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ABSTRACT 
 
 

BRIAN JARVIS ZAPATA.  Full-scale testing and numerical modeling of a multistory 
masonry structure subjected to internal blast loading.  (Under the direction of DR. 

DAVID C. WEGGEL) 
 

 
As military and diplomatic representatives of the United States are deployed 

throughout the world, they must frequently make use of local, existing facilities; it is 

inevitable that some of these will be load bearing unreinforced masonry (URM) 

structures.  Although generally suitable for conventional design loads, load bearing URM 

presents a unique hazard, with respect to collapse, when exposed to blast loading.  There 

is therefore a need to study the blast resistance of load bearing URM construction in 

order to better protect US citizens assigned to dangerous locales.  To address this, the 

Department of Civil and Environmental Engineering at the University of North Carolina 

at Charlotte conducted three blast tests inside a decommissioned, coal-fired, power plant 

prior to its scheduled demolition.  The power plant’s walls were constructed of URM and 

provided an excellent opportunity to study the response of URM walls in-situ.     

Post-test analytical studies investigated the ability of existing blast load prediction 

methodologies to model the case of a cylindrical charge with a low height of burst.  It 

was found that even for the relatively simple blast chamber geometries of these tests, 

simplified analysis methods predicted blast impulses with an average net error of 22%.  

The study suggested that existing simplified analysis methods would benefit from 

additional development to better predict blast loads from cylinders detonated near the 

ground’s surface.  A hydrocode, CTH, was also used to perform two and three-
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dimensional simulations of the blast events.  In order to use the hydrocode, Jones Wilkins 

Lee (JWL) equation of state (EOS) coefficients were developed for the experiment’s 

Unimax dynamite charges; a novel energy-scaling technique was developed which 

permits the derivation of new JWL coefficients from an existing coefficient set.  The 

hydrocode simulations were able to simulate blast impulses with an average absolute 

error of 34.5%.  Moreover, the hydrocode simulations provided highly resolved spatio-

temporal blast loading data for subsequent structural simulations. 

Equivalent single-degree-of-freedom (ESDOF) structural response models were 

then used to predict the out-of-plane deflections of blast chamber walls.  A new 

resistance function was developed which permits a URM wall to crack at any height; 

numerical methodologies were also developed to compute transformation factors required 

for use in the ESDOF method.  When combined with the CTH derived blast loading 

predictions, the ESDOF models were able to predict out-of-plane deflections with 

reasonable accuracy.  Further investigations were performed using finite element models 

constructed in LS-DYNA; the models used elastic elements combined with contacts 

possessing a tension/shear cutoff and the ability to simulate fracture energy release.  

Using the CTH predicted blast loads and carefully selected constitutive parameters, the 

LS-DYNA models were able to both qualitatively and quantitatively predict blast 

chamber wall deflections and damage patterns.  Moreover, the finite element models 

suggested several modes of response which cannot be modeled by current ESDOF 

methods; the effect of these response modes on the accuracy of ESDOF predictions 

warrants further study. 
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FIGURE F.1:  Shot A1, Sensor P1 – Comparison of CTH pressure pulse to                   434 
that measured at Sensor P1.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are similarly shifted relative to P1.  

 
FIGURE F.2:  Shot A1, Sensor P2 – Comparison of CTH pressure pulse to                   435 

that measured at Sensor P2.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are similarly shifted relative to P1.  

 
FIGURE F.3:  Shot A1, Sensor P3 – Comparison of CTH pressure pulse to                   436 

that measured at Sensor P3.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are identically shifted relative to P1.  

 
FIGURE F.4:  Shot A1, Sensor P5 – Comparison of CTH pressure pulse to                   437 

that measured at Sensor P5.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are identically shifted relative to P1.  

 
FIGURE F.5:  Shot B, Sensor P1 – Comparison of CTH pressure pulse to that       438 

measured at Sensor P1.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are identically shifted relative to P1.  

 
FIGURE F.6:  Shot B, Sensor P2 – Comparison of CTH pressure pulse to that       439 

measured at Sensor P2.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are identically shifted relative to P1.  

 
FIGURE F.7:  Shot B, Sensor P6 – Comparison of CTH pressure pulse to that       440 

measured at Sensor P6.  CTH prediction is the thicker line.   
P1 time of arrival manually synchronized.  All other arrival times  
are identically shifted relative to P1.  
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CHAPTER 1:  INTRODUCTION 
 

The last three decades have witnessed a marked increase in the number and 

severity of terrorist bombings worldwide (US Department of State, 2004).  From 

mosques in Iraq to skyscrapers in New York to resorts in Indonesia, no landmark 

building can, with certainty, be removed from a list of potential terrorist targets.  Given 

this climate, the current philosophy among security specialists is to recommend that all 

landmark level facilities and surrounding structures receive, at a minimum, cursory blast 

and security evaluations.  These evaluations may be performed as remedial measures for 

existing structures or included in the planning of new facilities.   

To support these security evaluations, methodologies have been developed to 

analyze individual structural elements and structural systems subjected to blast loading.  

Much of this research has focused on masonry, both reinforced and unreinforced, as it is 

a commonly used construction material throughout the world.  In the United States (US), 

building code wind and seismic lateral force requirements have caused unreinforced 

masonry (URM) to be typically used as an infill material, rather than as a load bearing 

structural system.  As a result, most research regarding the blast resistance of URM has 

focused on reducing the hazard presented by collapsing infill panels.  Davidson (2008) 

writes, “most casualties and injuries sustained from terrorist attacks are not caused by the 

pressure, heat or container fragments resulting from a bomb detonation, but are typically
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blunt trauma and penetration injuries caused by the disintegration and fragmentation of 

walls…”  A focus on minimizing damage and injuries caused by debris from collapsing 

URM infill panels is therefore amply justified. 

Outside the US, however, different building codes and the prevalence of old 

buildings means that URM is frequently used as a load bearing structural system.  This 

practice, combined with the frequency of overseas terrorist bombings creates the need to 

study the blast resistance of load bearing URM construction.  As additional impetus, 

many older US buildings utilize load bearing masonry as a primary structural system.  In 

order to address this perceived knowledge gap, the Department of Civil and 

Environmental Engineering at the University of North Carolina at Charlotte conducted 

three blast tests inside a decommissioned, coal-fired, power plant prior to its scheduled 

demolition.  The power plant’s walls were constructed of URM and provided an excellent 

opportunity to study the response of URM in-situ.  Post-test analytical studies were 

conducted to simulate blast loads and the resulting structural responses of the tested 

walls.  These studies were intended to determine the capability of existing analytical 

techniques to simulate the performance of load bearing URM.  This dissertation will 

document these experiments and analyses which were funded as part of National Science 

Foundation Grant CMS-0342103. 

The decommissioned power plant was a multistory, steel framed building with 

unreinforced masonry walls used in both bearing-wall and infill configurations.  The 

choice of an existing structure provided the rare opportunity to study the blast response of 

a “real” structure, possessing the boundary conditions, geometry, and construction 

characteristics typical of unreinforced masonry.  Although the in-situ test program 
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created complex conditions for subsequent analyses, this very challenge provided many 

insights into the simplifications required for engineering-level blast load and structural 

response predictions.  Later chapters will provide a thorough discussion of these 

approximations and will assess their accuracy.  

As is apparent in the preceding paragraphs, the present study encompasses both 

experimental and analytical work in the fields of explosives, shock physics, and structural 

engineering.  Given the breadth and complexity of this investigation, it was necessary to 

conduct an extensive literature review of the relevant disciplines.  To analyze even a 

single structural member, a blast analyst must have a basic understanding of explosive 

compounds, air shocks, structural dynamics, numerical methods, and material and 

building design codes.  As an added complication, the sources from which this 

information is drawn span over a half-century and are sometimes not released to the 

public due to security concerns.  The following paragraphs will document all sources that 

could be reasonably obtained, including a handful that are export controlled and/or for 

official use only.  First, literature describing the prior testing of masonry walls will be 

reported and will include quasi-static, dynamic, and blast tests.  Second, literature 

describing the analysis of masonry walls loaded out-of-plane will be discussed.  The 

discussion will address separate descriptions of simplified and high fidelity 

computational analyses.   And third, a review of blast load prediction methods will 

conclude the chapter.  As with the structural analysis, blast load prediction methods will 

be divided into simplified and computationally intensive techniques. 
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1.1. Prior Non-Blast Masonry Testing 

Much of what is known about the out-of-plane resistance of masonry is the result 

of earthquake engineering research.  Even by the mid-twentieth century, engineers were 

still largely unsure how to analyze cracked masonry systems subjected to out-of-plane 

loads.  This was probably a by-product of the allowable stress design (ASD) 

methodologies dominant at the time.  The analysis of “extreme loads” and by association 

large deformations only became of interest after the development of nuclear weapons.  

Typical of the ASD method of thinking, studies like that by Yokel and Dikkers (1971) 

reported the results of 192 tests of masonry walls with an eccentric vertical load.  Using 

simple linear stress/strain distributions, the authors were able to develop interaction 

curves that conservatively estimated the strength of the load bearing walls.  The authors 

stated “the design of masonry structures is to a large extent empirical and does not rely 

extensively on the rational application of engineering principals.  As a result, even the 

most advanced masonry design standards fail to fully recognize all the variables and in 

effect deprive the designer of the insight and flexibility provided by rational analysis.”    

Many experiments were performed in an effort to provide insight into the 

complexities of post-elastic behavior.  Thomas (1953) showed that the post-elastic 

(meaning after the formation of flexural tensile cracks) capacity of walls loaded out-of-

plane can be significant as a result of arching action.  The ultimate load of a masonry 

infill panel could be two to three times higher than the cracking load and, furthermore, 

the failure deflection was likely more than a third of the wall thickness, though the study 

did not positively identify the onset of geometric instability.  Hendry (1973) documented 

a series of 19 tests on masonry infill panels under a variety of boundary conditions to 
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investigate the effect of axial precompression and number of edges supported.  The study 

showed that for cracked infill panels not restrained against axial motion, increasing axial 

precompression led to an increased out-of-plane resistance.  It should be noted that 

“strength” and “resistance” are used synonymously.   

Dawe and Seah (1989) load tested nine concrete masonry infill panels in order to 

study the effect of boundary conditions on out-of-plane deflection and resistance.  The 

study found that infill compressive strength, panel dimensions, and frame rigidity have a 

significant impact on lateral capacity.  Hill (1994) documented in-situ tests of three 

masonry infill walls in a building scheduled for demolition.  The panels were built with 

little to no edge gap (i.e. bounding structural members butted up against panel edges) 

which resulted in significant out-of-plane strength.  Equivalent lateral seismic loads of 1g 

were attained before the tests were stopped.  During the test, Hill noted that members 

framing the wall panel developed significant deflections as a result of the wall’s arching 

action.   

Al-Chaar et al. (1994) performed dynamic tests on masonry infill panels bounded 

by reinforced concrete frames.  After causing cracking using in-plane accelerations (as if 

it were a shear wall), the infills were rotated 90 degrees and accelerated out-of-plane to 

study post-crack capacity.  In a related test of eight clay and concrete masonry panels, 

Angel and Uzarski (1996) loaded infill walls out-of-plane quasi-statically after first 

causing cracking as a result of in-plane shears.  They noted that despite having been 

damaged, the walls were able to resist significant out-of-plane loads as a result of arching 

effects.  Henderson et al. (2003) documented similar findings during an exhaustive 

research program in which over 700 tests were conducted on infill panels. 
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Adham (1994) documented a series of 22 tests on both reinforced and 

unreinforced masonry walls.  In the unreinforced test series it was noted that a wall would 

“crack above its midheight and one course above base.  In general, the walls would 

develop these cracks and respond as two rocking blocks, cycling on the cracks.”  The 

tests showed a direct correlation between a cracked URM wall’s overburden and its 

maximum out-of-plane resistance.  Unlike Adham (1994) who concluded that peak 

midheight velocity was of importance in predicting collapse, Griffith et al. (2004) 

determined that midheight deflection is the determinant of stability.  In Griffith’s test 

program, which included quasi-static, harmonic excitation, free vibration, and impulse 

loads, tests showed that walls did not collapse until their midheight deflection was equal 

to the wall thickness.  Analytically, this failure deflection was described as the point at 

which midheight wall deflection moved past the line of vertical thrust, leading to 

geometric instability.  This study is probably the best illustration of the full post-elastic 

range of deflections that unreinforced walls can achieve dynamically.  The tests also 

provided important guidance on the cracked natural frequency of vibration and associated 

damping ratio which was found to be, at minimum, 5% of critical.  The wealth of 

experimental data from Griffith’s tests is unparalleled with regard to the dynamic, out-of-

plane behavior of unreinforced masonry. 

1.2. Masonry Blast Tests 

As a compliment to the in-lab dynamic and quasi-static tests, significant 

experimentation has been performed on the response of reinforced and unreinforced 

masonry walls subjected to blast loading.  This research, primarily focused on 

minimizing flying wall debris, has been conducted for over 50 years and traces its 
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beginnings to nuclear weapons effects studies in the 1950’s.  In the earliest studies, 

masonry walls and structures were exposed to the effects of nuclear weapons in order to 

study their qualitative survivability and the effect on human occupants. (Johnston (1956) 

and Gabrielsen and Wilton (1972) are well documented examples of the semi-qualitative 

nature of the early nuclear effects studies).  In Gabrielsen and Wilton (1972), the authors 

report the results of blast tests on axially loaded, unreinforced brick masonry panels 

under a variety of support conditions.  The investigation utilized a shock tube to generate 

waveforms similar to those expected from a distant nuclear weapon.  The study provided 

details on specimen material parameters, measured blast loads, and measured structural 

responses.  Data collected during studies such as this were eventually incorporated into 

the original comprehensive Department of Defense (DoD) manual on blast resistance, 

TM5-1300 (US Army, 1990, originally published in 1969).   

Between the end of nuclear survivability studies in the 60’s and the mid 90’s, 

little masonry wall testing was performed and even less made public.  Moradi (2008) 

provides a good narrative of the blast testing performed in the 90’s which although not 

always specific to masonry, provides insight into programmatic motivations and the 

development of analytical techniques.  Beginning in 1994, the United States and Israel 

began cooperatively researching blast retrofit techniques using Israeli test facilities (it can 

only be inferred based on timing that the programs were spurred by the 1992 bombing of 

the Israeli Embassy in Buenos Aires, Argentina, and the 1993 bombing of the World 

Trade Center in New York).  Immediately following the April 1995 bombing of the 

Murrah Federal Building in Oklahoma City, the US began an intensive blast mitigation 

research program on home soil.   
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In September 1995 a large reinforced concrete building was blast tested at Eglin 

Air Force Base (AFB) in order to evaluate composite retrofits.  This test was the first to 

receive pre-test predictions from LS-DYNA finite element models.  Taun et al. (1995) 

found that the results of the finite element models were not accurate, due to lack of an 

adequate constitutive model for concrete.  In 1996, the Israeli test program continued 

with blast tests on a retrofitted concrete masonry bearing-wall structure (simulated by 

using post-tensioned steel bars on a single story masonry panel).  In comparing pre-test 

predictions made with SDOF, semi-empirical, and finite element models, Whiting and 

Coltharp (1996) concluded that the “finite element code is the most accurate means of 

damage prediction for complex masonry cross sections.”  Moradi (2008) goes on to state 

that beginning in 1999, the focus on masonry wall research then shifted to protecting 

common exterior (infill) walls by means of composite retrofit rather than more traditional 

techniques such as adding mass with reinforced concrete cladding. 

Dennis et al. (2002) documents static and blast tests on unreinforced concrete 

masonry infill panels; the purpose of the test program was to assess the ability of existing 

finite element models to correctly predict the failure of unreinforced concrete masonry.  

The study concluded that while there were often significant differences between analysis 

and experiment as a result of material variability, the analyses tended to provide 

conservative results.  This work served as the foundation for many subsequent studies of 

masonry retrofit techniques.  Davidson et al. (2004), Davidson et al. (2005), and Baylot et 

al. (2005b) document experimental and analytical programs in which composite materials 

were used to retrofit unreinforced masonry against blast.  The result of all this research 

was the development of resistance functions capable of allowing design engineers to 
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quickly calculate blast induced wall deflections before and after a retrofit.  It should be 

noted that for all of the literature discussed in this section, masonry walls are merely 

considered a cladding element used to protect building occupants.  Studies are primarily 

concerned with wall collapse and subsequent debris intrusion rather than the structural 

stability of load bearing masonry. 

Wesevich et al. (2002) is the DoD’s comprehensive database of all masonry 

testing performed to date, however could not be obtained for review.  Aside from DoD 

sources, one of the few masonry blast testing studies available in the literature is that of 

Varma et al. (1997).  The experiments blast loaded 27 wall panels in order to investigate 

the effect of boundary conditions and to develop a correlation between qualitative 

damage levels and the reflected impulse.  The study found that the impulse required to 

cause wall collapse is almost linearly proportional to the wall thickness. 

One alternative to performing experimental investigations of masonry is the study 

of terrorist bombings or accidental explosions (Hinman and Hammond 1997).  In these 

forensic investigations, the TNT equivalence and pressure loads are difficult to determine 

with precision, and damage can be too severe to permit a full understanding of the 

specific events that occurred and their sequence.  Nonetheless, studying the behavior of 

full-scale structures subjected to blast loads provides information that controlled 

laboratory experiments often cannot.  The experimental program of this dissertation 

therefore provides a unique opportunity to examine, with a higher degree of accuracy, the 

behavior of a masonry bearing wall building that was formerly in service (i.e. a non-

purpose-built structure) and to make comparisons to the results from nonlinear dynamic 

analyses. 
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1.3. Single-Degree-of-Freedom Structural Analysis 

Engineers tasked with analyzing the response of complex systems subjected to 

dynamic loading frequently rely on techniques that reduce analytical complexity, yielding 

more tractable problems.  This is often done by idealizing structural members or even 

entire structures as a single-degree-of-freedom (SDOF) system.  This one-dimensional 

idealization translates the distributed mass and stiffness of a real structure into a 

representative point mass, having a single stiffness and capable of deflection in only one 

spatial direction (Tedesco et al., 1999).  A mass attached to a spring is an example of an 

SDOF system (see Figure 1.1).  Such one-dimensional systems have the advantage that 

their solutions are relatively simple and can be computed even for systems with 

significant nonlinearities.  Biggs (1964) makes the point that such solution techniques are 

more than adequate for the vast majority of problems as uncertainties in the loading or 

material properties render even rigorous closed formed solutions somewhat approximate 

as well. 

The transient motion of a single-degree of freedom system is governed by the 

equation of motion (EOM) given by  

ሷݔ݉ ൅ ሶݔܿ ൅ ݔ݇ ൌ  ሻ     (1.1)ݐሺܨ

where m is the effective mass of the system, c is the effective viscous damping constant, k 

is the effective spring constant, and F(t) is the effective forcing function (dynamic 

loading).  The term “effective” is applied to the system’s parameters because Eq (1.1) 

abstracts the system as being a single point in space.  This is in contrast to reality, where 

most dynamic systems possess distributed mass and stiffness.  Consider, for example, a 

beam spanning between two supports in which the mass, stiffness, and applied forces are 
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distributed spatially in at least one dimension.  Some sort of transformation is then 

necessary to convert systems with distributed parameters into equivalent lumped 

parameter models. 

 
FIGURE 1.1:  Typical single degree of freedom system with damping. 

 

One such transformation technique widely used in the physical security 

community is known as the “equivalent SDOF” (ESDOF) method, which replaced an 

older technique referred to as the “modal SDOF method” (Morrison, 2006).  The ESDOF 

method was first introduced in 1957 in USACE Engineer Manual EM 1110-345-415.  

The method is based on using transformation factors to make the kinetic and internal 

energy of the SDOF system equal to that of the real system.  Due to its wide adoption in 

the physical security community, the ESDOF method is used in this investigation for all 

SDOF computations.  The ESDOF methods from this manual (which is out of print) are 

conveniently summarized in Biggs (1964).  In his text, Biggs rewrites the equation of 

motion given by Eq. (1.1) as 

ሷݔெ݉ܭ    ൅ ሶݔ௅ܿܭ ൅ ݔ௅݇ܭ ൌ  ሻ    (1.2)ݐሺܨ௅ܭ
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The K factors in front of each term of the EOM are constants that transform a distributed 

(real) system into an idealized discrete system.  As an additional simplification, Eq. (1.2) 

can be divided by the term KL to yield Eq. (1.3), where KLM = KM/KL.   

ሷݔ௅ெ݉ܭ ൅ ሶݔܿ ൅ ݔ݇ ൌ  ሻ     (1.3)ݐሺܨ

The K factors in Eq. (1.2) are computed as shown in Eq. (1.4) and Eq. (1.5) for a one-

dimensional structure (i.e. a beam or one-way slab).   

ெܭ ൌ
׬ ௠ሺ௫ሻఝమሺ௫ሻௗ௫
ಽ
బ

׬ ௠ሺ௫ሻௗ௫
ಽ
బ

     (1.4) 

௅ܭ ൌ
׬ ௣ሺ௫ሻఝሺ௫ሻௗ௫
ಽ
బ

׬ ௣ሺ௫ሻ
ಽ
బ ௗ௫

      (1.5) 

In Eq. (1.4) and Eq. (1.5), m(x) is the mass at location x, L is the span length, p(x) is the 

applied load, and ߮ሺݔሻ represents the normalized deflected shape of the structure.  These 

transformation factors may be generalized to two-dimensional structures (i.e. a two-way 

slab) by replacing the single integral with a double integral over the two spatial 

dimensions.   

The ESDOF method is based on an assumed deformed shape of the structure.  

Therefore, if the structure transitions from elastic to plastic behavior through yield or 

cracking (thus changing the deflection function, ߮ሺݔሻ) a different KLM factor must be 

employed in each phase of the response in order for the analysis to be correct.  As an 

example, consider a vertically spanning masonry wall which cracks at midheight under 

the action of a uniformly distributed lateral load.  Figure 1.2 illustrates the deflected 

shape during the elastic part of the response (at left) and then after a crack forms at mid-

height (at right).   
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FIGURE 1.2:  Simply-supported URM wall deflected shape before (at left) and after (at 

right) crack forms at midheight. 
 

For this particular scenario, the deflection function ߮ሺݔሻ is represented by Eq. 

(1.6) for the elastic wall and Eqs. (1.7) for the wall after the midheight crack forms. 

߮ሺݔሻ ൌ ଵ଺

ହ௅ర
ሺܮଷݔ െ ଷݔܮ2 ൅  ସሻ            (1.6)ݔ

߮ሺݔሻ ൌ ଶ௫

௅
ݔ				ݎ݋݂								 ൑ ௅

ଶ
            (1.7a) 

߮ሺݔሻ ൌ ଶ௫

௅
െ ସ

௅
ሺݔ െ ௅

ଶ
ሻ								݂ݎ݋				ݔ ൐ ௅

ଶ
            (1.7b) 

In these equations, L is the height of the wall and x is the vertical coordinate, measured 

starting from either the top or bottom.  Assuming that both the mass per unit length and 

the lateral load are uniform and have a unit value (the load and mass values do not affect 

the results for the case of a uniform distribution), combining Eq. (1.6) with Eq. (1.4) and 

Eq. (1.5) yields Eq. (1.8) which gives the mass transformation factor and Eq. (1.9) which 
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gives the load transformation factor for the elastic shape.  This yields an elastic KLM of 

0.50/0.64 = 0.78.  

ெܭ ൌ ଵ

௅
׬ ቂ ଵ଺

ହ௅ర
ሺܮଷݔ െ ଷݔܮ2 ൅ ସሻቃݔ

ଶ
ݔ݀ ൌ 	 ଵ

ଶ

௅
଴       (1.8) 

௅ܭ ൌ
ଵ

௅
׬

ଵ଺

ହ௅ర
ሺܮଷݔ െ ଷݔܮ2 ൅ ݔସሻ݀ݔ ൌ ଵ଺

ଶହ
	

௅
଴        (1.9) 

Again, assuming both a uniformly distributed mass and loading with a unit value, 

combining Eqs. (1.7) with Eq. (1.4) and Eq. (1.5) yields Eq. (1.10) which gives the mass 

factor and Eq. (1.11) which gives the load factor for the post-elastic wall.  This yields a 

post-elastic KLM of 0.33/0.50 = 0.66.  

ெܭ ൌ ଵ

௅
൤׬ ቀଶ௫

௅
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ݔ݀
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         (1.11) 

Having transformed a real system into an ESDOF system, it is then usually 

necessary to solve the EOM using numerical methods.  Bigg’s (1964) solution method 

has been widely adopted in the physical security community due to its relative simplicity.  

In his text he details a method called the constant velocity method, so named because the 

computation of deflection increments between two time steps assumes a constant 

velocity.  Eqs. (1.12) through (1.19) show the steps required for Bigg’s numerical 

solution.  As reproduced here, they have been adapted for the case of a system initially at 

rest and loaded by a time varying function that starts at time t=0.  In the equations, 

subscripts denote time increment.  For example, U0 is the deflection at time zero and Ut+1 

is the deflection at time t +1 (i.e. the next iterative step). 

଴ܣ ൌ
ிబ
௠

      (1.12) 
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଴ܸ ൌ 0      (1.13) 

ܷ଴ ൌ 0      (1.14) 

ଵܷ ൌ
஺బ∆௧మ

ଶ
      (1.15) 

ଵܸ ൌ
௎భ
∆௧

      (1.16) 

௧ܣ ൌ
ி೟ି௞ሺ௎೟ሻ௎೟ି௖ሺ௞ሻ௏೟షభ

௠
    (1.17) 

௧ܷାଵ ൌ 2 ௧ܷ െ ௧ܷିଵ ൅  ሻଶ    (1.18)ݐ∆௧ሺܣ

௧ܸ ൌ
௎೟శభି௎೟

∆௧
      (1.19) 

In the equations, A is acceleration, V is velocity, and U is the deflection.  F is the 

force, m is the mass premultiplied by the KLM factor, k is the stiffness at the current 

deflection (assumed to be a nonlinear function of deflection), c is the current viscous 

damping (the dependence of c on k is not in Bigg’s original formulation), and ∆ݐ is the 

time step size.  The numerical solution is started using the assumptions embedded in Eqs. 

(1.12) through (1.14).  Eqs. (1.15) and (1.16) compute the first increment of deflection 

and velocity using the simplifying assumption that acceleration is constant over the first 

time step.  Using these first estimates of deflection and velocity, a loop is entered in 

which Eqs. (1.17) through (1.19) are repeated to update the system’s configuration at 

each time step.  Biggs states that the solution yielded by this procedure approaches the 

analytical solution as the time step is decreased.  A more thorough discussion of 

nonlinear damping will follow in Chapter 6 as post-elastic damping requires careful 

consideration. 
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1.4. Resistance Functions for SDOF Models 

One crucial input necessary for an SDOF model of URM walls loaded out-of-

plane, is the nonlinear force versus mid-height deflection relationship, hereafter called the 

resistance function (݇ሺ ௧ܷሻ in Eq. (1.17)).  The research performed to date to generate 

resistance functions can be separated into three groups, largely based on who performed 

the work.  The first group consists of scattered efforts among a number of laboratories 

independently working on masonry and/or seismic performance research.  The second 

group consists of a New Zealand research center with an emphasis on the earthquake 

resistance of masonry walls loaded out-of-plane.  The third and most important group is 

the DoD.  The following paragraphs will describe the existing state-of-the-art, 

categorized according to these groupings and presented in the order in which they are 

listed above. 

The out-of-plane resistance of cracked URM walls is entirely attributable to the 

action of in-plane forces; these forces can be generated by a wall’s contact with bounding 

members or its self weight.  McDowell et al. (1956) presents one of the first attempts to 

provide a theoretical framework for why cracked URM walls are able to resist large out-

of-plane loads.  The investigation correctly identified that in-plane forces created by rigid 

boundary conditions are the principal cause of out-of-plane resistance.  This departure 

from conventional thinking was then extended in a number of studies.  Abrams et al. 

(1996) studied the interaction of arching masonry infill panels with reinforced concrete 

boundary members.  Flanagan and Bennet (1999) performed a review of available 

arching formulations and compared them to out-of-plane test data.  These three studies 

were primarily focused on the maximum quasi-static load; the post-peak softening 
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behavior of the walls was of little consequence.  During a study on the effect of the 

flexibility of bounding steel members on out-of-plane resistance Dawe and Seah (1989) 

observed that after the maximum load was attained, the walls would gradually lose 

strength until their eventual collapse.  In their tests, the walls deflected to more than 50% 

of the wall thickness.  They did not, however, extend their resistance function beyond the 

peak resistance of the wall panels. 

An important advance in resistance function development occurred when 

Gabrielsen and Wilton (1972) developed resistance functions for vertically preloaded 

URM panels.  This new formulation did not rely on rigid bounding members to generate 

in-plane forces.  Rather, any axial load carried by a masonry panel could provide out-of-

plane resistance.  Equally as important, the report was concerned with high amplitude 

dynamic response and therefore the full form of the resistance function (i.e. failure 

deflection) was required.  Using simple statics (their model is shown in Figure 1.3) the 

researchers identified the point of wall failure as being a lateral deflection equal to the 

wall’s thickness.  This corresponds to the point where the midheight of the wall has 

displaced laterally beyond the line of action of vertical forces.   
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FIGURE 1.3:  Simple statics formulation for the lateral resistance of a vertically 

preloaded masonry wall (Gabrielsen and Wilton, 1972). 
 

Priestley (1985) also investigated resistance functions of this form and came to 

similar conclusions.  A follow-up paper by Priestley and Robinson (1986) discussed 

Priestley’s out-of-plane models and made several corrections to the formulation.  Errors 

aside, the paper essentially validated many of Priestley’s ideas.  The notable difference 

between Priestley and Gabrielsen and Wilton is that they assumed different locations of 

the line of vertical force.  For example, Priestly located his line of vertical force using 

something similar to the principles of reinforced concrete while Gabrielsen and Wilton 

simply assumed it was located at the extreme tension face.  The resistance functions 
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developed by Gabrielsen, Wilton, and Priestly can be essentially described as bi-linear; 

resistance increases from zero to the maximum resistance which occurs at a deflection 

only a few percent of wall thickness.  Resistance then decreases linearly to zero which 

occurs at the failure deflection. 

Building on the work of Gabrielsen, Wilton, and Priestley, a group of researchers 

in New Zealand engaged in an extensive investigation of the post-elastic, out-of-plane 

response of URM walls.  Their research was motivated by the observation that URM 

walls could deflect significantly beyond the deflection corresponding to peak resistance.  

Thus a dynamic analysis using deflection as the failure criterion was a more accurate 

measure of a wall’s likelihood of collapse than the ratio of applied load to maximum 

resistance.  The ability to model this in an analysis would enable design engineers to 

more accurately assess the seismic stability of existing URM structures, potentially 

reducing the cost of structural retrofits (an important accomplishment in earthquake 

prone New Zealand).  The testing component of the program is thoroughly described in 

Griffith (2004).  Using this wealth of experimental data, the researchers authored at least 

three papers describing their analytical approach.  Doherty et al. (2002), Lam et al. 

(2003), and Derakhshan et al. (2009) document the development of a resistance function 

and explain the translation of a real system into an ESDOF system for dynamic analysis.  

Another important distinction between prior efforts and those of the New Zealanders was 

that they idealized the resistance function as being tri-linear to account for softening at 

cracks.  Their cyclic test data supports this model which is best applied to seismic 

loading. 
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While all of this information can be adapted to blast loaded masonry, only the 

work produced by the DoD is specifically intended for blast analysis.  Two organizations 

have lead roles in blast mitigation:  the United States Army Corps of Engineers (USACE) 

provides engineering design guidance while the Air Force Research Laboratory (AFRL) 

performs in-depth research and development on retrofit techniques and high fidelity 

modeling.  USACE has traditionally been the lead engineering agency for civil works; 

however the Air Force has unique testing facilities at Eglin and Tyndal Air Force Bases 

in Florida, and the AFRL is therefore intimately involved in blast mitigation research. 

Building on the test data reviewed in the prior section and the simple models of 

Gabrielsen and Wilton (1972), AFRL and USACE have developed extensive analytical 

tools for the design and analysis of structures subjected to blast.  Moradi et al. (2009), 

Moradi (2008), USACE (2008a), and USACE (2008b) document the results of research 

directed at developing resistance functions for masonry walls loaded out-of-plane.  The 

resistance functions can simulate unreinforced, reinforced, and retrofitted masonry under 

the action of out-of-plane blast loads.  In order to effectively utilize these models in 

design, USACE integrated these resistance functions with a nonlinear SDOF analysis 

tool, implemented in an Excel Spreadsheet that utilizes Biggs’s constant velocity method.  

The program, SDOF Blast Effects Design Spreadsheet, or SBEDS, (USACE, 2008c) is 

one of USACE’s primary tools and is regularly updated as new resistance functions are 

developed.  Sunshine et al. (2004) provides an overview of existing DoD analysis 

techniques and software. 
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1.5. Finite Element Structural Analysis 

It is usually feasible to formulate analytical models of one-way spanning URM 

walls loaded out-of-plane.  Developing similar models for walls with complex boundary 

conditions or unique geometries, on the other hand, becomes more difficult.  As 

documented in Dawe and Seah (1989), yield line theory can be applied to such problems; 

however it is not always accurate, particularly if the crack pattern is not correctly 

assumed or known a priori.  Because blast tests are expensive, many researchers have 

sought to develop finite element models of masonry to help design better experiments 

and retrofits and to fill in gaps in the experimental data.  There has, therefore, been 

significant effort invested in the development of finite element models capable of 

simulating the elastic and post-elastic response of masonry walls loaded out-of-plane.  

One modeling approach has been to develop constitutive relations for continuum 

elements that are capable of simulating the behavior of masonry assemblages.  

Unfortunately, due to the limitations of finite element codes (deformation limits), these 

methods usually cannot simulate the full range of possible nonlinear deformations.  

Cecchi et al. (2005) documented what they term “homogenization techniques” which are 

used to take what is an inhomogeneous material and render a handful of constitutive 

parameters for use in elastic finite element models.  Others like Lourenco (2000) took 

this idea one step further and implemented nonlinear constitutive models that could 

account for crushing and cracking, however are not able to simulate deflections on the 

order of wall thickness.  This is evidenced in studies like that of Ettouney et al. (2003) in 

which the analytical models were only able to predict deflections of a few tenths of an 

inch.  Ettouney et al. used the concrete element built into the commercial finite element 
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code ANSYS (Canonsburg, PA).  From the author’s experience, continuum elements are 

unable to simulate deformations of the magnitude that are necessary to simulate the 

deflections of cracked URM. 

Lofti and Shing (1994) realized that traditional continuum approaches would not 

be capable of modeling the full spectrum of nonlinear behaviors in cracked masonry.  

Their investigation developed constitutive models for masonry and mortar interface 

elements and integrated them into a custom finite element software to simulate cracked 

masonry loaded in-plane.  Gilbert et al. (1998) took this idea one step further and 

modified the interface formulation to permit rate effects and a more accurate treatment of 

the energy release at fractured interfaces.  They believed this was necessary to more 

closely match experimental predictions of interface deflection.  Martini (1996a, 1996b) 

utilized an existing finite element software, ABAQUS (Simulia, Providence, RI) to 

simulate post-elastic response.  In his first 1996 study, Martini modeled brick masonry 

with each brick comprised of linear and elastic continuum elements connected by contact 

elements.  This permitted large mesh deformations without encountering many of the 

severe numerical issues normally associated with such simulations.  In his study, the 

simulations were able to reproduce resistance functions of the type developed by 

Gabrielsen and Wilton (1972).  This modeling technique was so successful that it was 

adopted by nearly every other finite element study of cracking masonry thereafter.   

Gilbert et al. (2001) and Burnett et al. (2007) reported on finite element 

simulations of brick masonry walls and parapets subjected to low velocity vehicle 

impacts.  The researchers used the finite element software LS-DYNA (Livermore, CA) 

utilizing both contact elements and elastic constitutive models.  Material and contact 
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parameters were derived from an experimental program designed to quantify the dynamic 

shear and tensile behavior of masonry bonds (Molyneaux, 2002).  The studies were able 

to simulate the large wall deflections observed in empirical data.   

AFRL has performed some of the most important research on the use of finite 

element models to simulate URM.  Davidson and Sudame (2006) document experimental 

and analytical work performed in order to develop an LS-DYNA model of unreinforced 

concrete masonry walls reinforced with polymer composites.  The in-depth investigation 

examined numerous model parameters including constitutive models, boundary 

conditions, mesh resolution, damping, material failure, interface elements, and gravity 

preloading.  Moradi (2008) subsequently utilized this model to simulate retrofitted 

masonry walls exposed to blast loads.  The simulations were found to correlate well with 

experimental data, suggesting the model parameters developed in Davidson and Sudame 

(2006) might be a good starting point for modeling brick masonry.  Davidson (2008) 

provides a compact overview of the AFRL research program, including directions for 

further research.  In the report, the only recommendation pertaining to modeling masonry 

is a better understanding of the behavior of masonry at locations where arching causes 

crushing. 

1.6. Empirically Derived Blast Load Predictions 

In order to use the preceding structural analysis methods, it is first necessary to 

estimate the dynamic loads imposed on a structure by high explosive detonations.  At the 

most basic level, an airblast analysis is interested in the computation of airblast pressures 

and impulses.  To accomplish this there are usually two available methods – simplified 

and computational.  Simplified methods are almost always based on extensive empirical 
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data and can be quite accurate when the analysis is similar to the test scenarios.  When an 

unusual geometry (explosive shape or reflecting surface) or untested explosive 

compounds are used, it is usually necessary to perform in depth computational analyses 

which will be discussed in Section 1.7.  This section will examine the existing body of 

experimental data and its translation into simplified (so called engineering-level) 

guidance. 

There are three references (which are inter-related) considered essential to blast 

designers.  The first, TM5-1300 (US Army, 1990) was the original handbook of blast 

design incorporating simple equations and nomographs which permitted engineers to 

compute blast loads and the resulting structural responses.  This document was then 

replaced by TM5-855 (US Army, 1998) which provided similar, but updated analytical 

tools.  Both of these documents were superseded by UFC-3-340-01 (USACE, 2002) 

which is the definitive guidance on blast load prediction for military structures.  The 

document contains a wealth of tabulated blast parameters, both in nomograph and 

equation forms, which can be used to compute virtually any blast wave parameter of 

interest (“parameter” in the context of a blast wave refers to pressure, impulse, time of 

arrival, duration, velocity, etc…).   

Figure 1.5 is an example of a typical nomograph for the computation of incident 

pressure like those found in UFC 3-340-01.  In order to use the chart, the user first 

computes a quantity called the scaled distance (z), which is equal to the radial distance of 

the target point from the charge’s center of mass divided by the charge mass raised to the 

one third power.  Knowing the z value (the chart’s x-ordinate), the user then reads the y-

ordinate to obtain the overpressure ratio, which is simply the ratio of the blast 
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overpressure divided by standard atmospheric pressure (101.3 kPa (14.69 psi) for 

virtually all DoD sources).  As an example, using a chemical explosive (TNT in this case) 

and a z value of 1.0, the overpressure ratio is approximately 12.  If atmospheric pressure 

is 101.3 kPa (14.69 psi), then this would correspond to a blast overpressure of 1215 kPa 

(176.4 psi).  There are similar charts that use scaled distance to find most other blast 

wave parameters of interest such as time of arrival, impulse, positive phase duration, etc.   

Also note that scaled distance permits a comparison of two charges.  For example, 

one kilogram at one meter (z=1) produces the same overpressure as 10 kilograms at 2.15 

meters (z=1).  This cube root scaling, known as Hopkinson Cranz scaling, therefore says 

that two charges of the same geometry and composition but different weight will produce 

self-similar blast waves at identical scaled distances.  In charts like Figure 1.4, all masses 

are usually expressed in terms of TNT, the most thoroughly characterized explosive.  In 

order to use the chart with a different explosive compound, equivalency factors are used 

which convert the mass of an explosive compound into an equivalent mass of TNT; for 

example, 1 kg of ANFO is equivalent to 0.82 kg of TNT. 
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FIGURE 1.4:  Example nomograph showing scaled distance versus incident overpressure 

ratio for nuclear and chemical (TNT) explosions in air from a spherical point source.  
Note that the nuclear overpressure has been normalized to 1 kg TNT equivalence to 

qualitatively compare blast parameters (from Kinney and Graham, 1985).   
 

 
As a companion to the military handbooks and a substitute for nomographs and 

equations, USACE released two software programs, ConWep (2005) and BlastX (2006), 

which utilize the data contained in these DoD manuals to enable rapid computation of 

shockwave (blast) parameters.  ConWep was written to predict pressures and impulses 

created on reflecting surfaces by conventional weapons such as bare high explosive (HE) 

or common ordnance like a 500 lb bomb.  BlastX was written to predict the pressures and 



27 

 

 

impulses created by confined explosions, using a ray tracing algorithm to compute the 

multiple reflections encountered in blast environments in enclosed structures.   

These DoD blast documents and the associated software are not summaries of 

single research programs, but instead are aggregations of the best empirical data gathered 

from several studies to date.  Many of the studies from which the data were obtained are 

not public domain or can no longer be readily acquired.  Furthermore, these documents 

do not always specify from what source data are derived.  It is known though, that much 

of the airblast data for TNT comes from Kingery and Bulmash (1984), a limited 

distribution document.  Other sources like Kinney and Graham (1985) provide similar 

data, but are not considered the reference standard for airblast design.  Bogosian et al. 

(2002) provide a comprehensive comparison between the Kingery-Bulmash equations 

and a wide array of other available blast test data.  Their study showed that the Kingery-

Bulmash data provides an excellent curve fit to other available test data and that ConWep 

exactly reproduces predictions provided by the Kingery-Bulmash equations. 

Although the Kingery and Bulmash report could not be obtained, there were 

several documents available that illustrate how data was collected for the DoD manuals.  

