differentiate fine-grained classes or lose the ability

to generate effective feature representations. Since softmax with loss may contain

more information than a triplet in each iteration, it is reasonable to assign a higher

weight to softmax, i.e., larger than 0.5. Our experiments show that the performance

is not sensitive to small variations to λs, i.e., within 0.8% difference in a range of

[0.55, 0.85]. Besides the weight, the feature dimension and the margin is also relevant

to the classification accuracy, while they are less important compared to the λs. From

our extensive experiments, we observe that our methods are also stable with respect to

their variations up to a certain range, e.g., within 2% difference for feature dimensions

from 128 to 512. Therefore, it is relatively easy to tune the hyper-parameters in our

framework. In fact, we use the same group of parameters on all datasets.

Other networks: Although we build our network based on GoogleNet for most

experiments, our proposed strategies are also applicable to other types of networks [53,

95]. For example, based on AlexNet [53], our framework with label structures achieves

79.6% classification accuracy and 82.2% precision at the coarse-level for top-100 re-

trievals, which are 3.0% and 9.9% higher than using the traditional AlexNet fine-tuned

on this dataset, demonstrating the efficacy of our strategies on a different network

architecture. Note that without fine-tuning, the DeCAF model [20] from AlexNet [53]

and Imagenet [17] has much worse performance than the fine-tuned one, due to the

difference between the generic Imagenet and the specific fine-grained datasets, which

confirms the challenges of this problem.

Retrieved images Fig. 3.11, Fig. 3.12, Fig. 3.13 and Fig. 3.14 show the top 1-5

retrieved images, and also images after top 100. In these figures, top 1-5 are usually

from the same fine-grained category, owing to their high classification accuracy. Im-
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ages after top 100 usually have no ones from exactly the same fine-level class, which

is not surprising since the number of images in each class is limited (e.g., around 40

in the Stanford car dataset). Without label structures, it is likely to retrieve visually

similar but semantically irrelevant images. Our method with label structures suc-

cessfully discovers relevant images at the coarse-level, e.g., the same body type in the

Stanford car dataset, or the same make in the car-333 dataset, proving that our fine-

grained feature representation is able to accurately differentiate subordinate classes,

and also effectively search similar images with respect to different levels of relevance.

We believe that our framework has various use cases, including the recommendation

of relevant products in e-commerce. For example, consumers may be interested in

food with similar ingredients, even if they are not the same dish (Fig. 3.14).

3.4 Summary

In this chapter, we introduce a multi-task learning framework to effectively generate

fine-grained feature representations by embedding label structures, such as hierarchi-

cal labels or shared attributes. In our method, the label structures are seamlessly

embedded in CNN through the proposed generalized triplets, which can incorporate

the similarity constraints at different levels of relevance. Such a framework retains

the classification accuracy for subordinate classes with subtle differences, and at the

same time considerably improves the image retrieval precision at different levels of

label structures on three fine-grained datasets, including a newly-collected benchmark

dataset for food. These merits warrant further investigating the embedding of label

structures for learning fine-grained feature representation.
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Figure 3.11: Retrieved images in the Stanford car dataset. Green means the same fine-
grained category, green-red means different fine-grained but the same coarse category
(the ratio between green and red indicates similarity scores), and red means different
coarse category. DeCAF [20] FT means that we fine tune the AlexNet [53] on this
dataset, and then extract features from its fc7 layer, i.e., feature representation from
softmax with loss. In other words, it only relies on the classification constraint for
training. Therefore, its retrieved images are not visually similar to the query, even
though they have the same fine-grained label. Contrarily, images retrieved by our
methods, which jointly optimize the triplet loss, are more visually similar.
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Figure 3.12: Retrieved images in the Car-333 dataset. Green means the same fine-
grained category, green-red means different fine-grained but the same coarse category
(the ratio between green and red indicates similarity scores), and red means different
coarse category.
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Figure 3.13: Retrieved images in the CUB200-2011 dataset. Green means the same
fine-grained category, green-red means different fine-grained but the same coarse cat-
egory (the ratio between green and red indicates similarity scores, i.e., Jaccard simi-
larity), and red means sharing no attributes.
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Figure 3.14: Retrieved images in the fine-grained food dataset. Green means the
same fine-grained category, green-red means different fine-grained but the same coarse
category (the ratio between green and red indicates similarity scores, i.e., Jaccard
similarity), and red means sharing no attributes.



CHAPTER 4: LEARNING FINE-GRAINED FEATURE REPRESENTATION

INVARIANT TO IRRELEVANT FACTORS

4.1 Motivation

In the previous chapter, we discussed how to embed hierarchical and shared at-

tributes information to learn better feature representation. However, there are lots of

factors that are not relevant to the categorization. Fig. 4.1 shows several examples in

face recognition task. Attributes like illumination, viewpoint, hair style are entirely

irrelevant to identification. But they may cause huge difference on the images of

the same person. Therefore, we propose a method based on triplet network to learn

features that are invariant to those type of attributes. This approach is orthogonal

to the method described in the previous chapter and could be used together to boost

the performance.

Figure 4.1: These images are from CelebA dataset [68]. Each column contains two im-
ages from the same person. They may look very different because of the illumination,
viewpoint, hairstyle, facial expression, etc.

Ideally, images from the same person should look more similar than images from

another person. In other words, features extracted from the images of the same person
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should be closer than the features extracted from the different person. But that is

not always the case because of those identification irrelevant attributes. For example,

people with the same hairstyle may look more similar than the same individual who

has a different hairstyle. So does the learned features. That is the central motivation

for proposing a method that could learn features without those attributes information.

The main idea about proposed method is finding a way to measure samples in

attribute space and try to push those who have the same attribute label but in

different categories away from each other.

4.2 Methodology

In this section, we introduce our proposed framework of learning robust features

that are invariant to the category irrelevant attributes. First, we describe the whole

framework that contains a triplet network and attribute prediction network (if needed).

Then, we demonstrate the generalized triplet loss in detail and discuss the sampling

strategy.

4.2.1 Overview

Fig. 4.2 has two networks. The one in the bottom takes the original images and their

attribute information as the input. Category labels are used in sampling procedure to

build triplets and attribute information is used in the loss computing. Usually, not all

datasets could have both class annotation and attribute annotation at the same time.

A simple solution is to train an attribute prediction network with another dataset

that has the attribute label in advance. Then we could send the target dataset to the

pre-trained attribute network and use the output as the attribute label.

4.2.2 Attribute Prediction Network

We could choose several classical network architecture (such as AlexNet [53], VG-

GNet [95], GoogLeNet [100]) for predicting the attributes. Loss type (i.e. format of

output g(·)) is decided by annotation type. E.g., softmax loss for multi class label,
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Figure 4.2: Dataset Z with desired attribute annotation is used to train a deep
network that can predict attribute label g(z). X is the dataset that we want to learn
its feature representation f(x) for. If it doesn’t contain attribute annotation, we could
use the output from attribute prediction network g(x) instead. Original images X
and their corresponding attribute information g(x) are sent to the triplet network to
generate the feature representation f(x).

Euclidean loss for continues label, cross entropy loss for multiple binary label, etc.

Generalization is always a big concern in this type of transfer learning module.

Since our main application is face representation learning, detection and alignment

are standard preprocessing steps for every dataset. So the changing of datasets do

not cause that much difference.

Also, we could train the attribute prediction network in multitasking fashion using

both Z dataset and X dataset. For dataset Z, we could use the supervised loss (i.e.

softmax loss, cross entropy loss, Euclidean loss) discussed before. For dataset X, we

could use unsupervised loss like pseudo label [60]. Since the dataset X is also involved

and contribute in training procedure, the learned network should be more suitable

for dataset X.

4.2.3 Generalized Triplet Loss for Invariant Feature Learning

Since category irrelevant attributes are also a part of the information of the original

image, if we train a deep neural network without considering the supervision of these
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attribute information, the learned feature may contain a lot of irrelevant factors that

do not contribute to the recognition task. In the worst case, samples belong to the

different categories but have same attribute label could be very close in the learned

feature space. Therefore, the basic idea of our proposed method is to push these type

of samples away from each other. Here is the loss function of the proposed method:

E(r, p, n,m′) =
1

2N

N∑
i=1

max{0,D(ri, pi)−D(ri, ni) +m′}. (4.1)

Following the notations in the previous chapter, the only difference here is the

margin part. Instead of using the fixed marigin, a dynamic margin is applied for each

triplet. Formulation of this margin is very similar to the triplet loss itself except it

is computed in the attribute space instead of the feature space. The new margin is

defined as:

m′ = mb + α(max{0,D(ri, pi)−D(ri, ni) +mg}). (4.2)

where mb is the base margin and could be set in the same way as the original triplet

loss, D(·, ·) is the distance in the attribute space, mg is the margin for attribute space,

α is used for balancing the base margin mb and the distances.

By defining this new margin, if the negative and reference samples are closer in

the attribute space than the positive and reference samples by a certain margin mg

(we could call them "hard triplet"), the margin used in triplet network should be

increased. The new margin makes the hard triplet more difficult to satisfy the con-

straint during the training. In other words, it increases the importance of hard triplet

implicitly.

mg plays the similar role in attribute space as the m′ in the feature space. But
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the strategy of setting these two margins are entirely different. Feature space is an

unknown space that we are trying to learn. However, we know data distribution in the

attribute space, because it is already given by the attribute label or the prediction

network. Therefore we could carefully design the mg and α according to the data

distribution to make it more reasonable.

There is another benefit of computing the dynamic margin in the attribute space.

Since the pre-computed margins indicate the difficulty of the triplets, we can utilize

them to build a proper sampling strategy. Basically, we want to train the easy triplets

first and increasing the difficulty during the training. So that the whole model will

converge to a relatively good point quickly, and also could handle the hard cases when

finished. It is the same idea as doing hard negative mining in the last few epochs.

But if we just sort triplets according to their difficulty (i.e. margin), it may be easily

biased to some hard categories and lead to a local minimum. Thus will destroy the

whole model in some time. However, we could solve it easily by mixing the hard

triplets with the normal ones. To sum up, having a measurement about the difficulty

of triplets is helpful for designing the sampling strategy.

4.3 Experiments

4.3.1 Evaluation of Synthetic Data

For proof of concept, we create a synthetic dataset by following formulation:

X = F (lid) + λG(lat, ρid,at) + E(σ). (4.3)

where F (lid) is vector related to the category label (perpendicular to each other),

G(lat, ρid,at) is the attribute vector with the parameter of correleation between cat-

egories and attributesρid,at, E(σ) is the Gaussian noise defined by σ. λ is a hyper-

parameter that controls the scale of attrubute vector G. Among these parameters,



43

ρid,at is the most important one which defines the relationship between the category

label and attributes. In implementation, if ρidi,atj = 0.8, it means 80% of the data

in category i has been added by jth attribute vector and this attribute is likely to

contribute to the category classification. While if ρidi,atj = 0.5, it means that they

are irrelevant.

In the preliminary experiment, we create 10 categories and only import one at-

tribute with correlation 0.5. The σ is set to 0.2 and λ is 0.6.

We evaluate our proposed method by measuring attribute prediction accuracy on

the original data, features learned by traditional triplet network and features learned

by our proposed method.
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 56.40%	



	


	



Plot by	


Category Label	



	


	



Plot by	


Attribute Label	



Figure 4.3: In the first row, we provide the attribute prediction accuracy. Then we
plot the feature spaces according to the category label and attribute label in the
second and third row.

Fig. 4.3 shows the experiment results. The prediction accuracy is decreasing, which

indicates the information that could be used in attribute classification become less

and less in learned features. When plotting by the category label, we could see that

both traditional triplet and proposed method could provide enough discriminabil-



44

ity for classification. However, when we do the dimensionality reduction with linear

discriminant model and color the data points with attribute label, the original data

could show roughly two parts, features learned by traditional triplet network start

overlapping, and in our proposed method, the yellow and blue dots are totally mixed.

