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ABSTRACT 

 

 

SHYAMAL PATEL.  An approach for demand response at residential level using 

integrated dynamic consumer end elasticity model. (Under the direction of DR 

SUKUMAR KAMALASADAN) 

 

 

 Reducing the difference between on peak and off peak demand has long been 

recognized by utilities as an effective way of cutting the cost of producing electricity. 

Moreover, having prior knowledge about dynamic electricity rates gives the consumer an 

opportunity to optimize the consumption. Hence, an efficient demand response program 

promises the advantage on both sides. Owing to high flexibility, real-time pricing based 

demand response are considered to possess the highest potential among all the other 

programs. But, the current practice of same suffers from a lack of consumer level 

behavioral understanding and hence, making it difficult to predict and map the response. 

As a result, demand response programs are inducing the uncertainty in terms of real time 

demand. This uncertainty poses difficulty for power generation entities as well as load 

serving entities in predicting the consumer’s behavior in response to advance price 

signals. Current research focuses on the development of consumer psychology model for 

predicting and imitating the consumer’s response scenario to advance price signals and 

mapping the same in the form of elasticity matrix. Elasticity matrix is further integrated 

in the model to modify the price signals. These modified price signals based on elasticity 

matrix reduces the uncertainty in the system. 
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CHAPTER 1:  INTRODUCTION 

Constant effort is being made to reduce the imbalance between the growing demand 

and limited generation. To overcome these issues, demand side participation features such 

as distributed generation, distributed energy storage, and demand response program were 

introduced. [1] [2] [3] These features, along with increasing flexibility of the system, also 

increases the complexity and uncertainties in the grid. For example, if advance price signals 

are made available to the consumers, they may respond by either shifting the load to lower 

price period, curtailing the load during peak price period or using the stored the distributed 

generation and storage during same. This response action may temporarily relieve spikes 

during peak load in the load profile. However, it would also introduce the high deviation 

of resultant load profile from forecasted load profile. Also, in a situation where all 

consumers shift their load from peak load period to the same off-peak period, it may result 

in a spike during the off-peak period. [4]  Thus, in short-term power system operation like 

day ahead market, it may increase the complexity for the system operator to predict the 

demand and plan the generation dispatch. Moreover, it may also affect the long term 

planning of generation and transmission capacities. 

Electricity market deregulation has been suggested as an effective measure for 

better utilizing generation and transmission resources as well as reducing electricity cost 

on both supply and demand sides by introducing competition among generating entities. In 

many deregulated electricity markets, bid-based auctions determine the electricity rate and 
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generation schedules by solving optimization problems. This process makes the resultant 

electricity rate and generation schedules dependent variables on the forecasted demand. 

Because of unexpected changes that bidders may face between the forecasted and spot 

scenario in the restructured electricity market, the design and implementation of demand 

side participation feature such as demand response programs, under the deregulated market 

context, is a significant challenge [5]. 

To mitigate the above issue, this thesis presents a new demand response approach 

by providing the consumers with advance price signals, considering the residential 

consumer’s consumption sensitivity on price. Elasticity matrix is used to represent the 

demand sensitivity with respect to price. The model classifies the overall consumption of 

consumer into constant, shiftable and curtailable components for better response 

prediction. Elasticity matrix maps consumer’s response/price sensitivity between different 

time-period and helps in modifying the price signals to mitigate the chances of demand 

surges. Previous studies on sensitivity studies considering elasticities were based on 

assumptions [6][7][36][37]. Whereas, in the current study, consumer psychology model 

was prepared to simulate the curtailment and shifting type responses of the consumer based 

on advance price signals. Elasticity matrix obtained in this case is based on the solid ground 

of consumer behavior and their reaction to advance price signals. Considering the elasticity 

matrix, the bidding and hence the price signals are modified to achieve higher demand 

response efficiency. 

Section 1.1 Introduces the US energy market and briefly explains its evolution and 

restructuring. Section 1.2 describes the electricity pricing mechanism. Section 1.3 

introduces the Demand response programs.  
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1.1 ELECTRICITY MARKETS 

An electricity market is a system for selling and purchasing electricity, using supply 

and demand bids to set the prices and schedules under given physical constraints. The 

design of an electricity market defines the physical dispatching procedure in the short term, 

and thus affects the power system’s planning decision in the long term. A basic 

understanding of electricity market is essential for us to study the pricing mechanisms and 

the demand side participation activities in the environment. This section introduces the 

modern electricity market structure and mechanism governing the electricity prices. 

1.1.1 RESTRUCTURING OF US ELECTRICITY MARKETS 

Throughout most of its history, the U.S. electricity market has been dominated by 

large, vertically integrated, and heavily regulated utilities. Beginning in 1978, reforms 

began to transform this traditional “monopolized” structure of the industry. By the late 

1990s, a transformed industry had started to take shape, characterized by substantial de-

integration, significantly looser regulation, and more market-oriented operation. [8] 

Restructuring of electricity market promised competition which in turn would result in 

cost-efficient production and lower price to retail consumers. Over the past few years, a 

number of studies have been conducted evaluating the benefits of the restricted market. 

Electricity reforms have involved several different policy initiatives adopted at different 

times, at various government levels, and often phased in over a long period. The first 

restructuring initiative dates back to the Public Utility Regulatory Policies Act (PURPA) 

of 1978. It sought to promote energy conservation by requiring traditional utilities to 

purchase cogenerated power. PURPA also promoted wholesale power transactions 

between utilities. While PURPA demonstrated the feasibility of a broader market for 
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wholesale power, it also highlighted the difficulties of ensuring access by buyers and sellers 

to the transmission grid required to transact power over longer distances. 

The limitations on access to the transmission grid were one motivation for the 

passage of the Energy Policy Act of 1992 and the orders issued by the Federal Energy 

Regulatory Commission (FERC) in 1996 under the 1992 Act. FERC Orders 888 and 889 

required utilities to file non-discriminatory “open access” tariffs for their transmission 

services and eliminated the sequential marking up of transmission charges that hindered 

long distance transactions. While these policies had some effect in prying open access in 

some regions, continued ownership and operating control of the transmission grid by the 

integrated utilities thwarted realization of full access to the transmission system. As a 

result, four years later, FERC Order 2000 sought to wrest operating control of the 

transmission grid from the traditional utilities by promoting regional transmission 

organizations (RTOs). Shortly thereafter FERC proposed a Standard Market Design that 

sought not only to improve transmission access, but also to encourage regional energy 

markets. In principle, FERC intended that all utilities in a region would turn over control 

(but not ownership) of their transmission infrastructure to an RTO.  

Many states have required or promoted divestiture of generation assets from 

transmission and distribution by the traditionally integrated utilities. The purpose of such 

separation was to eliminate any competitive advantage for the incumbent owner of 

distribution and transmission, thereby at least theoretically opening up the market to 

multiple independent generation suppliers. 

Also, some states, beginning in 1996 with the high electricity cost areas of New 

England and California, have allowed entry by competitive or alternative electricity 
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providers. These competitive providers are essentially marketers of power that is generated 

by others and ultimately distributed to final consumers on lines that continue to be owned 

and operated by the local distribution utility. Finally, at the retail level, restructuring has 

been accompanied by rate freezes or other agreements designed to ensure benefits to 

consumers during the initial few years of the program. In short, all of these changes were 

intended to create alternative sources of power for wholesale and retail consumers. The 

plan was to foster competition among independent generators by creating a level playing 

field for wholesale power transactions that permitted retail consumers and local distribution 

utilities to shop for power supply. All this was expected to lower wholesale costs and retail 

prices. 

By the year 2000, about half the states either had restructured their electricity 

sectors or were planning to do so. The transmission grid was increasingly operated by 

RTOs and in some places relatively free of artificial constraints. While the problems in 

California and elsewhere brought further restructuring to a halt, many states were 

irreversibly committed to deregulation and, in any event, reforms at the federal level 

continued. The result is that electricity restructuring is substantially complete in some 

regions of the country but has scarcely affected other regions. 

1.2 ELECTRICITY PRICING 

Electricity is essentially non-storable, which implies that it must be generated at the 

instant that it is demanded, thus requiring a constant balancing of supply and demand by a 

system operator. Furthermore, consumers’ demand for electricity varies considerably over 

time, on an hourly, daily, and seasonal basis. As a result of these two factors, power systems 

tend to be characterized by a range of generation technologies that differ regarding their 

capital and operating costs. These range from highly capital-intensive base load plants 
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designed to run continuously at low operating costs, to peaking plants that are relatively 

inexpensive to install, and can start quickly to meet changing demand, but have high 

operating costs during the relatively few hours of the year that they are designed to run. 

Furthermore, to ensure that capacity is available to meet demand during conditions of 

extreme load conditions or unexpected generator outages, a certain amount of reserve 

capacity is typically maintained. These factors imply that the hourly marginal cost of 

electric energy, which reflects largely the operating cost of the highest cost generator that 

is dispatched to run, varies considerably across hours, days, and seasons. This variability 

of electricity costs has been well understood by utility planning and operations staff. 

However, before the deregulation of wholesale power markets, these costs were largely 

internal to individual utilities and not visible in public markets. As wholesale power market 

was opened up, generators offered blocks of power for various time periods at prices that 

reflected their operating costs. System operators matched supply to expected hourly loads, 

thus determining which generators to dispatch, and setting hourly market prices as the 

highest bids accepted. As a result, time-varying power generation costs became reflected 

in wholesale energy prices. 

Traditional utility rate design focused largely on the recovery of allowed costs and 

on methods for allocating those costs fairly across various consumer types. The economic 

efficiency of the resulting price structures, in the sense of establishing prices that reflect 

utilities’ time-varying marginal costs, has typically been given a low priority. As a result, 

while wholesale costs vary hourly, retail prices for most consumers differ seasonally at 

most (e.g., higher prices during the summer months than in non-summer months, due to 

higher costs are driven largely by air conditioning loads). Only for large consumers do 
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prices typically differ by time period during the day, in the form of time-of-use demand 

and/or energy charges. Moreover, only for relatively few consumers on real-time pricing 

(RTP) programs do prices vary hourly to match hourly wholesale costs. 

Under the regulation, utilities are allowed to set retail rates to cover their expected 

energy costs, sometimes including fuel-adjustment factors that adjust rates periodically to 

reflect changing fuel prices. In an environment characterized by competitive wholesale and 

retail electricity markets, however, energy providers’ perspective on cost recovery changes 

dramatically. Looking to the future, an energy supplier in a competitive market faces 

considerable risk due to uncertainty about future wholesale power costs. At the same time, 

most consumers are likely to prefer the certainty of fixed or guaranteed prices (e.g., a fixed 

price per kWh) for some time into the future. Load serving entities (LSEs) will contract 

with those consumers to provide power at a certain retail price, and then arrange to buy 

energy and ancillary services on the wholesale market to fulfill those contracts. LSEs face 

one dominant theme in deciding how to price their products to various consumer types—

how to manage the financial risk associated with uncertainty about future consumer loads 

and wholesale power prices. That is, looking at a future period, LSEs do not know exactly 

how much electricity each of their consumers will consume, nor what the wholesale prices 

for that power will be at the time they will have to supply it. LSEs face three sources of 

risk from offering guaranteed prices—wholesale price variability, load variability, and the 

correlation between wholesale prices and consumer loads. First, they do not know what 

wholesale prices will be in the future when they have to purchase the power needed to meet 

their consumers’ demands. Second, they do not know how much their consumers will 

consume in any given period in the future. Therefore, for example, they cannot enter 
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forward contracts to meet all of their consumers’ demands; they will always have to 

purchase or sell back some power in spot markets. Finally, many consumer’s loads tend to 

be correlated with wholesale power prices. For example, residential and commercial 

consumer usage tends to rise on hot summer days, which are the same time periods in 

which wholesale power prices tend to increase due to higher overall system loads. Thus, in 

the very hours in which wholesale prices are unusually high, many consumers’ loads will 

be unusually high as well. Price-load correlation of this type makes the cost of serving 

certain consumer types both higher and more uncertain than it is for others. The above three 

components of financial risk imply the need for LSEs to incorporate a risk premium into 

any guaranteed price offering. Demand response programs, on the other hand lowers the 

financial risk and aims at increasing the global welfare and thereby, the market efficiency. 

1.3 DEMAND RESPONSE 

Reducing the difference between on peak and off peak demand has long been 

recognized by utilities as an effective way of cutting the cost of producing electricity. To 

achieve the same, consumers are encouraged to modify their consumption and thereby the 

overall load pattern in a beneficial way.  Special tariff schemes are designed with intent to 

achieve the same. While these special tariffs are mutually beneficial, it is yet ambiguous if 

quantification of benefits gained by companies are proportional to what consumers may 

receive.  

The liberalization of the electricity markets has led in many parts of the world to 

the replacement of tariffs by hourly or half-hourly prices. In an economist’s perspective, 

these prices are a powerful way to encourage consumers to behave in an economically 

optimal way. One must make a distinction between the long and short-term effects of such 

prices. In the long term, the average price will affect the overall level of consumption. Wide 
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differences in prices between day and night or between weekends and weekdays may also 

encourage consumers to install thermal or material storage that will help them avoid 

consuming electricity during the hours of peak prices. [9] [10] [11] [12] 

In the short term, some consumers have the ability to reduce or reschedule their 

demand in response to the electricity prices. [13] [14] [15] For example, if prices are high, 

some industrial consumers may forego production if it is not profitable at that price level. 

Consumers who have the ability to store energy or some intermediate product may 

reorganize their production. Considering the above possibilities at the short term, the 

concept of spot pricing was developed. A system can be envisaged, where consumers 

would adjust their demand up or down depending on the spot price. The spot prices would 

be updated in real time to take into account these load adjustments. As a result, both load 

reduction during peak time can be achieved, and high dips during off-peak period can be 

achieved. In such situation consumers can be benefitted by saving at peak periods and 

generating companies can be benefitted by avoiding operations of peaking units and market 

participation at spot rates. Thereby, the approach can maximize the global welfare. 

1.3.1 CLASSIFICATION OF DEMAND RESPONSE PROGRAMS 

 As shown in Figure 1.1, demand response programs can be primarily classified 

into two broad categories [16]:  

1. Incentive-Based Programs(IBP) 

IBP programs are further classified into:  

i. Classical Incentive Programs 
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Participants of classical incentive-based programs receive participation payment 

either in the form of bill credit or discounts for their response during peak load situation. 

Classical programs are further classified as: 

a. Direct Control 

Under this program, the utility installs smart regulator over the major load 

consuming devices like air conditioners and refrigerators. The regulators can be remotely 

controlled by the utility and during peak load, the regulators are used to operate the loads 

at optimum levels. Under critical situation loads like air conditioners can also be switched 

off.  

b. Interruptible or curtailable programs. 

Figure 1.1: Classification of demand response program 
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Under curtailable programs, participants are asked to constrain their consumption 

within the certain limit or predefined values. Depending on terms and condition, against 

the discomfort faced by the consumer, they are awarded the incentives, and if not able to 

meet the constraint, they may also be charged with a penalty. 

 

ii. Market-Based Programs  

Participants of market-based programs are rewarded with money depending on 

their response during peak load period. Market-based are further classified into: 

a. Demand Bidding: Participating consumer’s bids for the curtailment of the 

load at the retail level. A bid lower than market price is accepted. If a 

consumer consumes more than the bided price, he my either face the high 

price or face penalty.  

b. Emergency DR: During exigency period, utility curtails the consumption by 

shedding up the loads of participating consumer. 

c. Capacity Markets: Participants are provided a prior notice for load 

curtailment during forecasted contingent periods. Failing to do so, they have 

to face the penalty. 

d. Ancillary Service Market: Customers are allowed to bid on load curtailment 

in the spot market as operating reserve. When bids are accepted, participants 

are paid the spot market price for committing to be on standby and are paid 

spot market energy price if load curtailment is required  

e. Price-Based Programs: Under price based program, consumers are 

subjected to varying rates of electricity. Based on high rates during peak 
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period or low rates during of peak period, consumers may curtail the load 

or shift the consumption to the of peak period. 

