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ABSTRACT 

 

 

DEEPTAK VERMA.  Elucidating the effects of mutation and evolutionary divergence 

upon protein structure quantitative stability/flexibility relationships. 

(Under the direction of DR. DENNIS R. LIVESAY and DR. DONALD J. JACOBS) 

 

 

 The importance of flexibility and stability on protein function has been 

recognized for over five decades. A protein must be flexible enough to mediate a reaction 

pathway, yet rigid enough to achieve high fidelity in molecular recognition. To 

understand these relationships, the main focus of our research has been a comparative 

investigation of proteins’ dynamics and thermodynamics across both “depth” and 

“breadth”. Specifically, we compare stability and flexibility properties across a set of 

human c-type lysozyme point mutations (depth), as well as across a set of functionally 

related !-lactamase protein orthologs (breadth). To accomplish these tasks we employ a 

Distance Constraint Model (DCM), which provides a robust statistical mechanical 

description of proteins and the relationships therein. The DCM is based on network 

rigidity that provides mechanical mechanism for enthalpy-entropy compensation, from 

which Quantitative Stability/Flexibility Relationships (QSFR) can be calculated. Our 

results suggest that DCM can be used for predicting stability of proteins with an average 

percent error of 4.3%. Deciphering changes in flexibility, DCM results suggest that the 

influence of mutations can lead to frequent, large and long-range effects in protein 

dynamics. Our breadth analyses indicate that QSFR and physiochemical property 

characterization of orthologs in a protein family parallel evolutionary relationship. Going 

further, we present protocols for clustering protein structures using their QSFR 

properties, thus paving way for comprehensive quantitative stability/flexibility 
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relationship analysis across protein families and superfamilies. To summarize, the results 

presented in this work provide a complete description of proteins that account for their 

stability, flexibility and function. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Importance of protein flexibility and stability 

Proteins are large, complex, three-dimensional macromolecular structures consisting 

of many covalent bonds and noncovalent interactions that govern its stability and 

function [1-3]. Its functional specificity requires conformational flexibility and 

thermodynamic stability, i.e., a protein must be flexible enough to mediate a reaction 

pathway, yet rigid enough to achieve high fidelity in molecular recognition. Thereby, the 

importance of protein flexibility and its relationship with stability on protein function has 

been recognized for over fifty years [4-6]. Complex computer algorithms are required to 

understand the detailed biophysical and biochemical properties that elucidate 

structure/function relationships. Developing fast and robust biophysical models to 

accurately predict flexibility and stability under given thermodynamic and solvent 

conditions has also been a long-term challenge [7, 8]. This study employs the use of a 

novel biophysical model, called the Distance Constraint Model (DCM) [9, 10], which 

provides robust statistical mechanical description of protein both and the relationships 

therein. The DCM is based on network rigidity that provides mechanical mechanism for 

enthalpy-entropy compensation, from which Quantitative Stability/Flexibility 

Relationships (QSFR) can be calculated.  

1.2 Distance Constraint Model 

A complete description of protein stability should ideally account for a wide variety 
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of chemical interactions, including: covalent bonding (i.e., bond stretching, angle bending 

and torsional effects), nonbonded interactions (i.e., long and short range ionic interactions, 

hydrogen bonds, dipole interactions and van der Waals contacts), solvation, etc. Most of 

which are affected by solvent pH, ionic strength and other co-solute concentrations. 

Standard simulation methods, such as molecular dynamics, attempt to describe most of 

the above terms, but rarely all. The “rules” constraining the simulation are based on 

energetic potentials; however, free energies are the primary protein stability metric of 

interest. Free energies are derived from a simulation post priori using the method of 

thermodynamic integration [11]. The primary advantage of simulation methods is that 

they are nearly chemically and physically complete. However, simulation is extremely 

computationally intensive, making it prohibitive for large-scale analyses.  

In response to the immense computational cost of molecular simulations, the DCM 

was developed in 2001 from conception to optimally balance computational efficiency 

with prediction accuracy by uniquely integrating mechanical and thermodynamic 

viewpoints of macromolecular structure, and has been improvised since. The DCM is 

based on a free energy functional that decomposes the total free energy into constituent 

parts related to specific types of interactions. While total enthalpies can be calculated 

from the sum of the individual components, adding entropies over all components 

generally will overestimate conformational entropy [12, 13]. However, the utility of a 

free energy decomposition is restored using DCM [14], where conformational entropy is 

additive over independent degrees of freedom (DOF) that are robustly identified by the 

model. Herein, structure is recast as a topological network of distance constraints. Each 

constraint within the topological framework (network) is associated with a component 
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enthalpy and entropy value. The conformational part of the free energy of a given 

framework, G( f ) , is reconstituted from the free energy decomposition that defines the 

types of interactions modeled as distance constraints. The free energy is calculated from 

the total enthalpy and entropy of a framework by: 

Gcnf ( f ) = htNt ( f )! RT
t

Nint

" # t I t ( f )
t

Nint

"  

where, Nint is the number of different types of modeled interactions, ht is the enthalpy of 

interaction t, Nt is the number of times interaction type t occurs within framework f, !t is 

the pure entropy of a single distance constraint used to model interaction type t, R is the 

ideal gas constant, and It is the number of number of independent constraints of type t, 

where It is always less than or equal to Nt. Note: for ease of interpretation and consistency, 

enthalpy parameters are depicted using Roman characters, whereas entropies are depicted 

by Greek symbols. 

The salient feature within the conformational free energy calculation of a framework 

is that total entropy is summed over a set of independent constraints, which are 

determined using efficient network rigidity graph algorithms [15, 16]. Starting from 3Na 

DOF (Na is the number of atoms), each constraint within flexible portions of the network 

removes one degree of freedom. However, when an interaction is added to an already 

rigid substructure of the network, no further reduction in entropy occurs because all 

available DOF within that region have already been consumed. Since assignment of 

which constraint is independent or redundant is not unique, the expression for 

conformational entropy is also not unique. This approach provides an upper bound 

estimate to conformational entropy regardless which set of independent constraints are 

considered. However, by adding constraints as dictated by an entropy spectrum [17] that 
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preferentially orders them from smallest to largest entropy, a rigorous lowest upper 

bound is obtained. Note that a given chemical interaction can be modeled by more than 

one constraint. For example, covalent bonds are modeled as five constraints, H-bond as 

three and a torsion force is modeled as one  (Figure 1.1) [9].! 

If thermal fluctuations did not occur, the free energy of a given protein would simply 

be based on the above calculation using the native state structure, but this is of course not 

the case. While covalent bonding is appropriately described by a large set of quenched 

constraints that are present within each microstate of the ensemble, fluctuating constraints 

Figure 1.1: Two types of interactions are modeled in DCM: (a) Hydrogen bonds and (b)

Torsion forces. Hydrogen bonds are modeled as three constraints whereas torsion force is

modeled as one. 
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account for the forming and breaking of weak interactions that are critical to properly 

describe equilibrium behavior. Herein, we consider a ‘minimal’ set of fluctuating 

interaction types, specifically Nint = 2 types are considered: hydrogen bonds and torsion 

angle forces. Within this minimal DCM (mDCM), all possible hydrogen bonds (H-bonds) 

are defined by the native structure. H-bond enthalpies, hhb
pot , are calculated from the native 

structure using the empirical potential from Dahiyat et al. [18]. Salt bridges are modeled 

as a special case of H-bonds.  

The entropic cost of forming an intramolecular H-bond is linearly related to hhb
pot , 

whose slope is defined by the parameter !max. Solvation terms are described through H-

bonds to solvent; when an intramolecular H-bond breaks, there is a compensating 

reduction enthalpy given by the fitting parameter usol. As a consequence, the net effect of 

each intramolecular H-bond is given by hhb
net
= hhb

pot
!usol . While its less immediately 

obvious, the reduction in entropy associated with torsional effects can also be modeled 

using distance constraints. Here, we introduce constraints across all i to i+3 atomic pairs, 

which includes side chain torsions. The torsions are segregated in an Ising-like manner 

where native torsions are associated with enthalpy and entropy values {vnat, "nat} and 

disordered torsions are associated with {vdis, "dis}. Two important “minimal” aspects of 

the mDCM are that: (i.) other than hhb
pot , all parameter values are treated 

phenomenologically; and (ii.) all parameters are treated universally regardless of residue 

type. The disordered dihedral angle enthalpy, vdis, is our reference energy, which is 

defined as zero (Table 1.1). 

Hydrophobic considerations are the most severe omission from our current free 

energy decomposition scheme. The hydrophobic effect is a bulk colligative property 
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related to an increase in the number of accessible DOF upon segregation of polar and 

nonpolar solvents. As such, they do not directly map to a set of distance constraints. For 

example, evem molecular dynamics cannot directly model the hydrophobic effect 

because it is not explicitly included within the simulation “rules” defined by molecular 

mechanical force fields. Therein, the hydrophobic effect only emerges after 

thermodynamic integration of the trajectory phase space. 

 Within the mDCM, hydrophobic interactions are indirectly included by two 

phenomenological terms that connect to order parameters describing the number of 

constraints within the system. This approach works well, and is tied to the observation 

that hydrophobic contacts track H-bond formation [19], meaning that our 

phenomenological H-bond parameters implicitly account for hydrophobic interactions. 

Thus, as we have discussed previously [20], the usol and vnat parameters implicitly account 

for the hydrophobic effect.  

Even with such a simple model, an exact calculation of the partition function for 

proteins is impossible due to an astronomical number of possible frameworks. As such, a 

Table 1.1: Free fitting parameters used by the mDCM. The net intramolecular H-bond

enthalpy is calculated as , where hhb
pot  is calculated from an empirical

potential. 

Interaction Parameter Treatment Description 

H-bonds 

hhb
pot

 
Empirical 

potential 
Intramolecular H-bond enthalpy 

!max Constant 
H-bond pure entropy is linearly related to 

hhb
pot

 whose slope is controlled by !max 

usol Fitting H-bond to solvent enthalpy
1 

Native torsion 
"nat Fitting Native torsion angle pure entropy 

vnat Fitting Native torsion angle enthalpy 

Disordered 

torsion 

"dis Constant Disordered torsion angle pure entropy 

vdis Constant Disordered torsion angle enthalpy 

hhb
net
= hhb

pot
!usol
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heterogeneous mean field approach (Figure 1.2) has been developed to make the 

calculation tractable [9, 10]. Combining all the contributions described above, we arrive 

at the following free energy functional: 

G Nhb ,Nnat( )=Uhb Nhb( )!Nhbusol +Nnatvnat !RTScnf Nhb ,Nnat |"nat ,"dis,#max( )!RTSmix Nhb ,Nnat( ) 

This functional has five adjustable parameters (depending on solvent conditions and 

protein fold). However, from our previous work, !max and "dis have been fixed and are 

treated as transferable parameters, leaving only {"nat, vnat, usol} as free parameters within 

the mDCM (Table 1.1). We have found that the three-free parameter mDCM provides a 

high degree of accuracy and robustness in predicting protein stability [10]. Typically the 

parameterization is been obtained by finding the appropriate parameter values to 

Figure 1.2: The free energy of each macrostate is calculated using a hybrid mean-field

approximation by Monte Carlo sampling. Nnt is the number of native torsion interactions

and Nhb is the number of hydrogen bonds. The protein explores the red area under

disordered constraint topology and blue under the native constraint topology. White area

indicates high-energy barrier or the transition from disordered to native constraint

topology. Figure as published in [10]. 
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reproduce experimental Cp curves from differential scanning calorimetry (DSC) using 

simulated annealing. These mDCM parameters are physically meaningful with ranges 

that are remarkably tight over a diverse set of proteins. This modeling approach has been 

found to provide accurate description of both thermodynamics and intrinsic flexibility in 

proteins in many applications [9, 10, 20-23]. Once parameterized for a given protein, the 

mDCM can be used for calculating quantitative stability/flexibility relationships (QSFR), 

which covers a broad domain of investigating protein thermodynamics, dynamics and 

functional relationships. 

1.3 Dissertation objective and layout 

The main objective of this dissertation has been to perform comparative QSFR 

investigations across many different proteins. To define our objectives clearly we have 

categorized this dissertation into two parts, “depth” and “breadth” analysis (Figure 1.3).!!!

Figure 1.3: Workflow elucidating dissertation breakdown broadly classified as “depth”

and “breadth” analysis. 
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We have compared QSFR properties across a set of single site point mutation proteins 

(depth), as well as across a set of functionally related orthologs (breadth). In the former, 

we have attempted to answer the following questions: (a) How does mutation affect 

stability and flexibility profiles? (b) Are the stability and flexibility changes upon 

mutation local or global? (c) Can a mutation improve protein stability without 

compromising functional efficiency? In the breadth analysis, we have analyzed QSFR 

and physiochemical properties across a protein family. Herein, we have tried to answer 

the following questions: (a) Is QSFR conservation an evolutionary driving force? (b) Do 

functional sites have conserved QSFR signatures? (c) Do physiochemical mechanisms 

change under different environmental conditions? Going further, a benchmark study has 

been performed that could help us expand the scope of comparative QSFR analysis 

towards protein families and superfamilies using homology models. Taken in its entirety, 

this dissertation research aims at drastically expanding our understanding of protein 

flexibility, stability and their relationships. A brief overview of the analyses performed is 

provided below. 

1.3.1 Depth analysis 

To predict relative stability of protein mutants: Most of our insight, regarding protein 

structure and stability relationship, comes from laborious experimental analyses that 

perturb protein structures via site-directed mutations. To save time and money, efficient 

computational models are desired to speed up such analyses. The main objective of this 

work is to employ the DCM in predicting melting temperatures (or stability) of c-type 

lysozyme mutants as accurately as possible. The idea employed here is to use contextual 

learning, i.e., using additional DCM best-fit parameters to boost statistics and achieve 
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better accuracy in melting temperature prediction. As published, the DCM predicts 

melting temperatures of proteins with an accuracy of more than 95% [3]. The results 

presented have been published in Current Protein and Peptide Science Journal [24]. 

To assess Quantitative Stability/Flexibility Relationships (QSFR) profiles of lysozyme 

mutants: The functional importance of protein dynamics is universally accepted, making 

the study of dynamical similarities and differences among proteins of the same function 

an intriguing problem. While some metrics are likely to be conserved across family, 

differences are also very common. This work investigates changes in dynamics occurring 

upon individual point mutations. Somewhat surprisingly, the small structural 

perturbations caused by mutation lead to changes throughout the protein. These changes 

can be quite large, actually surpassing the scale for differences between ortholog pairs. 

Moreover, changes in flexibility frequently occur at sites far from the mutation site. 

These results underscore the sensitivity of protein dynamics in connection with allostery, 

and help explain why differences across protein families are so common. These results 

have been published in PLoS Computational Biology [25]. 

1.3.2 Breadth analysis 

To characterize similarity/variability within QSFR and physiochemical properties across 

a protein family: Comparison of protein sequences and structures sharing function has 

become a well-established bioinformatics paradigm, leading to countless discoveries 

related to protein family sequence/structure/function relationships. However, sequence 

and structure alone provide only crude physiochemical descriptions, thus stressing the 

need for more sophisticated analyses. In this work, we determine how much QSFR and 

electrostatic properties vary across the !-lactamase enzyme family. Our results indicate 
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that some properties are mostly conserved across the family, whereas others vary 

significantly despite the fact that all share the same high-level !-lactamase activity. 

Despite global variance in some metrics, systematic differences are frequently observed 

between evolutionary outgroups, indicating that physiochemical properties are 

simultaneously conserved and variable. As such, these results underscore the richness 

within physiochemical and QSFR properties across a protein family. Manuscript of this 

research work has been submitted to PLoS Computational Biology Journal. 

To develop a homology modeling protocol to robustly predict QSFR properties for a 

comprehensive analysis: Expanding the scope of our QSFR investigation across protein 

families and superfamilies requires solved protein structures. However, developing 

homology modeling and assessment protocols can allow us to robustly calculate QSFR 

properties for unknown protein structures. But since QSFR changes are sensitive to subtle 

structure variations, designing a robust protocol for good model selection is of utmost 

importance before instigating comparative QSFR analysis across protein families with 

unknown structures. To benchmark our methodology, we generate an ensemble of 

homology models and assess them for accurate QSFR property prediction. Results 

suggest that clustering homology models based on common structural, thermodynamic 

and mechanical quantities can result in precise QSFR calculations, paving way for a 

comprehensive QSFR analysis across hundreds of proteins in a protein family. 

Manuscript of this work is under preparation and results will be submitted soon to a peer-

review journal. 



CHAPTER 2: PREDICTING THE MELTING POINT OF C-TYPE HUMAN 

LYSOZYME MUTANTS 

 

 

2.1 Introduction 

Due to the time and cost of molecular biology and biophysical experiments, accurate 

computational models to predict and explain the effects of point mutations on protein 

stability have long been desired. Despite some progress towards this goal, it remains 

largely an open computational biology problem. The majority of the successes thus far 

have been based on machine learning approaches (i.e., decision trees [26-28], support 

vector machines [29-31], and artificial neural networks [32-34]). While these methods 

can achieve impressive prediction accuracies, their interpretive utility spans a broad range 

(e.g., decision trees are somewhat interpretable, whereas artificial neural networks are 

not). And even under the best of circumstances, all of these empirical methods lack the 

descriptive power of first-principles calculations based on the underlying physics and 

chemistry. As such, we have been seeking to develop a biophysical calculation of protein 

stability. 

Unfortunately, computational biophysics approaches have largely failed to achieve an 

expectable level of accuracy. The reason for this is that protein structures are extremely 

complicated, being dense networks of chemical interactions that lead to protein stabilities 

involving small differences between large free energy values. In fact, even misplacement 

of a single hydrogen atom is sufficient to render a computational model wrong [35]. The 

primary exception to these failures is stability predictions of solvent exposed mutations. 
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These mutations increase (or decrease) protein stability by optimizing (or destabilizing) 

long-range surface electrostatics. Because these mutations occur on the protein surface, 

which is less densely packed than the protein core, they are less susceptible to issues 

related to the intimate atomic details that frequently derail computational predictions 

within the core. As such, biophysical models that quantify surface electrostatics effects 

(i.e., Tanford-Kirkwood [36-38] and Poisson-Boltzmann theories [39-42]) have 

successfully reproduced experimental trends across several mutation sets and have 

provided explanations for a large number of confounding experimental results. When 

these methods fail, the origins of the mutant stability change are often generically 

explained as resulting from conformational changes, highlighting a fundamental 

limitation of nearly all biophysics-based stability prediction methods. 

To address the problem of predicting mutant stability based on conformational 

considerations, we test herein the ability of our distance constraint model (DCM) to 

reproduce stability trends within human C-type lysozyme and 14 point mutations therein. 

As described in introduction, DCM is a phenomenological biophysics model that requires 

parameterization, usually done by fitting to experimental heat capacity, Cp, curves [43, 

44]. After parameterization, the DCM quantifies both the enthalpic and entropic effects of 

all interactions within the protein, from which a wide variety of equilibrium 

thermodynamic quantities (i.e., Cp, free energy, Tm, etc.) are calculated. The DCM 

approach is applied to 15 considered lysozyme structures each with measured heat 

capacity. The best-fit parameters derived from one such determination are applied to the 

remaining structures to assess predictive power. Over all possible permutations, this 

process results in an impressive average error of 4.3% (standard deviation = 3.6%) in the 
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prediction of the experimental Tm’s, a commonly used surrogate for stability [45]. This 

translates to a Pearson correlation coefficient of 0.64 for predicted to experimental !Tm 

values, which is among the best values ever presented for prediction of point mutation 

stability focusing on conformational effects. In this approach, multiple parameter sets are 

found that fit the data well in addition to the above mentioned best-fit parameters 

associated with the lowest least squares error. In the attempt to boost statistical prediction 

accuracy by incorporating variability in model parameterization from additional near-

optimal parameter sets and using additional parameter sets from multiple mutant 

structures, we find that, surprisingly, there is no statistically significant change in the 

predictive accuracy on average. This result is important, as it indicates that the 

predictions from any DCM parameterization resulting in a reasonably good fit to heat 

capacity is robust to transferability across mutant structures. 

2.2 Methods 

2.2.1 Dataset preparation and simulated annealing 

Lysozyme, which is abundant in egg whites and secretions (i.e., tears, saliva, milk, 

etc.), is a general class of enzymes that degrade bacterial cell walls through hydrolysis of 

"(1,4) glycosidic linkages. Members of the lysozyme superfamily share the same #+" 

structural motif within their active site region. Due to ease of production and 

characterization, human C-type lysozyme is a common model system for protein stability 

investigations. Cp curves for the human C-type lysozyme and 14 lysozyme mutant 

proteins have been obtained from published data [46-52]. Exact PDB codes are provided 

in Table 2.1. Since model parameters are dependent upon solvent conditions, only site 

directed mutants that are spatially distinct and characterized under the same experimental 
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conditions are considered here. Specifically, all 15 proteins were characterized under near 

identical buffering conditions (pH = 2.7-2.8) and salt concentrations (0.05 M). The pH 

range is 2.67 ! pH ! 2.8 with an average of 2.71, and with a 0.032 standard deviation.  