In other sentence, features of our proposed method contain the least attribute infor-

mation.

4.3.2 Evaluation of Face Datasets

To evaluate our method in the real-world dataset, we employ Multi-PIE, a face

recognition dataset [39] and select a subset of it to verify our idea of learning attribute

invariant feature.

Multi-PIE dataset contains the images of the same person shot from different an-

gles. We use frontal pose and a small portion of randomly selected non-frontal poses

as the training set and create four testing sets with various level of difficulty (showed

in Fig. 4.4).

Level 1	



Level 2	



Level 3	



Level 4	



Figure 4.4: The difficulty is increasing from Level 1 to Level 4. Images in Level 1
testing set are the nearly frontal face. While images in Level 4 are shot from 90
degrees.

As shown in the table 4.1, our proposed method leads to a better recognition

accuracy in all four levels. Because it contains less irrelvant information and more
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Table 4.1: This table shows the recognition accuracy in four testing sets. The first
row contains the results of traditional triplet network, and the second row shows the
performance of our proposed method.

Level 1 Level 2 Level 3 Level 4

Triplet 92.86 88.87 78.99 60.50

Ours 94.64 91.28 80.99 63.13

focus on the identification information.

4.4 Summary

In this chapter, we introduce a method of learning robust features that are invariant

to the recognition irrelevant attributes. In our proposed method, attribute space is

used to define the hardness of the triplet and involved in computing the dynamic

margin. Such framework could provide higher classification accuracy by eliminating

the irrelevant information which has been verified in the experiments using both

synthetic data and face recognition data. This feature learning approach is sort of

orthogonal to the method introduced in the previous chapter and could be used jointly

for better results.



CHAPTER 5: LARGE-SCALE IMAGE INDEXING VIA SUPERVISED HASHING

5.1 Motivation

Given fine-grained feature representations extracted from large-scale databases,

it is important to analyze them efficiently, e.g., in real time. Such analysis may

include classification, categorization, segmentation, etc. In this chapter, we focus on

content-based image retrieval (CBIR) [16, 114, 55, 108, 72, 79, 56, 66, 56, 109, 67, 46]

, which has also been extensively investigated and applied in many applications,

including medical image analysis [14, 144, 75, 1, 57]. Given an image database with

labeled information, CBIR methods aim to retrieve and visualize images with feature

representations most relevant to and consistent with the query image [61]. Note CBIR

can also be used for classification purposes by considering the majority voting of the

retrieved images. In this context, developing computational and scalable algorithms

for large-scale image analysis is an urgent need when dealing with large databases.

In this chapter, we investigate hashing and binary coding methods for scalable

retrieval, and we focus on medical image analysis as the use case to validate our

algorithm. Particularly, we have built a scalable image-retrieval framework based

on the supervised hashing technique and validate its performance on several thou-

sand histopathological images acquired from breast microscopic tissues. Our method

leverages a small amount of supervised information in learning to compress high-

dimensional image feature vector into only tens of binary bits with the informative

signatures preserved. The supervised information is employed to bridge the semantic

gap between low-level image features and high-level diagnostic information, which

is critical to medical image analysis. In the rest of this chapter, we introduce the

overview of our image retrieval framework, and the details of the supervised hashing
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Figure 5.1: Framework of our large-scale image retrieval system. [138].

method. We also validate our framework in terms of both image classification and

retrieval on a breast-lesion data set containing 3121 images from 116 patients and

achieve an accuracy of 88.1% in a 10-ms query time for around 800 testing images

and a precision of 83% in retrieval.

5.2 Methodology

5.2.1 Overview of Scalable Image Retrieval Framework

Fig. 5.1 shows a framework for the scalable image retrieval-based diagnosis sys-

tem. It includes offline learning and run-time search. During the offline learning, we

first extract high-dimensional visual features from digitized histopathological images.

These features model texture and appearance information based on SIFT [70] and are

quantized with a bag-of-words [96]. The SIFT descriptor is an effective local texture

feature that uses the difference of Gaussian (DoG) detection result and considers the

gradient of pixels around the detected region. It can provide an informative descrip-

tion of cell appearance and is robust to subtle changes in staining color. It has been

used in both general computer vision tasks and histopathological image analysis.

Although these features can be used directly to measure the similarity among

images, computational efficiency is an issue, especially when searching in a large

database (e.g., exhaustively searching k-nearest neighbors). Therefore, we employ



48

a hashing method to compress these features into binary codes with tens of bits.

Such short binary features allow easy mapping into a hash table for real-time search.

Each feature is then linked to the corresponding training images using an inverted

index. During a run-time query, high-dimensional features are extracted from the

query image and then projected to the binary codes. With a hash table, searching for

nearest neighbors can be achieved in a constant time, irrespective of the number of

images. The retrieved images (via inverted indices of nearest neighbors) can be used

to interpret this new case or for decision support based on majority voting.

5.2.2 Kernelized and Supervised Hashing

In this section, we introduce the key module for histopathological image retrieval,

a kernelized and supervised hashing method.

Hashing Method: Given a set of image feature vectors X = {x1, · · · ,xn} ⊂

Rd (in our case, xi is the high-dimensional texture feature extracted from the ith

histopathological image), a hashing method aims to find a group of proper hash

functions h: Rd 7→ {1,−1}1, each of which generates a single hash bit to preserve

the similarity of original features. Searching k-nearest neighbors using tens of bits is

significantly faster than traditional methods (e.g., Euclidean distance–based brute-

force search), owing to constant-time hash-table lookups and/or efficient Hamming

distance computation. Note that hashing methods are different from dimensionality-

reduction techniques, since a fundamental requirement of hashing is to map similar

feature vectors into the same bucket with high probability. Fig. 5.2 visualizes desirable

hash functions as a hyperplane to separate higher-dimensional features. Therefore,

hashing methods need to ensure that the generated hash bits have balanced and

uncorrelated bit distributions, which leads to maximum information at each single

bit and minimum redundancy among all bits.

Kernelized Hashing: Kernel methods can handle practical data that are mostly

linearly inseparable. For histopathological images, linear inseparability is an impor-
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Figure 5.2: Visualization of desirable hash functions as a hyperplane.

tant constraint that needs to be taken into account when building hashing meth-

ods. Therefore, kernel functions should be considered in hashing methods h =

sgn(f(x)) [56] to map the feature vectors into higher-dimensional space. A kernel

function is denoted as κ: Rd × Rd 7→ R. The prediction function f : Rd 7→ R with

kernel κ plugged in is defined as

f(x) =
m∑
j=1

κ(x(j),x)aj − b, (5.1)

where x(1), · · · ,x(m) arem(m� n) feature vectors randomly selected from X , aj ∈ R

is the coefficient, and b ∈ R is the bias.

The bits generated from hash functions h using f aim to keep as much information

as possible, so the hash functions should produce a balanced distribution of bits, i.e.,∑n
i=1 h(xi) = 0. Therefore, b is set as the median of {

∑m
j=1 κ(x(j),xi)aj}ni=1, which

is usually approximated by the mean. Adding this constraint into Eq. 5.1, we obtain

f(x) =
m∑
j=1

(
κ(x(j),x)− 1

n

n∑
i=1

κ(x(j),xi)

)
aj = a>k̄(x), (5.2)

where a = [a1, a2, ..., am]>. k̄ : Rd 7→ Rm is k̄(x) =
[
κ(x(1),x)− µ1, · · · , κ(x(m),x)− µm

]>,
in which µj =

∑n
i=1 κ(x(j),xi)/n.

The vector a is the most important factor that determines hash functions. In tra-

ditional kernelized hashing methods, a is defined as a random direction drawn from a



50

Gaussian distribution [56], without using any other prior knowledge (i.e., no semantic

information). This scheme works well for natural images, especially scenes, because

of large differences in their appearance. However, such differences are very subtle in

histopathological images. For example, identifying subtle differences between benign

and actionable categories may require characterizing cytoplasmic texture or nuclear

appearance. This subtlety motivates us to leverage supervised information to design

discriminative hash functions that are suitable for histopathological image retrieval.

Supervised Hashing: Intuitively, hashing methods minimize the Hamming dis-

tance of “neighboring" image pairs (e.g., close in terms of the Euclidean distance in

the raw feature space). “Neighboring" in our case is defined by its semantic meaning,

i.e., whether the two images belong to same category or not. Therefore, supervised

information can be naturally encoded as similar and dissimilar pairs. Specifically, we

assign the label 1 to image pairs when both are benign or actionable, and −1 to pairs

when one is benign and the other is actionable (as shown in Fig. 5.3). Then, l (l� n)

feature vectors are randomly selected from X to build the label matrix S. Note that

we need to provide labels for only a small number of image pairs. Therefore, labeled

data are explicitly constrained by both semantic information and visual similarities,

whereas unlabeled data are mainly constrained by visual similarities and implicitly

affected by labeled data.

similar 

dissimilar unknown 

1	
   1	
   -­‐1	
  

1	
   1	
   -­‐1	
  

-­‐1	
   -­‐1	
   1	
  

label matrix 

Figure 5.3: Supervised information is encoded in the label matrix S.

Using this supervision scheme to bridge the semantic gap, r hash functions hk(x)rk=1
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are then designed to generate r discriminative hash bits based on Hamming distances.

However, direct optimization of the following Hamming distancesDh(xi,xj) = |{k|hk(xi) 6=

hk(xj), 1 ≤ k ≤ r}| is nontrivial. Therefore, code inner products can be used to sim-

plify the optimization process. As shown in [66], a Hamming distance and a code

inner product are actually equivalent.

coder(xi) ◦ coder(xj) = r − 2Dh(xi,xj) (5.3)

where coder(x) are r-bit hash codes and the symbol ◦ is the code inner product.

Therefore, the objective function Q to the binary codes Hl is defined as

min
Hl∈{1,−1}l×r

Q =

∥∥∥∥1

r
HlH

>
l − S

∥∥∥∥2
F

, (5.4)

where Hl =


h1(x1), · · · , hr(x1)

· · · · · ·

h1(xl), · · · , hr(xl)

 is the the code matrix of the labeled data Xl and

S is a label matrix with 1 for similar pairs and−1 for dissimilar pairs. ‖.‖F denotes the

Frobenius norm. Define K̄l as [k̄(x1), · · · , k̄(xl)]
> ∈ Rl×m, k̄(xi). The inner product

of code matrix Hl can be represented as HlH
>
l =

∑r
k=1 sgn(K̄lak)(sgn(K̄lak))> for

binarization. Therefore, the new objective function Q that offers a clearer connection

and easier access to the model parameter ak is

min
ak

Q(ak) =

∥∥∥∥∥
r∑

k=1

sgn(K̄lak)(sgn(K̄lak))> − rS

∥∥∥∥∥
2

F

(5.5)

This can be optimized using 1) spectral relaxation [114] to drop the sign functions

and hence convexify the object function, or 2) sigmoid smoothing to replace sgn()

with the sigmoid-shaped function. In our implementation, we employ the first strategy

to efficiently obtain a solution as the initialization, and use the second strategy to
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produce an accurate solution.

5.3 Experiments

5.3.1 Data Description

Breast-tissue specimens available for this study were collected on a retrospective

basis from the IU Health Pathology Lab (IUHPL) according to the protocol approved

by the Institutional Review Board (IRB) for this study. All the slides were imaged us-

ing a ScanScope R© digitizer (Aperio, Vista, CA) available in the tissue archival service

at IUHPL. 3121 images (around 2250 K pixels) were sampled from 657 larger region-

of-interest images (e.g., 5K×7K) of microscopic breast tissue, which were gathered

from 116 patients. 53 of these patients were labeled as benign (usual ductal hyper-

plasia (UDH)) and 63 as actionable (atypical ductal hyperplasia (ADH) and ductal

carcinoma in situ (DCIS)), based on the majority diagnosis of nine board-certified

pathologists. To demonstrate the efficiency of our method, one fourth of all patients

in each category were randomly selected as the test set and the remainder used for

training. Note that each patient may have different number of images. Therefore, the

number of testing images is not fixed. The approximate number is about 700-900 in

each testing process. All the experiments were conducted on a 3.40 GHz CPU with

4 cores and 16G RAM, in a MATLAB implementation.