Stoner and Bleakney (1948) document the results of 56 airblasts designed to quantify the 

maximum overpressure versus scaled distance for several charge compositions and 

geometries.  The study demonstrated a novel method of measuring overpressure using 

shockwave velocity that eliminated the need for piezoelectric pressure gages, considered 

inaccurate at the time.  Kinney and Graham (1985) describe a similar method of 

overpressure measurement which uses the relation between shockwave Mach number and 

overpressure ratio.  Philipchuk (1955) documented 210 blast tests using seven different 
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types of explosives in three different configurations (uncased, cased in steel, cased in 

aluminum).  The study found that charges cased in steel jackets yielded the highest 

pressures and therefore the most damage.  The experiments also determined the relative 

power of each of the seven explosive compounds tested.  Tancreto (1975) describes work 

performed in developing the blast cubicle charts for TM5-1300.  Specifically, the 1975 

study determined the TNT equivalence of RDX and Comp-B cyclinders to be used in 

subsequent blast tests.  This was done as a result of difficulties experienced in performing 

the tests with cast TNT (poor detonation performance).  Esparza (1986) describes 

experiments in which spheres of six different explosives were detonated to measure the 

resulting blast wave parameters.  Specifically, the study was interested in the pressures 

and impulses at small scaled distances due to known deficiencies in the TM5-1300 data at 

the time.  Esparza also provides a helpful narrative regarding how blast data was gathered 

from multiple sources to form TM5-1300. 

Aside from the major DoD manuals (TM5-1300, TM5-855, and UFC 3-340-01), 

there are quite a few other sources that provide summaries of blast test results, provide 

simplified analysis techniques, or both.  Cooper (1996) and Kinney and Graham (1985) 

are two excellent general textbooks that provide all of the fundamentals necessary to 

understand and analyze blast loads.  Beshara (1994a and 1994b) are typical examples of 

generalized review papers.  The author covers equivalency, scaling, and provides simple 

equations for the computation of pressure and impulse.  Olatidoye et al. (1998) and 

Remennikov et al. (2007) are similar in nature, providing only the most general guidance 

and a qualitative description of blast phenomena.   
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Advanced computational techniques have permitted the creation of a new type of 

simplified guidance.  Wu and Hoa (2005) used numerical models to create simplified 

design guidance for analyzing structures subjected to combined air blast and ground 

shock loads.  Rose et al. (1997) used computer simulations to study the interaction of 

blast waves with a protective barrier wall.  The authors provided guidance on the pressure 

and impulse reductions which could be expected based on wall and site geometries. 

The vast majority of simplified blast load prediction techniques assume that the 

explosive charge is spherical or hemispherical.  Guerke and Cheklinski-Glueck (1982) 

state that for certain cases this assumption can cause errors of a factor of 2 or more.  In 

many instances, however, this is an acceptable approximation because at large standoff 

distances the shape effect is often small.  Esparza (1992) found that for scaled distances 

greater than 4.0 m/kg1/3 (10 ft/lb1/3), the shape of the charge had minimal effect on blast 

overpressure while at a scaled distance of 1.2 m/kg1/3  (3 ft/lb1/3) this could cause an error 

of 300% or more.  Therefore, when the reflecting surface is relatively close to the 

explosive charge it is critical to consider shape effects in the computation of blast loads.  

This is particularly true of cylindrical charges because much more of the explosive 

energy flows outward radially from the cylinder wall than from the top and bottom.  

Figure 1.5 shows computer simulations of the pressure produced by a hemisphere (at left) 

and a cylinder (at right) of TNT detonated on the ground’s surface.  The simulations 

show the axisymmetric simulation domain with the center of the charge (and axis of 

symmetry) at the left-hand vertical edge of each image.  High pressure is contoured in 

white while lower ambient pressures are black.  As is visible, the hemisphere produces a 
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uniform distribution of pressure while the cylinder’s pressure distribution is highly non-

uniform. 

Despite the difficulties in providing simplified guidance for cylindrical charge 

effects, several researchers have made attempts.  Ismail and Murray (1992) performed 

experiments in order to determine fitting parameters to permit use of the modified 

Friedlander equation with cylindrical charges (this equation computes blast overpressure 

as a function of time at a fixed point).  Their experiments showed that, due to the non-

uniform distribution of blast energy, traditional scaling methodologies do not work well 

in close proximity to the charge (scaled distances less than 0.8 kg/m1/3).    

 

 
FIGURE 1.5:  Pressure distribution in two spatial dimensions through the centerline of an 
axially symmetric CTH simulation showing qualitative difference in energy distribution 

between a hemispherical (at left) and cylindrical (at right) surface burst.   
 
 

Guerke and Checklinski-Glueck (1982) document an experimental program in 

which cylindrical charges were detonated near the ground’s surface at a range of angles 

relative to the vertical.  The research was designed to aid in the construction of 
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nomographs for cylindrical charges.  The researchers found that charge orientation and 

length to diameter ratio could significantly affect blast pressures and impulses.  UFC 3-

340-01 (USACE, 2002) provides nomographs similar to Figure 1.4 for cylindrical 

charges with several different charge length to diameter ratios.  Held (1998) and Held 

(2001) made use of non-electronic measurement devices to study the distribution of blast 

momentum (and energy) around a cylindrical charge.  Qualitatively, the experiments 

found a distribution of blast energy similar to that presented in UFC 3-340-01.  Esparza 

(2002) provides one of the simplest and most readily applicable methods of predicting the 

airblast from cylindrical charges.  In his study, Esparza provides nomographs that detail a 

spherical equivalency factor based on charge aspect ratio, scaled distance, and azimuth 

angle.  The spherical equivalency factor is multiplied by the cylindrical charge weight to 

arrive at an equivalent spherical charge weight for which predictions can be readily made 

using ConWep. 

1.7. Computational Blast Load Predictions 

It is preferable to use simple, empirically-derived blast load prediction techniques 

when possible.  However, due to the charge geometry and explosive composition used in 

this investigation, more advanced analytical methods were required.  An advanced 

computational tool called CTH (McGlaun et al. 1990) was investigated for its ability to 

model the blast loads generated by the cylindrical dynamite charges of this investigation.  

CTH is a shock physics hydrocode that was specifically designed to model multi-

dimensional, multi-material, large deformation and shock wave physics problems in one, 

two, and three-dimensional domains with several symmetry options for one and two-

dimensional analyses.  CTH has a variety of material models which can simulate dynamic 
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phenomena including fracture, yielding and plasticity, and of particular importance to this 

work, high explosive detonation.   

CTH utilizes the Jones-Wilkins-Lee equation of state (hereafter called the JWL 

EOS) to describe the expansion of explosive material from the time at which detonation 

is complete to the final state at which detonation product gases have expanded to ambient 

pressures.  A more thorough discussion of the JWL EOS will follow in Chapter 5, 

however for now it is sufficient to know that it describes the pressure, energy, and density 

of detonation products as they expand from a highly compressed state.  Lee et al. (1968) 

describe the development and calibration of the JWL EOS, Souers (2005) describes its 

common implementation in computer software, and Souers et al. (1996) discuss some 

methods used to develop JWL parameters. 

The need to employ computational methods (instead of engineering-level 

methods) is not an uncommon situation.  There are a number of published studies that 

necessitated advanced simulations because of reflecting surface geometry, charge 

composition, or charge geometry.  Wilke (2004) documents an experimental and 

analytical program at Los Alamos National Laboratory which studied the performance of 

blast relief panels in a decommissioned explosive processing facility.  The study used 

AUTODYN (ANSYS Inc, Canonsburg PA) to perform a fully coupled 

hydrodynamic/structural simulation to model the confined explosion and resulting failure 

of structural elements.  Lind et al. (1998) documents simulations of an explosives 

demolition chamber.  The study utilized the software FAST3D (publisher unknown) to 

simulate the blast loading associated with operation of an ordnance destruction facility.   
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Marconi (1994) describes a numerical study conducted in order to examine the 

shock loading created by internal explosions.  The study found that during shockwave 

interaction a specific kind of instability develops which further complicates the blast 

analysis, particularly in the case of a large charge inside a small blast chamber.  Chan and 

Klein (1994) also studied the complex dynamics of internal explosions.  The study 

included subjecting livestock to an enclosed blast environment and was intended to better 

understand the lethality of armor penetrating explosive rounds.  In the experiments, 1 lb 

of C4 created more than a dozen identifiable reflected blast waves inside the blast 

chamber.  Their numerical simulations were able to approximate the many reflections 

recorded during the experiment. 

Brundage et al. (2007) investigated the ability of CTH to simulate the pressure 

time history created by a confined explosion.  The software was found to be in excellent 

agreement with experimental results.  The researchers then performed a one-way 

coupling with a finite element program and were able to accurately simulate the response 

of a thin walled vessel subjected to an internal blast.  Zhang et al. (2007) also used CTH 

to simulate the response of vehicle underbody panels to the blast created by buried mines.  

Again, CTH was able to accurately simulate the loading created by the explosive device.  

The pressure time histories were one-way coupled to LS-DYNA (LSTC, Livermore, CA) 

to simulate vehicle underbody response and the ensuing effect on vehicle occupants. 

Some of the more interesting computational work has focused on using numerical 

methods to study the blast loading on entire structures or even whole city blocks.  

Armstrong et al. (2002) studied the ability of the software SHAMRC (Applied Research 

Associates, Albuquerque, NM) to model blast loading on a rectangular building with and 
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without a protective blast wall.  The software was found to be in agreement with 

experimental data derived from blast tests on scaled models.  Ozog et al. (1996) used the 

software AutoReaGas (Ansys, Inc., Canonsburg, PA) to study the propogation of a vapor 

cloud explosion inside a refinery structure.  No comparisons to experimental data were 

provided but on a qualitative level the software was able to show the effects of plant 

layout on the propagation of the blast wave, something that traditional hand calculations 

are unable to do. 

Luccioni et al. (2005) used the software AUTODYN to simulate the blast loads 

imposed on buildings in a city block.  The study compared various simplified prediction 

methods (nomographs, scaling, reflection charts, etc.) to computational results and the 

comparison clearly showed that simplified prediction methods are unable to capture the 

more complex aspects of such a blast scenario and can lead to an underprediction of blast 

loads.  Remennikov and Rose (2005) used the software Air3D (Royal Military Science 

College, Cranfield University) to study how the proximity of buildings can influence 

blast loads.  Using simulations and comparisons to experimental data, the researchers 

showed that the presence of buildings in close proximity can greatly increase blast loads 

as a result of reflections, something that simplified prediction methods cannot model.  

Baylot et al. (2004 and 2005a) simulated the effects of a more complex urban geometry 

which included up to nine structures.  Again, the studies showed that the complex 

geometry led to increased blast loading relative to that which would be predicted by 

simplified methods. 
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1.8. Problem Statement 

The preceding paragraphs have discussed the analytical techniques required to 

accurately simulate blast loads and the resulting structural responses of load bearing 

unreinforced masonry walls.  These analytical methods are supported by an extensive 

database of empirical evidence derived from relatively simple experiments.  What has not 

been performed, however, is full-scale testing of these methodologies on a real multi-

story bearing wall building that, by definition, posesses representative dead loads, non-

ideal boundary conditions, and the inherent characteristics resulting from the design and 

construction practices in the United States in the 1940s. In order to address this 

knowledge gap, the Department of Civil and Environmental Engineering at the 

University of North Carolina at Charlotte conducted three blast tests inside a 

decommissioned, coal-fired power plant prior to its scheduled demolition. Post-test 

analytical studies to simulate blast loads and structural responses are documented here to 

assess the capability of existing analytical techniques to simulate the performance of a 

load bearing, unreinforced masonry structure.   

This document is organized into eight chapters.  Chapter 1 reviews the existing 

state of the art in the various disciplines required to perform a comprehensive blast 

analysis.  Chapter 2 will detail the experimental program executed for this investigation 

and its results.  Chapter 3 compares measured blast loads to those predicted by simplified 

analysis methods.  Chapters 4 and 5 will present relevant shock physics background 

material and will discuss the results of blast load simulations using CTH.  First, a 

convergence study is performed using CTH to establish the meshing required for airblast 

simulations.  Then, equation of state data available in the literature for commercial 
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dynamites is reviewed.  This data is modified using an energy scaling technique to 

develop coefficients for the JWL EOS for a previously uncharacterized type of dynamite, 

Unimax.  The adjusted JWL coefficients are then used in CTH to simulate two different 

blast events.  Simulations will show that good agreement between experimental and 

analytical results can be achieved for impulse using the newly developed JWL 

coefficients.   

Following the analysis of blast loads, Chapters 6 and 7 will apply SDOF and 

finite element modeling techniques to simulate the structural response of the walls from 

blast chamber B.  The pressures and impulses (both experimental and analytical), along 

with the basic structural geometry, material properties, and boundary conditions, are used 

as inputs for both simplified and computationally intensive structural response models.  

The SDOF models – with the advantage of observing post-test crack patterns before 

choosing support conditions – are able to predict the experimental permanent deflections 

well.  As a complimentary result, the finite element models predict crack patterns similar 

to those observed in the field.  Finally, Chapter 8 contains a summary of this 

investigation’s primary findings along with recommendations for further research.
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CHAPTER 2:  EXPERIMENTAL PROGRAM 
 

The Department of Civil and Environmental Engineering at the University of 

North Carolina at Charlotte conducted three blast tests inside a decommissioned, coal-

fired power plant prior to its scheduled demolition.  The power plant was composed of 

three structurally independent buildings – two identically constructed boiler houses and a 

turbine house.  There was also a two-story bearing wall structure attached to the facade of 

one of the boilerhouses.  Figure 2.1 is a photo of the facility showing the front elevation 

of the power plant and the three charge locations (A1, A2, and B).  In the photo, the 

boiler houses are the taller structures visible in the foreground and the turbine house is 

the long, low-rise structure in the background.   

Figures 2.2 through 2.4 are views of a three-dimensional cut-away model of the 

structure in the vicinity of locations A1 and B that are intended to illustrate the basic 

structural configuration of the boilerhouse and bearing wall building (the bearing wall 

building is at the far right of Figure 2.1).  Figure 2.2 is an external isometric view that is 

representative of the right half of Figure 2.1.  Figure 2.3 is a cutaway view of the location 

B blast chamber as viewed from inside the structure.  Figure 2.4 is another cutaway view 

from higher inside the structure showing the location A1 and location B blast chambers.  

The illustration shows that location A1 (and A2) is a long corridor located over the coal 

bunkers.  The A1 and A2 blast chambers housed a conveyor and tripper system that was 

used to transfer coal from the coal yard to the storage bunkers inside the plant.
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The primary structural system, structural details, and architectural details (such as 

infill walls) were determined primarily by inspection because structural and architectural 

drawings of the facility were incomplete.  In shot locations A1 and A2 (the fourth floor of 

the boiler houses), the structure was a multistory steel framed building with unreinforced 

brick infill walls.  Structurally and architecturally, locations A1 and A2 were very nearly 

identical.  The boilerhouses were built in two phases: the first boilerhouse was completed 

in the 1940's and the second was completed in the 1970's.  While the time between phases 

of construction was significant, on-site investigation showed the two structures had 

nearly identical designs and materials.  The structure at charge location B consisted of 

two unreinforced exterior, load-bearing, brick walls and two interior unreinforced infill 

walls which were part of the location A1 boiler house structure.  Section 2.2 will 

provided detailed narrative descriptions of the construction of each blast chamber. 
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FIGURE 2.1:  Photograph of front elevation of power plant showing location of three 
blast chambers.  (Location A2 is behind the left edge of the stack in the foreground). 

 

 

 
FIGURE 2.2:  Isometric view of three-dimensional model of locations A1 and B.  The 

diagram represents the right half of Figure 2.1. 
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FIGURE 2.3:  Isometric view of three-dimensional model from inside showing a section 

through the structure at location B. 
 
 
 

 
FIGURE 2.4:  Isometric view of three-dimensional model showing the configuration of 

the structure at location A1. 
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2.1. Instrumentation 

Figures 2.5, 2.6, and 2.7 are plan views of each blast chamber showing chamber 

geometry and the locations of the charges and sensors.  Sensor elevations are measured 

relative to the top of finished floor slabs inside the chambers.  In all three blast chambers, 

the walls and ceilings were instrumented with piezoelectric sensors supplied by PCB 

Piezotronics (Depew, New York).  All sensors (pressure and acceleration) utilized PCB’s 

proprietary integrated circuit piezoelectric (ICP) design which permits signals to be 

transmitted over two conductor coaxial cables.  Flush mount pressure sensors were PCB 

model 102A03, 69 MPa peak pressure (10 ksi), high-frequency sensors; they were flush 

mounted on prefabricated metal plates mounted to the interior surfaces of the blast 

chamber with mechanical anchors and epoxy.  This created a reflecting surface flush with 

the wall or ceiling in order to measure reflected pressures and impulses.  Immediately 

behind these flush mounted plates, a three inch diameter core was drilled through the 

masonry or concrete substrate to allow the passage of sensor cables through the walls or 

slabs.   

For charges A1 and A2, one PCB model 137A21, 6.9 MPa (1 ksi) peak pressure, 

high frequency pressure pencil was used to measure incident (side-on) overpressure and 

impulse.  The pressure pencils were mounted to a rigid stand approximately 61 cm (24 in) 

above the finished floor height; the longitudinal axis of the pressure pencils pointed 

directly at the charge’s center of mass.  Shock accelerometers were PCB model 350B21 

with a 100,000g measurement range.  The shock accelerometers had no integrated 

electrical or mechanical filtration.  The shock accelerometers were mounted on 
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prefabricated steel plates attached to the exterior surfaces of the blast chamber walls and 

slabs with mechanical anchors and epoxy.  The exterior placement served to protect 

shock accelerometers and electrical connections from the blast environment.  Both the 

flush mount pressure sensors and shock accelerometers had threaded cases that screwed 

into tapped holes in the flush mounted plates.  Figures 2.8 and 2.9 illustrate the sensor 

mounting methodology for flush mount pressure sensors and shock accelerometers, 

respectively.  No shock isolators were used to shield sensors from resonant vibrations of 

their steel mounting plates.  Recorded data shows that this was acceptable as very few 

sensors recorded unexpectedly high amplitude signals indicative of resonance. Plots of 

time history data for each sensor are included in Appendices A through C and will be 

discussed in greater detail in Section 2.4. 

Data acquisition for the pressure sensors and shock accelerometers was provided 

by National Instruments (NI) 4472 modules with on-board signal conditioning (bandpass 

filtration and 4 milliamp (mA) driving current).  The NI modules sampled all channels 

simultaneously at 100 kHz using independent analog to digital converters (ADCs) 

synchronized to a common system clock.  The 4472 modules were configured for AC 

coupling (meaning a -3dB, or approximately 20% amplitude, attenuation for frequencies 

at 3.3 Hz, with attenuation increasing for lower frequencies).  This high-pass filter is 

primarily useful for removing a DC bias in sensor signals which is convenient as PCB’s 

piezoelectric sensors typically have an 11 volt bias.  The 4472 modules also have 

integrated analog and digital anti-aliasing filters which eliminate all signal
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FIGURE 2.5:  Plan view of blast chamber A1. 
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FIGURE 2.6:  Plan view of blast chamber A2. 
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FIGURE 2.7:  Plan view of blast chamber B.
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FIGURE 2.8:  Cross section through flush mount pressure sensor mounting. 

 
 

 
FIGURE 2.9:  Cross section through shock accelerometer mounting. 
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frequency content greater than 45 kHz.  This configuration assured that aliasing would 

not affect measured signals.  Sensors were connected to the data acquisition system using 

305 meter (1000 foot) long, low capacitance coaxial cables supplied by PCB.  All 

connection hardware and cabling were impedance matched and assembled by PCB.   

The combination of long cables and low driving current produced a limitation on 

the highest frequencies the NI 4472-cable-sensor circuit could transmit.  Simplified tests 

using a sensor simulator and an analog oscillator showed that frequencies above 20 kHz 

would be significantly attenuated by the capacitive effects of the long cables.  Using Eq. 

(2.1) (from PCB literature), and assuming the 305 meter cable has a capacitance of 98.4 

picoFarads per meter (C=98.4 pF/m * 305 m =30012 pF) with a 4 mA excitation (Ic=4) 

and using a 10.3 MPa (1500 psi) measurement corresponding to 0.75 volt peak output 

(V=0.75) from a 102A03, the maximum system frequency is approximately 7 kHz.   

௠݂௔௫ ൌ
ଵ଴వ
మഏ಴ೇ
಺೎షభ

                (2.1) 

Unfortunately it is not possible to experimentally verify that the high and low 

frequency attenuation did not impact the quality of measured pressures and impulses.  It 

is, however, possible to at least simulate the effects of frequency attenuation by a simple 

numerical experiment.  Figure 2.10 shows an artificially constructed blast wave before 

and after the application of two filters implemented using Matlab (see Appendix D, script 

D.1).  One filter simulated AC coupling and was modeled as a one pole high pass filter 

with a -3dB point of 3.3 Hz.  The second filter simulated the high frequency attenuation 

of the long cables and was modeled as a first order butterworth low pass filter with a -

3dB point of 7 kHz.  As Figure 2.10 shows, the filtration does have an effect on the peak 
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measured pressure (and thus impulse).  The frequency attenuation appears to cause an 

undermeasurement of the peak pressure by 8.7%, which in turn leads to a computation of 

impulse which is 4.4% below the actual impulse.  With respect to shock accelerometer 

measurements, the dominant frequencies of structural vibration should have been well 

below 7 kHz and thus the high frequency attenuation is unimportant.  Unfortunately, the 

AC coupling (high pass filter) likely interfered with structural response measurements; 

this deficiency will be discussed in greater detail in Section 2.4. 

 

 
FIGURE 2.10:  Example pressure and impulse time history before and after filtration 

similar to that of NI4472 data acquisition modules. 
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2.2. Charge Data and Blast Chamber Construction 

Complete structural drawings were not available due to the age of the facility.  It 

was therefore necessary to visually identify details of the structural configuration which 

would be important for subsequent structural modeling.  Pre-test samples of masonry and 

concrete were cut from blast chamber walls and slabs to determine Young’s modulus and 

the compressive and tensile strength of the materials.  The following paragraphs provide 

a narrative description of the explosive charge, field observations of the structural system, 

and the results of material tests performed in the laboratory. 

2.2.1. Charge and Blast Chamber Description — A1 

Charge A1 consisted of thirty 0.227 kg nominal (0.204 kg (0.450 lbs) actual) 

dynamite cartridges formed into an upright cylinder with a total gross weight of 6.53 kg 

(14.4 lbs).  Note that due to cartridge variability, the total gross weight is only 

approximately the nominal cartridge weight multiplied by the number of cartridges.  The 

net explosive weight was 5.88 kg (13.0 lbs) after subtracting 10% to account for the 

weight of the cartridge packaging.  Dynamite was supplied by Dyno Nobel under the 

product name Unimax and contained approximately 26% nitroglycerin gel by weight. At 

detonation the bottom of the cylindrical charge was at a height of 30 cm (12 in) above the 

blast chamber floor and rested on a lightweight timber stand.  The height of the 

cylindrical charge was approximately 41 cm (16 in); its diameter was approximately 15 

cm (6 in).  The charge was detonated at its center of mass with two instant electric 

blasting caps.  

Charge location A1 was on the fourth floor of one of the boiler houses (see 

Figures 2.1 and 2.5).  The blast chamber housed a conveyor system that transferred coal 
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from the coal yard stockpile to the coal bunkers below the blast chamber floor.  The floor 

of the blast chamber was a 10 cm (4 in) thick, reinforced concrete slab, cast-in-place on 

steel plates and supported by 51 cm (20 in) deep steel I-sections spaced at 4.88 m (16 ft) 

on center.  The ceiling consisted of a reinforced concrete slab and joist system with 

embedded 46 cm (18 in) deep I-sections spaced at 1.4 m (4.5 ft) on center; the ceiling 

slab thickness in this region averaged 43 cm (17 in).  The exterior brick infill wall was 32 

cm (12.5 in) thick and included embedded steel columns with intermittent lateral bracing.  

The interior brick infill wall was 20 cm (8 in) thick with two door openings, one on either 

side of the charge; heavy structural beams and columns were embedded in the wall.  The 

average compressive strength of masonry tested from location A1 was 22.3 MPa (3240 

psi), the average modulus of elasticity was 6.41 GPa (930 ksi), and the average masonry 

density was 1900 kg/m3 (118 lb/ft3). 

Inside the blast chamber, eight flush-mount pressure sensors measured reflected 

pressures and one pressure pencil measured incident pressure.  Three shock 

accelerometers, mounted to the outer surfaces of the blast chamber walls and ceiling slab, 

measured structural accelerations.  The internal height of the blast chamber was 482 cm 

(190 in).  Figure 2.5 shows the geometry of the blast chamber, the location of the charge, 

and the locations of the sensors. 

2.2.2. Charge and Blast Chamber Description – A2 

Charge A2 consisted of fifty 0.091 kg nominal (0.201 lb) cast booster cartridges 

formed into an upright cylinder with a triangular prism on top.  The total gross explosive 

weight was 4.54 kg (10.0 lbs) and the net explosive weight was 4.09 kg (9.02 lbs) after 

subtracting 10% for the weight of cartridge packaging.  Cast booster was supplied by 
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Austin Powder Co. under the product name “Cast Booster” and contained predominantly 

TNT (on a weight basis).  The manufacturer’s data sheet specifies that the product 

contains between 30% and 70% TNT by weight with the remainder made up of RDX, 

PETN, and/or HMX as a sensitizer.  At detonation the bottom of the cylindrical charge 

was at a height of 30 cm (12 in) above the blast chamber floor and rested on a lightweight 

timber stand.  The height of the cylindrical charge was approximately 30 cm (12 in); its 

diameter was approximately 14 cm (5.5 in).  The charge was detonated at its center of 

mass with two instant electric blasting caps. 

Charge location A2 was on the fourth floor of one of the boiler houses (see 

Figures 2.1 and 2.6).  Like the A1 blast chamber, the A2 blast chamber housed a 

conveyor system that transferred coal from the coal yard stockpile to the coal bunkers 

below the blast chamber floor.  The floor of the blast chamber was a 10 cm (4 in) thick, 

reinforced concrete slab, cast-in-place on steel plates supported by 51 cm (20 in) deep 

steel I-sections spaced at 4.88 m (16 ft) on center.  The ceiling consisted of a reinforced 

concrete slab and joist system with embedded 46 cm (18 in) deep I-sections spaced at 1.4 

m (4.5 ft) on center.  The ceiling slab thickness in this region averaged 39 cm (15.5 in).  

The exterior brick infill wall was 32 cm (12.5 in) thick and included embedded steel 

columns with intermittent lateral bracing.  The interior brick infill wall was 20 cm (8 in) 

thick with two door openings, one on either side of the charge; heavy structural beams 

and columns were embedded in the wall.  Unlike the A1 blast chamber, A2 had an open 

end wall to accommodate the entrance of a conveyor system.  The average compressive 

strength of masonry tested from location A2 was 18.5 MPa (2690 psi), the average 
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modulus of elasticity was 6.38 GPa (925 ksi), and the average masonry density was 1840 

kg/m3 (115 lb/ft3). 

Inside the blast chamber, eight flush-mount pressure sensors measured reflected 

pressures and one pressure pencil measured incident pressure.  Two shock 

accelerometers, mounted to the outer surfaces of the blast chamber walls and ceiling slab, 

measured structural accelerations.  The internal height of the blast chamber was 482 cm 

(190 in).  Figure 2.6 shows the geometry of the blast chamber, the location of the charge, 

and the locations of the sensors.  

2.2.3. Charge and Blast Chamber Description — B 

Charge B consisted of forty 0.227 kg nominal (0.204 kg (0.450 lbs) actual) 

dynamite cartridges formed into an upright cylinder with a total gross weight of 8.71 kg 

(19.2 lbs).  The net explosive weight was 7.84 kg (17.3 lbs) after subtracting 10% for the 

weight of cartridge packaging.  Dynamite was supplied by Dyno Nobel under the product 

name Unimax and contained approximately 26% nitroglycerin gel by weight.  At 

detonation the bottom of the cylindrical charge was at a height of 30 cm (12 in) above the 

blast chamber floor, and the charge rested on a lightweight timber stand.  The height of 

the cylindrical charge was approximately 41 cm (16 in); its diameter was approximately 

17 cm (6.5 in).  The charge was detonated at its center of mass with two instant electric 

blasting caps.  Inside the blast chamber, twelve flush-mount pressure sensors measured 

reflected pressures.  Five shock accelerometers, mounted to the outer surfaces of the blast 

chamber walls and ceiling slab, measured structural accelerations. Figure 2.7 shows the 

geometry of the blast chamber, the location of the charge, and the locations of the 

sensors. 
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The structure at location B was a two-story, unreinforced, brick, bearing wall 

building, which was built as an addition adjacent to the larger steel-framed boiler house 

of location A1.  The structure had locker rooms on the ground floor and laboratory space 

on the second floor.  Exterior walls were load-bearing brick while interior walls were 

non-load-bearing brick infill panels bounded by the steel columns and beams of the 

adjacent boiler house. The internal height of the blast chamber was 345.4 cm (136 in). 

Figure 2.7 is a plan of the ground-floor of the building (this figure also establishes the 

naming convention for the three walls to be studied subsequently).  Figures 2.2 and 2.3 

show three-dimensional models of the structure at location B. 

Interior infill walls were 20 cm (8 in) thick and exterior bearing walls were 30 cm 

(12 in) thick. The internal face of all walls of the blast chamber had a 5 cm (2 in) thick 

tile veneer bonded to the brick with mortar. The floor of the blast chamber was a 25 cm 

(10 in) thick reinforced concrete slab cast integrally with the reinforced concrete 

foundation walls and caissons. The ceiling of the chamber was a 20 cm (8 in) thick 

reinforced concrete slab supported by 23 cm (9 in) deep steel wide flange beams spaced 

at 229 cm (90 in) on center. The beams spanned 495 cm (16.2 ft) and were supported by a 

steel girder at one end (at the location of Wall #1) and an unreinforced, brick bearing wall 

(Wall #3) at the other. The one-way spanning floor system meant that collapse of the 

ground floor bearing wall (Wall #3) would cause a large part of the two-story building to 

collapse. Compression tests on material samples found that the average compressive 

strength of the masonry assemblages was 13.5 MPa (1960 psi), the average modulus of 

elasticity was 4.23 GPa (614 ksi), and the average masonry density was 1850 kg/m3 (115 

lb/ft3).  Bond wrench tests indicated a masonry flexural tensile strength perpendicular to 
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the bed joints of 0.862 MPa (125 psi) while simple beam bending tests indicated a 

flexural tensile strength of 0.752 MPa (109 psi).  Prior to the blast test, geotextile fabric 

was hung in front of exterior windows to shield nearby structures from blast generated 

debris. 

2.3. Shot Results – Observed Damage 

 The results of the three blast tests will be reported in two sections.  In this section, 

narrative descriptions of damage will be provided, accompanied by supporting figures 

and photographs.  Then, Section 2.4 will present a quantitative summary of measured 

airblast parameters and structural accelerations.  Appendices A through C contain a 

complete set of plotted sensor data for each blast event, showing pressure and impulse 

time histories, acceleration time histories, and acceleration frequency spectra. 

2.3.1. Blast Chamber A1 

The explosion caused all windows in the blast chamber to shatter and glass 

fragments were found as far as 45.7 m (150 ft) from the structure. (This large glass throw 

distance can be explained by the fact that the blast chamber was on the fourth floor of the 

boilerhouse). One of the interior doors was blown off its hinges while the other was 

violently thrown open by the positive overpressure. The reinforced concrete floor slab 

under the charge showed no significant damage.  Nonstructural elements in the blast 

chamber suffered considerable damage (piping and lighting).  The infill walls suffered 

little to no damage, except for a small fractured region near the closest embedded column 

and several fine cracks in mortar joints. See Figure 2.11 for a post-test view of the A1 

blast chamber. 
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No structural steel members (beams, columns, or bracing) in the blast chamber 

were damaged as a result of the blast. The ceiling of the chamber was cracked around the 

embedded I-sections, particularly in the area immediately above the charge location 

(Figure 2.12). The crack ran the full width of the blast chamber parallel to the embedded 

I-section directly above the charge location. Other smaller cracks were observed parallel 

to the embedded I-shapes.  

 

 
FIGURE 2.11:  Post-test view of A1 blast chamber showing little to no structural 

damage. 
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FIGURE 2.12:  Crack on top surface of A1 blast chamber ceiling directly above charge 

location.  Crack aligned with embedded I-shaped member supporting the slab. 
 
 

2.3.2. Blast Chamber A2 

The blast caused all windows in the chamber to shatter and glass fragments were 

found as far as 30 m (100 ft) from the building. (Again, this large glass throw distance 

can be explained by the fact that the blast chamber was on the fourth floor of the 

boilerhouse).  One of the interior doors was blown off its hinges while the other was 

violently thrown open by the positive overpressure. The reinforced concrete floor slab 

under the charge showed no significant damage. Nonstructural elements in the blast 

chamber suffered considerable damage (Figure 2.13).  The infill walls suffered little 

damage as a result of the explosion; no structural steel members in the blast chamber 

were damaged. The ceiling of the blast chamber was cracked around the embedded I-

sections and very minor flexural cracking of the slab was observed above the charge 

location (observed from above on the floor slab that was the chamber’s ceiling).  A small 



57 

 

 

area of spall was observed on the top surface of the blast chamber ceiling (Figure 2.14).  

It is worth noting that while charge A1 was larger than A2, it produced less damage to the 

ceiling slab and the steel plates attached to the floor.  This is largely because of the 

difference in charge shapes.  Charge A1 was a perfect cylinder while charge A2 was a 

cylinder topped with a triangular prism.  The effect of the triangular prism was to direct 

more blast energy both upward and downward than would an ordinary cylinder of the 

same weight, thus causing greater damage to the floor and ceiling.   

 

 
FIGURE 2.13:  Post-test view of A2 blast chamber showing damage to non-structural 

components.  Note the bent steel plates at lower left. 
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FIGURE 2.14:  Floor above blast chamber A2 showing area of spalled concrete. 

 

2.3.3. Blast Chamber B 

The blast caused several steel window mullions, all remaining glass, and the 

protective geotextile fabric covering the windows to be ejected away from the building. 

The door located in the infill wall was blown open and its frame was severely bent. Sinks 

and toilets fastened to the walls were either shattered or torn from their supports. Other 

nonstructural elements such as ductwork, heating fans, and lights hanging from the 

ceiling were crushed and scattered throughout the room (Figure 2.15).  

 The three walls closest to the charge (Walls #1, #2, and #3) were severely 

damaged. Figure 2.7 shows the naming convention used for the blast chamber walls.  In 

particular, the internal infill wall (Wall #1) closest to the charge cracked in an inverted Y-

pattern between two interior steel columns; the wall was permanently displaced outward 

by more than 25 cm (10 in) at its top (Figure 2.16 shows a photo of this damage). This 
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crack pattern is indicative of a wall that is supported along three edges (left, right, and the 

bottom).  Dawe and Seah (1989) observed an identical crack pattern in one of their 

experimental tests in which the wall was supported on 3 sides.  Regions of the exterior 

bearing walls (Walls #2 and #3) closest to the charge were also heavily damaged and 

appeared to be near collapse. The smaller load bearing wall (Wall #2) cracked in an X-

pattern.  This crack pattern was expected since the wall’s aspect ratio (less than 2:1) 

indicated it should behave as a two-way element if it was adequately supported on all 

four edges.  

 

 
FIGURE 2.15:  Post-test view of the location B blast chamber showing extensive damage 

to nonstructural items. 
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FIGURE 2.16:  Post-test view of Wall #1 from outside the blast chamber showing 

heavily damaged infill panel. 
 

 
FIGURE 2.17:  Post-test exterior view of Wall #3 where it intersects Wall #2. 
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FIGURE 2.18:  Post-test exterior view of intersection of Wall #3 and Wall #2.  Note the 

area of spall on Wall #3 at upper right.  The remaining geotextile fabric used to catch 
ejecta is visible at right. 

 

The larger bearing wall (Wall #3), which supported one side of the entire second 

story, exhibited cracking consistent with floor-to-floor, one-way bending. This crack 

pattern was expected due to the large aspect ratio of the wall (greater than 2:1) and the 

placement of window openings. Wall #3 was cracked at about one-quarter of its height 

for approximately 610 cm (20 ft) along the bottom of its windows and approximately 460 

cm (15 ft) along the top of its windows; one wythe of brick spalled off the outside of the 

wall near the charge location (Figure 2.18 is a photo of the damage).  Figures 2.17 and 

2.18 show the intersection of Wall #3 and Wall #2; this corner of the building suffered 

extensive damage due to the internal blast loading. Figures 2.19, 2.20, and 2.21 are 

illustrations of the crack/ damage patterns observed on each wall 
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FIGURE 2.19:  Post-test crack pattern of ground floor infill wall (Wall #1), outside blast 

chamber looking in. 

 
FIGURE 2.20:  Post-test crack pattern of smaller bearing wall (Wall #2) at ground floor 

level, outside blast chamber looking in. 
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FIGURE 2.21: Post-test crack/damage pattern of larger bearing wall (Wall #3) at ground 

floor level, outside blast chamber looking in. 
 
 

2.4. Shot Results – Sensor Measurements 

This section provides a summary of measurements made using piezoelectric 

pressure sensors and shock accelerometers.  Before discussing measured quantities, it is 

necessary to first discuss certain problems discovered after conducting the blast tests.  

Generally speaking, pressure (and therefore also impulse) measurements are thought to 

be of acceptable quality with the caveat that any sustained gas pressures were likely not 

measured due to the data acquisition system’s AC coupling.  This, however, is acceptable 

because the blast chambers were only partially confined due to the extensive area of 

windows.  Gas pressures (and corresponding impulses) should have therefore been 

negligible. 
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With regard to shock accelerometer measurements, however, problems associated 

with high range sensors and low frequency attenuation were found to yield semi-unusable 

data.  The first problem, the high measurement range of the shock accelerometers, means 

that the signal had a high noise floor (greater than +/- 10 g, or greater than 20g total); this 

is in contrast to the measurements which peak from several hundred to several thousand 

g’s.  This background noise can be attributed to a combination of digitization error and 

noise induced in unshielded instrumentation cables.  A high g-limit was chosen because 

prior to the test there was limited ability to specify the exact location and size of charges.  

It was therefore believed prudent to over-estimate possible accelerations rather than to 

select under-ranged sensors which could saturate under blast loading, yielding unusable 

data.      

The second and more serious problem, the AC coupling built into the NI 4472 

modules, significantly attenuated (20% or more) signals with frequencies below 3.3 Hz.  

This feature was enabled by UNC Charlotte’s instrumentation vendor without 

consultation because it solved the difficult problem of removing sensor bias voltages 

without the use of external signal conditioners.  As a result, the majority of masonry wall 

nonlinear response was not measured by the accelerometers due to its relatively low 

frequency content (easily below 3.3 Hz as shown by Figure 2.22, a plot of data contained 

in Griffith et al. (2004)).  Therefore, shock accelerometer data could not be integrated 

accurately enough to obtain structural velocities or deflections.   
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FIGURE 2.22:  Natural frequency versus midheight deflection for 50 mm thick brick 
masonry walls cracked at midheight with various levels of precompression.  Simply-

supported height of 1500 mm.  Data plotted from Griffith et al. 2004. 
 
 

The remainder of this chapter will, therefore, focus on measured blast pressures, 

and shock accelerometer measurements will only be used to obtain the natural 

frequencies of structural elements where possible.  The results of interest with regard to 

structural analyses will primarily be post-blast crack patterns and permanent deflections.  

In future tests using this data acquisition system, it is strongly recommended that 

structural accelerations be recorded using external PCB signal conditioners with the NI 

4472 modules set to DC coupled mode (which has been permanently enabled for 

channels 3_0 to 3_7) and using lower range accelerometers with appropriate integrated 

mechanical and electrical filtration.  Recent experimental work has shown that using PCB 

model 483C signal conditioners with PCB model 350B24 shock accelerometers yields 

acceptable measurements of blast-induced structural acceleration. 

The data summarized in the tables that follow were gathered from the figures 

compiled in Appendices A through C.  In those appendices, each sensor’s measured time-
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history is plotted on a time scale common to each blast event.  Pressure time histories 

were integrated using the trapezoidal rule to obtain impulse time histories.  Fourier 

amplitude spectra were constructed for acceleration time histories and are shown for two 

different frequency windows.  Where a hardware malfunction (sensor, cable, or connector 

damage) is suspected, comments are made in the figure captions.  In a qualitative sense, 

the pressure time history plots show what was expected during the tests - textbook-like 

positive phase pressure waves with no significant gas phase pressures, and a significant 

number of internal reflections.   

Note that the data appear to show negative pressures in some of the time histories.  

Given the apparent magnitude of computed negative phase impulses the author would 

have expected to have observed tremendous structural damage from these negative 

pressures; but no such damage was observed.  This indicates that the pressure sensors 

were likely affected by some thermal or mechanical phenomena which caused their zero 

state to shift negatively following the blast events.  These non-physical signals cannot be 

separated from any real negative phase pressures that did exist. 

Tables 2.1 through 2.3 summarize the data contained in the figures of Appendices 

A through C by listing the primary blast wave parameters - relative arrival time, positive 

phase duration, peak positive pressure, and positive impulse.  No time of arrival device 

(TOAD) was used to synchronize the data acquisition system with the detonation of the 

charges.  The data acquisition system was therefore started well in advance of charge 

detonation and the raw data files were each over a gigabyte in size.  In order to decrease 

the length of time histories (thus facilitating data processing and file handling), start and 

end times were chosen that windowed the first and last blast generated signals measured 
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by the sensors.  Each blast event’s time history was then trimmed to contain data from 

only this window.  As a result, the column “Time of Arrival” is measured relative to the 

arbitrarily selected start time of each shot’s time history, not the actual detonation of a 

charge.  The second column, “Positive Phase Duration”, was simply taken as the time 

required for the initial positive pressure wave to decay to zero, regardless of whether or 

not this included one or more reflections.  The column “Peak Pressure” was taken as the 

maximum pressure recorded by a given sensor, even if it occurred in a later reflected 

blast wave rather than the first reflected blast wave.  The column “Positive Phase 

Impulse” was computed as an integral of pressure time histories using the trapezoidal 

rule.  Appendix D contains the Matlab scripts used for post-processing and plotting 

sensor data. 

 
TABLE 2.1:  Shot A1 measured blast parameters. 