The extreme differences correspond to about 1 K difference in Tm. In addition, all of 

the considered Cp curves have been produced by the same group (Yutani et al.), which 

minimizes the risk that unforeseen factors (instrument, sample preparation, protein 

concentration estimates, etc.) are affecting the controls in experimental data. Note that, in 

practice, DSC is a notoriously difficult and finicky technique to perform [53], and in 

general it is difficult to find a large collection of systematic data. In order to look at the 

intrinsic variability in the DCM, and to justify our demand on the transferability of 

parameterization, it is important to have all the heat capacity measurements made under 

identical conditions. Fortunately, the methodical work by Yutani and co-workers 

presented us with the opportunity to consider a diverse collection of 14 point mutations 

that are structurally well distributed throughout the lysozyme structure, as shown in 

Table 2.1: Thermodynamic characteristics and best-fit parameters!

Mutation PDBID Tm (K) 
Cp,max 

(kcal/[mol!K]) 
!nat 

(unitless)  
v nat 

(kcal/mol) 
usol 

(kcal/mol) 
Wild-type 1LZ1 338.7 17.5 1.16 -0.16 -1.84 

K1A 1C45 336.7 13.1 1.36 -0.20 -1.71 

V2A 1OUG 333.4 16.8 1.12 -0.28 -1.76 

Y38F 1WQO 337.7 18.8 1.08 -0.23 -1.69 

Y45F 1WQP 337.4 18.5 1.32 -0.26 -1.77 

Y54F 1WQQ 337.3 17.3 1.36 -0.29 -1.90 

I56T 1OUA 325.1 14.8 1.32 -0.29 -1.87 

Q58G 1B7R 345.3 19.0 1.24 -0.29 -1.89 

I59S 2MEG 326.2 14.4 1.32 -0.37 -1.94 

Y63F 1WQR 337.6 18.5 1.24 -0.25 -1.87 

P71G 1LHI 336.1 20.3 1.28 -0.32 -2.11 

V74A 1OUH 337.3 18.8 1.28 -0.23 -1.77 

V100A 1OUB 337.1 18.2 1.28 -0.35 -1.91 

P103G 1LHJ 338.6 18.2 1.32 -0.19 -1.77 

Y124F 1WQM 337.6 19.0 0.88 -0.39 -1.78 

Average 336.1 17.5 1.24 -0.27 -1.84 

Variation 1.5% 11.3% 10.5% 24.3% 5.8% 
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Figure 2.1, which also indicates their solvent accessibility. Approximately half of the 

mutations are exposed to solvent, which as discussed above can be well described by 

long-range electrostatics models. However, we purposely omit an explicit long-range 

electrostatics component in the presented model to assess how well the mDCM does on 

its own. Incorporation of long-range electrostatics is expected to further improve model 

accuracy. To ensure proper ionization, the H++ server [54] is used to add hydrogen atoms 

to the structures as expected at pH 2.7 based on calculated pKa values. The protonated 

structures are subsequently energy minimized prior to the simulated annealing fitting to 

determine {!nat, vnat, usol} as done previously [43, 44]. Prior to fitting, all curves were 

shifted such that Cp,min = 0. 

2.2.2 Prediction of Tm values 

 After best-fit parameters have been determined for each mutant structure and Cp 

curve pair, we attempt to answer the following question: How well does the mDCM 

Figure 2.1: The human wild-type c-type lysozyme structure [1LZ1]. The CB atoms of the

14 mutated spatially distinct positions are highlighted. PDB molecule is color-coded by

secondary structure. 
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reproduce Tm values on the remaining 14 structures using the best-fit parameters from the 

first? After considering all possible permutations, this thought experiment assesses how 

well, on average, the mDCM would do if only a single mutant structure and Cp curve pair 

were available before prediction on additional lysozymes. Meaning, we apply the best-fit 

parameters from mutant i to all of the remaining lysozyme structures. In each case, the 

predicted Cp curve is calculated, and its peak is used to identify the predicted Tm. We 

then collapse all 15 x 14 = 210 permutations into a single dataset and report average 

statistics. 

 As an extension, we also consider two scenarios where additional parameter sets are 

used in the prediction process. For example, we assess whether or not using the 

parameters from n > 1 ‘training’ lysozyme structures improves average prediction 

accuracy. Here, best-fit parameter sets from n different lysozymes are used to generate n 

different Tm predictions for a given target, which are simply averaged to give the final 

predicted value. However, complete enumeration of all possible permutations results in a 

combinatorial explosion (>10
8
). Instead, for each target lysozyme, we have generated 100 

random 14-character strings that simply list a unique identifier associated with each of 

the remaining lysozyme structures. For each value of n ! 1"14{ }, we include the first n 

lysozymes from the generated string within the ‘training’ set. The same 100 strings are 

used as we systematically consider all possible values of n. Over all 15 lysozyme 

structures, we determine the final predicted Tm value for each n by averaging over the 

100 samples. This entire process was repeated ten times.  

 While only best fits have been discussed thus far, the simulated annealing procedure 

actually generates a large number of nearly optimal fits that are virtually 
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indistinguishable by visual inspection. Figure 2.2 plots kernel density functions generated 

using the R statistical package for the m = 20 best fit parameter sets for the wild-type 

structure. Across the parameters {!nat, vnat, usol}, the variation ranges from 2% to 24.2%. 

Similar results are observed for the lysozyme mutants. Related, Table 2.2 presents the 

percent variation in each parameter at three values of m (m = 4, 8, and 16).  

 Note that there is slight tendency for the variation to increase with m; however, there 

are several examples where the opposite occurs, highlighting the stochastic nature of 

finding a good parameter basin within the simulated annealing process. We assess 

whether or not using m > 1 of these near optimal fits improves average prediction 

accuracy. Meaning, for a given ‘training’ lysozyme mutant structure, we apply the m best 

parameters sets derived from it to each of the remaining structures, resulting in m 

different Tm predictions for each mutant trained on. As before, the final predicted Tm is 

simply the average over the m predictions for that structure. We consider each value of 

m ! 1" 20{ }. Putting everything together, we consider m different parameter sets for 

Table 2.2: Percent variation within the m best parameter sets. 
 usol (kcal/mol)  v nat (kcal/mol)  !nat (unitless)  

Mutatio
n 

PDBI
D 

m=4 m=8 m=16 m=4 m=8 m=16 m=4 m=8 
m=1

6 
Wild-type 1LZ1 1.9 1.3 1.8 20.9 17.3 23.2 12.7 10.4 14.1 

Q58G 1B7R 0.5 0.6 1.4 5.3 5.5 9.9 5.6 6.3 10.4 

K1A 1C45 2.1 1.5 4.1 11.3 9.2 12.0 1.7 1.5 10.9 

P71G 1LHI 1.3 1.4 1.9 3.8 3.9 6.0 6.8 6.6 7.9 

P103G 1LHJ 0.7 1.0 1.3 5.3 6.0 11.6 0.00 2.0 4.9 

I56T 1OUA 2.1 2.8 5.0 9.7 8.4 10.4 12.9 13.8 15.3 

V100A 1OUB 0.9 2.9 3.1 2.7 6.5 8.4 6.2 12.5 15.7 

V2A 1OUG 0.3 2.2 2.7 2.8 3.7 9.2 2.1 11.9 13.7 

V74A 1OUH 0.7 1.5 1.6 2.2 4.7 7.6 2.6 6.6 9.1 

Y124F 1WQM 3.1 3.2 3.5 11.9 12.9 10.4 18.6 17.3 13.5 

Y38F 1WQO 2.9 2.2 3.1 7.7 8.8 19.6 14.3 10.8 16.0 

Y45F 1WQP 0.3 1.5 1.5 4.9 4.8 6.8 5.5 7.7 8.5 

Y54F 1WQQ 1.6 1.3 1.3 4.6 3.8 8.5 3.1 5.7 11.5 

Y63F 1WQR 0.8 0.8 1.2 4.0 4.8 5.2 1.6 2.4 3.7 

I59S 2MEG 1.6 2.6 3.6 5.0 4.7 7.8 4.4 8.9 9.9 
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each of the n proteins used to train on. From these two defined order parameters, we 

collapse the average statistics onto an n x m grid to assess if increasing the number of 

experimental mutants to fit to and/or the number of near-optimal parameter sets improves 

prediction accuracy. 

2.3 Results 

2.3.1 Best-fit parameters and mutant stability 

 Best-fits for each of the Cp curves are provided in Figure 2.3, which highlights the 

quality of the model fits. Note that a simple solvent exposure model is actually sufficient 

to describe !Cp between low and high temperature [55]; however, such an approach 

cannot generate a peak within Cp, indicating that equilibrium fluctuations are not properly 

modeled. Within the mDCM, since we are not yet explicitly modeling solvation terms, 

the Cp baseline is subtracted. We analytically describe the baseline using a tanh(T) 

function. The rise of the tanh(T) function leads to a frequent slight overestimation of the 

Cp at high temperature, but this is mostly insignificant as the Cp peak is the primary 

region of interest. To the best of our knowledge, the mDCM remains the only free energy 

Figure 2.2: Kernel density functions for each of the three model parameters generated

from the m = 20 best wild-type lysozyme parameter sets. The percent variation for each

parameter {!nat, vnat, usol} is 15.9, 2.0 and 24.2 percent, respectively. The density

functions and percent variation values for the lysozyme mutants are similar (Table 2.2).

The kernel density plots were generated using the R statistical package. 
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decomposition scheme capable of quantitatively reproducing experimental Cp peaks. The 

associated best-fit parameter values are provided in Table 2.1. All parameter values are 

consistent with ranges established in our prior works studying globular proteins [43, 44, 

56-58], and are physically meaningful. The conservation within usol is especially 

noteworthy, which is due to the enforced criterion that all experimental DSC solvent 

conditions be the same. 

 Not surprisingly, the vast majority of all mutations destabilize (relative to wild-type) 

lysozyme. In fact, only the Q58G mutation has an increased Tm, which is increased by an 
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Figure 2.3: The m = 1 absolute best-fits to the experimental heat capacity data for the

human C-type lysozyme and the 14 different point mutations considered here.

Experimental data points are shown by dots, whereas the mDCM predicted curves are

shown in solid line. To facilitate comparisons, the coordinate ranges in all 15 examples

are equal. 
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astounding 6.6 K. As discussed in [52], the Tm of the P103G mutation is nearly identical 

to the wild-type. All of the other mutant Tm values range from 1 to ~14 K lower than that 

of the wild-type. While the wild-type structure has the lowest (most stabilizing) total H-

bond enthalpy, there is actually only a weak correlation between total H-bond enthalpy 

and Tm (R = -0.57). In fact, the next most stabilizing total H-bond enthalpy is the P71G 

mutation, which has only the 11
th

 largest Tm. Descriptions of the underlying H-bond 

networks are provided in Table 2.3. In all cases, the structures are of similar quality, as 

described by resolution and the observed R-value. Moreover, all of the mutant structures 

are from the same space group (P 2 2 21). Consequently, differences within the H-bond 

network can be reliably ascribed to conformational adjustments to relieve strain 

introduced by the mutation. As we have discussed previously [59], common descriptors 

(i.e., total H-bond enthalpy, average H-bond enthalpy, parameter values, etc.) are not 

good predictors of mDCM predictions across a set of closely related proteins.  

Descriptors based on global topological properties of the protein fold contain much less 

Table 2.3: Descriptions of the wild-type and lysozyme mutant structures. The Pearson

correlation coefficient comparing the total H-bond enthalpy, number of H-bonds, and

average H-bond enthalpy to the experimental Tm is, respectively, R = -0.50, -0.29 and -

0.60. 

Mutation PDBID 
Structure 

Resolution  (Å) 
Observed R-

value 

Total HB 
Enthalpy 
(kcal/mol) 

Number of 
HBs 

Average HB 
Enthalpy 
(kcal/mol) 

Tm (K) 

Wild-type 1LZ1 1.35 0.182 -613.9 240 -2.6 338.7 

K1A 1C45 1.80 0.168 -567.8 245 -2.3 336.7 

V2A 1OUG 1.80 0.173 -577.3 229 -2.5 333.4 

Y38F 1WQO 1.80 0.170 -586.3 229 -2.6 337.7 

Y45F 1WQP 1.80 0.174 -563.1 231 -2.4 337.4 

Y54F 1WQQ 1.80 0.164 -565.9 229 -2.5 337.3 

I56T 1OUA 1.80 0.148 -569.3 243 -2.3 325.1 

Q58G 1B7R 1.80 0.160 -590.4 235 -2.5 345.3 

I59S 2MEG 1.80 0.151 -554.3 239 -2.3 326.2 

Y63F 1WQR 1.80 0.165 -589.1 239 -2.5 337.6 

P71G 1LHI 1.80 0.156 -612.2 240 -2.6 336.1 

V74A 1OUH 1.80 0.160 -586.1 235 -2.5 337.3 

V100A 1OUB 1.80 0.160 -564.8 232 -2.4 337.1 

P103G 1LHJ 1.80 0.152 -606.5 231 -2.6 338.6 

Y124F 1WQM 1.80 0.164 -574.9 230 -2.5 337.6 

Average 1.77 0.163 -581.5 235.1 -2.5 336.1 

Variation 6.56% 5.740% 3.2% 2.3% 3.7% 1.5% 
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information than the mDCM, which is based on atomic level details affecting the network 

of distance constraints. Moreover, the way rigidity and flexibility propagate is non-trivial 

because network rigidity is a long-range mechanical interaction that results in complex 

emergent behavior that cannot be captured solely from local or global network 

characteristics. 

2.3.2 Average prediction accuracy using a single parameter set 

 To assess how well the mDCM describes the experimental Tm values, we apply the 

best-fit parameters from one of the above fits serving as a transferable set of parameters, 

to all remaining lysozyme structures. We repeat this same process for all 15 permutations. 

This is the simplest scenario presented in this report, corresponding to m = 1 and n = 1. 

Across all 210 Tm predictions, Figure 2.4 highlights that more than 35% have errors less 

than 2%. The average error across all predictions is 4.3% (standard deviation = 3.6%). 

Clearly, the mDCM is doing a very good job at reproducing the experimental Tm values. 

Figure 2.5 plots the average Tm for each structure using the other 14 parameter sets. In all 

but three cases, the experimental Tm is within the error range defined by ± one standard 

deviation. 

Interestingly, the two starkest exceptions (wild-type and P71G) correspond to the 

two structures with the most stabilizing total H-bond enthalpy, suggesting that the 

mDCM free energy calculation might be slightly over-dependent upon very low total H-

bond energies. In practice, the primary goal of a computational model of protein stability 

is to assess relative stability of a mutant to the wild-type. To that end, Figure 2.6(A) 

provides a scatter plot of each predicted !Tm value (Tm,mut – Tm,wt) versus the 

experimental !Tm. The Pearson correlation coefficient is R = 0.64, which is among the 
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best values ever reported for biophysical models focusing solely on conformationally 

derived properties. Because the mDCM over predicts the wild-type Tm so drastically, all 

predicted !Tm values are negative. However, Figure 2.6(B) plots the average !Tm’ values 

(defined as: Tm,mut
pred

!Tref , here Tref = Tm,wt
exp ) versus the experimental !Tm values, which 

Figure 2.5: The average Tm value for each structure using each of the other 14 parameter

sets is plotted (error bars equal ± one standard deviation). In all but three cases, the

experimental Tm falls within the range defined by the error bars. 

Figure 2.4: Histogram plotting the accuracy of the mDCM Tm predictions when only a

single parameter set is used. 
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demonstrates that once an appropriate reference point has been established, the mDCM 

does a very good job of predicting stabilizing mutations to be stabilizing (quadrant 1) and 

destabilizing mutations to be destabilizing (quadrant 3). Only three predictions are 

located in an incorrect quadrant. Note that this arbitrariness in defining a reference point 

is generally unnecessary to resurrect a satisfactory quadrant clustering using any of the 

other structures as a reference point. The sole other exception is P71G, whose Tm is also 

over predicted by the mDCM. 

2.3.3 Can accuracy be improved by additional parameterization? 

Naively, it is expected that training on additional parameter sets from n > 1 

lysozymes should improve average prediction accuracy. Similarly, it is expected that 

increasing parameter diversity by using m near optimal fits (up to some point before fit 

quality degrades) should also improve prediction accuracy. However, this is not the case 

here. Figure 2.7 plots multiple cross-sections from the n x m landscape. Specifically, the 
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Figure 2.6: (A) The DTm values (Tm,mut – Tm,wt) for each of the 14 x 13 = 182 cases is

plotted against the experimental equivalent. The Pearson correlation coefficient is R =

0.64. (B) Average DTm’ values (Tm,mut(pred) – Tm,wt(exp)) versus the experimental DTm
values. The Pearson correlation coefficient is R = 0.60.  
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entire series of n is plotted for five different values of m over four different lysozyme 

examples. 

In each case, the y-axis plots the . Error bars indicate ± one 

standard deviation. To make sure that our sampling procedure is not statistically biased, 

we have reported average values over ten different simulations of 100 samples each. The 

average behavior is shown to be largely consistent across all ten simulations, and in each 

case the average !Tm values are well within the error bars of the other nine simulations. 

Unexpectedly, no accuracy trends with increasing n or m are observed, meaning 

increased parameter diversity does not improve average prediction accuracy. Rather, for a 

given target, any particular parameter set gives a similar accuracy to any other set, 

indicating that the quality of the prediction is almost entirely dependent on the target 

structure itself. For example, Y45F is among the best-predicted structures, resulting in 

. Conversely, as discussed above, the P71G mutation is particularly 

problematic, resulting in . Note that while a difference of 28K might 

seem large at first glance, it is in fact only an 8.3% percent error. The mutations V2A and 

V100A are shown as intermediate examples. 

2.4 Discussion 

The initial objective of this work was to improve the predictive value of the mDCM 

in a scenario that employs contextual learning. The idea was that a set of best-fit 

parameters for the mDCM, based on an experimentally determined structure and heat 

capacity measurement, could be used to predict the relative stability of protein mutants. 

As more experiments are performed, additional best-fit parameterizations could be 

determined based on the new systems, thereby boosting statistics, and, as such, better 

!Tm = Tm
pred

"Tm
exp

!T
m

Y45F
" 0 ±10K

!T
m

P71G
" 28 ±10K
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accuracy would occur as more experimental data is obtained. While it was initially 

surprising that increasing the amount of parameter diversity does not improve prediction 

accuracy in a statistically significant way, this result can be viewed in two ways. First, 

there may exist additional features of a protein that we can incorporate to filter out better 

parameter sets for a given structure. Second, these results reveal the saturation of 

accuracy inherent within the mDCM. 

 With the former view, perhaps the original objective of a context learning approach 

-20

-10

 0

 10

 20

 1  4  7  10  13

m
 =

 1

<
!

T
m

>
n

Y54F

-20

-10

 0

 10

 20

 1  4  7  10  13

m
 =

 2

<
!

T
m

>

n

 

-20

-10

 0

 10

 20

 1  4  7  10  13

m
 =

 4

<
!

T
m

>

n

 

-20

-10

 0

 10

 20

 1  4  7  10  13

m
 =

 8

<
!

T
m

>

n

 

-20

-10

 0

 10

 20

 1  4  7  10  13

m
 =

 1
6

<
!

T
m

>

n

 

-28

-21

-14

-7

 0

 7

 14

 1  4  7  10  13

 

<
!

T
m

>

n

V2A

-28

-21

-14

-7

 0

 7

 14

 1  4  7  10  13

 

<
!

T
m

>

n

 

-28

-21

-14

-7

 0

 7

 14

 1  4  7  10  13

 

<
!

T
m

>

n

 

-28

-21

-14

-7

 0

 7

 14

 1  4  7  10  13

 

<
!

T
m

>

n

 

-28

-21

-14

-7

 0

 7

 14

 1  4  7  10  13

 

<
!

T
m

>

n

 

-35

-25

-15

-5

 5

 1  4  7  10  13

 

<
!

T
m

>

n

V100A

-35

-25

-15

-5

 5

 1  4  7  10  13

 

<
!

T
m

>

n

 

-35

-25

-15

-5

 5

 1  4  7  10  13

 

<
!