In each image, 1500 to 2000 SIFT descriptors were extracted from key points de-

tected by DoG [70]. These descriptors were quantized into sets of cluster centers using

bag-of-words, in which the feature dimension equals the number of clusters. Specif-

ically, we quantize them into high-dimensional feature vectors of length 10,000, to

maximally utilize these millions of cell-level texture features. We provide both quali-

tative and quantitative evaluations for our proposed framework on two tasks, image

classification (i.e., benign vs. actionable category) and image retrieval, in terms of

accuracy and computational efficiency.
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5.3.2 Evaluation of Image Classification

In our system, classification is achieved using the majority vote of the top images

retrieved by hashing. We compare our approach with various classifiers that have

been widely used in systems for histopathological image analysis. Specifically, kNN

has often been used as the baseline in analyzing histopathological images [101, 122],

owing to its simplicity and proved lower bound, despite the inefficiency in large-scale

databases. The Bayesian method is another solution to ensemble statistics of all

extracted features and minimize the classification metric, which shows its efficacy in

classifying histopathological images [14]. Boosting methods are always employed to

combine multiple weak classifiers for higher accuracy [122, 22]. SVM with a non-linear

kernel is commonly used in histopathological images because of its efficiency and the

ability to handle linearly inseparable cases [102, 9, 77, 42]. For fair comparison, all

parameters of these compared methods were optimized by cross-validation.

In addition, we also compared our proposed method with several dimensionality-

reduction algorithms in terms of classification accuracy. Principal component analysis

(PCA) has been widely used in this area to preserve variance of original features [92].

Graph embedding is a non-linear dimensionality-reduction algorithm that performs

well in grading of lymphocytic infiltration in HER2+ breast cancer histopathology [3].

Since we use supervised information in generating hash functions, a supervised di-

mensionality reduction algorithm, neighborhood components analysis (NCA) [35],

was also chosen for our experimental comparisons.

Fig. 5.4 shows the quantitative results for the classification accuracy. Most methods

achieve better accuracy with higher-dimensional features. This is very intuitive, as

finer quantization of SIFT features usually provides richer information. In particular,

since the SIFT interest points cover most nuclear regions in images, fine quantiza-

tion (i.e., high-dimensional features) indicates analysis on a small scale. Exceptions

are the Adaboost and Bayestian methods, whose accuracy drops when the feature
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Figure 5.4: Comparison of classification accuracy with different dimensions of features
(from 100 to 10000).

dimensions increase. This indicates that high-dimensional features do not guarantee

the improvement of accuracy. An important factor is the proper utilization of such

information. For example, Adaboost is essentially a feature-selection method that

chooses only an effective subset of features for the classification. Therefore, it may

lose important information, especially in high-dimensional space, resulting in accu-

racy worse than that of our hashing method. Our method is also generally better

than kNN and its variations, owing to the semantic information (i.e., labels of similar

and dissimilar pairs in hashing) that bridges the semantic gap between images and

diagnoses. Note that our hashing method needs only a small amount of supervision –

in this case, similar or dissimilar pairs of 40% images. This is generally less than the

supervised information required by SVM in the training stage. It compares favorably

to all other methods when the feature dimension is larger than 1000. The overall

classification accuracy is 88.1% for 10, 000-dimensional features, 2% to 18% better

than other methods.

Fig. 5.5 compares the computational efficiency of these methods. With increasing

dimensionality the running time of some compared methods increases dramatically.
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Figure 5.5: Comparison of the classification running time (seconds) with different
dimensions of features, which means the average time of classifying hundreds of test
images.

When feature dimensionality reaches 10, 000, kNN needs 16 seconds to classify all

query images, and Adaboost needs 5 seconds. SVM, dimensionality-reduction meth-

ods, and the proposed method are much faster. However, the running time for SVM

increases with the feature dimensionality, as shown in the expanded view of Fig. 5.5.

In contrast, PCA, graph embedding, NCA, and ours achieve constant running time in

this data set owing to the fixed size of features after compression. Compared to other

dimensionality-reduction methods, our approach is about 10 times faster because of

the efficient comparison among binary codes. In addition, the running time of all

kNN-based methods increases with the number of images in a data set, as exhaustive

search is needed, while hashing-based methods can achieve O(1) efficiency using a

hash table. To summarize, the average running time of our method is merely 0.01

second for all testing images, which is 40 times faster than SVM and 1500 times faster

than kNN.

5.3.3 Evaluation of Image Retrieval

We have also conducted experiments on image retrieval using 10, 000-dimensional

features. The retrieval precision, evaluated at a given cut-off rank and considering

only the topmost results, is reported in Table 5.1, along with the query time and

memory cost. The results are quite consistent with the image classification. The
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Table 5.1: Comparison of retrieval precision for the top 10, 20, and 30 results (denoted
as P@10, P@20 and P@30, respectively), along with the memory cost of training
data and query time of all test images. Both mean values and the standard deviation
(STD) of 20 experiments are reported. The best precision in each row for benign and
actionable categories are highlighted.

kNN PCA NCA Graph Embedding Ours

benign actionable benign actionable benign actionable benign actionable benign actionable

P@10 0.779 0.687 0.762 0.705 0.799 0.697 0.672 0.487 0.836 0.830

P@20 0.773 0.653 0.758 0.681 0.800 0.689 0.673 0.486 0.839 0.829

P@30 0.770 0.631 0.755 0.667 0.800 0.685 0.670 0.480 0.837 0.833

STD 0.024 0.028 0.020 0.012 0.011

Time (s) 15.77 10.07 10.04 10.03 <0.01

Memory 134.58MB 0.65MB 0.65MB 0.65MB 0.01MB

mean precision of the hashing method is around 83%, and the standard deviation

is 1.1%, which is much better than PCA [92], graph embedding [3] and NCA [35].

In most cases, the precision of our method is at least 6% better than the others,

except the NCA. Our method is around 3.5% better than NCA on benign cases. To

demonstrate statistical significance, we perform t-test for the precision obtained by

NCA and by the proposed method on benign cases, under the null hypothesis using a

significance level of 0.05. The p-values are found as 3.6×10−6, 3.2×10−6 and 5.7×10−6

at the range of top 10, 20 and 30 retrievals, respectively, demonstrating that precision

values achieved by the proposed technique are indeed significantly better than NCA

on the benign cases. In addition, our method is around 14% better than NCA in the

actionable cases, resulting much higher average precision. In fact, most traditional

methods produce such highly unbalanced results as NCA does, i.e., the retrieval

precision of the benign category is much higher than that of the actionable one. In

contrast, our method does not have this problem, owing to the supervised information

and the optimization for balanced hash bits. Our framework is also computationally

more efficient than traditional methods. The query time of our hashing method is

a thousand times faster than kNN and ten times faster than other dimensionality-

reduction methods. Note that our method takes a constant time when using the hash

table, independent of the number of feature dimensions and the number of samples.
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(a) Query (b) Retrieved Images

Figure 5.6: Four examples of our image retrieval (query marked in red and in the
first column, and retrieved images marked in blue). The first two rows are benign;
the last two rows are actionable.

Furthermore, the memory cost is also considerably reduced (10, 000 times less than

that of kNN). Therefore, this method is more applicable to large-scale databases

(millions of images) than are other methods.

Fig. 5.6 shows our image-retrieval results. The top five relevant images are listed for

each query image. The differences between certain images in different categories are

very subtle. Our accurate results demonstrate the efficacy of the proposed method.

Specifically, the features capturing local texture and appearance are very robust to

various image sizes, cell distributions, and occlusions by the blood. The supervised

information also improves the retrieval precision by correlating binary code with di-

agnosis information. These retrieved images are clinically relevant in potential (i.e.,

retrieved images belong to the same category as the query image) and thus can be

useful for decision support.
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5.3.4 Discussions

We discuss the benefits of the algorithm, parameter sensitivity, implementation

issues, and limitations here.

Regarding the choice of high-dimensional features, around 1000 dimensions have

usually been used for quantization by many previous studies, a number that has been

proved to achieve good accuracy. Using lower-dimensional features (e.g., 100) is not

accurate, while using higher-dimensional features is not efficient, and the improve-

ment of accuracy could be marginal. This is consistent with our experimental results

shown in Fig. 5.4, i.e., a performance jump from 100 to 1000 dimensions. On the other

hand, when analyzing histopathological images, using high-dimensional features (e.g.,

10,000) implies nearly cell-level analysis, which is actually beneficial for the accuracy,

even though the accuracy gain is not as big as jumping from 100 to 1000. There-

fore, we have introduced hashing methods to harvest the benefits of high-dimensional

features, without sacrificing computational efficiency.

benign 

actionable database 

Feature Extraction Hashing 

Figure 5.7: Visualization of compressed hash bits. Their distribution well separates
the begin and actionable categories.

Regarding supervised information, it significantly improves classification accuracy
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thanks to the discriminative modeling of the hashing function in an attempt to bridge

the semantic gap. In Fig. 5.7, we randomly selected 100 samples from benign and

actionable categories and visualized their 48 hash bits. The distributions of hash

bits are clearly different between the two categories, explaining the high accuracy

for classification. We also quantitatively investigated the benefits of using supervised

information. Specifically, we evaluated our method when using 10% to 100% super-

vision or training labels, as shown in Fig. 5.8. The gain in accuracy is very high

(from 71% to nearly 87%) when the ratio of training labels increases from 10% to

40%, which demonstrates the efficacy of using supervised information. For more than

40% labels, the improvement of accuracy becomes marginal, reaching 88% accuracy

when using 100% labels. This means that our method needs only a small portion of

labels to achieve high accuracy, owing to the unified framework of coupling Hamming

distance optimization and supervised information.
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Figure 5.8: Classification accuracy when using 10% to 100% supervision.

One of the most significant benefits of our proposed framework is the computational

and storage efficiency. Comparing 48 bits with Hamming distance or hash table is

substantially faster than using high-dimensional features. However, a natural ques-

tion is whether the length of hashing bits affects the accuracy and retrieval precision.

Therefore, we evaluated the effect of hashing-bit lengths ranging from 1 to 48. Theo-

retically, 1 bit is sufficient for binary classification purpose, i.e., actionable vs. benign.
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In fact, as shown in Fig. 5.9, using 8 bits already achieves high accuracy for classifica-

tion. However, such short code is not discriminative enough for image retrieval. For

example, 8 bits can represent only 64 hash values. This means that nearly 50 images

are mapped into the same hash value, which is an unordered list with zero Hamming

distance. Retrieving them may not be beneficial for decision support. On the other

hand, using more than 64 bits adversely affects computational efficiency, since the

hash table is no longer an option owing to memory constraint. Therefore, we chose

48 bits for this task, ensuring sound accuracy for classification and high relevance for

retrieval without sacrificing efficiency. We expect that our scalable framework can be

efficiently used for real-time querying of very large databases.
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Figure 5.9: Classification accuracy with different lengths of hashing bits.

In the task of image retrieval, our method effectively retrieves images with mor-

phological and architectural image patterns similar to the query image, as shown in

Fig. 5.6. This can be explained by the capability of the hashing function in leverag-

ing both diagnostic information and visual similarities. In other words, hash bits can

simultaneously encode local textural features with semantic labels.
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5.4 Summary

In this chapter, we introduce a scalable image-retrieval framework for intelligent

histopathological image analysis. Specifically, we employed hashing to achieve efficient

image retrieval and presented a kernelized and supervised hashing approach for real-

time image retrieval. The potential applications of our framework include image-

guided diagnosis, decision support, education, and efficient data management.