Sensor Time of Arrival 
(ms) c 

Positive Phase 
Duration (ms) 

Peak Pressuree  
MPa (psi) 

Positive Impulse 
MPa ms (psi ms) 

P1 41.9 1.7 5.437 (788.6) 1.257 (182.3) 
P2 42.1 1.4 2.329 (337.8) 0.628 (91.1) 
P3 42.7 2.8 0.8101 (117.5) 0.363 (52.6) 
P4 46.5 6.8 0.483 (70.0) a 0.8301 (120.4) 
P5 42.2 1.5 2.295 (332.9) 0.7384 (107.1) 
P6 44.4 2.7 0.6964 (101.0) 0.341 (49.5) 
P7 51.2 3.8 0.119 (17.3) 0.208 (30.1) b 
P8 48.7 6.0 0.252 (36.6) 0.554 (80.3) 

PP1 48.7 2.9 0.087 (12.6) a 0.437 (63.4) b 
Notes for Tables 2.1 through 2.3: 
a. Maximum pressure from secondary reflection. 
b. Impulse computation includes at least one reflection from the floor, a wall, or the ceiling. 
c. Arrival time is taken relative to arbitrary point in raw time series; however, the start time is 

the same for all sensors in a given shot. 
d. Sensor manifested non-physical signals.  Data integrity questionable. 
e. Flush mount sensors measured reflected pressures while pressure pencils measured incident 
pressures. 
NM.  Channel malfunction, no measurements recorded. 
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TABLE 2.2:  Shot A2 measured blast parameters. 
Sensor Time of Arrival 

(ms) c 
Positive Phase 
Duration (ms) 

Peak Pressuree  
MPa (psi) 

Positive Impulse 
MPa ms (psi ms) 

P1 196.7 1.8 3.605 (522.9) 0.9708 (140.8) 
P2 197.2 1.9 3.466 (502.7) 0.7908 (114.7) 
P3 197.8 2.1 1.064 (154.3) 0.468 (67.9) b 
P4 201.5 6.7 0.515 (74.7) a 0.754 (109.4) b 
P5 197.1 1.7 3.093 (448.6) 0.7798 (113.1) 
P6 199.0 2.5 0.609 (88.3) 0.350 (50.8) 
P7 205.3 3.9 0.160 (23.2) 0.458 (66.4) b 
P8 203.0 5.1 1.068 (154.9) a 0.8763 (127.1) b 

PP1 198.4 1.3 0.322 (46.7) 0.163 (23.6) b 
 
 

TABLE 2.3:  Shot B measured blast parameters. 
Sensor Time of Arrival 

(ms) c 
Positive Phase 
Duration (ms) 

Peak Pressuree  
MPa (psi) 

Positive Impulse 
MPa ms (psi ms) 

P1 100.5 0.5 10.999 (1595.4) 1.260 (182.7) 
P2 100.8 1.6 1.500 (217.6) 0.593 (86.0) 
P3 NM NM NM  NM 
P4 101.0 1.5 1.850 (268.3) 0.627 (90.9) 

P5 d 100.4 0.8 1.230 (178.4) 0.655 (95.0) 
P6 103.1 7.2 1.060 (153.7) 1.061 (153.9) b 
P7 101.7 1.9 1.050 (152.3) 0.872 (126.5) 
P8 103.6 2.5 0.7257 (103.8) 0.590 (85.6) b 
P9 103.9 3.0 0.468 (67.9) 0.565 (82.0) b 
P10 112.5 1.6 0.167 (24.2) a 0.228 (33.1) b 
P11 116.6 10.3 0.117 (17.0) 0.683 (99.1) b 
P12 103.5 3.2 1.080 (156.6) 0.677 (98.2) b 

 
 
 Examining the data in Tables 2.1, 2.2, and 2.3 provides some insight into the 

performance of the explosive charges and the distribution of blast pressures.  In shots A1 

and A2, sensors P2 and P5 were located at the same elevation but on opposite sides of the 

charge.  Table 2.1 shows that for blast A1, the pressure waves arrived at nearly the same 

time and were of similar magnitude at both P2 and P5 (1.5% difference in measured peak 

pressure and 17.6% difference in impulse).  In shot A2, the charge was not radially 

symmetric, but Table 2.2 shows the time of arrival and duration at P2 and P5 were 

reasonably similar; the difference in measured peak pressure was 10.8% while the 
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difference in impulse was only 1.4%.  For shot B, there were two pairs of sensors that 

were at the same elevation and standoff on opposite sides of the charge.  Sensors P1 and 

P5 were equidistant from the charge and at an elevation of 44.5 cm above the floor.  

Unfortunately sensor P5 (or its cabling) malfunctioned and the data was deemed 

unreliable for comparison.  Sensors P2 and P4 were also equidistant but at an elevation of 

158.8 cm above the floor.  For these sensors, the measured peak pressure difference was 

23.3% and the impulse difference was 5.7%.  These simple comparisons suggest that the 

distribution of blast energy was radially symmetric for all three shots, which would also 

imply that the charges detonated in an approximately symmetric manner.   

With regard to the blast pressure distribution on a particular wall, it is only 

possible to examine the vertical distribution where groups of sensors were spaced 

vertically at the same horizontal distance from the charge.  Figure 2.23 shows the 

reflected pressure data from sensors in each of the three shots.  Sensors P1, P2, and P3 

are plotted for shots A1 and A2 and only sensors P1 and P2 for shot B.  On the horizontal 

axis, the peak reflected pressure is normalized to the measurement recorded by P1 (which 

was always maximum in all three shots, and thus 100%).  The vertical axis is the height 

of the sensor above the blast chamber floor.  The plot suggests that a linear reflected 

pressure distribution up the height of the blast chamber walls might be a reasonably 

accurate approximation, but there are too few data points to determine this conclusively. 

A similar plot was constructed for the vertical distribution of reflected impulse.  

Figure 2.24 shows impulse data from all three shots using the same sensors as were used 

to construct Figure 2.23.   On the horizontal axis the peak reflected impulse is normalized 

to the measurement at sensor P1 (which was always maximum in all three shots, and thus 
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100%).  The vertical axis is the height of the sensor above the blast chamber floor.  Again 

the data suggests a linear distribution of reflected impulse vertically might be a 

reasonable approximation, but as with pressure, there are too few data points to be 

conclusive.   

The relatively similar pressure and impulse distributions observed in the A1 and B 

data might suggest that the distributions are only a function of the charge’s shape and 

distance to reflecting surfaces (which was nearly identical for charges A1 and B), and not 

a function of charge mass.  Note that the plots for A1 and B are nearly co-linear with 

regard to pressure and impulse.  However the plot of A2 shows a “hump” near midheight.  

This might be explained by the unusual shape of the A2 charge (cylinder topped by a 

triangular prism) which produced a different pressure distribution than the other two 

charges.  Chapter 5 will utilize computational simulations to study pressure and impulse 

distributions in greater detail. 

As previously discussed, the acceleration time histories could not be satisfactorily 

integrated to obtain velocity or deflection time histories.  Consequently, the primary use 

of acceleration data is to provide information regarding dominant structural frequencies.  

As shown in Tables 2.4, 2.5, and 2.6 none of the sensors registered over 4,000 g, and 

therefore the 100,000 g limit was a poor sensor choice.  In comparing shots A1 and A2 

(where accelerometers would have been mounted on nearly identical structures) one can 

see that shock sensors S1 and S2 recorded accelerations for both shots of similar order of 

magnitude.  For shot B, accelerations are an order of magnitude higher which can be 

explained by the higher blast loading and the resulting larger structural deformations.  

Further analyses of the accelerometer data will be presented in Chapter 6, where 
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measured natural frequencies will be compared to the natural frequencies estimated as 

part of the ESDOF analyses. 

 

 
FIGURE 2.23:  Vertical peak reflected pressure distributions from all three shots. 

 

 
FIGURE 2.24:  Vertical peak reflected positive phase impulse distribution from all three 

shots. 

10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

Percent of Peak Reflected Pressure

H
ei

gh
t A

bo
ve

 F
lo

or
 (

cm
)

 

A1
A2
B

20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

Percent of Peak Reflected Impulse

H
ei

gh
t A

bo
ve

 F
lo

or
 (

cm
)

 

 
A1
A2
B



72 

 

 

TABLE 2.4:  Peak accelerations and natural frequencies processed from Shot A1 data. 
Sensor Peak Acceleration 

(g) 
First Mode 

(Hz) 
Second Mode 

(Hz) 
Third Mode 

(Hz) 
Fourth Mode 

(Hz) 
S1 -39.9/+72.0 6.25 16.3 28.8 40.0 
S2 -255.9 / +89.6 6.56 13.8 28.8 38.8 
S3 -3380/3976 7.5 42.5 56.3 81.25 

 

TABLE 2.5:  Peak accelerations and natural frequencies processed from Shot A2 data. 
Sensor Peak Acceleration 

(g) 
First Mode 

(Hz) 
Second Mode 

(Hz) 
Third Mode 

(Hz) 
Fourth Mode 

(Hz) 
S1 -64.7/+195 0.8 3.2 5.2 13.2 
S2 -43.1/+103.5 2.0 2.8 4.4 6.0 

 

TABLE 2.6:  Peak accelerations and natural frequencies processed from Shot B data. 
Sensor Peak Acceleration 

(g) 
First Mode 

(Hz) 
Second Mode 

(Hz) 
Third Mode 

(Hz) 
Fourth Mode 

(Hz) 
S1 -2195/+1174 4.3 12.7 29.0 71.7 
S2 -79.7/+151.5 5.0 56.0 N/A N/A 
S3 -1669/+2782 4.7 36.4 59.7* 68.7 
S4 -99/+230.5 3.7 19.3 60.3* 81.3 
S5 NM NM NM NM NM 

*Frequency spike likely from nearby power lines 
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CHAPTER 3:  ENGINEERING LEVEL BLAST LOAD PREDICTION 
 

Chapter 1 illustrated that there are a variety of methods that may be used to 

predict airblast loading.  Before proceeding to computational methods, it is of interest to 

at least attempt using simple (so called engineering level) analysis methods.  These are 

the tools and techniques that would typically be employed by engineers engaged in the 

design of blast resistant facilities.  Advanced tools like computational fluid dynamics 

(CFD) codes are expensive with respect to time and money and few structural engineers 

have access to or the know-how to utilize them.  It is therefore of interest to study the 

accuracy of engineering level analysis tools applied to two different airblast scenarios 

relevant to this investigation.  The comparisons that follow will help show why it was of 

interest to employ more advanced computational modeling techniques. 

The first airblast scenario consists of data collected during an ISERRT Facility 

(Infrastructure Security and Emergency Responder Research and Training Facility) 

explosive yield study.  The ISERRT data consists of fifteen airblast measurements 

(incident pressures and impulses) collected during nine different blast events in which 

bundled cylinders of Unimax dynamite were detonated near the ground’s surface in an 

open arena.  These blast tests provide a relatively simple scenario for which to compare 

predicted and measured blast wave parameters.  As an added benefit, the explosive 

charges were 
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very similar to those used in shots A1 and B described in Chapter 2.  The second scenario 

is the A1 blast event described in Chapter 2.  This scenario is more complex as it includes 

oblique reflections and the potential for gas phase pressure.  Engineering level methods 

will be used to predict the airblast parameters measured during both of these experiments 

to assess the accuracy of these simple predictive techniques.   

The most rudimentary airblast parameter prediction involves the use of 

nomographs derived from hundreds of blast tests of Trinitrotoluene (TNT) spheres or 

hemispheres (Kingery and Bulmash (1984) is the source for many nomographs).  From 

these nomographs, airblast parameters can be quickly computed.  The computed incident 

airblast parameters are then used with reflection coefficient charts that account for shock 

strength and angle of incidence to translate incident pressures and impulses into reflected 

pressures and impulses.    

Conveniently, these nomographs have been electronically implemented in two 

software programs written by USACE.  ConWep (2005) is the de-facto analysis program 

used throughout the Army for computing blast wave parameters resulting from 

hemispherical surface bursts and spherical free air bursts.  BlastX (2006), a more 

advanced software program, is designed to compute shock and gaseous phase blast loads 

in confined environments produced by spherical, hemispherical, or cylindrical charges.  

ConWep and BlastX will be applied to both of the previously described airblast 

scenarios.     

Before proceeding with the analyses, it is worth pausing for a moment to discuss 

the selection of blast prediction methods utilized in this investigation.  Chapter 1 showed 
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there are many airblast prediction methods.  With respect to nomographs for hand 

computation, engineers use those from Kinney and Graham (1985), UFC 3-340-02 

(USACE, 2008d), UFC 3-340-01 (USACE, 2002), Kingery and Bulmash (1984), and an 

array of journal articles with empirically derived equations.  Similarly, with respect to 

software tools engineers can use ConWep, BlastX, SHOCK (NAVFAC, 2005), and 

FRANG (NAVFAC, 1989).  Experience has shown that different branches of government 

have differing opinions on which tool is the “best” for the job.  In the past, the author has 

seen USACE use ConWep, BlastX, and SHOCK – all for the same analysis.  Given this 

diverse set of tools and conflicting opinions on what constitutes best practice, how is an 

engineer to select one tool/method over another? 

As an answer to this question Bogosian et al. (2002) published a clear and 

enlightening comparison between many of these tools.  In their paper, the authors first 

compare the Kingery and Bulmash (1984) curve fits to any reliable airblast data that 

could be obtained.  The comparison showed that Kingery and Bulmash’s (KB) curve fits 

are indeed a good representation of TNT airblast data and its use as the standard is well 

founded.  UFC 3-340-01 and UFC 3-340-02 are based on the KB data and should 

therefore also be given precedent over other references like Kinney and Graham (1985). 

With respect to software tools, Bogosian et al. (2002) found that ConWep most 

accurately represented the KB curve fits while the other tools showed error relative to the 

KB standard.  With regard to positive reflected pressure, the study showed that, compared 

to the test data, BlastX predicted the highest pressures, SHOCK the lowest, and ConWep 

represented the average.  With regard to reflected positive impulse, SHOCK predicted the 
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highest impulses while ConWep and BlastX predicted similar, but lower impulses more 

in agreement with test data.  Comparing Bogosian’s findings to past experience, the 

author believes that DoD agencies likely specify the software tool to be used on a project 

based on which one provides the most conservative answer, regardless of its accuracy 

relative to test data.  Based on this information, ConWep and BlastX were selected as the 

analysis tools which were likely to be the most accurate. 

3.1. Equivalent Explosive Weight 

Before using these software programs, it is first necessary to develop a mass 

equivalency factor which translates a unit weight of Unimax dynamite into an equivalent 

weight of TNT.  This equivalency factor is required because different explosive 

compounds have different chemical compositions, different detonation velocities, and 

different energy contents.  Thus, one kilogram of dynamite does not produce the same 

airblast as one kilogram of TNT.  There are several methods of determining weight 

equivalency, but the most straightforward is an equivalency based on the ratio of the 

energy of Unimax to the energy of TNT at their standard densities (TNT’s reference 

density is 1.63 grams per cubic centimeter, Unimax’s is 1.5 grams per cubic centimeter).   

At this juncture it is necessary to define terminology used to describe the energy 

content of explosive materials.  Perusing any reference text like Kinney and Graham 

(1985) or Cooper (1996) the reader will encounter a number of terms including “chemical 

energy,” “available energy,” “specific energy,” “thermodynamic work function,” 

“hydrodynamic work function,” “energy of explosion,” “heat of combustion,” or “heat of 

detonation.”  Clearly, the type of “energy” under consideration must be carefully defined 
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as it has a very specific meaning that describes how the energy was computed or 

measured.  Experience has shown that practitioners use these terms interchangeably, 

sometimes without regard for their correctness.  Substituting one term for another is not 

technically correct; however it can be an acceptable estimate for certain explosives for 

which these quantities are approximately equal.  For example, Cooper (1996) reports the 

heat of detonation of TNT as 1089 cal/g, the thermodynamic work function as 1160 cal/g, 

and the experimentally measured energy content to be 1120 cal/g.  Kinney and Graham 

(1985) report the theoretically derived energy of explosion to be 1158 cal/g and the 

experimentally measured energy to be 1118 cal/g.  These energies all report the same 

quantity – the energy released during a detonation. 

Four of these energy definitions have relevance to this investigation and are worth 

expounding upon.  The heat of combustion is found by a bomb calorimeter test.  In this 

test, a small amount of the explosive material under study is burned inside a sealed 

chamber with sufficient oxygen and water to permit the material to react completely, 

liberating all energy that could be feasibly released.  The heat of detonation is similarly 

measured in an inert (e.g. Nitrogen) atmosphere without any water; this attempts to 

mimic the conditions that occur during a detonation.  The heat of combustion is therefore 

larger than the heat of detonation due to the additional energy released as combustion 

products react with oxygen and water to form stable compounds.  The difference between 

the heat of combustion and the heat of detonation is termed the heat of afterburn and is 

the energy released by the fireball following most explosions.  Finally, the hydrodynamic 

work function is computed as the integral of the expansion isentrope of the detonation 
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product gases as they expand from the point of detonation to atmospheric pressure.  It is 

usually derived from the equation of state of the detonation product gases which will be 

discussed at length in a subsequent chapter.  Given the variety of available energy 

definitions it is important that the energy of the explosive material under consideration 

was found in the same manner as that for TNT.  So, for example, comparing the heat of 

combustion to the heat of detonation would produce a misleading energy equivalence. 

Table 3.1 provides two estimates of the energy equivalency factor for Unimax 

dynamite.  The first equivalency was computed using the energy (heat of detonation) of 

Unimax.  The second equivalency was taken from UFC 3-340-01 and is for 20% strength 

dynamite.  The difference in equivalencies is quite large and this investigation will use 

the 0.94 equivalence computed using heats of detonation because the UFC 3-340-01 

equivalence factor likely does not account for the additional energetic materials included 

in Unimax (e.g. ammonium nitrate).  In some instances, references will provide both an 

impulse equivalence and a pressure equivalence factor.  Without extensive airblast testing 

it is not possible to determine different equivalence factors for pressure and impulse and 

we must therefore rely exclusively on the energy equivalence. 

BlastX can directly utilize equivalent TNT weight along with built in airblast 

models of cylindrical bombs (which are based on extensive test data and/or CFD 

simulations).  ConWep, on the other hand, requires the user make adjustments to charge 

properties to account for charge geometry as it only natively models spheres or 

hemispheres of TNT.  Esparza (1992) provides such an adjustment methodology to 

translate a cylindrical charge into an equivalent spherical charge for use in ConWep.  To 
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develop this equivalency, Esparza compared free air test data (pressures and impulses) 

from cylindrical bombs to those of spherical bombs.  He used this data to compute the 

weight of a spherical TNT bomb that would produce the same pressure or impulse as a 

given cylindrical TNT bomb.   

 
TABLE 3.1:  Estimated TNT equivalency of UNIMAX dynamite. 

Reference 
Charge 
Weight 

Internal 
Energy 
(cal/g) a 

Energy 
Equivalence 

Factor 

Equivalent 
Weight TNT 

(kg) 

UFC 3-340-01 
Equivalence 

Factorb 

Equivalent 
Weight TNT 

(kg) 
Unimax 

1 kg 
1055 0.94 0.94 0.70 0.70 

Standard 
TNT 
1 kg 

1120 1.0 1.0 1.0 1.0 

Notes:   
a. Data for Unimax  from manufacturer, data for TNT from Cooper (1996).  Heats of 

detonation.   
b. Assumes dynamite classified as 20% strength. 

 
 

Esparza provides this information for several different azimuth angles (azimuth 

angle is defined as the vertical angle between the horizontal and a radial line extending 

from the charge center of gravity to the point of interest).  He found that for an azimuth 

angle of zero degrees (the measurement point is at the same elevation as the center of 

gravity of the charge), the spherical equivalency factor could be as high as three or as low 

as one, decreasing as you get progressively further away from the charge; the equivalency 

factor is defined as the weight of the equivalent spherical bomb divided by the weight of 

the real cylindrical bomb.  Section 3.2 will document the application of BlastX, ConWep, 

and Esparza’s equivalency to the free air test data provided by the ISERRT study.  

Section 3.3 will perform similar comparisons to data from Shot A1. 
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3.2. Free Air Tests – Experiments versus Predictions 

This section will document the experimental airblast data collected during the 

ISERRT study and compare these measurements to predictions made using ConWep and 

BlastX.  Table 3.2 provides a summary of the charge weight (gross weight as measured 

by a scale), height of burst (measured from the ground to charge center of gravity), the 

standoff from the pressure sensor, and the measured incident pressures and impulses.  

Incident pressures were measured using PCB model 137A21 free air pressure pencils.  

Signal conditioning for the free air pencils was provided by PCB model 483C signal 

conditioners which were configured for DC coupling.  Data was recorded at a rate of 100 

kHz using the National Instruments system described in Section 2.1, with on-board signal 

conditioning and AC coupling (high pass filtration) disabled.  Impulses were computed as 

the numerical integrals (using the trapezoidal rule) of the pressure time histories 

measured by the free air pencils. 

All dynamite charges were composed of sticks of Unimax bundled together with 

electrical tape.  Each stick measured 20.3 cm (8 in) tall by 3.175 cm (1.25 in) in diameter.  

Each stick weighed approximately 0.231 kg (0.51 lb).  The bombs were detonated from 

the top center using shocktube driven blasting caps and a small high explosive booster.  

All charges rested on small timber stands or were affixed to timber poles to achieve the 

desired height of burst.  The EY series of charges represent the closest approximation to 

free air tests as they had no reflecting surfaces present other than the ground.  The BV, 

BPS, and BPG tests used the cylindrical bombs to generate blast loads on test specimens, 
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but the test arena geometry and sensor locations were such that there should be little to no 

impact on the free air measurements presented in the table. 

Table 3.2 shows that for blast measurements made at the same distance on 

similarly sized charges, the measured blast parameters are relatively consistent and 

repeatable.  There is only one significant discrepancy visible in the data.  Shots BV-5 and 

BPS-7 both had a charge size of approximately 1.43 kg.  In BPS-7, the free air pencil was 

further from the charge than in BV-5.  One would therefore expect the pressure and 

impulse to be greater in shot BV-5 than in BPS-7.  But the data clearly shows that the 

opposite is true.  Simplified hand calculations showed that neither oblique reflections 

from the ground nor the formation of a Mach stem can explain the observed discrepancy.  

One explanation is that the charge in BV-5 was directly affixed to a 2x4 timber while 

charge BPS-7 rested on a table on the ground.  Thus, BV-5 might have lost energy in 

splintering the 2x4 support timber while BPS-7 did not.  Although there is no direct 

comparison available in the test data, the same is likely true of the BV-4 measurements. 

Another point worth briefly discussing is the behavior of bundled dynamite 

charges as compared to a solid, cast TNT charge.   In the very near field (within several 

charge diameters) the bundled dynamite sticks likely created a highly irregular blast 

waveform.  Examination of the measured blast waveforms show, however, that by the 

time the blast waves arrived at the pressure sensors they had the appearance of an ideal 

blast overpressure waveform.  Insufficient data has been collected to identify the distance 

from the charge at which the effect of stick bundling becomes critical.  It seems, 
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however, that for all shots in this investigation measurements were taken at least this far 

from the charges and the effect of bundling sticks together may be ignored. 

 
TABLE 3.2:  Summary of free air data for cylindrical UNIMAX charges. 

Shot Sensor 
Charge  
Weighta 
kg (lbs) 

Standoff 
cm (in) 

Height  
Of Burstb 

cm (in) 

Incident 
Pressure 
kPa (psi) 

Incident 
Impulse 
kPa ms 
(psi ms) 

EY-1 PP1 
0.953 
(2.10) 

308.6 
(121.5) 

30.5 
(12.0) 

72.5 
(10.5) 

52 
(7.6) 

EY-1 PP2 
0.953 
(2.10) 

226.1 
(89.0) 

30.5 
(12.0) 

131 
(19.0) 

71.6 
(10.4) 

EY-2 PP1 
0.953 
(2.10) 

313.1 
(123.25) 

30.5 
(12.0) 

77.2 
(11.2) 

52 
(7.5) 

EY-2 PP2 
0.953 
(2.10) 

226.1 
(89.0) 

30.5 
(12.0) 

143 
(20.7) 

74.3 
(10.8) 

EY-3 PP1 
0.953 
(2.10) 

304.8 
(120) 

30.5 
(12.0) 

80.7 
(11.7) 

54 
(7.8) 

EY-3 PP2 
0.953 
(2.10) 

224.8 
(88.5) 

30.5 
(12.0) 

152 
(22.0) 

74.5 
(10.8) 

BV-4 PP1 
0.234 

(0.515) 
203.8 

(80.25) 
213.4 
(84.0) 

49 
(7.2) 

15 
(2.1) 

BV-4 PP2 
0.234 

(0.515) 
218 

(86.0) 
213.4 
(84.0) 

35 
(5.1) 

18 
(2.6) 

BV-5 PP2 
1.43 

(3.15) 
220.3 

(86.75) 
213.4 
(84.0) 

131 
(19.0) 

78.4 
(11.4) 

BPS-7 PP2 
1.45 

(3.20) 
308.6 

(121.5) 
30.5 

(12.0) 
185 

(26.9) 
101 

(14.6) 

BPS-10 PP1 
1.91 

(4.20) 
293.4 

(115.5) 
50.8 

(20.0) 
134 

(19.4) 
98.4 

(14.3) 

BPS-10 PP2 
1.91 

(4.20) 
297.8 

(117.25) 
50.8 

(20.0) 
142 

(20.6) 
90.4 

(13.1) 

BPS-12 PP1 
2.37 

(5.23) 
313.7 

(123.5) 
50.8 

(20.0) 
201 

(29.1) 
N/Ac 

BPS-12 PP2 
2.37 

(5.23) 
309.9 

(122.0) 
50.8 

(20.0) 
146 

(21.2) 
N/Ac 

BPG-14 PP1 
1.91 

(4.20) 
297.2 

(117.0) 
50.8 

(20.0) 
145 

(21.0) 
89.7 

(13.0) 
Notes:    
a. Gross weight as measured in field using a scale.  
b. Measured from the ground to charge center of gravity.  
c. Sensor malfunction prevented impulse integration. 
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Table 3.3 provides a comparison between the experimental incident blast wave 

parameters summarized in Table 3.2 and those predicted by BlastX.  In BlastX, there are 

several options available for cylindrical charges.  The best results were obtained using the 

“cylindrical tabular” model with a bare TNT cylinder with a length to diameter ratio of 

1.0.  Other models such as the “EMRTC Low Height of Burst” were investigated, but 

their results were significantly worse.  The BlastX help file indicates that the cylindrical 

tabular model was created through parametric CFD studies, rather than experiment.   

 
TABLE 3.3:  Comparison between incident pressures and impulses predicted by BlastX 

compared to experimental measurements. 

Shot Sensor 
Equivalent 

TNT Chargea 
kg (lbs) 

Predicted 
Pressured 
kPa (psi) 

Percent 
Errorb 

Predicted 
Impulsed 
kPa ms 
(psi ms) 

Percent 
Errorb 

EY-1 PP1 0.806 (1.78) 104 (15.1) 43.5 42.1 (6.1) -20 
EY-1 PP2 0.806 (1.78) 219 (31.7) 66.5 52.6 (7.6) -27 
EY-2 PP1 0.806 (1.78) 101 (14.7) 31.4 41.6 (6.0) -20 
EY-2 PP2 0.806 (1.78) 219 (31.7) 53.0 52.6 (7.6) -30 
EY-3 PP1 0.806 (1.78) 107 (15.5) 32.5 42.4 (6.2) -21 
EY-3 PP2 0.806 (1.78) 225 (32.6) 48.0 52.8 (7.7) -29 
BV-4 PP1 0.198 (0.436) 50 (7.3) 1.9 26.2 (3.8) 81 
BV-4 PP2 0.198 (0.436) 44 (6.4) 27 24.8 (3.6) 38 
BV-5 PP2 1.21 (2.66) 177 (25.6) 34.9 73.8 (10.7) -6.5 
BPS-7 PP2 1.23 (2.71) 114 (16.6) -38.2 125 (18.1) 24 

BPS-10 PP1 1.62 (3.55) 175 (25.4) 30.7 64.9 (9.4) -34 
BPS-10 PP2 1.62 (3.55) 170 (24.6) 19.3 64.1 (9.3) -29 
BPS-12 PP1 2.01 (4.42) 179 (25.9) -38.0 70.3 (10.2) -59 
BPS-12 PP2 2.01 (4.42) 184 (26.7) -24.3 71.0 (10.3) -50 
BPG-14 PP1 1.62 (4.20) 170 (24.7) 17.8 64.2 (9.3) -28 

Average Absolute Errorc 37  28 
Notes:   
a. Equivalent charge weight computed as gross charge weight multiplied by 0.94 for 

energy equivalence and 0.90 to account for inert packaging weight.   
b. Positive error indicates predicted quantity greater than measured quantity.  
c. BV-4 and BV-5 not included in average absolute error computation.  
d. Predictions made using order of rays equal to 5. 
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As Table 3.3 shows, BlastX tended to over predict incident pressures while under 

predicting impulses.  This might be of concern if used for structural design, as it is often 

desirable to over predict impulses rather than pressures due to the impulse sensitivity of 

many structural elements.  Note that this statement is only true in a general sense.  For 

any given component, there are actually an infinite number of pressure-impulse 

combinations that will produce the same peak response (deflection, rotation, resistance, 

etc).  The relationship between blast pressure and impulse for a consistent level of 

response can be conveniently visualized on a pressure-impulse (P-I) diagram which 

shows a line of constant response plotted in pressure-impulse space.  It is interesting to 

note that the BlastX predictions significantly overestimate the impulse for the BV-4 test 

while underestimating the impulse for all of the other tests.  This lends credibility to the 

theory that the BV series had a reduced explosive output as a result of work done in 

splintering timber supports. 

Given the errors observed in the BlastX comparisons, it was desirable to 

investigate ConWep as an alternative.  As previously discussed, in order to use ConWep 

it was necessary to calculate spherical equivalency factors using Esparza’s (1992) 

method.  Table 3.4 provides a summary of this process, listing the equivalency factors for 

pressure and impulse (the new weight of an equivalent spherical charge is computed as 

the original equivalent TNT charge weight multiplied by Esparza’s equivalency factor).  

Note that the column “Equivalent TNT Charge” is the original Unimax charge weight 

multiplied by 0.94 to account for energy equivalence and by 0.90 to account for 

packaging weight. 
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Table 3.5 compares airblast predictions made using ConWep (with the spherical 

free air burst option and the spherical equivalency data in Table 3.4) to the experimental 

data from Table 3.2.  As with the BlastX predictions, the BV series of tests had the 

highest errors, grossly overpredicting both pressure and impulse.  This lends further 

credence to the idea that the timber supports used in the BV series of tests absorbed 

energy that would have otherwise gone into blast wave formation.  Comparing the 

ConWep and BlastX analyses, ConWep is significantly more accurate.  ConWep’s 

greater accuracy was partially expected because, as previously discussed, ConWep was 

found to be an accurate representation of the original test data used to create the software 

(Bogosian et al., 2002).  ConWep also appears to normally over predict both incident 

pressure and impulse, making it a suitably conservative design tool.  In studying the 

errors in Table 3.5, particularly the EY series of tests, it does not appear that any 

adjustments to assumed equivalency factors (for either energy or Esparza’s shape 

conversion method) would be of benefit as errors are relatively low and well within the 

bounds of normal expectation (as defined in Bogosian et al., 2002).   
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TABLE 3.4:  Equivalency factors to convert cylindrical charge to spherical charge of 
TNT. 

Shot Sensor 

Equivalent 
TNT 

Chargea 
kg (lbs) 

Standoff 
m (ft) 

Scaled 
Distance 
m/kg1/3 
(ft/lb1/3) 

Pressure 
Equivalence 

Factorb 

Impulse 
Equivalence 

Factorb 

EY-1 PP1 
0.806 
(1.78) 

3.09  
(10.1) 

3.32 
(8.36) 

1.16 1.08 

EY-1 PP2 
0.806 
(1.78) 

2.26 
(7.42) 

2.43 
(6.12) 

1.35 1.07 

EY-2 PP1 
0.806 
(1.78) 

3.13 
(10.3) 

3.36 
(8.47) 

1.16 1.08 

EY-2 PP2 
0.806 
(1.78) 

2.26 
(7.42) 

2.43 
(6.12) 

1.35 1.07 

EY-3 PP1 
0.806 
(1.78) 

3.05 
(10.0) 

3.28 
(8.25) 

1.16 1.09 

EY-3 PP2 
0.806 
(1.78) 

2.25 
(7.38) 

2.42 
(6.10) 

1.37 1.07 

BV-4 PP1 
0.198 

(0.436) 
2.04 

(6.69) 
3.50 

(8.82) 
1.16 1.06 

BV-4 PP2 
0.198 

(0.436) 
2.18 

(7.17) 
3.74 

(9.46) 
1.17 1.03 

BV-5 PP2 
1.21 

(2.66) 
2.20 

(7.23) 
2.07 

(5.22) 
1.59 1.08 

BPS-7 PP2 
1.23 

(2.71) 
3.09 

(10.1) 
2.88 

(7.27) 
1.14 1.10 

BPS-10 PP1 
1.62 

(3.55) 
2.93 

(9.63) 
2.50 

(6.31) 
1.31 1.08 

BPS-10 PP2 
1.62 

(3.55) 
2.98 

(9.77) 
2.54 

(6.41) 
1.30 1.08 

BPS-12 PP1 
2.01 

(4.42) 
3.14 

(10.3) 
2.49 

(6.27) 
1.33 1.08 

BPS-12 PP2 
2.01 

(4.42) 
3.10 

(10.2) 
2.46 

(6.20) 
1.35 1.08 

BPG-14 PP1 
1.62 

(4.20) 
2.97 

(9.75) 
2.53 

(6.04) 
1.37 1.07 

Notes:   
a.  Equivalent charge weight computed as gross charge weight multiplied by 0.94 for 

energy equivalence and 0.90 to account for inert packaging weight.   
b. Equivalency factors are taken from charts contained in Esparza (1992) and are along 

radial lines emanating from charge c.g. at 90 degrees to cylindrical charge wall. 
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TABLE 3.5:  Pressures and impulses predicted by ConWep using spherical equivalency 
method of Esparza (1992). 

Shot Sensor 
Predicted 
Pressure 
kPa (psi) 

Percent 
Errorb 

Predicted 
Impulse 
kPa ms 
(psi ms) 

Percent 
Errorb 

EY-1 PP1 73.6 (10.7) 1.5 58 (8.3) 9.8 
EY-1 PP2 158 (22.9) 20.4 75.3 (10.9) 5.1 
EY-2 PP1 71.6 (10.4) -7.1 56 (8.1) 8.0 
EY-2 PP2 158 (22.9) 10.6 75.3 (10.9) 1.4 
EY-3 PP1 75.6 (11.0) -6.3 59 (8.5) 8.6 
EY-3 PP2 162 (23.5) 6.5 75.6 (11.0) 1.5 
BV-4 PP1 66 (9.6) 34 34 (4.9) 131 
BV-4 PP2 58 (8.4) 67 31 (4.5) 76.7 
BV-5 PP2 255 (37.0) 94.9 99.8 (14.5) 27.4 
BPS-7 PP2 97.0 (14.1) -47.6 75.8 (11.0) -24.7 

BPS-10 PP1 145 (21.0) 8.1 92.8 (13.5) -5.7 
BPS-10 PP2 139 (20.2) -2.0 91.6 (13.3) 1.3 
BPS-12 PP1 148 (21.5) -48.5 100 (14.6) -41.1 
BPS-12 PP2 154 (22.3) -36.8 101 (14.7) -27.9 
BPG-14 PP1 164 (23.9) 13.8 101 (14.7) 13.0 

Average Absolute Errora 17.4  12.3 
Notes:   
a. BV series of tests excluded from average absolute error computation.  
b. Positive error indicates predicted quantity greater than measured quantity. 

 
 

Note that the results in Table 3.5 do not include reflections from the ground or 

Mach stem effects.  BlastX treats these reflections as part of its formulation, but ConWep 

does not.  The case of a “near surface burst” is difficult to analyze using simplified tools 

like ConWep.  A near surface burst’s apparent blast energy output for an observer near 

ground level will be higher than a free air burst, but lower than a surface burst.  Using the 

provisions of UFC 3-340-02, the scaled height of burst (height of burst divided by charge 

weight to the one third power) was used with Figure 2.13 (from the UFC) to compute the 

expected height of the triple points for all shots.  The UFC predicts that the triple point 

should have been above the height of the sensors for all shots except BV-4 and BV-5.  An 
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examination of the experimental data showed this to be true as only a single incident 

pressure spike was measured in all shots except BV-4 and BV-5.  As an example, Figure 

3.1 shows the pressure time history of sensor PP1 from shot BPG-14.   

 

 
FIGURE 3.1:  Incident pressure time history of sensor PP1 from shot BPG-14.  No 

ground reflections are visible in the time history, suggesting sensor was below the triple 
point. 

 
 
It was of interest to see the effect of including the Mach stem on predicted 

pressures and impulses.  Unfortunately, ConWep does not offer any method by which to 

incorporate the effects of a Mach stem.  In order to calculate the incident shock 

parameters in the Mach stem (below the triple point), it is necessary to use Figures 2.9 

and 2.10 from UFC 3-340-02.  The charts are primarily intended for spherical free air 

bursts of TNT.  Without any other convenient method to account for cylindrical charge 

geometry, Esparza’s equivalency factors were used again and are the same as 

documented in Table 3.4.  Table 3.6 shows the results of this analysis.  The table shows 
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that utilizing standardized guidance for the Mach stem in this case significantly 

overestimates incident pressures and impulses.  This might suggest that if pressures must 

be accurately estimated for a near surface burst, it would be best to use ConWep and the 

Esparza coefficients.  If a conservative design estimate must be made, then using 

Esparza’s coefficients with standard Mach stem calculations is recommended. 

 
TABLE 3.6:  Pressures and impulses predicted by UFC 3-340-02 Figures 2.9 and 2.10 for 

Mach stem region using spherical equivalency method of Esparza (1992). 

Shot Sensor 
Predicted 
Pressure 
kPa (psi) 

Percent 
Error 

Predicted 
Impulse 
kPa ms 
(psi ms) 

Percent 
Error 

EY-1 PP1 108 (15.7) 49.5 109 (15.8) 110 
EY-1 PP2 250 (36.3) 91.1 136 (19.7) 89.4 
EY-2 PP1 104 (15.1) 34.8 108 (15.7) 110 
EY-2 PP2 250 (36.3) 75.4 136 (19.7) 82.4 
EY-3 PP1 108 (15.7) 34.2 110 (16.0) 110 
EY-3 PP2 251 (36.4) 65.5 137 (19.8) 83.3 
BPS-7 PP2 217 (31.5) 17.1 165 (23.9) 63.7 

BPS-10 PP1 306 (44.4) 129 199 (28.8) 101 
BPS-10 PP2 298 (43.2) 110 197 (28.6) 118 
BPS-12 PP1 276 (40.1) 4.1 237 (34.4) 39.3 
BPS-12 PP2 285 (41.4) 17.3 224 (32.5) 59.3 
BPG-14 PP1 316 (45.8) 118 223 (32.3) 148 

Average Error +62.2  +92.9 
Note:  BV series not included because sensors above triple point 
 
 
As a point of interest, it is instructive to visualize what a Mach stem looks like in 

terms of traveling pressure waves.  Figure 3.2 is a series of images taken from a CTH 

simulation which will be discussed more in Chapter 5.  This simulation is for the BPG-14 

blast event.  In the images, the pressure sensor is shown as a white dot, the triple point 

shown as a white triangle, and the path of the triple point as a white dotted line.  The 

series of images graphically demonstrate how the triple point moves with time and how it 
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would affect the results of an airblast analysis.  It is interesting that, in this case, CTH 

predicted the triple point passes just below the sensors while the experimental data 

(Figure 3.1) show that the triple point was above the sensors.  No cause for this 

discrepancy could be readily identified. 

 

 

 

 

 
FIGURE 3.2:  Plots of pressure from four different times in a two-dimensional cylindrical 
CTH simulation of shot BPG-14.  Pressure is contoured from high (white) to low (black).  
White circle is pressure sensor.  White triangle is location of triple point.  Dotted line is 

path of the triple point. 
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As a final exercise, it is of interest to see whether or not modeling the near surface 

burst as a surface burst would provide an improvement in accuracy.  This was done using 

the surface burst module of ConWep.  No cylindrical equivalency factors were used and 

the charge weight was as shown in the second column of Table 3.4.  Table 3.7 shows the 

surface burst analysis predictions for the arena test data.  The table shows this leads to 

higher predicted blast loads relative to the coupled Esparza-Conwep method, but lower 

blast loads than accounting for the effect of the Mach stem.  In comparing the three 

predictive methods attempted, it appears as though assuming a free air burst and applying 

Esparza’s equivalency factors yields the best results for this particular scenario. 

 
TABLE 3.7:  Pressures and impulses predicted by ConWep using a surface burst option 
along with the equivalent TNT charge weights listed in the second column of Table 3.4. 