T
m

>

n

 

-35

-25

-15

-5

 5

 1  4  7  10  13

 

<
!

T
m

>

n

 

-35

-25

-15

-5

 5

 1  4  7  10  13

 

<
!

T
m

>

n

 

 12

 18

 24

 30

 36

 42

 1  4  7  10  13

 

<
!

T
m

>

n

P71G

 12

 18

 24

 30

 36

 42

 1  4  7  10  13

 

<
!

T
m

>

n

 

 12

 18

 24

 30

 36

 42

 1  4  7  10  13

 

<
!

T
m

>

n

 

 12

 18

 24

 30

 36

 42

 1  4  7  10  13

 

<
!

T
m

>

n

 

 12

 18

 24

 30

 36

 42

 1  4  7  10  13

 

<
!

T
m

>

n

 

Figure 2.7: Cross-sections of the n x m landscape for four different lysozyme mutant

examples (columns). In each case, average prediction accuracy is reported over all values

of n for a given value of m. Five different values of m (rows) are shown. In all cases, our

results surprisingly demonstrate that increasing the amount of parameter diversity does

not improve the average difference between the experimental and predicted Tm values.

The results from ten different simulations are shown superimposed on each other to show

that our results are robust. Across the ten simulations, the average behavior is largely

conserved, and in each case the average DTm values are within the error bars of the other

nine. 
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can be recovered by using a more sophisticated statistical analysis. In this work, the 

considered model parameters provide a range of predicted Tm values, but all parameters 

sets are treated with equal weighting. Meaning, the collective statistics from the ‘good’ 

and ‘bad’ sets for a given structure cancel out in the average statistics, leading to ± 

standard deviation ~ 20K. If we could, somehow, only apply the parameter sets best 

suited to a particular structure, then the average prediction accuracy will naturally 

improve as n increases. To that end, it would be necessary to develop a classifier that 

identifies a good parameter set for a given structure to allow for a knowledge-based 

weighted average.  For example, along these lines we considered estimating a target 

value for the usol parameter describing the average enthalpy for H-bonding to solvent as a 

function of global intramolecular properties of H-bonds. However, virtually no 

correlation between descriptors of global network properties and model parameters (in 

addition to model predictions as mentioned above) are found. Therefore, boosting the 

predictive accuracy using a classification scheme is likely to produce only marginal gains 

on prediction accuracy of a model that is intrinsically oversimplified. The expected 

marginal gain leads us to view these results in terms of a physical interpretation.  

 Based on the simplicity of the mDCM, where the H-bond network is featured so 

prominently in its free energy functional [43, 44], it should be surprising that the mDCM 

predictions yield such a high degree of accuracy and transferability of parameters. 

However, the mDCM has consistently proven to be a very robust and reliable model [43, 

44, 56-58], presumably because of the encoded information that lies within the H-bond 

network. Of course, the importance of H-bonds has been part of a long-standing 

paradigm in protein biophysics [60]. This work benchmarks the best accuracy level that 
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can be hoped for using the mDCM since we are working with essentially an ideal system 

for its application. Yet, we are not suggesting the mDCM is the end of the story. On the 

contrary, the minimal DCM does not explicitly model other essential mechanisms such as 

hydrophobic and long-range electrostatic interactions. As demonstrated by Guerois et al. 

[61], inclusion of essential mechanisms will improve model accuracy. Similarly, we 

expect a considerable gain in accuracy will come forth when we employ a more complete 

free energy decomposition scheme.  

2.5 Conclusion 

 As a part of this dissertation’s “depth” analysis, we establish that the mDCM is a 

viable approach to predict the relative stability of protein mutants. Even using a single 

parameter set from some previously fit example, the average error of the method when 

applied to an unknown example is very good (average percent error = 4.3%), and it does 

a reasonably good job of reproducing experimental trends (R = 0.64), which is definitely 

good enough to be of practical value to experimentalists when making decisions about 

which mutations to invest time and funds for characterization. The results also point to 

the intrinsic limits of such a simplified model, and points to the need to develop a more 

complete free energy decomposition scheme.  



CHAPTER 3: CHANGES IN LYSOZYME FLEXIBILITY UPON MUTATION ARE 
FREQUENT, LARGE AND LONG-RANGED 

 
 

3.1 Introduction 

 Protein dynamics are intimately related to functional mechanisms [62], and changes 

therein can lead to observable phenotypes and disease [63]. These changes can be subtle. 

For example, a change in the amplitude of dynamical signatures upon ligation can lead to 

observable allosteric differences, even in the absence of global conformational changes 

[64]. While comparative assessment of structure and function is a long-standing paradigm 

within proteins (e.g. [65-67]), comparisons of dynamics across orthologous proteins are 

rare because experiments are labor intensive and costly. In spite of these difficulties, the 

importance of such comparisons has resulted in a small number of experimental 

assessments [68, 69].  

 Computational methods are promising alternatives to characterize and compare 

protein dynamics across many proteins [70-75]. In addition to being much less costly 

than experimental interrogations, computational methods are generally able to 

characterize protein backbone and sidechain dynamics in more detail than experimental 

means (depending upon the level of coarse-graining). Nevertheless, the computational 

expense associated with traditional simulations methods continues to make 

comprehensive analyses impractical [76]. To circumvent the cost of simulation, we have 

employed Distance Constraint Model (DCM) [77, 78] that provides quantified 

stability/flexibility relationships (QSFR) [79, 80], which is a high dimensional 
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description of protein thermodynamics, dynamics and their interrelationships. 

Specifically, we have employed a minimal DCM (mDCM) that considers hydrogen bonds 

(H-bonds) and native torsion forces as fluctuating interactions (details provided in 

introduction).  

 As a second part of the “depth” analysis and using the same human c-type lysozyme 

as our model system, we now try to establish how much a single-site mutation affects 

protein flexibility. As discussed earlier, these 14 different point mutants have been 

characterized under a narrow window of experimental conditions [81]. Surprisingly, we 

find that changes in flexibility upon mutation are very common. In fact, the number of 

positions with significant changes in flexibility characteristics is similar to the number of 

positions without change. Additionally, these changes can occur over relatively long 

distances, meaning they are frequently allosteric in nature. Changes that lead to increased 

backbone flexibility are slightly more common than changes that lead to increased 

rigidity. This asymmetry primarily occurs because many mutations lead to increased 

flexibility within lysozyme’s !-subdomain. This result is noteworthy because several 

investigations have concluded that amyloid forming mutations lead to local unfolding in 

this region [82-86], which is the site of amyloid nucleation. 

3.2 Methods 

3.2.1 Dataset and structure preparation 

In this work, we analyze X-ray crystal structures of 7 wild-type human c-type 

lysozymes and 14 spatially and chemically distinct point mutants. Each structure has 

been solved to high resolution (average = 1.8 Å), and all R-values are less than or equal 

to 0.19. PDBID’s and all relevant structural information are provided in Table 3.1.  
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There are ~15 wild-type human lysozyme structures within the PDB. However, the 

series of cryogenic structures by Joti et al. [87] have extremely atypical properties, so we 

do not consider them here. In addition, the 1REZ [88] structure with a bound 

carbohydrate ligand also resulted in flexibility properties that were completely distinct 

from the remaining wild-type structures (and mutants for that matter). As such, it was 

also excluded, leaving the 7 considered structures.  

 There are many more lysozyme point mutant structures present in the PDB than the 

14 considered here; however, this dataset has been carefully selected so that the Cp 

characterizations have been done under nearly identical experimental conditions [89-95]. 

Table 3.1: Structural and thermodynamic characterization of the dataset. Note that all
structures come from the same P 21 21 21 space group. In the fifth column, the a-carbon
RMSD of each structure is compared to the 2NWD wild-type structure after
minimization, which is the structure closest to the centroid of the wild-type set.
Maximum Cp value in units of kcal/(mol!K). In all cases, !nat is equal to 1.24. 

Protein PDBID 
Resol. 

(Å) 
R-value 

RMSD 
(Å) 

Tm (K) Max Cp
 Total # 

of HB 
usol

 
vnat 

WT 1JWR 1.4 0.18 0.7 339 15.6 244 -2.13 -0.31 
WT 1LZ1 1.4 0.18 0.6 339 17.5 240 -1.85 -0.14 
WT 1LZR 1.5 0.14 0.5 339 15.5 250 -1.86 -0.21 
WT 1LZS 1.6 0.17 0.7 339 16.3 244 -2.35 -0.37 
WT 1REX 1.5 0.19 0.8 339 15.5 234 -2.00 -0.24 
WT 1REY 1.7 0.17 0.8 339 15.1 229 -1.89 -0.12 
WT 2NWD 1.0 0.13 -- 339 15.5 238 -1.78 -0.19 

Average 1.4 0.17 0.68 339.0 15.9 239.8 -1.98 -0.23 
Variation 15.4% 13.4% 17.1% 0.0% 5.1% 2.9% 10.1% 39.7% 

K1A 1C45 1.8 0.17 0.9 337 13.1 245 -1.66 -0.18 
V2A 1OUG 1.8 0.17 0.8 333 16.8 229 -1.78 -0.26 
Y38F 1WQO 1.8 0.17 0.8 338 18.8 229 -1.72 -0.20 
Y45F 1WQP 1.8 0.17 0.8 337 18.5 231 -1.79 -0.28 
Y54F 1WQQ 1.8 0.16 0.8 337 17.3 229 -1.86 -0.29 
I56T 1OUA 1.8 0.15 0.8 325 14.8 243 -1.84 -0.28 

Q58G 1B7R 1.8 0.16 0.7 345 19.0 235 -1.90 -0.30 
I59S 2MEG 1.8 0.15 0.8 326 14.4 239 -1.96 -0.40 
Y63F 1WQR 1.8 0.17 0.7 338 18.5 239 -1.86 -0.24 
P71G 1LHI 1.8 0.16 0.8 336 20.3 240 -2.10 -0.33 
V74A 1OUH 1.8 0.16 1.0 337 18.8 235 -1.76 -0.23 

V100A 1OUB 1.8 0.16 0.7 337 18.2 232 -1.91 -0.36 
P103G 1LHJ 1.8 0.15 0.8 339 18.2 231 -1.73 -0.18 
Y124F 1WQM 1.8 0.16 0.8 338 19.0 230 -1.92 -0.32 

Average 1.8 0.16 0.80 335.9 17.6 234.8 -1.84 -0.28 
Variation 0.0% 4.8% 9.8% 1.5% 11.8% 2.4% 6.2% 23.9% 
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As reported in stability prediction analysis in chapter 2, they have all been experimentally 

characterized using differential scanning calorimetry (DSC) under similar buffer 

conditions (pH = 2.7 to 2.8) and salt concentration (0.05 M). If this were not the case, 

model parameters would also reflect differences within the solvent conditions, thus 

obfuscating our direct comparisons. Moreover, full Cp curves must also be available in 

the literature for us to fit to. Finally, the Cp curves were generated by the same research 

group, which is important because DSC is a finicky technique that has systematic errors 

depending on differences in protocol and instrument. At the time of publishing this work, 

the 14 mutants studied here are the only ones that satisfy all of these criteria.  

In all cases, hydrogen atoms are added using H++ server to ensure proper ionization 

[96] at the pH of the DSC experiments. The electrostatic parameters used are 0.05 M 

salinity and external/internal dielectrics of 80 and 6, respectively. Subsequently, the all-

atom structures are minimized using the Molecular Operating Environment software 

using the Amber force field [97], which are then input into the mDCM. 

3.2.2 Model parameterization 

The mDCM is parameterized by finding values of {usol, vnat, !nat} that best reproduce 

the experimental Cp data using the same simulated annealing protocol previously 

employed [81]. Across the dataset, the resultant best-fit parameters are very similar. 

Nevertheless, we checked how the observed sensitivity is dependent on model 

parameterization. That is, a change in model parameters might change the nature of the FI 

and CC results, and potentially change the conclusions. To explore this concern, we first 

applied individual 3-parmater fits, and then fit the Cp data using 2-free parameters per 

mutant while keeping the entropic parameter !nat fixed across the dataset (Table 3.1). 
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Note that we used a similar strategy in prior works since the value of !nat is related to 

protein fold [77, 78, 80, 98]. Encouragingly, the Cp curves are again accurately 

reproduced, and the FI and CC values are both quantitatively consistent with the 3-

parameter model. Furthermore, quantitatively similar FI and CC results are also obtained 

using a constant {usol, vnat, !nat} parameter set taken as the average over the 3-parameter 

best-fits (results not shown). For simplicity, the data presented throughout the report is 

solely based on the 2-parameter model, keeping in mind that the similar quantitative 

results arise from the other two-parameter sets.  

The parameter differences observed in Table 3.1 phenomenologically reflect physical 

differences between the mutants that are not explicitly considered by the model. For 

example, as we have demonstrated previously [80], parameter variation is expected to 

account for differences in hydrophobic interactions. The extent of parameter variation 

observed here is relatively small, generally within the variation expected for multiple 

equally good fits. Moreover, while thermodynamic quantities (i.e., Tm) are somewhat 

sensitive to parameterization and input structure resolution, we have consistently 

demonstrated that mechanical FI and CC quantities are quite robust to parameter 

differences [80, 81, 98]. As such, the parameter differences have negligible affect on the 

presented results. 

3.2.3 Flexibility index and cooperativity correlation 

The flexibility index (FI) and cooperativity correlation (CC) are ensemble-averaged 

quantities over the native basin in the free energy landscape at the melting temperature. 

For a given macrostate, a sample constraint network is constructed using the probabilities 

for individual constraints to be present as described previously [17].  When no native 
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torsions are present and no H-bonds are present, all the rotatable-bonds in the network are 

labeled from 1 to N. As constraints are added to the network, some of these bonds will 

become part of rigid regions. Then, for a given constraint network, a rigidity analysis is 

performed, and each a priori rotatable bond is identified as being: (i.) flexible because it 

is part of an under-constrained region, (ii.) locked because it is part of an isostatically 

rigid region, or (iii.) locked because it is within an over-constrained region. These three 

types of regions define clusters within the protein. No other possibility can occur [99], 

and all rotatable bonds are assigned to 1, and only 1, cluster. If the cluster is over-

constrained, this means there are more constraints in the region than is necessary to make 

it rigid. If the cluster is isostatic, then the region is rigid, but there are just enough 

constraints to make it rigid. If there are not enough constraints within a certain region, it 

will be flexible.  

Each bond is assigned a flexibility index, fi, that is defined based on a single 

constraint network as follows. If the bond in question is part of an isostatically rigid 

region, fi = 0. If the bond in question is part of a flexible region, the number of rotatable 

bonds within that flexible region is counted, and is denoted as H. The number of 

independent disordered torsions within that same flexible region is counted, and is 

denoted as A. To represent the density of independent DOF within the flexible region, the 

value fi = A/H is assigned to all bonds within this cluster. Finally, if the bond in question 

is found to be in an over-constrained region, the total number of a priori rotatable bonds 

are counted, and denoted as D. Furthermore, the total number of redundant constraints 

within that region are counted, and is denoted as B. The value fi = B/D represents the 

density of redundant constraints within this over-constrained region, and it is assigned to 
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all the bonds within this cluster. Once this counting is complete for every cluster, every a 

priori rotatable bond in the protein will have a flexibility index assigned to it. To 

distinguish between densities of DOF versus redundant constraints, the fi values 

corresponding to flexible regions are positive, whereas the above fi values in over-

constrained regions are multiplied by -1. We focus our analysis herein on just the 

backbone a priori rotatable bonds that comprise the f and y angles of all residues (except 

proline, for which there is just a ! angle).  

In the final stages of the process, we typically average over 1000 or more realizations 

to obtain averaged mechanical properties for a given macrostate, (j,k). Then, for the i-th a 

priori rotatable bond, we have FI(i | j,k) = fi ( j,k) , where the bar is used to indicate an 

arithmetic mean over all samples randomly generated by Monte Carlo sampling subjected 

to the given macrostate (j,k). The reported FI for the i-th a priori rotatable bond is given 

as: FI(i) = fi ( j,k) p( j,k)
j,k

! .  

We employ a similar procedure to calculate the average value of CC. The main 

difference is that CC represents a pair correlation so the end result is a symmetric square 

matrix rather than a one-dimensional array. The variable c
m,n

is equal to fm if the m-th and 

n-th a priori rotatable bonds are simultaneously found to be in the same flexible, 

isostaticaly rigid or over-constrained region. This is because the same value is assigned to 

all a priori rotatable bonds within a given cluster type. The correlation becomes apparent 

whenever two distinct types of clusters are identified. For example, if the m-th and n-th 

rotatable bonds are both found to be in rigid clusters, but these clusters are distinct, then 

c
m,n

is equal to 0. In general, c
m,n
= 0  if the m-th and n-th a priori rotatable bonds belong 

to distinct clusters (whether of the same type or not). Thus, it should be noticed that no 



! "#

distinction is made between two a priori rotatable bonds being simultaneously found in 

the same isostatic rigid cluster versus in two different rigid clusters. It turns out that the 

relative frequency of two bonds being in an isostatic rigid region is very low. The 

distinction for why c
m,n
= 0  was initially a concern, and different measures have been 

considered. However, it was found that the reported average CC plots provide ample 

information regarding how flexibility and rigidity propagate through a protein [77-80, 98, 

100, 101]. We prefer to use the CC plot based on the density information as described 

here because it directly connects to the FI. In the next stages of the calculations, 

CC(m,n | j,k) = cm,n ( j,k)  is the conditional average for a given macrostate, and the 

reported CC is given as CC(m,n) = cm,n ( j,k) p( j,k)
j,k

! . Using this procedure, CC plots 

identify all pairwise residue-to-residue couplings across the structure (Figure 3.1c). 

Consequently, correlated motions associated with a high density of DOF show up in red, 

while a high density of redundant constraints show up in blue. Regions that are 

marginally mechanically stable or simply uncoupled show up as white.  

3.2.4 Accessing changes in flexibility 

Perhaps the most critical aspect of the presented work is determination of what 

constitutes a change in flexibility and what does not. That is, what degree of precision is 

present with the mDCM flexibility measures? This point is particularly important in this 

work because, using normal structure comparison metrics, the mutant dataset considered 

here is very similar to the wild-type structure.! To address this point, we establish a 

baseline of ambient flexibility changes across a set of 7 wild-type structures [88, 102-

105], such that differences within the background profile arise from subtle differences in 

the wild-type X-ray structures (Table 3.1).!  The baseline flexibility profile for each 
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residue position for each residue FI value or pixel for CC is calculated as the average 

value over the set ±1 !, where the standard deviation, !, is respectively calculated over 

each data set at the corresponding residue or pixel.!  Then, any mutant flexibility metric 

within one standard deviation is considered “no change.” A value falling in the range 

between one and two standard deviations away from the mean defines “moderate” 

changes, whereas  “large” changes are defined as greater than 2 standard deviations from 

the mean. As discussed above, Figure 3.1a plots FI versus residue number for the wild-

type baseline profile.!  The difference data presented in Figures 3.3 and 3.4 has been 

discretized into bins based on the above ! ranges. However, difference data in Figures 

3.2 and 3.5 retain quantitative relative differences by setting the response in the change of 

flexibility to zero when it is within the noise level, and only allowing the signals to show 

up.  In "FIn and "CCn the data is normalized in the following way: 

 

The outcome of the above equation is that all values within the background profile are 

colored white, whereas continuous color schemes are used for the moderate change bins. 

The min() and max() functions are employed to threshold the coloring such that all “large” 

changes are colored the same maximum shade of red or blue. Further, because the values 

are normalized by context dependent standard deviations they in essence provide a degree 

of statistical significance for the observed change. That is, a change could be 

quantitatively large in raw values, but appear weak if the background variability was 

large. On the other hand, for extremely small standard deviations, the change will appear 
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disproportionally large. However, this concern is largely unfounded as the per-pixel 

standard deviations in both !FIn and !CCn are relatively uniform (data not shown). In 

fact, plotting the raw differences actually makes changes appear roughly twice as 

frequent as we observe with the normalized scores, which would only strengthen the 

main conclusions of this chapter. In other words, the normalized plots filter out response 

main conclusions of this chapter. In other words, the normalized plots filter out response 

that does not have a signal large enough to distinguish against the background noise.  

3.3 Results 

3.3.1 Intrinsic flexibility of wild-type lysozyme 

Previously, we used the mDCM to predict mutant melting temperatures with an 

average error of 4.3% [81]. Going further, the primary goal of this investigation is to 

critically evaluate the consequences of single point mutations on lysozyme flexibility. 

However, before doing so, we must first quantify wild-type lysozyme’s intrinsic 

flexibility characteristics to be used as our reference point.   