Price based program’s tariff are further classified into: 

i. Time of Use (TOU): Consumers are charged with average market price during on 

and off peak period. 

ii. Critical Peak Pricing: It includes pre-specified higher rates on TOU or normal/base 

rates. They are used during a contingency or high market prices for a limited 

number of days.  

iii. Extreme Day Pricing (EDP): For days, with high average consumption, high rates 

are imposed for the whole day with prior notice of change given to the consumer. 

It is analogous to CPP but for the whole day rather than small duration. 

iv. Extreme Day CPP(ED-CPP): Extreme day rates are further subjected to rate 

variation for on and off peak periods. 

v. Real Time Pricing: Under RTP programs, consumers are charged at hourly 

fluctuating spot/real time prices of the wholesale market.  

1.3.2 DEMAND RESPONSE PROGRAM BENEFITS AND COSTS 

Benefits of DR programs can be broadly be classified at 4 different levels [17]: 

a. Participant: Participating consumers are either receiving the incentives for participation 

regarding credits, discounts, and cash rewards or under different pricing scheme, by 

optimizing the usage, they are saving over the electricity bill. 

b. Market-Wide: Overall, by curtailment of the load during peak time, market rates during 

peak time will decrease eventually saving for entities dealing at spot price. Also, 

eventually DR effects can be considered by forecasting algorithms and hence 

considering the curtailment during load, generating and load serving entities can save 
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during the bids. Also, it opens up the scope for differing the investment on 

infrastructure serving only during the peak period. Also, if peak time load are 

efficiently shifted to off-peak periods, it leads to efficient use of existing infrastructure.  

c. Reliability: Reliability benefits can be considered as one of the market-wide benefits 

because they affect all market participants (Generating entities, load serving entities as 

well as consumer). By having a well-designed DR program, participants have the 

opportunity to help in reducing the risk of outages. Simultaneously and as a 

consequence, participants are reducing their own risk of being exposed to forced 

outages and electricity interruption. On the other hand, the operator will have more 

options and resources to maintain system reliability, thus reducing forced outages and 

their consequences. 

d. Market Performance: DR program participants can bid for more optimum rates 

considering the effect of DR program, and thereby reducing the market power. 

Moreover, consumer especially participants of real-time pricing programs and the bid 

based program has the power to interact directly with the market leading to lower peak 

rates. Another important market improvement is the reduction of price volatility in the 

spot market. Demand responsiveness reduces the ability of main market players to 

exercise power in the market. It has been reported that a small reduction of demand 

(5%) could have resulted in a 50% price reduction during the California electricity 

crisis in 2000–2001. 

1.4 MOTIVATION AND SCOPE OF RESEARCH 

With increasing penetration of smart meters at residential level, provides flexibility 

in implementing the demand response programs. On the other hand, smartphone 

applications has aided in increasing the connectivity among the consumers by offering 
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them with the updates regarding the rate structure. Spot pricing programs are the one which 

may require real-time as well as the forecasted declaration of price trend among consumers. 

Also, smart thermostats and concept of “smart homes” focuses in optimizing the energy 

consumption during peak price periods. Modernization and ease in outreach as well as 

smart-home automation helps consumers in optimizing their consumption in response to 

advance electricity rates. Moreover, the consumers are paying the exact amount based on 

amount and time of their consumption. Owing to high flexibility and less market surplus, 

the real-time based demand response programs offers the highest market efficiency.  

Inducting the demand response program at residential level may on one hand 

increase the flexibility and options at both supply and demand end, it may also introduce 

the complication in the operation of the system. In the absence of demand to market 

communication, ISO may face difficulty in understanding the rate of response and 

accurately the forecast the demand, thus complicating the demand and supply balance in 

real time. Under higher scheduled generation, the additional cost may be imposed upon the 

market. Also, under opposite situation, real-time rate will highly deviate from the 

forecasted, leading to lower consumer end participation benefits and hence proving the 

inefficiency of the DR program. [18] [19] Moreover, in long term planning, planners may 

face difficulties in estimating the generation and transmission capacity. [20] [21] 

In order for demand response programs to result in increased market efficiency, and 

not simply create additional uncertainty, it is critical that information regarding load 

behavior is provided to the market administrator and incorporated into the appropriate 

market price. [22]. For this reason, prior knowledge of consumer’s behavior and sensitivity 
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to prices may aid power generating entities to bid at optimum values and load serving 

entities to optimize the market participation. 

Research work presented in current thesis aims at mapping the consumer’s behavior 

to advance price signals in terms of load shift and load curtailment in form of elasticity 

matrix for mitigating the unrequired deviation. Chapter 2 discusses on the development of 

wholesale market framework. Chapter 3 integrates the wholesale market framework to the 

real-time based demand response program. Chapter 4 explains the development of 

consumer psychology model for modelling the consumer’s reaction in real-time based 

demand response programs. Chapter 5 discusses on the extracting the elasticity matrix from 

the demand response model and using the same to revising the advance price signals for 

sensitivity based demand response. After chapter 2, apart from theoretical description of 

the relevant terms, all the contributions is original. 

 

 

 



 

 

 

  

 

  

 

 

CHAPTER 2:  DC OPTIMAL POWER FLOW AND LOCATIONAL MARGINAL 

PRICING 

Concept of demand response in wholesale power market was discussed in chapter 

1. In order to study consumer’s reaction to advance price signals, a framework is required 

to simulate the wholesale market scenario. The forecasted rates which consumer may 

receive would be based on based on bids settled based on forecasted load. Real time rates, 

reflects the deviation of demand from the forecast getting settled in real-time market. Based 

on the forecasted demand, as well as real time demand, nodal rates or market clearing rates 

are determined using optimal power flow considering the system constrains along with 

generation and demand balance. Hence, the nodal locational marginal pricing would reflect 

the cost of highest clearing bid along with the congestion charges. Section 2.1 introduces 

the concept of locational marginal price. Current chapter focuses on the development of 

above mentioned wholesale power market framework. Section 2.2 and 2.3 discusses the 

wholesale market framework. DC Optimal power flow problem is formulated in section 

2.4. The model is implemented on IEEE 6 bus system in section 2.5. Section 2.6 discusses 

the results and concludes the chapter. 

2.1 INTRODUCTION  

The concept of an LMP (also called a spot price or a nodal price) was first 

developed by Schweppe et al. [23]. LMPs can be derived using either an AC OPF model 

or a DC OPF model. The AC OPF model is more accurate than the DC OPF model, but it 

is prone to divergence. Also, the AC OPF model can be up to 60 times slower than the DC 
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OPF model. The DC OPF model (or the linearized AC OPF model) has been used for LMP 

calculation for power market operation. Several commercial software tools for power 

market simulation such as Ventyx Promod IV®, ABB GridViewTM, Energy Exemplar 

PLEXOS® and PowerWorld use the DC OPF model for power system planning and LMP 

forecasting [24]. 

There are two forms of DC OPF models, “full structured” and “reduced form.” The 

full-structured DC OPF model has a real power balance equation for each bus. This is 

equivalent to imposing a real power balance equation for all but a “reference” bus, together 

with a “system” real power balance equation consisting of the sum of the real power 

balance conditions across all buses. The reduced-form DC OPF model solves out for 

voltage angles using the real power balance equations at all but the reference bus, leaving 

the system real power balance equation. The market simulation model developed in present 

research uses “reduced form” of DCOPF for LMP calculation. 

2.2 OVERVIEW OF THE FRAMEWORK 

In April 2003 the U.S. Federal Energy Regulatory Commission proposed a 

Wholesale Power Market Platform (WPMP) [25] for common adoption by all U.S. 

wholesale power markets (FERC,2003). Agent-based modeling of electric system (AMES) 

developed by Junjie Sun and Leigh Tesfatsion was adopted to simulate WPMP. AMES 

framework consists of an Independent System Operators (ISO) and a collection of bulk 

energy traders further consisting of Load-Serving Entities (LSEs) and Generators 

distributed across the nodes of the transmission grid. DC OPF formulation for wholesale 

power market requires detailed information about the transmission grid, supply and 

demand bids, transmission line parameters thermal constraints and computation of losses. 
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the model of power market structure is divided into three parts: Generators, Transmission 

Lines and Load Serving Entities (LSE). 

2.3 STRUCTURE OF TRANSMISSION GRID 

Transmission Grid consists of three phase balanced AC network with N ≥ 1 

branches and K ≥ 2 nodes. The reactance of the branches is total reactance. All 

transformers are assumed to have zero phase angle shifts and 1 tap ratio. All line-charge 

capacitances are assumed to be 0 and temperature is assumed to be constant. No isolation 

of nodes exists in the system. The indirect connection between two nodes may be through 

more than 2 branches, but direct connection assumes to be via a single branch. In wholesale 

power markets restructured by FERC’s proposed market design [25], the transmission grid 

is overlaid with a commercial network consisting of “pricing locations” for the purchase 

and sale of electric power. A pricing location is a location at which market transactions are 

settled using publicly available LMPs. It is assumed that the set of market pricing location 

coincides with the set of transmission grid nodes. 

2.3.1 STRUCTURE OF LOAD SERVING ENTITY 

Load serving entities (LSEs) purchases bulk power in the wholesale power market 

to service consumer demand (load) in a downstream retail market. LSEs do not engage in 

production or sale activities in the wholesale power market. Hence, LSEs purchase power 

only from Generators, not from each other. At the beginning of each operating day D, each 

LSE submits a daily load profile into the day-ahead market for day D + 1. This daily load 

profile indicates the real power demand pLj(h) that must be serviced by LSE (denoted by 

j) in its downstream retail market for each of 24 successive hours h 
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2.3.2 STRUCTURE OF POWER GENERATING ENTITY 

Power generating entities are basically electric generating stations. Generators 

perform energy transactions with load serving entities. Each generator is supposed to have 

variable and fixed cost of production. Fixed cost is also termed as quasi-fixed costs, as it 

may also involve the no-load costs as well as ramp-up/down costs. For the following 

simulation model, we are ignoring the ramping and no load costs as well as ramp-up/down 

time. Generators in the simulation are supposed to have maximum and minimum 

generation limits for per hour generation denoted by equation 2-1 

Where, 

pgi is power generated by the ith generator 

pgi
L  is minimum generation limit of ith generator 

pgi
U  is maximum generation limit of ith generator 

Total cost function for generator is given by, 

Where, 

fci or tc0is the fixed cost of generator. 

vci is the variable costs and is further denoted by second order quadratic equation.       

Marginal cost of production is defined as cost of generating additional 1 megawatt 

of power. Equation 2-4 represents the marginal cost function of the generator i. 

pgi
L ≤ pgi ≤ pgi

U  2-1 

tci = vci + fci 2-2 

vci = aipgi + bipgi
2  2-3 

mci =
dtci

dpgi
= ai + 2bipgi 

2-4 
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Power generating entities performs the LMP calculation as well as load forecasting 

for the upcoming day. Based on the forecasted LMPs, and linearizing the generating cost 

of power, bids are placed for a specific quantity of energy in the wholesale market. Based 

on supply bids and generation bids, the ISO lands up to equilibrium market point and LMP 

for a specific time is fixed. Generation cost offer tends to be more strategic as rather than 

following the marginal cost of generation; it may also tend to maximize the profit as well 

as optimize the chances of getting over-ruled. For ease of simulation, it has been assumed 

that power generating entities report their true marginal costs instead of optimized bids 

considering profit margin at its true feasible production interval. 

2.4 DCOPF FORMULATION 

ACOPF is more accurate compared to DCOPF problem, but computation time 

required for a complex system is quite large. Also, with an increase in complexity of the 

network, chances of divergence of optimization algorithm increases. DCOPF problem is 

an approximation of an ACOPF problem considering few assumptions and simplification 

of restrictions regarding voltage magnitudes, admittances, reactive power and voltage 

angles. The variables in the algorithm are normalized in “per unit” form.  

2.4.1 CONVERSION OF ACOPF TO DCOPF 

An optimization problem for ACOPF as well as DCOPF consists of minimizing an 

objective function subjected to constraints. The key component of ACOPF to DCOPF 

conversion is the representation of real and reactive power flows in a line. 

Let,  

Pij denote real power (MW) flow from i to j in a network. 

Qij denote real power (MVAR) flow from i to j in a network. 
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Vi and Vj denote voltage magnitudes at nodes i and j. 

δi and δj denote the voltage angles at nodes i and j. 

gij and bij denote the conductance and susceptance for branch ij. 

Following assumptions are considered for converting ACOPF formulation to DCOPF: 

A1. The resistance of each branch is negligible compared to the reactance of the branch.        

A2. Voltage magnitude at each node is equal to base voltage. 

A3. The difference between voltage angle across each line is negligible. 

Per unitization of the system requires basic assumptions of base values of two 

parameters: Apparent Power (Base MVA) and Voltage. All other base parameters of the 

system can be derived using the base MVA and voltage. Assuming a three phase balanced 

network with base MVA S0 and base line to line voltage V0, base impedance can be 

represented by 

Pij = Vi
2 ∗ gij − Vi ∗ Vj ∗ [gij ∗ cos(δi − δj) + bij ∗ sin(δi − δj)] 2-5 

Qij = −Vi
2 ∗ bij − Vi ∗ Vj ∗ [gij ∗ cos(δi − δj) − bij ∗ sin(δi − δj)] 2-6 

Ie. xij ≫ rij  =>  rij ≈ 0 2-7 

Hence,  gij = 0 & bij = [−
1

xij
] 2-8 

Hence, 𝑉𝑖 = 𝑉𝑗 = 𝑉0 2-9 

So, cos(δi − δj) ≈ cos(0) = 1 2-10 

& sin(δi − δj) ≈ (δi − δj) 2-11 

Hence, Pij = V0
2 ∗ (

1

xij
) ∗ (δi − δj) 2-12 

Qij = V0
2 ∗ (

1

xkm
) − V0

2 ∗ (1/xij) = 0 
2-13 

𝑧𝑂 = 𝑉2/𝑠0 2-14 
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Per unit reactance xij can be represented as 

Per unit suscepetance bij can be represented as 

Per unit real power flow for branch ij is represented as  

If the generator is connected at node i. Then real power injected into the system via 

node i regarding PU is represented by  

where, pGi is real power generation by the generator Gi. 

If load is connected at node i. Then real power withdrawn from the system from 

node i in terms of PU is represented by  

where, pLi is real power consumed by load Li. 

Thus the generator cost function can also be per unitized as  

Where, Ai and Bi are pre-adjusted cost functions such that, 

Ai = ai ∗ S0 
2-22 

Bi = bi ∗ S0 2-23 

xij(pu) =
xij

Z0
 2-15 

𝑏𝑖𝑗(𝑝𝑢) = −
1

𝑥𝑖𝑗(𝑝𝑢)
 2-16 

Fij =
Pij

S0
 2-17 

PGi =
pGi

S0
 2-18 

PLi =
pLi

S0
 2-19 

TCi = VCi + FCi 2-20 

VCi = AiPgi + BiPgi
2  2-21 
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2.4.2 DCOPF STRUCTURE 

This section represents the DCOPF problem in PU form along with objective 

function and constraints.   

DCOPF problem: 

Minimize:         

With respect to:  

PGi for i=1, 2, 3…n 

δi for i=1, 2, 3…n 

Subject to: 

I. Real/active power balance constraint for all nodes (i): 

Where PINi is the net power flowing from the all the nodes j connected to node i 

II. Transmission line thermal constraint:  

Where,  Fij
U is the upper limit/thermal limit of transmission line connecting ith and 

jth node. 

III. Generation constraint: 

Here, PGi
L  and PGi

U is the upper and lower generation limit of generator connected to 

node i. 