CHAPTER 6: LARGE-SCALE IMAGE INDEXING VIA WEIGHTED HASHING

6.1 Motivation

In the previous chapter, we introduce the supervised hashing for histopathological

image retrieval, by indexing high-dimensional features with binary codes. The high-

dimensional features approximately represent cell-level information, while it is still

different from exhausively analyzing each individual cell. Such thorough examina-

tion is necessary in many use cases. Take the lung histopathological image analysis

as an example, it is important to differentiate the adenocarcinoma and squamous

carcinoma, both of which belong to the non-small cell carcinoma. The main chal-

lenge of this task is the need of analyzing all individual cells for accurate diagnosis,

since the difference between the adenocarcinoma and squamous carcinoma highly de-

pends on the cell-level information, such as its morphology, shape and appearance.

Although rigorously measuring and analyzing each individual cell is important and

can assist pathologists for accurate diagnosis, a region-of-interest (ROI) image may

contain hundreds or thousands of cells, and analyzing each cell is computationally in-

efficient using traditional methods, if not infeasible. Using cell segmentation and cell

retrieval via hashing offers a potential solution, i.e., designing an automatic framework

for the large-scale cell-level analysis of histopathological images, which can segment

and retrieve millions of cells in real-time by hashing. However, due to the imperfect

segmentation methods and several inherent limitations of hashing methods, directly

applying hashing methods, including supervised hashing, may have issues. Therefore,

we propose to improve the traditional hashing methods by incorporate weights, to

emphasize important hash values. Based on this imporvement, we conduct extensive

experiments to differentiate adenocarcinoma and squamous carcinoma, using a large
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Figure 6.1: Overview of our proposed framework, based on robust cell segmentation
and large-scale cell image retrieval. The top row is the online classification, and the
bottom row is the offline learning. Yellow boundaries mean squamous carcinoma,
green means adenocarcinoma, and blue means unknown types to be classified.

dataset containing thousands of lung microscopic tissue images acquired from hun-

dreds of patients. Our proposed framework achieves 87.3% accuracy in real-time, by

retrieving a massive database of half million cells extracted from this dataset.

In the rest of this chapter, we first introduce overview of our framework for cell-

level histopathological image analysis. Then, we elaborate the limitations of using

traditional hashing methods for this cell retrieval task, including the supervised and

kernelized hashing [66]. After that, we elaborate the details of our improvements

by incorporating weights into the hashing framework. We also provide thorough

evaluations and comparisons of our method in the experiment section.

6.2 Methodology

6.2.1 Overview

Fig. 6.1 shows the overview of our proposed framework, which includes offline

learning and online classification. During offline learning, our system automatically

detects and segments all cells from thousands of images, resulting in half million of cell

images. Regarding cell detection and segmentation, we employ the single-pass voting
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(SPV) scheme [84, 119]1. After that, texture and appearance features are extracted

from these cell images and are compressed as binary codes, i.e., tens of bits. These

compressed features are stored in hash table for constant-time access even among

millions of images.

During online classification, our system segments all cells from a testing image,

and same types of features are extracted accordingly and compressed using hashing

methods. Then, we perform large-scale cell image retrieval for each segmented cell to

classify its category. Finally, the classification result of the testing image is decided

by the majority logic, i.e., voting from all cells’ classification. Using this scheme,

our system can maximally utilize the cell-level information without sacrificing the

computational efficiency, owing to the large-scale retrieval via hashing methods. We

also design a content-aware weighting scheme to improve the accuracy of traditional

hashing methods, based on the observations and priors in histopathological image

analysis. In the following sections, we introduce the details of large-scale cell image

retrieval and weighting techniques.

6.2.2 Hashing with Content-Aware Weighting

Given all cells that are segmented from a testing image, our system conducts cell-

level classification by exhaustively comparing each cell with all cells in the training

database, using hashing-based large-scale image retrieval and majority voting. The-

oretically, using hashing methods by indexing in a hash table enables constant-time

searching, no matter how many training samples are used. However, it also requires

that the length of the binary code is sufficiently short, to store in physical memory

for fast access. Given limited number of hash bits, an inevitable limitation is that a

large number of images may be mapped into the same hash value. In other words,

it may result in an unordered set for the same hash value, where exact or near-exact
1Cell detection and segmentation is not a focus of this dissertation, so we do not provide details.

Please refer to [120].
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matches may be obscured within a large-scale database due to noisy features, similar

instances, or erroneous segmentations. This is particularly true for histopathological

image analysis, since the differences of cells are very subtle, and accurate segmen-

tation for all cells is challenging. Consequently, the accuracy of cell classification

is adversely affected when choosing the majority of cells mapped into a hash value,

and the accuracy of whole image classification is also reduced. Fig. 6.2 illustrates

this inherent limitation of hashing methods in analyzing histopathological images.

Half million of cells are mapped into 12 bits, which mean 212 = 4096 hash values.

The entries (i.e., hash values) in each hash table are illustrated according to the dis-

tribution of cells mapped into them, such as the ratio between two categories (i.e.,

adenocarcinoma and squamous carcinoma) and the number of cells mapped into that

entry. Ideally, each hash value should be discriminative enough, i.e., the number of

one type should dominate the other. However, many of them actually contains similar

amount of both types of cells, i.e., around 0.5 ratio. In other words, the indecisive

hash values are usually around the 0.5 ratio, indicating equal opportunity for either

category. Classification based on such hash value is likely inaccurate. The small cir-

cles in Fig. 6.2 are also not reliable, since only few cells are mapped there, which can

be easily affected by the image noise or erroneous segmentation. A potential solution

is to identify reliable hash values and omit indecisive one, by heuristically select or

prune them via feature selection. However, this may involve tuning parameters and

lack the consistent measures. Furthermore, there is no guarantee that the hash values

from feature selection algorithms are sufficiently discriminative for classification.

Therefore, we introduce a probabilistic-based formulation to solve these problems

in a principled way, i.e., design a content-aware weighting scheme to re-weight the im-

portance of hash values. Specifically, we aim to assign probability scores to each hash

value, based on its ability to differentiate different categories. Such “soft assignment"

upon hash values can significantly boost the classification accuracy using hashing-
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Figure 6.2: Illustration of the cell distribution in a hash table. X-axis means the hash
value using 12 bits, ranging from 0 to 4095, and y-axis means the ratio between two
types of cells, ranging from 0 to 1. Each circle means a set of cells mapped to the
hash value located in the centroid, its size means the number of cells, and the color
map visualizes the ratio of two types of cells, same as the y-axis values.

based retrieval. In our framework, kernelized and supervised hashing (KSH) [66] is

employed as the baseline method to generate initial hash values, because of its efficacy

and success in histopathological image analysis [137]. The content-aware weighting

scheme can significantly enhance the differentiation ability of hash values generated

by this baseline. Intuitively, since cells in certain hash values are not accurate for

classification, their weights should be diminished during the process. On the other

hand, discriminative hash values should be emphasized, e.g., circles nearby 1 or 0

ratios. In addition, small sizes of circles are not preferred and their weights should

be reduced, as they can be easily affected by many factors such as unusual staining

color, inaccurate segmentation results and image noise in our use case. Therefore,

we designed two metrics to emphasize discriminative hash entries, with generalized

notations for multi-class classification:

• Support: Given a specific hash value H, the number of cells mapped into H
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should be considered. This indicates that such amount of cells are used for the

classification of this hash value, each with contribution 1, while all remaining

cells are irrelevant, i.e., contribution 0. Therefore, we name this metric as

“support", which is conventionally referred to the set of numbers having non-

zero values. Denote SH = {cell : h(cell) = H} as the set of cells mapping into a

specific hash value H, where h(cell) is the hash value of the cell. The support

WH of the hash value H is defined as:

WH =
|SH |∑2r−1

m=0 |Sm|
(6.1)

where |S| is the number of element in set S and r is the number of hash bits,

representing 2r hash values.

• Certainty: Instead of assigning a certain category label to each hash value, we

should consider the confidence of such categorization and assign a probabilistic

label to each hash value. Therefore, this “certainty" term defines the probability

of a cell belonging to the ith category when its hash value is H:

P (Li|H) =
P (Li, H)

P (H)

=
|{cell : l(cell) = Li, cell ∈ SH}|

|SH |

(6.2)

where l(cell) is the label of a cell image and Li means the ith label or category.

We combine these two weights to advocate the importance of highly discriminative

hash values with sufficient support. Specifically, during the training process, WH and

P (Li|H) can be computed for all hash values. The category of a whole testing image

is decided by:

arg max
i

∑
cell∈query

WHcellP (Li|Hcell) (6.3)

where Hcell is the hash value of the cell belonging to the query (testing) image.
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Figure 6.3: Workflow of the weighted hashing-based classification. Starting from an
unknown image to be categorized, each segmented cell is classified by searching the
most similar instances. Their results are combined via the content-aware weighting
scheme, predicting the categorization for the whole image.

This content-aware weighting scheme effectively solves the issues of using hashing-

based retrieval methods for classification. The importance of each cell is decided

case-specifically, and accumulating the results of all cells provide accurate classifica-

tion for the whole image. In addition, this framework is able to accommodate new

samples efficiently. The updating scheme can be achieved by storing not only the

weights but also the number of cells in each category. Given new samples, we can

update the cell number in their mapped hash entries, re-calculate and update the

weights based on such information. Regarding the computational complexity, the

overhead during the testing stage lies in the weighted combination, which is negligi-

ble as demonstrated in the experiments. Therefore, this process is computationally

efficient, same as traditional hashing methods. Fig. 6.3 summarizes the classification

procedure using weighted hashing. The whole framework includes cell segmentation,

hashing, and retrieval. The probability scores are assigned to each hash entry, and

they are aggregated within the whole image for the final classification. Benefited from

this thorough analysis of each individual cell, this framework can achieve promising

accuracy without sacrificing the efficiency.
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6.3 Experiments

6.3.1 Data Description

In this section, we conduct extensive experiments to evaluate our weighted hash-

ing with multiple features for cell-level analysis. Our dataset is collected from the

Cancer Genome Atlas (TCGA) [76], including 57 adenocarcinoma and 55 squamous

carcinoma. 10 patches with 1712 × 952 resolution, i.e., region-of-interests (ROIs),

are cropped from each whole slide scanned pathology specimens, by consulting with

certified pathologists. Generally, the ROIs mainly consist of cancer cells. The lym-

phocytes regions which have different visual patterns than the representative tumor

regions are avoided. All the data have been prepared and labeled based on the inde-

pendent confirmation of the pathologists. In each image, our algorithm detects and

segments around 430 cells. In total, 484,136 cells are used in to evaluate the system

(195,467 adenocarcinoma cells and 288,669 squamous carcinoma cells). We evaluate

the efficacy of our proposed framework in terms of the classification accuracy and

computational efficiency. The evaluations are conducted on a 3.40GHz CPU with 4

cores and 16G RAM, in MATLAB and C++ implementation.

6.3.2 Evaluation of Image Classification

In our framework, the image classification (i.e., differentiation of adenocarcinoma

and squamous carcinoma) is conducted by examining all cells using hashing-based

large-scale image retrieval with content-aware weighting. We compare our hashing-

based classification scheme with several effective classifiers employed for histopatho-

logical image analysis. Following the convention, k-nearest neighbor (kNN) method

is used as the baseline of analyzing histopathological images [101], owing to its sim-

plicity and efficacy. Dimensionality reduction methods such as principal component

analysis (PCA) are effective approaches to improve the computational efficiency and

have been employed to analyze histopathological images using high-dimensional fea-
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tures [92]. Support Vector Machine (SVM) is a supervised classification method and

widely used in grading systems for breast and prostate cancer diagnosis [21]. We

also compare with the traditional kernelized and supervised hashing (KSH) [66]. For

fair comparison, same features are used for all compared methods, and their param-

eters and kernel selections are optimized by cross-validation. Specifically, we use an

RBF kernel with optimized gamma value for SVM, and k=9 for kNN. Regarding di-

mensionality reduction, PCA compresses the original features (i.e., 144 dimensional

texture feature base on Histogram of Oriented Gradients [15]) into 12 floats, and our

hashing method generates 12 bits from each original feature.