We define an average flexibility profile using a set of 7 different human wild-type 

lysozyme structures. Therein, differences in flexibility solely arise from differences in the 

X-ray crystal structures. Moreover, the variability across the dataset establishes a baseline 

precision for the calculated properties. Values within ±1 standard deviation (±1 ") from 

the mean of the wild-type set are taken to be within background noise, and are thus 

deemed equivalent. Figure 3.1a plots the flexibility index (FI), which is an mDCM output 

that characterizes local flexibility. Positive values quantify flexible regions, whereas 

negative values quantify rigidity. Additionally, the variability within FI across the 7 wild-

type structures is also shown.  Figure 3.1b maps the average flexibility profile to structure 
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(blue = rigid, whereas red = flexible). In general, helices are mostly rigid, whereas 

spanning loop regions are mostly flexible. The !-subdomain is marginally rigid, with 

some interspersed flexibility. The !-subdomain is attached to the core via a known hinge 

region that is identified by the mDCM [78].  The flexible hinge region and lysozyme’s 

Figure 3.1: Intrinsic flexibility characteristics for lysozyme are shown. (a) The average
flexibility index (FI) across a set of seven wild-type lysozyme structures is plotted versus
residue number (solid line). The dashed lines indicate ±1 ", which defines the noise range
within the quantity. (b) Lysozyme is color-coded according to average FI values in panel
(a), where red regions indicate flexibility (FI > 0) and blue indicates rigidity (FI < 0). (c)
The cooperativity correlation profile of 2NWD identifies all pairwise mechanical
couplings. Red indicates residue pairs within the same correlated motion, whereas blue
indicates residues within the same rigid cluster. White indicates no mechanical coupling.
Panel (d) shows the relative per pixel standard deviation across the wild-type set where
darker color represents a greater value. There are two large rigid clusters identified in
panel (c), which are highlighted in panel (e). The first (green) is defined by helices #1,
#2, #4 and #5, whereas the second (red) corresponds to the !-subdomain. The active site
is located at the cluster interface, and the hinge motion indicated in panel (b) allows the
enzyme to close around its substrate. 
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two catalytic residues are also highlighted. Most of the other flexible regions correspond 

to loops connecting secondary structure elements.  

A higher order description of protein dynamics is provided by CC, which 

characterizes correlated motions and co-rigidity or pairwise residue-to-residue 

mechanical couplings. Figure 3.1c plots the CC for the 2NWD structure, which is the 

closest to the geometric center of the wild-type set. Blue coloring identifies co-rigid 

residue pairs (meaning residue pairs with high probability of occurring within the same 

rigid cluster), whereas red coloring identifies flexibly correlated pairs (residue pairs 

within a correlated motion). Mechanically decoupled regions are colored white. The per-

pixel variation across the wild-type set is plotted in Figure 3.1d. Within Figure 3.1c, two 

prominent rigid clusters can be identified. The first is composed of helices !1, !2, !4 and 

!5, whereas the second spans the "-subdomain region (Figure 3.1e). The active site and 

accompanying hinge motion corresponds to the cluster interface, which allows the 

enzyme to close around its carbohydrate substrate. 

3.3.2 Changes in backbone flexibility upon mutation 

The primary goal of this report is to investigate changes in lysozyme dynamics upon 

mutation. To that end, we analyze changes in FI and CC that occur upon mutation. The 

profiles defined above establish when a change in flexibility is significantly above 

background noise. Figure 3.2a plots the normalized change in FI (#FIn) for each mutant 

where red indicates increased flexibility, and blue indicates increased rigidity.  Some 

common responses are identified regardless of the details of the mutation. Interestingly, 

flexibility increases frequently occur within the "-subdomain regardless of mutation 

position, while an increase in rigidity within the "-subdomain almost never occurs. 
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Figure 3.2: Comparison of backbone flexibility and changes across the dataset are shown.
Panel (a) plots changes in !FIn for each mutant relative to the wild-type structure. In the
same manner, changes in cooperativity correlation (CC) with respect to the mutation site,
Glu35 and Asp53 are respectively plotted in panels (b), (c) and (d). Panel (e) plots
changes in the median normalized B-factors across the dataset. 
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Changes in the !-subdomain are slightly less frequent with the most common responses 

having increased rigidity within the !1/!2 loop and a 3-residue segment of the !4/!5 loop. 

Despite the above trends, many site-specific differences are obvious. Binning the 

"FIn values across a collapsed dataset of all 14 mutants underscores this point. Figure 

3.3a! !indicates that the dynamics are appreciably changed in 48.0% of the residues upon 

mutation. Interestingly, the percentage of residues with increased flexibility (28.0%) is 

Figure 3.3: Flexibility response histograms are shown. Across a collapsed dataset
constructed from all 14 mutant structures, each residue is binned based on changes to
QSFR properties. The bins are color-coded by: green = no change, cyan and
blue = moderate and large increases in rigidity, and orange and red = moderate and large
increases in flexibility. In each panel, the bin order is conserved and indicated at the right.
Panel (a) plots the null expectation histogram (highlighted with diagonal hashing)
alongside the overall changes in flexibility index and cooperativity correlation. Panel (b)
plots changes in cooperativity correlation with respect to specific residues: the mutation
site, Glu35 and Asp53. Finally, panel (c) re-plots the null expectation alongside changes
in B-factors (with and without median normalization). 
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slightly more than the percentage with increased rigidity (20.0%). This result makes 

intuitive sense because all but one of the mutants decreases structural stability. We 

segregate moderate flexibility changes from large changes using a cutoff of ±2 !. 

Percentages of large increases in flexibility are slightly more than large increases in 

rigidity (11.8 vs. 7.0%). Based on the ±1 ! definition of the “no change” background 

profile, the null expectation is that 68.2% of the positions should have “no change.” 

Further, moderate changes within 1 to 2 standard deviations, and large changes greater 

than 2 standard deviations, have null expectations of 13.6% and 2.3%, respectively. 

Figure 3.3a clearly indicates that we observe more changes in FI than this random 

expectation. Using the chi-square statistic, the differences within the observed and 

random expected histograms are strongly significant (Table 3.2). That is, changes in 

flexibility upon mutation are more common than the background variation across the set 

of wild-type structures. 

Using the same coarse-grained color scheme as Figure 3.3a, the first column in Figure 

3.4 color-codes the mutant lysozyme structures by "FIn values. In each, the structures are 

shown in nearly identical orientations, and the mutated residue, Glu35 and Asp53 are 

rendered in spacefill view to orient the viewer. In addition to highlighting the frequency 

of changes in flexibility or rigidity upon mutation, this figure emphasizes that changes 

can be quite long-ranged. For example, the I59S mutation, which occurs within the #-

subdomain portion of the active site cleft, affects the most distant portions of the structure. 

Even more pronounced is the P71G mutation. The mutation site is located on the outmost 

reach of the #-subdomain, yet it causes helix $4 at the hinge and the $4/$5 loop within 

the main core of the protein to significantly rigidify. Concurrently, the #-subdomain and 
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helix !5 become much more flexible. 

3.3.3 Changes in cooperativity correlation upon mutation 

Going further, Figure 3.5 shows the normalized changes in cooperativity correlation 

("CCn) upon mutation, which reveals a much more rich and interesting set of changes in 

flexibility. Again, we characterize the degree of change with respect to the mean wild-

type CC values using the same standard deviation ranges as above. Across all mutants, an 

increased correlated flexibility is observed in 42.7% of the CC values.! Interestingly, the 

bias towards increased correlated flexibility observed in "FIn is not present. Rather, 

"CCn results are skewed in the opposite direction (Figure 3.3a). Specifically, increased 

rigidity correlation is observed in 29.5% of the "CCn values, whereas only 13.2% have 

increased flexibility correlation. This asymmetry stresses the physical distinction between 

the two metrics. While the "FIn results describe changes in backbone flexibility within a 

localized region, "CCn identifies changes in pairwise mechanical couplings that uncover 

cooperative effects. The results from our dataset indicate that most of the increases in 

Table 3.2: Statistical significance of the observed histograms.  Bin sizes within the
expected histograms are defined from the variation across the set of wild-type structures:
large changes > ±2 #, moderate changes are ±1-2 #, and no change is between ±1 #, from
which background bin probabilities are calculated. The chi-square statistic is use to
compare the expected and observed histograms, and the reported p-values quantify the
probability that the histograms are equivalent. In all cases, the histograms are determined
to be statistically distinct from the null expectation. 

Flexibility metric p-value 

"FIn 9.1E-212 
"CCn (all positions) 0.00 
"CCn (Glu35 only) 1.6E-122 
"CCn (Asp53 only) 2.7E-4 
"CCn (mutation site) 1.8E-237 

"Bm 2.6E-24 
"Br 2.4E-22 
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backbone flexibility are localized, frequently within the b-subdomain (with Y45F and 

V74A being the primary exceptions). Put otherwise, the local increases in flexibility 

identified by !FIn are largely decoupled from other motions, which is why !CCn does 

not show a large increase in correlated flexibility. Conversely, the increased rigidity 

correlation across the dataset indicates that most of the increases in backbone rigidity are 

frequently coupled to other rigid regions throughout structure. 

As with !FIn, the differences in !CC and the null expectation are strongly significant 

(Table 3.2). Another key deviation from the !FIn results is the high variability across the 

set of mutants. For example, the Y54F mutant has little overall affect on the set of 

mechanical couplings within lysozyme. Conversely, the same mutation at position 45 

leads to a large increase in flexibility correlation, whereas the Y!F mutations at 

positions 38, 63, and 124 slightly increase co-rigidity. A similar juxtaposition occurs 

within the V!A mutations. V74A drastically increases correlated flexibility; however, 

V2A has the opposite affect by drastically increasing correlated rigidity. While these 

cases represent nearly homogenous changes in CC, most of the remaining mutants have a 

mix of both increased correlated flexibility and correlated rigidity. Taken together, the 

large and diverse mutant-specific changes within the !CCn results underscore the high 

sensitivity of the metric, which we have discussed previously [80, 100, 101].   

It is technically difficult to exhaustively compare all changes because the two-

dimensional nature of the data precludes linear descriptions along the lysozyme sequence. 

As such, we extract for further analysis strips of !CCn values from the full plot for a 

single residue point of reference. Here, we examine !CCn with respect to the mutation 

site and the two catalytic residues. These results are reported alongside the !FI values 
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just discussed in Figures 3.2-3.4, which underscores the richness within !CCn. For 

example, changes in CC with respect to Glu35 are common. Moreover, they can be quite 

large and frequently propagate over long distances. The same is true for !CCn with 

respect to the mutation site. On the other hand, changes with respect to Asp53 are 

somewhat suppressed, yet still statistically significant. These cases emphasize that the 

extent and location of changes within the mechanical couplings is dependent upon the 

reference point. Similar types of differences are observed when examining !CCn from 

other points of reference.  

3.3.4 Flexibility is distinct from mobility 

Protein dynamics can be quantified in many ways. Therefore, it is important to 

distinguish flexibility from mobility. From rigidity theory, flexibility indicates that a 

network is deformable, but it need not be mobile. For example, a stationary pivot of a 

swinging pendulum is highly flexible, but not mobile. On the other hand, the end of the 

pendulum can simultaneously be rigid and highly mobile [106]. Because of this physical 

distinction, it is useful to benchmark how mobility changes upon mutation. To that end, 

we compare changes in "-carbon atomic displacement parameters (B-factors) of each 

mutant structure to the wild-type profile. However, before doing so, it should be stressed 

that caution must be employed when analyzing B-factors in terms of mobility because 

protein crystals are not homogeneous. That is, protein structure B-factors reflect both 

temporal (i.e., mobility) and spatial disorder across the crystal lattice. B-factors are 

quantitatively affected by occupancies. Occupancies less than one can be an indication of 

disorder, but lead to improved R-factors [107]. As such, even when multiple structures 

have the same space group, direct comparisons of B-factors reflect substantially more 
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than just differences in mobility. Thus, using B-factors to reflect mobility is only truly 

accurate when all other error sources have been removed. To help mitigate some of these 

caveats, we normalize B-factors using the median-based method of Smith et al. [108].  

After normalization of the !-carbon B-factors within each structure, we calculate the 

wild-type background profile in the same way as above. Subsequently, normalized B-

factors from each mutant structure are compared to the normalized wild-type profile 

using the same " ranges as above in order to classify no change, compared to moderate 

and strong changes. Surprisingly, the histogram of median normalized B-factor changes 

(#Bm) (Figure 3.3c) is substantially different from the flexibility changes. Specifically, 

there are fewer changes in B-factors than one would expect based on the wild-type profile. 

This suppression of changes is statistically significant (Table 3.2). Moreover, there is no 

correlation between the #FIn quantities and #Bm values (results not shown), underscoring 

the differences between flexibility and mobility. Despite the cautionary note above about 

B-factor comparisons, we also compare the raw B-factor changes (#Br) to determine if 

normalization is biasing the results. Figure 3.3c also shows that there are no appreciable 

differences between the #Bm and #Br histograms. For completeness, the #Bm values are 

reported alongside the #FIn and #CCn results in Figures 3.2-3.4. No correlation is found 

using raw data as well. 

3.3.5 Structural considerations of flexibility changes 

Table 3.3 counts the number of residue responses that occur for a given solvent 

accessibility and distance separation (mutation !-carbon to response !-carbon) range. The 

collapsed dataset of all residues is stratified by solvent accessibility for both the response 

(top)   and   mutation   (bottom)   sites.  In   each   case,   exposed,  moderate,  and  buried 
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Table 3.3: Residue response statistics. Each cell counts the number of residue responses
(!FI) that correspond to a given solvent accessibility range (or structural element) for a
given distance to the mutation site. The collapsed dataset of all residues is stratified by
response residue solvent accessibility in the top half of the table, whereas the collapsed
dataset is stratified by mutation site solvent accessibility in the bottom half. The ratio
value in the last column is the number of residues with altered flexibility divided by the
number of residues with no change. 

 
Large 

rigidity 
increase 

Moderate 
rigidity 
increase 

No change 
Moderate 
flexibility 
increase 

Large 
flexibility 
increase 

Ratio 

Distance from response site = 0 to 8 Å 
Buried 3 7 26 7 17 1.31 

Moderate 1 5 30 10 12 0.93 
Exposed 1 3 21 8 12 1.14 
Union 5 15 77 25 41 1.12 

Distance from response site = 8 to 16 Å 
Buried 24 38 130 28 31 0.93 

Moderate 9 31 130 35 27 0.79 
Exposed 9 9 81 36 18 0.89 
Union 42 78 341 99 76 0.87 

Distance from response site ! 16 Å 
Buried 25 41 155 53 23 0.92 

Moderate 23 49 174 49 29 0.86 
Exposed 32 54 200 68 46 1.00 
Union 80 144 529 170 98 0.93 

Structural characterization of response site 
Helix 95 170 553 117 45 0.77 
Strand 1 4 51 30 26 1.20 
Coil 31 63 343 147 144 1.12 

"-Subdomain 115 220 693 177 69 0.84 
#-Subdomain 12 17 254 117 146 1.15 

Mutant residue is buried 
0-8 Å 4 9 33 9 16 1.15 

8-16 Å 32 52 145 41 25 1.03 
$ 16 Å 28 37 153 41 25 0.86 
Union 64 98 331 91 66 0.96 

Mutant residue moderately exposed 
0-8 Å 0 4 23 14 17 1.52 

8-16 Å 5 18 108 39 40 0.94 
$ 16 Å 22 58 175 78 49 1.18 
Union 27 80 306 131 106 1.12 

Mutant residue is exposed 
0-8 Å 1 2 21 2 8 0.62 

8-16 Å 5 8 88 19 11 0.49 
$ 16 Å 30 49 201 51 24 0.77 
Union 36 59 310 72 43 0.68 

Structural characterization of mutant residue 
Helix 25 40 133 33 29 0.96 
Strand 28 45 180 84 53 1.17 
Coil 74 152 634 177 133 0.85 

"-Subdomain 65 120 408 108 79 0.91 
#-Subdomain 62 117 539 186 136 0.93 
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respectively corresponds to the top,  middle,  and  bottom  thirds  of all  relative solvent 

accessibilities, which maintains similar observations in each stratum for the response and 

mutation sites. The !FIn bins again correspond to those in Figure 3.3. Interestingly, in 

both cases solvent accessibility has little effect on the response rate. In all cases but one, 

the ratio of changes to no change is approximately one. That is, a change in flexibility is 

generally as frequent as no significant change. Note that we focus on the ratio of changes 

because this normalizes out the size discrepancies --- the strata corresponding to larger 

distances will naturally have bigger counts simply because there are fewer residues close 

to the mutation compared to farther away. The one noticeable exception to this general 

trend is when the mutant residue is solvent exposed, for which there is a significant 

decrease in flexibility changes. This relative lack of effectiveness in causing a change in 

flexibility makes intuitive sense because solvent exposed positions are naively expected 

to be more tolerant to mutation due to reduced steric constraints. Table 3.3 additionally 

provides statistics comparing structural features of the response and mutation sites. First, 

the dataset is stratified by secondary structure.  

As discussed above, there is a slight reduction in the relative response rate for "-

helical positions. Conversely, there is slight increase in the #-strand positions, which is 

strongly skewed towards increases in flexibility. Table 3.3 also provides statistics for the 

"- and #-subdomains, which parallels the secondary structure results. That is, the #-

subdomain is highly susceptible to increased flexibility upon mutation. Conversely, a mix 

of changes in the "-subdomain commonly occurs, albeit at a rate slightly lower than no 

change. Interestingly, the ratios are more similar (~1) across secondary structure and 

subdomain boundaries when focusing on the mutation site, with coil residues being the 
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sole exception. Mutation of coil residues tends to have a decrease in the relative response 

rate, which simply reflects the same observation above for mutation of solvent exposed 

residues. The ratios for !CCn are qualitatively similar, albeit slightly less across the entire 

dataset. The average ratio for !CCn is ~ 0.7, meaning a lack of change in CC is more 

common than a change. Nevertheless, changes in CC that have been observed as general 

trends in prior work [80, 100, 101] are observed here as evident in most cases within 

Figure 3.5, where drastic changes usually appear within a small number of strips. 

However, there are certain cases (i.e., V2A, Y45F, and V74A) where virtually the whole 

CC plot is affected. 

3.4 Discussion 

3.4.1 Changes in flexibility upon mutation are common and large 

Previous works have investigated how familial divergence affects protein dynamics 

and, as a consequence, allostery. Using DCM, initial work along these lines compared a 

mesophilic and thermophilic RNase H pair [80], which reproduced experimental 

conclusions regarding the balance between molecular flexibility and thermodynamic 

stability [109-112]. Subsequently, comparisons were expanded to 4 bacterial periplasmic 

binding homologs [100] and 9 oxidized thioredoxin structures [101]. Taken together, 

these  collective results suggest an intriguing mix of conservation and variability within 

stability and flexibility.  Pairwise mechanical couplings that provide a higher order 

description of flexibility and rigidity are generally sensitive to small differences. The 

latter result highlight how small structural variations are amplified into global differences 

as mechanical couplings propagate through the network.  

In other studies, DCM has been employed to link mechanical and thermodynamic 



! "#

response to allostery,  where a perturbation method is used to identify putative allosteric 

Figure 3.4: The affects of mutation on protein flexibility are mapped to structure. The
five columns correspond to DFIn, DCCn with respect to Glu35, DCCn with respect to
Asp53, DCCn with respect to the mutation site, and DBnorm. In all cases, the histogram
bins in Figure 3.3 define the coloring schemes. The orientation of each protein is nearly
identical across the figure. In each structure the catalytic pair (Glu35 and Asp53) and the
mutated residue is rendered in spacefill. Importantly, this figure emphasizes the long-
range nature of the response. 
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response to allostery, where a perturbation method is used to identify putative allosteric 

sites [98].  Therein, small numbers of constraints have been introduced to mimic the 

effect of ligand binding, from which new QSFR properties are calculated using the same 

Figure 3.4: (continued) 
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structure. Large changes in QSFR metrics indicate an allosteric response. Application of 

this method to 3 CheY orthologs indicates that the most conserved response occurs 

within the !4/"4 loop, which is known to be important to propagation of the CheY 

phosphorylation signal [113, 114], yet residue-level response is quite variable, leading to 

the conclusion that allosteric response is both variable and conserved across the CheY 

family. The variability in #CC observed above further demonstrates diversity and 

sensitivity of allosteric response, which is consistent with observed variations within 

allosteric response across protein families [115]. 