Shot Sensor 
Predicted 
Pressure 
kPa (psi) 

Percent 
Errorb 

Predicted 
Impulse 
kPa ms 
(psi ms) 

Percent 
Errorb 

EY-1 PP1 (13.6) 29.5 (11.5) 51 
EY-1 PP2 (26.5) 39.5 (15.1) 45 
EY-2 PP1 (13.3) 18.8 (11.3) 51 
EY-2 PP2 (26.5) 28.0 (15.1) 39.8 
EY-3 PP1 (14.0) 19.7 (11.6) 48.7 
EY-3 PP2 (26.8) 21.8 (15.2) 40.7 
BV-4 PP1 (12.2) 69 (6.9) 230 
BV-4 PP2 (10.7) 110 (6.4) 150 
BV-5 PP2 (38.5) 103 (20.1) 76.3 
BPS-7 PP2 (18.3) 32.0 (14.9) 2.06 

BPS-10 PP1 (24.8) 27.8 (18.5) 29.4 
BPS-10 PP2 (24.0) 16.5 (18.3) 39.7 
BPS-12 PP1 (25.2) -39.7 (20.1) -18.6 
BPS-12 PP2 (25.8) -26.9 (20.3) -0.49 
BPG-14 PP1 (27.3) 30.0 (20.4) 56.9 

Average Absolute Errora 27.5  32.4 
Notes:   
a. BV series of tests excluded from average absolute error computation.  
b. Positive error indicates predicted quantity greater than measured quantity. 
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3.3. Shot A1–Experiment versus Predictions 

As shown in Section 3.2, ConWep can be very accurate and BlastX less so when 

predicting the airblast generated by cylindrical charges of Unimax dynamite in an open 

arena test.  As a different (and more complex) comparison, both programs were used to 

predict the airblast pressures and impulses measured during the A1 blast event described 

in Chapter 2.  It is a relatively cumbersome process to use ConWep for this particular 

analysis.  First, blast chamber geometry and sensor locations were used to develop 

spherical equivalency factors using the method of Esparza et al. (2002).  The results of 

this preparatory work are shown in Table 3.8 (refer to Figure 2.5 for a plan view of the 

A1 blast chamber).  Based on the Mach reflection analysis shown in Table 3.6, the 

ConWep analysis will not take into account any secondary reflections from the blast 

chamber floor.  This approach was taken partly because the inclusion of Mach stem and 

ground reflection effects increased rather than decreased errors.   The approach was also 

of interest because BlastX should capture this phenomena automatically due to its 

formulation, and it is of interest to see the comparison between the two programs with 

and without ground reflections. 

The equivalency factors, the blast chamber geometry, and the sensor locations 

were then used with ConWep’s slab loading module (set to free air burst, not 

hemispherical surface burst) to predict the reflected pressure and impulse at each sensor 

location.  These predictions are compared to airblast measurements from the A1 blast 

event in Table 3.9.  The table shows that ConWep coupled with Esparza’s method does 

not yield accurate predictions for this scenario; the software consistently under predicted 
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both pressure and impulse.  This is in contrast to the ConWep comparisons documented 

in Section 3.2, which had much better agreement with experimental data.  This 

discrepancy suggests that the added complications of azimuth angle and oblique shock 

reflection reduce the accuracy of the coupled Esparza-ConWep method. 

 
TABLE 3.8:  Esparza’s spherical equivalency factors for use with ConWep. 

Sensor 
Slant Distance 

cm (in) 

Azimuth 
Angle  

degrees 

Scaled Distancea 
m/kg1/3 (ft/lb1/3) 

Pressure 
Equivalency 

Factorb 

Impulse 
Equivalency 

Factorb 
P1 255.6 (100.6) 0.0 1.45 (3.64) 2.5 1.75 
P2 272.3 (107.2) 20.2 1.54 (3.88) 1.15 0.95 
P3 302.9 (119.3) 32.5 1.71 (4.32) 0.78 0.90 
P4 503.8 (198.4) 86.5 2.85 (7.18) 0.8 1.2 
P5 273.2 (107.6) 20.7 1.55 (3.90) 1.1 0.95 
P6 429.8 (169.2) 12.8 2.43 (6.13) 1.1 1.2 
P7 779.4 (306.8) 7.0 4.41 (11.1) 1.1 1.2 
P8 608.7 (239.6) 55.7 3.44 (8.68) 0.75 1.2 

PP1 365.8 (144.0) 0.0 2.07 (5.22) 1.75 1.2 
Notes:   
a. Charge weight computed as gross charge weight multiplied by 0.94 for energy 

equivalence and 0.90 to account for inert packaging weight.   
b. Equivalency factors taken from charts contained in Esparza (1992). 

 
 

It was somewhat less cumbersome to apply BlastX to the A1 blast scenario.  The 

BlastX model was constructed to dimensionally represent the A1 blast chamber and 

included a full representation of venting areas in the chamber’s exterior walls.  Virtual 

sensors were placed in the BlastX model to represent the pressure sensors shown in 

Figure 2.5.  As with the free air modeling of Section 3.2, the “cylindrical tabular” option 

was used to predict pressures and impulses.  A free air burst charge model was selected 

and the code was allowed to model blast waves reflected from the blast chamber floor.  

BlastX offers the option of computing shock loads, gas phase loads, or a combination of 
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both.  Brief experimentation showed that including gas phase pressures grossly over 

predicted all quantities of interest.  Therefore, only the shock load output option was 

selected.   

 
TABLE 3.9:  ConWep predictions of peak reflected pressures and impulses compared to 

measured peak reflected pressures and impulses. 

Sensor 
Predicted 
Pressure 

MPa (psi) 

Measured 
Pressure 

MPa (psi)a 
Percent 
Errorb 

Predicted 
Impulse 
kPa ms 
(psi ms) 

Measured 
Impulse 
Mpa ms 
(psi ms)a 

Percent 
Errorb 

P1 
4.134 

(599.6) 
5.437 

(788.6) 
-24.0 

0.9142 
(132.6) 

1.257 
(182.3) 

-27.3 

P2 
1.518 

(220.1) 
2.329 

(337.8) 
-34.8 

0.506 
(73.4) 

0.628 
(91.1) 

-19.5 

P3 
0.736 

(106.7) 
0.8101 
(117.5) 

-9.2 
0.396 
(57.4) 

0.363 
(52.6) 

9.0 

P4 
0.200 
(29.0) 

0.483 
(70.0) 

-58.6 
0.310 
(44.9) 

0.8301 
(120.4) 

-62.7 

P5 
1.435 

(208.1) 
2.295 

(332.9) 
-37.5 

0.503 
(72.9) 

0.7384 
(107.1) 

-32.0 

P6 
0.290 
(42.0) 

0.6964 
(101.0) 

-58.4 
0.264 
(38.3) 

0.341 
(49.5) 

-22.7 

P7 
0.0731 
(10.6) 

0.119 
(17.3) 

-38.7 
0.119 
(17.3) 

0.208 
(30.1) 

-42.6 

P8 
0.121 
(17.6) 

0.252 
(36.6) 

-51.9 
0.222 
(32.2) 

0.554 
(80.3) 

-59.9 

PP1 
0.274 
(39.8) 

0.087 
(12.6) 

215.9 
0.175 
(25.4) 

0.437 
(63.4) 

-60.0 

Average Absolute Error 58.8   37.3 
Notes:  
a. Measured quantities repeated from Table 2.1 for convenience. 
b. Positive error indicates predicted quantity greater than measured quantity. 

 

Another parameter that must be selected in a BlastX analysis is called “order of 

rays.”  This quantity represents the number of reflections a shockwave is allowed to have 

before being removed from the model.  BlastX suggests a default value of five.  In order 

to study the effect of this value, simulations were performed using values of five and two.  
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Table 3.10 compares pressures and impulses measured during the A1 blast event and 

BlastX predictions made using an order of rays equal to five.  This comparison is 

performed again in Table 3.11, except using an order of rays equal to two.  As the tables 

show, the average error for impulse is significantly better using an order of rays equal to 

two; the converse is true for reflected pressures.  In the BlastX user manual, it is 

recommended that a higher order of rays be used for design while a lower order of rays 

be used for analysis, and Tables 3.10 and 3.11 show that this would be a conservative 

approach, at least for impulse-critical structures. 

 
TABLE 3.10:  Comparison between predicted and measured blast pressures and impulses 

for shot A1 using BlastX with an order of rays equal to five. 
Sensor Measured Peak 

Pressure 
MPa (psi) 

Predicted  
Peak Pressure 

MPa (psi) 

Percent 
Errora,b 

Measured 
Positive 
Impulse  
MPa ms  
(psi ms) 

Predicted 
Positive 

Impulse MPa 
ms (psi ms) 

Percent 
Errora,b 

P1 5.437 (788.6) 3.294 (477.7) -39.4 1.257 (182.3) 1.073 (155.6) -14.6 
P2 2.329 (337.8) 1.709 (247.9) -26.6 0.628 (91.1) 1.183 (171.6) 88.4 
P3 0.8101 (117.5) 0.8232 (119.4) 1.6 0.362 (52.6) 1.189 (172.5) 228 
P4 0.483 (70.0)  0.479 (69.5) -0.8 0.8300 (120.4) 2.213 (321.0) 167 
P5 2.295 (332.9) 1.688 (244.8) -26.4 0.7381 (107.1) 1.184 (171.7) 60.4 
P6 0.6961 (101.0) 0.492 (71.3) -29.3 0.341 (49.5) 0.8363 (121.3) 145 
P7 0.119 (17.3) 0.130 (18.8) 9.24 0.208 (30.1) 0.7564 (109.7) 264 
P8 0.253 (36.6) 0.410 (59.5) 62.1 0.554 (80.3) 1.056 (153.2) 90.6 

PP1 0.0872 (12.6) 0.325 (47.2) 272 0.437 (63.4)  0.9025 (130.9) 107 
Average Absolute Error % 24.4   132 
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TABLE 3.11:  Comparison between predicted and measured blast pressures and impulses 
for shot A1 using BlastX with an order of rays equal to two. 

Sensor Measured 
Peak 

Pressure 
MPa (psi) 

Predicted  
Peak Pressure 

MPa (psi) 

Percent 
Errora,b 

Measured 
Positive 
Impulse  
MPa ms  
(psi ms) 

Predicted 
Positive  

Impulse MPa 
ms (psi ms) 

Percent 
Errora,b 

P1 5.437 (788.6) 2.686 (389.5) -50.6 1.257 (182.3) 0.538 (78.0) -57.2 
P2 2.329 (337.8) 1.302 (188.9) -44.1 0.628 (91.1) 0.541 (78.4) -13.9 
P3 0.8101 (117.5) 0.6709 (97.3) -17.2 0.362 (52.6) 0.503 (73.0) 39.0 
P4 0.483 (70.0) 0.4792 (69.5) -0.8 0.8300 (120.4) 1.108 (160.7) 33.5 
P5 2.295 (332.9) 1.2817 (185.9) -44.2 0.7381 (107.1) 0.539 (78.1) -27.0 
P6 0.6961 (101.0) 0.365 (52.9) -47.6 0.341 (49.5) 0.165 (23.9) -51.7 
P7 0.119 (17.3) 0.0903 (13.1) -24.1 0.208 (30.1) 0.126 (18.3) -39.3 
P8 0.253 (36.6) 0.1793 (26.0) -29.1 0.554 (80.3) 0.443 (64.3) -20.0 

PP1 0.0872 (12.6) 0.325 (47.2) 273 0.437 (63.4) 0.174 (25.3) -60.1 
Average Absolute Error % 32.2   35.2 

Notes for Tables 3.10 and 3.11:   
a. Positive error indicates predicted quantity greater than measured quantity.   
b. Average error computation excludes PP1 because it is an extreme outlier with respect 

to pressure. 
 
 

As the preceding analyses show, predictions of blast pressures and impulses for 

cylindrical charges inside a confining structure can have large errors when estimated with 

the most common engineering level analytical methods.  If only used for design, then it 

would be acceptable to use something like BlastX with the order of rays set to five or 

higher.  This would result in a conservative design for impulse dominated structures.    

But given that the objective of this investigation is to accurately simulate experimental 

observations (i.e. analysis), this is an unsatisfactory result.   

Given the desire for greater accuracy, there are only two options that would 

provide significantly better results.  The first (and most expensive) is to perform more 

airblast experiments in order to develop a comprehensive understanding of the blast 

loading experienced at different locations within the blast chamber.  This data would be 
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specific to the geometry of the charge and reflecting surfaces.  A more affordable and 

expedient alternative is the use of high fidelity computational fluid dynamics (CFD) 

models to simulate the explosive events.  One such software program, called CTH, is a 

three-dimensional shock physics hydrocode written and maintained by Sandia National 

Laboratories.  The following chapters will describe the software’s capabilities, document 

convergence studies, perform simple comparisons to existing TNT airblast data (KB 

standard), and finally apply the software to the A1 and B blast events described in 

Chapter 2.  (The A2 blast event will not be simulated due to a lack of adequate data 

regarding charge composition.  The manufacturer, Austin Powder Company, was 

contacted for more information; however, their representatives were unable to state with 

certainty the content of their product.) 
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CHAPTER 4:  HYDRODYNAMIC MODELING WITH CTH 
 

 Chapter 3 demonstrated that simplified methods of airblast prediction can have 

large errors (between 30% and 50%) when charge and reflecting surface geometry differ 

from the simplest configuration (i.e. non hemispherical or non-spherical charges, oblique 

reflections, etc.)  In order to simulate conditions like those in the experimental program, 

it is usually necessary to utilize a class of software programs known collectively as 

hydrocodes (short for hydrodynamic codes).  These software tools simulate the transient 

motion of fluids by numerically solving the Euler or Navier Stokes equations.  This 

investigation will utilize CTH, a three-dimensional shock physics hydrocode written and 

maintained by Sandia National Laboratories (McGlaun et al. 1990 and Hertel et al. 1993).  

CTH can model many different phenomena including shockwaves in fluids and solids, 

detonation, penetration, brittle failure, strain rate dependent constitutive behavior, 

plasticity, and viscoplasticity, among others (Hertel et al. 1993).    

For the remainder of this investigation, the primary interest will be CTH’s ability 

to simulate detonations and the resulting shockwaves in air.  Section 4.1 will provide an 

introduction to some of the underlying theory of CTH, documenting the original 

theoretical work upon which the code is based.  Although the implementation of this 

theory in CTH is significantly more involved than what will be presented here, it is still 

representative of how the code operates.  Enough information will be presented regarding 
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one-dimensional hydrodynamic formulations that a numerical simulation tool could be 

coded from the information contained in this chapter.  Following the theoretical 

development, Section 4.2 will document convergence studies performed in one 

dimension to identify the mesh size required for accurate simulations.  Section 4.3 will 

then test this convergence criteria in a two-dimensional simulation to demonstrate that it 

extends to higher dimensionality.  As an additional measure, the results of CTH airblast 

simulations in Sections 4.2 and 4.3 will be compared to empirical data for spherical free-

air blasts to show the code’s accuracy at predicting pressures and impulses.  Empirical 

data will be represented by predictions made using the software tool ConWep (2005) and 

Kinney and Graham’s textbook (1985). 

4.1. Background Theory 

With the publication of his 1757 “Principes généraux du mouvement des fluids,” 

Leonhard Euler provided the first mathematical framework for the treatment of inviscid 

(non-viscous) fluid flow (Dartmouth, 2011).  Euler is credited with developing two of the 

three equations that are today termed “Euler’s equations.”  These two equations were 

found to require a third which was supplied by Pierre Laplace in 1789; it is called the 

energy equation.  Collectively, all three equations are usually referred to as Euler’s 

equations.  The equations as reproduced in this chapter are taken from Richtmyer (1964).  

The first of Euler’s equations is termed the continuity equation, given by Eq. (4.1a), and 

states that total mass is conserved.  The second equation is the equation of motion, given 

by Eq. (4.1b), and states that momentum is conserved.  The third equation (Eq. (4.1c)) is 

a statement of the conservation of energy (Eq. (4.1a) and (4.1b) do not independently 
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guarantee energy conservation under all conditions).  Eqs. (4.1) have the variables u 

(vectorial material velocity), ρ (mass density), P (pressure of the fluid), and ε (energy in 

the fluid volume).   

ቀ డ
డ௧
൅ ࢛ ∙ ቁ׏ ߩ ൌ െ׏ߩ ∙  (4.1a)    ࢛

ߩ ቀ డ
డ௧
൅ ࢛ ∙ ࢛ቁ׏ ൌ െܲ׏     (4.1b) 

ߩ ቀ డ
డ௧
൅ ࢛ ∙ ቁ׏ ߝ ൌ െܲ׏ ∙  (4.1c)     ࢛

Eqs. (4.1) are written in vectorial form that applies to one, two, or three 

dimensions.  Their apparent simplicity is, however, deceiving as increasing the number of 

dimensions significantly increases the complexity of the analysis.  For the rest of this 

section, the one-dimensional form of the equations will be discussed to shed light on their 

solution.  Wilkins (1999) provides more information on two-dimensional methods for 

hydrodynamics.  Eqs. (4.2) are the one-dimensional form of Eqs. (4.1) and allow a 

slightly more intuitive understanding of the conservation equations. 

డఘ

డ௧	
൅ ݑ డఘ

డ௑
ൌ െߩ డ௨

డ௑
      (4.2a) 

ߩ డ௨

డ௧
൅ ݑߩ డ௨

డ௑
ൌ െ డ௉

డ௑
      (4.2b) 

ߩ డఌ

డ௧
൅ ݑߩ డఌ

డ௑
ൌ െܲ డ௨

డ௑
      (4.2c) 

These three equations for inviscid fluid flow, however, are not sufficient to 

determine the state of a system.  A fourth equation is required to make the system 

solveable.  This fourth equation is called the equation of state (EOS).  EOS’s will be 

discussed in greater detail in Chapter 5, but for now it is sufficient to know that an EOS 
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determines the pressure of a material given two other state variables (e.g. energy, 

temperature, and/or density).  As written in Eq. (4.3), the EOS determines the energy as a 

function of the pressure and density.   

ߝ ൌ ݂ሺܲ,  ሻ      (4.3)ߩ

Eqs. (4.1) and (4.2) are written in a formulation referred to as the Eulerian form 

(which is not the same as saying Euler’s equations).  In this form, the equations describe 

fluid motion as though observed from a spatially fixed reference.  Thus the X variable is a 

location in Cartesian coordinate space.  While convenient under certain circumstances, 

this form of Euler’s equations presents problems when implemented in hydrocodes.  In 

particular, tracking thin bands of high velocity material (e.g. explosively driven plates, 

moving shocks in air) is cumbersome as the mesh must be finely resolved.  In addition, 

the inclusion of strength models is inconvenient when using the Eulerian form (Noh, 

1976).  Thus the Lagrangian forms of Eqs. (4.1) and (4.2) are widely used instead.  

Lagrangian in this context means that the equations are formulated from the perspective 

of an observer that moves with material in the domain.  A popular comparison is to say 

that if one were observing a river’s flow, the Eulerian observer would stand on the bank 

watching the water flow past.  The Lagrangian observer, on the other hand, would 

observe the water from a boat travelling with the flow.  Thus to the Lagrangian observer, 

the water appears not to move, rather the bank of the river passes by.   

The Lagrangian form of Euler’s equations are shown in Eqs. (4.4) for the case of 

one spatial dimension in a rectangular coordinate frame.  The extension of these 

equations to a cylindrical or spherical geometry is somewhat trivial, only requiring a 
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change of variables.  Eqs. (4.4) are strikingly simple in comparison to their Eulerian 

counterparts (Eqs. (4.2)).  Note that in Eqs. (4.4), X is the Cartesian spatial coordinate 

while x is the Lagrangian coordinate.   
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Noh (1976) provides an excellent discussion on the merits of the Eulerian and 

Lagrangian approaches. His conclusions could be paraphrased as Eulerian formulations 

eliminate problems related to mesh distortion while Lagrangian requires less mesh 

resolution and is much better at tracking moving material.  CTH hybridizes these 

approaches by utilizing a Lagrangian formulation of Euler’s equations wherein the mesh 

is remapped after each computational step to the configuration it had prior to the step.  

Thus, it has the power and capabilities of a Lagrangian formulation while the remapping 

results in what is essentially a static Eulerian mesh (Hertel et al. 1993), avoiding the 

pitfalls of mesh distortion (e.g. negative volumes). 

These equations which describe the motion of inviscid fluids do not, however, 

describe fluid flow which experiences shock compression.  This is because a shock 

(which is a supersonic, finite amplitude wave) introduces a discontinuity in every 

variable – pressure, density, energy, velocity, etc. - and does so nearly instantaneously.  
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The Euler equations applied to this discontinuity do not correctly predict the state of 

material after passage of a shock.  In 1885 Pierre Henri Hugoniot (Johnson and Cheret, 

1998) found that a set of conservation equations could describe the initial and final states 

of material undergoing shock compression (it should also be mentioned that Lord 

Rankine discovered these same relations nearly simultaneously, however credit is usually 

ascribed to Hugoniot).  These equations, referred to as the Hugoniot equations, are given 

by: 

ݑሺߩ െ ௌܷሻ ൌ ௢ݑ௢ሺߩ െ ௌܷሻ     (4.6a) 

ܲ െ ௢ܲ ൌ ݑ௢ሺߩ െ ௢ሻሺݑ ௌܷ െ  ௢ሻ     (4.6b)ݑ
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ଶ
ሺݑଶ െ  ௢ଶሻ     (4.6c)ݑ

Eqs. (4.6) describe the conservation of mass, momentum, and energy across a shock 

discontinuity, respectively, where ρ is the density, u the particle velocity, Us the shock 

velocity, P the pressure, and E the energy.  The zero subscript indicates the pre-shock 

value and absence of the zero subscript indicates the post-shock value. 

Building on Euler’s equations and the Hugoniot equations, American scientists 

began hydrocode development in earnest in the mid-20th century following the invention 

of the first computers.  By the mid 50’s, researchers had developed what can be described 

as Eulerian hydrocodes (their choice of coordinate frame was largely driven by the desire 

to avoid the problems of mesh distortion).  These hydrocodes utilized Euler’s equations 

with one special modification.  The algorithms would track the location of a moving 

shock and would then apply the Hugoniot equations at the location of the shock at each 

time step in what could be described as a moving boundary condition.  Although this 
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worked for simple one-dimensional problems, the method did not scale well to 

accommodate multi-dimensional, multi-shock simulations.  

Von Neumann and Richtmyer (1950) solved this problem with a clever 

modification to Euler’s equations – they introduced a fictitious viscosity pressure.  Eqs. 

(4.7) are nearly identical to Eqs. (4.4) except there now appears a viscosity pressure that 

is additive to the pressure.  Eq. (4.8) is the associated EOS and Eq. (4.9) is the definition 

of the viscosity pressure.  In these equations, X is the Cartesian coordinate, P the 

pressure, q the artificial viscosity pressure, x the Lagrangian coordinate, ε the energy, ρ 

the density, c a constant coefficient, U the velocity, and V the specific volume (which is 

equal to 1/ρ).  Von Neumann and Richtmyer reasoned that in real shockwaves, dissipative 

mechanisms (viscosity and heat conduction) tend to smear the shock spatially.  This 

smearing effect is convenient in a numerical simulation because it causes the shock 

dimension to be equal to or greater than the discretization length (mesh size).  
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Von Neumann and Richtmyer placed four requirements on the effects of q:   

1. Eqs. (4.7) must possess solutions without discontinuities  
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2. The thickness of shock layers must at all locations be of the same order as the 

interval length ΔX used in the numerical computation  

3. The effect of the q term must be negligible outside of the shock layers and  

4. The Hugoniot equations must hold when all other dimensions characterizing the 

flow are large compared to the shock thickness.   

In their 1950 paper through a series of mathematical tests, Von Neumann and 

Richtmyer indeed showed these requirements to be satisfied by the system of Eqs. (4.7) 

through (4.9).  Richtmyer (1964) states that the artificial viscosity term only needs to be 

evaluated for compression.  It is not required for stability or correctness when materials 

undergo tensile loading as tensile shocks violate the second law of thermodynamics (they 

require a decrease in entropy), and thus do not exist. 

 All that remains to solve the set of Eqs. (4.7) through (4.9) is to provide a 

numerical solution scheme.  Von Neumann and Richtmyer (1950) and Richtmyer (1964) 

both provide very similar finite difference formulations.  In the following paragraphs, the 

version of Noh (1976) will be presented and represents only a slight modification of Von 

Neumann and Richtmyer’s approach.  In Eqs. (4.10), subscripts denote the grid point 

number (spatial Lagrangian coordinate) while superscripts denote the time step (temporal 

coordinate).  Note that many of the spatial coordinates call for point k ± 1/2.  This half 

step refers to the center of a mesh cell.  So for example, cell number 1 has grid point 1 as 

its left-hand boundary, grid point 2 as its right-hand boundary, and grid point 1+ ½ as its 

center.  This cell centering is physically motivated as a quantity like pressure only makes 

sense if it is uniform throughout the cell (i.e. the left-hand and right-hand boundary 
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cannot be different).  With respect to temporal discretization, the ½ step doesn’t have any 

physical meaning, but rather flows from the mathematics of the finite difference method 

itself.   

In Eq. (4.10a), U is the node centered Lagrangian material velocity, Δt the time 

step, ΔX the mesh size, P the cell pressure, q the cell artificial viscosity pressure, and ρ 

the cell mass density.  The equation essentially says that velocity is related to the 

acceleration (in the form of pressure divided by density and cell size) multiplied by the 

time increment.  Eq. (4.10b) updates the current location of the mesh nodes in Cartesian 

space by the quantity velocity multiplied by time.  Eq. (4.10c) computes the current 

specific volume as a function of the original density and the current relative distance 

between node points.  Eq. (4.10d) computes the cell centered artificial viscosity pressure 

as a function of a constant Co, the density, and the velocity. 
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Eq. (4.10e) is where Noh breaks from Von Neumann and Richtmyer as he claims 

the form shown is more accurate than the original method.  The equation essentially says 

that the energy of the next time step is equivalent to the original energy plus or minus 
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PΔV, which is a statement of the first law of thermodynamics for a reversible process 

(Van Ness, 1969).  Finally, Eq. (4.10f) is a statement of the EOS that computes pressure 

as a function of energy and density. 
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Eqs. (4.10) can be implemented directly and computed in order from Eq. (4.10a) 

to (4.10f) (after establishing initial conditions).  Eq. (4.10f) shows the only missing piece 

of information required to arrive at a complete solution is the EOS, representing the 

pressure as a function of energy and density (CTH computes pressure as a function of 

temperature and density).  If one wished to directly implement these difference equations 

for the case of a low-level airblast, it would be a reasonable approximation to use an EOS 

for air of the form: 

ܲ ൌ ఌ

௏
ሺ1 െ  ሻ      (4.11)ߛ

In this simple EOS, which is based on the ideal gas law, γ is the ratio of the 

specific heat of air at constant volume to that at constant pressure.  For air this can be 

reasonably taken as equal to 1.4.  In reality gamma changes as a function of pressure, 

however for low pressure shocks the value 1.4 is sufficiently accurate.  If greater 

accuracy is required for strong shocks, there are variable gamma approximations 

available that compute the specific heat ratio as a function of energy and density.  Doan 

and Nickel (1963) provide one such formulation for gamma which is shown in Eq. (4.12).  

Their expression is easily used in conjunction with Eq. (4.11).  Note that the function 
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݂ሺߩ, ߳ሻ requires a number of supporting calculations and due to length is not reproduced 

here. 

ሺߛ െ 1ሻ ൌ ݂ሺߩ, ߳ሻ      (4.12) 

According to Noh (1976), Eqs. (4.10) are fully second order accurate and are 

stable provided Eq. (4.13) is satisfied for all cells in the domain.  In this equation, S is the 

local sound speed which can be computed as shown in Eq. (4.14) for an ideal gas.  The 

more mathematically formal definition of sound speed is shown in Eq. (4.15) and can be 

applied to any EOS provided the adiabat is defined.  Eq. (4.13) must be evaluated for 

each mesh cell at each time step, and the most restrictive value of Δt must be chosen for 

the entire domain’s next time step. 
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4.2. One-Dimensional Convergence 

Like any numerical method, the results of a hydrodynamic simulation are affected 

to a great extent by the mesh size.  Eq. (4.13) shows that the stability criteria are 

explicitly governed by the ratio of time step to mesh size.  In a finite difference 

hydrodynamic system, energy is usually well conserved regardless of mesh size (energy 

conservation is, after all, one of the Euler equations).  Sharp pressure and velocity 

gradients, on the other hand, only become sufficiently resolved with increasing 

discretization.  This investigation will show that mesh refinement in CTH is primarily 
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needed to resolve peak pressure, while impulse is, by comparison, much less sensitive to 

cell size.  The purpose of this convergence study is not to determine how quickly or 

accurately CTH approaches some theoretical solution, but instead to identify a meshing 

scheme which produces a reasonable accuracy when compared to empirical data.   

An airblast simulation in CTH can be idealized as a having three events of 

interest.  In the first event, the solid explosive material is replaced with an equivalent 

mass of detonation product gases at high density, pressure, and energy.  A simulation of 

this event should seek to accurately insert the required amount of energy and define a 

moving shock sharply enough to simulate the ensuing air shock.  Experience has shown 

that “sharp” definition can be attained using a mesh discretization one to two orders of 

magnitude smaller than the dimensions of the explosive charge being modeled.  The 

second event is the propagation of an air shock from the explosive source through the 

simulated air toward a target.  In this interval, the simulation should resolve the moving 

shock sufficiently to predict incident pressures and impulses.  The third event of interest 

is the period during which the travelling air shock is reflected by a surface.  During this 

event the simulation should accurately predict the rise in pressures and impulses 

associated with shock front reflection.  This convergence study will seek to determine the 

most efficient mesh size to use for simulating each of these three critical events. 

One complication with studying mesh resolution is that refinement requirements 

depend on the intensity of the shock being modeled.  The larger the explosion, the steeper 

the pressure gradient, and the higher the resulting shock velocity.  To avoid this problem, 

mesh resolution was studied as a function of scaled distance (i.e standoff divided by the 
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cube root of the charge weight).  This provides a convenient simplification because the 

air shock Mach number is a single valued function of the scaled distance.  Kinney and 

Graham (1985) demonstrate this in a table in the back of their text (Table 10 in Kinney 

and Graham).  It shows that the overpressure ratio can be reduced to a function of only 

one variable – the Mach number of the shock.  If a standard airblast nomograph (like 

Figure 1.4 in Chapter 1) is considered, two shocks with the same scaled distance will 

have the same overpressure, and Kinney and Graham show that this is equivalent to 

having identical shock velocities (Mach number).  Mesh refinement requirements will 

therefore be comparable between two simulations modeling blast waves at equal scaled 

distances.  As will be demonstrated, this method of studying convergence allows the 

formulation of simple guidelines that can be used in establishing first-guesses for mesh 

size. 

For the convergence studies that follow, mesh dimensions are reported in native 

CTH units of centimeters.  Rather than picking an even English dimension, it was easier 

to pick a sensible metric dimension, even though the conversion to English units appears 

nonsensical.  Also, results for pressure and impulse will only be reported to the first 

decimal (with respect to English units).  Discussions with Sandia personnel and sensor 

specifications suggest that the accuracy of empirical data would be even less than one 

decimal place in pressure (with respect to English units).    

All CTH convergence simulations and comparisons to empirical data were 

performed using air at a state referred to as “US Standard Atmosphere, 1976” for 

altitudes below 11 km as described by UFC-3-340-01 (2002).  This corresponds to an 
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atmospheric pressure of 101.3 kPa (14.69 psi), a temperature of 15 degrees Celsius (59 

degrees Fahrenheit), and an air density of 0.001225 grams per cubic centimeter (g/cm3).  

CTH’s built in EOS for air has a slightly different standard state of 24.8 degrees Celsius 

(76.7 degrees F), a density of 0.001218 g/cm3, and a pressure of 101.3 kPa (14.69 psi).  In 

order to provide an accurate comparison, CTH’s air was set to an initial density of 

0.001225 g/cm3 and a temperature of 23.0 degrees Celsius (73.5 degrees Farenheit), 

which together yielded an air pressure of 101.3 kPa.  Although the temperature is 

different than the US Standard Atmosphere, this adjustment yields the correct pressure 

and density, which are of greater importance.   

The explosive charges used in the convergence study were composed of TNT 

with a density of 1.63 g/cm3, a detonation velocity of 6.93 km/s, a detonation pressure of 

21 GPa, and an energy of 7.0 x 1010 ergs/cc (7.0 kJ/cc).  All convergence simulations 

were performed using a one-dimensional, spherically symmetric mesh.  Figure 4.1 is a 

qualitative illustration of a typical one-dimensional mesh.  At the left-hand boundary is a 

“symmetry boundary condition.”  Immediately beside the symmetry boundary is the 

explosive material and then, further to the right, the air.  Either a transmissive boundary 

condition (to simulate infinite air and thus incident pressure and impulse) or a reflecting 

boundary condition (to simulate reflected pressure and impulse) is located at the right-

most boundary. 
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FIGURE 4.1:  Diagram of spherically symmetric mesh. 

 

Section 4.2.1 will study the mesh discretization necessary to accurately capture 

the insertion and initiation of explosive material in the CTH mesh.  Section 4.2.2 will 

study the mesh discretization required for cells containing air to simulate incidence 

pressures and impulses.  Finally, Section 4.2.3 will study the mesh discretization required 

to accurately simulate the pressures and impulses of a shock reflection.  In Section 4.3, 

the cell sizing guidance developed in Sections 4.2.1 and 4.2.2 will be tested in a two-

dimensional analysis to show that the one-dimensional guidance indeed extends to 

simulations of higher dimension.  

4.2.1. Cells Containing Explosive Material 

Unlike cells containing air, mesh cells within the explosive have a standoff 

(distance) of zero, and scaled distance could therefore not be utilized there.  Mesh 

refinement of the explosive material itself was thus based on the explosive charge size.  

The larger the charge, the more energy present, the higher the pressure, and thus a 

requirement for higher refinement.  Pressure was measured at two locations in the model 

domain – one location was near the center of the spherical explosive charge while the 

other was fixed at 75 centimeters.  Impulse was only quantified at the 75 cm standoff as 

impulse inside the charge does not have any physical meaning with respect to an airblast.     
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Tables 4.1 and 4.2 present the results of this convergence study for a 10 kg and 50 

kg charge.  The left-hand columns show the uniform cell size used throughout the 

simulation domain.  The purpose of these two tables is to identify the point at which the 

entire domain could be termed converged. This provides a useful basis – it is now known 

what a converged result should be (as the tables show, the 0.001 cm cell size is for all 

intents and purposes, converged).  In order to speed computations in later convergence 

studies, some error relative to the “converged solution” will be tolerated.  The mesh 

corresponding to a 5% error (relative to the 0.001 cm converged result) was arbitrarily 

selected as tolerable.  In looking at the simulated pressure and impulse at 75 cm, both 

Tables 4.1 and 4.2 show that a cell size of 0.125 cm provides this level of accuracy. 

The tables show that within the explosive (x=5 cm), the peak simulated pressure 

very slowly approaches the theoretically expected pressure of 21 GPa.  This corresponds 

to a pressure known as the CJ state which will be discussed at length in Chapter 5.  

Outside the charge, the simulated pressure and impulse more rapidly converge.  But these 

ultrafine levels of mesh resolution require significant computational time, even in one 

dimension.  A 0.001 cm mesh resolution in two or three dimensions would be infeasible 

due to the required computational resources (at least those currently available at UNC 

Charlotte).  It was therefore desirable to see if a courser mesh could be used for cells 

containing explosive material, while still maintaining an acceptable accuracy.  Tables 4.3 

and 4.4 show the pressure and impulse results at x=75 cm when the cell size within the 

explosive charge is progressively coarsened.  A constant cell size for air of 0.125 cm was 
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used when the explosive cell size was at least this large (based on the previously 

discussed 5% error criteria).  

 
TABLE 4.1:  CTH simulation results for a 10 kg charge as a function of discretization. 

Mesh Size (cm) Pressure at x=5 cm
GPa (kpsi)

Pressure at x=75 cm
MPa (kpsi)

Impulse at x=75 cm
MPa ms (psi ms)

0.5 9.959 (1444) 6.039 (0.8759) 0.1843 (26.73)
0.25 11.61 (1684) 6.337 (0.9191) 0.1890 (27.41)

0.125 13.14 (1906) 6.588 (0.9555) 0.1914 (27.76)
0.05 15.60 (2263) 6.739 (0.9774) 0.1929 (27.98)

0.025 16.67 (2418) 6.799 (0.9861) 0.1935 (28.06)
0.01 18.02 (2614) 6.833 (0.9910) 0.1939 (28.12)

0.005 18.64 (2704) 6.848 (0.9932) 0.1941 (28.15)
0.001 19.63 (2847) 6.859 (0.9948) 0.1942 (28.17)

Note:  For Tables 4.1 through 4.4, x is measured from the center of the explosive charge. 

 
TABLE 4.2:  CTH simulation results for a 50 kg charge as a function of discretization. 

Mesh Size (cm) Pressure at x=5 cm
GPa (kpsi)

Pressure at x=75 cm
MPa (kpsi)

Impulse at x=75 cm
MPa ms (psi ms)

0.5 9.959 (1444) 12.81 (1.858) 0.4908 (71.18)
0.25 11.61 (1684) 14.03 (2.034) 0.4825 (69.98)

0.125 13.40 (1944) 14.26 (2.068) 0.4804 (69.68)
0.05 15.33 (2223) 14.51 (2.104) 0.4797 (69.57)

0.025 16.67 (2418) 14.62 (2.120) 0.4794 (69.53)
0.01 17.99 (2609) 14.70 (2.132) 0.4792 (69.50)

0.005 18.64 (2704) 14.73 (2.136) 0.4792 (69.50)
0.001 19.69 (2856) 14.75 (2.139) 0.4792 (69.50)

 

TABLE 4.3:  CTH simulation results for 10 kg charge as explosive mesh is coarsened. 
Air Mesh 
Size (cm) 

Explosive Mesh
Size (cm) 

Pressure at x=75 cm
Mpa (kpsi)

Impulse at x=75 cm 
MPa ms (psi ms) 

Pressure* 
Error %

0.001 0.001 6.859 (0.9948) 0.1942 0%
0.125 0.125 6.588 (0.9555) 0.1914 -4.0
0.125 0.25 6.612 (0.9590) 0.1897 -3.6
0.125 0.5 6.621 (0.9603) 0.1865 -3.5
0.125 0.75 6.808 (0.9874) 0.1834 -0.7
0.125 1.0 6.506 (0.9436) 0.1812 -5.1

Note:  *Errors computed as relative to pressure predicted for 0.001cm mesh. 
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TABLE 4.4:  CTH simulation results for a 50 kg charge as explosive mesh is coarsened. 
Air Mesh  
Size (cm) 

Explosive Mesh 
Size (cm)

Pressure at x=75 cm
MPa (kpsi)

Impulse at x=75 cm 
MPa ms (psi ms) 

Pressure* 
Error %

0.001 0.001 14.75 (2.139) 0.4792 0%
0.125 0.125 14.26 (2.068) 0.4804 -3.3
0.125 0.25 13.98 (2.028) 0.4835 -5.2
0.125 0.5 14.23 (2.064) 0.4890 -3.5
0.125 0.75 13.34 (1.934) 0.4944 -9.6
0.125 1.0 12.95 (1.878) 0.4990 -12.2

Note:  *Errors computed as relative to pressure predicted for 0.001cm mesh. 

 
Table 4.3 (and Table 4.4 to a lesser degree) shows an unusual trend – as mesh 

refinement of the explosive decreases, predicted pressure increases.  It is difficult to 

ascribe this to a particular cause, but the magnitude is not sufficient to raise concern.  

Examining the errors in Tables 4.3 and 4.4, it is seen that using a mesh resolution of 0.5 

cm for the explosive material is adequate, provided the air is sufficiently resolved at the 

point of interest.  For additional conservatism, the convergence studies that follow will 

use an explosive cell size of 0.25 cm. 

4.2.2. Convergence of Shocks in Air – Incident Parameters 

The convergence of simulations of shocks propagating through air was studied to 

determine the discretization required to accurately simulate incident pressures and 

impulses.  The study was conducted using a fixed mesh size of 0.25 cm for the explosive 

material.  The air was meshed using several different sizes for each of the scaled 

distances investigated.  A virtual sensor was placed at the standoff of interest to 

“measure” the simulated incident pressure and impulse.  The convergence study for 

incident parameters was performed twice – once for a charge of 5 kg and once for a 

charge of 200 kg.  The results of both the 5 and 200 kg simulations should yield nearly 
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identical pressures (at equal scaled distances), but the 200 kg charge will generate larger 

impulses.  As will be shown, the ratio of impulse to pressure has an interesting 

relationship with convergence.   

The data generated during the incident parameter convergence study will be 

presented in Tables 4.5 through 4.16 followed by a discussion of the results.  Incident 

pressure and impulse results for the 5 kg charge will be followed by those for the 200 kg 

charge.  Each parameter (pressure or impulse) is reported in a three table group for each 

charge size.  In each group of three, the first table, for example Table 4.5, presents the 

raw simulated parameter as a function of mesh size.  The second, like Table 4.6, reports 

the error in the simulated quantity relative to the smallest cell size studied (which was 

always 0.125 cm).  The cell corresponding to an error less than 5% has been highlighted 

for each standoff, and this result is considered to be sufficiently converged.  Finally, the 

third table, such as Table 4.7, compares the simulated CTH result to empirical data, using 

the result from the mesh cell size determined to be converged.  Empirical predictions 

were made using ConWep (2005) and Kinney and Graham’s (K&G) text (1985).   
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TABLE 4.5:  5 kg charge – simulated incident pressure. 

Scaled Distance 
m/kg 1/3 

Pressure as a Function of Cell Size (cm) 
kPa (psi)

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 

0.5 3573.6
(505.8)

3535.6
(495.2)

3471.6
(478.2)

3383.0
(442.8)

3283.4 
(380.0) 

2932.5
(386.7)

1 879.8
(125.9)

880.6
(123.6)

869.6
(118.4)

849.8
(113.1)

814.4 
(106.8) 

752.9
(86.5)

2 158.6
(22.9)

158.0
(22.5)

157.4
(22.2)

156.4
(21.7)

154.4 
(20.9) 

146.9
(20.2)

4 41.4
(5.9)

40.7
(5.9)

40.7
(5.8)

40.7
(5.8)

40.7 
(5.6) 

40.0
(5.5)

5 28.3
(4.1)

28.3
(4.1)

28.3
(4.1)

28.3
(4.0)

28.3 
(4.0) 

27.6
(3.8)

10 10.3
(1.5)

10.3
(1.5)

10.3
(1.5)

10.3
(1.4)

10.3 
(1.4) 

9.7
(1.4)

 

TABLE 4.6:  5 kg charge – incident pressure error relative to 0.125 cm cell result. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to 0.125 cm Cell Size 

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 
0.5 - 2.1 5.5 12.5 24.9 23.5
1 - 1.8 6.0 10.2 15.2 31.3
2 - 1.7 3.1 5.2 8.7 11.8
4 - 0.0 1.7 1.7 5.1 6.8
5 - 0.0 0.0 2.4 2.4 7.3

10 - 0.0 0.0 6.7 6.7* 6.7
Note:  *choice of number of significant figures in simulation result caused error to be 
greater than 5% due to decimal rounding 
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TABLE 4.7:  5 kg charge - comparison between converged pressure and empirical data. 
Scaled 

Distance 
m/kg 1/3 

Converged Cell 
Size (cm) 

CTH kPa 
(psi) 

ConWep 
kPa (psi) 

Percent 
Error 

K&G 
kPa (psi) 

Percent 
Error 

0.5 0.25 
3536 

(495.2) 
3885 

(563.5) 
-12.1 

3950 
(572.9) 

-13.6 

1 0.25 
880.6 

(123.6) 
934.9 

(135.6) 
-8.8 

995.6 
(144.4) 

-14.4 

2 0.5 
157 

(22.2) 
195 

(28.3) 
-21.6 

205 
(29.7) 

-25.3 

4 1 
41 

(5.8) 
47 

(6.8) 
-14.7 

44 
(6.4) 

-12.5 

5 2 
28 

(4.0) 
31 

(4.5) 
-11.1 

29 
(4.2) 

-2.4 

10 2 
10 

(1.4) 
11 

(1.6) 
-12.5 

9.7 
(1.4) 

6.2 

Average Error % -13.5  -12.4 
 

TABLE 4.8:  5 kg charge – simulated incident impulse. 