∑Ai ∗ PGi + Bi ∗ PGi
2

i=n

i=1

 2-24 

𝑃𝐿𝑖 − 𝑃𝐺𝑖 + 𝑃𝐼𝑁𝑖 = 0 2-25 

PINi = ∑ Fji
N,j≠i

j=1
= ∑ Bij ∗ (δj − δi)

n,j≠i

j=1
 2-26 

|Fij| ≤ Fij
U 2-27 

PGi
L ≤ PGi ≤ PGi

U 2-28 
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IV. Voltage angle at node 1: 

2.4.3 AUGMENTATION OF STANDARD DCOPF FORM 

The objective equation of DCOPF problem can further be augmented with a penalty 

function on the sum of squared voltage angle differences for all the nodes j connected to 

node i. 

Augmented form of DCOPF problem can be represented as, 

Here, π is the penalty factor. 

This augmented form transforms DCOPF problem into SCQP (strictly convex 

quadrating programming) form which can be solved to generate solutions for the optimum 

generation, LMP, voltage angles, real power injections and branch flows. Augmentation 

also has additional potential benefits based on physical and mathematical considerations. 

[26] 

a) Physical considerations:  

DCOPF problem relies on assumptions A1-A3. According to assumption A3, the 

accuracy of the problem relies on the actual difference between the voltage angles of two 

nodes connecting the branches. In fact, small voltage angle difference is the major 

assumption based on which ACOPF is approximated to DCOPF. Standard DCOPF 

problem does not take voltage angle difference into consideration. So, in case the difference 

is beyond the approximation consideration, it may induce high error/difference in the 

output when compared to ACOPF. Also, it will introduce large errors in the LMP values. 

According to an analysis conducted by Overbye et al.,2004, by taking both quantity and 

δ1 = 0 2-29 

∑ (Ai ∗ PGi + Bi ∗ PGi
2 )

n

i=1
+ π∑ (δi − δj)

2

i,j∈BR
 2-30 
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price solution into account on two case study were optimistic regarding quantity but 

negative impact on LMP results. For example, in the authors’ second case study, the DC 

approximation missed almost 50% of the binding constraints for the AC problem. Although 

many of these were “near misses,” the effects of these near-misses on the LMP 

approximations were in some cases significant.  

Augmenting the objective problem by introducing the penalty function on voltage 

angle difference permits the sensitivity checks on DCOPF solutions imposed to a 

precondition for AC-DC approximation. Ideally, small values of penalty function would 

reproduce almost the same result obtained without imposing penalty function. 

b) Mathematical Considerations: 

A suitable augmentation to objective function (over here DCOPF problem) helps 

in improving the convexity/concavity of maximization/ minimization problem as well as 

increase the stability and thereby increase the convergence to the optimum solution [27]. 

DCOPF problem can be represented under augmented version as follows: 

a) Objective function 

Branch Connection matrix:  

 

Where I(i ↔ j) =1, if nodes i and j are interconnected 

  =0,  if nodes i and j are not interconnected 

Weight matrix denoting (voltage angle difference) weight matrix: 

Β =

[
 
 
 
 

0 I(1 ↔ 2) I(1 ↔ 3) ⋯ I(1 ↔ n)
I(2 ↔ 1) 0 I(2 ↔ 3) … I(2 ↔ n)
I(3 ↔ 1) I(3 ↔ 2) 0 … I(3 ↔ n)

⋮ ⋮ ⋮ ⋱ ⋮
I(n ↔ 1) I(n ↔ 2) I(n ↔ 3) ⋯ 0 ]

 
 
 
 

 2-31 
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As per the previous assumption, δ1 ≡ 0, Thus Weight matrix can be reduced to  

Wrr is an (n-1) x (n-1) matrix for δ(n)rr
T

= [δ2, δ3, … . δn] 

Generator cost attribute matrix U can be represented as, 

U = diag[2B1, 2B2 …2Bi] 2-35 

Here, U is an (i x i) semi definite positive matrix. 

Generation matrix (G) is defined by: 

G = blockdiag[U Wrr] = [
U 0
0 Wrr

] 
2-36 

G is a positive definite matrix associated with vector xT 

Thus the quadratic component of the cost function can be represented as, 

W = 2 ∗ π ∗

[
 
 
 
 
 
 
 
 ∑ En1

n≠1
−E12 −E13 ⋯ −E1n

−E21 ∑ En2
n≠2

−E23 … −E2n

−E31 −E32 ∑ En3
n≠3

… −E3n

⋮ ⋮ ⋮ ⋱ ⋮

−En1 −En2 −En3 ⋯ ∑ Enn
n≠n ]

 
 
 
 
 
 
 
 

 

For δ(n)T = [δ1, δ2, … . δn] 

2-32 

Wrr = 2 ∗ π ∗

[
 
 
 
 
 
 
 
 ∑ En2

n≠2
−E23 −E24 ⋯ −E2n

−E32 ∑ En3
n≠3

−E34 … −E3n

−E42 −E43 ∑ En4
n≠4

… −E4n

⋮ ⋮ ⋮ ⋱ ⋮

−En2 −En3 −En3 ⋯ ∑ Enn
n≠n ]

 
 
 
 
 
 
 
 

 2-33 

Hence, 
1

2
∗ δ(n)T ∗ W(n) ∗ δ(n) =

1

2
∗ δ(n)rr

T
∗ Wrr(n) ∗ δ(n)rr 

= π [∑ δi
2

1i∈BR
+ ∑ (δi − δj)

2
 

ij∈BR
] > 0 

2-34 



27 

 

1

2
∗ xTGx = ∑[Bi ∗ PGi

2 ] +

n

i=1

 π [∑ δi
2

1i∈BR
+ ∑ (δi − δj)

2
 

ij∈BR
] > 0 

2-37 

b) Constraint Formulation 

Bus admittance matrix can be represented as, 

B′ =

[
 
 
 
 
 
 
 
 ∑ Bn1

n≠1
−B12 −B13 ⋯ −B1n

−B21 ∑ Bn2
n≠2

−B23 … −B2n

−B31 −B32 ∑ Bn3
n≠3

… −B3n

⋮ ⋮ ⋮ ⋱ ⋮

−Bn1 −Bn2 −Bn3 ⋯ ∑ Bnn
n≠n ]

 
 
 
 
 
 
 
 

 
2-38 

 Where, 

Bab =
1

xab(pu)
, if ab ∈ BR  

         =  0, otherwise   

Reduced bus admittance matrix by omitting first row and column can be represented as, 

Brr
′ =

[
 
 
 
 
 
 
 
 ∑ Bn2

n≠2
−B23 −B24 ⋯ −B2n

−B32 ∑ Bn3
n≠3

−B34 … −B3n

−B42 −B43 ∑ Bn4
n≠4

… −B4n

⋮ ⋮ ⋮ ⋱ ⋮

−Bn2 −Bn3 −Bn3 ⋯ ∑ B, knn
n≠n ]

 
 
 
 
 
 
 
 

 
2-39 

Let BR be branch index list, consisting all the interconnections listed in increasing order 

or indices. Branch incidence matrix for a network with i nodes and n branches can be 

represented as: 
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A = [

ψ(1, BR1) ψ(2, BR1) ⋯ ψ(i, BR1)
ψ(1, BR2) ψ(2, BR2) ⋯ ψ(i, BR2)

⋮ ⋮ ⋱ ⋮
ψ(1, BRn) ψ(2, BRn) ⋯ ψ(i, BRn)

] 
2-40 

Where ψ(i, BRn) is the indicator function such that, 

ψ(i, BRn) = +1, if for BRn, starting node indices is less than the incident node indices 

      = -1, if for BRn, starting node indices is greater than the incident node indices. 

      = 0, otherwise. 

Reduced incidence matrix can be represented as 

For generator G = [g1, g2 …gl], connected to nodes of the system, generator connection 

matrix is represented as, 

Where χ(l, i) is the indicator function such that, 

ψ(l, i) = +1, if generator l is connected to node i 

 = 0, if generator l is not connected to node i 

Let D be the diagonal matrix representing distinct branch connection I the network 

according to branch indices. 

Where,  Dn = Bij 

 

 

Arr = [

ψ(2, BR1) ψ(3, BR1) ⋯ ψ(i, BR1)
ψ(2, BR2) ψ(3, BR2) ⋯ ψ(i, BR2)

⋮ ⋮ ⋱ ⋮
ψ(2, BRn) ψ(3, BRn) ⋯ ψ(i, BRn)

] 2-41 

Gc = [

χ(1,1) χ(2,1) ⋯ χ(l, 1)
χ(1,2) χ(2,2) ⋯ χ(l, 2)

⋮ ⋮ ⋱ ⋮
χ(1,3) χ(2,3) ⋯ χ(l, i)

] 2-42 

D = diag[D1, D2, …Dn] 2-43 
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c) SCQP Form 

Based on the matrices defined from 2-31 - 2-43, the SCQP based DCOPF problem can be 

formulated as: 

With respect to 

Subject to 

In the above formulation,  

G is the generation matrix as represented in equation 2-36 

where Aiis the generator cost coefficient 

Equality constraint:  

Inequality Constraint:  

Here, Ot is NxI zero matrix 

Also, Ct and − Ct denote the thermal constraint coefficient for flow in both 

direction.  

Here, Ip is IxI identity matrix and Op is Ix(K-1) zero matrix. 

Minimize: f(x) =
1

2
xTGx + aTx 2-44 

x = [PG1 PG2 …PGI δ2 δ3 …δi]
T 2-45 

Ceq
T x = beq 2-46 

Ciq
T x ≥ biq 2-47 

aT = [A1 A2 …AI 0…0], 2-48 

Ceq
T = [II − Brr

′T] 2-49 

beq = [PL1 PL2 PL3. . PLi]
T 2-50 

Ciq
T = [Ct

T − Ct
T Cp

T − Cp
T]

T
 2-51 

Where Ct
T = [Ot − DArr] 2-52 

Cp
T = [Ip Op] 2-53 
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Where,  

2.5 IMPLEMENTATION OF DCOPF ON IEEE 6 BUS SYSTEM 

As shown in Figure 2.1, six bus system consists of 3 generators and 3 loads. The 

generator and load connected loads are distinct in the system. 6 nodes are interconnected 

by 11 branches.  

Number of Nodes: K=6 

No of Generators: I=3 

No of loads: J=3 

biq = [bt bt bpL bpU]
T
 2-54 

bt = [−FBI1
U − FBI2

U … .−FBIi
U ]

T
 2-55 

bpL = [PG1
L  PG2

L … . . PGi
L ] 2-56 

bpU = [−PG1
U , −PG2

U … .−PGi
U]

T
 2-57 

Figure 2.1: Test System: 6 Bus 
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Number of Branches: N=11; 

Equation 2-58 to 2-67 represents the system into matrix form for the DCOPF 

formulation. 

Based on the system data, branch connection matrix for the system can be 

represented as 

The weight matrix represented the augmentation by subjecting the penalty factor to 

voltage angles, is represented as 

Considering the voltage angle of slack bus as 1, the reduced form of weight matrix 

can be written as 

Here, penalty factor: π= 0.01. 

Matrix representing the generator cost function can be written as 

Branch admittance matrix B and its reduced form Brr for the system can be 

represented as: 

E =

[
 
 
 
 
 
0 1 0 1 1 0
1 0 1 1 1 1
0 1 0 0 1 1
1 1 0 0 1 0
1 1 1 1 0 1
0 1 1 0 1 0]

 
 
 
 
 

 2-58 

W = 2 ∗ π ∗

[
 
 
 
 
 

3 (−1) 0 (−1) (−1) 0
−1 0 −1 −1 −1 −1
0 −1 0 0 −1 −1

−1 −1 0 0 −1 0
 −1 −1 −1 −1 0 −1
0 −1 −1 0 −1 0 ]

 
 
 
 
 

 2-59 

Wrr = 2 ∗ π ∗

[
 
 
 
 

0 −1 −1 −1 −1
−1 0 0 −1 −1
−1 0 0 −1 0
 −1 −1 −1 0 −1
−1 −1 0 −1 0 ]

 
 
 
 

 2-60 

U = [
0.0107 0 0

0 0.0178 0
0 0 0.0148

] 2-61 
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The adjacency matrix A and its reduced version Ar with entries of 1 for the “from” 

node and −1 for the “to” node can be expressed as 

Also, matrix II and D can be written as 

B= 1000 ∗

[
 
 
 
 
 
−1.33 0.5 0 0.5 0.33 0
0.5 −2.73 0.4 1 0.33 0.5
0 0.4 −1.78 0 0.3846 1

0.5 1 0 −1.75 0.25 0
0.33 0.33 0.3846 0.25 −1.6346 0.33
0 0.5 1 0 0.33 −1.83]
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Brr = 1000 ∗

[
 
 
 
 
−2.73 0.4 1 0.33 0.5
0.4 −1.78 0 0.3846 1
1 0 −1.75 0.25 0

0.33 0.3846 0.25 −1.6346 0.33
0.5 1 0 0.33 −1.83]
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A =

[
 
 
 
 
 
 
 
 
 
 
1 −1 0 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
0 1 −1 0 0 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 −1 0
0 0 1 0 0 −1
0 0 0 −1 −1 0
0 0 0 1 1 −1]
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Ar =

[
 
 
 
 
 
 
 
 
 
 
−1 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1
0 1 0 −1 0
0 1 0 0 −1
0 0 −1 −1 0
0 0 1 1 −1]

 
 
 
 
 
 
 
 
 
 

 2-65 
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Based on the equations, the DCOPF problem for the 6  bus system can be formulated as: 

With respect to 

Subject to following constraints: 

Based on matrices representing the system,  input parameters for the optimization, 

G, aT, Ceq
T , beq

T , Ceq
T  and biqin the problem can be represented as:  

          Equality constraint can be written as: 

Ceq
T = [II − Br

′T] 
2-74 

Where, II and Br
′T are defined in equation 2-66 and 2-63 respectively. 

Inequality constraint can be written as, 

Where,  

II =

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0]

 
 
 
 
 

 2-66 

D = diag[B12 B14 B15 B23B24 B25 B26 B35 B36 B45 B56] 2-67 

Minimize:  f(x) =
1

2
(xTGx) + aTx 2-68 

x = [PG1 PG2 PG3 δ2 δ3 δ4 δ5 δ6] 2-69 

Ceq
T x = beq 2-70 

Ciq
T x ≥ biq 2-71 

G = blockdiagonal[U Wrr] 2-72 

aT = [11.669 10.333 10.833 0 0 0 0 0] 2-73 

beq = [0 0 0 100 100 100]T 2-75 

Ciq
T = [Ct

T − Ct
T Cp

T − Cp
T]

T
 2-76 
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Where,  

 The results of the 6 bus system are discussed in section 2.6. The results are also 

verified for the consistency with the same from example 8C; Wood and Wollenberg (1996, 

Chpt. 8, [28]). 

2.6 RESULTS AND DISCUSSION 

Table 2.1 6 Bus System: DCOPF Generation Output 

 

Ct
T = [Ot − DAr] 2-77 

Ot = zeros[11 × 3] 2-78 

Cp
T = [Ip Op] 2-79 

Ip = Identity[3 × 3] 2-80 

Op = zeros[5 × 4] 2-81 

biq = [bt bt bpL bpU]
T
 2-82 

bt = [−100 − 100 − 100 − 60 − 60 − 60 − 60 − 60 − 60 − 60 − 60]T    2-83 

bpL = [50 37 45]    2-84 

bpU = [200 150 180]    2-85 

Bus Voltage Angles Generation LMP 

 DCOPF O/P Ref. O/P DCOPF O/P Ref. O/P DCOPF O/P 

Bus1 0 102.34 102.3398 12.760 12.7599 

Bus2 -0.0328 122.18 122.1818 12.505 12.5054 

Bus3 -0.0551 75.48 75.4784 11.952 11.9516 

Bus4 -0.0928   13.089 13.0894 

Bus5 -0.1185   12.648 12.6476 

Bus6 -0.1151   13.149 13.1494 
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Table 2.2 6 Bus System DCOPF Output 

 

 

 

The 6 bus test system represented in Appendix A is solved using the method 

described in 2.4. Inbuilt Matlab© algorithm of interior point convex method has been used 

for solving the quadratic programming problem. The 'interior-point-convex' algorithm 

attempts to follow a path that is strictly inside the constraints. It uses a presolve module to 

remove redundancies and to simplify the problem by solving for components that are 

straightforward [29]. The optimization algorithm took 7 iterations to converge down to the 

optimum results.   