The ubiquity of differences observed across sets of orthologous proteins, which is 

consistent with myriad experimental results, leads one to wonder about the origins of the 

familial divergence. That is, how many mutations are needed to observe significant 

differences in protein dynamics? In spite of the rather small structure differences, it is 

common for changes in flexibility to occur throughout structure, including at locations 

remote from the mutation site. As indicated by the histograms in Figure 3.3a, changes in 

both flexibility metrics are common. Specifically, while no change is the most frequent 

response, 42-48% of the residues undergo an appreciable change upon mutation. These 

distributions are obtained by sampling a collapsed dataset composed of all residues for 

each protein in the dataset (or as a variant to the method, across the entire protein except 

for a local window centered on the mutation site). This means that it is not the case that 

one particular mutant will make virtually no change, whereas another will make a large 

change. Rather, a typical mutant includes many sites with increased flexibility and 

increased rigidity throughout the protein. Exactly where the changes occur has a great 

variance in general, but the statistical expectation of having compensation between one 
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part of the protein increasing in rigidity while another part of the protein increases in 

flexibility seems very consistent across our dataset. The percentage of positions leading 

to increased backbone flexibility (27.9%) is slightly greater than the percentage 

increasing rigidity (20.0%). In summary, changes in backbone flexibility upon mutation 

are common, where local changes across the protein are typically composed of 

comparable amounts of an increase and decrease in flexibility distributed throughout the 

protein. Essentially, the protein is maintaining a global level of marginal mechanical 

stability within the native state at the melting temperature of the mutant. Changes in CC 

are also common; however, the differences between increased flexibility and increased 

rigidity are more asymmetrical. As discussed above, it is found that flexibility increases 

upon mutation tend to be localized, whereas increases in rigidity are likely to be coupled 

to remote structural sites. This result is not a matter of simple statistical chance that as 

more regions become rigid, the tendencies of these regions to coalesce into larger rigid 

regions increase. Rather, the increase in co-rigidity is counter-intuitive based on this 

reasoning, since there is an overall decrease in rigidity across the protein upon most 

mutations. This simultaneous effect suggests sparse and ramified rigid pathways are 

carved out by the mutations, which is critical to maintain marginal mechanical stability 

within the protein at its melting temperature. Here, critical means that further degradation 

of this pathway is likely to lead to unfolding as rigidity in the protein is lost [116].  

To further support the conclusion that changes in flexibility upon mutation are 

common, we also assess the flexibility differences between human wild-type and hen egg 

white lysozyme (HEWL). Figure 3.6a compares changes in HEWL backbone flexibility 

(relative to human wild-type) to the mutant changes summarized above. Surprisingly, the 
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number of differences between the two orthologs is generally slightly less than observed 

within the mutant dataset. While, on average, 48.0% of the mutant positions have a 

change in FI, only 41.1% of the HEWL positions changes. Although there is relative 

decrease in number of flexibility differences, the number of changes that do occur is 

statistically significant (p = 2.0E-7). Moreover, the scale of the !FI values for HEWL 

falls within the variation across the human mutant dataset despite the fact that the 

pairwise sequence identity is only 61%. That is, even with a significantly reduced 

sequence identity, there are no wholesale differences in flexibility. Put otherwise, the 

changes in backbone flexibility within the mutant structures are clearly large since they 

are on the same scale as the much more divergent HEWL ortholog. Similarly, the HEWL 

!CCn results (Figure 3.6b) are also easily within the mutant dataset range established in 

Figure 3.5. 

It is worth noting that our dataset composition is inherently biased towards rigidity. 

That is, the studied mutations are all amendable to crystallography, which eliminates 

many possible mutations that destabilize the structure so much that it is too flexible to 

form a crystal lattice. As such, our conclusions regarding the frequency and extent of 

flexibility changes would be even greater if it were feasible for us to study all possible 

mutations because extreme increases in flexibility  upon  mutation  are  actually 

mutations because extreme increases in flexibility upon mutation are actually 

underrepresented in our dataset. 

3.4.2 Changes in flexibility can be long ranged 

We have segregated responses into moderate and large changes (Figure 3.3). As 

expected, moderate changes are the most common, but large changes in FI and CC also 
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occur  frequently  (respectively, 18.3 and 13.5% of the time).  While  the  definition 

Figure 3.5: Cooperativity correlation (CC) difference plots show the differences in
pairwise mechanical couplings between each mutant structure and the wild-type
reference. Red indicates increased correlated flexibility within the mutant structure,
whereas blue indicates increased correlated rigidity. Juxtaposed to the !FI results that
show significant uniformity within their response, the !CCn values are highly variable
across the set of mutants. 
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occur frequently (respectively, 18.3 and 13.5% of the time). While the definition 

distinguishing between moderate and large is somewhat arbitrary, the ubiquity of large 

changes is clearly shown in Figure 3.2. Moreover, large changes in backbone flexibility 

can occur anywhere in structure, but some clustering is evident. Specifically, large 

increases in rigidity are more likely to occur within the !1/!2 and !4/!5 loops, whereas 

large increases in flexibility tend to occur within the "-subdomain. Conversely, there is 

little clustering of CC response. These two opposing observations further emphasize our 

previous results that FI is strongly related to overall structural topology, whereas CC is 

highly sensitive to small differences within the H-bond network [100].  

The visual survey of the first column in Figure 3.4 shows that changes in flexibility 

are rarely localized around the mutation site, but rather generally propagates over long 

distances. This observation is confirmed by the counts in Table 3.3. However, skewness 

in raw counts can be expected by the increased number of sites that are present in the 

strata corresponding to larger distances. Interestingly, the ratio of changes to no change 

for short, medium and long distances are all nearly equal to one (with the two exceptions 

explained above in the results section). The similarity in the ratios is somewhat surprising 

because the naïve expectation is that short-range changes would be much greater than 

long-ranged due to dampening effects. As such, these results indicate that changes in 

protein flexibility upon mutation can be long-ranged. Upon further statistical analysis, it 

is found that the ratios are not regimentally affected by solvent accessibility of the 

mutation or response site. In addition, the distance between the mutation-response pair 

has no systematic affect, meaning that neither structural distance nor solvent accessibility 

has a large biasing affect on the results. The sole exception being that mutations at 



! "#

solvent exposed positions is less likely to lead to changes in flexibility. Note that there 

are insufficient data to perform a statistically significant two-dimensional stratification 

that considers both response residue and mutant accessibilities. 

3.4.3 Relating computational and experimental observations 

Our results collectively indicate that point mutants cause a rich and diverse set of 

flexibility changes throughout structure. Generally, changes in both flexibility and 

rigidity within the protein upon mutation occur concurrently to maintain marginal 

mechanical stability at the new melting temperature. Many changes are localized, but 

significant portions propagate over surprisingly long distances. While we cannot make a 

direct quantitative comparison to experimental results because the observed response 

properties are fundamentally distinct, changes in NMR order parameters show similar 

response richness. For example, many reports have used N-H S2 order parameters to 

demonstrate that changes in backbone dynamics can be quite large upon mutation (e.g., 

see [117-121]), yet the magnitude of the changes are generally within the scale wild-type 

order parameter distributions [122]. The observed changes in backbone flexibility are 

qualitatively equivalent (Figure 3.6). Moreover, localized increases in dynamics have 

been observed despite globally similar average structures [123] and stabilities [124] 

between the wild-type and mutant proteins. Particularly noteworthy are experimental 

results that mirror the complexity that we uncover on lysozyme on two additional small 

model-system proteins. First, concurrent increases in dynamics and rigidity have been 

demonstrated in the V54A Eglin c mutant [125], which epitomizes the changes in 

lysozyme flexibility within in Figures 3.2 and 3.4. Second, long-ranged changes in 

dynamics have been observed within the F22L and A20V mutants of protein L [126], 
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which is again shown for changes in lysozyme flexibility in Table 3.3.  

 Methyl sidechain S2 order parameters characterize ps-ns timescales, whereas 

backbone S2 order parameters characterize slower motions. While the DCM does not 

model dynamical timescales per se, experimental investigations that probe both further 

underscore the complexity and long-range nature of changes in protein dynamics upon 

mutation. For example, Igumenova et al. demonstrated that calmodulin backbone 

dynamics are largely unchanged upon mutation [127]. However, sidechain motions are 

significantly altered by the D58N mutation in the Ca+-binding loop, which are spread 

over long distances. Interestingly, the pseudosymmetric D95N mutation has no 

appreciable affect on sidechain dynamics. Similarly, Clarkson and Lee characterized two 

valine-to-alanine eglin c mutants [128]. Large dynamical changes were observed as much 

as 13 Å from the mutation site. The V54A actually causes a network of residues to 

increase in rigidity despite the fact that the mutation is thermodynamically destabilizing. 

Changes in the V14A mutant, which is also buried in the core of the protein, were much 

less. This diversity of response led the authors to conclude, “…dynamical responses will 

be context-dependent,” which is epitomized by our lysozyme dataset. That is, the affects 

of mutation are quite varied and highly dependent upon the local details of the 

perturbation, which propagate in complex and unexpected ways. 

 The Dobson lab has characterized dynamical changes in lysozyme, with a special 

focus on mutant amyloidogenicity. In particular, changes in I56T and D67H were studied 

using hydrogen/deuterium exchange NMR and mass spectrometry [129]. (Note that the 

I56T mutation is included within our dataset.) They showed that b-subdomain dynamics 

in the D67H mutant are changed extensively, whereas changes occur much less in the 
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I56T mutant. This result broadly agrees with our results, which indicate that I56T 

dynamics are changed much less than mutants with the biggest responses (e.g., Y45F, 

I59S, V74A, and V100A). Taken together, our conclusions are therefore in line with 

many experimental characterizations of changes in protein dynamics upon mutation. 

3.4.4 Amyloid formation and the !-subdomain 

Based on our previous investigations, we believe the above results could be 

generalized to most globular proteins. In addition, our results also reveal an interesting 

effect specific to lysozyme. That is, a large number of mutations, regardless of location or 

type, cause increased flexibility within the !-subdomain, which in many cases can be 

thought of as local unfolding. This point is noteworthy for two reasons. First, this result 

again highlights the long-range nature of dynamical changes because many of the 

mutations occur outside of the !-subdomain. Second, several experimental reports have 

suggested that mutations leading to amyloid in lysozymes and the related "-lactalbumins 

are due to structural changes, which may include local unfolding, in the !-subdomain 

[82-86]. As such, the partially unfolded !-subdomain may serve as a nucleation site for 

amyloid growth. Of course, our results do not address this issue, but they do parallel the 

earlier experimental conclusions. For example, #FI clearly indicate that the 

amyloidogenic I56T mutation has increased flexibility within !-subdomain (Figure 3.4). 

Similarly, our results indicate that several other mutants display at least as much 

flexibility therein, including K1A, Y38F, Y45F, Q58G, I59S, P71G, V74A, V100A and 

P103G. As such, it is tantalizing to consider that they might also be amyloidogenic. We 

have searched the literature and, to the best of our knowledge, these mutants have not 

been characterized. We therefore present them as blind predictions, and hope that others 
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will consider characterizing their amyloidogenicity. 

3.4.5 Relating the observed changes to protein family evolution 

Across the dataset, changes in protein flexibility upon mutation are common, large 

and can be long-ranged. That is, the stark variation in dynamics observed across protein 

families unexpectedly occurs early in the divergence process through a combination of 

flexibility increases and decreases. However, the observed changes seldom significantly 

alter global flexibility. The relative similarity in positive and negative !FIn values 

suggest that as divergence occurs, marginal mechanical stability is generally maintained 

because only incremental overall changes will be typically encountered by any given 

mutation. In other words, a single mutation will typically not overwhelmingly rigidify the 

protein nor overwhelmingly increase flexibility. Rather, structure subtly rearranges in 

response to the mutation to maximize enthalpy-entropy compensation. That is, a global 

increase in rigidity creates a large reduction of conformational entropy that is unfavorable, 

and a global increase in flexibility creates a large loss in enthalpy (weakened native 

contacts) that is unfavorable. Thus, the native state ensemble of the protein seeks to find 

the lowest free energy that typically requires a balance between flexible and rigid 

structural regions, suggesting that a mixture of rigidity and flexibility is typical at 

physiological conditions.  

These results suggest that global increases in rigidity or flexibility upon mutation are 

rare because the local responses are derived in the noise (random fluctuations) around 

overall being neutral, with only a slight advantage towards increased flexibility in this 

case. The implication of the above is that successive mutations during the evolutionary 

process are generally necessary to substantially alter global flexibility characteristics. 
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Viewed from a dynamics point of view (excluding selection in maintaining function), the 

process is a random walk capable of nudging the protein towards global increases in 

rigidity or flexibility. However, conservation of function is likely to select against 

systematic drift that leads to large differences in flexibility with respect to the function 

and stability of the wild-type protein. In that vein, the suppressed flexibility differences 

observed in HEWL actually suggest that additional compensating mutations can 

reestablish desired dynamical properties. For example, the similarity between human 

wild-type and HEWL !-subdomain flexibility is very persuasive given how susceptible 

this region appears to be to increased flexibility within the point mutants (Figure 3.6).  

The changes observed in Figure 3.5 indicate that a single mutation is sufficient to 

significantly alter global CC properties, where the accumulative effect of a few mutations 

should be sufficient to go beyond the range of differences we have observed across 

protein families. As successive mutations appear, conservation of function again provides 

the selection bias for proteins to maintain globally similar dynamics while evolving to 

varying stability characteristics. This scenario explains the considerable diversity in 

detailed dynamical changes occurring from a single point mutation, while general 

statistical characteristics remain robust.  

3.5 Conclusion 

In this report we demonstrate that changes in human c-type lysozyme flexibility upon 

mutation are frequent, large, and can be long-ranged. Depending upon metric tracked, 

residue-specific flexibility is changed 42-48% of the time across the dataset. The 

mutation-induced structural perturbations propagate over long distances. In fact, the 

average distance between the mutant and affected residue is 17-20 Å. While direct 
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quantitative comparisons to experiment  are impossible due to different physical response 

Figure 3.6: Mutational affects on flexibility. (a) Lysozyme backbone dynamics are
characterized by a flexibility index (FI). Positive FI values measure flexibility, whereas
negative values measure rigidity. The structure is isostatically (marginally) rigid when FI
= 0. The black solid line indicates the average human wild-type lysozyme profile,
whereas the dashed lines indicate ±1 !. The mutant sites that moderately score beyond
the background are indicated using the same coloring scheme as Figure 3.3. The green
solid line indicates hen egg white lysozyme backbone flexibility (HEWL), which is
generally more similar to the wild-type profile than the human mutants. (b) The
difference between human wild-type lysozyme and HEWL cooperativity correlation is
shown. The coloring scheme is the same as in Figure 3.5. 
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characteristics studied and lack of experimental characterizations on most of the dataset, 

the frequency, scale and complexity that we find in flexibility changes are principally 

consistent with multiple NMR characterizations of mutant dynamics in a variety of 

proteins, including lysozyme. Intriguingly, we have shown that changes in flexibility 

upon single site mutation are generally larger than differences between hen egg white 

lysozyme (HEWL) ortholog to the human wild-type. In particular, most mutants lead to 

increased !-subdomain flexibility; however, !-subdomain flexibility within the human 

and HEWL ortholog remains conserved. Based on a random selection of mutations, this 

result is highly improbable because the human and HEWL lysozymes only have 61% 

sequence identity. As such, we hypothesize that evolutionary compensating mutations in 

HEWL have reestablished desired properties. Going further with these important 

evolutionary observations we will try to elucidate the conservation and variation in 

backbone flexibility and other QSFR properties across protein families in the next chapter. 



CHAPTER 4: VARIATIONS WITHIN CLASS-A !-LACTAMASE QSFR AND 
PHYSIOCHEMICAL PROPERTIES REFLECT EVOLUTIONARY, BUT NOT 

FUNCTIONAL, PATTERNS 
 
 

4.1 Introduction 

The bulk of our knowledge concerning protein family evolution has come from 

comparative analyses of the large body of sequence and structure data produced over the 

last five decades. While this data has been invaluable to our current understanding, 

sequence and static structural descriptions provide only a narrow glimpse into functional 

mechanisms. Consequently, there has been a growing interest to include structural and 

functional details into molecular-evolutionary analyses [130-132]. In our previous 

chapters we discussed stability and flexibility changes in human lysozyme proteins due to 

point mutations. An important observation regarding conservation of backbone flexibility 

between human and HEWL lysozymes clearly indicate evolutionary relationships. But, 

for a complete understanding of these relationships, both conservation and variation must 

be characterized across a protein family. Since conservation is the ultimate evolutionary 

driving force [133], protein orthologs tend to be significantly more similar in function 

than paralogs, and this functional similarity holds true with increasing sequence 

divergence as well [134].  

In this evolutionary characterization study or “breadth analysis”, we select !-

lactamase (BL) enzyme family that provides an excellent mix of preserved and adaptable 

biophysical properties requiring evolutionary/functional relation interpretation. On the 
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functional aspect, BL enzymes have a chemically diverse set of substrates. Moreover, 

many BL enzymes can act on the same substrate despite being from evolutionarily 

distinct out-groups, leading to questions related about the presence (or absence) of 

conserved mechanistic strategies. In this report we seek to determine if conserved 

biophysical properties underlie the functional differences across the BL enzyme family.  

Antibiotic resistance continues to outpace our ability to bring new antibiotic drugs to 

market [135], leading to substantive fears about our continued ability to combat bacterial 

infections that are currently relatively benign. Central to this growing global health 

concern is the bacterial enzyme !-lactamase (BL), which is produced by some bacteria 

[136]. BL confers resistance to penicillin and related antibiotics by hydrolyzing their 

conserved 4-atom !-lactam moiety, thus destroying their antibiotic activity [137]. 

Bacteria of all species depend on a cross-linked peptidoglycan layer, which preserves cell 

shape and rigidity. This peptidoglycan layer is primarily composed of alternating !(1,4)-

linked monosaccharides, specifically N-acetylglucosamine and N-acetylmuramic acid. 

The latter is modified by a pentapeptide that always ends with two D-alanine residues. 

Cross-linking of peptidoglycan units is catalyzed outside the cytoplasmic membrane by 

cell wall transpeptidase enzymes. In this cross-linking process, a peptide bond is formed 

between penultimate D-alanine on one chain and pimelic acid (in Gram-negative) or L-

lysine (in Gram-positive) residue on the other. The terminal D-alanine is cleaved off after 

the linkage is formed with the penultimate residue. !-lactam antibiotics effectively inhibit 

bacterial transpeptidases, consequently they are often called penicillin binding proteins 

(PBP). By inhibiting cell wall synthesis, the bacteria become highly susceptible to cell 

lysis.  
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In response, bacteria have evolved BL enzymes to defend themselves against !-

lactam antibiotics. BL has, in fact, evolved from the functional domain of PBP through 

the acquisition of the new hydrolase activity [138]. The BL enzyme family is broad and is 

characterized by varying degrees of antibiotic resistance activity. In fact, extended 

spectrum !-lactamases (ESBL) also confer resistance to cephalosporins, which had 

previously eluded BL hydrolysis [139, 140]. ESBLs are evolved from traditional BL 

genes, generally through mutations within the active site [141, 142], thus highlighting the 

critical importance of subtle differences within members of the BL family. 

To date, more than 470 BL enzymes have been identified and are typically classified 

into 4 classes (A to D) based on sequence similarity [143]. Bush et al. developed a 

classification scheme for BL proteins based on their functional characteristics [144]. 

Protein structures belonging to classes A, C and D have similar folds and all have a 

mechanism that involves a catalytic serine residue, whereas class B enzymes are zinc 

metalloenzymes that have a distinct fold. In this work we characterize the most clinically 

relevant class-A family. 

Previous works have highlighted how conservation of electrostatic properties can 

mediate conserved function across a protein family, withstanding sequence and structural 

variability during evolutionary processes [145, 146]. In this report, we elucidate the 

variation and conservation of electrostatic and QSFR properties in class A BL family. 

Our dataset includes twelve BL enzyme structures, each originating from different 

bacterial species. Here, we show that – as expected – conservation of various electrostatic 

and dynamical properties is a common notion used by protein families to maintain 

function. However, we also observe a striking number of differences; however, these 
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differences do not correlate with antibiotic resistance patterns. Rather, the biophysical 

variations are explained by evolutionary relationships, suggesting that convergent 

resistance specificities utilize distinct biophysical mechanisms. 