Scaled Distance 
m/kg 1/3 

Impulse as a Function of Cell Size (cm) 
kPa ms (psi ms)

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 

0.5 200
(29.0)

210
(30.4)

192
(27.8)

185
(26.9)

174 
(25.3) 

161
(23.3)

1 192
(27.9)

192
(27.8)

190
(27.5)

190
(27.5)

188 
(27.2) 

189
(27.4)

2 116
(16.8)

114
(16.6)

114
(16.6)

115
(16.7)

115 
(16.7) 

115
(16.7)

4 65
(9.4)

64
(9.3)

64
(9.3)

64
(9.3)

65 
(9.4) 

65
(9.4)

5 52
(7.6)

52
(7.5)

52
(7.5)

52
(7.6)

52 
(7.6) 

53
(7.7)

10 26
(3.8)

26
(3.8)

26
(3.8)

26
(3.8)

27 
(3.9) 

27
(3.9)
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TABLE 4.9:  5 kg charge – incident impulse error relative to 0.125 cm cell result. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to 0.125 cm Cell Size 

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 
0.5 - -4.8 4.1 7.2 12.8 19.7
1 - 1.4 1.4 1.4 2.5 1.8
2 - 1.2 1.2 0.6 0.6 0.6
4 - 1.1 1.1 1.1 0.0 0.0
5 - 1.3 1.3 0.0 0.0 -1.3

10 - 0.0 0.0 0.0 -2.6 -2.6
 
 

TABLE 4.10:  5 kg charge - comparison between converged impulse and empirical data. 
Scaled 

Distance 
m/kg 1/3 

Converged 
Cell 

Size (cm) 

CTH 
kPa ms 
(psi ms) 

ConWep 
kPa ms 
(psi ms) 

Percent 
Error 

K&G 
kPa ms 
(psi ms) 

Percent 
Error 

0.5 0.5 
210 

(30.4) 
242 

(35.1) 
-13.4 

183 
(26.5) 

14.7 

1 4 
189 

(27.4) 
299* 
(43.3) 

-36.7 
174 

(25.2) 
8.7 

2 4 
115 

(16.7) 
158 

(22.9) 
-27.1 

136 
(19.7) 

-15.2 

4 4 
65 

(9.4) 
85.5 

(12.4) 
-24.2 

66 
(9.5) 

-1.1 

5 4 
53 

(7.7) 
69.6 

(10.1) 
-23.8 

51 
(7.4) 

4.1 

10 4 
27 

(3.9) 
36 

(5.2) 
-25.0 

26 
(3.7) 

5.4 

Average Error % -25.0  2.8 
Note:  *result unexpected as smaller scaled distance had lower impulse 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



120 

 

 

 

TABLE 4.11:  200 kg charge – simulated incident pressure. 

Scaled Distance 
m/kg 1/3 

Pressure as a Function of Cell Size (cm) 
kPa (psi)

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 

0.5 3574
(518.3)

3536
(512.8)

3472
(503.5)

3383
(490.7)

3283 
(476.2) 

2932
(425.3)

1 879.8
(127.6)

880.5
(127.7)

869.4
(126.1)

850.1
(123.3)

816.3 
(118.4) 

752.9
(109.2)

2 159
(23.0)

158
(22.9)

157
(22.8)

157
(22.7)

154 
(22.4) 

167
(21.3)

4 41
(6.0)

41
(5.9)

41
(5.9)

41
(5.9)

41 
(5.9) 

40
(5.8)

5 28
(4.1)

28
(4.1)

28
(4.1)

28
(4.1)

28 
(4.1) 

28
(4.0)

10 10
(1.5)

10
(1.5)

10
(1.5)

10
(1.5)

10 
(1.5) 

10
(1.4)

 

TABLE 4.12:  200 kg charge – incident pressure error relative to 0.125 cm cell result. 
Scaled Distance 

m/kg1/3 
Percent Error Relative to 0.125 cm Cell Size 

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 
0.5 - -1.1 -2.9 -5.3 -8.1 -17.9
1 - 0.1 -1.2 -3.4 -7.2 -14.4
2 - -0.3 -0.7 -1.3 -2.6 -7.3
4 - -1.7 -1.7 -1.7 -1.7 -3.3
5 - 0.0 0.0 0.0 0.0 -2.4

10 - 0.0 0.0 0.0 0.0 -6.7*
Note:  *choice of number of significant figures in simulation result caused error to be 
greater than 5% due to decimal rounding 
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TABLE 4.13:  200 kg charge - comparison between converged pressure and empirical 
data. 

Scaled 
Distance 
m/kg1/3 

Converged 
Cell 

Size (cm) 

CTH 
kPa (psi) 

ConWep 
kPa (psi) 

Percent 
Error 

K&G 
kPa (psi) 

Percent 
Error 

0.5 0.5 3472
(503.5)

3885
(563.5)

-10.6 3950.0 
(572.9) -12.1 

1 1 850.1
(123.3)

934.9
(135.6)

-9.1 995.6 
(144.4) -14.6 

2 2 154
(22.4)

194
(28.2)

-20.6 204.8 
(29.7) -24.6 

4 4 40
(5.8)

47
(6.8)

-14.7 44.1 
(6.4) -9.4 

5 4 28
(4.0)

31
(4.5)

-11.1 29.0 
(4.2) -4.8 

10 4 10
(1.4)

11
(1.6)

-12.5 9.7 
(1.4) 0.0 

Average Error % -13.1  -10.9
 

TABLE 4.14:  200 kg charge – simulated incident impulse. 

Scaled Distance 
m/kg 1/3 

Impulse as a Function of Cell Size (cm) 
kPa ms (psi ms)

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 

0.5 695.0
(100.8)

687
(99.6)

683
(99.0)

675
(97.9)

660 
(95.7) 

630
(91.4)

1 658.4
(95.5)

672
(97.5)

672
(97.5)

670
(97.2)

662 
(96.0) 

649
(94.2)

2 396
(57.4)

391
(56.7)

392
(56.8)

392
(56.8)

392 
(56.8) 

380
(55.1)

4 221
(32.0)

219
(31.8)

220
(31.9)

220
(31.9)

221 
(32.0) 

221
(32.0)

5 179
(25.9)

178
(25.8)

179
(25.9)

179
(25.9)

179 
(26.0) 

179
(26.0)

10 90.3
(13.1)

90.3
(13.1)

90.3
(13.1)

91.0
(13.2)

91.0 
(13.2) 

91.0
(13.2)
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TABLE 4.15:  200 kg charge – incident impulse error relative to 0.125 cm cell result.  
Scaled Distance 

m/kg 1/3 
Percent Error Relative to 0.125 cm Cell Size 

0.125 cm 0.25 cm 0.5 cm 1.0 cm 2.0 cm 4.0 cm 
0.5 - -1.2 -1.8 -2.9 -5.1 -9.3
1 - 2.1 2.1 1.8 0.5 -1.4
2 - -1.2 -1.0 -1.0 -1.0 -4.0
4 - -0.6 -0.3 -0.3 0.0 0.0
5 - -0.4 0.0 0.0 0.4 0.4

10 - 0.0 0.0 0.8 0.8 0.8
 

TABLE 4.16:  200 kg charge - comparison between converged impulse and empirical 
data. 

Scaled 
Distance 
m/kg1/3 

Converged Cell 
Size (cm) 

CTH 
kPa ms 
(psi ms) 

ConWep 
kPa ms 
(psi ms) 

Percent 
Error 

K&G 
kPa ms 
(psi ms) 

Percent 
Error 

0.5 1 675
(97.9)

826.7
(119.9)

-18.3 626 
(90.8) 7.8 

1 4 649
(94.2)

1021
(148.1)

-36.4 594 
(86.1) 9.4 

2 4 380
(55.1)

538
(78.1)

-29.4 464 
(67.3) -18.1 

4 4 221
(32.0)

291
(42.2)

-24.2 223 
(32.4) -1.2 

5 4 179
(26.0)

238
(34.5)

-24.6 175 
(25.4) 2.4 

10 4 91.0
(13.2)

123
(17.9)

-26.3 88.3 
(12.8) 3.1 

Average Error % -26.5  0.6
 

The 5 kg incident pressure results (Tables 4.5 through 4.7) show that, at the worst 

case, a 0.25 cm cell size is required to accurately simulate incident pressure.  Using the 

converged cell sizes presented in Table 4.6, Table 4.7 shows that the average error 

between CTH and empirical data for incident pressure is approximately 14%.  Looking at 

the 5 kg incident impulse results, Table 4.9 shows that impulse may be accurately 

modeled using a cell size that is two or more times greater than the cell size required for 

incident pressure.  In comparing the simulated impulse to empirical data in Table 4.10, 
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CTH underpredicted the ConWep result by 25% while overpredicting the K&G result by 

only 2.8%.  The difference between CTH and ConWep is not surprising because 

Bogosian et al. (2002) noted that ConWep tended to overpredict the incident impulse of 

the experimental data they examined by about 15%. 

The 200 kg incident pressure study (Tables 4.11 through 4.13) shows results that 

are similar to the 5 kg incident pressure study.  The notable difference, however, is that 

the larger charge size required less mesh resolution at each standoff.  This observation 

leads to an interesting result which will be discussed shortly.  As with the 5 kg study, the 

200 kg study had an error of approximately 11% in incident pressure when comparing 

CTH and empirical data.  Finally, the 200 kg incident impulse study showed that, similar 

to the pressure, the 200 kg charge required less mesh resolution than the 5 kg charge.  In 

comparing simulated impulse, CTH underpredicted the ConWep result by 26.5% and 

overpredicted the K&G result by only 0.6%.   

As mentioned earlier, it is of interest to study why the 200 kg charge, with its 

larger impulse, would require less refinement than a small charge.  After some 

examination, it was found that plotting the converged cell size as a function of peak 

impulse divided by peak pressure provides a revealing result.  This is shown in the log-

log plot of Figure 4.2.  This can be thought of as a measure of the time required for the 

blast wave to deliver its impulse.  The lower this ratio, the more impulse is being 

delivered per unit time.  As an illustration, using a scaled distance of 0.5 m/kg1/3, the 5 kg 

charge has an I/P ratio of 0.06 while the 200 kg charge has an ratio I/P of 0.20.  A power 

law curve fit was added to Figure 4.2 and it is given by 
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݁ݖ݅ܵ	݈݈݁ܥ	 ൎ 	1.0436 ቀ ூ௠௣௨௟௦௘
௉௥௘௦௦௨௥௘

ቁ
଴.଺ଷହ଼

       (4.16) 

This equation has an R2 value of 0.92 and is thus a good fit.  Note that the equation could 

be simplified to 

݁ݖ݅ܵ	݈݈݁ܥ ൎ 	 ቀ ூ௠௣௨௟௦௘
௉௥௘௦௦௨௥௘

ቁ
଴.଺ସ

     (4.17) 

and the R2 value would still be 0.91 which is, for all intents and purposes, just as good.  

Also note that the scatter of the data points is largely due to the 5% error criterion and, if 

several of the converged cell sizes were changed by one increment, the points would 

likely lay on the straight line in Figure 4.2.   

 

 
FIGURE 4.2:  Log-log plot of converged cell size as a function of impulse divided by 

pressure. 
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4.2.3. Convergence of Shocks in Air – Reflected Parameters 

Having determined the mesh size necessary to refine shocks travelling through 

air, the final (and key) convergence that needed to be studied was the mesh size required 

to accurately model reflected pressures and impulses. These quantities are of particular 

importance as they will ultimately be used in structural response simulations.  As with the 

incident parameter study, a fixed cell size of 0.25 cm was used for the explosive material.  

The size of the cells used to mesh air was varied to determine the mesh size required for 

convergence of reflected pressure and impulse.  As with the incident parameter study, an 

attempt will be made to identify a rule of thumb that can be used to construct a 

sufficiently refined model from the outset. 

The reflected parameter results that follow in Tables 4.17 through 4.28 will be 

presented in exactly the same manner as the results of the incident parameter study.  Thus 

each parameter (reflected pressure or impulse) will be reported in a three table group.  

There are two important differences between the reflected parameter study and the 

incident parameter study.  First, cell convergence was not identified based on error 

relative to some hyper-fine resolution.  Rather, convergence was determined based on the 

rate at which the simulated reflected pressure increased with respect to decreasing cell 

size.  When the change between one cell size and the next smaller size was less than 5%, 

the simulation was deemed to be converged at the smaller cell size.  The second 

difference with the incident parameter study is that only ConWep was used as a source of 

empirical data; Kinney and Graham (1985) do not provide sufficient information 

regarding reflected impulse.  An analysis of the results follows the tables. 
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TABLE 4.17:  5 kg charge – simulated reflected pressure. 
Scaled Distance 

m/kg 1/3 
Peak Reflected Pressure as a Function of Mesh Cell Size  kPa (psi)

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 

0.5 26631 
(3862.6)

25567
(3708.3)

24374
(3535.2)

22445
(3255.3)

19883 
(2883.8) 

17238
(2500.2)

1 4902 
(711.0) 

4817
(698.6)

4702
(682.0)

4540
(658.5)

4244 
(615.6) 

3780
(548.3)

2 496 
(71.9) 

494
(71.6)

490
(71.1)

485
(70.3)

476 
(69.0) 

460
(66.7)

4 95.1 
(13.8) 

95.1
(13.8)

95.1
(13.8)

95.1
(13.8)

94.5 
(13.7) 

94.5
(13.5)

5 NS 63
(9.2)

63
(9.2)

63
(9.1)

63 
(9.1) 

62
(9.0)

10 NS NS 21
(3.1)

21
(3.1)

21 
(3.0) 

21
(3.0)

Notes for Tables 4.17 through 4.19:   
NS means not simulated because convergence was already achieved.   
NR means no result obtained because secondary shock interfered with impulse 
quantification. 

 

TABLE 4.18:  Reflected pressure errors relative to one cell size larger. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to One Cell Size Larger 

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 4.2 4.9 8.6 12.9 15.3 -
1 1.8 2.4 3.6 7.0 12.3 -
2 0.4 0.7 1.1 1.9 3.5 -
4 0 0 0 0.7 1.5 -
5 NS 0 1.1 0 1.1 -

10 NS NS 0 3.3 0 -
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TABLE 4.19:  5 kg charge - comparison between converged reflected pressure and 
empirical data. 

Scaled 
Distance 
m/kg1/3 

Converged Cell 
Size (cm) 

CTH 
kPa (psi) 

ConWep 
kPa (psi) 

Percent 
Error 

0.5 0.05 25567
(3708.3)

30357
(4403.0)

-15.8 

1 0.125 4702
(682.0)

5006
(726.0)

-6.1 

2 0.5 476
(69.0)

646
(93.7)

-26.4 

4 1.0 94.5
(13.5)

110
(16.0)

-15.6 

5 1.0 62
(9.0)

70.3
(10.2)

-11.8 

10 1.0 21
(3.0)

23
(3.4)

-11.8 

Average Error % -14.6 
 

TABLE 4.20:  5 kg charge – simulated reflected impulse. 

Scaled Distance 
m/kg 1/3 

Peak Reflected Impulse as a Function of Mesh Cell Size  
kPa ms (psi ms)

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 NR NR NR NR NR NR
1 NR NR NR NR NR NR

2 461 
(66.8) 

461
(66.8)

460
(66.7)

459
(66.6)

459 
(66.6) 

460
(66.7)

4 180 
(26.1) 

180
(26.1)

180
(26.1)

181
(26.2)

181 
(26.2) 

181
(26.3)

5 NS 136
(19.7)

136
(19.7)

136
(19.7)

137 
(19.8) 

136
(19.7)

10 NS NS 61
(8.8)

61
(8.8)

61 
(8.8) 

61
(8.9)

Notes for Tables 4.20 through 4.22:   
NS means not simulated because convergence was already achieved.   
NR means no result obtained because secondary shock interfered with impulse 
quantification. 
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TABLE 4.21:  Reflected impulse errors relative to one cell size larger. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to One Cell Size Larger 

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 NR NR NR NR NR NR
1 NR NR NR NR NR NR
2 0.0 0.1 0.2 0 -0.1 -
4 0.0 0 0 -0.4 -0.4 -
5 NS 0 0 -0.5 0.5 -

10 NS NS 0 0.0 -1.1 -
 

TABLE 4.22:  5 kg charge - comparison between converged reflected impulse and 
empirical data. 

Scaled 
Distance 
m/kg1/3 

Converged Cell 
Size (cm) 

CTH 
kPa ms 
(psi ms) 

ConWep 
kPa ms 
(psi ms) 

Percent 
Error 

0.5 NR - - - 
1 NR - - - 

2 1 460
(66.7)

403
(58.5)

14.0 

4 1 181
(26.3)

182
(26.4)

-0.4 

5 1 136
(19.7)

143
(20.7)

-4.8 

10 1 61
(8.9)

68
(9.9)

-10.1 

Average Error % -0.3 
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TABLE 4.23:  200 kg charge – simulated reflected pressure. 
Scaled Distance 

m/kg 1/3 
Peak Reflected Pressure as a Function of Mesh Cell Size  kPa (psi)

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 

0.5 26901 
(3901.7)

26564
(3852.8)

26337
(3819.8)

25578
(3709.8)

24285 
(3522.3) 

22054
(3198.6)

1 NS NS 4845
(702.7)

4786
(694.1)

4677 
(678.3) 

4493
(651.7)

2 NS NS 494
(71.7)

492
(71.4)

490 
(71.0) 

484
(70.2)

4 NS NS 95.8
(13.9)

95.8
(13.8)

95.8 
(13.8) 

95.8
(13.8)

5 NS NS 880
(9.2)

880
(9.2)

880 
(9.2) 

880
(9.2)

10 NS NS NS 21
(3.1)

21 
(3.1) 

21
(3.1)

Notes for Tables 4.23 through 4.25:   
NS means not simulated because convergence was already achieved.   
NR means no result obtained because secondary shock interfered with impulse 
quantification. 

 

TABLE 4.24:  Reflected pressure errors relative to one cell size larger. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to One Size Larger 

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 1.3 0.9 3.0 5.3 10.1 -
1 NS NS 1.2 2.3 4.1 -
2 NS NS 0.4 0.6 1.1 -
4 NS NS 0.7 0.0 0.0 -
5 NS NS 0.0 0.0 0.0 -

10 NS NS NS 0.0 0.0 -
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TABLE 4.25:  200 kg charge - comparison between converged reflected pressure and 
empirical data. 

Scaled 
Distance 
m/kg1/3 

Converged Cell 
Size (cm) 

CTH 
kPa (psi) 

ConWep 
kPa (psi) 

Percent 
Error 

0.5 0.125 26337
(3819.8)

30219
(4383.0)

-12.8 

1 0.5 4677
(678.3)

5001
(725.3)

-6.5 

2 1 484
(70.2)

645
(93.6)

-25.0 

4 1 95.8
(13.8)

110
(16.0)

-13.8 

5 1 880
(9.2)

70.3
(10.2)

-9.8 

10 1 21
(3.1)

23
(3.4)

-8.8 

Average Error % -12.8 
 
 

TABLE 4.26:  200 kg charge – simulated reflected impulse. 

Scaled Distance 
m/kg 1/3 

Peak Reflected Impulse as a Function of Mesh Cell Size   
kPa ms (psi ms)

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 NR NR NR NR NR NR
1 NR NR NR NR NR NR

2 NS NS 1575
(228.4)

1573
(228.1)

1571 
(227.9) 

1573
(228.2)

4 NS NS 616
(89.3)

615
(89.2)

616 
(89.3) 

617
(89.5)

5 NS NS 465
(67.4)

465
(67.4)

465 
(67.4) 

466
(67.6)

10 NS NS NS 206
(29.9)

207 
(30.0) 

207
(30.0)

Notes for Tables 4.26 through 4.28:   
NS means not simulated because convergence was already achieved.   
NR means no result obtained because secondary shock interfered with impulse 
quantification. 
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TABLE 4.27:  Reflected impulse errors relative to one cell size larger. 
Scaled Distance 

m/kg 1/3 
Percent Error Relative to One Cell Size Larger 

0.01 cm 0.05 cm 0.125 cm 0.25 cm 0.5 cm 1.0 cm 
0.5 NR NR NR NR NR -
1 NR NR NR NR NR -
2 NS NS 0.1 0.1 -0.1 -
4 NS NS 0.1 -0.1 -0.2 -
5 NS NS 0.0 0.0 -0.3 -

10 NS NS NS -0.3 0.0 -
 

TABLE 4.28:  200 kg charge - comparison between converged reflected impulse and 
empirical data. 

Scaled 
Distance 
m/kg1/3 

Converged Cell 
Size (cm) 

CTH 
kPa ms 
(psi ms) 

ConWep 
kPa ms 
(psi ms) 

Percent 
Error 

0.5 - - - - 
1 - - - - 

2 1 1573
(228.2)

1378
(199.9)

14.2 

4 1 617
(89.5)

623
(90.3)

-0.9 

5 1 466
(67.6)

487
(70.7)

-4.4 

10 1 207
(30.0)

232
(33.7)

-11.0 

Average Error % -0.5 
 

The 5 kg reflected pressure results (Tables 4.17 through 4.19) show that at the 

worst case, a simulation using a 0.05 cm cell size is required to accurately simulate 

reflected pressure.  This is over five times smaller than the resolution required for 

incident pressure.  Using the converged cell sizes presented in Table 4.18, Table 4.19 

shows that, on average, CTH underpredicts ConWep reflected pressure predictions by 

14.6%.  Note that even using the smallest mesh size tested does not improve this result 

considerably.  Looking at the 5 kg reflected impulse results, Table 4.21 shows that 

impulse may be accurately simulated using a cell size that is twice the cell size required 
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for reflected pressure.  In comparing the simulated reflected impulse to empirical data, 

CTH underpredicted the ConWep result by an average of only 0.3%.  It is not clear why 

CTH’s simulated reflected impulses would agree with ConWep better than its simulated 

incident impulses. 

The 200 kg reflected pressure results (Tables 4.23 through 4.25) show that the 

larger charge requires less mesh resolution than the 5 kg charge.  This result was also 

obtained when comparing incident pressures for the 5 kg and 200 kg charges.  The 200 

kg study found that CTH underpredicts reflected pressure by an average of 12.8% when 

comparing CTH and ConWep predictions.  Finally, both the 5 kg and the 200 kg studies 

showed that reflected impulse is readily simulated using 1 cm cells for the scaled 

distances tested.  In comparing simulated impulse, CTH underpredicted the ConWep 

result by an average of 0.5%.  These error percentages (this statement applies to both 

incident and reflected parameters) are in excellent agreement with the empirical data, as 

Bogosian et al. (2002) show that even the most highly calibrated airblast prediction tools 

have errors between 6% and 15% when compared to experimental data. 

There is one final complication that must be investigated.  Because it is desirable 

to minimize the number of cells in the domain, and thus computational effort, it is 

preferable to use large cells where possible.  In order to do this, the explosive material 

will be highly refined, the air much less so, and the reflecting surface again more refined.  

It was therefore of interest to check whether or not there was some minimum thickness 

that a zone of highly refined reflecting cells (the cells modeling the “film” of air at the 

reflecting surface) needed to be in order to provide an accurate result.  Table 4.29 shows 
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the results of this investigation.  As the data show, the thickness of the zone of highly 

refined cells for reflected pressure makes virtually no difference and so 10 centimeters 

will be used. 

 
TABLE 4.29:  Results of reflection zone thickness tests, 5kg charge, z=2 m/kg1/3. 

Explosive 
Cell Size 

(cm) 

Air Cell 
Size 
(cm) 

Refl.  Zone 
Cell Size 

(cm)

Refl. Zone 
Thickness  

(cm)

Refl. Press. 
kPa (psi) 

Refl. Imp.
kPa ms 
(psi ms)

0.25 0.50 0.25 10 487 
(70.7) 

460
(66.7)

0.25 0.50 0.25 25 488 
(70.8) 

461
(66.9)

0.25 0.50 0.25 50 488 
(70.8) 

461
(66.8)

 

4.3. Two-Dimensional Test 

The run times required to repeat the convergence study in two dimensions would 

have been prohibitive.  Each simulated standoff could equate to days of simulation time, 

even using the University computing cluster.  It was therefore decided to perform the 

convergence study in one dimension and then test whether or not the rules of thumb 

developed in one dimension worked well in two dimensions.  Because all of this work 

will ultimately be applied to the A1 and B blast events, it was desirable to test the 

convergence criteria in a two-dimensional simulation at a similar scaled distance as the 

experiments.  Thus, the following simulations were performed for a 9 kg spherical charge 

of TNT at a standoff distance of 2.5 meters.  This corresponds to a scaled distance of 1.2 

m/kg 1/3 which is slightly smaller than the scaled distance from the experiments and 

should thus be representative.  Using ConWep, the impulse to pressure ratio was 

estimated to be 0.31 ms.  Using this value in Eq. (4.16) yields a cell size estimate of 0.5 



134 

 

 

 

cm for incident pressures.  Looking at Table 4.18 for a scaled distance between 1.0 and 

2.0, a cell size of approximately 0.25 cm should be sufficient to simulate reflected 

parameters.  Note that these exact cell sizes could not be used in the trial two-dimensional 

simulation because CTH determines cell sizes based on factors including the domain size 

and user specified level of refinement.  Thus, the cell sizes tested had to be slightly 

smaller than the 0.5 cm and 0.25 cm sizes selected.  Also, CTH requires that cells 

containing explosive materials always have the highest level of refinement of any 

material in the mesh.  Therefore, the explosive charge and the reflection zone were 

refined using the same mesh size, even though the explosive could have been modeled 

with a courser mesh. 

One additional complication is the desire to use adaptive mesh refinement (AMR) 

in multi-dimensional simulations.  This software feature allows the problem to 

continuously adapt the mesh based on user instructions.  In doing so, a significant 

computational savings is achieved, permitting very highly refined simulations to be 

performed in reasonable periods of time.  Figures 4.3 and 4.4 are simulation results from 

two instants during the two-dimensional CTH simulations reported here.  The left hand 

figures correspond to time t=0, and the right-hand figures correspond to approximately 

1ms after detonation is complete.  Figure 4.3 shows the configuration of the CTH mesh.  

The black lines represent the borders of mesh blocks, and each block contains 

approximately 100 cells.  The figure shows that AMR indeed provides a finer mesh 

where it is needed, i.e. in regions of the model where high pressure and density gradients 

exist.  Figure 4.4 are grayscale colormap plots of pressure at the same time periods shown 
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in Figure 4.3.  White corresponds to high pressure and black corresponds to ambient 

pressure.  The dark lines within the shock front represent the boundaries between gaseous 

detonation products and air.   

 

 
FIGURE 4.3:  CTH Plot of materials at two different times during blast simulation. 

 
 

 
FIGURE 4.4:  CTH Plot of pressure at two different times during blast simulation. 
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Table 4.30 shows the meshing scheme used in the two-dimensional simulations.  

Three different levels of resolution were tested to be certain that convergence had been 

achieved.  Table 4.31 presents the results of the two-dimensional tests for each 

refinement level.  The table shows that despite a nearly fourfold increase in resolution, 

the results did not change appreciably, and indeed the lowest mesh resolution was 

sufficient; this confirms that the convergence criteria previously identified can be applied 

to two-dimensional simulations.   

 
TABLE 4.30:  Cell sizes used in two-dimensional comparison. 

Refinement Level Explosive Mesh
Size (cm)

Air Mesh
Size (cm)

Reflection Mesh
Size (cm) 

1 0.22 0.44 0.22 
2 0.11 0.22 0.11 
3 0.055 0.11 0.055 

 

TABLE 4.31:  CTH results for three levels of refinement.  9 kg charge at 2.5 m standoff. 

Level CTH Pressure
kPa (psi) 

Percent Error*

(pressure)
CTH Impulse

kPa ms (psi ms)
Percent Error*

(impulse)

1 2508 
(363.7) -14.0 895.6

(129.9)
-2.4 

2 2475 
(358.9) -15.2 870.8

(126.3)
-5.1 

3 2467 
(357.8) -15.4 881.1

(127.8)
-4.0 

Notes: 
*Error relative to ConWep which predicted 2916 kPa (423.0 psi) and 917.7 
kPa ms (133.1 psi ms). 

 
 

To summarize, the guidance developed in this chapter for creating a converged 

simulation can be restated as follows: 

1.  Knowing the charge size and standoff, use some simplified method (ConWep, 

nomograph, etc.) to predict the incident pressure and impulse. 
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2. Using the ratio of impulse divided by pressure, use Eq. (4.16) to estimate the cell 

size required for incident pressure. 

3. As a starting point, the cell size required for reflected pressure will be 

approximately half the size predicted using Eq. (4.16), but could be up to five 

times smaller. 

4. Run several simulations, each time decreasing the cell size by 50% until the 

results do not change significantly between one simulation and the next.



138 

 

 

 

CHAPTER 5:  THE JWL EQUATION OF STATE AND CTH SIMULATION RESULTS 
 

Section 4.1 showed that an equation of state (EOS) is required to solve Euler’s 

equations.  An EOS must therefore be supplied for every material in the hydrodynamic 

model.  Normally EOS are found experimentally due to the complexity of material 

behavior over the wide range of densities typically encountered in shock physics 

simulations.  These complex behaviors can include phase changes, dissociation, 

ionization, etc.  A study of Doan and Nickel’s (1963) plots of the EOS of air quickly 

illustrates the challenge.  Only recently has it been possible to develop an EOS using 

advanced thermochemical computer simulations, but even these are subject to 

interpretation by the user and are usually verified experimentally.   

From a calculational standpoint, there are two primary types of EOS available – 

tabular and analytic.  Tabular EOS consist of table-like data structures which describe the 

pressure, density, and energy states of a material across a wide range of the state 

variables.  A tabular form can be useful when the EOS is based on experimental data for 

which a closed form expression cannot be readily developed.  Analytic EOS are 

somewhat more convenient, providing closed-form mathematical expressions for the 

pressure, density, and energy.  This chapter will develop the coefficients necessary to use 

an analytic EOS known as the Jones-Wilkins-Lee (JWL) equation of state.

An exhaustive discussion of the EOS for air is beyond the scope of this 

investigation.  Moreover, there are few, if any, adjustments to the EOS that a user may 
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make in CTH, rendering it of lesser interest.  It is sufficient to say that CTH uses a tabular 

EOS for air based on extensive empirical data; the airblast comparisons performed in 

Chapter 4 demonstrate it is well calibrated for the purpose of this investigation.  The only 

adjustments that may be made to the EOS for air are defining its initial density and 

temperature as described in Section 4.2.   

 In CTH the JWL EOS is one option for simulating high explosive detonation.  

There are other EOS available that include models of reactive detonations (i.e. it 

simulates what happens during the transition from solid explosive to gaseous detonation 

products); however such a complex EOS is unnecessary for airblast simulations.  The 

JWL EOS describes the adiabatic expansion of gaseous detonation products from the 

point immediately after detonation (i.e. after the completion of the thermochemical 

reactions of detonation are complete) to the final state at which the gasses have expanded 

to ambient pressure.  This EOS does not model the behavior of the solid explosive.  

Instead, CTH replaces the solid explosive in the model with an equivalent mass of highly 

compressed detonation products which are described by the JWL EOS.  The sequence 

and rate at which this replacement occurs is governed by the HEBURN algorithm of the 

software.   

It is worth briefly discussing whether or not dynamite can be considered an ideal 

explosive.  This is important as the theory presented in this chapter (and used in CTH to 

simulate detonation) is formulated for ideal explosives.  Penn et al. (1975) defines an 

ideal explosive as one in which there is a constant rate of energy release over a wide 

range of diameters.  Souers et al. (1996) defines an ideal explosive as one which follows 
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Zel’dovich-von Neumann-Doring (ZND) theory and possesses a true CJ state (to be 

defined shortly) under heavy confinement.  Powerful military explosives like PETN are 

ideal explosives.  Composite explosives like dynamite and ANFO (ammonium nitrate and 

fuel oil), typically do not display these characteristics.  Penn et al. (1975) noted that, 

while ANFO’s behavior was highly irregular and requires a more complex equation of 

state, dynamite can be approximated as an ideal explosive and thus the JWL EOS may be 

used. 

5.1. Elementary Shock Physics Theory 

 Before proceeding with the development of JWL coefficients for Unimax, it is 

helpful to provide some background on the theory of shockwaves and detonations.  Of 

primary importance to any shock physics analysis are the Hugoniot equations (Eqs. 

(4.6)).  They are the fundamental equations that describe the state of matter undergoing 

shock compression.  The Hugoniot equations hold true, irrespective of how a shock was 

generated or its strength.  The precise pre/post shock states described by the Hugoniot 

equations must usually be determined experimentally for a given material.  This is done 

by conducting a series of shock loading experiments in which the same material under 

test is subjected to shocks of varying strength.  Using this experimental data, a curve is 

constructed which plots post-shock pressure as a function of specific volume.  Such a plot 

is referred to as the Hugoniot curve and it is the graphical description of Hugoniot’s 

mathematical relationships for a particular material.  Figure 5.1 (the curved line) is an 

example of a Hugoniot curve for air, where P is pressure and V is specific volume, 

computed as 1/ρ.  It is important to understand that the Hugoniot does not represent a 
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path of compression or expansion, but rather is only the locus of all possible shock end 

states.   

 Instead, the path followed by shock loading is a straight line in P-V space, 

referred to as the Rayleigh Line (the straight line in Figure 5.1).  This line is drawn using 

two points.  The first point is the specific volume and pressure of the material before 

shock loading.  The second point is located by the intersection of the Rayleigh line 

leaving the first point with a slope of –ρo
2Us

2  and intersecting the Hugoniot curve at a 

higher density and pressure (ρo is the unshocked density and Us is the shock velocity).  

This second point on the Hugoniot curve is the post-shock state of the material.   

As an example, consider a shockwave moving through air.  Figure 5.1 shows the 

Hugoniot for air initially at US Standard Atmosphere (solid curve) and the Rayleigh line 

for a shock with a Us of Mach 2.2 (dashed line).  The diamond points on the solid curve 

represent data from Table 10 in Kinney and Graham’s text (1985).  As the graph shows, 

the passage of a shock travelling at Mach 2.2 will create an overpressure of 0.455 MPa 

(66.0 psi).  The process of “jumping” from one state to another along the Rayleigh line is 

irreversible as a result of the entropy increase across the shock.  After passage of the 

shockwave, the compressed material is typically assumed to expand along an adiabat or 

an isentrope.  Note that isentropes are always adiabatic, but adiabats are not necessarily 

isentropic.  The choice of an adiabat or isentrope is usually driven by the mathematical 

assumptions necessary to solve a particular problem, not the physics of the problem itself.  

In assuming isentropy, the problem becomes thermodynamically reversible, greatly 

simplifying certain types of calculations. 
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FIGURE 5.1:  Hugoniot (solid curve) and Rayleigh line (dashed curve) for air initially at 

US Standard Atmosphere subject to a shock travelling at Mach 2.2. 
 

 As an interesting aside, many engineers do not recognize that airblast nomographs 

or tabulated airblast data are in fact a Hugoniot for air.  Consider for example a typical 

nomograph of scaled distance versus peak pressure (like that shown in Figure 1.4).  In 

such charts, each scaled distance corresponds to exactly one Mach number.  In turn, this 

unique Mach number corresponds to exactly one overpressure ratio, which in turn 

corresponds to only one specific volume.  Thus, the nomograph is actually a Hugoniot (or 

at least contains the same information as the Hugoniot) represented in a manner 

convenient for engineering calculations.   
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Rearranging the Hugoniot equations provides two useful expressions.  Hugoniot’s 

statement of the conservation of mass is given by:  

ఘ೚
ఘ
ൌ 1 െ ௨

௎ೞ
         (5.1) 

This equation allows computation of relative volume based on the shock and particle 

velocities (u is the particle velocity).  Hugoniot’s conservation of momentum equation 

allows computation of pressure based on shock and particle velocities and is given by: 

ܲ ൌ ௢ߩ ௦ܷ(5.2)        ݑ 

In these equations ρo is the pre-shock density, ρ is the post-shock density, u is the post-

shock particle velocity, Us is the shock front velocity, and P the pressure rise created by 

the shock.  As written, these equations assume the material is at rest before being shocked 

(i.e. pre-shock velocity and pressure are zero). 

 These two simple equations permit transformation of experimental measurements 

into a Hugoniot.  A good example of this is Deal (1957) which documents an experiment 

performed to develop a high pressure Hugoniot for air.  In the experiment, a plate was 

explosively driven to high velocity.  As the plate accelerated, the air in front of the plate 

was rapidly compressed causing an air shock to form.  After formation, the shock front in 

the air traveled faster than the plate.  Using a high speed camera, the velocity of the plate 

was measured (this is the particle velocity) and the velocity of the air shock was 

measured (this is the shock velocity).  The experiment was repeated several times using 

different explosive quantities to achieve different plate velocities.  This created different 

Us-u pairs which were used to create a Hugoniot using Eqs. (5.1) and (5.2).  This type of 

experiment is representative of how Hugoniot data can be generated for many materials. 
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The analysis of an explosive detonation requires one additional complication.  

The JWL EOS is based on an idea known as the Chapman Jouguet (CJ) theory of 

detonation.  CJ theory assumes detonation is an instantaneous thermochemical reaction 

and places certain mathematical requirements on the state of gaseous detonation products.  

This special post-detonation state is termed the CJ state and can be found mathematically; 

however, a graphical illustration is helpful to comprehension.  Figure 5.2 will be used to 

locate the CJ state of solid TNT.  Finding the CJ state requires three overlaid curves in 

pressure-specific volume space.  The first required curve is TNT’s unreacted Hugoniot 

(solid curve at the bottom).  It was produced from Gibbs and Popolato (1980) who 

provide the following expression for Us.  Cooper (1996) cites this equation as well.   

ௌܷ ൌ 2.57 ൅  (5.3)                           ݑ1.88

Using Eq. (5.3), a set of Us-u coordinates was calculated.  Then using Eq. (5.2) the 

velocity pairs were used to compute pressure.  Finally, using Eq. (5.1) the density and 

specific volume were calculated, thus producing the unreacted Hugoniot curve. 

The second curve required to find the CJ state is the Rayleigh line for the 

detonation products.  This corresponds to the straight line leaving the point P=0 MPa, 

V=0.61 cm3/g on the unreacted Hugoniot with a slope of -ρo
2Us

2 (ρo = 1.63 g/cm3 and Us 

= 6.93 km/s) and intersecting the unreacted Hugoniot again at high density and pressure.  

The high pressure intersection of the Rayleigh line with the unreacted explosive Hugoniot 

is referred to as the Von Neumann spike and describes an intense mechanical 

compression.  This shock compression leads to the thermochemical process of 

detonation.   
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FIGURE 5.2:  Unreacted Hugoniot (lower solid line), detonation products Hugoniot 

(upper solid line), Rayleigh line (dashed line) and CJ state (solid dot) for TNT. 
 

As the thermochemical reaction proceeds to completion, the material unloads 

along some path (that is not important for our purposes) until it reaches the point where 

the Rayleigh line is tangent to the Hugoniot curve of the detonation products.  This 

detonation product Hugoniot (the upper solid curve) is the third curve necessary to 

specify the CJ state.  Several simple methods presented by Cooper (1996) were tested to 

generate a detonation products Hugoniot but they did not produce satisfactory results.  

Instead, the BCAT utility within CTH was used to output the Hugoniot of the detonation 

products in the region of interest.  This Hugoniot is plotted as the upper solid Hugoniot 

curve in Figure 5.2. 
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The CJ state, identified by a solid dot in Figure 5.2, corresponds to the only 

intersection between the Rayleigh line and the detonation products Hugoniot which 

yields a stable detonation.  At this point, CJ theory requires the slope of the Rayleigh line, 

the detonation products Hugoniot, and the expansion isentrope to all be equal.  Recalling 

Eq. (4.17), which says that the square root of the slope of lines in P-V space equals the 

sound speed, this CJ theory requirement simply means that the velocity of all parts of the 

detonation wave must be equal.  If the slopes were different it could mean, for example, 

that the detonation front is overtaken by its rarefaction wave, or that the reaction zone 

between the detonation front and the rarefaction wave expands to be very large (Cooper 

1996).  Such results are not observed in real detonations and thus CJ theory is believed to 

be a reasonable approximation of reality. 

Once the detonation products are formed at the CJ state, they expand along the 

detonation products isentrope, which is defined by the JWL EOS.  For clarity the 

isentrope is not shown in Figure 5.2 because it lies directly over the Hugoniot in the 

region of interest.  Many authors will state that for engineering purposes, the Hugoniot 

and isentrope for detonation products may be assumed to be equivalent, but this is only a 

good approximation near the CJ state.  For the remainder of this document, a variable 

with the subscript “CJ” implies that the variable is computed at the CJ state.  This 

convention will be used often, as the properties of detonation products at the CJ state are 

very important in defining JWL coefficients. 
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5.2. The JWL Equation of State 

From the CJ state, the detonation products expand along an adiabatic path until 

they have equilibrated with the surrounding atmosphere.  Adiabatic means that the 

expanding detonation products are assumed to have a constant energy throughout 

expansion.  For convenience, this adiabatic path is normally also assumed to be isentropic 

(entropy does not change), allowing an integral of the expansion isentrope to compute the 

energy released.  Although the real process of expansion isn’t reversible or isentropic, 

Van Ness (1969) amusingly explains “our choice in thermodynamics often is to do 

calculations for reversible processes or to do no calculations at all.”  Given that the JWL 

EOS is only an approximation (a curve fit) of the expansion process observed in real high 

explosive detonations, these thermodynamic assumptions are acceptable. 