 Power generation and nodal LMP results are presented in Table 2.1.  

Flow in transmission line 

From Bus (k) To Bus (m) Power Flow (MW) (Fkm) 

1 2 16.41829 

1 4 46.41829 

1 5 39.50325 

2 3 8.907705 

2 4 60 

2 5 28.55772 

2 6 41.13463 

3 5 24.38611 

3 6 60 

4 5 6.41829 

5 6 -1.13463 
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Table 2.2 represents the power flow among the branches of the test system. 

Branches connecting nodes 2 with 4 and 3 with 6 can be seen reaching up to the thermal 

limits. As a result, the effect of the congestion is reflected in higher LMP values for branch 

4 and 6.  

Moreover, the generation and output results are verified with the results of example 

8C; Wood and Wollenberg (1996, Chpt. 8, [28]). The results of developed algorithm can 

be seen matching with the book results up to 4 decimal places hence, assuring the accuracy 

of the code.  

The standard IEEE 118 bus test system is described in Appendix B. The 

optimization algorithm took 10 iterations to converge down to the optimum results.   

The output of SCQP DCOPF for 118 bus system is compared with MatPower 

output for consistency. Generation and LMP output follow the MatPower output with 

almost 100% accuracy. But, an average error of 8% exists between the outputs for power 

flowing through the system. Augmentation and difference in the optimization solving 

algorithm could be the reason for this deviation. Line flow constraint has been removed in 

the above 118 bus illustration. As a result, LMP values is same at all the nodes reflecting 

the marginal cost of the generator, and no congestion cost is reflected in LMP values. 

2.7 SUMMARY 

A wholesale market framework using DCOPF was presented in this chapter. 

Considering the high accuracy in solving the optimal power-flow problem and nodal 

locational marginal pricing, this framework is further used for simulating both day-ahead 

as well as real-time market. 



 

 

 

  

 

  

 

 

CHAPTER 3:  ARCHITECTURE FOR REAL TIME PRICING BASED DEMAND 

RESPONSE  

The concept of demand response and types of DR programs was discussed in 1.3. 

Also, wholesale power market platform was developed in chapter 2. The current chapter 

discusses the  real-time based demand response architecture using wholesale power market 

platform. 

 Consumers would be planning the consumption pattern based on day ahead market 

clearing price and would be charged at real time market LMPs. Real time LMP varies from 

the forecasted rates in accordance with the change in consumption. Hence, the response 

action can be represented in the form of a feedback loop.  This chapter focuses on the 

development of a feedback loop architecture for scenario simulation of generalized real-

time price based demand response programs.  Topic 3.1 discusses closed loop DR 

architecture in detail. An implementation of the approach is discussed in 3.1.1 followed by 

discussion and conclusion in 3.2. 

3.1 CLOSED LOOP DEMAND RESPONSE ARCHITECTURE 

As represented in Figure 3.1 based on the load forecast, each load serving entities 

present their load requirement in the day ahead market. Here, Qforecast represents the 24 

hours forecasted load. Based on the generator bids, the day ahead prices are fixed. As 

explained in 2.3.2, generators are assumed to bid at the marginal cost of generation. Hence, 

the bids are reflecting the cost function of the generators. So, the DCOPF results provide 

the LMP value representing the day ahead market clearing prices. Any change or deviation 
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in the real time load from the forecasted load is settled in the real-time market at the real-

time price. Hence, in the above figure, Pforecast represents the day ahead market clearing 

price based on the forecasted load. To study the effect of demand response program, it is 

assumed that the load forecast process does not take consumer’s reaction into 

consideration. It seems to be a fair assumption based on the fact that the consumers 

sensitivity and behavior to advance price is not easy to predict in the absence of any firm 

references.   

Based on these advance price signals, consumer reacts by both curtailing and 

shifting their loads. Because of consumer’s response to the price, the real-time 

consumption deviates from the forecasted consumption. The resulting load change ΔQh for 

each hour h is received as the feedback, giving up the real time consumption along with 

the response action. The resultant change in consumption is settled real-time market. Here 

Qrealtime(h) represents the real-time consumption and prealtime(h) represents 

corresponding the real-time price. 

Figure 3.1: Closed loop demand response architecture 
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Under the ideal situation where the forecasted load has 100% match with the real-

time load, the real-time price and forecasted price are same. However, in response to 

advance price signals, if consumers change their consumption, the real-time rates and 

forecasted rates deviate accordingly. Also, the consumers are charged at real-time rates.  

Moreover, it can be assumed that consumer would respond by increasing the consumption 

during lower price period and decreasing the same during the on-peak period, provided the 

benefits of response or the incentives are attractive enough. To simulate the response 

action, controlled randomization is performed for the load change during on peak and off 

peak price periods. 

3.1.1 RANDOMIZED RESPONSE 

Randomized response to the forecasted price signal is generated using the Gaussian 

distribution curve. According to this model, the response of consumers to advance price 

signal is mapped via normal distribution of the forecasted LMP signals. Higher is the 

deviation of any price signal from the daily mean; higher would be the magnitude of 

response. Considerable work has been done in interpreting and analyzing the probabilistic 

demand response models [30, 31]. The model used in the present chapter aims at 

illustrating the response action via calculating the load change based on Gaussian’s Normal 

distribution model. Change in load is represented by equation 3-1 

In above equation 

kp is percentage increase or decrease 

 ΔQlse(h) = kp ∗ rand(1, x) ∗ (Qlse(h) − Qavg
lse )  3-1 

Where, x>1 

              α =
|Qlse(h)−Qavg|

Max(Qlse)−Min(Qlse)
 

 

3-2 
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α percent deviation of load point from average with respect to the total deviation of    

the load curve 

rand(1, x) is a degree of randomness between 1 and x. 

Qlse(h) forecasted load at hour h 

Qavg
lse  average forecasted load. 

Hence, 𝑄𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒
𝑙𝑠𝑒 = 𝑄𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑙𝑠𝑒 − 𝛥𝑄𝑙𝑠𝑒 3-3 

kp values are user defined in this case, and it represents the percentage change in 

the load observed or expected for particular time period. They could be modified to be a 

function of the variance of the forecasted load. Here the values are assumed to be 0.3, 

representing around 30% of load change during the extreme on peak and 0.6 during 

extreme off peak morning durations. The values of kp from different zones on Gaussian 

distribution, is represented in Table 3.1. Additionally, the period amid 1 am to 7 am is 

considered as non-responsive period, where inclination for any sort of reaction is less when 

compared to responsive periods. Real time load consumption after the consumer’s response 

to price according to probabilistic model is represented by equation 3-3. α accounts for the 

ratio of deviation of forecasted load from average to the total deviation between two 

extreme points observed by the load profile. Also, if rand(1,x) represents the randomness 

degree that can be expected from the consumer behavioral simulation. Then, rand(1,x) x α 

represents the proportional randomness. Which means, the randomness is scaled based on 

the value of α.  

3.2 RESULTS AND DISCUSSION 

Result representing a response to advance price signals leading to change in 

consumption and LMP are shown for all 3 load serving entities are shown in Figure 3.2. It  
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Table 3.1 Model Parameters 

 

 

can be observed that in all three areas, the consumers are responding to higher price period 

by load curtailment or shifting load to lower price periods. Although, model lacks 

representing the type of response. Also, the parameters like economic class, demographics, 

the size of the residential buildings, etc. aren’t considered by the model. Hence, the model 

is only good for benefit study analysis on the grid. But, the approach fails to give a clear 

understanding of the consumers regarding sensitivity to prices, nature of response and level  

Range kp  

pf
lse(h) > μlse + 2σlse  0.3 

μlse + 2σlse > pf
lse(h) > μlse + σlse  0.2 

μlse + σlse > pf
lse(h) > μlse + 0.5σlse  0.15 

μlse + 0.5σlse > pf
lse(h) > μlse + 0.1σlse  0.1 

μlse + 0.1σlse > pf
lse(h) > μlse  0.05 

μlse > pf
lse(h) > μlse − 0.1σlse  0.05 

μlse − 0.1σlse > pf
lse(h) > μlse − 0.5σlse  0.6 

μlse − 0.5σlse > pf
lse(h) > μlse − σlse  0.6 

μlse − σlse > pf
lse(h) > μlse − 2σlse  0.6 

μlse − 2σlse > pf
lse(h)  0.6 

randomization: rand(1,2)  

Inactive Period: 1 am to 7 am. 
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Figure 3.2: Load change and corresponding LMP change for 3 LSEs based on 

probabilistic demand response model 
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of load shift. As a result, the probabilistic or statistical model’s capability in predicting the 

consumer’s behavior is limited. Also, it fails to provide information about the magnitude 

of load shift, intertemporal information regarding the load shift and magnitude of 

curtailment. In market operator’s perspective, the model may help in predicting the 

approximated change due to advance price signals under normal condition. However, 

uncertainties in demand variation because of advance rates cannot be predicted. Hence, the 

issue of complexity in demand prediction under demand response program remains 

unsolved. Hence, the model reflecting the consumer’s psychology to advance price signals 

and type of the response action needs to be developed. 

3.3 SUMMARY 

Closed loop architecture of real-time based demand response program was 

discussed in this chapter. As statistical model lacks in providing the clear understanding of 

consumer behavior, a model reflecting the detailed consumption and response 

characteristics is required. Hence, the development of consumer psychology model is 

discussed in next chapter. 



 

 

 

  

 

  

 

 

CHAPTER 4:  CONSUMER PSYCHOLOGY MODEL AND DEMAND RESPONSE 

A closed loop representation of demand response scenario in electricity market was 

discussed in Chapter 3. The simple regression of consumer’s response action is not reliable 

because the change in over-all consumption depends on type and magnitude of the response 

action. It also depends on non-quantifiable characteristics- social, economic and 

demographic. Hence a detailed information of end use level demand modification in 

response to advance price signals is required to understand the response action of the 

consumer. This chapter aims at modeling the consumer psychology towards the demands 

response programs. Section 4.2 discusses the requirement of consumer psychology based 

demand response model. Classification of total load profile using the artificial neural 

network is explained in Section 4.3. Section 4.4  introduces the consumer psychology 

model and explains the load change under same. Section 4.5 explains the integration of 

consumer psychology model is integrated into demand response loop. The concept of 

consumer psychology model based demand response is implemented on 6 bus system in 

section 4.6. 

4.1 INTRODUCTION 

Modeling the consumer’s responses to advance price signals plays a vital part in 

understanding the effectiveness of demand response model. The change in the consumer’s 

consumption as a response to the advance pricing depends on various factors like consumer 

demographics, location, weather situation, type and size of residential loads, etc. Almost 
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all of existing approaches on pricing decision rely on modeling approaches, which can be 

classified into three categories: consumer psychology based modeling approach, the price-

elasticity matrix of demand, and the statistics based model.  The so-called consumer 

psychology based modeling is a kind of black-box model that only cares about the 

relationship between input and output data, and it could be used in a situation unrelated 

with psychology. [32] Although psychological parameters could play a major role in 

modifying the black box model to suit the required simulation environment. Previously, 

the psychology model was developed to study TOU demand response programs with three 

price levels: Peak price period, flat price period and valley price period [32]. The concept 

is modified to simulate the dynamic pricing based demand response scenario.  

4.2 REQUIREMENT OF CONSUMER PSYCHOLOGY MODEL 

The price difference or incentive of participation in DR program serves as the prime 

motivation behind modification of consumption. Considering these factors, a model has 

been developed which can simulate the consumer’s behavior to advance price signals. 

Figure 4.1: Consumer psychology model based demand response 
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Previous work in the area of consumer psychology model based demand response study 

for TOU pricing, merely simulated the load shift in response to price differences. It did not 

take into consideration, the components of the loads in the total load profile 

The psychology model based demand response, as shown in Figure 4.1, comprises 

of two participating blocks.  

a. Load Classification: This block, based, uses the survey and end-use data to classify the 

type of loads. The data also reflects the consumer’s geographical and demographical 

aspects. It also takes into account the information regarding the appliances and type of 

residential construction. Section 4.3 describes the process of load classification in 

detail. 

b. Consumer behavioral simulation: Based on the classified load, the shiftable and 

curtailable type of response is simulated. It reflects consumer’s interest in DR 

participation as well as economic condition. Section 4.4 describes the Consumer’s 

behavioral simulation via consumer psychology model in detail. 

4.3 ANN BASED LOAD CLASSIFICATION 

Consumer’s overall load profile constitutes of three major components:  

i. Shiftable Loads: Certain loads holds the flexibility of shifting the 

consumption from peak price periods to lower price periods. This type loads are classified 

as shiftable loads. Examples of major residential loads holding this flexibility are washer 

drier, dish washer, electric stove, microwave and oven. 

ii. Curtailable Loads: The load, whose consumption can be varied by relaxing 

up the operating set-points and compromising partly on its output is termed as curtailment. 

Curtailable loads primarily comprise of HVAC loads i.e.,. Air Conditioner, Space Heating, 
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water heater and fans. During peak periods, relaxing the operating point of these loads may 

contribute highly in savings. 

iii. Constant Loads: The loads, considering their absence/curtailment may lead 

to high level of inconvenience and discomfort, are classified under constant loads. Lighting 

loads are categorized under constant loads. 

If the total load profile can be bifurcated into the three components, the better 

estimation can be gained in forecasting the consumer’s behavior and sensitivity to prices. 

It can be achieved by doing the survey of end use consumption [33].  

A similar approach was used in this research for identifying the consumer’s 

consumption pattern. Detailed residential consumption data was obtained from openEI. 

OpenEI portal hosts, simulated residential consumption load profile as per NREL and 

DOE’s “Building America House Simulation Protocols” for all TMY3 locations and 

weather conditions. The simulation also takes U.S. Energy Information and 

Administration’s Residential Energy Consumption Survey (RECS) information to include 

the demographics, end-use fuels and appliances and structural as well as geographical 

characteristics. Consumption of HVAC load and the constant load is highly dependent on 

weather conditions and irradiation respectively. Meteorological data utilized in the 

residential load data simulation was obtained from NREL’s data repository for three 

different locations: Phoenix (Arizona), San Diego (California) and Rochester (New York) 

was used to train the neural network. A neural network can learn and therefore be trained 

to find solutions, recognize patterns, classify data, and forecast future events. [34] [35]. 

The behavior of a neural network is defined by the way its individual computing elements 

are connected and by the strengths of those connections, or weights. The weights are 
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automatically adjusted by training the network according to a specified learning rule until 

it performs the desired task correctly. The human behavioral pattern cannot be directly 

correlated using any equations. Hence neural network emerges as the best option for 

prediction and classification of the same. HVAC consumption depends on temperature 

whereas, consumption by constant load depends on irradiance. Hence, as depicted in Figure 

4.2 for classification the input parameters used are Total Load, temperature, Irradiance and 

Month and Time. One year of the complete data set was used for training and neural 

network with ten neurons. 70 percent of data was allotted for training, 15 % of data was 

allotted for validation and remaining 15% for testing. Figure 4.4 represents the 

performance plot of ANN. The optimum mean square error of 0.07% approaches 105 

iterations. Figure 4.3 represents set of individual regression plot for a training class, testing 

class, validation class and the fourth one considering all three classes. The slope of the 

regression line is near to the ideal fitness of 1. Figure 4.5 represents an error histogram 

with mean lying at 0.1%. Data being used is an output of a residential scenario. Hence, 

high accuracy is being observed. In a practical scenario, the accuracy of this level is not 

expected. 