4.3 Results and discussion 

4.3.1 Conservation and variation in residue pKa values 

Due to their clinical significance, serine-based class-A !-lactamase proteins are one 

of the most widely characterized enzyme families. The catalytic mechanism involves 

acylation of residue Ser-70 at the active site. However, identification of the general base 

that activates this serine residue has always been a subject of controversy. As such, two 

distinct residues have been proposed. While one hypothesis suggests that this role is 

played by the conserved Glu-166 [147-150], the other proposes Lys-73 [151-153]. In 

support of the first hypothesis, crystallographic data and MD studies [150] have 

suggested the presence of a conserved bridging water molecule that might act as a relay 

molecule for the transfer of proton between Ser-70 and Glu-166.  Based on other 

experimental studies involving Glu-166 mutation [153, 154], the second hypothesis 

proposes an unsymmetrical mechanism involving two different general bases, Lys-73 and 

Glu-166 that carry out acylation and deacylation respectively. Swaren et. al. [155] have 

argued that substrate binding raises the pKa of Lys-73, which contributes to lowering of 

energy barrier for Ser-70, highlighting the importance of Lys-73 in proton transfer. 

Conversely, kinetic studies of several Glu-166 mutant enzymes [156] have displayed 

decreased rates of acylation and deacylation, emphasizing that Glu-166 is more important. 

Due to this absence of Glu-166 negative charge in mutant proteins, the Lys-73 side chain 

exhibits a lower pKa shift, acting as an alternate general base in hydrolyzing !-lactam 
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ring [157]. Going by either hypothesis, the experimental studies described above have 

convincingly brought out the importance of both Lys-73 and Glu-166. 

The protein sequence contains information about its structure, which in turn dictates 

its function. This highlights the basic principle of protein evolution, i.e., conservation of 

function. Several other residues have also been identified in BL that are catalytically 

important: Ser-70 being the primary catalytic residue; Lys-73, Glu-166, Ser-130, Lys-234 

as secondary catalytic residues. Finally, Asn-136, Arg-164, Asp-179 are other important 

residues that maintain the active site structure (Figure 4.1).!  All of these residues are in 

spatial vicinity of Ser-70 and affect substrate recognition and catalysis. Detailed sequence 

and structural comparison across the class A family has identified similar structural and 

functional elements that span over active site residues mentioned above [158-161]. These 

conserved elements are SXXK, SDN, EXXLN and KTG.  

Figure 4.1: Structure of a Class A !-lactamase enzyme. The active site is located at the
domain interface. The catalytic residue Ser-70 is shown in red. Other catalytic residues
are shown in orange, whereas the "-loop is shown in blue at the top. Residues that
maintain the structural integrity are shown in cyan.  
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Conservation of important electrostatic properties is also a commonly employed 

mechanism that leads to conserved function. Figure 4.2a shows calculated residue pKa 

shifts (shifted away from their model values) across twelve BL proteins. Interestingly, 

Figure 4.2: Electrostatic properties of !-lactamase family. (a) Multiple sequence
alignment of twelve !-lactamases color-coded by shifts in residue pKa values from model
values. Residues colored red express increase acidity, whereas residues colored blue
show increase in basicity. (b) Residues colored green exhibit strong electrostatic
interactions with catalytic residues colored orange (> |±1| kcal/mol). The identified
residues are also highlighted in the !-lactamase structure provided in Figure 4.1c. The "-
loop region is indicated by the purple box. A cartoon representation of secondary
structure is displayed on top of each alignment, while active sites are displayed below. 
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these pKa shifts are mostly conserved, emphasizing a common mechanistic strategy. We 

further investigate the site-site interactions of residues that have strong electrostatic 

interactions (more than 1 kcal/mol) with the secondary catalytic residues Lys-73, Glu-166 

and Lys-234 (Figure 4.3).! Remarkably, all conserved electrostatic sites overlap with the 

four conserved element regions, highlighting the strength of the active site electrostatic 

forces. All pairwise active site interaction energies are listed in Table 4.1.  

More interestingly, all these sites have a conserved pKa shift. Asp-131, Glu-166, Asp-

179 and Asp-233 display strong acidic character, whereas Lys-73 and Lys-234 exhibit 

weak conserved basic behavior. Lys-73, which acts as proton extractor from Ser-70, 

needs to be deprotonated for acylation. As such, there is a cationic electrostatic 

microenvironment surrounding Lys-73, which is created by nearby basic residues Lys-

234 and Arg-244 [153]. When Arg-244 is missing (which is the case in the NMC-A, 

Figure 4.3: Conserved electrostatic networks (cf. Figure 4.6b) are mapped to a BL
structure. Green colored spheres represent !-carbons of residues interacting strongly with
catalytic residues, which are highlighted in orange. 
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MFO and G orthologs), this role is acquired by Arg-164 as shown in our active site 

electrostatic networks plot (Figure 4.2b and 4.3).  

Another important feature of BL proteins is the !-loop (comprising of residues 163-

178) that is involved in substrate recognition. Additionally, the !-loop comprises Glu-

166, which is critical for deacylation activity. Our results reveal a strongly conserved 

acidic behavior within Glu-166, which activates a water molecule in the vicinity to attack 

carbonyl carbon of the acyl-enzyme. This ensures a back-delivery of the abstracted 

proton to Ser-70 "-O atom, leading to enzyme regeneration [150].  

4.3.2 Conservation and variation in electrostatic potential maps 

The above results highlight the importance of conserved local electrostatic properties. 

Conversely, unlike the archetype example of copper, zinc superoxide dismutase [145], 

Figures 4.4 demonstrates that global electrostatic potential maps can be quite varied 

across the whole family. Yet potential maps are conserved within evolutionary outgroups. 

For example, the closely related and clinically relevant orthologs TEM-1, TEM-52, SHV-

1 and SHV-2 have similar electrostatic potential maps.! Similarly, other outgroups 

Table 4.1: Summary of the active site electrostatic network. With the exception of the last
column, values in the upper triangle provide the minimal distance (in Å) between atom
pairs in the two residue side chains, whereas values in the lower triangle quantify the
pairwise electrostatic potential energy (expressed in kcal/mol). Values in the last column
provide the minimal distance (in Å) between atom pairs of the electrostatic network
residues and the catalytic Ser-70. The reported values are the average across the dataset,
and the coefficient of variation is shown in the parentheticals (expressed as a percent). 

 Lys-73 Asp-131 Glu-166 Asp-179 Asp-233 Lys-234 Ser-70 

Lys-73 -- 6.0 (8) 2.8 (10) 10.9 (5) 11.2 (5) 4.1 (8) 3.1 (13) 

Asp-131 -3.4 (18) -- 8.1 (5) 16.7 (3) 14.6 (5) 8.3 (5) 8.7 (7) 

Glu-166 -7.6 (15) 1.7 (12) -- 8.1 (6) 15.0 (4) 7.7 (7) 3.4 (28) 

Asp-179 -1.0 (12) 0.3 (9) 1.7 (10) -- 19.3 (3) 13.9 (5) 10.2 (5) 

Asp-233 -0.9 (10) 0.4 (11) 0.5 (8) 0.3 (11) -- 5.3 (4) 11.3 (8) 

Lys-234 4.0 (13) -1.5 (10) -1.7 (10) -0.6 (14) -3.3 (13) -- 4.7 (10) 
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conserve visual electrostatic features.   

Figure 4.4: Sequence and electrostatic property relationships. The class-A !-lactamase
family phylogeny is shown, which differentiates into 7 subgroups using a constant cut-
level. Outgroups are represented by a unique color for better visualization. The structures
closest to the phylogeny are oriented to highlight the active site region, which is indicated
in green in the TEM-1 ortholog. Structures in the outer ring have been rotated in the y-
direction by approximately 90 degrees, which highlights the "-loop region, also indicated
in green. 
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Differences within the electrostatic potential maps are not unexpected owing to the 

sequence and structural variability within the dataset. Pairwise sequence identities range 

from 27% to 98%, which propagates to !-carbon root mean square differences up to 2.6 

Å. Moreover, the net charge of these twelve enzymes ranges from -6 to +15 (Table 4.2). 

This large structural variation with distinct electrostatic properties raises the question, 

“How does nature maintain the common functionality of enzymes?” Key 

sequence/structure motifs provide an insight into the description of the underlying 

conservation.  

Sequence conserved regions SDN and KTG carry a conserved charge of -1 and +1 

across all twelve BL enzymes. Interestingly, the other two key regions with mutable sites, 

SXXK and EXXLN, have conserved charge of +1 and -2 respectively. EXXLN lies 

within the 16-residue "-loop (XRXEXXLNXXXXXXXX) that maintains an overall 

negative charge (except PC1) ranging from -2 to -4. The conserved electrostatic 

Table 4.2: Electrostatic and H-bond characterization. Coefficient of variation = standard
deviation / mean * 100. 

Enzyme 
SXXK 
Charge 

EXXLN 
Charge 

!-loop 
Charge 

Total 
Charge 

Total HB 
Energy 

Number 
of HB 

Avg. HB 
Energy 

G 1 -2 -2 -3 -1631.3 559 -2.9 

TEM-1 1 -2 -4 -5 -1609.6 513 -3.1 

NMC-A 1 -2 -3 1 -1588.3 520 -3.1 

SME-1 1 -2 -1 7 -1728.4 550 -3.1 

PSE-4 1 -2 -2 -4 -1548.0 529 -2.9 

TEM-52 1 -2 -4 1 -1590.9 557 -2.9 

L2 1 -2 -1 2 -1534.6 528 -2.9 

SHV-2 1 -2 -3 1 -1633.2 539 -3.0 

SHV-1 1 -2 -3 1 -1570.7 532 -3.0 

MFO 1 -2 -2 -6 -1503.0 507 -3.0 

PC1 1 -2 2 15 -1559.3 495 -3.2 

BS3 1 -2 -4 -5 -1669.1 522 -3.2 
Average 1 -2 -2.3 0.4 -1597.2 529.3 -3.0 

CV 0.0% 0.0% 76.1% 1430.7% 3.9% 3.7% 3.8% 
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properties of key regions range from simple local conservation of charge to complex 

evolutionary origins of BLs. Conservation of charges at mutable motifs and !-loop are 

achieved through concerted mutations. When there is a charge changing mutation at these 

important electrostatic regions, there is a charge compensating mutation elsewhere.  

An important observation in electrostatic potential maps is the presence of a 

conserved negative electric field spanning over "-helix H3, H4, H6 and !-loop (Figure 

4.5).!  As discussed above, this !-loop region is rich in electrostatic interactions that 

maintain the structural integrity and hence the enzyme activity. It has been suggested that 

the conservation of charge and electrostatic interactions at the secondary structure level is 

important for electrostatic steering purpose and delicately maintaining the energetic 

stable active site region. Similar conclusions are drawn in [145, 146], where authors have 

highlighted the importance of conservation of electrostatic properties within enzyme 

Figure 4.5: Electrostatic potential values of ±1 kcal/mol are mapped to the protein
surface. Red indicates negative potential, while blue indicates positive potential. The
structure is oriented to display a conserved negative potential region at the interface of
the !-loop and helices H3, H4 and H6. 
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families. Through steering forces, the substrate is directed towards the active site of the 

enzyme by the balanced electric field around the enzyme. Electrostatic potential maps of 

BLs in Figure 4.4 compare electrostatic profiles to derive functional similarities and 

evolutionary relationships in protein family. No evolutionary grouping can be established 

based upon substrate type. This is not surprising because BL proteins are under 

heightened evolutionary pressures from continued antibiotic overuse, thus leading to 

extended spectrum antibiotic resistance. Experiments have suggested that a BL protein 

can expand its substrate spectrum with just one amino acid substitution [162]. In all, the 

above results demonstrate that evolution maintains a subtle balance in 

sequence/structure/function relationships, which are complex and difficult to decipher. 

Nevertheless, the electrostatic analyses bring out the key residues that overcome this 

evolutionary pressure and preserve the overall electrostatic environment of the protein 

family. 

4.3.3 Conservation and variation in flexibility/rigidity 

As discussed in chapters 2 and 3, we have employed minimal Distance Constraint 

Model (mDCM) to establish the utility of comparative stability/flexibility relationship 

analyses. Along these lines, mDCM has been used to compare mesophilic and 

thermophilic RNase H pair [163], periplasmic binding homologs [164] and oxidized 

thioredoxin protein structures [165, 166]. In chapters 2 and 3, we have demonstrated that 

mDCM can predict stability changes (with 4.3% average error) [167] and characterize 

residue dynamical changes upon single site mutations in human lysozymes [168]. The 

results from above analyses support the same theme that backbone flexibility remains 

conserved across protein families, however, the pairwise mechanical couplings that give 
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insight of higher order descriptions of flexibility and rigidity are sensitive to small 

differences.  

Only a small number of class A BL proteins have been studied by NMR and 

molecular dynamics simulation. As such, little is known about variation and conservation 

of dynamical properties across the BL protein family. In this part of the analyses, we 

have tried to quantify the consequences of evolution on BL protein dynamics. Figure 4.6a 

displays the multiple sequence alignment of twelve BL proteins color-coded by backbone 

flexibility index (FI). Residues colored blue are rigid, whereas the ones colored red are 

flexible. Figure 4.7 shows protein structures that follow similar color-coding described 

above. Figure 4.6b quantifies the average FI across the complete dataset displaying 

average FI curve with +/- 1 standard deviation. Positive FI values reflect the amount of 

excess degrees of freedom in flexible regions, and negative values reflect the amount of 

excess constraints in rigid regions. These results highlight two significant points. First, 

the BL enzymes have a rigid backbone, and second, this backbone rigidity is conserved 

across the whole family. Normally, our calculations do not predict structures to be so 

rigid, but this is consistent with NMR S2 order parameter descriptions [169]. The extent 

of rigidity is also visible at the N and C termini of BS3, TEM-1, SME-1 and SHV-2. The 

flexibility/rigidity results of BL proteins presented in Figure 4.6a are rank ordered based 

on increasing average rigidity characteristics. All BLs exhibit extended spectrum 

antibiotic hydrolyzing activity, except for PC1 and G; PC1 being the least rigid. Across 

the alignment, the secondary structure elements appear rigid, whereas intervening loops 

are flexible (except the !-loop). Three flexible regions have been identified as shown in 

Figure 4.6c: flexible region 1 at helix H3, flexible region 2 between H9 and H10 and 
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finally flexible region 3 at H11. While helix H10 is rigid, it is sandwiched between two 

flexible regions, meaning it could also have high mobility because the rigid body can 

“swing” from the flexible hinge in the same way a pendulum swings at a flexible pivot. 

We point this out because molecular dynamic studies have shown increased mobility in 

helix H10 upon substrate binding [170].  

Figure 4.6: The backbone of !-lactamases is rigid and conserved. (a) The flexibility for
each structure is mapped onto the multiple sequence alignment of the class-A !-lactamase
family. The backbone of residues colored red is flexible, whereas blue indicates rigidity.
The spectrum bar illustrates the extent of flexibility and rigidity, which ranges from -1 to
+1. (b) Flexibility index values averaged across the family are shown in in green, whereas
the dashed lines highlight fluctuations (as defined by ±1 standard deviation). (c) Visual
observation of backbone flexibility identifies three main flexibility regions that are
mapped on to the structure. These flexible loops might have an important role in protein
functionality. 
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Mobility within the !-loop is thought to be important for substrate recognition and 

Figure 4.7: The phylogenetic tree along with the corresponding protein structures and
cooperativity correlation plots. Sequence and structure dynamics are evolutionary related
as evident from cooperativity correlation clustering. Structures are color coded by
backbone flexibility index, which illustrates that all BL family members are primarily
rigid with some punctuating flexible loops. Conversely, pairwise allosteric couplings are
overall varied, yet typically conserved within evolutionary outgroups. 
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catalysis. Dynamic simulations performed in the past have suggested that the !-loop is 

rigid with order parameters comparable to other secondary structure elements [171]. The 

authors also illustrate the importance of flexibility at the tip of the !-loop, which is 

important for the opening and closing motion. Interestingly, mDCM results indicate that 

the !-loop is consistently isostatic, that is, marginally rigid (Figure 4.8). As discussed 

above, the !-loop also includes a key catalytic residue Glu-166 that performs the 

deacylation step. Furthermore, deletion of the !-loop makes the protein deacylation 

deficient resulting in the formation of stable acyl-enzyme complexes [172]. The 

marginally rigid !-loop suggests its catalytic importance where rigidity is important for 

reproducibility in substrate binding, yet also allowing for motion that might be 

functionally required. The !-loop region spans over three out of eight catalytic residues. 

Except Asn-136, all catalytic residues exhibit similar isostatic nature even though they 

occur throughout the BL sequence.  

In stark contrast to the global variability observed across the BL dataset, the marginal 

rigidity and electrostatic properties of the active site region remain evolutionary 

conserved. In most cases, small increases in new activities can be directly attributed to 

only a handful of active site mutations that sterically allow new substrates to bind [137]; 

yet active site rigidity is maintained. In fact, this active site rigidity was recently utilized 

to develop new BL inhibitors using a fragment based drug design strategy [173]. These 

results support the view that steric and electrostatic complementarity between active site 

and different antibiotics are primarily responsible for BL resistance activities [174].!  

In addition to backbone flexibility, we also analyzed cooperativity correlation (CC) 

metric that describe pairwise mechanical couplings. As illustrated in Figure 4.7 CC 
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between a pair of residues in their native state can be rigidly correlated (colored blue), 

flexibly correlated (colored red), or uncorrelated (colored white). Taken together, the full 

CC plot can thus be considered a snapshot of all allosteric couplings within structure. In a 

previous investigation of periplasmic binding proteins, the variability within the 

cooperativity correlation was explained by differences within the H-bond network. 

Interestingly, the H-bond network of BL proteins remains conserved (discussed below), 

yet we observe substantial diversity and richness of CC throughout our dataset. In this 

way, the results presented here are much closer to the results with thioredoxin [166], 

Figure 4.8: The backbone flexibility index reveals the nearly conserved isostatic nature of
both (a) the ! loop and (b) the eight active site residues. The red line indicates average
values. Marginal rigidity is important for maintaining the active site structure, while also
allowing for the flexibility needed for substrate recognition and catalysis. 
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CheY [175] and lysozyme [168] that stress the sensitivity of CC, and thus allostery, to 

subtle structural perturbations. To further investigate this susceptibility within BL, we 

again layer the physical descriptions of structure onto the BL phylogeny. As with the 

electrostatic potential maps, CC properties again cluster in a way that reflects local 

evolutionary outgroups (Figure 4.7). For example, TEM-1, TEM-52, SHV-1 and SHV-2 

are largely composed of a single rigid cluster, which is consistent with earlier NMR [169] 

and MD [176] assessments of TEM-1 that indicated it is quite rigid. Carbapenemases 

SME-1 and NMC-A represent a close evolutionary pair, and thus have similar flexibility 

properties. Conversely, the L2 cephalosporinase, which belongs to a distinct outgroup, is 

atypically flexible.  

An attempt was made to quantify electrostatic/rigidity relationships that could explain 

varying antibiotic resistance and selectivity, but was unsuccessful on repeated attempts. 

Nevertheless, these results clearly demonstrate how systematic differences within 

electrostatic properties and cooperativity correlation parallel the overall phylogeny across 

BL enzyme family. Further, it is interesting to note how nature preserves the active site 

dynamics and their electrostatics properties during evolution. Conservation of function 

provides the selection bias for proteins to maintain globally similar dynamics while 

evolving to varying substrate recognition patterns. 

4.3.4 Conservation and variation in hydrogen bond network 

Table 4.2 describes the global H-bond statistics showing the number of H-bonds and 

average total energy across the twelve BL structures. Since the mDCM is in large part 

based on H-bond networks, it is critical to understand how their variation can affect 

dynamical properties.  H-bond statistics show that the number of H-bonds varies from 
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495 to 559, whereas the average H-bond energy ranges from -2.86 to -3.20 kcal/mol. 

From other studies we have noticed that the number of H-bonds can be trivially explained 

by the size of the protein [164]. However, due to their relative constant size, no such 

correlation is observed within this dataset. We also find that the above variations do not 

trivially predict differences within backbone FI and CC. That is, structures with more H-

bonds are not necessarily more rigid than those with fewer. As we have discussed 

previously [166, 168], this observation again stresses that topological considerations get 

lost in global metrics due to nonadditive nature of the mDCM, which has a considerable 

effect on the output.  

We employ a simple but effective approach for comparing H-bond networks by 

plotting H-bond density plot and H-bond contact maps to visualize essential differences 

(Figure 4.9). For better visualization, we have subtracted the mean H-bond from the H-

bond density at per residue level (Figure 4.9a). This strategy helps accentuate important 

H-bonds that might be critical for stability and function. There is a rich density of H-

bonds at strand !1, the "-loop and !9, which are conserved throughout the family. An 

overlapped H-bond contact map of all the twelve BL structures gives us an insight of 

regions with strong H-bond interaction (Figure 4.9b and 4.9c). The site labeled 1 shows 

strong interactions between three regions that extend over the all the key catalytic sites. 