The JWL EOS is essentially a curve fit describing this expansion path from the CJ 

state to ambient conditions.  In all of the equations that follow, Vr is the relative volume 

computed as ρo/ρ.  VCJ is Vr evaluated at the CJ state.  The standard form of the JWL EOS 

given by Lee et al. (1968) is  

ܲሺ ௥ܸ, ሻܧ ൌ ܣ ቂ1 െ ఠ

ோభ௏ೝ
ቃ ݁ିோభ௏ೝ ൅ ܤ ቂ1 െ ఠ

ோమ௏ೝ
ቃ ݁ିோమ௏ೝ ൅ ఠாೄ

௏ೝ
   (5.4) 

In the equation, the pressure, P, is computed as a function of the relative volume, Vr, and 

the energy, E.  The variables A, B, ω, R1, and R2 are material-specific constants derived 

for use with the JWL.  Eq. (5.5) shows how the variable Es is computed as a function of 

Vr.   

ௌሺܧ ௥ܸሻ ൌ
஺

ோభ
݁ିோభ௏ೝ ൅ ஻

ோమ
݁ିோమ௏ೝ ൅ ஼

ఠ௏ೝ
ഘ   (5.5) 
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In the equation, C is yet another material-specific JWL constant.  The form of the JWL 

equations used by CTH are given by 

ܲሺ ௥ܸ, ܶሻ ൌ ோభ௏ೝି݁ܣ ൅ ோమ௏ೝି݁ܤ ൅  ௏ܶ     (5.6)ܥߩ߱

ሺܧ ௥ܸ, ܶሻ ൌ
ଵ

ఘ೚
ቂ ஺
ோభ
݁ିோభ௏ೝ ൅ ஻

ோమ
݁ିோమ௏ೝ െ ௢ቃܧ ൅  ௏ܶ    (5.7)ܥ

௏ܥ ൌ
஼

ఠ்಴಻ఘ೚
൬1 െ

௉಴಻
ఘ೚஽಴಻

మ ൰
ିఠ

    (5.8) 

In these equations, T is the temperature, Cv the specific heat at constant volume, Eo is the 

explosive’s per unit volume chemical energy, TCJ is the detonation temperature, PCJ the 

detonation pressure, and DCJ the detonation velocity.  The equations show that CTH uses 

temperature, rather than energy, as a state variable.  When certain assumptions are made 

regarding the detonation temperature, the energy and temperature forms are equivalent.  

The transformation between the two forms may be made using Eq. (5.8) with TCJ 

assumed to be 0.35 eV (electron volts, 1 eV is equal to 11604.5 Kelvin ).  

There are a few rules for values the JWL coefficients must take, and rigorous 

analysis (Souers and Haselman, 1994) has found no useful relationship between the 

physical properties or performance of an explosive and its JWL coefficients.  Despite 

this, there are several rules of thumb that appear to hold true.  R1 is normally 

approximately equal to four while R2 is approximately equal to one.  The ω term is 

usually between 0.2 and 0.4.  The A term is roughly 100 times the B term and 1000 times 

the C term (Lee et al. 1968).  Souers (2005) cautions users that the JWL coefficients 

should be reported to at least five decimal places.  The author of this dissertation has 
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found this to be true, as using fewer significant figures leads CTH to calculate the wrong 

CJ state.  Section 5.3 will discuss in greater detail how JWL coefficients are developed. 

There are three critical conditions that any set of JWL coefficients must satisfy.  

First, when evaluated, the chosen coefficients must predict an energy release consistent 

with the available chemical energy, Eo, computed by   

௢ܧ ൌ
஺

ோభ
݁ିோభ௏಴಻ ൅ ஻

ோమ
݁ିோమ௏಴಻ ൅ ௏ܥ ஼ܶ௃ߩ௢ െ

௉಴಻ሺଵି௏಴಻ሻ

ଶ
           (5.9) 

Also, when evaluated at the CJ state, Eq. (5.10) must predict the correct CJ pressure.     

஼ܲ௃ ൌ
஺൤ଵି ഘ

ೃభೇ಴಻
൨௘షೃభೇ಴಻ା஻൤ଵି ഘ

ೃమೇ಴಻
൨௘షೃమೇ಴಻ାഘಶ೚

ೇ಴಻

ଵା
ഘቆభష

భ
ೇ಴಻

ቇ

మ

     (5.10) 

Eq. (5.11) is the third condition that must be satisfied; it relates the detonation velocity, 

detonation pressure, and initial density.   

஼௃ܦ ൌ ට
௉಴಻

ఘ೚ሺଵି௏಴಻ሻ
           (5.11) 

Hydrocodes (including CTH) perform these checks to determine if the JWL coefficients 

specified are consistent with the specified CJ state.  If the JWL coefficient set is found to 

be inconsistent, the hydrocodes usually redefine the CJ state to produce consistency, 

often leading to an incorrect representation of the explosive material. 

5.3. Developing JWL Coefficients 

Coefficients for the JWL EOS are normally derived from a calibration process 

that involves experiments and simulation (Lee et al. 1968).  The experimental component 

of calibration can be summarized as follows:  a machined hollow copper cylinder with an 

inner diameter of at least three centimeters, a wall thickness of 5 to 10 millimeters, and a 
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length to diameter ratio of four or more is filled with the explosive for which the JWL 

coefficients are sought.  The cylinder is then detonated from one end which causes a 

rapid expansion and disintegration of the copper cylinder.  As the detonation progresses, 

cameras or laser velocimeters are used to record the deflection or velocity time history of 

the copper cylinder’s wall.  LS-DYNA, a commercially available finite element code 

(LSTC, Livermore, CA), or some other hydrocode like CTH is then used to simulate the 

experiment.  LS-DYNA has a built-in JWL EOS as well as material models that are well 

calibrated for the type of copper used in the experiment; LS-DYNA is thus a popular 

code for this problem.  The JWL coefficients are adjusted in LS-DYNA until the 

simulated wall deflection/velocity time history closely matches the experimental data.  

Souers and Haselman (1994) provide an excellent discussion of this and other processes 

for determining JWL coefficients. 

This experimentally based calibration method is thought to provide the most 

accurate set of JWL coefficients over a broad range of pressures (as compared to 

coefficients merely estimated from experience or computed using thermochemical 

equilibrium software programs).  This calibration, however, is quite expensive and 

requires specialized equipment (e.g. cameras with frame rates of 100,000 fps and greater) 

to measure the expansion of the copper cylinder.  JWL coefficients that are determined 

using this method are only available for traditional military explosives.   

The dynamite used in this study has not been characterized by this process.  When 

JWL coefficients are not available for a particular explosive, there are methods of 

estimating the required coefficients using those of another already characterized 
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explosive.  Section 5.4 will document the JWL coefficients of previously characterized 

dynamites found in peer reviewed literature or government technical reports.  Section 5.5 

will use these existing coefficients as the basis for developing new JWL coefficients for 

Unimax dynamite.  Finally, Sections 5.6 and 5.7 report simulation results for the A1 and 

B blast events using the newly-developed JWL coefficients. 

5.4. Existing Dynamite JWL Coefficients 

There is limited data available regarding the performance and modeling of 

commercial explosives like the dynamite used in this work.  Typically, defense 

laboratories or the Department of Energy in the United States are tasked with 

characterizing explosives to support ongoing weapons related programs.  Within the 

government explosives community, the characterization of an explosive is typically 

project specific, and dynamite is no longer used for military applications because more 

powerful and easily molded compounds are available.  Over the last 50 years, TNT and 

PETN have emerged as the “standard” explosive compounds (with a large body of 

research) to which all others are compared.  While the use of precisely manufactured 

TNT charges would have greatly simplified the airblast modeling in this investigation, 

logistical considerations required the use of readily available dynamite in the 

experimental program.   

Much of the information in this dissertation regarding dynamite is from personal 

communications with Bob LeVan, an engineer with Dyno Nobel (Salt Lake City, UT).  In 

the 1980’s there were still several nitroglycerin dynamite manufacturers as evidenced by 

Cooper (1996).  Of the commercially manufactured dynamites, Unigel (made by 
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Hercules) was considered the standard gelatin dynamite.  Dyno Nobel acquired Hercules 

in 1985 and began manufacturing Unigel as its own product.  With the rising use of bulk 

explosives like ANFO, the demand for dynamites decreased and Dyno Nobel became the 

sole manufacturer of nitroglycerin dynamites in North America.  Dyno Nobel currently 

manufactures two nitroglycerin dynamite products, Unigel and Unimax.  Their energetic 

and chemical properties are shown in Table 5.1.  As shown in the table, Unimax is more 

powerful than Unigel.  No test data was available regarding detonation pressure, so the 

following expression from Cooper (1996) was used to estimate it: 

஼ܲ௃ ൌ ஼௃ܦ௢ߩ
ଶ ሺ1 െ  ௢଴.଴ସሻ   (5.12)ߩ0.7125

Cooper claims that, when compared to experimental measurements, the predicted  
 
pressure is usually within 5%.   
 
 

TABLE 5.1:  Properties of Dyno Nobel dynamites from LeVan (2007). 
 Unimax Unigel 

Detonation Velocity (DCJ) 5856 m/s 4300 m/sa 
Detonation Pressure (PCJ) 14.2 GPab 6.73 GPab 

Unreacted Density (ߩo) 1.50 g/cc 1.30 g/cc 
Relative Weight Strength 1.20 1.09 

Nitroglycerin Ether Extract 26.2 % 19.5 % 
Ammonium Nitrate 39.2 % 67.0 % 

Sodium Nitrate 25.6 % 7.40 % 
Heat of Explosion (≈energy) 6.322 kJ/cc 5.191 kJ/cc 

Notes:   
a. Unigel’s detonation velocity is minimum guaranteed   
b. Values computed using Eq. (5.12) 

 

Table 5.2 provides a listing of dynamites and the associated detonation velocities 

that could be located in published literature.  The Unigel currently manufactured by Dyno 

Nobel is similar in density to that manufactured at the time of previous studies.  It also 
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appears as though Unimax is similar to the ammonia gelatin dynamite from Sadwin et al. 

(1965); it is reassuring to see that their detonation velocities are so similar.  Unimax is 

called an “extra gelatin dynamite” by the manufacturer.  The designation “extra” means 

that the composite explosive contains additional oxidizers.  The “gelatin” designation 

refers to the nitroglycerin component which is combined with another agent to form a gel 

(Cooper, 1996).   

  
TABLE 5.2:  Summary of CJ parameters for dynamites from other researchers. 

Product 
Description 

 oߩ
(g/cc) 

PCJ 
(GPa) 

DCJ 
(m/s) 

Charge 
Diameter 

(mm) 
Reference 

Unigel 1.26 12.8 5760 Not Listed 
Edwards et 
al. (1994) 

Unigel 1.294 12.0 5477 Not Listed 
Hornberg 

(1986) 

Unigel 1.262 12.0 5760 Not Listed 
Penn et al. 

(1975) 

Gelatin Dynamite 1.50 15.4* 6090 100 
Souers et al. 

(2004) 
Permissible 
Dynamite 

1.10 2.25* 2680 45 
Souers et al. 

(2004) 
Ammonia Gelatin 

Dynamite 
1.50 14.8* 5980 100 

Sadwin et al. 
(1965) 

Extra Dynamite 1.36 6.37* 4100 100 
Sadwin et al. 

(1965) 
Note:  *Value computed using Eq. (5.12) 

 

The most important properties to know when simulating the performance of an 

explosive are its unreacted density and the two Chapman Jouguet (CJ) state parameters:  

detonation velocity and detonation pressure.  Table 5.2 shows that while Unigel’s density 

has not varied considerably, there is a discrepancy between the manufacturer’s detonation 

velocity DCJ (shown in Table 5.1) and that obtained by other researchers.  This might be 



154 

 

 

 

explained by the fact that Unigel’s detonation velocity in Table 5.1 was provided by the 

manufacturer as a minimum, but Unimax’s detonation velocity, on the other hand, was 

determined experimentally.  The gelatin dynamite and ammonia gelatin dynamite shown 

in Table 5.2 have a similar density and detonation velocity as Unimax, suggesting the 

Dyno Nobel supplied detonation velocity is reasonably accurate. 

Table 5.3 lists three Unigel JWL coefficient sets from the literature.  The energy 

(or heat of explosion) provided by Dyno Nobel for Unigel in Table 5.1 is similar to the Eo 

value for two of the coefficient sets listed in Table 5.3.  Penn et al. (1975) explicitly state 

that their Eo value was based on the heat of formation of the detonation products at the CJ 

state, but Hornberg et al. (1986) and Edwards et al. (1994) do not provide a clear 

indication of how they arrived at their energy values.  Eo is an important parameter 

because it is used to make the energy of the JWL isentrope consistent with the 

explosive’s available chemical energy (Lee et al., 1968).  As will be shown, this is by far 

the single most important property of an explosive compound with respect to airblast 

results.   

A previously undefined parameter appears in Table 5.3, γCJ.  This term, called the 

adiabatic gamma, is the ratio of the detonation products’ specific heat at constant pressure 

to the specific heat at constant volume.  This coefficient varies with density and, as 

written in the table, is specifically for the CJ state.  As the detonation products expand, 

the value of gamma varies nonlinearly until eventually decreasing to a value of 1.4 at 

atmospheric pressure (which is the same as the adiabatic gamma of air at sea level).  Note 

that in this chapter, JWL coefficients are presented in units of GPa, meters per second, 
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and kJ.  CTH uses dynes/cm2 for pressure, centimeters per second for velocity, and ergs 

for energy.  To convert pressure, multiply GPa by 1x1010 to get dynes/cm2.  To convert 

velocity, multiply m/s by 100 to get cm/s.  To convert energy, multiply kJ by 1x1010 to 

get ergs. 

 
TABLE 5.3:  Summary of available JWL coefficients for dynamite in literature. 

 Unigel by 
Penn et al. (1975) 

Unigel by 
Hornberg (1986) 

Unigel by 
Edwards et al. (1994) 

 o (g/cc) 1.262 1.294 1.26ߩ
PCJ (GPa) 12.0 12.0 12.8 
DCJ (m/s) 5760 5477 5760 
Eo (kJ/cc) 5.1 5.1 4.04 

γCJ 2.49 Not Reported 2.49 
A (GPa) 190.7 121.831 109.70 
B (GPa) 7.58 1.857 7.58 

R1 4.4 3.60150 4.4 
R2 1.4 0.86185 1.4 
 ߱ 0.23 0.20 0.23 

C (GPa) 0.627 0.549 Not Reported 
 

5.5. Obtaining JWL Coefficients 

An exhaustive search was undertaken to identify procedures for computing JWL 

coefficients.  The search revealed two primary methods of obtaining “new” coefficients.  

One method would be to use advanced thermochemical equilibrium codes to directly 

compute JWL coefficients.  Such tools, however, require significant experience and 

training beyond what was reasonable for this investigation.  Even when used by 

experienced scientists, these tools may still yield results which are questionable and 

require tests for validation.   
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The method eventually adopted for this study was to scale new JWL coefficients 

from those of another similar explosive.  There are, however, very few methods available 

for engineers to perform such scaling procedures.  Souers et al. (1996) presents one 

scaling technique, but only for very small variations in density.  Small density 

adjustments of this type are typically required when analyzing multiple blasts from a test 

series in which charge properties vary slightly between shots.  In Lee et al. (1968), where 

the JWL EOS is first presented, another method of scaling JWL coefficients is described 

for density changes on the order of 10%.  While the density scaling used in this 

investigation is approximately 15%, the method of Lee et al. (1968) was still employed 

due to both its relative simplicity and a lack of better options.   

The scaling procedure from Lee et al. (1968) is shown in Eqs. (5.13) through 

(5.19).   

஼ܲ௃
ᇱ ൌ ఘ೚ᇲ஽మᇲ

ఊ಴಻ାଵ
     (5.13) 

௢ᇱܧ ൌ
ఘ೚ᇲ

ఘ೚
 ௢               (5.14)ܧ

஼ܸ௃ ൌ ஼ܸ௃
ᇱ ൌ

ఊ಴಻
ఊ಴಻ାଵ

    (5.15) 

஼ܲ௃
ᇱ ൌ ᇱ݁ିோభ௏಴಻ܣ ൅ ᇱ݁ିோమ௏಴಻ܤ ൅ ஼ᇲ

௏಴಻
ሺഘశభሻ   (5.16) 

െܧ௢
ᇱ ൌ െܧ஼௃

ᇱ ൅ ଵ

ଶ ஼ܲ௃
ᇱ ሺ1 െ ஼ܸ௃ሻ   (5.17) 
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ഘ     (5.18) 

஼௃ߛ ൌ
௏಴಻
௉಴಻
ᇲ ቈെܴଵܣᇱ݁

ିோభ௏಴಻ െ ܴଶܤᇱ݁ିோమ௏಴಻ െ ሺ߱ ൅ 1ሻ ஼ᇲ

௏಴಻
ሺഘశమሻ቉  (5.19) 
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In these equations, the scaled JWL coefficients are primed.  The original γCJ value, the 

new unreacted density, and the new detonation velocity are used to compute the new CJ 

state pressure according to Eq. (5.13).  The new Eo is linearly scaled from the original Eo 

by the ratio of new to original density using Eq. (5.14).  The new relative volume at the 

CJ state is assumed to be identical to the old relative volume as shown in Eq. (5.15).  The 

original values of R1, R2, γCJ, and ω are used in conjunction with the new values of ܧ௢ᇱ  and 

஼ܲ௃
ᇱ to solve three simultaneous equations for the three unknowns A’, B’, and C’.  The 

three equations are the system given by Eqs. (5.16), (5.17), and (5.19), with Eq. (5.18) 

showing the calculation of energy at the CJ point.  The full procedure is well documented 

in Lee et al. (1968) and it was found that implementing the process using Excel’s 

(Microsoft, Redmond, WA) solver feature was both simple and accurate.     

The three sets of JWL coefficients listed in Table 5.3 were compared to the 

Unigel currently manufactured by Dyno Nobel (Table 5.1).  The first two have similar 

energies (Eo) while the third is significantly lower.  The third set was therefore discarded.  

The second set of coefficients from Hornberg (1986) had unusual values for R1 and R2, 

and this caused the adjustment method to produce a negative value for B, which is 

unacceptable.  The second set was therefore also discarded.  The density-based 

adjustment scheme was therefore applied to the JWL coefficients from Penn et al. (1975).  

Without knowledge of how Dyno Nobel derived Unimax’s heat of explosion, it was 

thought unwise to rely on this value to determine the explosive’s energy.  Thus, the Penn 

et al. (1975) Eo for Unigel was scaled up based on the density ratio, rather than directly 
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specifying the manufacturer-supplied energy from Table 5.1.  The results of the JWL 

coefficient scaling procedure are provided in Table 5.4.   

 
TABLE 5.4:  Adjusted EOS coefficients using method of Lee et al. (1969). 

 Unigel 
Penn et al. (1975) 

Adjusted Unimax 
per Lee et al. (1968) 

o (g/cc)ߩ 1.262 1.50 
PCJ (GPa) 12.0 14.7390 
DCJ (m/s) 5760 5856 
Eo (kJ/cc) 5.1 6.062 

γCJ 2.49 2.49 
A (GPa) 190.7 234.350 
B (GPa) 7.58 9.5127 
C (GPa) 0.627 0.50064 

R1 4.4 4.4 
R2 1.4 1.4 
 ߱ 0.23 0.23 

 

Although the new coefficients set was self-consistent and could be justified based 

on the literature, it did not produce satisfactory results with respect to airblast.  Table 5.5 

shows a preliminary CTH simulation of the A1 blast event using the adjusted JWL 

coefficients.  The table shows that the adjusted coefficient set produced an average 

absolute error of 23.2% in reflected pressure and 21.2% in reflected impulse for Shot A1.  

As will be shown in Chapter 6, the structural response of the blast chamber walls is 

predominately impulse driven.  It was therefore desirable to try to decrease the impulse 

error, even at the expense of reflected pressure accuracy. 

Having attempted one of the few adjustment methods available, an alternative, 

more unconventional approach was sought.  Using the consistency conditions of Eqs. 

(5.9) through (5.11), the effect of changing JWL coefficients on airblast simulation 
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results was studied to determine what, if any, effect changes in the JWL coefficients had 

on the results of an airblast simulation.  The investigation included varying detonation 

velocity, detonation pressure, and all of the JWL coefficients.  The study found that, as 

long as Eo remained constant, changing any or all of the JWL coefficients in concert 

yielded very little change in the results of an airblast simulation.   

 
TABLE 5.5:  Simulation of Shot A1 using Eo=6.06 kJ/cc.   

 P1 P2 P3 P5 
CTH Reflected Pressure

kPa (psi)
7033.3 

(1020.1) 
1801 

(261.2) 
681 

(98.7) 
1729 

(250.8) 
Measured Reflected Pressure

kPa (psi)
5437 

(788.6) 
2329 

(337.8) 
810.1 

(117.5) 
2295 

(332.9) 
% Error 29.4 -22.7 -16.0 -24.7 

CTH Reflected Impulse
kPa ms (psi ms)

1600 
(232.0) 

746.0 
(108.2) 

498 
(72.3) 

729.5 
(105.8) 

Measured Reflected Impulse
kPa ms (psi ms)

1257 
(182.3) 

628 
(91.1) 

363 
(52.6) 

738.4 
(107.1) 

% Error 27.3 18.8 37.5 -1.2 
Note:   
Air was meshed with 0.38 cm cells, reflection zone meshed with 0.19 cm cells. 
 

Initially this appeared to be counterintuitive.  After some consideration, however, 

this seems feasible given that the JWL coefficients are primarily tuned to reproduce 

cylinder wall velocities.  In all of the references describing the JWL EOS and its 

coefficients, there is no information or procedure presented for calibration for far field 

results.  Based on this simple study it would appear that outside the gaseous detonation 

products, it is only the initial energy of the charge that matters for sufficiently accurate 

airblast simulations using the JWL EOS.  The JWL coefficients are thus only important 

in that they define the CJ state properly (the problem’s initial conditions).  The only 
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significant change in airblast results occurs by changing Eo – the greater the energy, the 

greater the resulting pressure and impulse.  

With this simple but important finding, an alternate JWL coefficient adjustment 

scheme was sought.  In Chapter 3, an adjustment factor of 0.9 was applied to the 

explosive’s net weight to account for packaging, and then another factor of 0.94 was 

applied to account for the lower energy content relative to TNT.  Thus, the relative 

strength of charges comprised of dynamite sticks to TNT was taken to be about 84.6% by 

gross weight.  Table 3.5 showed that this produced reasonably good results when 

compared to open arena tests using Unimax.  Based on this observation, a new Eo was 

directly selected (rather than scaled based on density).  Because the 84.6% equivalence 

utilized in Chapter 3 was only an estimate, a decision was made to simply select a new 

“round” number for Eo rather than strictly adhering to this equivalency.  Eo was therefore 

adjusted from 6.06 kJ/cc to 5.0 kJ/cc.  This corresponds to a 71.4% TNT equivalence 

based on energy.  It is interesting to note that, had Edwards (1994) Unigel data in the 

original density scaling process been used, an Eo of 4.8 kJ/cc would have been computed. 

The adjustment procedure for changing only Eo is somewhat different than the 

one from Lee et al. (1968).  This new procedure starts with the density adjusted JWL 

coefficients shown in Table 5.4.  The consistency conditions at the CJ state (Eqs. (5.9) 

through (5.11)) were implemented in an Excel spreadsheet.  The problem was constrained 

to require that the predicted Eo be 5.0 kJ/cc and that DCJ be 5856 m/s.  Maintaining the 

measured DCJ was justifiable as measurements of detonation velocity are usually 

accurate.  The Excel solver was then used to adjust the coefficients A, B, C, R1, R2, and ω 
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until the consistency conditions were satisfied.  No restriction was imposed on the value 

of PCJ  or the adiabatic gamma (and by extension the CJ state relative volume).  Rather, 

CTH’s own nonlinear solver algorithm was utilized to find VCJ which in turn dictated PCJ.  

The nonlinear solver works by iteratively solving the consistency conditions (Eqs. (5.9) 

through (5.11)) for a VCJ that satisfies the three equations.  The algorithm was borrowed 

from the CTH Fortran source code file eosjwi.F and is not reproduced in this document 

due to export control and copyright considerations.  The algorithm was implemented such 

that the Excel solver could iteratively use the calculation of VCJ as it solved for new JWL 

coefficients.  The resulting set of energy-modified JWL coefficients are shown in the 

right-hand column of Table 5.6 along with the density-scaled coefficients of Table 5.4 for 

comparison.  The Excel solver preferentially changed R1, R2, and ω and not A, B, or C, 

presumably because R1 and R2 have a larger influence on energy and velocity.  Although 

it would be possible to make an adjustment in which only A, B, and C are modified, there 

is no reason to believe that such an adjustment is any better than the one presented in 

Table 5.6. 

Using the energy-adjusted JWL coefficients, shot A1 was again simulated.  Table 

5.7 shows the results of this simulation, and indeed the reflected impulse agreement has 

improved, albeit at the cost of reflected pressure accuracy.  Using an Eo of 5.0 kJ/cc, the 

CTH simulations had an average pressure error of 32.0% and an average impulse error of 

15.2%.  As an added check of these new coefficients, a simulation was conducted for 

shots BPS-10 and BPG-14 (documented in Table 3.2).  These shots were chosen because 

of the relative consistency of the measurements and because of the larger charge size, 
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which helps reduce variability due to small inconsistencies in dynamite stick weight.  As 

Table 5.8 shows, the adjusted JWL coefficients do a good job of predicting incident 

impulse, but are less accurate for incident pressure.  It is not clear why CTH overpredicts 

the free air incident pressures but underpredicts the A1 reflected pressures.  Note that 

although the simulations in Tables 5.7 and 5.8 used different mesh sizes, both simulations 

were found to be converged.  The primary reason for the difference in cell sizes was 

because the simulation domains were of different dimensions and thus the CTH cell size 

selection algorithm required a slightly different mesh dimension. 

 
TABLE 5.6: Adjusted EOS coefficients based on Lee et al. and energy scaling. 

 
 

Unigel 
Penn et al.  

(1975) 

Adjusted 
Unimax per Lee 

et al. (1968) 

Adjusted 
Unimax Based 
on Eo=5kJ/cc 

 o (g/cc) 1.262 1.50 1.50ߩ
PCJ (GPa) 12.0 14.7390 14.6502 
DCJ (m/s) 5760 5856 5856 
Eo (kJ/cc) 5.1 6.062 5.000 

γCJ 2.49 2.49 N/A* 
A (GPa) 190.7 234.350 234.350 
B (GPa) 7.58 9.5127 9.5127 
C (GPa) 0.627 0.50064 0.50064 

R1 4.4 4.4 4.35917 
R2 1.4 1.4 1.39147 
߱ 0.23 0.23 0.24975 

Note:  *The adiabatic gamma is not required for this calculation. 
 

There is no clear reason why the Eo in CTH and Dyno Nobel’s supplied heat of 

explosion should be so different.  It is likely that the Dyno Nobel value is the inaccurate 

energy quantity because the usual user of dynamite only cares about the maximum 

energy the product will yield.  This value can be used for calculations regarding safe 
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standoff and storage.  Thus, an inaccurate estimate of energy on the part of the 

manufacturer has minimal impact provided the estimate is conservatively high; the 

findings of this investigation would suggest this is indeed the case.  

TABLE 5.7:  Simulation of Shot A1 using Eo=5.0 kJ/cc. 
 P1 P2 P3 P5 

CTH Reflected Pressure
kPa (psi)

4933 
(715.5) 

1213 
(175.9) 

635 
(92.1) 

1171 
(169.9) 

Measured Reflected Pressure
kPa (psi)

5437 
(788.6) 

2329 
(337.8) 

810.1 
(117.5) 

2295 
(332.9) 

% Error -9.3 -47.9 -21.6 -49.0 
CTH Reflected Impulse

kPa ms (psi ms)
1553 

(225.3) 
704.0 

(102.1) 
431 

(62.5) 
692.2 

(100.4) 
Measured Reflected Impulse

kPa ms (psi ms)
1257 

(182.3) 
628 

(91.1) 
363 

(52.6) 
738.4 

(107.1) 
% Error 23.6 12.1 18.8 -6.3 

Note:  Air was meshed with 0.38 cm cells, reflection zone meshed with 0.19 cm cells. 
 

TABLE 5.8:  Simulation of Shots BPS-10 and BPS-14. 
 Sensor PP1 Sensor PP2 

CTH Incident
Pressure kPa (psi)

169 
(24.5) 

171 
(24.8) 

Average Measured Incident
Pressure kPa (psi)

134 
(19.4) 

143 
(20.8) 

% Error 26.2 19.2 
CTH Predicted Incident Impulse

kPa ms (psi ms)
109 

(15.8) 
108 

(15.7) 
Average Measured Incident

Impulse kPa ms (psi ms)
94.5 

(13.7) 
90.3 

(13.1) 
% Error 15.3 19.8 

Note:  Charge bottom detonated.  Air cells meshed using a 0.25 cm cells. 
 
 

5.6. Two-Dimensional CTH Simulations – Shots A1 and B 

Using the adjusted JWL coefficients (based on an Eo of 5.0 kJ/cc), two-

dimensional (cylindrically symmetric) CTH models were constructed for Shots A1 and B.  

Several different levels of refinement were studied to ensure that the data reported in the 
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following tables and figures represents a converged result.  The explosive in these models 

was meshed with 0.048 cm cells, the air with 0.096 cm cells, and the air near reflecting 

surfaces with 0.048 cm cells.  With such high levels of refinement, two-dimensional 

simulations required nearly 1000 CPU hours of compute time each.  The input files for 

this and all other CTH models that follow can be found in Appendix E. 

Table 5.9 presents results for the two-dimensional simulation of Shot A1.  The 

average absolute reflected pressure error was 30.9% and the average absolute reflected 

impulse error was 16.8%.  Although reflected pressure agreement was relatively poor, the 

reflected impulse agreement was very good and is typical of the errors seen in other 

analytical methods under good conditions (Bogosian et al., 2002).  Tables 5.10 and 5.11 

show the tabulated CTH predictions of reflected pressure and impulse at intervals of 50 

cm up the height of the A1 blast chamber walls.  Note that for all results that follow in 

this section, reflected blast pressures are typically reported up the full height of the wall 

but impulse results do not always cover the full height.  This is because near the top of 

the walls in the simulation, nonphysical reflections from the symmetry boundary 

condition sometimes could not be separated from real reflections from the ceiling or 

floor.  Thus no impulse is reported in this region as it would be an inaccurate estimate. 
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TABLE 5.9:  Comparison between CTH predictions for Shot A1 and experimental data. 

 P1 P2 P3 P5 
CTH Reflected Pressure

kPa (psi)
4551 

(660.1) 
1331 

(193.1) 
618 

(89.7) 
1363 

(197.7) 
Measured Reflected Pressure

kPa (psi)
5437 

(788.6) 
2329 

(337.8) 
810.1 

(117.5) 
2295 

(332.9) 
% Error -16.3 -42.8 -23.7 -40.6 

CTH Reflected Impulse
kPa ms (psi ms)

1607 
(233.1) 

683 
(99.1) 

443 
(64.2) 

677 
(98.2) 

Measured Reflected Impulse
kPa ms (psi ms)

1257 
(182.3) 

628 
(91.1) 

363 
(52.6) 

738.4 
(107.1) 

% Error 27.9 8.8 22.1 -8.3 
 

TABLE 5.10:  Vertical pressure profile of Shot A1 simulation. 
Height Above  
Chamber Floor  

(cm) 

Peak Reflected 
Pressure 
kPa (psi) 

Peak Reflected Pressure as a  
Percentage of Simulated  

Reflected Pressure at 50 cm 
0 8011.0 (1161.9) 181.9 
50 4403 (638.6) 100.0 
100 2304 (334.2) 52.3 
150 1127 (163.5) 25.6 
200 632 (91.6) 14.3 
250 431 (62.5) 9.8 
300 343 (49.7) 7.8 
350 302 (43.8) 6.9 
400 253 (36.7) 5.7 
450 213 (30.9) 4.8 
503b 592 (85.9) 13.5 

Notes for Tables 5.10 and 5.11:   
a.  N/A means reflected blast waves interfered with impulse quantification.   
b. Simulated chamber height was slightly greater than actual chamber height 

in order to obtain square mesh cells. 
 

 
 

 

 

 



166 

 

 

 

TABLE 5.11:  Vertical impulse profile of Shot A1 simulation. 
Height Above 
Chamber Floor 

(cm) 

Peak Reflected 
Impulse 
kPa ms  
(psi ms) 

Peak Reflected Impulse as a  
Percentage of Simulated  

Reflected Impulse at 50 cm 

0 1874 (271.8) 135.6 
50 1382 (200.5) 100.0 
100 783 (113.6) 56.7 
150 621 (90.1) 44.9 
200 447 (64.9) 32.4 
250 413 (59.9) 29.9 
300 387 (56.2) 28.0 
350 366 (53.1) 26.5 
400 346 (50.2) 25.0 
450 N/Aa N/Aa 
503b N/Aa N/Aa 

 

The data in the preceding tables is represented graphically in Figures 5.3 and 5.4.  

The figures show that both qualitatively and quantitatively, the CTH predicted pressure 

and impulse profiles are representative of the experimentally measured quantities. 

 
FIGURE 5.3:  Plot of peak reflected pressure versus height above blast chamber floor 

(Shot A1).  Solid line is CTH simulation.  Square data points are experimental 
measurements. 
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FIGURE 5.4:  Plot of peak reflected impulse versus height above blast chamber floor 

(Shot A1).  Solid line is CTH simulation.  Square data points are experimental 
measurements.   

 

 Two similar models were developed for Shot B.  One model was used to predict 

reflected pressures and impulses for Wall #2 while the other predicted reflected pressures 

and impulses for Wall #3.  The models used nearly identical mesh dimensions as the 

model for A1.  Table 5.12 shows that the Shot B simulations underpredicted peak 

reflected pressures by an average of 30.1% and overpredicted peak reflected positive 

impulse by 19.3%.  Note that the error in the P6 reflected impulse simulation is not 

included in the average error computation.  This is because subsequent reflected blast 

waves in the experimental data could not be removed from the first reflected wave.  The 

two-dimensional CTH model could not reproduce these reflections.  Comparison of the 

P6 pressure time history overlay included in Appendix F (Figure F.7) suggests that, if 

only the first reflected blast wave was considered, CTH and the experimental data might 

agree reasonably well.  Tables 5.13 and 5.14 show the tabulated peak reflected pressure 

and reflected impulse as a function of height above the blast chamber floor for Wall #2.  
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TABLE 5.12:  Comparison between CTH predictions for Shot B to experimental data. 
 P1 P2 P4 P6 

CTH Pressure
7474.6 

(1084.1) 
1227 

(177.9) 
1227 

(177.9) 
674 

(97.8) 

Measured 
11000 

(1595.4) 
1500 

(217.6) 
1850 

(268.3) 
1060 

(153.7) 
% Error -32.0 -18.2 -33.7 -36.4 

CTH Impulse 
1699 

(246.4) 
679 

(98.5) 
679 

(98.5) 
574 

(83.3) 

Measured 
1260 

(182.7) 
593 

(86.0) 
627 

(90.9) 
1061 

(153.9) 
% Error 34.9 14.5 8.4 -45.8 

Note:  Experimental data included numerous reflections; inspection of time 
history overlays in Appendix F suggests errors reported in this table 
would be less if reflections were removed from experimental data. 

 
 

TABLE 5.13:  Vertical reflected pressure profile of Shot B simulation (Wall #2). 
Height Above Chamber 

Floor (cm) 
Peak Reflected 

Pressure 
kPa (psi) 

Peak Reflected Pressure as a 
Percentage of Simulated Reflected 

Pressure at 50 cm 
0 1411 (204.6) 112.9 
50 1250 (181.3) 100.0 
100 861.8 (125.0) 68.9 
150 688 (99.8) 55.0 
200 583 (84.6) 46.7 
250 465 (67.5) 37.2 
300 680 (98.6) 54.4 
321 1158 (168.0) 92.7 
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TABLE 5.14:  Vertical reflected impulse profile of Shot B simulation (Wall #2). 
Height Above Chamber 

Floor (cm) 
Peak Reflected 

Impulse 
kPa ms (psi ms) 

Peak Reflected Impulse as a 
Percentage of Simulated Reflected 

Impulse at 50 cm 
0 868.0 (125.9) 109.1 
50 795.7 (115.4) 100.0 
100 661 (95.9) 83.1 
150 588 (85.3) 73.9 
200 501 (72.7) 63.0 
250 406 (58.9) 51.0 
300 N/A N/A 
321 N/A N/A 

Note:  N/A means reflected blast waves interfered with impulse quantification. 

 
Figures 5.5 and 5.6 provide a graphical representation of the tables, showing the 

distribution of pressure and impulse up the wall’s height.  Due to the multiple reflections 

observed in the experimental data, the figures show a large error in CTH predicted blast 

quantities.  As previously mentioned, however, if comparing only the first reflected 

shocks, CTH would exhibit a higher accuracy.  Unfortunately, this is only a qualitative 

judgment because removing the first shock from subsequent reflections in the 

experimental data would be subject to error and thus an exact quantitative comparison 

would not be reliable.  This perceived agreement, combined with the accuracy observed 

in the other two-dimensional simulations, provides some confidence that the results for 

Wall #2 are fairly representative of the first shock load experienced by the wall. 
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FIGURE 5.5:  Plot of peak reflected pressure versus height above blast chamber floor 
(Shot B, Wall #2).  Solid line is CTH simulation.  Square data points are experimental 

measurements. 
 
 

 
FIGURE 5.6:  Plot of peak reflected impulse versus height above blast chamber floor 
(Shot B, Wall #2).  Solid line is CTH simulation.  Square data points are experimental 

measurements. 
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Tables 5.15 and 5.16 tabulate the peak reflected pressures and reflected impulses 

as a function of height above the blast chamber floor for Wall #3.  Figures 5.7 and 5.8 are 

the graphical representation of this data.  The figures show that both qualitatively and 

quantitatively, the CTH predicted pressure and impulse profiles are in agreement with the 

experimental data. 

 
TABLE 5.15:  Vertical reflected pressure profile of Shot B simulation (Wall #3). 

Height Above 
Chamber Floor (cm) 

Peak Reflected 
Pressure 
kPa (psi) 

Peak Reflected Pressure as a  
Percentage of Simulated 

Reflected Pressure at 50 cm 
0 10632 (1542.0) 142.2 
50 7474.6 (1084.1) 100.0 
100 2845 (412.6) 38.1 
150 1404 (203.6) 18.8 
200 937.0 (135.9) 12.5 
250 609 (88.4) 8.2 
300 408 (59.2) 5.5 
350 1287 (186.7) 17.2 
372 1395 (202.4) 18.7 

 

TABLE 5.16:  Vertical reflected impulse profile of Shot B Simulation (Wall #3). 
Height Above  

Chamber Floor (cm) 
Peak Reflected 

Impulse 
kPa ms (psi ms) 

Peak Reflected Impulse as a  
Percentage of Simulated  

Reflected Impulse at 50 cm 
0 2410 (349.6) 141.8 
50 1700 (246.5) 100.0 
100 1085 (157.4) 63.9 
150 789.4 (114.5) 46.5 
200 500 (72.5) 29.4 
250 494 (71.7) 29.1 
300 468 (67.9) 27.5 
321 N/A N/A 

Note:  N/A means reflected blast waves interfered with impulse quantification. 
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FIGURE 5.7:  Plot of peak reflected pressure versus height above blast chamber floor 
(Shot B, Wall #3).  Solid line is CTH simulation.  Square data points are experimental 

measurements. 
 
 

 
FIGURE 5.8:  Plot of peak reflected impulse versus height above blast chamber floor 
(Shot B, Wall #3).  Solid line is CTH simulation.  Square data points are experimental 

measurements.  
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The preceding tables and figures are useful independently, but providing a 

comparison of the results might shed light on what “rules of thumb” might be developed 

from the hydrocode simulations.  Figure 5.9 is a plot of the normalized peak reflected 

pressure as a function of height for all three simulations.  The figure shows that, despite a 

difference in the charge size, the Shot A1 simulation and the Shot B Wall #3 simulations 

yielded nearly identical peak pressure distributions, which could be reasonably 

approximated by a bi-linear function.  The Shot B Wall #2 simulation predicted a blast 

pressure distribution which was linear up until the dramatic rise in pressure which occurs 

near the wall-ceiling intersection.  Figure 5.10 provides the same type of comparison of 

the three simulations, but with respect to reflected impulse.  This time it appears that the 

Shot A1and Shot B Wall #3 impulse distributions could be approximated as trilinear 

while the Shot B Wall #2 impulse distribution could be approximated as essentially 

linear.   

Studying Figure 5.9, it appears that as a rule of thumb, the bottom 50 to 100 cm 

nearest a wall’s intersection with the floor receives significantly larger loads than any 

other portion of the wall.  The Shot A1 and Shot B Wall #3 simulations both had scaled 

distances of approximately 1.3 m/kg1/3; the Shot B Wall #2 simulation had a scaled 

distance of 2.1 m/kg1/3.   It appears that somewhere between those two scaled distances, a 

cutoff could be established where the shape of the pressure and impulse distributions 

change. 
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FIGURE 5.9:  Comparison of normalized peak reflected pressure profiles from the three 

CTH simulations. 
 

 
FIGURE 5.10:  Comparison of normalized peak reflected impulse profiles from the three 

CTH simulations. 
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It bears repeating that for all impulse data, the impulse near the intersection of the 

wall with the ceiling was not computed because reflections from the floor could not be 

reliably separated from reflections created by the symmetry boundary which arrived at 

nearly the same time.  These artifacts of the symmetry boundary do not have any basis in 

reality.  If it were possible to remove these nonphysical reflections, there would still 

likely be a jump in impulse at the top of the wall, but for the purposes of the structural 

analyses performed in this dissertation, this will not have much of an effect.  As will be 

described in Chapter 6, the pressure/impulse at the ends of a flexural member matter 

much less those near midspan for a flexural analysis.   