Figure 4.2: Input and output parameters of an Artificial Neural Network for 

load classification 
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Figure 4.3: Regression plot for training, testing and validation 

Figure 4.4: Performance plot indicating mean square error during 

traing validation and testing phase 
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           The approach serves the purpose of classifying the overall load profile and providing 

with consumption for different types of load. Trained artificial neural network was used 

for classification of load patterns from three different zones. The actual load pattern was 

scaled at the system level by per unitizing and multiplying with base values accepted by 

the system’s range of operation. This helped in preserving the load pattern and making it 

compatible within the system limits. Figure 4.6 represents the load classification for zone 

1 corresponding to consumption data of San Diego, California. Total Load consists of 

36.2% of curtailable Loads, 53.9% of shiftable loads and 10.67% of constant loads. Hence 

this zone holds the scope for both load shift as well as load curtailment type responses. 

Figure 4.7 represents the load classification for zone 2 corresponding to consumption data 

of Phoenix, Arizona. Total load of this zone constitutes 79.6 percent of curtailable loads, 

16.1% of shiftable loads and 4.25% of constant loads. Hence, it can be inferred that zone 

2 holds high potential for load curtailment and very low potential for shifting. Load 

Figure 4.5: Error histogram 
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classification for zone 3 corresponding to Rochester, New York is represented in Figure 

4.8. Total load constitutes of 16.73% of curtailable loads, 54.97% of shifting loads and 

28.31% of constant loads. Based on the proportion of load, zone holds higher potential for 

shifting type responses compared to curtailment type. 

 

Figure 4.6: ANN based load classification: LSE 1 
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Figure 4.7: ANN based load classification: LSE 2 

Figure 4.8: ANN based load classification: LSE 3 
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4.4 CONSUMER PSYCHOLOGY MODEL BASED RESPONSE 

Consumer psychology was used by Shen Zhao [36] in modeling the TOU based 

demand response scheme. The concept of psychology model on 3 level price structured 

demand response program was modified in the present research for real-time pricing. The 

principle of consumer psychology model is discussed in section 4.4.1. Section 4.4.2 and 

4.4.3 articulates the principle to real time pricing for modelling the load curtailment and 

load shift respectively. 

4.4.1 CONSUMER PSYCHOLOGY MODEL(CPM): PRINCIPLE 

According to consumer psychology, there is a noticeable difference when 

consumers are stimulated. The response of consumers is negligible within difference 

threshold usually called insensitive zone (or dead zone), whereas the response is obvious 

Figure 4.9: Consumer Psychology Model: Principle 
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outside the dead zone. We can call this range normal response zone (or linear zone) and 

the response is connected with the degree of the benefit. When exceeding the saturation 

value, the benefit will not cause a further response of consumers, and we call this zone as 

response limit zone (or saturation zone). It can be implied that the benefit foreseen for any 

response action to advance price signals is the driving factor in the psychology model. 

Slope (k)of the psychology model gives the rate of response to the change in price. Figure 

4.9 represents the principle of psychology model. The dead zone is represented by price 

difference OA. AC is the linear zone reflecting the load change as the response. Beyond C, 

the load change is zero, thereby representing the saturation zone. No response action to 

change in price can be expected in beyond the price benefit OC. 

The model can also be represented in the form of Equation 4-1. 

Articulating the concept of modeling the psychology for demand curtailment and 

shifting is represented in section 4.4.2 and section 4.4.3 respectively. 

4.4.2 LOAD CURTAILMENT 

Load curtailment can be human controlled or autonomous in nature considering the 

recent developments in the smart thermostats. Average of forecasted LMP is considered as 

the reference LMP. Load curtailment is assumed to take place when LMP of that particular 

period is higher than average reference LMP.  

Load curtailment behavior can be articulated to the concept of consumer 

psychology model. ΔP in case of curtailment has been considered as difference between 

λ =           0,                                (0 ≤ ΔP ≤ a) 

              k(ΔP − a),               (a ≤ ΔP ≤ c) 

       λm,                              (ΔP ≥ c) 

4-1 
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the forecastd LMP during hth hour and the average of 24 hours forecasted LMP. Depending 

on the economic class of the consumer, the threshold can be varied. For areas with 

economically weaker sections,  ΔPOA would be low, whereas for the economically stronger 

section, ΔPOA would be high. The slope of the line AB under the response zone represents 

the degree of flexibility for load curtailment. A Higher value of slope represents higher 

curtailment response to the price. In the curtailment, model k is represented by kc 

(curtailment coefficient). 

Value of curtailment coefficient kc is derived as represented by Equation 4-2, 4-3, 

and 4-4 

 Components of curtailment coefficient kc are represented by equations 4-3 and 

4-4.  kcc
lse in Equation 4-3 is the ratio of average load to average LMP for the load-serving 

entity under consideration. It serves the purpose of mapping the variables of LMP to the 

load. kcp represents the curtailment percentage for hth hour. Its value can be the user 

defined based on the observations or simulation requirement. kcr represents the ratio of 

curtailable load entity to the total load for hthhour.   

kc
lse(h) = kcc

lse ∗ kcp
lse(h) ∗ kcr

lse(h) 4-2 

Where  kcc
lse =

∑ Qlse(h)24
h=1

∑ lmpL
lse(h)24

h=1

  4-3 

                kcp
lse(h) is curtailment percentage   

                 kcr
lse(h) =

Qlc
lse(h)

Ql
lse(h)

  4-4 

Also,  ∆p(h) = plse(h) − pavg
lse  4-5 
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As shown in Figure 4.10, if Equation represents the variation of LMP from the 

average LMP(reference value), then kcr
lse(h)* Δplse(h) represents the curtailable 

component within the price difference.  kcp(h) ∗ kcr
lse(h)* Δplse(h) will represent the 

percentage curtailment action in terms or price. 𝑘𝑐𝑐
𝑙𝑠𝑒 ∗ 𝑘𝑐𝑝

𝑙𝑠𝑒(ℎ) ∗ 𝑘𝑐𝑟
𝑙𝑠𝑒(ℎ)* 𝛥𝑝𝑙𝑠𝑒(ℎ) will 

map the percentage curtailment from dollar value to MWs.  

Hence, curtailed load can be represented by 

Figure 4.10: Consumer Psychology Model for load curtailment 
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 Here, Qcrtld.
lse   is curtailed load after curtailment type consumer response. 

          Qc
lse is curtailable load before consumer response 

         ΔQc
lse represents change in curtailable load 

         Δpth
lse represents the threshold point rate difference 

         Δpsat
lse  represents the saturation point rate difference 

         ΔQcmax
lse  represents maximum limit curtailable load change. 

Equation 4-6 represents the relation for obtaining the curtailed load after the 

response action. Equation 4-7 completely models the curtailment type response under 

consumer psychology model 

4.4.3 LOAD SHIFTING 

Load shifting is a completely human-controlled response to advance price signals. 

Response under this category indicates the flexibility to shift the loads from peak price 

period to lower price periods. The difference in the peak and off-peak period’s forecasted 

rates serves as the major motivation factor behind shifting of the flexible loads. Hence to 

simulate the load shift, the intertemporal price difference needs to be identified as it reflects 

the benefit of the response to the consumer. If this intertemporal difference of forecasted 

rates between two periods is more than the threshold, the periods may contribute to the 

load shift from higher price period to lower price period. 

Qcrtld.
lse (h) = Qc

lse(h) − ΔQc
lse(h) 4-6 

Where, ΔQc
lse(h) = 0                             if Δpth

lse(h) > Δplse(h) 

              Qc
lse(h) = kc

lse(h) ∗  Δplse(h)   if Δpth
lse(h) < Δplse(h) < Δpsat

lse(h) 

                ΔQc
lse(h) = ΔQcmax

lse (h)             if Δplse(h) > Δpsat
lse(h) 

4-7 
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Load shifting behavior can be articulated to the concept of consumer psychology 

model. ΔP in the case of the shift has been considered as the intertemporal price difference 

between the hours of forecasted LMP. Depending on the economic class of the consumer, 

the threshold can be varied. For areas with economically weaker sections,  ΔPOA would be 

low, whereas for the economically stronger section, ΔPOA would be high. The slope of the 

line AB under the response zone represents the degree of flexibility for load shift. A Higher 

value of slope represents a higher shift-type response to the price. In the load-shift model, 

k is represented by ks (shifting coefficient). 

Value of shifting coefficient ks
lse(h1, h2) representing load shifting rate from hour 

h2 to hour h1 for load serving entity under consideration is given by Equation 4-8.  

Components of shifting coefficient ks are represented by equations 4-8, 4-9, 4-10 

and 4-11. ksc
lse in Equation 4-9 is the ratio of average load to average LMP for the load-

serving entity under consideration. It serves the purpose of mapping the variables of LMP 

to the load. ksp represents the average percentage of load shift taking place in the DR 

environment for the load-serving entity under consideration. The value can be the user 

defined based on the observations or based on observation or simulation requirement. 

ksr represents the ratio of average shiftable load present in the total load. The denominator 

represents the active hours participating in the load shift. Midnight is considered as an 

inactive duration where load shifting potential is negligible. As, each intertemporal price 

difference is considered individually for load shift, dividing the load shifting rates by active 

hours, avoids the overshoot errors by scaling down the individual shift over the active hour 

duration. 
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ks
lse(h1, h2) =

kse
lse(h1) ∗ ksp

lse(h1, h2) ∗ ksc
lse ∗ ksr(h)

number of active hours
 4-8 

Where  ksc
lse =

∑ Qlse(h)24
h=1

∑ lmpL
lse(h)24

h=1

  4-9 

                ksp(h) = shift percentage  4-10 

                ksr =
Qlc

lse(avg)

Ql
lse(avg)

  4-11 

               kse
lse(h1) is the sensitivity of h1 towards load shift   

Figure 4.11: Consumer Psychology Model for load shift 
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Depending on the convenience, consumer may be prone to shift most of the 

shiftable loads to a particular period kse
lse(h1) with lower price and high convenience. 

Hence, this parameter reflects the sensitivity towards the period h1. 

Hence, shifted load can be represented by 

Here, Qshftd.
lse   is shifted load after shifting type consumer response. 

          Qs
lse is shiftable load prior to consumer response 

         ΔQs
lse represents change in shiftable load 

         Δpth
lse(h1, h2) represents the threshold point rate difference 

         Δpsat
lse(h1, h2) represents the saturation point rate difference 

        ΔQcmax
lse (h1, h2) represents maximum limit curtailable load change. 

As shown in Figure 4.11, Equation 4-13 represents the relation for obtaining the 

curtailed load after the response action. Equation 4-14 completely models the curtailment 

type response under consumer psychology model.   

Hence,   Δplse(h1, h2) = plse(h2) − plse(h1) 4-12 

   Qshftd.
lse (h2) = Qs

lse(h2) + ∑ ΔQs
lse(h1, h2)

24
h1=1  4-13 

  Where, ΔQs
lse(h1, h2) = 0    if Δpth

lse(h1, h2) > Δplse(h1, h2) 

               ΔQs
lse(h1, h2) = ks

lse(h1, h2) ∗  Δplse(h1, h2)                     

                                                if Δpth
lse(h1, h2) < Δplse(h1, h2) < Δpsat

lse(h1, h2) 

              ΔQc
lse(h1, h2) = ΔQcmax

lse (h1, h2)                           

                                           If Δplse(h1, h2) > Δpsat
lse(h1, h2) 

4-14 
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4.5 DEMAND RESPONSE USING CONSUMER PSYCHOLOGY MODEL 

If the components of load are known, it becomes easy to analyze the consumer’s 

behavioral pattern and response to the price signals. 4.3 illustrates the use of artificial 

neural network data for load classification. The data used to train ANN network has already 

taken into consideration the social, geographic and demographic characteristics of 

consumers from each residential zones. Hence, as explained in 4.4, the consumer behavior 

can be effectively modeled. Demand response using consumer psychology model is 

represented in Figure 4.12. Initially, based on the forecasted load Qforecasted for all the load 

serving entities in the system, the LMP is calculated via DCOPF. This forecasted rate signal 

pforecasted is made available to consumers 24 hours in advance. Based on the curtailment 

and shifting characteristics, the consumers may modify their consumption. The rates are 

re-calculated in the real-time market based on the modified demand for hth hour and 

Figure 4.12: Demand response using Consumer Psychology Model 



62 

 

consumers are billed at this rate for their consumption. Because of load shift for hth an 

hour from the past and future period, the values of forecasted Q′forecasted. loads also 

change, but the changes are not made available to the consumers. This load change may be 

estimated by the operators to optimize the scheduling of generators.  

4.6 RESULTS AND DISCUSSION 

Figure 4.13 represents the forecasted load profile assuming no demand response 

behavior. Based on this forecast, the LMP for the load-serving entities is calculated using 

DCOPF. The LMP’s represent the forecasted price signals which consumer receives before 

24 hours. Figure 4.14 represents the forecasted price signal, the consumer receives. 

Bifurcation of the load profile for the curtailable and shiftable component is shown in 

Figure 4.6, Figure 4.7 and Figure 4.8. These profiles along with the forecasted rates are 

taken as input by the consumer psychology model to simulate the load curtailment and load 

shift. Model parameters guiding the load curtailment and load shift and curtailment for a 

normal and a surge scenario are defined in Table 4.1 and  

Table 4.2 respectively. Figure 4.15 represents the motivation factor for load 

curtailment and corresponding load change. Figure 4.16 represents the benefit factor 

behind load shift (intertemporal price difference) and corresponding load shift. Figure 4.17 

represents the overall change in consumption pattern from the forecasted rates and load 

because of advance price signals. Figure 4.18 represents the overall change in the load and 

LMP due to consumer participation on real-time demand response program. The scenario 

of DR described in this illustration is considered as an idea because sensitivity to load shift 

among the periods is same. Practically, the consumers may be prone to shift the load to the 

off-peak period with higher convenience. The scenario under this situation is illustrated in 
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Figure 4.19 Figure 4.20 and Figure 4.21. Iterations of consumer psychology model run in 

real-time and can be used to map the precise scenarios to the real-world demand response 

environment. Unlike other models, it considers both social as well as psychological aspects 

of simulation the DR scenario. Work still needs to be done in relating the model parameters 

to the actual scenario via machine learning algorithm. Also, the model provides with the 

load change values which can be further used in calculating the elasticity matrix.  Elasticity 

matrix would also represent the shift sensitive time periods as illustrated in scenario 2. 

Moreover, it can be used to improve the architecture further by providing the consumers 

with optimum forecasted price signals which can suppress the spikes or overshoot due to 

load shift.  

Table 4.1: Model Parameters: Scenario 1 

 

Table 4.2: Model Parameters: Scenario 2 

 

ksp (shift percentage) 0.4 

kse (shift sensitivity) 1 

kcp (curtailment percentage) 0.4 

Active Hours 7:00 to 24:00 

ksp (shift percentage) 0.4 

kse (shift sensitivity) 

kse(8), (shift sensitivity at h=8:00) 

1 

                    25 

kcp (curtailment percentage) 0.4 

Active Hours 7:00 to 24:00 
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           Figure 4.14: Forecasted LMP 

Figure 4.13: Forecasted load 
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Figure 4.15: Benefit factor and corresponding load curtailment 
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Figure 4.16: Benefit factor and corresponding load shift (Scenario 1) 
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Figure 4.17: Curtailment and shift type reponse based on Consumer Psychology Model 

(Scenario 1) 
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Figure 4.18: Consumer Psychology Model based demand response (Scenario 1) 
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 Figure 4.19: Benefit factor and corresponding load shift (Scenario 2) 
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Figure 4.20: Curtailment and shift type reponse based on Consumer Psychology Model 

(Scenario 2) 
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  Figure 4.21: Consumer Psychology Model based demand response (Scenario 2) 
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4.7 SUMMARY 

Consumer psychology model gives a detailed understanding of consumer’s 

behavior. A measure is required to indicate the sensitivity of the consumer, which can be 

used to decrease the uncertainty of the system and increase the demand response program 

efficiency. Hence, the concept of elasticity is introduced in chapter 5. 