Table 6.1: Quantitative comparisons of the classification accuracy (the mean value
and standard deviation) and running time. Compared methods include kNN [101],
PCA [92], SVM [21], KSH [66] and ours.

Adeno Squam Average Time(s)

kNN 0.309± 0.058 0.710± 0.072 0.514 2605.80

PCA 0.458± 0.084 0.954± 0.057 0.711 460.20

SVM 0.929± 0.085 0.704± 0.092 0.816 46.82

KSH 0.861± 0.076 0.763± 0.084 0.812 1.22

Ours 0.887± 0.069 0.854± 0.062 0.873 1.68

To conduct the comparison, we randomly select 20% patients as testing data

(around 230 images, or 96, 000 cells), and use the images from remaining patients

as training. This procedure is repeated for 30 times to obtain the mean and standard

deviation. Table 6.1 shows the quantitative results of the classification accuracy. De-

spite the efficacy of kNN in many applications, it fails to produce reasonable results

in this challenging problem, due to the large variance of cell images, noise in such

large-scale database and unbalanced number of two classes. PCA reduces the fea-

ture dimensions, which could be redundancy information or noise. The classification

accuracy is significantly improved, while still only around 70%. SVM incorporates

supervised information, i.e., labels of adenocarcinoma and squamous carcinoma. Not
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surprisingly, it largely outperforms unsupervised methods, with an accuracy of 81.6%.

KSH has the same merit of using supervised information, and hence achieves compa-

rable accuracy as SVM. Our proposed hashing method not only utilizes kernels and

supervision, but also is equipped with the content-award weighting scheme to solve

the inherent problems of hashing methods. Therefore, it outperforms all other meth-

ods, with an accuracy of 87.3%. In addition, the standard deviation of our algorithm

is also relatively small, indicating the stableness of our algorithm. Table 6.1 also

shows the individual accuracy of adenocarcinoma and squamous carcinoma. Besides

the superior accuracy, our method also achieves the most balanced results for both

cases, which is important to this clinical problem as both cases should be recognized

and sacrificing the accuracy of one case is not acceptable.

Table 6.1 also compares the computational efficiency of these methods, i.e., the

testing time for classification. Our hashing method compresses each feature into

merely 12 bits, resulting in a hash table with 4096 values, which allow instant access

to images mapped into any hash value. Therefore, KSH and our method is real-

time, i.e., around 1-2 seconds. Our method uses content-aware weighting and is

slightly slower than KSH, due to a small overhead for computing the weighted average.

Such computational overhead (i.e., 0.4s) is negligible in practice. Other methods are

all significantly slower, ranging from 46 to 2600 seconds. This is the main factor

preventing previous methods from being used for cell-level analysis. Note that the

detection and segmentation takes around tens of seconds for each image, and feature

extraction takes half second, both of which are the same for all compared methods.

The overall speed is quite efficient for practical use.

6.3.3 Discussions

In this section, we discuss the parameters, implementation issues and some limita-

tions of our system, and their potential solutions.

Since the image classification relies on the features extracted from the segmented
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cells, inaccurate segmentation may adversely affect the classification accuracy. Nonethe-

less, our system still generates accurate classification results, because of two reasons:

1) Most segmented cells are correct, which is reflected by the high precision and re-

call. 2) More importantly, the weighting scheme reduces the importance of unreliable

features, most of which are extracted from inaccurate segmentations. Particularly,

this weighting scheme ensures the robustness of the classification module, making it

less sensitive to the segmentation precision. Therefore, our content-aware hashing

method not only benefits the classification accuracy, but also is compatible with the

paradigm of cell-level analysis, given the fact that most existing cell segmentation

methods are still not perfect.
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Figure 6.4: Classification accuracy of our content-aware hashing and KSH [66], using
different number of hashing bits (2 to 20).

Our hashing-based classification has few parameters that are easy to choose and

not sensitive. This is critical to an automatic framework for histopathological image

analysis, since tuning sensitive parameters is infeasible when conducting this large-

scale and cell-level analysis. Particularly, our hashing-based classification only has

one parameter, i.e., the number of hash bits. In our experiments, we have used 12 bits

for classification, indicating 4096 hash values. Theoretically, using one bit is already
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sufficient for binary classification purpose, i.e., differentiation of two types of cells.

However, as shown in Fig. 6.2, some hash values may not be reliable and have to

be pruned, due to image noise and several inaccurate segmentations. Therefore, it is

necessary to use many hash values, which also enable multi-label classification. On the

other hand, it is also desired to have enough samples mapped into each hash value,

so the support weight W s
i can be effective and benefit the classification accuracy.

Therefore, the number of hash bits should not be very large either. In fact, using 20

hash bits can result in one million different hash values, sufficiently representing half

million cells in our dataset. In addition, using a large number of hash bits (e.g., 64

bits) may reduce the computational and memory efficiency, since the hash table is no

longer an option owing to the memory constraint. Therefore, we have chosen 12 bits

for this task, mapping half million cells to 4096 hash values and hence ensuring sound

accuracy of classification without sacrificing the computational and memory efficiency.

This is also demonstrated by our experiments shown in Fig. 6.4. Note that our

model is able to generate accurate results within a certain range of parameter values,

i.e., not that sensitive to parameters, making it suitable for the large-scale analysis.

Furthermore, Fig. 6.4 also shows that our content-aware weighting scheme consistently

improves the hashing method for classification accuracy, when using different number

of hash bits.

Currently, we have validated our framework on around one thousand images with

half million cells. We expect to apply it on much larger databases (e.g., hundreds of

millions cells) or whole slide images in the future. In this case, parallel computing

may be necessary to ensure the computational efficiency. Our framework for cell-level

analysis can be straightforwardly parallelled. For example, the whole slide image can

be divided as multiple patches, and each patch can be processed by one node of the

cluster for cell segmentation and classification independently. Note that if holistic

features are used, e.g., architecture features, such parallel computing can only be
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applied on the cell detection and segmentation, but not the feature extraction, which

needs to analyze the whole image simultaneously. In general, the computational

efficiency of our framework is very promising and has the potential to handle large-

scale databases.

6.4 Summary

In this introduce, we introduce a weighted hashing method to index and retrieve

large-scale image databases, and employ this method to analyze histopathological im-

ages at cell-level. This weighting scheme alleviates the intrinsic problems of traditional

hashing methods. It significantly improves the diagnosis accuracy of a challenging

clinical problem, i.e., differentiating two types of lung cancers as the adenocarci-

noma and squamous carcinoma using histopathological images. We envision that this

large-scale image retrieval framework can provide useable tools to assist clinicians’ di-

agnoses of cellular images and support efficient data management. Note that although

this weighting scheme is specifically designed for cell-level analysis of histopatholog-

ical images, resulting promising performance in this challenging application, it may

also benefit the classification accuracy of other applications such as natural image

categorization.



CHAPTER 7: FUSING MULTIPLE INDEXED FEATURES FOR RERANKING

7.1 Motivation

In previous chapters, we discussed using hashing based method to index and retrieve

large-scale image databases. In order to boost the performance further, we need to

fuse multiple types of information.

Generally, fusion can be carried out on the feature or rank-levels. In our context

(i.e., differentiation of cancers), this means to combine different types of features in

a histogram [131, 32] for learning-based classification, or to fuse the ordered results

from CBIR methods [28, 132] and then classify via majority voting, both of which are

fundamental problems. Unfortunately, many existing fusion methods still have limi-

tations, especially in terms of the robustness, scalability, and generality. For example,

feature-level fusion usually concatenates multiple feature vectors (e.g., the histogram

of color features or texture features) and produces a new feature vector that has a

higher dimensionality. However, when these features are heterogeneous (e.g., having

significantly different dimensions and characteristics such as low-dimensional archi-

tecture feature [3] and high-dimensional appearance feature [137] in histopathological

image analysis), feature-level fusion may not be able to effectively integrate their

strengths. On the other hand, rank-level fusion combines different retrieval results

(i.e., a list of retrieved images), obtained from using different types of features. This

approach usually needs to decide which features should have an important role in the

retrieval, which is quite difficult to determine online for a specific input with a large

database.

In this chapter, we focus on the rank-level fusion of local and holistic features.

Particularly, we use content-based image retrieval to discover relevant instances from
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Figure 7.1: Overview of the graph-based feature fusion for image retrieval [136]. Both
holistic architecture feature and local appearance feature are extracted and employed
for image retrieval. The retrieval results are fused via the graph-based framework to
improve the accuracy. Note that majority voting does not work in this example, since
two ranks have no intersection.

an image database, which can be used to infer and classify the new data. Given

image ranks (i.e., retrieval results) obtained from different features, a data-driven

and graph-based method is employed for accurate, robust and efficient fusion, by

evaluating the quality of each rank online [132].

7.2 Methodology

7.2.1 Overview

Fig. 7.1 shows the overview of our framework. From detected cells, we extract both

holistic architecture features [3] and high-dimensional local appearance features [137]

(i.e., 10,000 dimensions), both of which are used for image retrieval. To ensure the

computational efficiency and scalability, the high-dimensional feature is compressed

as tens of hash bits [137, 66]. Combining these complementary features is an intuitive

approach to improve the accuracy. However, directly combining them at the feature-

level may not be effective due to dramatically different representations. An alternative

is to fuse them at the rank-level, i.e., retrieved images. The critical issue is how to

measure and compare the quality of ranks on the fly, since fusion process should favor

the rank with higher quality. As the similarity scores of retrieved results may vary
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largely among queries and are not comparable between different ranks, a reasonable

approach is to measure the consistency among the top candidates. Therefore, for each

query image, we construct a weighted undirected graph from the retrieval results of

one rank, where the retrieval quality or the relevance is modeled by the weights on

the edges. These weights are determined by the overlap ratio (i.e., Jaccard similarity

coefficient) of two neighborhood image sets. Then we fuse multiple graphs to one and

perform a localized PageRank algorithm [81] to rerank the retrieval results according

to their probability distribution. As a result, the fused retrieval results tend to be

consistent among different feature representations.

7.2.2 Fusion of Heterogeneous Features

Based on the architecture feature and local appearance feature, k-nearest neighbors

(kNN) algorithm can be naturally used to find similar cases of the input image. Since

each feature can generate one set of results, i.e., a rank list, we conduct rank-level

fusion for such heterogeneous features. This procedure includes graph construction,

graph consolidation, and sub-graph selection, as shown in Fig. 7.2.

7.2.2.1 Graph Construction

Given a list of ranked results (i.e., retrieved images) by one type of features, such as

the architecture or appearance feature, we assume that the consensus degree among

the top candidates reveals the retrieval quality. Therefore, we first build a weighted

graph using the constraints derived from the consensus degree, i.e., shared kNN.

Setting the query as the graph centroid, we use its kNN as the first layer of nodes in

the graph, and kNN of kNN as the second layer. Note that this setting is different

from traditional methods using reciprocal kNN [86, 132], since such information is

usually not available for medical image analysis, i.e., query is not included in the

database. Neighboring nodes are connected by edges, whose weight can be defined

as the ratio of their common neighbors, i.e., Jaccard similarity, which reflects the



78

confidence of including the connected nodes into the retrieval results. The weight

between node i and i′ is defined as:

w(i, i′) = J(i, i′) =
|Nk(i) ∩Nk(i′)|
|Nk(i) ∪Nk(i′)|

(7.1)

where | · | denotes the cardinality, Nk(i) and Nk(i′) include the images that are the

top-k retrieved candidates using i and i′ as the query, respectively. The range of edge

weights is from 0 to 1, with J(i, i′) = 1 implying that these two histopathological

images share exactly the same set of neighbors, in which case we assume that they

are highly likely to be similar.
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Figure 7.2: Procedures of our graph fusion, including graph construction (from two
ranks, represented as blue and red graphs), graph consolidation (purple to represent
nodes appearing in both graphs) and sub-graph selection.