Further comparisons between the CTH simulations and the experimental results 

are included in Appendix F.  There the CTH pressure time histories are overlaid with the 

time histories measured by sensors during Shots A1 and B.  The plots show that 

qualitatively, the CTH waveforms are similar to those measured by pressure sensors in 

the blast chambers.  Although the simulated peak reflected pressures often differed 

significantly from the experimental measurements, the area under the curves was similar 

and thus the total impulse of the blast waves compared well between simulation and 

experiment.  In the plots, the CTH waveforms were synchronized to the arrival of the first 

blast wave at sensor P1 in the Shot A1 or Shot B recorded data.  Thus the P1 waveforms 

for simulation and experiment artificially appear to have coincident times of arrival.  In 

examining the waveforms of other CTH simulated sensors in Appendix F, however, it is 

clear that CTH underpredicts shock velocity, as the simulated waveforms (of sensors 

other than P1) arrive later than their experimental counterparts.  This is logical, given that 
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the pressures predicted by CTH were also lower (recall that higher shock velocities yield 

higher pressures).  The accuracy of impulse and the relative inaccuracy of pressure 

suggest that dynamite (or at least charges comprised of dynamite sticks) may not be able 

to be modeled as an ideal explosive compound.  If more accurate predictions of pressure 

are required, a complicated reactive burn model might need to be used, rather than the 

simple JWL EOS. 

During the JWL EOS adjustment trials, an effort was made to artificially increase 

the reflected pressures (and thus shock velocities) predicted by CTH.  This was done by 

increasing DCJ and PCJ while holding Eo constant.  Such adjustments, however, did not 

yield the desired result.  These efforts seemed to suggest that the constraints imposed by 

CJ theory (namely, the required isentrope slope at the CJ state) and the JWL EOS might 

very well prevent such adjustments (i.e. increasing pressure while decreasing impulse).  

This realization suggests that for airblast modelers, a simpler and less constrained EOS 

might be of use; because it is accurate airblast predictions that are of much more 

importance than the precise thermodynamic behavior of the explosive compound.   

5.7. Shot B – Three-Dimensional Simulation 

A three-dimensional simulation was also conducted for Shot B.  The simulation 

was performed in order to develop two-dimensional loading profiles for the blast 

chamber walls; these will be used in the structural analyses that follow in Chapters 6 and 

7.  The boundaries of the simulation domain included most of the length of Wall#1 and 

#3, and all of Wall #2.  Figure 5.11 is a plan view of Blast Chamber B showing the 

hatched volume included in the CTH simulation.  The domain was 500 cm wide, 350 cm 
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tall, and 500 cm long.  Note that these dimensions are slightly different than those of the 

actual blast chamber (as shown in Figure 2.7).  This was necessary in order to provide a 

domain that could be meshed with perfectly cubic cells; this produces better simulation 

results for a given number of cells.   

 

 
FIGURE 5.11:  Plan view of Blast Chamber B.  Hatched area represents chamber volume 

included in three-dimensional CTH simulation domain. 
 

Convergence in the domain was investigated using cubic mesh sizes ranging from 

1.563 cm to 0.0488 cm.  An effort was made to use sizes smaller than 0.0488 cm; 

however, numerical difficulties that could not be resolved were encountered at these finer 

discretizations (negative energies developed in the expanding explosive material).  

Fortunately, the convergence study showed that the 0.0488 cm cell size was essentially 
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converged with respect to impulse.  Note that this cell size is nearly identical to that used 

in the final two-dimensional simulations.  Figure 5.12 is a three-dimensional image from 

the CTH simulation that shows a grayscale isosurface of pressure at the location of the 

shockfront immediately following detonation.  Note that, despite the highly refined mesh 

size, artificial structures are still visible in the isosurface.  Z=5 meters corresponds to the 

right-hand boundary shown in Figure 5.11. 

 
 

 
FIGURE 5.12:  Image from CTH simulation showing pressure isosurface just after 

detonation.   
 

An effort was made to include rigid material in the CTH domain to allow a direct 

simulation of the window openings in Wall #3.  This would have been beneficial because 

it would have allowed an accurate representation of blast pressure venting through 

window openings; venting clearly occurred because pressure sensors in the blast chamber 

did not measure any quasi-static gas pressures.  Unfortunately, CTH’s rigid material 

feature (which is relatively new) does not appear to be fully functional, as inclusion of the 
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rigid material caused a variety of simulation errors including spurious fluctuations in 

virtual sensor measurements and artificially low reflected pressures.  The rigid material 

option was therefore not included.  Instead, the symmetry boundary condition  (perfectly 

reflecting) was used to simulate walls and ceilings.  This also led to difficulties as 

inclusion of Walls #1, #2, #3 and the blast chamber ceiling led to higher impulses than 

were measured in the experiment.  Clearly then, shock venting through the window 

openings was important to dissipating blast chamber reflections. 

Without the ability to use the rigid material model, it was necessary to simulate 

shock dissipation due to the windows by other means.  It was determined that the best 

available option was to remove a blast chamber wall or the ceiling from the simulation 

domain.  In doing so, reflected shocks were allowed to leave the simulation domain, thus 

decreasing the impulses from subsequent reflections and in principle relieving internal 

loads in a similar manner as the window openings would.  An infinite transmitting 

medium was used to simulate the removal of a reflecting surface.   Note that, for a given 

boundary, CTH requires that the entire boundary be of a single type; i.e. an infinite 

transmitting boundary condition cannot share the same plane as a perfectly reflecting 

boundary condition.  Tables 5.17 through 5.19 tabulate the reflected pressures and 

impulses predicted by CTH using three different assumptions of reflecting surface.  
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TABLE 5.17:  Load Case 1 - Walls #1, #2, #3, and ceiling included as reflecting surfaces. 

Sensor 
CTH Reflected 

Pressure 
kPa (psi) 

Percent 
Error 

CTH Reflected 
Impulse 

kPa ms (psi ms) 

Percent 
Error 

P1 5128  (743.8) -53.4 2324  (337.1) 84.5 
P2 854.9  (124.0) -43.0 777.7 (112.8) 31.2 
P4 854.9  (124.0) -53.8 777.7  (112.8) 24.1 
P5a 5128  (743.8) -53.4 2324  (337.1) 84.5 
P6 525  (76.1) -50.5 1135  (164.6) 7.0 
P7 541  (78.5) -48.5 986.6  (143.1) 13.1 

Average Absolute Error 50.4  40.7 
 

TABLE 5.18:  Load Case 2 - Walls #1, #2, and ceiling included as reflecting surfaces. 

Sensor 
CTH Reflected 

Pressure 
kPa (psi) 

Percent 
Error 

CTH Reflected 
Impulse 

kPa ms (psi ms) 

Percent 
Error 

P1 5128  (743.8) -53.4 1757  (254.8) 39.5 
P2 854.9  (124.0) -43.0 482  (69.9) -18.7 
P4 854.9  (124.0) -53.8 482  (69.9) -23.1 
P5a 5128  (743.8) -53.4 1757  (254.8) 39.5 
P6 525  (76.1) -50.5 611  (88.6) -42.4 
P7 541  (78.6) -48.5 491  (71.2) -43.7 

Average Absolute Error 50.4  34.5 
 

TABLE 5.19:  Load Case 3 - Walls #1, #2, and #3 included as reflecting surfaces. 

Sensor 
CTH Reflected 

Pressure 
kPa (psi) 

Percent 
Error 

CTH Reflected 
Impulse 

kPa ms (psi ms) 

Percent 
Error 

P1 5128  (743.7) -53.4 1755  (254.6) 39.4 
P2 854.3  (123.9) -43.1 527  (76.4) -11.2 
P4 854.3  (123.9) -53.8 527  (76.4) -16.0 
P5a 5128  (743.7) -53.4 1755  (254.6) 39.4 
P6 556  (80.7) -47.5 797.7  (115.7) -24.8 
P7 541  (78.5) -48.5 369  (53.5) -57.7 

Average Absolute Error 50.0  31.4 
Notes for Table 5.17-5.19:   

a. The P5 measurement was deemed unreliable due to non-physical signals in 
time history, thus the P1 measurements were used as a substitute to compute 
error. 
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Table 5.17 presents simulated sensor measurements for a simulation in which Walls 

#1, #2, #3, and the ceiling were included as reflecting surfaces (Load Case 1).  Table 5.18 

(Load Case 2) is the same simulation, having removed Wall #3 from the model (note that 

because of chamber symmetry, it was still possible to simulate all sensors).  Table 5.19 

(Load Case 3) is a simulation including Walls #1, #2, and #3 as reflecting surfaces but 

omitting the ceiling.  All three tables show that, in general, peak reflected pressure is not 

well modeled; the average absolute error was slightly greater than 50%.  It is not clear 

why the two-dimensional simulations had better pressure agreement using similar mesh 

sizes because, in principle, the three-dimensional model should have better represented 

the physics of the problem.  This finding suggests it might be of use to compare several 

generic two and three-dimensional airblast simulations with identical mesh sizes; the 

comparisons might show there is some difference in convergence or simulation error 

between two and three-dimensional models.  The pressure error observed here, however, 

is acceptable given that the out-of-plane response of blast chamber walls is impulse 

dominated, rather than pressure dominated; this assertion is based on the ratio of wall 

natural period to blast wave duration and will be further discussed in Section 6.1.2.    

In comparing the impulse error across all sensors at once, including all walls but 

excluding the ceiling yields the best average absolute error (Load Case 3).  But 

unfortunately this produces an impulse distribution which is artificially skewed toward 

the base of the walls.  Studying the tables, it appears as though Load Case 2 (Table 5.18) 

represents a reasonable compromise – it includes the ceiling but provides a mechanism 

by which blast energy is vented.  Load Case 2 produces an impulse error of -42.4% for 
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Wall #2 and of -43.7% for Wall #1; note that these errors are based on single points of 

measurement on each wall.  For Wall #3, Load Case 2 yields an average absolute impulse 

error of 30.2% (based on sensors P1, P2, P4, and P5).  Summing the errors (including 

sign) for all simulated sensors on all walls from Load Case 2, the net average error was     

-8.2%.  Figures 5.13 through 5.18 show the CTH-predicted peak reflected pressures and 

impulses as contour plots over the surface of blast chamber walls in units of MPa and 

MPa ms, respectively.  The contours were generated from the CTH data using the 

“griddata” feature and the “v4” interpolator of Matlab (see script D.6 in Appendix D for 

more information).  Several different interpolation schemes were tried, including linear 

and cubic, but all showed generally the same result.  The “v4” interpolation scheme 

yielded smoother looking contours and was therefore selected for final contouring. 

In each plot, the “sensor locations” from the CTH simulations are shown as small 

circles.  Although the pattern of observation points may appear somewhat haphazard, 

they actually correspond to wall quarter and midpoints, the location of the charge, and the 

location of instruments in the actual blast chamber of the test program.  Given the number 

of observation points and the fact that all investigated interpolation methods produced 

similar results, the contour plots shown are probably accurate representations of the 

simulated peak pressures and impulses computed by CTH.  Note that for Wall #2, 

symmetry was artificially created by using the CTH-predicted pressures from the half of 

Wall #2 adjacent to Wall #1.  This was done because removing Wall #3 from the 

simulation created very low pressures near the transmitting boundary and it was thought 

more realistic to use the data closer to Wall #1. 
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FIGURE 5.13:  Contours of peak reflected pressure (MPa) computed by CTH for the 
surface of Wall #1, between Wall #2 and the end of Wall #1.  Viewed from inside the 

blast chamber looking out. 
 

 
FIGURE 5.14:  Contours of peak reflected impulse (MPa ms) computed by CTH for the 

surface of Wall #1, between Wall #2 and the end of Wall #1.  Viewed from inside the 
blast chamber looking out. 
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FIGURE 5.15:  Contours of peak reflected pressure (MPa) computed by CTH for the 

surface of Wall #2.  Viewed from inside the blast chamber looking out. 
 

 
FIGURE 5.16:  Contours of peak reflected impulse (MPa ms) computed by CTH for the 

surface of Wall #2.  Viewed from inside the blast chamber looking out. 
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FIGURE 5.17:  Contours of peak reflected pressure (MPa) computed by CTH for the 

surface of Wall #3 between Wall #2 and the charge centerline.  Viewed from outside the 
blast chamber looking in. 

 

 
FIGURE 5.18:  Contours of peak reflected impulse (MPa ms) computed by CTH for the 
surface of Wall #3 between Wall #2 and the charge centerline.  Viewed from outside the 

blast chamber looking in. 
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CHAPTER 6:  SINGLE DEGREE OF FREEDOM STRUCTURAL ANALYSIS 
 

This investigation has gone to great lengths to develop representative blast load 

profiles for the Shot B blast chamber.  The accurate prediction of blast loads, although 

interesting in its own right, is important because it provides the loading information 

necessary to conduct accurate structural response simulations.  Chapters 6 and 7 will 

utilize this blast loading data to develop models of the Shot B blast chamber walls (Walls 

#1, #2, and #3 as labeled in Figure 2.7).  The structural analyses that follow in this 

chapter and in Chapter 7 will only simulate the responses of the chamber walls of Shot B 

because the walls of the chambers of Shots A1 and A2 did not experience significant 

structural deformations.  This chapter will use the equivalent single degree of freedom 

(ESDOF) method to simulate the response of blast chamber walls while Chapter 7 will 

utilize finite element models for the same purpose. 

Chapter 1 documented the basics of the ESDOF method for creating and solving 

SDOF representations of real structures.  This chapter will document the application of 

the ESDOF method to both one and two-way spanning structures with non-uniform 

loading, mass, and stiffness.  Herein, the ESDOF method is combined with Biggs’ (1964) 

transient numerical solution scheme as implemented in Single degree of freedom Blast 

Effects Design Spreadsheet (SBEDS), distributed by USACE (2008c).  The software is 

built around the methodologies contained in UFC 3-340-02 (USACE, 2008d).  SBEDS is 

approved by USACE for blast design calculations and is widely used throughout the 
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physical security community as a standard tool.  It is therefore of interest to study its 

ability to predict the out-of-plane wall deflections observed in Shot B.  More information 

on USACE software code development can be found in Sunshine et al. (2004). 

It is worth emphasizing that the methods presented in this chapter represent the 

standard analysis methodology accepted by USACE for blast design calculations.  

Despite their simplicity, the methods have been proven adequate for the design of 

components including masonry, reinforced concrete, steel plates, and light gage wall 

systems, among others.  Although more accurate methods are available, FEA for 

example, understanding the inputs and results of such analyses can be cumbersome, and 

FEA is often too expensive for design purposes unless no other proven analysis method 

exists.  Further, in some structural analyses, the variations in material properties, 

geometry, construction workmanship, and uncertainties in the applied loading can limit a 

high fidelity structural simulation from providing results that are any more reliable than 

an ESDOF analysis. 

 This chapter will describe the development and application of an ESDOF model 

for each of the three Shot B blast chamber walls.  First, a general discussion of brick 

URM resistance functions will be presented.  This will be followed by a discussion of 

how resistance function ordered pairs were computed for each wall.  Following that are 

details of how each of the three walls was converted from a real to an ESDOF system.  

Then using the ESDOF models and applied loading, simulations were performed to 

predict the out-of-plane deflections of the blast chamber walls.  Finally, two criteria are 

employed to estimate the post-blast residual capacity of blast chamber bearing walls.  The 

criteria are used to estimate how close the structure was to collapse. 
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6.1. Resistance Functions 

Thus far this dissertation has provided information regarding every parameter 

required for an ESDOF simulation save one critical piece of information – the resistance 

function.  In order to simulate the out-of-plane response of brick URM, a resistance 

function is required to describe the nonlinear force deflection relationship of the wall.  

Although there are many formulations, the models of out-of-plane resistance of URM 

walls can be grouped into two categories. 

The first category is called rigid arching response.  As first described by 

McDowell et al. (1956), “…the resistance of the wall to lateral loads is due entirely to 

forces set up in the plane of the panel as a result of the tendency of the masonry material 

to be crushed at the midspan and at the end supports.”  These in-plane forces can be 

attributed to beams or columns surrounding an infill panel which, as the wall rocks out-

of-plane, restrict the wall’s edge rotations.  A variety of formulations have been 

developed for rigid arching, ranging from the early expression contained in McDowell et 

al. (1956) to the formulation contained in TM5-1300 (US Army, 1990).  Flanagan and 

Bennett (1999) review a number of rigid arching models which accounted for the 

flexibility of bounding beams and columns.  Through careful comparisons to 

experimental data, the authors were able to identify the most accurate formulation for 

including the flexibility of bounding members.  In all cases, however, as pointed out by 

Henderson et al. (2003), the rigid arching resistance of infill panels tends to be significant 

and the walls are able to sustain large out-of-plane deflections. 

While the rigid arching resistance function has been well developed for ESDOF 

analyses, it is not the best resistance function for the walls in this test program.  This is 
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primarily because rigid arching relies on a stiff frame bounding a wall panel on at least 

two opposite edges.  In the Shot B blast chamber, the load-bearing walls (Walls #2 and 

#3) had no such bounding members and the infill wall (Wall #1) had sufficient gaps 

along its edges to make rigid arching less applicable.  Furthermore, the rigid arching 

resistance function was not used because it produces permanent deflections only after 

very large dynamic deflections and, as indicated by some authors (USACE, 2008c), the 

permanent deflections are unreliable.  It was thus necessary to consider an alternative 

resistance function in this study.  

The second out-of-plane resistance function can best be classified as a 

combination of elastic flexure (up to first cracking) and the arching action of axial loads 

(both self-weight and applied vertical loads).  This resistance function, called brittle 

flexural response with axial load, is incorporated in SBEDS as a composite of two 

behaviors.  Initially, the wall behaves as an uncracked flexural element until the 

formation of the first tensile crack; then the wall behaves as two rocking rigid bodies.  

This resistance function relies on the arching action of axial loads similar to those found 

by Griffith et al. (2004) experimentally and Doherty et al. (2002) analytically (though the 

SBEDS arching formulation predicts a greater resistance than Doherty’s).  An 

explanation of how arching resistance develops from axial load can be found in Doherty 

et al. (2002) and Gabrielsen and Wilton (1972).  Figure 6.1 shows the general resistance-

deflection relationship for this resistance function. 
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FIGURE 6.1:  Resistance (pressure) versus mid-height deflection for the brittle flexural 

response with axial load resistance function.  
 

In Figure 6.1, X1 is the out-of-plane deflection at the formation of the first flexural 

tension crack; R1 is the corresponding out-of-plane load causing this crack.  X2 is the 

deflection at which the maximum arching resistance is developed; R2 is the out-of-plane 

wall capacity at this deflection.  Xf is the wall deflection at failure and is equal to the 

wall’s thickness.  During a dynamic analysis, the deflection will reach some dynamic 

maximum, Xd; if the wall has cracked, then there will be a permanent deflection, Xp.  

Note that unloading between Xd and Xp occurs along the same slope as the elastic wall 

stiffness; since, as shown in Figure 6.1, Xd and Xp are approximately the same value, 

considering Xd as the permanent deflection often results in a negligible error.   

 First, the calculations necessary to compute the ordered pairs of the resistance 

function will be presented for a one-way spanning, simply-supported wall (like Wall #3) 

using the default SBEDS methodology.  The SBEDS formulation (for all wall 

types/spans) assumes that the first flexural tension crack forms at midspan of a wall 

panel.  While this is a reasonable representation of Walls #1 and #2, Wall #3 cracked 

above and below the wall’s window openings (the bottom crack corresponds to 



191 

 

 

approximately the quarter point) and thus the mid-height crack representation limits the 

accuracy of the analysis.  To address this, a new resistance function will be presented for 

one-way spanning walls which permits a crack at any height.  The methodology, used to 

compute the ordered pairs of the new resistance function, will account for a non-uniform 

distribution of mass, stiffness, and loading (applicable to a wall with window openings 

for example; window openings will be assumed to be frangible and thus will not add out-

of-plane load to the wall).  This will be followed by the SBED’s methodology of 

computing resistance function ordered pairs for a two-way spanning wall with four sides 

simply-supported (like Wall #2).  Finally, the SBEDS methodology for computing 

resistance function ordered pairs for a two-way spanning wall with three sides simply-

supported (like Wall #1) will be presented.   

6.1.1. Wall #3 - One-Way Spanning Wall, Mid-Height Crack 

Wall #3 will first be modeled as a one-way spanning, simply-supported member 

which cracks at mid-height.  The wall’s large aspect ratio (width to height) along with 

post-test observations of the crack pattern suggests that assuming one-way action is a 

good approximation.  In this case, the default SBEDS methodology will be employed 

which assumes that the wall has a uniform loading, mass, and stiffness; resistances are 

thus given as a force per unit area and taken as constant.  The ordered pairs of the 

resistance function (X1,R1), (X2,R2), and (Xf,0) are given by Eqs. (6.1) through (6.6). 

2
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In the equations, ft is the tensile strength of mortar perpendicular to the bed joints, 

S is the per unit length section modulus, L is the span (wall height), P the axial load 

above the top of the wall, A the cross sectional area per unit length, E the modulus of 

elasticity, I the moment of inertia per unit length, W the self weight per unit height, and t 

the wall’s thickness.  Eq. (6.1) represents the wall’s out-of-plane resistance at formation 

of the midheight flexural crack (resistances are assumed to be spatially uniform and are 

given in force per unit area).  Eq. (6.2) represents the flexural tensile strength of the 

mortar joints, adjusted to account for the precompression of the axial load (compressive 

loads are negative, thus increasing the effective tensile strength of the masonry).  Eq. 

(6.3) is the elastic lateral deflection of the wall at midheight, corresponding to the 

cracking load (R1).  Eqs. (6.1), (6.2), and (6.3) can be easily derived from elastic 

mechanics principles.   

Eq. (6.4) is the cracked wall’s out-of-plane (maximum) resistance as a result of 

the arching action of axial loads.  Eq. (6.5) is the corresponding cracked wall’s mid-

height lateral deflection at the maximum arching resistance (R2).  Note that the change in 

resistance between R1 and R2 is assumed to occur along a line with a slope equal to the 
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wall’s elastic stiffness.  Finally, Eq. (6.6) is the maximum deflection the wall can 

experience before losing stability.  Beyond this limiting deflection (equal to its thickness) 

the wall will collapse.   

A constant axial load (P) is the only option available in SBEDS simulations, but 

simplified analytical investigations showed that Walls #2 and #3 may have experienced 

multiple axial load oscillations as a result of blast-induced uplift on the concrete floor 

slab system of the second story (the ceiling of the blast chamber) and its resulting vertical 

oscillations.  These axial load oscillations can significantly influence the response of the 

wall; however there is no automated procedure to simulate this complex dynamic 

interaction in SBEDS.  Modeling approximations are left to the discretion of the analyst.  

Although it is difficult to determine the precise phasing of the wall’s out-of-plane 

response relative to the ceiling slab’s reaction force time history, simplified analyses 

suggested that the axial load in the walls due to loads from the ceiling slab were minimal.  

It was thus assumed that Walls #2 and #3 carried no axial load (beyond their self-weight 

and the weight of the walls above) during their out-of-plane responses; this assumption 

will be shown to yield good agreement with the experimental permanent deflections.    

Another resistance function parameter required in SBEDS is a strength adjustment 

factor Bw to account for window or door openings in a wall.  In SBEDS the Bw factor 

directly scales the resistance and stiffness.  Although easy to implement, this assumes 

that the blast load is entirely uniform and planar; this was not the case in this 

investigation.  The SBEDS user manual recommends that for a one-way member, Bw be 

taken as the ratio of wall width resisting lateral loading (total width minus window width) 

to the total width.  An alternate ratio, first proposed by Mays et al. (1998) for reinforced 
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concrete walls and later examined by Flanagan and Bennett (1999) in the context of 

masonry, is an area ratio, rather than a width ratio.  This alternate reduction factor is 

computed as the ratio of the area of solid wall to the total area of the wall.  Both methods 

of calculating Bw will be used to analyze Wall #3.   

As stated previously, these equations assume the wall cracks at mid-height.  In the 

next section, a new resistance function will be presented which allows a one-way wall to 

crack at any height; the location of the crack must be estimated beforehand as an input to 

the resistance function.  Of equal importance, the accompanying methodology used to 

compute the ordered pairs of the resistance function will allow a better formulation for 

inclusion of nonuniform loading, mass, and stiffness quantities. 

6.1.2. Wall #3 - One-Way Spanning Wall, Variable Height Crack 

Section 6.1.1 provides the SBEDS formulation for a URM wall that is assumed to 

crack at midheight.  In the experimental program, Wall #3 was observed to crack above 

and below the window openings in the wall.  The bottom crack corresponds to 

approximately the quarter point while the top crack corresponds to approximately the 

three quarter point of the span.  Examination of the post-test shape of the wall showed 

that the majority of out-of-plane deflection occurred at the crack that formed at the 

bottom of the window openings; the crack above the window openings will therefore be 

ignored.  The large out-of-plane deflection at the lower quarter point makes sense, given 

the bottom-skewed impulse distribution shown in Figure 5.18.   

To better model Wall #3’s out-of-plane response, this section will present a 

resistance function (presented here for the first time) for a one-way spanning, simply-

supported URM wall that can crack at any height.  Equally as important, the method in 
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which the resistance function ordered pairs are computed will account for the wall’s non-

uniform stiffness and mass and the nonuniform blast loading.  Initially an attempt was 

made to develop closed form methods of computing the resistance function ordered pairs.  

It quickly became apparent, however, that the only realistic approach was to solve the 

problem numerically. 

The first step in creating the resistance function is to obtain the ordered pair R1,X1.  

These points are calculated by performing four successive numerical integrations of the 

nonlinear loading function; the constants of integration are determined between each 

successive integral to satisfy the boundary conditions.  The integrals provide the shear 

curve, the moment curve (which is used to compute cracking resistance R1), the rotation 

curve, and the deflection curve (to calculate deflection X1 corresponding to R1).  In order 

to evaluate these integrals, the loading on Wall #3 (from Load Case 2, Table 5.18) had to 

be reduced from the two-dimensional contours shown in Figure 5.18 to a one-

dimensional function.  A 421.8 cm width of wall was taken as the width over which to 

average the blast loading.  This corresponds to the center to center distance between 

masonry piers on either side of the window openings on either side of the charge 

centerline (as looking laterally along the wall’s length).  Figure 6.2 shows the one-

dimensional vertical impulse profile used for computing transformation factors required 

in the ESDOF model. 

Note that for all calculations that follow, the reflected impulse contours are used 

as the load, rather than the pressure contours.  This is because the out-of-plane response 

of the blast chamber walls is impulse dominated.  This assertion is justified by 

considering the ratio of the wall’s elastic natural period to the duration of the blast load.  
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A common structural dynamics rule of thumb states that if the ratio is greater than 10, 

then dynamic response is impulse dominated; in this case the ratio is closer to 25.   

 

 
FIGURE 6.2:  Plot of reflected impulse (averaged across effective wall width) versus 

height above blast chamber floor for Wall #3. 
 

 Figure 6.3 shows the free body diagram used to develop the post-elastic (cracked) 

resistance.  Note that only the top half self-weight is included in the formulation.  This 

was the basis upon which the SBEDS arching formulation was developed, and it was also 

adopted here.  As will be shown in Chapter 7, using a reduced self weight is not an 

unreasonable assumption because the dynamic rocking action of the wall segments tends 

to cause vertical acceleration (and thus reduced apparent self weight).  Moreover, if the 

weight of the upper wall segment were not included, the wall would have no resistance to 

lateral loads in the absence of a concentrated load at the top (P).  Summing moments 

about the points of rotation yields: 
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మ
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஻ܯ∑ ൌ
ோభ௅భ

మ

ଶ
െ ሺܹܮଶ ൅ ܲሻሺݐ െ ଵܺሻ ൌ 0     (6.8) 

Eq. (6.7) is the summation of moments about the top segment’s assumed point of 

rotation, while Eq. (6.8) is a similar summation for the bottom segment.  In Eqs. (6.7) and 

(6.8), W is the weight per unit length, P is the axial load per unit length applied at the top 

of the wall, t is the wall thickness, X1 is the lateral deflection at the crack height at the 

cracking load, L1 is the span of wall segment between the bottom of the wall and the 

crack, and L2 is the span of the wall segment between the crack and the top of the wall.  

Simplifying these expressions yields Eq. (6.9) which is the maximum resistance of the 

top half of the wall, while Eq. (6.10) is the resistance of the bottom half of the wall.   

ܴଶ ൌ ቂଶௐ
௅మ
൅ ଶ௉

௅మ
మ ቃ ሺݐ െ ଵܺሻ        (6.9) 

ܴଵ ൌ
ଶሺௐ௅మା௉ሻሺ௧ି௑భሻ

௅భ
మ        (6.10)  

Both equations must be evaluated, and the minimum value is taken as the overall uniform 

arching capacity. 
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FIGURE 6.3:  Free body diagram of upper (at left) and lower (at right) wall segments for 

derivation of arching resistance for wall with variable height crack, uniform load, and 
uniform mass. 

 

 Note that, as presented here, the equations for arching resistance are formulated 

for a uniform loading and mass.  It is relatively straightforward to reformulate the 

moment summations shown in Eqs. (6.7) and (6.8) for any specific nonuniform 

distribution of loading and mass.  In the Matlab scripts used to compute post-elastic 

resistance, the nonuniform distributions were treated by numerically finding the centroids 
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of the loading distribution and the mass distribution, and using these in refined moment 

summations to better estimate the arching resistance.  Refer to Matlab script D.7 in 

Appendix D for details of the computations. 

6.1.3. Wall #2 - One or Two-Way Spanning Wall, Midheight Crack 

Wall #2 will be modeled as both a one-way and a two-way spanning element.  

The wall’s aspect ratio and the post-test crack pattern suggested that a two-way spanning 

element would be a good physical approximation.  Both one-and two-way spanning 

analyses were investigated because there was such extensive damage to the intersection 

of Walls #2 and #3 that it appeared as though the two-way action could have been 

compromised.   

First, Wall #2 will be modeled as a one-way spanning element.  The ordered pairs 

of this resistance function can be computed using Eqs. (6.1) through (6.6) as presented in 

Section 6.1.1 or using the methodology developed in Section 6.1.2 which accounts for 

general loading, mass, and stiffness distributions.  To permit a one-way spanning 

analysis, it was necessary to perform lateral averaging in order to develop a one-

dimensional load profile (from the two-dimensional impulse profile from Load Case 2).  

This averaging was performed across the wall’s entire width and yielded the reflected 

impulse versus height distribution shown in Figure 6.4 
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FIGURE 6.4:  Plot of reflected impulse (averaged across wall width) versus height above 

blast chamber floor for Wall #2. 
 

 
Wall #2 will also be modeled as a two-way spanning element with four edges 

simply-supported.  Although there are a variety of methods to compute the elastic 

resistance of a plate (wall) simply-supported along four edges, the method preferred by 

USACE is to look up the stiffness and deflection from charts in Chapter 3 of UFC 3-340-

02.  The charts provide nomographs of several useful variables, but this analysis only 

requires one, γ.  The user selects the chart which corresponds to the appropriate boundary 

conditions and then, using the wall’s aspect ratio (ratio of height to width), selects the 

value of γ.  For this particular case, the appropriate nomograph is Figure 3-36 in UFC 3-

340-02.  This coefficient is then used in 
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஽

ఊுర       (6.11) 

to compute the elastic stiffness Ke , the out-of-plane stiffness at the point of greatest 

deflection – mid-span in both the horizontal and vertical directions.  In Eq. (6.11) H is the 
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clear vertical span of the wall and D is the wall’s flexural rigidity computed by Eq. 

(6.12), where E is the modulus of elasticity, I is the moment of inertia per unit width, and 

v is Poisson’s ratio (taken as 0.22). 

ܦ ൌ ாூ

ଵି௩మ
                  (6.12) 

 In addition to the elastic stiffness, it is also necessary to calculate the resistance at 

which the first flexural crack forms.  Table 3-2 in UFC 3-340-02 provides guidance on 

computing the ultimate resistance of two-way plates with a variety of boundary 

conditions.  Note that “ultimate resistance” usually means the literal maximum resistance 

(load) that a structure achieves.  Normally this term is applied to a steel or reinforced 

concrete structure; this would correspond to a fully plastic cross section deformed along 

yield lines.  In the context of this analysis, “ultimate resistance” corresponds to the wall’s 

cracking load.  The UFC 3-340-02 guidance has been simplified and more compactly 

presented in Table 4-4 of the SBEDS Methodology Manual (USACE, 2008c).  The 

cracking resistance (under uniform load) of the wall is found by setting Eqs. (6.13) and 

(6.14) equal to each other and solving for x, where x is the horizontal distance from the 

panel’s vertical edges where yield lines intersect one another.   

ଵݎ ൌ
ହ.ସெ

௫మ
       (6.13) 

ଶݎ ൌ
଼.଺ସெሺଷௐି௫ሻ

ுమሺଷௐିସ௫ሻ
                  (6.14) 

Back-substituting the value of x  into either equation yields the wall’s cracking resistance.  

In the equations M is the moment capacity per unit width (M=ft S), W is the width of the 

wall, and H is the height of the wall. 
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Eqs. (6.13) and (6.14) assume that the wall cracks along yield lines emanating 

from the corners.  The capacity determined by these equations is a yield line equilibrium 

solution.  While computing the ultimate resistance for steel plates or reinforced concrete 

panels along yield lines makes sense, it is questionable as to why this would be a good 

choice for unreinforced masonry.  To study the accuracy of this method, a linear and 

elastic, static finite element model was built using ANSYS (Canonsburg, PA).  The 

model used the linear shell element Shell 43, which has three translational and three 

rotational degrees of freedom at each node and is well suited to model moderately-thick 

shell structures.  The wall was meshed with elements having square aspect ratios with an 

edge length of 10.16 cm (4.0 in).  The edge nodes of the model were supported using a 

roller-type constraint.  Loading was applied to the model by writing a one-way coupling 

algorithm that took the impulse profile shown in Figure 5.16 and applied it as nodal loads 

in the ANSYS model.  This permitted an accurate assessment of both the effective 

stiffness and the cracking load of the wall panel under the action of the nonuniform blast 

loading. 

The finite element model shows that, as expected, the yield line solution 

overestimates the wall’s capacity.  It is likely that, because yield line analysis is simple 

and relatively close to the correct answer, it was applied to unreinforced masonry for the 

sake of convenience.  For comparison, Eqs (6.13) and (6.14) predict the uniform load 

causing cracking of Wall #2 to be 33.9 kPa (4.91) psi while the ANSYS finite element 

model predicts the cracking load to be 29.1 kPa (4.22 psi) (based on tensile stress normal 

to the mortar joints).  Both the ANSYS-derived and SBEDS-derived stiffnesses and 

cracking resistances will be used in ESDOF simulations for comparison. 
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The treatment of two-way spanning URM walls is only different than that of a 

one-way spanning wall during the elastic phase of response.  After the first flexural crack 

has formed, a two-way spanning wall is assumed to respond as a vertically spanning one-

way wall.  Its post-elastic resistance is as defined by Eqs. (6.4), (6.5), and (6.6) or using 

the methodology developed in Section 6.1.2 which permits nonuniform loading and mass 

distributions.  The transition from a two-way element to a one-way element is logical 

because vertical loads are the only mechanism of out-of-plane resistance after cracking 

occurs.  There should be no in-plane horizontal loads for this particular case because 

bounding members do not inhibit panel edge rotations.  Note that, although the post-

elastic resistance is computed based on one-way action, the post-elastic ESDOF 

transformation factors are still computed with the deflected shape of a two-way spanning 

plate. 

6.1.4. Wall #1, Two-Way, Three Edges Supported 

Wall #1 was modeled as a two-way spanning element with three edges simply-

supported (bottom and vertical edges).  These boundary conditions were chosen based on 

engineering judgement and supported by post-test observations of the wall’s deflected 

shape, which showed that the top edge of the wall panel was, for all intents and purposes, 

free to displace out-of-plane.  The analysis of this wall panel’s elastic deflection and 

resistance is only slightly different than the analysis presented in Section 6.1.3 for the 

case of a two-way wall with four edges simply-supported.  Like Wall #2, the elastic 

stiffness of Wall #1 was determined using the appropriate nomograph for γ (Figure 3-30 

in UFC 3-340-02).  This coefficient is then used in Eqs. (6.11) and (6.12) to compute the 
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elastic stiffness Ke , which is the out-of-plane stiffness of the wall panel at the point of 

greatest deflection – at the top of the wall and midspan horizontally.   

 In addition to the elastic stiffness, it is also necessary to calculate the peak 

resistance at which the first flexural crack forms.  Like Wall #2, this wall’s ultimate 

resistance can be calculated from the figures in Table 4-4 of the SBEDS Methodology 

Manual.  The cracking resistance of Wall #1 is found by setting the following equations 

equal to each other and solving for y,  

ଵݎ ൌ
ହ.ସெ

௬మ
       (6.15) 

ଶݎ ൌ
ସ.ଷଶெሺ଺ுି௬ሻ

ௐమሺଷுିଶ௬ሻ
                  (6.16) 

where y is the vertical distance from the bottom of the panel to the height where yield 

lines intersect.  Back-substituting the value of y into either equation yields the wall’s 

cracking resistance.   

Like Eqs. (6.13) and (6.14), Eqs. (6.15) and (6.16) assume that the wall fails along 

yield lines emanating from the corners.  The capacity determined by these equations is a 

yield line equilibrium solution.  Again, the accuracy of this methodology was 

investigated using a linear and elastic, static finite element model like the one described 

in Section 6.1.3.  A one-way coupling algorithm was again used to transfer the impulse 

contours from Figure 5.14 into nodal loads in the FEA model.  Like before, the finite 

element model showed that the yield line solution overestimates the wall’s capacity.  For 

comparison, Eqs (6.15) and (6.16) predict the cracking resistance of the wall to be 9.10 

kPa (1.32 psi) while the ANSYS finite element model predicts the cracking resistance to 

be 8.00 kPa (1.16 psi) based on tensile stress normal to the mortar joints.  Both the 
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ANSYS-derived and SBEDS-derived stiffness and cracking resistances will be used in 

the SDOF analyses for comparison. 

Wall #1’s post-elastic resistance is defined by Eqs. (6.4), (6.5), and (6.6) or using 

the methodology presented in Section 6.1.2 for a wall with a nonuniform loading and 

mass distribution.  The transition from a two-way element to a one-way element is logical 

because vertical loads are the only mechanism of out-of-plane resistance after cracking 

occurs.  Since there should be no in-plane horizontal loads for Wall #1, only the vertical 

forces resist out-of-plane motion. 

6.2. Equivalent SDOF Systems 

In addition to resistance function ordered pairs, the ESDOF transformation factors 

must also be developed.  Chapter 1 provided an overview of how the ESDOF 

transformation factors (KL, KM, and KLM) are computed for one-way spanning structures 

with uniform loading, mass, and stiffness distributions.  Unfortunately, Chapter 5 showed 

that the Shot B blast chamber walls were subjected to complex loading distributions.  

Furthermore, Wall #3 also had nonuniform mass and stiffness due to the presence of the 

window openings.  Initially, an effort was made to derive a closed form solution which 

would permit development of the ESDOF transformation factors for any of the blast 

chamber walls.  It quickly became apparent, however, that such a solution was 

intractable, particularly for the elastic phase of wall response.  It was therefore desirable 

to numerically derive the transformation factors for all three walls.  The following 

sections will describe the methodology used in deriving transformation factors and 

Appendix D contains the corresponding Matlab scripts.   
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First, ESDOF transformation factors will be derived for Walls #2 and #3 

assuming one-way spans.  Following that, the transformation factors will be derived for 

Walls #1 and #2 assuming two-way spans; note that Wall #1’s response is termed “two-

way” despite being supported on only three sides.  For each type of support condition, an 

elastic and post-elastic deformed shape will be computed.  These will be combined with 

the CTH-derived impulse loading contours to derive the ESDOF transformation factors. 

6.2.1. One-Way Spanning Elements 

Walls #2 and #3 were modeled as one-way spanning elements (Wall #2 will also 

be modeled as a two-way element in the next section).  The loading profiles shown in 

Figures 6.2 and 6.4 will be used as the applied loading.  It is also necessary to compute 

deflected shapes for the elastic and post-elastic phases of wall response.  Figure 6.5 

shows the normalized deflected shapes used for the elastic and post-elastic phases of 

Wall #2’s response, assuming a one-way span that cracks at mid-height.  The elastic 

deflected shape was computed using the quadruple integration scheme described in 

Section 6.1.2.  The post-elastic deflected shape was computed as two straight lines 

intersecting at the assumed height of the tensile crack.   

Computing the deflected shape of Wall #3 was even more complicated than Wall 

#2 due to its nonuniform mass and stiffness.  The loading profile from Figure 6.2 was 

used for this analysis.  Figure 6.6 shows the stiffness (moment of inertia) and mass of 

Wall #3 as a function of height above the base of the wall.  Note that the plots have been 

normalized so that a value of one represents the stiffness or mass (per unit length) in the 

absence of a window opening. 
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FIGURE 6.5:  Wall #2 normalized deflected shapes for the elastic phase of response (at 

left) and the post-elastic phase of response (at right). 
 

 
FIGURE 6.6:  Plots of normalized moment of inertia (at left) and normalized wall mass 

(at right) as a function of height for Wall #3, which had numerous window openings. 
 

Using this data along with the quadruple integration scheme described earlier, 

deformed shapes were developed for Wall #3.  Figure 6.7 shows the normalized deflected 

shapes computed for the elastic and post-elastic phases of wall response assuming a one-
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way span that cracks just below the bottom of the window openings.  Note that for the 

elastic deformed shape, the normalization was performed relative to a point on the wall’s 

span which was not the maximum deflection (i.e. at the assumed crack location).  Thus, 

the normalized elastic deflected shape has a maximum value greater than 1.0.   

 
FIGURE 6.7:  Wall #3 Normalized deflected shapes for the elastic phase of response (at 
left) and the post-elastic phase of response (at right) with the flexural crack forming just 

below the window openings. 
 