 



 

 

 

  

 

  

 

 

CHAPTER 5:  ELASTICITY AND DEMAND RESPONSE 

Consumer psychology model based demand response gives the characteristics of 

the consumer load pattern and corresponding consumption. However, it does not provide 

with the information regarding of sensitivity. Hence, elasticity matrix, which represents 

consumer’s sensitivity is developed in this chapter and is used further to improve demand 

response program efficiency. Section 5.2 introduces the concept of elasticity. Architecture 

for estimating the elasticities is explained in section 5.3. Section 5.4 discusses the 

application of elasticities in mitigating the abnormal demand surges. Section 5.5 presents 

the result and discussion. 

5.1 INTRODUCTION 

Elasticity is a measure of a variable's sensitivity to a change in another variable. In 

economics, elasticity (supply/demand) refers the degree to which (consumers/producers) 

change their demand/supply in response to price or income changes. 

Increasing the price of a commodity even by a small amount will or may decrease 

the demand. If there is a precipitous change in the demand based on the changes on the 

cost, the commodity or market is said to be elastic. If the changes in demand is negligible 

compared to changes in the price, the demand is considered as inelastic. 

Mathematically elasticity can be represented as: 
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Where, 

%∆Q is change in quantity 

%∆P is change in product 

The elasticity of any commodity also depends on rates and demand of its 

substitutes. Consider product B to be a substitute of product A. Cross elasticity is said to 

exist when rates of product B decreases leading to shifting of consumers from product A 

to product B, and thereby affecting the demand of product A. 

Where, ∆QA is the change in demand with change in rates of commodity B. 

 ∆PBis the change in the rates of commodity B. 

5.2 ELASTICITY IN ELECTRICITY MARKET 

The method proposed during the research focuses on the reaction of consumers 

depending on short-term forecasted rates. Here, short-term forecasted rates can be defined 

as a day ahead forecasted rates.  

Market equilibrium point in the energy market is assumed to be the forecasted 

electrical demand without any interference by DR programs. Rates corresponding to the 

demand are considered to be the equilibrium rates. This equilibrium point or equilibrium 

rates are time dependent and specific for that particular hour. Based on the day and location, 

each hour is considered to have different equilibrium values of load and price. As per many 

researches and pilot-projects, electricity being one of the primary needs of humans, the 

E =
%ΔQ

%ΔP
 5-1 

EAB = (
%∆QA

%∆PB
) 5-2 
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electricity market is considered to be inelastic. Electricity market elasticity function can be 

represented as shown in Figure 5.1. 

 The elasticity curve can be classified in three phase. Phase AB is quite inelastic 

depicting a situation where consumers are not ready to compromise their comfort for a 

minor increase in price up to point B. Phase BC represents threshold situation, where 

consumer’s sacrifices unnecessary consumption to save on the rates. Point C is akin to the 

threshold of curtailment. Beyond that consumers cannot curtail the load as it may be near 

to basic required level consumption of the consumer. Moreover, it would also be a misuse 

of market power to increase the rates beyond the saturation limit capacity to gain the 

curtailment. 

An elasticity matrix, if available for any load serving entity, represents the 

characteristic of load belonging to respective LSE. It holds the information such as the 

proportion of curtailable and shiftable load and type of consumer’s response to advance 

A 

B 

C 

Figure 5.1: Market elasticity function [18] 
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price signals. Diagonals of the matrix represents the self-elasticity, and remaining elements 

will represent cross elasticity due to change in price of ith hour on consumption of jth hour 

(here, i is row entity, and j is column entity).   

Based on elasticity matrix consumers can be classified into five types.  

a) Anticipating consumer: Consumer in this category tend to complete the tasks requiring 

higher consumption of electricity before the peak price period. 

b) Postponing consumer: Consumer in this category tend to finish the task after the peak 

price period. 

c) Flexible Consumer: Consumer can either prepone or postpone the load schedules. 

d) Inflexible consumer: Consumer are unable to curtail the load and shift to other time 

periods. 

e) Optimizing consumer. The consumer shifts the consumption to off peak period. 

 

5.3 ESTIMATION OF PRICE ELASTICITY MATRIX (PEM) 

In a wholesale power market, the information contained by price elasticity matrix 

can be useful in submitting the bids. Hence, it is the retailer’s responsibility to estimate the 

elasticity matrix for the optimum bidding considering the consumer’s response. Values of 

PEM can be estimated with multiple methods. The most common method is end user 

survey. Another method is to regress demand curve with past data, and derive the PEM 

from the obtained demand curve by doing partial differentiation. The advantage of this 

method is that it is faster and getting more accurate with more data accumulated in the 

∆Qm = [
E11 ⋯ E1n

⋮ ⋱ ⋮
Em1 ⋯ Emn

] ∗ ∆Pn ,   Here m=n=24. 5-3 
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regression. Learning effect can be applied to the regression if other exogenous 

disturbances, such as weather, exist. The disadvantages of this method are the complexity 

to regress a multi-dimensional function (not to mention in the DA markets the dimension 

can be 12 or 24), and it will be difficult to do the regression at the beginning with few data 

available. However, the regression can be simplified, and better accuracy can be achieved 

if the end use survey is merged with the same. Psychology models help in achieving that 

objective. The ANN module is already trained to classify the loads based on meteorological 

data. Also, the history of data used in training the ANN module considers social, economic, 

geographic and demographic survey data for the classification. Hence, by regressing the 

sensitivity parameters, ANN model can be used in estimating the price response and hence 

the load change. Because of lack of location-specific demand response data, the simulated 

Figure 5.2:  Architecture for estimating elasticity 



78 

 

load change data from consumer psychology model was directly considered for the price 

elasticity matrix computation.  

Elasticity, as represented in 5-2 is the ratio of percentage change in load to the 

percentage change in price. Information regarding the change in load is obtained from 

CPM. Taking the ratio of change in load to the difference between maximum and minimum 

load values of forecasted load profile gives the percentage change on load variation.  

However, for calculation of  %∆Ph, the reference price is required to calculate the 

change. Hence the concept of equilibrium price is used in reference to the context. 

5.3.1 EQUILIBRIUM PRICE  

Equilibrium price concept has been derived from the concept of equilibrium point 

in a Demand Response Curve. The equilibrium point is the intersection of demand curve 

with the supply curve. When supply and demand are equal (i.e. when the supply function 

and demand function intersect), the economy is said to be at equilibrium. At this point, the 

allocation of goods is at its most efficient because the amount of goods being supplied is 

the same as the amount of goods being demanded. At the given price, suppliers are selling 

all the goods that they have produced and consumers are getting all the goods that they are 

demanding. However, in the perspective of energy consumption, under the absence of 

advance price signals, consumer’s energy consumption is in a un-optimized manner. It can 

be implied that, with the knowledge of advance price signals, the consumer may optimize 

the consumption and demand curve may shift from the original, leading to a new 

equilibrium point.  

Hence,%∆Qh1h2

lse = (
∆Qlse(h1,h2)

QMax
lse −QMin

lse   
)  5-4 
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Hence, it can be hypothesized that every time instant has an individual equilibrium 

point determining the level of requirement of electricity consumption. As shown in Figure 

5.1, if demand curve in the absence of advance price signal is represented by D, the in case 

of off peak hours, it may shift to DL owing to lower price and during peak periods, it may 

shift to DU representing the consumption optimization during the peak period. Similarly, 

all the time periods would be having an individual demand curve gradually shifting 

upwards from peak price periods to off peak periods. The intersection of these demand 

curves with supply curve represents the market equilibrium. Price corresponding to market 

equilibrium (peqm) can be used as a reference for the calculation of elasticity. 

Figure 5.3: Equilibrium price concept 
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Based on surveys and DR program reports [37], it was observed, that upto a 

maximum of 20 percent load shedding was observed during on peak periods. Same, 

observation was taken into consideration in determining the equilibrium price points.  

Average and standard deviation of load data is calculated. Extreme data, i.e., lying 

beyond variance are supposed to be extreme on peak or off peak loads. Maximum response 

(20% change) is assigned to points lying in this category. Another class is assigned to 

points lying between 1st and 2nd variance range. 10% change is assigned to this set of points. 

Class of load points lying between 1st and 0.5th variance is assigned with 5%change. 

Moreover, for points lying near the mean point, i.e., optimum price level, only 2.5% 

variation is considered. 

Based on above distribution, the equilibrium price points are assumed. This price 

points acts as reference points for the calculation of ∆p. 

Based on equation 5-4 and 5-5, elasticity can be calculated for each load serving entity. 

Hence, %∆Ph1 = (
pforecast

lse (h1) − peqm
lse (h1)

Pforecast
Max − pforecast

Min   
) 5-5 

Figure 5.4: Generating equilibruim price 
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As shown in Figure 5.5, Figure 5.6 and Figure 5.7, equilibrium price provides a fair 

approximation for the elasticity calculation. Few researches take the mean value as the 

reference value for LMP calculation. However, the mean value does not reflect the concept 

of market equilibrium which keeps on changing depending on the level of requirement. 

Moreover, electricity being the basic need, the market equilibrium is expected to be 

dynamic for all the time periods.  

Table 5.1 Average end-use load type (Based on ANN output) 

 

Figure 5.5, Figure 5.6 and Figure 5.7 represents the elasticity matrix for the areas 

served by all three load serving entity. It can be observed that, self-elasticity values lying 

on the diagonal of the matrix as negative. It represents the load curtailment. Negative 

values suggest that, with an increase in the price, the consumption decrease. Whereas, cross 

elasticity values are positive. Positive values indicate that with an increase in the peak 

period rates, the load on the off peak period increases and thereby representing the shift of 

load from peak period to off peak period.  

The magnitude of the bars in the elasticity matrix also represents the proportion of 

the type of load component. It can be observed that the lower percentage of shiftable load 

and a higher proportion of the curtailable load is reflected in the values for elasticity matrix 

Zone Curtailable Load Shiftable Load Constant Load 

Zone 1 36.2% 53.9% 10.67 

Zone 2 79.6% 16.1% 4.25% 

Zone 3 16.73% 54.97% 28.31% 
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for LSE 2 in  Figure 5.6. The majority of the load in zone 3 is shiftable in nature. Hence, 

the self-elasticity values are lower in the case of zone 3 (Figure 5.7). 

Moreover, information regarding the different type of consumer behaviors as 

discussed in 5.2 is also reflected by the elasticity matrix. By varying the sensitivity, various 

behavioral scenarios(explained in 5.1) were simulated. Results of same are summarized in 

Table 5.2. Hence, with the availability of big data for demand response, any sensitivity 

factor in psychology model can be regressed to study and obtain the elasticity matrix for 

any region.   
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Figure 5.5: Elasticity matrix: LSE 1 
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Figure 5.6: Elasticity matrix: LSE 2 
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Figure 5.7: Elasticity matrix: LSE 3 
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Table 5.2 Consumer behavioral representation using elasticity matrix 

 

 

Elasticity Matrix Load Change 

Customer Type: Anticipating 

𝑘𝑠𝑒 =1.8 for  (0 < ℎ < 12)  and 𝑘𝑠𝑒 = 0.2 for (12 ≤ ℎ) 

 
 

Customer Type: Postponing 

𝑘𝑠𝑒 =4 for (21 < ℎ < 24)  and 𝑘𝑠𝑒 = 0.2 for (ℎ ≤ 21) 
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Table 5.2 (Continued) 

 

 

Elasticity Matrix Load Change 

Customer Type: Flexible 

𝑘𝑠𝑒 = 1 for ∀ℎ 

 
 

Customer Type: Inflexible 

𝑘𝑠𝑒 =0.1 for ∀ℎ 
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Table 5.2 (Continued) 

 

  

Elasticity Matrix Load Change 

Customer Type: Optimizing 

𝑘𝑠𝑒 =1.8 for 23 < ℎ ≤ 24 and 0 ≤ ℎ ≤ 4 

  

Customer Type: Mutual Convenience (Surge Scenario) 

𝑘𝑠𝑒 = 18 for  (ℎ = 8; ) and 𝑘𝑠𝑒 = 0.2 for (ℎ ≠ 8) 
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5.4 SURGE MITIGATION USING ELASTICITY MATRIX 

The efficiency of demand response program depends on the fact of how effectively 

can the advance rates modify the consumption and decrease the load variation. Any sudden 

spikes or surges may  reduce the efficiency of same. Unexpected demand surges have been 

one of the major issue faced by the existing real time based demand response programs 

like ComEd. Figure 5.9, Figure 5.10 and Figure 5.11 represents one such scenario where 

consumers are sensitive to shift the consumption more toward 8:00 compared to other off 

peak time period. As a result of same, spike in the real time demand as well as LMP can 

be seen which reduces the participation benefit of demand response program.  If elasticity 

matrix representing the sensitivity to price is used to modify the available price signals, the 

demand surges can be mitigated. Figure 5.8 represents the architecture which can be 

integrated with demand response programs for modifying the advance price signals based 

on the sensitivity.  Elasticity matrix represents the consumer’s behavior characteristics as 

shown in Figure 5.9, Figure 5.10 and Figure 5.11. It is a normal behavioral tendency of the 

consumer to shift the load to the most convenient off-peak period. This may result in an 

unexpected surge in the real time demand and hence the LMP. If this information is known 

in prior via elasticity matrix, it could be taken into consideration during the day ahead 

bidding. Figure 5.8 represents the architecture of revising the forecasted LMP or the day 

ahead price signals which customer may receive to control the demand and avoid any 

unexpected demand surges. As per the approach presented in 5.3, the elasticity matrix of 

consumers can be obtained using consumer psychology model. This elasticity represents 

the characteristics of the consumers in terms of price sensitivity as well as load shift. Hence, 

the forecasted rates provided to the consumers can be fed-in along with the reference 
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equilibrium rates to forecast the real-time consumption 𝑄𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
′  or the demand response 

to advance price signals. If any anomalies exist in the same, the consumption is re-

evaluated by taking a weighted average of forecasted load 𝑄𝑓𝑜𝑟𝑒𝑐𝑠𝑎𝑡 and the elasticity 

matrix based forecasted load 𝑄𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
0 . By taking the weighted average of both the rates, 

through an appropriate weighting factor, the revised forecasted load 𝑄𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
1   can 

be obtained. By using this forecasted load to clear up the market price, an optimum 

elasticity based forecasted rates or day ahead rates 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
1  can be generated.  This rates 

would be made available to consumers. Based on this rates, consumer will be optimizing 

the consumption and plan their consumption. Moreover, spike in the real time would be 

mitigated, thereby reducing the uncertainty induced by demand response programs. A 

scenario with elasticity based demand response is implanted on 6 bus system in section5.5 

with consumers sensitive to load shift at 8:00. 

 

 Figure 5.8: Surge mitigation using elasticity based DR 
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5.5 RESULTS AND DISCUSSION 

  

 

Figure 5.9: Surge situation under normal demand response program (LSE 1) 
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Figure 5.10: Surge situation under normal demand response program (LSE 2) 
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Figure 5.11: Surge situation under normal demand response program (LSE 3) 
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Figure 5.12: Surge mitigation (Load and LMP) under elasticity based forecasted 

rates (LSE 1) 



95 

 

 

 

Figure 5.13: Surge mitigation (Load and LMP) under elasticity based forecasted 

rates (LSE 2) 
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Figure 5.14: Surge mitigation (Load and LMP) under elasticity based forecasted 

rates (LSE 3) 
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Figure 5.9, Figure 5.10 and Figure 5.11 represents typical DR scenario illustrating 

the accumulated shifting of load to 8th hour. As a result, spikes in both LMP and load can 

be observed. Also, the load serving entities with a higher ratio of the shiftable load may 

see the higher magnitude of spikes. For example, it can be seen in Figure 5.11, LSE 3 has 

a large proportion of shiftable load. Hence, the demand shoots up at 8:00 am. Moreover, 

the system being interconnected, the spike in rates is observed by LSE with a lower 

proportion of shiftable load (Figure 5.10). Figure 5.12, Figure 5.13 and Figure 5.14 

represents the forecasted rates before and after considering the elasticity matrix along with 

DR scenario under revised forecasted rates. It can be observed that by increasing the rates 

by 20% during the peak time period the spike gets mitigated by 50%.  