7.2.2.2 Graph Consolidation

Multiple graphs, denoted as Gm = (V m, Em, wm), are constructed from the re-

trieved results of holistic and local features. They can be fused together in a natural

way, by appending new nodes or consolidating edge weights of existing nodes in the

resulting graph:

G = (V,E,w),with V = ∪mV m, E = ∪mEm,

and w(i, i′) =
∑
m

wm(i, i′) (7.2)
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where wm(i, i′) = 0 for (i, i′) /∈ Em. The rational of this fusion process is that though

the rank lists or the similarity scores in different methods or features are not directly

comparable, their Jaccard coefficients are comparable as they reflect the consistency

of two nearest neighborhoods. In other words, this measure of consensus degree does

not rely on the similarity scores, so it can be used and compared for different retrieval

results from holistic and local features, ensuring the generality.

7.2.2.3 Sub-Graph Selection

After the candidates from both holistic and local features are fused via the graph

consolidation, we need to rank them as per the relevance and select the most similar

ones. This can be achieved by conducting a link analysis on the resulting graph,

which is treated as a network. This is therefore equivalent to the PageRank problem

[81] that discovers the probabilities of the nodes to be visited. Since this network is

built by considering the retrieval relevance, naturally a node is more important or

relevant if it has a higher probability to be visited. To compute the equilibrium state

of the graph, we define the |V | × |V | transition matrix P as Pii′ = w(i, i′)/ deg(i)

for (i, i′) ∈ E, and 0 otherwise, where deg(i) means the degree or the number of

neighbors for a specific node i. This matrix is row-stochastic, and the summation of

each row equals to one. In the intelligent surfer model [87], a “surfer" probabilistically

moves along the edges of G to different nodes, based on the transition matrix P. We

denote pti as the probability for the surfer to be at node i at a time t and pt = (pti).

The equilibrium state of p is obtained by the query-dependent PageRank vector as

a stationary point using the power method, indicating the relevance or similarity to

the query image.

Once p has converged, the histopathological images are ranked according to their

probabilities in p, where a higher probability reflects a higher relevance to the query in

this equilibrium state of the graph. Using fused results, i.e., a new list of histopatho-

logical images from both features, majority voting can be employed for cancer differ-
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entiation. To summarize, fusing heterogeneous features via graphs can significantly

improve the performance of each individual feature, without sacrificing the scalability

and generality.

7.3 EXPERIMENTS

7.3.1 Experimental Setting

Histopathological images of breast-tissue for this study were collected from the IU

Health Pathology Lab (IUHPL) according to the protocol approved by the Institu-

tional Review Board (IRB) [24]. All the slides were imaged using a ScanScope digi-

tizer (Aperio, Vista, CA) available in the tissue archival service at IUHPL. 120 images

(around 2250K pixels for each image) were gathered from 40 patients, 3 images per

patient. 20 of these patients were labeled as benign and others are actionable, based

on the majority diagnosis of nine board-certified pathologists. Leave-one-patient-out

validation is used to evaluate the accuracy of classification. All parameters are tuned

using cross validation to optimize the final result. The experiments were conducted

on a 3.40 GHz CPU with 4 cores and 16G RAM, in a MATLAB implementation.

7.3.2 Evaluation of Individual Features

We employ two types of features, holistic and local, as the baseline methods for

fusion. For holistic feature [3], the Voronoi diagram, Delaunay triangulation, mini-

mum spanning tree are constructed and the nuclear density features are computed

to model “architecture" of breast tissue, resulting in a 48-dimensional feature vector

for each image. For local feature, 1500 to 2000 SIFT descriptors [70] are extracted

from each image by detecting key points to describe the cell appearance. These de-

scriptors are quantized into sets of cluster centers using bag-of-words [97], in which

the feature dimension equals the number of clusters. Specifically, we quantize them

into high-dimensional feature vectors with length 10,000. For efficiency and scala-

bility we compress the high dimensional feature into 48 binary bits with kernelized
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Figure 7.3: Quantitative comparison of the classification accuracy. We compare the
performance of each single feature, and the fusion of both holistic and local features.

supervised hashing (KSH) algorithm [66]. Note that this binary representation is

not compatible with the holistic feature. We first evaluate the performance of im-

age retrieval using single feature such as the holistic feature, high-dimensional local

feature and compressed binary feature. kNN and Support Vector Machine (SVM)

are used as the baselines that have been widely employed for histopathological image

analysis [3, 101, 92].

As shown in Fig. 7.3, both holistic and local features are able to generate reasonable

results, i.e., around 80% accuracy. The only exception is that kNN fails in handling

high-dimensional local feature, achieving only 74.17% accuracy. After compression

with KSH, the binary codes improve the accuracy to 81.67%. In addition, using

hashing representation also significantly improves the computational efficiency, i.e.,

thousands times faster than using original high-dimensional features, ensuring the

scalability. Since both features are fairly effective but not perfect, and they should be

complementary as they model different scales of information, it is natural to combine

them for higher accuracy.
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7.3.3 Evaluation of Feature Fusion

We compare our fusion framework with several classical methods for fusion, includ-

ing both feature and rank-level approaches. For feature-level fusion, we normalize and

concatenate different features into a histogram [32] and classify them with either kNN

or SVM. Since the dimensions of features are largely different, it is not likely to ob-

tain reasonable results without doing normalization. Therefore, normalization ensures

that each feature contributes “equally" to the concatenated one [71]. For rank-level

fusion, we combine different retrieval results via rank aggregation [28] and classify

the query image with majority voting. Rank aggregation has been employed to fuse

image retrieval results from similar types of features [44].

As shown in Fig. 7.3, concatenation of feature vectors marginally improve the clas-

sification accuracy, i.e., around 1-3% better than the baseline, due to the dramatically

different characteristics of heterogeneous features. On the other hand, rank aggre-

gation also merely improves the accuracy by 3%, since there may be no intersection

among the top candidates retrieved by the local and holistic features. Our graph

fusion method determines online which features should play a major role in the re-

trieval, in an unsupervised scheme. As a result, our fusion of heterogeneous features

significantly improves the accuracy by around 10%, i.e., achieving 91.67% overall ac-

curacy on this challenging problem. In addition, since this fusion process is applied on

the retrieved results, i.e., a small subset of the whole dataset, it is very efficient and

only takes milliseconds, ensuring promising scalability. Fig. 7.4 shows some retrieval

results using our framework.

7.3.4 Discussions

In this section, we discuss the parameters and implementation issues of our system.

Our fusion method only has one important parameter, i.e., k for constructing the

graphs. As shown in Fig. 7.5, the accuracy is related to this parameter. For example,



83

Figure 7.4: Retrieval results using our fusion framework. The first image in each row
is the query, and the remaining ones are retrieval results. Top two rows are actionable
cases, and bottom two rows are benign.

choosing a very small value for k (e.g., 3) indicates strong constraints of including

nodes in the graph. Therefore, the resulting graphs usually do not have enough nodes.

In other words, our graph fusion and reranking method cannot find enough candidates

to select from. On the other hand, choosing a large value for k (e.g., 25) looses the

constraints, so the graphs may have many nodes that are loosely related with the

query. This also adversely affects the accuracy. Therefore, it is desired to choose a

proper value of k. The motivation is to have sufficient and related candidates (i.e.,

nodes in graphs) incorporated into each graph, so our graph fusion algorithm can

combine their strengths. Fig. 7.5 shows that our fusion results are consistently better

than each of the baseline, In fact, it can achieve promising results (i.e., more than

90.0%) in a certain range of values, indicating that our method is not sensitive to

small variations of k.

In our experiment, graph-based rank-level fusion significantly outperforms feature-

level fusion and rank aggregation. However, this is not guaranteed and depends on the

properties of features. When two types of features are heterogeneous, their histograms

may have dramatically different properties, e.g., sparsity and dimensions. Our method
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Figure 7.5: Evaluation of parameter k when constructing the graphs, ranging from 3
to 25.

becomes particularly useful, as it adaptively decides the quality of retrieval results

on the fly. On the other hand, if these features have similar characteristics, e.g.,

features from multiple color spaces, they tend to generate similar ranks such that

majority voting can be effective. In this case, rank aggregation or concatenation of

histograms are able to achieve accurate results for fusion. We have conducted an

experiment on fusing sub-types of architecture features. In fact, this 48-dimensional

architecture feature is a concatenation of four holistic features, i.e., Voronoi features,

Delaunay features, Minimum Spanning Tree features and Nucluear features, whose

accuracy are 69.2%, 70.8%, 77.5% and 78.3%, respectively. Both feature-level fusion

and our graph fusion achieves 80.0% accuracy, indicating that these four features are

not heterogeneous.

7.4 Summary

In this chapter, we investigate the fusion of heterogeneous features for histopatho-

logical image analysis. Specifically, we employ a graph-based framework to fuse the

holistic architecture feature and the local appearance feature that are generated from

the cell detection results. These features are complementary but have dramatically

different characteristics and representations, causing difficulties for traditional fusion
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methods. Our framework can measure online the retrieval quality by the consistency

of the neighborhoods of candidate images. Therefore, the fused results significantly

improve the baseline using the single feature.



CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTION

In this dissertation, we introduce solutions for large-scale and fine-grained image

recognition. Particularly, we propose a series of methods in dealing with feature rep-

resentation learning, indexing, and fusion, all of which are critical to the performance

of this task. First, we learn feature representation through deep learning, which can

be used to effectively differentiate fine-grained differences. Then, feature indexing via

hashing or binary coding is utilized to enable real-time retrieval among large-scale

databases. Finally, a rank-level feature fusion method is employed for more accu-

rate retrieval results. We have validated our methods on synthetic images, natural

images, and medical images. Regarding synthetic images, we have solid experiment

results show that the feature we learned is invariant to the irrelevant factors. Re-

garding natural images, we have achieved state-of-the-art performance on four public

fine-grained datasets. Regarding medical images, we have conducted the cell-level

analysis of histopathological images, based on our large-scale feature indexing frame-

work. The reason to investigate medical images is that they are ultra-fine-grained

data and also have the significant impact, since it has many potential applications,

including image-guided diagnosis, decision support, education in medical school, and

efficient data management. For example, the efficient retrieval of relevant cases from

medical databases will provide useable tools to assist clinicians’ diagnoses and support

efficient medical image data management, such as picture archiving and communica-

tion systems (PACS). More specifically, it provides efficient reasoning in large-scale

medical image databases using techniques for scalable and accurate medical image

retrieval in potentially massive databases to provide real-time querying for the most

relevant and consistent instances (e.g., similar morphological profiles) for decision
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Figure 8.1: Example of incorporating domain knowledge from pathologists into the
loop of hashing model updating.

support. In addition to the resulting tools for medical image processing, disease de-

tection, and information retrieval, their use will allow for the exploration of structured

image databases, in medical education and training.