Similarly, experimental studies [172] have highlighted the importance of strong 

interactions between (i.) Lys-73 and Glu-166, (ii.) Arg-164 and Asp-179, and (iii.) Asn-

136 and Glu-166. The authors emphasize that removing any of these interactions can 

make the enzyme catalytically inefficient, while also disturbing its stability. Site 2 on the 

contact map displays the presence of strong interaction at the "-loop region, which are 
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assumed to be important for maintaining functionality. Site 3 illustrates the presence of 

strong interactions between strands !1 and !9, which are assumed to be related to 

structural stability. Furthermore, strong H-bond interactions are observed at secondary 

Figure 4.9: Conservation in H-bond networks. (a) H-bond density is plotted per residue,
which identifies regions rich in H-bond interactions. The "-loop is shown inside purple
box and active site locations are marked as well. (b) Overlapped H-bond contact maps
reveal three important sites important for maintaining the active site structure integrity
and substrate catalysis. (c) The CA-CA atoms of residues at the corresponding sites (1,2
and 3) are depicted by yellow, green and blue lines respectively. For better visualization
only strong H-bond connections have been displayed on the structure 
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structures as expected. The conservation of H-bonds within these secondary structures is 

what leads to rigidity being conserved along the backbone. However, H-bond 

conservation within the contact map analysis does not mean that their energies are 

equivalent and this could lead to variable flexibility within cooperativity correlation. 

Conclusively, the qualitative conservation within secondary structure H-bonds lead to 

conservation of backbone rigidity across our dataset of twelve BL proteins. 

4.2 Methods 

4.2.1 Dataset preparation 

In this study, twelve different class A BL structures are investigated to provide a large 

evolutionary cross-section for detailed analysis [178-189], while maintaining a feasible 

number for data and visual assessment. All structures have been solved to high resolution 

and R-values are lesser than or equal to 0.22. As provided in Table 4.3, three out of 

twelve structures exhibit penicillinase activity while the rest belong to one of the 

Table 4.3: Structural and catalytic characterization of the dataset. Functional class is
defined by Bush et al. [144, 177]. 

Organism 
Enzyme 
Name 

PDBID 
Res 
(Å) 

R-
value 

Function 
Class 

Extended 
spectrum? 

Substrate 

S. albus G 1BSG 1.9 0.15 2a No Penicillins 

E. coli TEM-1 1BTL 1.8 0.16 2b Yes Penicillins & early cephalosporins 

E. cloacae NMC-A 1BUE 1.6 0.19 2f Yes Carbapenems 

S. marcescens SME-1 1DY6 2.1 0.18 2f Yes Carbapenems 

P. aeruginosa PSE-4 1G68 2.0 0.17 2c No Carbenicillin 

K. pneumonia TEM-52 1HTZ 2.4 0.22 2be Yes 
Extended-spectrum cephalosporins 

& monobactams 

S. maltophilia L2 1N4O 1.9 0.16 2e Yes Extended-spectrum cephalosporins 

K. pneumoniae SHV-2 1N9B 0.9 0.13 2be Yes 
Extended-spectrum cephalosporins 

& monobactams 

K. pneumoniae SHV-1 1SHV 2.0 0.18 2b Yes Penicillins & early cephalosporins 

M. foruitum MFO 2CC1 2.1 0.17 2be Yes 
Extended-spectrum cephalosporins 

& monobactams 

S. aureus PC1 3BLM 2.0 0.16 2a No Penicillins 

B. licheniformis BS3 4BLM 2.0 0.16 2b Yes Penicillins & early cephalosporins 
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following classes: broad-spectrum, extended-spectrum, carbapenamase, cephalosporinase 

or carbenicillinase. Moreover, all enzymes are inhibited by clavulanic acid and their 

structures are remarkably similar; the pairwise !-carbon root mean square deviation 

(RMSD) ranges from 0.73 to 2.57 Å (Figure 4.10). 

4.2.2 Model parameterization 

As previously discussed, the mDCM is parameterized by finding values of (usol, vnat, 

dnat) that best reproduces the experimental Cp data using simulated annealing method 

(Figure 4.11). We parameterize the model using the Cp curve from B. cereus [190] and 

the evolutionarily closest structure BS3. Focusing on our group of twelve class A BL 

proteins with well-conserved structures of the same function, we have transferred the 

three adjustable parameters obtained from above to all the other members. With this fixed 

parameterization, we have confirmed that mDCM correctly predicts all BL orthologs to 

have a single peak in Cp and a two state folding/unfolding transition in free energy. Apart 

from these twelve BLs, an attempt was made to calculate QSFR quantities of three other 

proteins, but this was unsuccessful and hence not included in the analysis.  

We have consistently demonstrated that while thermodynamic quantities (i.e., Tm) are 

somewhat sensitive to parameterization and input structure resolution, the mechanical FI 

and CC quantities are mostly robust to parameter differences. Nevertheless, a single 

parameter set across the dataset, guarantees that QSFR differences only arise from 

structural differences. Also, results from [163, 165-167] have demonstrated that QSFR 

properties are insensitive to parameterization, and have minimal influence on CC and FI 

values. As such, the conclusions regarding changes in QSFR properties are robust. 

4.2.3 Phylogeny 
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For expanding BL sequential coverage, we collect approximately 1100 sequences 

after searching through the nonredundant protein database using BLASTP [191]. The 

protein sequence culling algorithm PISCES [192] is employed to filter sequences at 98% 

mutual sequence identity cutoff. This reduced dataset, which also includes twelve class A 

BL protein sequences, is further aligned by MUSCLE [193] followed by phylogenetic 

Figure 4.10: Dataset similarity. All-to-all percent sequence identity (blue) and structural
RMSD (red, in units of Å) are provided to highlight (dis)similarity.. 

Figure 4.11: The best-fit heat capacity curve by mDCM is shown with usol = -2.61, vnat = -
0.32 and dnat = 1.61, which are within normal ranges established by our previous studies.
These three fitting parameters are required to calculate free energy of the protein
accurately using Eq. 1. 
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tree construction using maximum-likelihood, meaning the phylogenetic tree shown in 

Figures 4.4 and 4.7 is purely derived from sequence information. The twelve BL protein 

sequences span across the evolutionary tree, which provide a robust structural coverage 

as well. However, we arrange these twelve BL sequences independent of the larger set, 

using both sequence and structural information by Protein Align tool in MOE [194], to 

achieve better visual comparison across our set. 

4.2.4 Continuum electrostatic calculation 

Additions of hydrogen atoms, residue pKa calculations and intramolecular 

electrostatic interactions have been performed on energy minimized protein structures 

using H++ web server [195]. Hydrogen atoms were added and their positions optimized 

(MD based) after calculating ionization states of the titratable residues using Poisson-

Boltzmann continuum electrostatics.  The server uses MEAD suite of programs, and 

detailed information of the algorithm can be found here [195].  The salinity and pH 

conditions are kept consistent with the conditions used in the original DSC experiment, 

i.e., 0.06M salt concentrations and pH 7.0; and a solvent dielectric constant of 80 and an 

interior protein dielectric of 6. Residue acidity and basicity changes (Figure 4.4a) are 

calculated with respect to model pKa values from [196]. The .pqr file generated from 

H++ containing charge and radii information is fed into APBS [197] to generate 

electrostatic potential data. The protein is centered on a 65 x 97 x 65 grid. The 

electrostatic potential maps in Figures 4.4 and 4.5 are displayed at +/- 1 kcal/mol. 

4.2.5 Hydrogen bond network 

H-bond density for a residue i is defined as: 
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where, !"#$%
!!!

!"#$%&  is the hydrogen bond energy between residue i and j; and 

!"#$%!!!
!"#$% is the number of hydrogen bonds formed between residue i and j. The 

summation of energies divided by total number of hydrogen bonds provides hydrogen 

bond density at per residue level (Figure 4.9a). The hydrogen bond network contact map, 

shown in Figure 4.9b, is an overlapped network of all twelve BL proteins. The residue 

positions on the network follow multiple sequence alignment as described above. As such, 

identical donor and acceptor residue pair positions across the dataset are achieved for 

easy visual network assessment of hydrogen bond energies. 

4.4 Conclusion 

The BL enzyme family represents an interesting case study in protein family 

evolution. While conservation of function is the primary driving force in the evolution of 

most protein families, rampant antibiotic overuse has introduced new pressures leading to 

new resistance activities. The bulk of these new activities have been trivially explained 

by steric changes within the BL active site [198]; however, we wanted to determine if 

there were additional physical variations that underlie the various resistance activities. 

Our results indicate that conserved active site electrostatic networks and a fairly rigid 

backbone structure are critical to BL function (Table 4.4). Going further, we were unable 

to associate conserved differences with resistance activities. Rather, variations were 

conserved within evolutionary outgroups emphasize sequence/structure relationships. For 

example, PC1 and G are both characterized as penicillinases, but their global electrostatic 

and flexibility properties are quite different due to divergence. As such, it follows that 

this results underscores that multiple structure/function mechanisms can converge on the 

same function. Conversely, MFO and G are from the same outgroup and thus have 
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similar physical properties, yet they have vastly different activities (MFO has extended 

spectrum activities and can be classified as a cephalosporinase that can also hydrolyze 

monobactams). In summary, our results uncover common physical origins that underlie 

the conservation of function and several physical properties that expand our 

understanding of the molecular basis of evolution with the class-A BL enzyme family. 

Furthermore, the inability of these physical differences to explain antibiotic resistance 

activities gives further support to the hypothesis that new activities are trivially described 

by active site shape and sterics. 

It is seen that the above familial analysis is limited to just twelve BL protein 

structures that effectively explain evolutionary relationships. Filling structural gaps using 

sequence information from phylogenetic tree could bring out other important descriptions 

across protein families and superfamilies. This brings us to the following question: Is it 

possible to calculate QSFR properties of proteins that have no x-ray structures and just 

sequences? Chapter 5 elaborates this development further. 

Table 4.4: Summary of conserved of variable physical properties across the class-A !-
lactamase family 

 Conserved Properties Variable properties 

Electrostatics 

Per residue pKa values 

Electrostatic potential maps 
(yet conserved within outgroups) 

Active site electrostatic network 

Anionic patch on electrostatic 
potential maps 

QSFR 
Backbone flexibility properties Cooperativity correlation  

(yet conserved within outgroups) "-loop is isostatic 

H-bond network Conserved at per residue level  



CHAPTER 5: TOWARDS COMPREHENSIVE ANALYSIS OF PROTEIN FAMILY 

QUANTITATIVE STABILITY/FLEXIBILITY RELATIONSHIPS 

 

 

5.1 Introduction 

For a complete comparative biophysical characterization across protein families and 

superfamilies, the foremost limitation is the ability to get good x-ray structures. In the 

past we have performed comparative QSFR analyses for bacterial periplasmic binding 

homologs [199], oxidized thioredoxin [200] and !-lactamase protein families and the 

maximum number of proteins assessed for a familial analysis was 12. A wider breadth 

analysis should include hundreds of proteins for a complete comparative QSFR analysis. 

Unfortunately, there are only 78 families out of 3900 SCOP families that have 25 or more 

distinct orthologs with experimentally solved structures. A large-scale QSFR analysis 

methods on the scale of dozens to 100+ structures would require efforts to fill-in these 

structure gaps using homology modeling. From our previous analysis it is known that 

mDCM can detect subtle variations in QSFR properties even due to single point 

mutations [201] [202]. Hence, the key to reproduce accurate QSFR predictions will solely 

depend on good homology models. In this study we have benchmarked QSFR properties 

of 65 human lysozyme homology models against 7 different x-ray structures of human c-

type lysozymes. The idea here is to select good homology models that can reproduce 

QSFR properties of x-ray structures accurately. If successful, this study would be a 

significant advancement in building selection criteria for choosing better models for 

precise QSFR predictions. Once proved, this methodology would help us increase the 
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structural coverage for our comprehensive breadth analysis across protein families and 

superfamilies.  

5.2 Methods 

5.2.1 Preparation of homology models 

In this benchmark study, 65 human lysozyme homology models are constructed from 

13 different templates, i.e., 5 models from each template using MODELLER [203] using 

default settings. To ensure proper ionization, the H++ server [204] is used to add 

hydrogen atoms to the structures as expected at pH 2.7 based on calculated pKa values. 

Other structural details are provided in Table 5.1.  

These 13 templates, from different species, have a wide range of sequence identity 

with human lysozyme varying from 37.6% to 77.7%. To benchmark each homology 

model, we also construct QSFR profiles from 7 existing human lysozyme x-ray structures. 

For each QSFR profile we establish a background profile range using ±1 standard 

deviation from x-ray structures’ average QSFR profiles at each reside position. Details of 

Table 5.1: Orthologs used for constructing human lysozyme protein structure. 5 models

are built from each template.  

Organism Template PDB ID Resolution (Å) R-value 
Turkey 135L 1.30 0.189 

Northern bobwhite 1DKJ 2.00 0.177 

Domestic silkworm 1GD6 2.50 0.181 

Chicken 1HEL 1.70 0.152 

Helmeted guineafowl 1HHL 1.90 0.170 

Tasar silkworm 1IIZ 2.40 0.231 

House mouse 1IVM - - 

Ring-necked pheasant 1JHL 2.40 0.214 

Echidna 1JUG 1.90 0.170 

Rainbow trout 1LMN 1.80 0.174 

Dog 1QQY 1.85 0.178 

Horse 2EQL 2.50 0.234 

Japanese quail 2IHL 1.40 0.165 
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different QSFR metrics used in this analysis are assessed further. 

5.2.2 Model parameterization 

The mDCM is parameterized by finding the best set of {usol, vnat, dnat} that best 

reproduces the heat capacity curve using simulated annealing [205, 206]. Each model and 

x-ray structure has been fit to the same Cp curve obtained from the DSC experiment 

performed by Takano et. al.[207]. Best-fit curves for models from rainbow trout are 

displayed in Figure 5.1.!Other model structures exhibit similar heat capacity fit trends 

although there are differences in parameters. Interestingly, the least squares fitting error is 

not correlated to homology model accuracy, highlighting the importance of other 

structural features that contribute towards prediction of accurate thermodynamic and 

mechanical features. Initially, this study included 80 homology models. However, 15 

homology models were not included in the analysis due to unsuccessful model 

parameterization. Discussions regarding changes in thermodynamical and mechanical 

quantities arising from parameter differences are discussed later. 

Figure 5.1:  Five homology models constructed from rainbow trout template are fit to

human lysozyme heat capacity curve. Curve represented by red-dots is obtained using

DSC experiments, whereas the five dashed-blue curves represent fits. 
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5.3 Good homology models 

The definition of a good homology model is somewhat arbitrary and difficult to 

describe. Moreover, there are many scoring functions that can assess the quality of 

homology models based on statistical potentials and physics-based energy calculations 

[208, 209]. The errors resulting from poor quality models are the most problematic aspect 

of this work. For any comprehensive QSFR analysis in the future, we would require 

models that are of satisfactory quality, which can accurately predict the QSFR quantities 

for proteins with unknown x-ray structures. In this benchmark study, along with 65 

lysozyme model structures, our dataset also includes 7 original x-ray human wild-type 

lysozyme structures. As discussed in [202], we ask ourselves a similar question: What 

constitutes QSFR metric deviation from background profile and what does not? To 

address this point for benchmarking QSFR prediction, we have used the same 

methodology for establishing the QSFR metric profile as defined in chapter 3. Any model 

QSFR metric within ±1 standard deviation (i.e., ±1!) of x-ray structures’ QSFR baseline 

is considered to be a “good prediction”, at a given residue position. A prediction value 

falling beyond ±1! defines “poor prediction” for that QSFR metric. 

Figure 5.2 compares percentage of residues, for each model, within ±1! of backbone 

flexibility index profile of x-ray structures with various sequence and structure 

similarities between models and x-ray structures. These comparison studies clearly 

suggest that a close agreement between models and x-ray structures results in a better 

flexibility index prediction. On the other hand, a careful observation highlights the 

presence of many models that are false-positives and false-negatives. Considering a cut-

off of percent residues for a good prediction at 60%, there are 8 models that result in a 
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true prediction. However, comparing hydrogen-bond similarity, there are as many as 

twice this number that lie within the false-positive region, hence posing a challenge in 

development of a threshold for model selection. These varying results are not unexpected 

since subtle changes in the designed model structures can cause drastic differences in 

Figure 5.2:  Comparison of flexibility index accuracy prediction for all 65 homology

models against (a) pairwise sequence identity, (b) hydrogen bond network similarity, (c)

TM-scores and (d) structure RMSD with original x-ray crystal structures averaged across

all 7. Models in close agreement with x-ray structures reproduce flexibility index with

higher accuracy. However, many false-negatives and false-positives are present as well.

The blue data points represent NMR structures. 82% is the best-expected score possible

comparing original x-ray structure with average. 
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hydrogen bond interactions.!  

Structure comparisons using RMSD show similar trends. Moreover, structure 

deviations in the loop regions can undermine better QSFR predictions (Figure 5.2c and 

5.2d). Hence, another structure comparison method called the TM-score was used which 

is less sensitive in the loop regions [210]. However, these scores highlight similar trends 

as well.  

A good model may not necessarily represent the true physiochemical property of the 

original structure resulting in many false-negative model structures. Comparison of 

pairwise sequence identity (between models and structures) highlights the importance of 

“twilight zone” in homology modeling as well. Results show that models designed from 

templates having high sequence identity result in better FI prediction. The best human 

model prediction arises from rainbow trout (1LMN) resulting in highest QSFR prediction 

accuracy of 67%. However, the overall accuracy of 5 models from the same template has 

a wide range of prediction accuracy reaching as low as 42%. Another surprising 

observation is a poor FI prediction by models designed from house mouse (1IVM), the 

only NMR structure template in our dataset (shown by blue dots in Figures 5.2 and 5.3). 

The sequence identity of this template is 78% whereas the average prediction accuracy is 

approximately 30%. 

The above preliminary comparisons of models with original x-ray structures suggest 

that a comprehensive QSFR analysis is definitely possible, provided we filter true-

positive homology models to improve prediction correctness by boosting statistics. The 

upper boundary of the plots (corresponding to 82%) in Figure 5.2 defines the best result 

obtained by comparing each of the original x-ray structures to the average x-ray 
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structures’ backbone profile. 

Also, the results described in Figure 5.2 are benchmarked against just a single QSFR 

metric, i.e. flexibility index, undermining other QSFR metrics that can also help in 

enhancing prediction statistics, if considered. Furthermore, comparison of H-bond 

network and calculation of TM-scores and RMSDs require original x-ray structures. 

Except sequence identity, none of these comparison scores would be available for 

establishing thresholds due to lack of original x-ray crystal structure(s). To overcome this 

problem, we can use model quality assessment score called QMEAN [211, 212], which is 

one of the best methods for model quality assessment [213]. This scoring quantity 

considers secondary structure interaction potential, degree of solvent exposure and other 

structural quantities for structure assessment.  

Figure 5.3b compares QMEAN scores with FI correlation, which provides a different 

Figure 5.3:  Comparison of (a) FI percent accuracy prediction and (b) FI correlation of 65

homology models against original x-ray crystal structures averaged across all 7 with their

QMEAN scores. Models with high quality may not necessarily result in higher FI

accuracy. Blue data points represent NMR structures. 82% within ±1! and a FI

correlation of 0.96 are the best expected scores possible comparing original x-ray

structure with 7 original x-ray structures’ average FI metric. The green dashed line

represents an arbitrary QMEAN threshold value at 0.7. 
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benchmarking quantity replacing percent within ±1!. These two datasets are qualitatively 

the same, the main difference being a relative upward shift in the areas of interest. More 

specifically, while figure 5.3a shows results between ~ 20% and 80%, the F1 correlation 

values (figure 5.3b) range from ~ 0.55 to 0.95. Additionally, the Spearman Rank 

correlation between these two quantities is 0.61 (p-value = 8.32e-8), suggesting some 

degree of association. This suggests that any of these methods can be convincingly used 

for benchmarking, however, in this study we have chosen to benchmark using ±1! 

approach. The green vertical lines in figure 5.3 provide an arbitrary demarcation of model 

structures using QMEAN scores that should have similar backbone FI properties with the 

original structures. Surprisingly, this is not the case. As evident from the plot, the best 

homology model structure is not able to reproduce accurate QSFR calculations. 

Furthermore, initial analyses indicate that the highest possible FI accurate prediction of 

60% does not come from the best QMEAN model. Based on our data observation we 

focus on the following question: Is it possible to improve accuracy number by enriching 

our dataset with additional good homology models? If yes, then to what extent this 

accuracy is achievable sans over prediction? To answer these questions, we have 

employed two different strategies for selecting good homology models. In the first case, 

our selection criteria is simply based upon QMEAN scores, where we select 5 top scoring 

models to calculate average QSFR properties. QMEAN threshold is not recommended 

here, as these scores are protein size dependent. In the second case, we employ clustering 

technique for filtering models that share common QSFR properties. The key assumption 

of this strategy is that models with similar properties would tend to cluster together. 