5.6 SUMMARY 

Architecture for calculation of elasticity matrices was discussed in the present 

chapter. Moreover, the information of elasticity metrics was further used to reduce the 

uncertainty of in the system, which may arise because of demand response program.



 

 

 

  

 

  

 

 

CHAPTER 6:  CONCLUSION AND FUTURE WORK 

One of the biggest challenges that the existing demand response programs have 

been facing is forecasting the uncertainties. A new approach of predicting the uncertainties 

via estimated elasticity matrix for consumers at residential level was presented in the 

current research 

Initially, a consumer psychology model was developed. Based on the detailed end-

use data, the artificial neural network was used to classify the total consumption into 

shiftable, curtailable and constant loads. Consumer psychology model considered the 

detailed response to advance price signals in terms of shifting and curtailable type. Also, it 

consisted of control parameters which holistically reflected the tendency as well as the limit 

of participation. 

Consumer psychology model gave the change in the consumption pattern as an 

output. A new concept of equilibrium reference rates was introduced in work to reflect 2-

way participation based market equilibrium. These market equilibrium rates were used as 

a reference for estimating the elasticity matrix. 

Elasticity matrix holds the valuable information consisting the consumption 

pattern, types of load and sensitivity of consumption to the prices. Information in the 

elasticity matrix was further used to study different kinds of consumer behavior. An 



99 

 

architecture to forecast the uncertainties, using the information from the elasticity matrix 

was proposed in the research. 

Elasticity matrix based demand response program promises benefit on all fronts. 

On generation end, it helps the power generating entities to plan the generation schedules 

accordingly. Also, it helps them to optimize the operation of peaking generators. Moreover, 

by using the consumer sensitivity information during generation bidding, it can assist them 

in optimizing the bid values with better profit margin during the day ahead bidding. 

Elasticity matrix contributes by improving the forecast during demand response programs 

at load serving entity level. With better forecast, the load serving entities can also optimize 

the profit during the demand bids. Hence elasticity based demand response in real time 

market promises higher market efficiency along with lesser uncertainties. 

6.1 FUTURE WORK 

Current research has not considered the penetration of renewable and distributed 

generation in the energy markets. Demand response programs can be made more efficient 

with the integration of distribution end renewable generation and energy storage. Energy 

storage can be simulated as shiftable load whereas renewable can be simulated as a 

curtailable load. Moreover, in future, it can also enable consumers to participate in energy 

arbitrage activities. 

Also, works need to be done in tuning the consumer psychology model presented 

in the current research with the residential areas participating in real-time demand response 

program. Big data of an ongoing real-time based demand response program is required to 

tune the consumer psychology model via machine learning algorithms like an artificial 
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neural network which would help in generating the precise elasticity matrix. This elasticity 

matrix would represent the consumer behavioral characteristics towards demand response 

program.
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APPENDIX A: IEEE 6 BUS SYSTEM 

Table A-1 Load Data 

 

Table A-2 Generator Data 

 

 

 

 

 

 

 

Load Entity Bus Pload (MW) 

L1 4 100 

L2 5 100 

L3 6 100 

Gen. Bus Cost Function (Cx2 + Bx + A) Generator Constraint  

  C B A Min Max 

G1 1 0.00533 11.669 213.1 50 200 

G2 2 0.00889 10.333 200 37.5 150 

G3 3 0.00741 10.833 240 45 180 
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Table A.1 Branch Data 

 

 

Bus Line Resistance (r) Line Reactance(x) Flow Limit (Fkm) 

From (k) To (m) pu Pu MW 

1 2 0.1 0.2 100 

1 4 0.05 0.2 100 

1 5 0.08 0.3 100 

2 3 0.05 0.25 60 

2 4 0.05 0.1 60 

2 5 0.1 0.3 60 

2 6 0.07 0.2 60 

3 5 0.12 0.26 60 

3 6 0.02 0.1 60 

4 5 0.2 0.4 60 

5 6 0.1 0.3 60 
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APPENDIX B: IEEE 118 BUS SYSTEM 

                                     Zone 1                                                                                                Zone 2 
      

           7                              

                    2                                      13                                                                       33              43       44                54                  55 

                                                                                                                                                                 

1                      117                                                                                                                           45                                   56 

                                                          15                                           34                                                53 

    3          12                                 14                                                                                                                     46                                         57 

                                                                                                           36                                            52               

    6                   11                      17                      18                                                  35                                       47 

                                                                                          37              42                                                    58 

                   4                       16                                                                                                    39                                                     51               59 

                                                                                19                                                                             41                      48                                         

 5                                                                                                    40                                            49      50              60 

                                                                 38                                                                          

     8                                                                20                                                                                                                                                                                                           

    9                      30       31                       113       73                                                                                                         66                                  62 

                                                                                                                                                                                                 

  10                           29                          32          21                                                                           69                                                    67                       61                                                                    

                                                                                                                                                                                                  65               64 

                                28         114                         71                                                                                                         81 

                           26                                  22                        75                                       118              76   77                                                                 

                                                     115                                                                                                                       68                                     80              63 

        25                         27                       23    72                                                                                                                                                      

                                                                                           74                                                                                              116 

      24                                                                                                                                                                     98           99 

                                                                                            70 

                                                                                                                                                                                          

                                                                                                                                                                                     78          79              97 

 

 

                          87                 86                                                                                                               

                                                                       85                                                          

                               88                                                          96                                                                                            

                       90                 89                           84    83              82 

                                                                                                               95                                                                                          112 

                       91                                                                                    93                 94      107                 106       

                  92                                                                                                  106                         109                111                                                                                                                                                                                

                                                                                                              100           105                                         

                                            103              104                 

                              102                        101                                                                                         108        110                                                                                       

                  

                             Zone 3                        
  

 

Table B.1: Generator Data 

U Bus No. Unit Cost Coefficients Pmax (MW) Pmin (MW) 

a b c 

1 4 31.67 40 0.01 100 0 

2 6 31.67 40 0.01 100 0 

3 8 31.67 40 0.01 100 0 

4 10 6.78 40 0.01 100 0 

5 12 6.78 20 0.022222 550 0 

6 15 31.67 20 0.117647 185 0 

7 18 10.15 40 0.01 100 0 
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8 19 31.67 40 0.01 100 0 

9 24 31.67 40 0.01 100 0 

10 25 6.78 40 0.01 100 0 

11 26 32.96 20 0.045455 320 0 

12 27 31.67 20 0.031847 414 0 

13 31 31.67 40 0.01 100 0 

14 32 10.15 20 1.428571 107 0 

15 34 31.67 40 0.01 100 0 

16 36 10.15 40 0.01 100 0 

17 40 31.67 40 0.01 100 0 

18 42 31.67 40 0.01 100 0 

19 46 10.15 40 0.01 100 0 

20 49 28 20 0.526316 119 0 

21 54 28 20 0.04902 304 0 

22 55 10.15 20 0.208333 148 0 

23 56 10.15 40 0.01 100 0 

24 59 39 40 0.01 100 0 

25 61 39 20 0.064516 255 0 

26 62 10.15 20 0.0625 260 0 

27 65 64.16 40 0.01 100 0 

28 66 64.16 20 0.025575 491 0 

29 69 6.78 20 0.02551 492 0 

30 70 74.33 20 0.019365 805.2 0 

31 72 31.67 40 0.01 100 0 
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32 73 31.67 40 0.01 100 0 

33 74 17.95 40 0.01 100 0 

34 76 10.15 40 0.01 100 0 

35 77 10.15 40 0.01 100 0 

36 80 6.78 40 0.01 100 0 

37 82 10.15 20 0.020964 577 0 

38 85 31.67 40 0.01 100 0 

39 87 32.96 20 2.5 104 0 

40 89 6.78 20 0.016474 707 0 

41 90 17.95 40 0.01 100 0 

42 91 58.81 40 0.01 100 0 

43 92 6.78 40 0.01 100 0 

44 99 6.78 40 0.01 100 0 

45 100 6.78 20 0.039683 352 0 

46 103 17.95 20 0.25 140 0 

47 104 10.15 40 0.01 100 0 

48 105 10.15 40 0.01 100 0 

49 107 17.95 40 0.01 100 0 

50 110 58.81 40 0.01 100 0 

51 111 10.15 20 0.277778 136 0 

52 112 10.15 40 0.01 100 0 

53 113 10.15 40 0.01 100 0 

54 116 58.81 40 0.01 100 0 

 



110 

 

Table B.2 118 Bus: Line data 

Line No. From Bus To Bus R (pu) X (pu) Flow Limit (MW) 

1 1 2 0.0303 0.0999 100000 

2 1 3 0.0129 0.0424 100000 

3 4 5 0.00176 0.00798 100000 

4 3 5 0.0241 0.108 100000 

5 5 6 0.0119 0.054 100000 

6 6 7 0.00459 0.0208 100000 

7 8 9 0.00244 0.0305 100000 

8 8 5 0 0.0267 100000 

9 9 10 0.00258 0.0322 100000 

10 4 11 0.0209 0.0688 100000 

11 5 11 0.0203 0.0682 100000 

12 11 12 0.00595 0.0196 100000 

13 2 12 0.0187 0.0616 100000 

14 3 12 0.0484 0.16 100000 

15 7 12 0.00862 0.034 100000 

16 11 13 0.02225 0.0731 100000 

17 12 14 0.0215 0.0707 100000 

18 13 15 0.0744 0.2444 100000 

19 14 15 0.0595 0.195 100000 

20 12 16 0.0212 0.0834 100000 

21 15 17 0.0132 0.0437 100000 

22 16 17 0.0454 0.1801 100000 
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23 17 18 0.0123 0.0505 100000 

24 18 19 0.01119 0.0493 100000 

25 19 20 0.0252 0.117 100000 

26 15 19 0.012 0.0394 100000 

27 20 21 0.0183 0.0849 100000 

28 21 22 0.0209 0.097 100000 

29 22 23 0.0342 0.159 100000 

30 23 24 0.0135 0.0492 100000 

31 23 25 0.0156 0.08 100000 

32 26 25 0 0.0382 100000 

33 25 27 0.0318 0.163 100000 

34 27 28 0.01913 0.0855 100000 

35 28 29 0.0237 0.0943 100000 

36 30 17 0 0.0388 100000 

37 8 30 0.00431 0.0504 100000 

38 26 30 0.00799 0.086 100000 

39 17 31 0.0474 0.1563 100000 

40 29 31 0.0108 0.0331 100000 

41 23 32 0.0317 0.1153 100000 

42 31 32 0.0298 0.0985 100000 

43 27 32 0.0229 0.0755 100000 

44 15 33 0.038 0.1244 100000 

45 19 34 0.0752 0.247 100000 

46 35 36 0.00224 0.0102 100000 
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47 35 37 0.011 0.0497 100000 

48 33 37 0.0415 0.142 100000 

49 34 36 0.00871 0.0268 100000 

50 34 37 0.00256 0.0094 100000 

51 38 37 0 0.0375 100000 

52 37 39 0.0321 0.106 100000 

53 37 40 0.0593 0.168 100000 

54 30 38 0.00464 0.054 100000 

55 39 40 0.0184 0.0605 100000 

56 40 41 0.0145 0.0487 100000 

57 40 42 0.0555 0.183 100000 

58 41 42 0.041 0.135 100000 

59 43 44 0.0608 0.2454 100000 

60 34 43 0.0413 0.1681 100000 

61 44 45 0.0224 0.0901 100000 

62 45 46 0.04 0.1356 100000 

63 46 47 0.038 0.127 100000 

64 46 48 0.0601 0.189 100000 

65 47 49 0.0191 0.0625 100000 

66 42 49 0.0715 0.323 100000 

67 42 49 0.0715 0.323 100000 

68 45 49 0.0684 0.186 100000 

69 48 49 0.0179 0.0505 100000 

70 49 50 0.0267 0.0752 100000 
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71 49 51 0.0486 0.137 100000 

72 51 52 0.0203 0.0588 100000 

73 52 53 0.0405 0.1635 100000 

74 53 54 0.0263 0.122 100000 

75 49 54 0.073 0.289 100000 

76 49 54 0.0869 0.291 100000 

77 54 55 0.0169 0.0707 100000 

78 54 56 0.00275 0.00955 100000 

79 55 56 0.00488 0.0151 100000 

80 56 57 0.0343 0.0966 100000 

81 50 57 0.0474 0.134 100000 

82 56 58 0.0343 0.0966 100000 

83 51 58 0.0255 0.0719 100000 

84 54 59 0.0503 0.2293 100000 

85 56 59 0.0825 0.251 100000 

86 56 59 0.0803 0.239 100000 

87 55 59 0.04739 0.2158 100000 

88 59 60 0.0317 0.145 100000 

89 59 61 0.0328 0.15 100000 

90 60 61 0.00264 0.0135 100000 

91 60 62 0.0123 0.0561 100000 

92 61 62 0.00824 0.0376 100000 

93 63 59 0 0.0386 100000 

94 63 64 0.00172 0.02 100000 
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95 64 61 0 0.0268 100000 

96 38 65 0.00901 0.0986 100000 

97 64 65 0.00269 0.0302 100000 

98 49 66 0.018 0.0919 100000 

99 49 66 0.018 0.0919 100000 

100 62 66 0.0482 0.218 100000 

101 62 67 0.0258 0.117 100000 

102 65 66 0 0.037 100000 

103 66 67 0.0224 0.1015 100000 

104 65 68 0.00138 0.016 100000 

105 47 69 0.0844 0.2778 100000 

106 49 69 0.0985 0.324 100000 

107 68 69 0 0.037 100000 

108 69 70 0.03 0.127 100000 

109 24 70 0.00221 0.4115 100000 

110 70 71 0.00882 0.0355 100000 

111 24 72 0.0488 0.196 100000 

112 71 72 0.0446 0.18 100000 

113 71 73 0.00866 0.0454 100000 

114 70 74 0.0401 0.1323 100000 

115 70 75 0.0428 0.141 100000 

116 69 75 0.0405 0.122 100000 

117 74 75 0.0123 0.0406 100000 

118 76 77 0.0444 0.148 100000 
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119 69 77 0.0309 0.101 100000 

120 75 77 0.0601 0.1999 100000 

121 77 78 0.00376 0.0124 100000 

122 78 79 0.00546 0.0244 100000 

123 77 80 0.017 0.0485 100000 

124 77 80 0.0294 0.105 100000 

125 79 80 0.0156 0.0704 100000 

126 68 81 0.00175 0.0202 100000 

127 81 80 0 0.037 100000 

128 77 82 0.0298 0.0853 100000 

129 82 83 0.0112 0.03665 100000 

130 83 84 0.0625 0.132 100000 

131 83 85 0.043 0.148 100000 

132 84 85 0.0302 0.0641 100000 

133 85 86 0.035 0.123 100000 

134 86 87 0.02828 0.2074 100000 

135 85 88 0.02 0.102 100000 

136 85 89 0.0239 0.173 100000 

137 88 89 0.0139 0.0712 100000 

138 89 90 0.0518 0.188 100000 

139 89 90 0.0238 0.0997 100000 

140 90 91 0.0254 0.0836 100000 

141 89 92 0.0099 0.0505 100000 

142 89 92 0.0393 0.1581 100000 
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143 91 92 0.0387 0.1272 100000 