In the future, we will focus on the intelligent interaction and visualization that

integrates expert feedback and automated algorithms for efficient fine-grained im-

age recognition [47, 115]. For example, in medical images, this system can support

decision-making and provide a comprehensive understanding of the query results and

supports semantic interaction functions. Interaction and visualization are another

important yet challenging tool for effective computer aided diagnosis and medical

data mining. To achieve our ultimate goal of assisting domain experts for efficient

decision making and reasoning using fine-grained image databases, we plan to incor-

porate users in the loop to incorporate domain knowledge of experts. Fig. 8.1 shows
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an example of interactively analyzing histopathological images. While the automated

methods are designed to process millions of images, human users can only reasonably

work with much fewer images at a time. The main challenge will be bridging the

gap between the large-scale automated algorithms with the knowledge that domain

experts can provide, but at much smaller scales. We plan to design a visual analy-

sis system with a set of feature-based query, visualization, comparison, and learning

methods for revealing the relevant image features and relationships. This system will

support the analysis of the retrieved relevant image sets, extracted image features,

and feature similarities among the retrieved image sets, and will provide efficient in-

teraction methods to enhance the query algorithms and obtain finer-tuned results.

To summarize, the components of large-scale retrieval and intelligent interaction will

be coordinated for the purpose of scalable and interactive mining to provide a se-

mantic interface between users and data through the language of feature similarities.

The overall framework will be designed to address the challenges of both scalable and

interactive mining using fine-grained image databases, and each aspect of the design

and development will be driven by the goals of efficiency, robustness, and effective

integration of user input.



89

REFERENCES

[1] H. C. Akakin and M. N. Gurcan. Content-based microscopic image retrieval
system for multi-image queries. IEEE Transactions on Information Technology
in BioMedicine, 16(4):758–769, 2012.

[2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for
attribute-based classification. In IEEE International Conference on Computer
Vision and Pattern Recognition, pages 819–826. IEEE, 2013.

[3] A. N. Basavanhally, S. Ganesan, S. Agner, J. P. Monaco, M. D. Feldman,
J. E. Tomaszewski, G. Bhanot, and A. Madabhushi. Computerized image-
based detection and grading of lymphocytic infiltration in HER2+ breast cancer
histopathology. IEEE Transactions on Biomedical Engineering, 57(3):642–653,
2010.

[4] T. Berg and P. N. Belhumeur. Poof: Part-based one-vs.-one features for fine-
grained categorization, face verification, and attribute estimation. In IEEE
International Conference on Computer Vision and Pattern Recognition, pages
955–962. IEEE, 2013.

[5] T. Berg, J. Liu, S. W. Lee, M. L. Alexander, D. W. Jacobs, and P. N. Bel-
humeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 2019–2026. IEEE, 2014.

[6] T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and charac-
terization from noisy web data. In European Conference on Computer Vision,
pages 663–676. Springer, 2010.

[7] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101–mining discriminative
components with random forests. In European Conference on Computer Vision,
pages 446–461. Springer, 2014.

[8] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species cat-
egorization using pose normalized deep convolutional nets. arXiv preprint
arXiv:1406.2952, 2014.

[9] J. C. Caicedo, A. Cruz, and F. A. Gonzalez. Histopathology image classification
using bag of features and kernel functions. In Artificial Intelligence in Medicine,
pages 126–135. Springer, 2009.

[10] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic segmentation and part
localization for fine-grained categorization. In IEEE International Conference
on Computer Vision, pages 321–328. IEEE, 2013.



90

[11] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of
image similarity through ranking. The Journal of Machine Learning Research,
11:1109–1135, 2010.

[12] Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep domain
adaptation for describing people based on fine-grained clothing attributes. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 5315–5324, 2015.

[13] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In IEEE International Conference
on Computer Vision and Pattern Recognition, volume 1, pages 539–546. IEEE,
2005.

[14] D. Comaniciu, P. Meer, and D. J. Foran. Image-guided decision support system
for pathology. Machine Vision and Applications, 11(4):213–224, 1999.

[15] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE International Conference on Computer Vision and Pattern Recognition,
volume 1, pages 886–893, 2005.

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Annual ACM Symposium on
Computational Geometry, pages 253–262. ACM, 2004.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[18] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained
recognition. In IEEE International Conference on Computer Vision and Pattern
Recognition, pages 580–587. IEEE, 2013.

[19] S. Ding, L. Lin, G. Wang, and H. Chao. Deep feature learning with relative
distance comparison for person re-identification. Pattern Recognition, 2015.

[20] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition.
In T. Jebara and E. P. Xing, editors, International Conference on Machine
Learning, pages 647–655, 2014.

[21] S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski. Auto-
mated grading of breast cancer histopathology using spectral clustering with
textural and architectural image features. In IEEE International Symposium
on Biomedical Imaging, pages 496–499, 2008.

[22] S. Doyle, M. Feldman, J. Tomaszewski, and A. Madabhushi. A boosted bayesian
multiresolution classifier for prostate cancer detection from digitized needle
biopsies. IEEE Transactions on Biomedical Engineering, 59(5):1205–1218, 2012.



91

[23] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering localized
attributes for fine-grained recognition. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 3474–3481. IEEE, 2012.

[24] M. M. Dundar, S. Badve, G. Bilgin, V. Raykar, R. Jain, O. Sertel, and
M. N. Gurcan. Computerized classification of intraductal breast lesions us-
ing histopathological images. IEEE Transactions on Biomedical Engineering,
58(7):1977–1984, 2011.

[25] J. G. Dy, C. E. Brodley, A. Kak, L. S. Broderick, and A. M. Aisen. Unsupervised
feature selection applied to content-based retrieval of lung images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(3):373–378, 2003.

[26] I. El-Naqa, Y. Yang, N. P. Galatsanos, R. M. Nishikawa, and M. N. Wernick.
A similarity learning approach to content-based image retrieval: application to
digital mammography. IEEE Transactions on Medical Imaging, 23(10):1233–
1244, 2004.

[27] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010.

[28] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classifi-
cation via rank aggregation. In ACM SIGMOD, pages 301–312. ACM, 2003.

[29] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber. Using deep learning to enhance
cancer diagnosis and classification. In International Conference on Machine
Learning, 2013.

[30] D. J. Foran, L. Yang, et al. Imageminer: a software system for comparative anal-
ysis of tissue microarrays using content-based image retrieval, high-performance
computing, and grid technology. Journal of the American Medical Informatics
Association, 18(4):403–415, 2011.

[31] J. Fu, Y. Wu, T. Mei, J. Wang, H. Lu, and Y. Rui. Relaxing from vocabulary:
Robust weakly-supervised deep learning for vocabulary-free image tagging. In
IEEE International Conference on Computer Vision, pages 1985–1993, 2015.

[32] P. Gehler and S. Nowozin. On feature combination for multiclass object classifi-
cation. In IEEE International Conference on Computer Vision, pages 221–228.
IEEE, 2009.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE International
Conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.

[34] C. Goering, E. Rodner, A. Freytag, and J. Denzler. Nonparametric part transfer
for fine-grained recognition. In IEEE International Conference on Computer
Vision and Pattern Recognition, pages 2489–2496. IEEE, 2014.



92

[35] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
components analysis. Advances in Neural Information Processing Systems,
2004.

[36] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe. Deep convolutional ranking
for multilabel image annotation. arXiv preprint arXiv:1312.4894, 2013.

[37] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to
learning binary codes. In IEEE International Conference on Computer Vision
and Pattern Recognition, pages 817–824. IEEE, 2011.

[38] H. Greenspan and A. T. Pinhas. Medical image categorization and retrieval
for PACS using the GMM-KL framework. IEEE Transactions on Information
Technology in BioMedicine, 11(2):190–202, 2007.

[39] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-pie. Image
and Vision Computing, 28(5):807–813, 2010.

[40] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discrimi-
native metric learning in nearest neighbor models for image auto-annotation.
In IEEE International Conference on Computer Vision, pages 309–316. IEEE,
2009.

[41] A. Hanbury, H. Müller, G. Langs, and B. H. Menze. Cloud-based evaluation
framework for big data. In FIA book 2013, Springer LNCS, 2013.

[42] P.-W. Huang and Y.-H. Lai. Effective segmentation and classification for HCC
biopsy images. Pattern Recognition, 43(4):1550–1563, 2010.

[43] P. Jaccard. The distribution of the flora in the alpine zone. New Phytologist,
11(2):37–50, 1912.

[44] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek. Accurate image search using
the contextual dissimilarity measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(1):2–11, 2010.

[45] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In ACM international conference on Multimedia, pages 675–678. ACM,
2014.

[46] K. Jiang, Q. Que, and B. Kulis. Revisiting kernelized locality-sensitive hashing
for improved large-scale image retrieval. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 4933–4941, 2015.

[47] T. Karaletsos, S. Belongie, C. Tech, and G. Rätsch. When crowds hold priv-
ileges: Bayesian unsupervised representation learning with oracle constraints.
Stat, 1050:16, 2015.



93

[48] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In IEEE
International Conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[49] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-
grained image categorization: Stanford dogs. In CVPR Workshop on Fine-
Grained Visual Categorization (FGVC), 2011.

[50] J. Krause, J. Deng, M. Stark, and L. Fei-Fei. Collecting a large-scale dataset
of fine-grained cars. 2013.

[51] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without
part annotations. In IEEE International Conference on Computer Vision and
Pattern Recognition, pages 5546–5555, 2015.

[52] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for
fine-grained categorization. In ICCV Workshops, pages 554–561. IEEE, 2013.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[54] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embed-
dings. In Advances in Neural Information Processing Systems, pages 1042–1050,
2009.

[55] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable im-
age search. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2009.

[56] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 34(6):1092–1104, 2012.

[57] A. Kumar, J. Kim, W. Cai, M. Fulham, and D. Feng. Content-based medical
image retrieval: A survey of applications to multidimensional and multimodality
data. Journal of Digital Imaging, 26(6):1025–1039, 2013.

[58] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and hash
coding with deep neural networks. IEEE International Conference on Computer
Vision and Pattern Recognition, 2015.

[59] G. Langs, H. Müller, B. H. Menze, and A. Hanbury. VISCERAL: Towards large
data in medical imaging - challenges and directions. In MCBR-CDS MICCAI
workshop, volume 7723 of Springer LNCS, 2013.

[60] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. 2013.



94

[61] T. M. Lehmann, M. O. Güld, T. Deselaers, D. Keysers, H. Schubert, K. Spitzer,
H. Ney, and B. B. Wein. Automatic categorization of medical images for content-
based retrieval and data mining. Computerized Medical Imaging and Graphics,
29(2):143–155, 2005.

[62] S. Liao and S. Z. Li. Efficient psd constrained asymmetric metric learning
for person re-identification. In IEEE International Conference on Computer
Vision, pages 3685–3693, 2015.

[63] D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep localization, alignment and
classification for fine-grained recognition. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 1666–1674, 2015.

[64] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained
visual recognition. IEEE International Conference on Computer Vision, 2015.

[65] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly optimizing 3d model
fitting and fine-grained classification. In European Conference on Computer
Vision, pages 466–480. Springer, 2014.

[66] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with
kernels. In IEEE International Conference on Computer Vision and Pattern
Recognition, pages 2074–2081, 2012.

[67] X. Liu, J. He, D. Liu, and B. Lang. Compact kernel hashing with multiple
features. In ACM international conference on Multimedia, pages 881–884. ACM,
2012.

[68] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV),
2015.

[69] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In IEEE International Conference on Computer Vision and
Pattern Recognition, pages 3431–3440, 2015.

[70] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

[71] A. Makadia, V. Pavlovic, and S. Kumar. Baselines for image annotation. In-
ternational Journal of Computer Vision, 90(1):88–105, 2010.

[72] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel space. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 3344–3351. IEEE, 2010.

[73] H. Müller, A. Geissbühler, and P. Ruch. ImageCLEF 2004: Combining image
and multi-lingual search for medical image retrieval. InMultilingual Information
Access for Text, Speech and Images, pages 718–727. Springer, 2005.



95

[74] H. Müller and J. Kalpathy-Cramer. The ImageCLEF medical retrieval task at
ICPR 2010–information fusion. In IEEE International Conference on Pattern
Recognition, pages 3284–3287. IEEE, 2010.