Along with QSFR quantities, structure quality, sequence similarity and other 
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thermodynamic information is also employed to build a better prediction model. We also 

select the best QMEAN scoring model to benchmark against original x-ray structures’ 

average QSFR metrics. 

5.4 Results and discussion 

5.4.1 Expectation Maximization clustering 

Expectation Maximization (EM) is a statistical algorithm based on iterative method 

for finding the maximum likelihood estimates of parameters of unobserved latent variable 

dependent statistical models. Frequently used in clustering, the EM method assigns a 

probability distribution to every data instance, which defines the probability of it 

belonging to each of the clusters. The algorithm can create its own clusters and does not 

require a priori information regarding the expected number of clusters. To find the 

optimum number of clusters the EM algorithm cross validates and calculates the average 

log-likelihood. Starting with one cluster, the numbers of clusters are increased if the 

average log-likelihood continuously increases at each step. 

To employ EM in our clustering analysis, we collect sequence, structure, and 

thermodynamic and mechanical quantities for each of the 65 human model lysozymes. 

The initial step includes calculating percent sequence identity between template and 

human sequence, QMEAN structure quality score, free energy barrier height of folding 

and unfolding, and flexibility order parameters at native, transition and unfolded states of 

the models for EM clustering. The mean and standard deviation of the resulting three 

clusters is summarized in Table 5.2. 

 Cluster-2 models, with best average QMEAN score and least standard deviation 

(0.68±0.03), are selected for our next round of clustering. Clustering provides an indirect 
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threshold boundary for model structures’ quality assessment scores. It should be noticed 

that it is difficult to select a cluster based on thermodynamic information because in an 

actual model assortment experiment we will have no a priori thermodynamic information 

of the missing x-ray structure to benchmark upon. Figure 5.4 plots QMEAN scores 

versus !nat, where the points are color coded by clusters. Selecting cluster-2 outcomes in 

23 models that have closely related thermodynamic properties with less standard 

deviation on all quantities (Table 5.2).  

Our next step is to calculate an all-to-all QSFR metric correlations and all-to-all 

structure deviations for each model pair.! 23 selected models result in 253 possible pairs, 

and considering each pair, sixteen different QSFR metric correlations are calculated. This 

data will be fed for another round of clustering where pairs with similar QSFR properties 

are expected to cluster together. Since QSFR quantities are structure dependent, we also 

feed-in model structures’ RMSDs and TM-scores [210] for EM clustering. Figure 5.5 

plots TM-score versus probability to rotate. Cluster-9, which has the highest correlated 

TM-score pairs and least paired RMSD is chosen. Finally, the paired list in the selected 

Table 5.2: Clustering results from structure and thermodynamic quantities. The values

represent average ± standard deviation of data points for the given quantity belonging to a

defined cluster. Cluster-2 with best average QMEAN score with least standard deviation

is selected.  

Cluster-1 Cluster-2 Cluster-3 

Folding free energy 2.29±0.84 3.57±1.23 2.79±1.05 

Unfolding free energy 1.84±0.73 3.12±1.09 2.33±0.96 

!nat 0.75±0.11 0.92±0.14 0.76±0.13 

!trans 1.06±0.15 1.31±0.20 1.10±0.21 

!dis 1.70±0.22 2.07±0.16 1.70±0.30 

QMEAN scores 0.67±0.04 0.68±0.03 0.54±0.04 

Sequence identity 0.60±0.09 0.58±0.05 0.39±0.01 
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cluster is collapsed into a single list of 18 models. These 18 models constitute our third 

set for calculating average QSFR properties to benchmark against x-ray structures’ QSFR 

Figure 5.5: Results obtained from second round of EM clustering using structural and

mechanical quantities. Clusters are represented by different colors. Model pairs clustered

in red (cluster-9) are the final filtered models. 

Figure 5.4: Clustering using structural and thermodynamic quantities. Clusters are

represented by different colors. Models clustered in red (cluster-2) are selected for further

analyses. 
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properties.! Figure 5.6 reviews clustering workflow described above.  

5.4.2 Improvement in QSFR metric prediction 

To summarize up to this point; the first set consists of a single best QMEAN model, 

whereas the second set includes 5 best scoring QMEAN models. The third set is 

constructed from 18 models using EM clustering techniques. We now compare these 3 

model sets and assess them by comparing against our original x-ray structures’ backbone 

QSFR profiles. Any average quantity, per residue, resulting from a model set embraced 

within ±1! of the x-ray average is counted as a good prediction.!! 

Before benchmarking the results, here is a brief description of the additional protein 

backbone QSFR quantities used in clustering and model assessment that are being 

Figure 5.6: Expectation maximization clustering workflow to filter best homology

models. 
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introduced for the first time. Susceptibility correlation describes the susceptibility for a 

particular residue to oscillate between a rigid and a flexible region. Regions that have 

higher susceptibility correlation values tend to have functional importance highlighting 

those residues that maintain a native/rigid structure and provide enough sloppiness to 

carry protein function. QSFR metrics degree of cooperative flexibility and degree of 

cooperative stress define local flexibility and rigidity per torsion taking into account the 

total number of correlated independent degrees of freedom and redundant constraints, 

respectively. Density of independent degrees of freedom and its probabilities signify 

regions that can exhibit flexible motion, whereas residues with density of redundant 

constraints or probability of stress exhibit rigid nature with less motion. Another QSFR 

metric probability to rotate quantifies local flexibility similar to flexibility index. Rotation 

of dihedral angles can be quantified with this metric.  

Figure 5.7 gives the statistics of good prediction for three different model sets across 11 

Figure 5.7: Comparison of protein backbone QSFR metric accuracy levels for different

model sets. Average QSFR quantities obtained from EM 18 best filtered models have

higher agreement with x-ray structures’ QSFR quantities as compared to QMEAN best

and 5-best models. 
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different backbone QSFR metrics. The single-best model set fails to give an accurate 

prediction for almost all the metrics. However, selecting 5-best QMEAN model improves 

the prediction accuracy.!  

Interestingly, QSFR metrics susceptibility correlation and degree of cooperative stress 

have high prediction accuracy even from a single best model. However, prediction of 

density of independent degrees of freedom resulting from single model set has the lowest 

accuracy of 11.5%. Lowest prediction value from 5-best QMEAN model set is 57.7% for 

mutual rigidity inverse. Results from other QSFR metrics also suggest that single best 

model and 5-best models fail to provide desired accuracy levels of at least 82% in FI. 

Prediction from EM 18 best filtered models significantly improves the accuracy results. 

Eight out of eleven QSFR metrics result in 80% or higher accuracy. These results 

indicate that clustering can enrich the homology model set with good models for accurate 

QSFR metric predictions. Average calculation of FI metric results in 78% accuracy, 

which is very close to our desired 82% precision (green horizontal line in figure 5.2). 

Residue-residue coupled QSFR metrics, cooperativity in torsion correlation index 

(CCT), cooperativity in flexibility index correlation (CC), cooperativity in independent 

DOF correlation (CCIDF), cooperativity in probability to rotate (CCPR) and cooperativity 

in susceptibility correlation (CCS) show similar trends. CC and CCPR provide snapshots 

of intramolecular couplings within the protein structure. CCT highlight secondary 

structure regions that have a dense network of locked-down torsion correlated residue 

pairs, while CCIDF highlight regions that exhibit some degree of motion, especially in the 

loop regions. CCS correlates residue susceptibility or mechanical fluctuations within 

mechanically connected regions of the network. All the above cooperativity-coupling 
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maps provide insight on allostery and functionally important regions of proteins. Figure 

5.8 provides qualitative comparison between x-ray structure average QSFR metric and 

Figure 5.8: Comparison of residue-residue coupled QSFR metrics. A good qualitative

resemblance is observed between EM 18-best models and original x-ray structures’

average QSFR cooperativity metrics. 
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other homology model sets. These qualitative analyses suggest that EM filtered set has a 

very close agreement with x-ray structures. The homology model set derived from 

QMEAN fails to provide expected results. Similar benchmark quantification of CC plots 

is implemented using ±1!.!  Calculation of cooperativity in probability to rotate metric 

using EM models set provide 92% accuracy, whereas QMEAN performs poorly at 44% 

(figure 5.9). All CC metric calculations using EM model set provide at least 70% 

accuracy, whereas QMEAN 5 best models go as low as 26%. A scatter plot of CC metric 

values provides insight on correlation distribution (figure 5.10). Comparing QMEAN best 

5 CC plot with original x-ray structure CC results in a wider distribution, while EM best 

18 result in a narrow distribution underlining better CC calculation.! 

In this model exploration we are not suggesting that QMEAN model selection scoring 

system produces poor QSFR predictions. But, QMEAN coupled with thermodynamic and 

Figure 5.9: Comparison of residue-residue coupled QSFR metric accuracy levels for

different model sets. Average QSFR quantities obtained from EM 18 best filtered models

have better precision levels. 
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mechanical quantities can boost statistics significantly resulting in better-estimated QSFR 

prediction. Since residue-residue coupled QSFR metrics are very sensitive, a robust 

Figure 5.10: (a)(c) Residue-residue pair CC and (b)(d) CCIDF values are compared against

original x-ray structures. EM best 18 filtered models can reproduce highly accurate CC

and CCIDF properties of original x-ray structures as compared to QMEAN’s best 5

models. QMEAN models’ CC comparison with original x-ray structures exhibits wider

data distribution, whereas EM models have a narrow distribution. Other metrics show

similar trends. The black line shown is the best-fit regression across data points. The

histograms are constructed by binning data points with equal intervals on y-axis on either

side of the regression line. The interval size for binning is consistent across both, CC and

CCIDF plots, respectively. 
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quantitative desired accuracy level achievement is very difficult. Yet, EM filtering does a 

very good job of filtering models, omitting the dependency of selecting models based 

purely on QMEAN information.  

The above analyses do not attempt to establish thresholds.!  Instead, we have 

demonstrated that accurate filtering methods can provide precise QSFR estimates from 

models. The enriched data resulting from mDCM definitely provides opportunities to 

design other robust models. Nonetheless, this is the first step that delivers a confidence 

for achieving the goal of accurate QSFR prediction for unknown protein structures using 

homology-modeling technique.  

5.5 Conclusion 

Current results demonstrate that “good” homology models are able to sufficiently 

reproduce the x-ray QSFR data. Establishing clustering methodology on model accuracy 

based on their ability to reproduce QSFR metrics of x-ray structure will pave the way for 

comparative QSFR analysis. Expanding our analysis to over 100+ homolog structures 

across a family can dwarf all previous comparative exploration of protein flexibility and 

stability. This clearly shows that homology modeling represents a promising approach to 

drastically expand the “breadth” of our comparative QSFR analysis, which would help us 

better understand protein evolutionary relationships within families and superfamilies. 



CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
This dissertation is an extensive investigation of protein’s “Depth” and “Breadth” 

analysis. It provides a comprehensive assessment of variation and conservation of 

stability and flexibility characteristics within protein families due to mutations and 

evolutionary divergence. Furthermore, it provides a complete description of a protein 

accounting for its folding, stability, flexibility and function using Distance Constraint 

Model (DCM). Table 6.1 summarizes important results from each chapter. 

Undertaking “depth” analysis has allowed us to better understand proteins’ stability 

Table 6.1: Chapter Conclusions 

C
h

a
p

te
r
 2

 DCM is parameterized for predicting stability of 14 point mutated c-type human lysozymes 

Parameter transferability predicts Tm’s with more than 95% accuracy 

Correlation between changes in calculated and experimental Tm is 0.64 

Additional parameterization is not associated with accuracy 

C
h

a
p

te
r
 3

 DCM can detect subtle changes in protein flexibility due to point mutations 

Changes in flexibility upon mutation are common, large and long ranged 

!-subdomain exhibits large increase in flexibility, consistent with experimental observations 

Global dynamics of human and hen egg-white lysozyme are similar 

C
h

a
p

te
r
 4

 Residue pKa shifts and active site electrostatic network is conserved across 12 !-lactamase proteins 

Electrostatic potential maps and CC properties vary, yet conserved within phylogenetic outgroups 

Protein backbone FI and H-bond network is conserved across family 

"-loop is marginally rigid highlighting its functional importance 

C
h

a
p

te
r
 5

 Comprehensive QSFR analysis across protein families is possible using homology models 

QMEAN scoring is viable but clustering is more promising to predict precise QSFR properties 

Models are EM clustered using structural, thermodynamical and mechanical properties 

Average QSFR properties of good homology models and x-ray structures are in good agreement 
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and flexibility changes due to single-site mutations. Under protein stability analysis, the 

parameters found from best fits to heat capacity curves for one or more c-type human 

lysozyme structures have subsequently been used to predict the heat capacity on the 

remaining. We have simulated a typical experimental situation, where prediction of 

relative stabilities in an untested mutated structure was based on known results as they 

accumulated. From the statistical significance of these simulations, we have established 

that the mDCM is a viable predictor for relative stability of protein mutants. Remarkably, 

using parameters from any single fitting yields an average percent error of 4.3%. Across 

the dataset, the mDCM reproduces experimental trends sufficiently well (R = 0.64) to be 

of practical value to experimentalists when making decisions about which mutations to 

invest time and funds for characterization. Assessing dynamical properties, our results 

suggest that small structural perturbations introduced by single point mutations have a 

frequent and pronounced affect on lysozyme flexibility that can extend over long 

distances. Specifically, an appreciable change occurs in backbone flexibility for 48% of 

the residues, and a change in cooperativity occurs in 42% of residue pairs. The average 

distance from mutation to a site with a change in flexibility is 17-20 Å. Interestingly, the 

frequency and scale of the changes within single point mutant structures are generally 

larger than those observed in the hen egg white lysozyme (HEWL) ortholog, which 

shares 61% sequence identity with human lysozyme. For example, point mutations often 

lead to substantial flexibility increases within the !-subdomain, which is consistent with 

experimental results indicating that it is the nucleation site for amyloid formation. 

However, !-subdomain flexibility within the human and HEWL orthologs is more similar 

despite the lowered sequence identity. These results suggest that compensating mutations 
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in HEWL reestablish desired properties. 

On the other hand, the “breadth” analysis provides an insight on quantitative 

stability/flexibility relationship and other biophysical characterization of proteins within a 

family. Here, we have assessed systematic variations within physiochemical properties 

that underlie the different activities across twelve different class-A !-lactamases. Global 

conservation in per residue pKa values, active-site electrostatic networks, and protein 

backbone rigidity suggests that common mechanistic strategies are employed across the 

family. Moreover, the "-loop, which is important for substrate recognition and catalysis, 

is consistently established to be marginally rigid. On the other hand, systematic 

differences within global electrostatic properties and pairwise residue-to-residue 

couplings are observed. Interestingly, these differences parallel evolutionary relationships, 

but do not reflect functional activities. These results reveal general insight into how 

physiochemical properties diverge during the course of enzyme family evolution, while 

also emphasizing that functional phenotypes can occur via multiple mechanistic 

approaches. Going further under “breadth” analysis, protocols for clustering/filtering of 

homology models based on their thermodynamic and mechanical quantities have also 

been developed, paving the way for comprehensive QSFR study of hundreds of proteins. 

Initial results indicate that homology model structures with similar structure, 

thermodynamic and dynamic properties yield accurate clustering using expectation 

maximization algorithm. Average QSFR quantities calculated from good homology 

models successfully reproduced x-ray structures’ average QSFR properties. This is an 

important step towards a comprehensive QSFR analysis for hundreds of proteins. Table 

6.2 highlights key results of this dissertation. 
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With a good understanding of this top-down approach of proteins’ 

sequence/structure/function relationships, researchers can employ a bottom-up approach 

in designing new proteins.  That is, an ensemble of protein structures can be developed 

computationally and can be clustered based upon desired stability and flexibility 

properties, consequently paving the way for design of novel proteins using DCM.  

Table 6.2: Dissertation Highlights 

Depth 

Analysis 

Stability of proteins with single site mutations have been predicted 
with an accuracy of more than 95% 

Flexibility changes in proteins due to point mutations that have 
frequent, large and long-range effects have been elucidated 

Breadth 

Analysis 

Quantitative stability/flexibility relationships and biophysical 
properties of proteins in a family have been characterized 

Protocols for comprehensive stability/flexibility relationship analysis 
using homology models have been developed 
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Docking mode of delvardine and its analogues into P66 domain 

of HIV-1 reverse transcriptase: Screening using MM-GB/SA 

and ADME screening. Naik PK, Verma D, Sengupta D 

(2007). J Biosciences, 32 (7):1307-16. 

 

The binding modes, binding affinities and ADME screening of 

HIV-1 NNRTI inhibitor: Efavirnez and its analogs. Naik PK, 

Verma D, Sengupta D (2007). Online Journal of 
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Clustering of HIV-I subtype: Study of molecular diversity using 

phylogenetic analysis. Naik PK, Verma D, Sengupta D, Mishra 
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CONFERENCE 

PRESENTATIONS 

Is rigidity conserved across the class A !-lactamase family? 

Verma D and Livesay DR, Biophysical Society 56
th

 Annual 

meeting, 2012. 

 

Elucidating the effects of mutation upon c-type lysozyme 

through quantitative stability/flexibility relationships. Verma D, 

Jacobs DJ and Livesay DR, Biophysical Journal, Volume 100, 

Issue 3, 2011, 400a. 

 

Towards comprehensive analysis of protein family quantitative 

stability/flexibility relationships. Verma D, Jacobs DJ, Guo J 

and Livesay DR, Biophysical Journal, Volume 98, Issue 3, 

Supplement 1, 2010, 637a. 

 

Predicting protein mutant stability with a combined 
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experimental/theoretical approach. Verma D, Jacobs DJ and 

Livesay DR, Biophysical Journal, Volume 96, Issue 3, 

Supplement 1, 2009, 301a-302a. 

 

 

ONGOING 

(unpublished) 

PROJECTS 

Developing thresholds on QSFR metrics for homology model 

quality assessment (manuscript under preparation). 

 

Deciphering QSFR changes in MHC class II protein upon 

peptide binding. 

 

 

SKILLS Research Interests: Molecular Dynamics, Quantitative 

Stability/Flexibility Relationship, QSAR and In-silico Drug 

Designing,  

Bioinformatics Software Skills: MOE package, Pymol, Phylip, 

TreeView, Clustal, MODELLER, BLAST, H++, ProtParam and 

other online Bioinformatics tools. 

Wet Lab Skills: PCR & RAPD analysis, Agarose Gel 

Electrophoresis, SDS PAGE Electrophoresis, Quantitative 

Precipitant Assay Technique, Immunodiffusion Techniques – 

ODD, RID, Sandwich ELISA techniques, Qualitative & 

Quantitative estimation of proteins. 

Programming: Java, C/C++ and PERL. 

Other Tools: UNIX, HTML, R statistical Package, ChemOffice, 

Gnuplot, WaveMap and DCM. 

 

 

OTHER WORK  

EXPERIENCE 

Doctoral Candidate/Graduate Researcher - UNC Charlotte 

(Aug ’07 – Dec ‘12) 

Teaching Assistant - Dept. of Bioinformatics and Genomics, 

UNC-Charlotte (Jan ’10 – May ’10) 

Mentored undergraduate students in their projects – 

Responsibilities included preparing extensive self-learning 

tutorials and assisting with teaching of bioinformatics tools  

Intern - Dade Behring (currently Siemens Healthcare) (Dec ’06 

– Feb ’07) 

Intern - Adroit Life Sciences (May ’05 – Jul ’05) 
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PROFESSIONAL 

SOCIETIES 

Member, Biophysical Society (BPS) (2007-  ) 

Member, International Society for Computational Biology 

(ISCB) (2011-  ) 

Secretary, Bioinformatics Assembly of Students - UNC 

Charlotte (Aug ’10 – May ‘12) 

Technical Coordinator, Bioinformatics Club - Jaypee 

University of IT (Aug ’05 – Jul ’06) 

 

 

AWARDS 1
st
 place in Poster Competition, 2012 CBES Molecular 

Engineering and Design Category  

Graduate Assistant Support Plan Award – UNC Charlotte  (Sep 

‘07 – May ’12) 

College of Computing and Informatics Student Travel Award – 

UNC Charlotte (2011) 

The Center for Biomedical Engineering Systems Student Travel 

Award – UNC Charlotte (2012, 2011, 2010 & 2009) 

 

 