144 92 93 0.0258 0.0848 100000 

145 92 94 0.0481 0.158 100000 

146 93 94 0.0223 0.0732 100000 

147 94 95 0.0132 0.0434 100000 

148 80 96 0.0356 0.182 100000 

149 82 96 0.0162 0.053 100000 

150 94 96 0.0269 0.0869 100000 

151 80 97 0.0183 0.0934 100000 

152 80 98 0.0238 0.108 100000 

153 80 99 0.0454 0.206 100000 

154 92 100 0.0648 0.295 100000 

155 94 100 0.0178 0.058 100000 

156 95 96 0.0171 0.0547 100000 

157 96 97 0.0173 0.0885 100000 

158 98 100 0.0397 0.179 100000 

159 99 100 0.018 0.0813 100000 

160 100 101 0.0277 0.1262 100000 

161 92 102 0.0123 0.0559 100000 

162 101 102 0.0246 0.112 100000 

163 100 103 0.016 0.0525 100000 

164 100 104 0.0451 0.204 100000 

165 103 104 0.0466 0.1584 100000 

166 103 105 0.0535 0.1625 100000 
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167 100 106 0.0605 0.229 100000 

168 104 105 0.00994 0.0378 100000 

169 105 106 0.014 0.0547 100000 

170 105 107 0.053 0.183 100000 

171 105 108 0.0261 0.0703 100000 

172 106 107 0.053 0.183 100000 

173 108 109 0.0105 0.0288 100000 

174 103 110 0.03906 0.1813 100000 

175 109 110 0.0278 0.0762 100000 

176 110 111 0.022 0.0755 100000 

177 110 112 0.0247 0.064 100000 

178 17 113 0.00913 0.0301 100000 

179 32 113 0.0615 0.203 100000 

180 32 114 0.0135 0.0612 100000 

181 27 115 0.0164 0.0741 100000 

182 114 115 0.0023 0.0104 100000 

183 68 116 0.00034 0.00405 100000 

184 12 117 0.0329 0.14 100000 

185 75 118 0.0145 0.0481 100000 

186 76 118 0.0164 0.0544 100000 
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Table B.3: 118 Bus  Load data 

Bus No Load (MW) 

1 51 

2 20 

3 39 

4 39 

6 52 

7 19 

11 28 

12 70 

13 47 

14 34 

15 14 

16 90 

17 25 

18 11 

19 60 

20 45 

21 18 

22 14 

23 10 

27 7 

28 13 

29 71 
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31 17 

32 24 

33 43 

34 59 

35 23 

36 59 

39 33 

40 31 

41 27 

42 66 

43 37 

44 96 

45 18 

46 16 

47 53 

48 28 

49 34 

50 20 

51 87 

52 17 

53 17 

54 18 

55 23 

56 113 
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57 63 

58 84 

59 12 

60 12 

62 277 

66 78 

67 77 

70 39 

74 28 

75 66 

76 12 

77 6 

78 68 

79 47 

80 68 

82 61 

83 71 

84 39 

85 130 

86 54 

88 20 

90 11 

92 24 

93 21 
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94 48 

95 163 

96 10 

97 65 

98 12 

100 30 

101 42 

102 38 

103 15 

104 34 

105 42 

106 37 

107 22 

108 5 

109 23 

110 38 

112 31 

114 43 

115 50 

117 2 

118 8 

 

 

 



122 

 

Table B.4: DCOPF Result: 118 Bus Generation 

Bus Generation Generation 

 P (MW) P (MW) 

 SCQP DCOPF MatPower 

1 0 0 

4 0 0 

6 0 0 

8 0 0 

10 436.080833 436.08 

12 82.370837 82.37 

15 0 0 

18 0 0 

19 0 0 

24 0 0 

25 213.195052 213.2 

26 304.287484 304.29 

27 0 0 

31 6.78348098 6.78 

32 0 0 

34 0 0 

36 0 0 

40 0 0 

42 0 0 

46 18.4123034 18.41 
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49 197.689978 197.69 

54 46.5152954 46.52 

55 0 0 

56 0 0 

59 150.20562 150.21 

61 155.050953 155.05 

62 0 0 

65 378.905747 378.91 

66 379.87482 379.87 

69 500.426875 500.43 

70 0 0 

72 0 0 

73 0 0 

74 0 0 

76 0 0 

77 0 0 

80 462.245608 462.25 

85 0 0 

87 3.87627338 3.88 

89 588.224396 588.22 

90 0 0 

91 0 0 

92 0 0 

99 0 0 
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100 244.205234 244.21 

103 38.762738 38.76 

104 0 0 

105 0 0 

107 0 0 

110 0 0 

111 34.8864699 34.89 

112 0 0 

113 0 0 

116 0 0  

 

Table B.5: DCOPF Result: 118 Bus Nodal LMP 

Bus Lambda Lambda 

 SCQP DCOPF MatPower 

1 39.38137 39.381 

2 39.38137 39.381 

3 39.38137 39.381 

4 39.38137 39.381 

5 39.38137 39.381 

6 39.38137 39.381 

7 39.38137 39.381 

8 39.38137 39.381 

9 39.38137 39.381 
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10 39.38137 39.381 

11 39.38137 39.381 

12 39.38137 39.381 

13 39.38137 39.381 

14 39.38137 39.381 

15 39.38137 39.381 

16 39.38137 39.381 

17 39.38137 39.381 

18 39.38137 39.381 

19 39.38137 39.381 

20 39.38137 39.381 

21 39.38137 39.381 

22 39.38137 39.381 

23 39.38137 39.381 

24 39.38137 39.381 

25 39.38137 39.381 

26 39.38137 39.381 

27 39.38137 39.381 

28 39.38137 39.381 

29 39.38137 39.381 

30 39.38137 39.381 

31 39.38137 39.381 

32 39.38137 39.381 

33 39.38137 39.381 
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34 39.38137 39.381 

35 39.38137 39.381 

36 39.38137 39.381 

37 39.38137 39.381 

38 39.38137 39.381 

39 39.38138 39.381 

40 39.38138 39.381 

41 39.38138 39.381 

42 39.38138 39.381 

43 39.38137 39.381 

44 39.38137 39.381 

45 39.38137 39.381 

46 39.38137 39.381 

47 39.38137 39.381 

48 39.38137 39.381 

49 39.38137 39.381 

50 39.38137 39.381 

51 39.38137 39.381 

52 39.38137 39.381 

53 39.38137 39.381 

54 39.38137 39.381 

55 39.38137 39.381 

56 39.38137 39.381 

57 39.38137 39.381 
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58 39.38137 39.381 

59 39.38137 39.381 

60 39.38137 39.381 

61 39.38137 39.381 

62 39.38137 39.381 

63 39.38137 39.381 

64 39.38137 39.381 

65 39.38137 39.381 

66 39.38137 39.381 

67 39.38137 39.381 

68 39.38137 39.381 

69 39.38137 39.381 

70 39.38137 39.381 

71 39.38137 39.381 

72 39.38137 39.381 

73 39.38137 39.381 

74 39.38137 39.381 

75 39.38137 39.381 

76 39.38137 39.381 

77 39.38137 39.381 

78 39.38137 39.381 

79 39.38137 39.381 

80 39.38137 39.381 

81 39.38137 39.381 
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82 39.38137 39.381 

83 39.38137 39.381 

84 39.38137 39.381 

85 39.38137 39.381 

86 39.38137 39.381 

87 39.38137 39.381 

88 39.38137 39.381 

89 39.38136 39.381 

90 39.38137 39.381 

91 39.38137 39.381 

92 39.38136 39.381 

93 39.38137 39.381 

94 39.38137 39.381 

95 39.38137 39.381 

96 39.38137 39.381 

97 39.38137 39.381 

98 39.38137 39.381 

99 39.38137 39.381 

100 39.38137 39.381 

101 39.38137 39.381 

102 39.38137 39.381 

103 39.38137 39.381 

104 39.38137 39.381 

105 39.38137 39.381 
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106 39.38137 39.381 

107 39.38137 39.381 

108 39.38137 39.381 

109 39.38137 39.381 

110 39.38137 39.381 

111 39.38137 39.381 

112 39.38137 39.381 

113 39.38137 39.381 

114 39.38137 39.381 

115 39.38137 39.381 

116 39.38137 39.381 

117 39.38137 39.381 

118 39.38137 39.381 

 

Table B.6: DCOPF Result: 118 Bus Power Flow 

Branch From To From Bus From Bus 

 Bus Bus P (MW) P (MW) 

   SCQP DCOPF MatPower 

1 1 2 -11.8569596 -11.92 

2 1 3 -39.1430404 -39.08 

3 4 5 -103.226621 -102.95 

4 3 5 -68.8478275 -68.71 

5 5 6 86.8008392 86.56 
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6 6 7 34.8008392 34.56 

7 8 9 -436.080833 -436.08 

8 8 5 335.745375 334.79 

9 9 10 -436.080833 -436.08 

10 4 11 64.2266208 63.95 

11 5 11 76.8700872 76.56 

12 11 12 36.0097631 35.73 

13 2 12 -31.8569596 -31.92 

14 3 12 -9.2952129 -9.37 

15 7 12 15.8008392 15.56 

16 11 13 35.0869449 34.79 

17 12 14 18.27141 17.94 

18 13 15 1.08694485 0.79 

19 14 15 4.27140998 3.94 

20 12 16 7.75785682 7.43 

21 15 17 -104.874562 -104.79 

22 16 17 -17.2421432 -17.57 

23 17 18 80.0500146 79.96 

24 18 19 20.0500146 19.96 

25 19 20 -11.6379979 -11.34 

26 15 19 11.3698755 11.22 

27 20 21 -29.6379979 -29.34 

28 21 22 -43.6379979 -43.34 

29 22 23 -53.6379979 -53.34 
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30 23 24 8.04383432 8.65 

31 23 25 -160.399108 -160.28 

32 26 25 84.8411284 84.42 

33 25 27 137.637073 137.33 

34 27 28 32.9183098 32.77 

35 28 29 15.9183098 15.77 

36 30 17 227.028891 227.9 

37 8 30 72.3354588 73.29 

38 26 30 219.446355 219.87 

39 17 31 13.069575 13.44 

40 29 31 -8.08169023 -8.23 

41 23 32 91.7172756 91.3 

42 31 32 -31.2286343 -31 

43 27 32 12.8753334 12.77 

44 15 33 8.86304142 8.3 

45 19 34 -1.94211202 -2.49 

46 35 36 0.73653044 0.83 

47 35 37 -33.7365304 -33.83 

48 33 37 -14.1369586 -14.7 

49 34 36 30.2634695 30.17 

50 34 37 -92.8890627 -93.8 

51 38 37 239.738551 242.13 

52 37 39 54.593327 55.01 

53 37 40 44.3826723 44.79 
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54 30 38 64.7529238 65.26 

55 39 40 27.593327 28.01 

56 40 41 16.6037848 17.01 

57 40 42 -10.6277854 -10.22 

58 41 42 -20.3962152 -19.99 

59 43 44 -16.3165188 -15.86 

60 34 43 1.6834812 2.14 

61 44 45 -32.3165188 -31.86 

62 45 46 -35.6211951 -35.37 

63 46 47 -30.9997219 -30.76 

64 46 48 -14.2091698 -14.19 

65 47 49 -7.61810365 -8.04 

66 42 49 -127.024001 -63.1 

67 42 49 -127.024001 -63.1 

68 45 49 -49.6953237 -49.49 

69 48 49 -34.2091698 -34.19 

70 49 50 51.643934 51.51 

71 49 51 63.8505519 63.68 

72 51 52 28.3046207 28.25 

73 52 53 10.3046207 10.25 

74 53 54 -12.6953793 -12.75 

75 49 54 72.7443583 36.36 

76 49 54 72.7443583 36.11 

77 54 55 6.88709773 6.84 
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78 54 56 17.3307329 17.19 

79 55 56 -21.2853848 -21.18 

80 56 57 -22.643934 -22.51 

81 50 57 34.643934 34.51 

82 56 58 -6.54593122 -6.43 

83 51 58 18.5459312 18.43 

84 54 59 -30.6535563 -30.81 

85 56 59 -58.7647867 -28.8 

86 56 59 -58.7647867 -30.25 

87 55 59 -34.8275174 -34.98 

88 59 60 -44.4840918 -43.9 

89 59 61 -53.1773221 -52.57 

90 60 61 -113.067037 -112.59 

91 60 62 -9.41705437 -9.31 

92 61 62 26.5454323 26.54 

93 63 59 153.378826 155.16 

94 63 64 -153.378826 -155.16 

95 64 61 37.7388391 36.65 

96 38 65 -174.985627 -176.87 

97 64 65 -191.117665 -191.81 

98 49 66 -248.365581 -123.91 

99 49 66 -248.365581 -123.91 

100 62 66 -36.4809838 -36.43 

101 62 67 -23.3906383 -23.34 
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102 65 66 -4.63761699 -5.3 

103 66 67 51.3906383 51.34 

104 65 68 17.4400716 15.52 

105 47 69 -57.3816183 -56.72 

106 49 69 -47.729883 -47.08 

107 68 69 -121.695043 -124.23 

108 69 70 103.603143 103.19 

109 24 70 -5.87905488 -5.58 

110 70 71 17.0771107 16.78 

111 24 72 0.92288922 1.22 

112 71 72 11.0771108 10.78 

113 71 73 5.99999998 6 

114 70 74 15.3743989 15.46 

115 70 75 -0.7274215 -0.62 

116 69 75 107.008465 106.7 

117 74 75 -52.6256011 -52.54 

118 76 77 -60.8720627 -60.92 

119 69 77 63.0087229 62.51 

120 75 77 -33.4724948 -33.54 

121 77 78 47.0985464 46.97 

122 78 79 -23.9014536 -24.03 

123 77 80 -133.453392 -91.57 

124 77 80 -133.453392 -42.3 

125 79 80 -62.9014536 -63.03 
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126 68 81 -44.864885 -44.25 

127 81 80 -44.864885 -44.25 

128 77 82 -5.98098907 -6.05 

129 82 83 -49.5006381 -49.51 

130 83 84 -27.843634 -27.85 

131 83 85 -41.6570042 -41.66 

132 84 85 -38.843634 -38.85 

133 85 86 17.1237266 17.12 

134 86 87 -3.87627338 -3.88 

135 85 88 -50.9053007 -50.91 

136 85 89 -70.719064 -70.73 

137 88 89 -98.9053007 -98.91 

138 89 90 164.386053 56.97 

139 89 90 164.386053 107.42 

140 90 91 1.38605291 1.38 

141 89 92 254.213978 192.66 

142 89 92 254.213978 61.54 

143 91 92 -8.61394708 -8.62 

144 92 93 57.3705811 57.37 

145 92 94 51.8110874 51.81 

146 93 94 45.3705811 45.37 

147 94 95 41.1796412 41.18 

148 80 96 18.4714223 18.5 

149 82 96 -10.4803509 -10.54 
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150 94 96 20.0497445 20.05 

151 80 97 25.7795429 25.8 

152 80 98 28.051249 28.06 

153 80 99 18.7236633 18.73 

154 92 100 28.9199465 28.92 

155 94 100 5.95228284 5.94 

156 95 96 -0.82035882 -0.82 

157 96 97 -10.7795429 -10.8 

158 98 100 -5.948751 -5.94 

159 99 100 -23.2763367 -23.27 

160 100 101 -15.4984163 -15.49 

161 92 102 42.4984163 42.49 

162 101 102 -37.4984163 -37.49 

163 100 103 115.520079 115.52 

164 100 104 54.4118569 54.41 

165 103 104 31.7879714 31.79 

166 103 105 42.197958 42.2 

167 100 106 58.4188565 58.42 

168 104 105 48.1998283 48.2 

169 105 106 8.33538988 8.34 

170 105 107 26.2457536 26.25 

171 105 108 24.8166428 24.82 

172 106 107 23.7542464 23.75 

173 108 109 22.8166428 22.82 
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174 103 110 57.2968873 57.3 

175 109 110 14.8166428 14.82 

176 110 111 -34.8864699 -34.89 

177 110 112 68 68 

178 17 113 0.79259581 1.14 

179 32 113 5.20740417 4.86 

180 32 114 9.15657055 9.21 

181 27 115 20.8434295 20.79 

182 114 115 1.15657055 1.21 

183 68 116 184 184 

184 12 117 20 20 

185 75 118 40.1279372 40.08 

186 76 118 -7.12793724 -7.08 

 

 