[75] H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler. A review of content-
based image retrieval systems in medical applications-clinical benefits and fu-
ture directions. International Journal of Medical Informatics, 73(1):1–23, 2004.

[76] National Cancer Institute. The cancer genome atlas retrieved from https://tcga-
data.nci.nih.gov, 2013.

[77] K. Nguyen, A. K. Jain, and R. L. Allen. Automated gland segmentation and
classification for gleason grading of prostate tissue images. In IEEE Interna-
tional Conference on Pattern Recognition, pages 1497–1500. IEEE, 2010.

[78] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In IEEE International Conference on Computer Vision, pages
1520–1528, 2015.

[79] M. Norouzi and D. M. Blei. Minimal loss hashing for compact binary codes. In
International Conference on Machine Learning, pages 353–360, 2011.

[80] M. Norouzi, D. M. Blei, and R. R. Salakhutdinov. Hamming distance metric
learning. In Advances in Neural Information Processing Systems, pages 1061–
1069, 2012.

[81] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. 1999.

[82] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 3498–3505. IEEE, 2012.

[83] O. M. Parkhi, A. Vedaldi, A. Zisserman, A. Vedaldi, K. Lenc, M. Jaderberg,
K. Simonyan, A. Vedaldi, A. Zisserman, K. Lenc, et al. Deep face recognition.
British Machine Vision Conference, 2015.

[84] X. Qi, F. Xing, D. Foran, and L. Yang. Robust segmentation of overlapping
cells in histopathology specimens using parallel seed detection and repulsive
level set. IEEE Transactions on Biomedical Engineering, 59(3):754 –765, mar.
2012.

[85] Q. Qian, R. Jin, S. Zhu, and Y. Lin. Fine-grained visual categorization via
multi-stage metric learning. In IEEE International Conference on Computer
Vision and Pattern Recognition, pages 3716–3724, 2015.

[86] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor:
Accurate object retrieval with k-reciprocal nearest neighbors. In Computer
Vision and Pattern Recognition, pages 777–784. IEEE, 2011.



96

[87] M. Richardson and P. Domingos. The intelligent surfer: Probabilistic com-
bination of link and content information in pagerank. In Advances in Neural
Information Processing Systems, pages 1441–1448, 2001.

[88] A. J. Schaumberg, M. A. Rubin, and T. J. Fuchs. H&e-stained whole slide deep
learning predicts spop mutation state in prostate cancer. bioRxiv, page 064279,
2016.

[89] F. Schnorrenberg, C. Pattichis, C. Schizas, and K. Kyriacou. Content-based
retrieval of breast cancer biopsy slides. Technology and Health Care, 8(5):291–
297, 2000.

[90] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for
face recognition and clustering. IEEE International Conference on Computer
Vision and Pattern Recognition, 2015.

[91] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional
networks. arXiv preprint arXiv:1312.6229, 2013.

[92] O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N.
Gurcan. Histopathological image analysis using model-based intermediate rep-
resentations and color texture: Follicular lymphoma grading. Journal of Signal
Processing Systems, 55(1-3):169–183, 2009.

[93] G. Sharma and B. Schiele. Scalable nonlinear embeddings for semantic category-
based image retrieval. IEEE International Conference on Computer Vision,
2015.

[94] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised discrete hashing. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 37–45, 2015.

[95] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[96] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In IEEE International Conference on Computer Vision,
pages 1470–1477. IEEE, 2003.

[97] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In IEEE International Conference on Computer Vision,
2003.

[98] Y. Song, W. Cai, and D. Feng. Hierarchical spatial matching for medical image
retrieval. In ACM International Workshop on Medical Multimedia Analysis and
Retrieval, pages 1–6. ACM, 2011.



97

[99] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by
joint identification-verification. In Advances in Neural Information Processing
Systems, pages 1988–1996, 2014.

[100] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. IEEE
International Conference on Computer Vision and Pattern Recognition, 2015.

[101] A. Tabesh, M. Teverovskiy, H.-Y. Pang, V. P. Kumar, D. Verbel, A. Kotsianti,
and O. Saidi. Multifeature prostate cancer diagnosis and gleason grading of
histological images. IEEE Transactions on Medical Imaging, 26(10):1366–1378,
2007.

[102] O. Tuzel, L. Yang, P. Meer, and D. J. Foran. Classification of hematologic malig-
nancies using texton signatures. Pattern Analysis and Applications, 10(4):277–
290, 2007.

[103] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. Girshick, J. Kannala,
E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss, et al. Understanding ob-
jects in detail with fine-grained attributes. In IEEE International Conference
on Computer Vision and Pattern Recognition, pages 3622–3629. IEEE, 2014.

[104] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California
Institute of Technology, 2011.

[105] C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and S. Belongie. Simi-
larity comparisons for interactive fine-grained categorization. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, pages 859–866.
IEEE, 2014.

[106] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck. Deep learning for
identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718, 2016.

[107] D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang. Multiple granular-
ity descriptors for fine-grained categorization. In IEEE International Conference
on Computer Vision, pages 2399–2406, 2015.

[108] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable
image retrieval. In IEEE International Conference on Computer Vision and
Pattern Recognition, pages 3424–3431. IEEE, 2010.

[109] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-
scale search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(12):2393–2406, 2012.

[110] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash for indexing
big data-a survey. Proceedings of the IEEE, 104(1):34–57, 2016.



98

[111] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and
Y. Wu. Learning fine-grained image similarity with deep ranking. In IEEE
International Conference on Computer Vision and Pattern Recognition, pages
1386–1393. IEEE, 2014.

[112] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection.
In IEEE International Conference on Computer Vision, pages 17–24. IEEE,
2013.

[113] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin
nearest neighbor classification. The Journal of Machine Learning Research,
10:207–244, 2009.

[114] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in Neural
Information Processing Systems, pages 1753–1760, 2008.

[115] M. J. Wilber, I. S. Kwak, D. Kriegman, and S. Belongie. Learning concept
embeddings with combined human-machine expertise. In IEEE International
Conference on Computer Vision, pages 981–989. IEEE, 2015.

[116] L. Wolf. Deepface: Closing the gap to human-level performance in face veri-
fication. In IEEE International Conference on Computer Vision and Pattern
Recognition. IEEE, 2014.

[117] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The application of
two-level attention models in deep convolutional neural network for fine-grained
image classification. IEEE International Conference on Computer Vision and
Pattern Recognition, 2015.

[118] S. Xie, T. Yang, X. Wang, and Y. Lin. Hyper-class augmented and regular-
ized deep learning for fine-grained image classification. In IEEE International
Conference on Computer Vision and Pattern Recognition, volume 580, 2015.

[119] F. Xing, H. Su, J. Neltner, and L. Yang. Automatic ki-67 counting using robust
cell detection and online dictionary learning. IEEE Transactions on Biomedical
Engineering, 61(3):859–870, March 2014.

[120] F. Xing and L. Yang. Robust nucleus/cell detection and segmentation in digital
pathology and microscopy images: A comprehensive review. IEEE reviews in
biomedical engineering, 2016.

[121] Z. Xu, S. Huang, Y. Zhang, and D. Tao. Augmenting strong supervision using
web data for fine-grained categorization. In IEEE International Conference on
Computer Vision, pages 2524–2532, 2015.

[122] L. Yang, W. Chen, P. Meer, G. Salaru, L. A. Goodell, V. Berstis, and D. J.
Foran. Virtual microscopy and grid-enabled decision support for large-scale
analysis of imaged pathology specimens. IEEE Transactions on Information
Technology in BioMedicine, 13(4):636–644, 2009.



99

[123] L. Yang, R. Jin, L. Mummert, R. Sukthankar, A. Goode, B. Zheng, S. C.
Hoi, and M. Satyanarayanan. A boosting framework for visuality-preserving
distance metric learning and its application to medical image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(1):30–44, 2010.

[124] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car dataset for fine-
grained categorization and verification. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 3973–3981. IEEE, 2015.

[125] S. Yang, L. Bo, J. Wang, and L. G. Shapiro. Unsupervised template learning for
fine-grained object recognition. In Advances in Neural Information Processing
Systems, pages 3122–3130, 2012.

[126] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar. Food recognition us-
ing statistics of pairwise local features. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 2249–2256. IEEE, 2010.

[127] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch.
arXiv preprint arXiv:1411.7923, 2014.

[128] A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In
IEEE International Conference on Computer Vision and Pattern Recognition,
pages 192–199. IEEE, 2014.

[129] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based r-cnns for fine-
grained category detection. In European Conference on Computer Vision, pages
834–849. Springer, 2014.

[130] N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors
for fine-grained recognition and attribute prediction. In IEEE International
Conference on Computer Vision, pages 729–736. IEEE, 2013.

[131] S. Zhang, J. Huang, Y. Huang, Y. Yu, H. Li, and D. N. Metaxas. Automatic
image annotation using group sparsity. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 3312–3319, 2010.

[132] S. Zhang, M. Yang, T. Cour, K. Yu, and D. Metaxas. Query specific rank
fusion for image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(4):803–815, April 2015.

[133] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas. Query specific fusion
for image retrieval. In European Conference on Computer Vision, pages 660–
673. Springer, 2012.

[134] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas. Query specific rank
fusion for image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(4):803–815, 2015.



100

[135] X. Zhang, H. Dou, T. Ju, J. Xu, and S. Zhang. Fusing heterogeneous features
from stacked sparse autoencoder for histopathological image analysis. IEEE
journal of biomedical and health informatics, 20(5):1377–1383, 2016.

[136] X. Zhang, H. Dou, T. Ju, and S. Zhang. Fusing heterogeneous features for
the image-guided diagnosis of intraductal breast lesions. In IEEE International
Symposium on Biomedical Imaging, pages 1288–1291. IEEE, 2015.

[137] X. Zhang, W. Liu, M. Dundar, S. Badve, and S. Zhang. Towards large-scale
histopathological image analysis: Hashing-based image retrieval. IEEE Trans-
actions on Medical Imaging, 34(2):496–506, Feb 2015.

[138] X. Zhang, W. Liu, and S. Zhang. Mining histopathological images via hashing-
based scalable image retrieval. In IEEE International Symposium on Biomedical
Imaging. IEEE, 2014.

[139] X. Zhang, H. Su, L. Yang, and S. Zhang. Fine-grained histopathological image
analysis via robust segmentation and large-scale retrieval. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, pages 5361–
5368, 2015.

[140] X. Zhang, H. Su, L. Yang, and S. Zhang. Weighted hashing with multiple cues
for cell-level analysis of histopathological images. In International Conference
on Information Processing in Medical Imaging, pages 303–314. Springer, 2015.

[141] X. Zhang, F. Xing, H. Su, L. Yang, and S. Zhang. High-throughput histopatho-
logical image analysis via robust cell segmentation and hashing. Medical Image
Analysis, 26(1):306–315, 2015.

[142] X. Zhang, L. Yang, W. Liu, H. Su, and S. Zhang. Mining histopathological
images via composite hashing and online learning. In International Conference
on Medical Image Computing and Computer Assisted Intervention, pages 479–
486. Springer, 2014.

[143] X. Zhang, F. Zhou, Y. Lin, and S. Zhang. Embedding label structures for fine-
grained feature representation. In IEEE International Conference on Computer
Vision and Pattern Recognition, 2016.

[144] L. Zheng, A. W. Wetzel, J. Gilbertson, and M. J. Becich. Design and analysis
of a content-based pathology image retrieval system. IEEE Transactions on
Information Technology in BioMedicine, 7(4):249–255, 2003.

[145] X. S. Zhou, S. Zillner, M. Moeller, M. Sintek, Y. Zhan, A. Krishnan, and
A. Gupta. Semantics and CBIR: a medical imaging perspective. In ACM
International Conference on Content-Based Image and Video Retrieval, pages
571–580. ACM, 2008.