Having developed all of the necessary inputs, the KM and KL factors are computed 

respectively by 
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∑ ௣ሺ௫ሻఝሺ௫ሻೣ

∑ ௣ሺ௫ሻೣ
	              (6.18) 

 Note that these equations are the discrete analogs of Eqs. (1.4) and (1.5).  These 

summations are performed over the height of the one-way elements, where the variable x 

is the position up the height.  In the equations, m(x) represents the spatially variable mass, 

p(x) the spatially variable load, and φ(x) is the normalized deflected shape.  Using this 
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methodology, Wall #2 was computed to have an elastic KM of 0.51, an elastic KL of 0.58, 

an elastic KLM of 0.88 (KLM = KM/KL), a post-elastic KM of 0.33, a post-elastic KL of 0.44, 

and a post-elastic KLM of 0.75.  Wall #3 was computed to have an elastic KM of 0.75, an 

elastic KL of 0.60, an elastic KLM of 1.25, a post-elastic KM of 0.29, a post-elastic KL of 

0.42, and a post-elastic KLM of 0.69.  The Matlab program used to perform these 

computations is included in Appendix D as script D.7.   

6.2.2. Two-Way Spanning Members 

The development of ESDOF transformation factors for two-way elements is more 

difficult than for one-way spanning elements.  Most of the added difficulty comes from 

computing the shape functions required to perform two-dimensional integrals.  The two-

dimensional analogs of Eqs. (6.17) and (6.18) are 

ெܭ ൌ
∑ ௠ሺ௫,௬ሻఝሺ௫,௬ሻమೣ೤

∑ ௠ሺ௫,௬ሻೣ೤
     (6.19) 

௅ܭ ൌ
∑ ௣ሺ௫,௬ሻఝሺ௫,௬ሻೣ೤

∑ ௣ሺ௫,௬ሻೣ೤
	              (6.20) 

The variables in the equations are as defined previously.  Section 5.7 developed the 

necessary loading profiles p(x,y), which are shown in Figures 5.14 and 5.16.  Walls #1 

and #2 have uniform mass, making m(x,y) a constant.  The only additional information 

required for the two-dimensional integrals is the deflected shape φ(x,y). 

Initially an attempt was made to use Navier’s solution to compute the deflection 

of a simply-supported rectangular plate.  Navier’s solution is 
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where  p(x,y) is the applied loading, a and b are the dimensions of the plate, D is the 

flexural rigidity, x and y are spatial variables, and m and n are summation terms.  This 

approach has the advantage in that Navier’s solution permits arbitrary loading, which 

would have made using the impulse profiles from Chapter 5 relatively straightforward.  

Using between three and five terms in the summations of Navier’s solution along with 

Eqs. (6.19) and (6.20) yielded transformation factors that were very similar to the 

transformation factors reported by Biggs (1964).  This result, however, is merely 

coincidence. 

After researching other published studies of the ESDOF transformation factors, it 

turns out that the vast majority available in the literature (Biggs’ included) are inaccurate 

for two-way elements.  Morrison (2006) states that the original transformation factors 

(from Biggs (1964) and other places) were derived using very rough approximations of 

the elastic deflected shapes of plates and are thus inaccurate.  This results in errors of up 

to nearly 50% for certain transformation factors.  Morrison attempted to use closed form 

solutions to obtain the elastic deflected shape of a rectangular plate.  The author reported 

it necessary to use over a thousand terms in the summations in Navier’s solution to obtain 

an accurate result for transformation factors.  This would be overly time intensive, even 

on a very fast computer.  This led Morrison to, instead, use FEA to compute two-

dimensional deflected shapes.  These deflected shapes were then used in Eqs. (6.19) and 

(6.20) to obtain transformation factors which are substantially different than those in 

Biggs (1964).   

Based on the work of Morrison (2006) the decision was made to use FEA to 

compute the deformed shapes for two-way spans in this investigation.  Using both Matlab 
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and the ANSYS coding tool, a program was written that allowed the complex two-

dimensional impulse contours from Chapter 5 to be converted to nodal loads in an 

ANSYS model of Wall #1.  Figure 6.8 shows the resulting normalized elastic deflected 

shape computed by ANSYS using a static analysis.  Figure 6.9 is the corresponding 

normalized post-elastic deflected shape based on the yield line geometry used by SBEDS. 

Again, using the previously described Matlab and ANSYS coding, an ANSYS 

model was constructed to simulate the elastic deflection of Wall #2.  Figure 6.10 is the 

normalized elastic deflected shape computed by ANSYS (using a static analysis) under 

the action of the impulse loading profile from Figure 5.16.  Figure 6.11 is the 

corresponding normalized post-elastic deflected shape based on the yield line geometry 

used by SBEDS. 

 

 
FIGURE 6.8:  Wall #1 normalized elastic deflected shape as viewed from inside the blast 

chamber looking out. 
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FIGURE 6.9:  Wall #1 normalized post-elastic deflected shape as viewed from inside the 

blast chamber looking out.   
 

 
FIGURE 6.10:  Wall #2 normalized elastic deflected shape as viewed from inside the 

blast chamber looking out.   
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FIGURE 6.11:  Wall #2 normalized post-elastic deflected shape as viewed from inside 

the blast chamber looking out.   
 

The normalized deflected shapes and the reflected impulse profiles from Chapter 

5 were used with Eqs. (6.19) and (6.20) to compute the ESDOF transformation factors.  

In order to facilitate computations, Matlab programs were written to perform the 

integrations using the deflected shape and the loading distributions.  The programs are 

included in Appendix D as scripts D.8 and D.9.  For Wall #1 the program computed the 

elastic KM factor to be 0.19, the KL factor to be 0.30, and the KLM factor to be 0.63.  The 

post-elastic KM factor was 0.19, the KL factor 0.30, and the KLM factor 0.63.  For Wall #2 

the program computed the elastic KM factor to be 0.28, the KL factor to be 0.37, and the 

KLM factor to be 0.76.  The post-elastic KM factor was 0.20, the KL factor 0.31, and the 

KLM factor 0.65.  Note that, as a validation, the Matlab program and the ANSYS FEA 

model were used to model the plates studied in Morrison (2006); they were able to 

closely replicate his ESDOF transformation factors. 
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6.3. Summary of SDOF Input Parameters 

 Using the methods outlined previously, ESDOF and resistance function ordered 

pairs were calculated for the walls of Blast Chamber B.  Both directly computed and 

default (those assuming uniform distributions of loading and mass) ESDOF 

transformation factors were calculated.  Similarly, resistance function ordered pairs were 

calculated using both the newly developed resistance function as well as the default 

SBEDS resistance function.  These data were used as inputs for the simulations listed in 

Table 6.1.   As an additional measure, the effect of using a directly measured, versus an 

SBEDS default modulus of elasticity for masonry, was considered.   

Table 6.2 provides a summary of the ESDOF transformation factors 

corresponding to the analysis cases in Table 6.1.  The non-computed (default) factors in 

the table were taken from UFC 3-340-02 and are the same ones which would be SBEDS 

defaults.  In comparing the computed values to the default values, the errors for the KLM 

factor range from as low as 8% to as high as 38%.  Most of the computed factors appear 

close to the default factors, with the exception of those for Wall #3, which has an elastic 

KLM value of 1.25; values greater than 1.0 are not normally encountered in practice.  A 

KLM factor greater than 1.0 is best explained through an example.   

Consider a simply-supported beam with a uniform loading.  If the deflection of 

the beam was monitored at midspan, the KLM factor would be 0.78.  But suppose the 

deflection of the same beam was instead monitored at a quarter point of the span.  

Applying a uniform load to the beam would yield a higher deflection at the midspan than 

at the quarter point.  Thus, the apparent stiffness of the system (loading divided by 

deflection) would be higher at the quarter point.  But regardless of where deflection is 
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monitored, the natural frequency of the beam must remain the same.  Recall that the 

ESDOF elastic natural frequency is computed by 

   ߱ ൌ ට
௄೐

௄ಽಾெ
     (6.23) 

where ω is the undamped elastic natural frequency, Ke the elastic stiffness, and M the 

total system mass.  Thus, to make the calculated natural frequency of the quarter point the 

same as at midspan, one would expect the KLM value to be larger at the quarter point than 

at midspan.  Using simple beam theory, the ratio of midspan to quarter point deflection 

will be 1.4 for a uniformly loaded, simply-supported beam.  Thus, the KLM for the quarter 

point will be 1.4 x 0.78 = 1.1.  Wall #3’s elastic KLM value of 1.25 is computed similarly, 

but is larger than 1.1 because of a difference in the location of deflection tracking and the 

wall‘s nonuniform loading.    

Table 6.3 shows the ordered pairs of the resistance functions computed using the 

methods outlined in the preceding sections.   Note that for both the default SBEDS 

procedures and the newly developed procedures - the self-weight of the interior tile 

veneer (122 kg/m2 or 25 lb/ft2) is included in the arching resistance calculation as well as 

in the wall’s mass.  Although  a post-test inspection of the blast chamber showed 

significant delamination of the tile veneer from the brick masonry backup, it was 

assumed to be bonded long enough to have contributed to the post-elastic arching 

resistance.   
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TABLE 6.1:  Summary of ESDOF analysis cases. 

Analysis 
Case 

Wall R1 Source 
KL, KM, KLM 

Source 
Span & 
Support 

Masonry 
Modulus 
GPa (ksi) 

1A 1 
ANSYS FEA 
(Section 6.1.4) 

2D Integral 
w/ Matlab Script 

Two-Way 
Simple 

4.23 
(614) 

1B 1 SBEDS Default SBEDS Default 
Two-Way 

Simple 
4.23 
(614) 

1C 1 SBEDS Default SBEDS Default 
Two-Way 

Simple 
13.44 
(1950) 

2A 2 
ANSYS FEA 
(Section 6.1.3) 

2D Integral 
w/ Matlab Script 

Two-Way 
Simple 

4.23 
(614) 

2B 2 
Matlab Script 
(Section 6.1.2) 

1D Integral 
w/ Matlab Script 

One-Way 
Simple 

4.23 
(614) 

2C 2 SBEDS Default SBEDS Default 
Two-Way 

Simple 
4.23 
(614) 

2D 2 SBEDS Default SBEDS Default 
Two-Way 

Simple 
13.44 
(1950) 

3A 3 
Matlab Script 
(Section 6.1.2) 

1D Integral 
w/ Matlab Script 

One-Way 
Simple 

4.23 
(614) 

3B* 3 
Matlab Script 
(Section 6.1.2) 

1D Integral 
w/ Matlab Script 

One-Way 
Simple 

4.23 
(614) 

3C 3 
SBEDS Default 

Bw=1 
SBEDS Default 

One-Way 
Simple 

4.23 
(614) 

3D 3 
SBEDS Default 

Bw=0.482 
SBEDS Default 

One-Way 
Simple 

4.23 
(614) 

3E 3 
SBEDS Default 

Bw=0.698 
SBEDS Default 

One-Way 
Simple 

4.23 
(614) 

3F 3 
SBEDS Default 

Bw=0.698 
SBEDS Default 

One-Way 
Simple 

13.44 
(1950) 

Notes:  SBEDS default modulus of elasticity is 13.44 GPa; 4.23 GPa determined by 
compression test.  *All Wall #2 and #3 analysis cases used 245 N/cm (140 lbs/in) axial 
load except Case 3B which used no axial load. 
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TABLE 6.2:  Summary of directly computed and default ESDOF transformation factors. 

Analysis Case 
ELASTIC POST-ELASTIC 

KL KM KLM KL KM KLM 
1A 0.30 0.19 0.63 0.30 0.19 0.63 
1B * * 0.70 * * 0.53 
1C * * 0.70 * * 0.53 
2A 0.37 0.28 0.76 0.31 0.20 0.65 
2B 0.58 0.51 0.88 0.44 0.33 0.75 
2C * * 0.70 * * 0.54 
2D * * 0.70 * * 0.54 
3A 0.60 0.75 1.25 0.42 0.29 0.69 
3B 0.60 0.75 1.25 0.42 0.29 0.69 
3C 0.64 0.5 0.78 0.5 0.33 0.66 
3D 0.64 0.5 0.78 0.5 0.33 0.66 
3E 0.64 0.5 0.78 0.5 0.33 0.66 
3F 0.64 0.5 0.78 0.5 0.33 0.66 

Notes:  *Neither SBEDS nor UFC 3-340-02 provide the default values of KL 
or KM, only KLM.  Directly computed ESDOF factors are shaded in gray to 
permit easier comparison with default values. 

 
 

Equivalent uniform impulses were computed for each wall of the blast chamber 

by integrating each two-dimensional impulse contour (for example Figure 5.16 in 

Chapter 5) over its area and then dividing the total impulse by the wall area.  This is 

suitable for use with the computed KLM factors because they inherently account for the 

actual nonuniform loading distribution.  The default KLM factors, on the other hand, do 

not account for the nonuniform loading; they were instead developed assuming a uniform 

load and it is of interest to study the errors created by this assumption.  Studying Table 

2.3, the sensors embedded in Walls #1, #2, and #3 had average positive phase durations 

of approximately 2.25 ms.  This information was substituted into 

௘ܲ௤ ൌ
ଶூ೐೜
௧೏

     (6.23) 

 to compute the equivalent uniform pressure from the equivalent uniform impulse.  Eq. 

(6.23) represents a decaying triangular pressure pulse where Peq is the equivalent uniform 
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pressure acting over the blast wave duration td and Ieq is the equivalent uniform impulse.  

Note that this method of back-computing pressure from impulse and blast wave duration 

is standard practice as described in UFC 3-340-02.  The equivalent uniform loads 

computed using this methodology are shown in Table 6.4.   

 
TABLE 6.3:  Summary of resistance function ordered pairs for analysis cases 

investigated. 

Analysis Case 

ELASTIC POST-ELASTIC 
R1 

kPa  
(psi) 

X1 

mm (in) 

Ke 

kPa/cm 
(psi/in) 

R2 

kPa 
(psi) 

X2 

mm (in) 
Xf 

 cm (in) 

1A 
8.00 

(1.16) 
9.86 

(0.388) 
8.12 

 (2.99) 
1.17 

(0.170) 
18.3 

(0.719) 
20.3 

(8.00) 

1B 
9.10 

(1.32) 
13.9 

(0.548) 
6.54 

(2.41) 
1.17 

(0.170) 
26.2 

(1.03) 
20.3 

(8.00) 

1C 
9.10 

(1.32) 
4.39 

(0.173) 
20.8 

(7.66) 
1.23 

(0.178) 
8.18 

(0.322) 
20.3 

(8.00) 

2A 
29.1 

(4.22) 
3.48 

(0.137) 
83.6 

 (30.8) 
8.00 

(1.16) 
5.99 

(0.236) 
30.5 

(12.0) 

2B 
19.0 

(2.75) 
3.96 

(0.156) 
47.8 

 (17.6) 
8.00 

(1.16) 
6.25 

(0.246) 
30.5 

(12.0) 

2C 
33.9 

(4.91) 
4.27 

(0.168) 
79.0 

(29.1) 
6.61 

(0.959) 
7.75 

(0.305) 
30.5 

(12.0) 

2D 
33.9 

(4.91) 
1.35 

(0.053) 
251 

(92.6) 
6.67 

(0.968) 
2.41 

(0.095) 
30.5 

(12.0) 

3A 
12.2 

(1.77) 
2.64 

(0.104) 
46.1 

 (17.0) 
9.72 

(1.41) 
3.18 

(0.125) 
30.5 

(12.0) 

3B 
11.7 

(1.69) 
2.54 

(0.100) 
45.9 

(16.9) 
2.24 

(0.325) 
4.57 

(0.180) 
30.5 

(12.0) 

3C 
16.7 

(2.42) 
3.89 

(0.153) 
42.9 

(15.8) 
6.62 

(0.960) 
6.22 

(0.245) 
30.5 

(12.0) 

3D 
8.41 

(1.22) 
4.06 

(0.160) 
20.7 

(7.63) 
3.19 

(0.462) 
6.60 

(0.260) 
30.5 

(12.0) 

3E 
11.9 

(1.72) 
3.96 

(0.156) 
30.1 

(11.1) 
4.62 

(0.670) 
6.38 

(0.251) 
30.5 

(12.0) 

3F 
11.9 

(1.72) 
1.24 

(0.049) 
95.3 

(35.1) 
4.66 

(0.676) 
2.01 

(0.079) 
30.5 

(12.0) 
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TABLE 6.4:  Summary of equivalent reflected uniform impulses and pressures. 

Analysis Case 
Uniform Impulse 

MPa ms 
(psi ms) 

Uniform Pressure 
MPa (psi) 

Duration 
(ms) 

1A, 1B, 1C 0.770 (111.7) 0.6845 (99.29) 2.25 
2A, 2B, 2C, 2D, 2E 0.9996 (144.98) 0.8885 (128.87) 2.25 

3A, 3B 0.5739 (83.23)* 0.5101 (73.98) 2.25 
3C, 3D, 3E, 3F 0.7357 (106.7) 0.6539 (94.84) 2.25 

Note:  *This equivalent uniform impulse is reduced to account for the area of window 
openings. 

 

All wall response simulations were performed twice, once using viscous damping 

of 2% of critical and once using 5% of critical.  The SBEDS Methodology Manual 

(USACE, 2008c) indicates that SBEDS compares favorably to experimental data when 

2% viscous damping is used.  Griffith et al. (2004) performed out-of-plane free vibration 

tests on cracked brick masonry walls and determined that 5% of critical damping is a 

reasonable estimate of damping in rocking URM wall segments.  Applying this directly, 

however, is problematic.  SBEDS computes the damping coefficient only once based on 

the elastic natural frequency.  This damping coefficient would therefore be too high for 

the post-elastic phase of wall response in which the rocking wall segments have a much 

lower natural frequency than the uncracked elastic structure.   

SBEDS addresses this by including a binary switch for damping in the 

calculation.  Prior to reaching the cracking resistance, a constant damping coefficient is 

applied, the input value.  After exceeding the ultimate resistance, damping is reduced by 

a factor of 100.  Thus after cracking, 5% damping would become 0.05% damping (as 

computed using the natural frequency of the elastic, uncracked structure).  This is 

important because use of the elastic damping coefficient during post-elastic response 

would significantly underestimate peak out-of-plane deflections.  The SBEDS manual 
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states that damping is turned “off” after the ultimate resistance is achieved, but this is not 

actually the case.  The scale factor of 0.01 was verified by comparing SBEDS outputs to 

hand calculations.  It is questionable as to whether or not this is an appropriate treatment 

of post-crack damping, as its inclusion tends to reduce deflections. 

6.4. Experimental Versus Analytical Deflections 

Simulations were performed for the analysis cases in Table 6.1 using the inputs 

contained in Tables 6.2 through 6.4.  Tables 6.5 and 6.6 compare the observed permanent 

deflections of the Shot B blast chamber walls to the peak dynamic deflections predicted 

by SBEDS.  Calculations, where experimental acceleration data were double integrated, 

did not produce reliable deflection results.  Therefore, the measured permanent 

deflections (at several key locations) were used in the comparisons.  Note that, because 

unloading of the resistance function occurs along a path with a stiffness equal to its 

elastic stiffness, rebound is small and thus using peak dynamic deflection instead of 

permanent deflection yields only a small error.  The tables show that SBEDS analyses–

with the advantage of observing post-test crack patterns before choosing support 

conditions–were able to predict the experimental permanent deflections reasonably well. 
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TABLE 6.5:  Comparison between SBEDS predicted peak dynamic deflection and 
experimental permanent deflection.  Simulations use 2% damping. 

Analysis Case 
SBEDS Xd 

cm (in) 
Experimental 
Result cm (in) 

1A FAILURE 25 (10) 
1B FAILURE 25 (10) 
1C FAILURE 25 (10) 
2A 7.57 (2.98) 8.9 (3.5) 
2B 7.44 (2.93) 8.9 (3.5) 
2C 8.18 (3.22) 8.9 (3.5) 
2D 7.24 (2.85) 8.9 (3.5) 
3A 1.14 (0.45) 6.4 (2.5) 
3B 3.00 (1.18) 6.4 (2.5) 
3C 5.31 (2.09) 6.4 (2.5) 
3D 27.7 (10.9) 6.4 (2.5) 
3E 11.1 (4.36) 6.4 (2.5) 
3F 9.25 (3.64) 6.4 (2.5) 

Note:  An analytical result of “FAILURE” means that the analytical 
deflection exceeded wall thickness. (t= 20.34 cm for Wall #1 
and t=30.48 cm for Wall #2) 

 

TABLE 6.6:  Comparison between SBEDS predicted peak dynamic deflection and 
experimental permanent deflection.  Simulations use 5% damping. 

Analysis Case 
SBEDS Xd 

cm (in) 
Experimental 

Results cm (in) 
1A FAILURE 25 (10) 
1B FAILURE 25 (10) 
1C 16.1 (6.33) 25 (10) 
2A 5.18 (2.04) 8.9 (3.5) 
2B 5.49 (2.16) 8.9 (3.5) 
2C 5.44 (2.14) 8.9 (3.5) 
2D 4.19 (1.65) 8.9 (3.5) 
3A 1.02 (0.40) 6.4 (2.5) 
3B 2.08 (0.82) 6.4 (2.5) 
3C 4.06 (1.60) 6.4 (2.5) 
3D 14.0 (5.52) 6.4 (2.5) 
3E 7.54 (2.97) 6.4 (2.5) 
3F 5.66 (2.23) 6.4 (2.5) 

Note:  An analytical result of “FAILURE” means that the analytical 
deflection exceeded wall thickness. (t=20.34 cm for Wall #1 and 
t=30.48 cm for Wall #2) 
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Comparing Table 6.5 to 6.6, it can be seen that going from 2% to 5% viscous 

damping reduces the predicted deflections by 30% to 50%.  The best results were 

obtained using the 2% damping coefficient, validating the SBEDS recommendations.  

Table 6.5 shows that all of the analyses correctly predicted that Wall #1 should have 

failed.  For Wall #2, the best prediction of permanent deflection was made using default 

SBEDS parameters (case 2C) although the newly developed parameters (Cases 2A and 

2B) performed only slightly worse.  The permanent deflection of Wall #3 was somewhat 

underpredicted by the newly developed resistance function and transformation factors 

(Cases 3A and 3B) while the best prediction was made by Case 3C.  This could be caused 

by one of two factors - the blast loads were under predicted by CTH and/or the dynamic 

tensile strength of the masonry was overestimated. 

As an additional comparison, the ESDOF elastic natural frequencies of the walls 

were compared to frequencies derived from experimental data.  Table 6.7 shows the 

comparison between the analytical fundamental natural frequency and the two closest 

frequencies derived from shock accelerometer measurements.  For Wall #1, analysis 

cases 1A and 1B predict elastic natural frequencies relatively close to those from the 

experimental data.  For Wall #2, Case 2C which accurately predicted the deflection also 

predicted the natural frequency reasonably well; Case 2A which was based on an FEA 

model also predicted the natural frequency reasonably well.  For Wall #3, all cases except 

3F agreed reasonably well with the experimental data. 
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TABLE 6.7:  Natural frequencies from SBEDS as compared to experimental data. 

Analysis Case 
SDOF 

Hz 

Experimental 
Frequency 1 

Hz 

Experimental 
Frequency 2 

Hz 
1A 8.1 4.7 36.4 
1B 6.9 4.7 36.4 
1C 12.4 4.7 36.4 
2A 20.2 3.7 19.3 
2B 14.2 3.7 19.3 
2C 20.4 3.7 19.3 
2D 36.4 3.7 19.3 
3A 11.7 4.3 12.7 
3B 11.7 4.3 12.7 
3C 14.3 4.3 12.7 
3D 14.3 4.3 12.7 
3E 14.3 4.3 12.7 
3F 25.5 4.3 12.7 

 

6.5. Collapse Prediction 

When analyzing the blast resistance of a load-bearing masonry structure, after 

computing the response of the walls, it is also necessary to assess the impact of wall 

deflections on structural stability.  Two criteria were used to quantify the state of a 

bearing wall structure relative to its collapse limit-state.  The first criterion is based on 

wall midheight deflection as suggested by Doherty et al. (2002) for seismic analyses and 

implied in the definition of the resistance functions in SBEDS (USACE, 2008c).  The 

second criterion makes use of the brittle flexural response with axial load resistance 

function to quantify the remaining out-of-plane resistance of a damaged wall.  These will 

be referred to as the deflection criterion and the resistance criterion, respectively. 

Although these criteria are very simple, they represent two of three obvious 

options available for assessing the capacity of unreinforced masonry walls.  The third 

possible criterion is based on the wall’s axial load capacity.  For unreinforced masonry, 

methods to analyze the stability of cracked (damaged) assemblages have been developed 
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(La Mendola et al. 1995, Lu et al. 2004, and Tesfaye and Broome 1977).  The walls of 

the test structure reported in this article, however, had low slenderness values and load 

eccentricities which acted to restore the wall to equilibrium (rather than exacerbating 

deflections), implying that this method of stability analysis would predict only a 

negligible reduction in axial resistance.   

Using the deflection criterion, the state of a bearing wall structure (relative to its 

collapse limit-state) is defined as the ratio of the actual permanent out-of-plane deflection 

of key bearing walls ∆mid relative to their failure deflections ∆failure.  This is represented 

mathematically as a percentage by 

݁ݐܽݐݏ	ݐ݈݅݉݅	݁ݏ݌݈݈ܽ݋ܿ	݂݋	ݐ݊݁ܿݎ݁ܲ ൌ 	 ∆೘೔೏

∆೑ೌ೔೗ೠೝ೐
 (6.24)   100	ݔ	

Alternatively, and slightly more accurately, ∆mid could represent the peak dynamic 

deflection of the wall.  However, since unloading occurs along the same slope as the 

initial wall stiffness of the brittle flexural response resistance function, the values of 

permanent deflections are only slightly smaller than peak dynamic deflections if the wall 

has been pushed beyond the (X2, R2) point on its resistance function.  For the brittle 

flexural response resistance function, USACE recommends that the wall thickness be 

used as the failure deflection (USACE, 2008c).  This is in agreement with the findings of 

Doherty et al. (2002) which showed that walls would not fail dynamically until the mid-

height deflection was equal to the wall’s thickness. 

The resistance criterion is defined as the ratio of the residual (post-blast) out-of-

plane resistance to the maximum (cracking in this case) resistance as given by the 
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equations/methodology in the preceding sections.  This is represented mathematically as 

a percentage by 

݁ݐܽݐݏ	ݐ݈݅݉݅	݁ݏ݌݈݈ܽ݋ܿ	݂݋	ݐ݊݁ܿ݁ܲ ൌ 	 ቀ1 െ	ோೝ೐ೞ೔೏ೠೌ೗
ோ೘ೌೣ

ቁ  (6.25)   100	ݔ	

Rmax is taken as the larger of the cracking resistance or the post-elastic arching resistance.  

Rresidual is determined by locating the intersection of the brittle flexure resistance function 

with a line (having a slope equal to the elastic stiffness, which represents the 

unloading/reloading path) drawn through the permanent deflection.  This intersection 

represents the maximum resistance that would be achieved by the damaged wall if it were 

to be subjected to another out-of-plane load.  Note that, for these comparisons, Wall #2 

will use the resistance function from Case 2A and Wall #3 will use the resistance 

function from Case 3A. 

6.6. Post-Blast State of the Test Structure 

The internal infill wall (Wall #1) was extensively damaged and had a permanent 

deflection of approximately 25 cm (10 inches).  Field observations indicated the wall was 

being held together by the frictional interlock between broken wall regions.  The wall 

appeared unstable and probably would have collapsed under the action of a small lateral 

load.  The extreme deflection (greater than its thickness) of the infill wall meant it 

attained its collapse limit-state for all practical purposes.  The two load bearing walls, 

Walls #2 and #3, had permanent deflections equal to 8.9 cm (3.5 in) and 6.4 cm (2.5 in), 

respectively.  Therefore, these walls attained a relatively low percentage of their collapse 

limit-states according to the deflection criterion.  According to the resistance criterion, 

however, the walls had only a small fraction of their maximum resistance remaining, and 
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were thus vulnerable to further out-of-plane loading.  Table 6.8 uses Eqs. (6.24) and 

(6.25) to quantify the states of Walls #2 and #3 based on experimental deflections.  Walls 

#2 and #3 were 29%-79% and 21%-83% of their collapse limit-states, respectively, 

depending on the choice of collapse criterion. 

 
TABLE 6.8.  State of Walls #2 and #3 as a percentage of the collapse limit-state based on 

analytical deflections. 
Criterion Wall #2 Wall #3 

Deflection 29% 21% 
Resistance 79% 83% 

Note:  Wall #2 used case 2A resistance function, Wall #3 used case 3A 
resistance function. 

 
 

The deflection criterion applied to Wall #3, the critical load-bearing wall of this 

building, indicates that the building attained approximately one fifth of its collapse limit-

state.  While the load-bearing walls continued to support the structure above and their 

deflections were not as extreme as the infill wall’s, field observations indicated that the 

damage to these walls was extensive enough to require significant repairs before going 

back into service or total demolition of the building.  Further, the application of the 

resistance criterion supports this conclusion, since the building attained 83% of its 

collapse limit-state as far as subsequent out-of-plane loading is concerned. 

 

 

 

 

 

 



 

 

 

CHAPTER 7:   FE MODELS OF THE SHOT B BLAST CHAMBER WALLS 
 

Chapter 6 investigated the ability of the ESDOF method to predict the permanent 

deflections of the Shot B blast chamber walls (Walls #1, #2, and #3).  The ESDOF 

method is frequently utilized for blast resistant structural design and it is reassuring to see 

that it was able to predict deflections with reasonable accuracy.  It is of interest to study 

whether or not more complex simulations using FEA would predict deflections and 

damage patterns with greater accuracy.  It is difficult to foresee an FE model being used 

in practice for the blast-resistant design of a URM structure due to the cost of the man-

hours the analysis would require; however development of such a model might prove to 

be tremendously useful for other applications.  An FE model which predicts the 

deformations and damage patterns observed in this experimental program could be used 

for detailed analyses, used to assist in retrofit designs of URM, and applied to other types 

of loading (for example seismic). 

This chapter will investigate the ability of a commercial finite element software, 

LS-DYNA (LSTC, Livermore, CA), to simulate the response of the blast loaded URM 

walls of the Shot B blast chamber.  LS-DYNA is a general purpose, transient, explicit and 

implicit, nonlinear, parallelized finite element software with a wide array of capabilities.  

The software has been successfully used to simulate phenomena including airblast, 

shockwaves, nonlinear stress/strain, large deformation, and contact problems among 

others.  This chapter will describe the FEA modeling performed for this investigation 
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including details of the meshing, element types, boundary conditions, loading, contact 

considerations, constitutive properties, and simulation results. 

7.1. Simple Models 

Simpler FEA models were constructed prior to development of the full-scale wall 

models in order to study the various available contact algorithms and basic model 

parameters.  Single integration point, constant stress elements were used in all of the 

simplified analyses reported in this section.  Davidson and Sudame (2006) found that this 

element was a better choice than the fully integrated solid element because it yielded 

similar results at greatly reduced computational cost (i.e. faster run times).  Brick material 

was modeled with a linear and elastic constitutive law; very little crushing was expected 

(and observed) in the blast chamber walls and the use of a non-linear material model 

would have added significant complexity to the model for little to no gain.  The solid 

elements had an elastic modulus of 4233 MPa (614 ksi) and a density of 1842 kg/m3 (115 

pcf); these values were derived from laboratory tests of samples taken from blast 

chamber walls.  Note that an additional 400 kg/m2 (25 psf) aerial mass was applied to the 

walls to represent the interior tile veneer. 

Contact entities were used to simulate the tensile and shear failure of masonry 

assemblages.  This approach is very similar to that adopted by Burnett et al. (2007) in 

their FEA models.  Only contacts which possess a “tiebreak” feature were considered.  

Tiebreaks permit a failure stress or force to be specified for the contact to represent the 

tensile and/or shear capacity of the URM assemblage. The contact option 

TIEBREAK_NODE_TO_NODE was not considered because once a tiebreak has failed, 

the contact is deactivated entirely.  This is unacceptable because the contact must permit 
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compressive loads and sliding friction after failure in order to simulate cracked URM.  

The best remaining contact options available were 

TIEBREAK_NODES_TO_SURFACE, TIEBREAK_SURFACE_TO_SURFACE, and 

AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK.  All three contacts are similar, 

with the exception that the nodes to surface contact specifies failure in terms of nodal 

forces while surface to surface contacts define failure in terms of stress on the contact 

surfaces.  Using a stress based definition yields desirable simplifications because not all 

nodes in a model have the same tributary area.  Thus different contacts would have 

different effective failure forces (on a per node basis); this would make it very difficult to 

manually write the contact cards accurately.  Also, the nodes to surface contact would 

only check for penetration of the slave nodes through the master surface.  This is less 

robust than a surface to surface contact in which overall segment to segment penetration 

is checked.  For this investigation, segmental penetration is important because once two 

bricks slide relative to one another, slave nodes might be located outside the boundaries 

of the master surface; a nodes to surface contact might therefore allow surfaces to 

penetrate one another. 

The two surface to surface contacts were tested using a simplified model like that 

shown in Figure 7.1.  Trial simulations found that the non-automatic contact produced 

unexpected segment penetrations that could not be explained.  Regardless of which 

supplemental options were utilized (e.g. SOFT=2), the penetrations could not be 

eliminated.  The automatic contact option did not produce these unusual penetrations and 

thus AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK was used to simulate the 

tensile and shear capacities of the blast chamber walls.  The only feature of the contact 
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which was “automatic” was the orientation of surface normals.  Otherwise, the contact 

definition was essentially identical to the non-automatic definition.  This contact 

algorithm has several options for defining failure.  Trial and error showed that Option 2 

worked well and determines failure in accordance with: 

ቂ ఙ೙
ேி௅ௌ

ቃ
ଶ
൅ ቂ ఙೞ

ௌி௅ௌ
ቃ
ଶ
൒ 1      (7.1) 

where σn is the computed normal tensile stress, NFLS the user specified normal tensile 

failure stress, σs the computed shear stress, and SFLS the user specified shear failure 

stress.  When the left-hand side of the equation is greater than or equal to 1.0, the shear 

and tensile strengths are deactivated, but the contact continues to support compressive 

loads and sliding friction.   

 

 
FIGURE 7.1:  Simply-supported, point loaded wall strip. 

 



231 

 

 

A simple four element model was constructed to verify that the selected contact 

type functioned as expected.  Figure 7.2 shows the model used for these tests. 

 

 
FIGURE 7.2:  Four element model used to test normal and shear tiebreak features. 

  

In Figure 7.2, the base (darkest shaded) element was fixed against all translation.  The 

remaining three elements were attached to the base element using only the 

AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK contact.  A gradually ramped 

normal tensile force was applied to each of the three elements in turn.  The simulation 

found that the contacts indeed failed at the specified normal tensile failure stress (NFLS).  

A similar simulation was conducted in shear and that test confirmed the tiebreak failed at 

the user specified shear stress (SFLS).   

This simple model also permitted tests which identified the method best suited to 

defining contacts.  At first, the automatic part-based contact search feature was tested  

(each of the four elements was given a different part number).  Using this code feature, 

All Nodes 
of This 
Element 
Fixed 
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LS-DYNA automatically identifies contacts by detecting parts which have segments 

which are initially in contact.  This feature simplifies the input deck to a single contact 

definition card for the entire model.  Unfortunately, a part-based search created 

extraneous contacts for this model’s cubic parts.  It appears as though the automatic 

search algorithm generated contacts for segments which are at 90 degrees to one another.  

This occurs because segments at 90 degrees are close enough to touch and appear to be in 

contact as a result of master surface enlargement during the automated LS-DYNA search.   

It was therefore necessary to use a more cumbersome manual specification of every 

contact.  This means that for all the models that follow, each contact is defined by two 

segment (individual element face) definition cards and one contact definition card, which 

references the segment cards.   

 The four element model shown in Figure 7.2 was only useful for testing contact 

behavior when forces were perfectly normal or perfectly parallel to the plane of contact.  

This will not usually be the case in the full-scale models.  The specification of failure 

stress is only straightforward when the applied stress is entirely normal or parallel and 

uniform across the contact surface.  LS-DYNA documentation indicates that when a user 

specifies a failure stress, that stress is apportioned as a force to the contact’s nodes based 

on their tributary areas.  Thus the failure stress must be specified in a manner that 

accounts for how stress will be calculated and apportioned during a simulation.  The 

limited available documentation did not clearly explain how the entire computation 

would be performed and thus it was necessary to determine the required value of NFLS 

by trial and error.  This was done using the pin-roller supported, three point bending 

model shown schematically in Figure 7.1.   
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The model was 30.5 cm (12.0 in) thick, 365.8 cm (144.0  in ) tall, and 30.5 (12.0 

in) wide.  The model was meshed with solid elements with a 10.16 cm (4 in) edge length.  

The location of a crack was predetermined by inclusion of a tiebreak contact definition at 

midspan.  Gravity was not included in the model.  The midspan point load was slowly 

increased until the contacts failed in tension.  The specified value of NFLS was adjusted 

until the FE model failed at a load of 4448 N (1000 lbs).  This failure load was calculated 

from beam theory using a failure stress of 0.862 MPa (125 psi) in flexural tension.  The 

shear failure stress was specified as 0.689 MPa (100 psi) based on guidance contained in 

Drysdale et al. (1999) derived from laboratory tests of clay masonry; this shear failure 

stress is less than would be permitted for strength design by the MSJC code (MSJC, 

2008).  From this model, the required value of NFLS was found to be 0.643 MPa (93.2 

psi), or a 25.4% reduction. 

After calibrating the NFLS, another FEA model was constructed which was 

similar to the three point bending model.  The model was intended to simulate a unit 

width of Wall #3 from the Shot B blast chamber.  It was of interest to see how dynamic 

deflections predicted by LS-DYNA compared to those predicted by SBEDS for this 

simple case.  The FEA model was 30.5 cm (12 in) wide, 30.5 cm (12 in) thick, and 365.8 

cm (144 in) tall.  Figure 7.3 schematically shows the dimensions, loading, boundary 

conditions, and assumed crack location for the LS-DYNA model; these conditions are 

essentially identical to those assumed in SBEDS for the brittle flexural response 

resistance function described in Section 6.1.  The model was meshed with cubic solid 

elements with a 10.16 cm (4 in) edge length.  At its base, the model was supported in the 

vertical direction using a rigid wall boundary condition to provide vertical support; a 
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rigid wall boundary effectively establishes a contact plane through which no nodes may 

pass.   A pin boundary condition was applied at the bottom and a roller boundary 

condition at the top of the model to provide the out-of-plane restraint.  Gravity was 

applied using dynamic relaxation.  The crack location was predefined at midspan using 

contacts with an NFLS equal to 0.643 MPa (93.2 psi) and SFLS equal to 0.689 MPa (100 

psi).   Figure 7.4 shows the finite element model at rest and during out-of-plane response 

after the mid-height contacts have failed in flexural tension. 

 

 
FIGURE 7.3:  Illustration showing LS-DYNA model for simplified comparisons to 

SBEDS.   
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FIGURE 7.4:  View of LS-DYNA model showing model at rest and after formation of 
mid-height crack. Loading was applied to the –Y face in the +Y direction.  Gravity was 
applied in the –Z direction.  The horizontal line at the bottom of the wall represents the 

rigid wall boundary condition. 
 

 For all comparisons, an idealized triangular blast wave was applied as a uniform 

surface pressure.  The load was assumed to have a near instantaneous rise time and a 2 

ms duration.  Table 7.1 shows this as normalized ordered pairs, where 1.0 represents the 

normalized peak reflected pressure.  Note that both LS-DYNA and SBEDS interpolate 
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between these ordered pairs so it is unnecessary to define more points.  The loading was 

applied starting at t=100 ms in order to verify that the model had stabilized after gravity 

initialization. 

 
TABLE 7.1:  Normalized time history profile for simplified comparisons. 

Time (ms) Peak Reflected  
Pressure (normalized) 

100.0 0 
100.1 1.0 
102.1 0.0 
∞ 0.0 

 

Chapter 6 showed that the results of an ESDOF simulation could be very sensitive 

to the magnitude of applied damping.  It was therefore of interest to study the effect of 

damping on LS-DYNA simulations.  For the simplified comparisons that follow, 2% of 

critical damping was used in all SBEDS analyses.  For the LS-DYNA analyses, both 2% 

and zero damping were used.  In order to compute the damping coefficient in LS-DYNA, 

it was first necessary to determine the model’s elastic natural frequency.    This was 

accomplished by observing the model’s natural period of vibration during a simulated 

free vibration test.  SBEDS predicted the model’s elastic natural frequency to be 14.3 Hz 

while LS-DYNA predicted a natural frequency of 17.2 Hz.  There are a number of factors 

which could contribute to this apparent difference of stiffness, including LS-DYNA’s 

rigid wall boundary condition and the hourglass control algorithms; also, FE formulations 

are commonly known to be stiffer than the structures they model.  Using the natural 

frequency, the nodal damping coefficient in LS-DYNA was determined by 

ܥ  ൌ  ݉       (7.2)	ሺ2߱ሻߞ
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where C is the damping coefficient which is computed as the damping ratio ζ		multiplied 

by twice the elastic natural frequency ω (in radians per second) and the nodal mass m.  

Note that the user only supplies the value ߞሺ2߱ሻ	 in LS-DYNA using the 

DAMPING_GLOBAL card; the software automatically multiplies this value by 

appropriate nodal masses.  During the elastic phase of response, both SBEDS and LS-

DYNA utilized 2% of critical damping; after cracking, however, SBEDS reduces 

damping by a factor of 100 while LS-DYNA continues to use the 2% value.   

Tables 7.2 through 7.4 compare the out-of-plane wall deflections predicted by LS-

DYNA to those predicted by SBEDS using 2% viscous damping.  Then, Tables 7.5 

through 7.7 repeat the same simulations, except damping in the LS-DYNA model has 

been reduced to zero.  In all tables, percent differences are computed relative to the 

values predicted by SBEDS, where a positive difference indicates LS-DYNA predicted a 

greater deflection/time/reaction than SBEDS. 

 
TABLE 7.2:  Comparison of peak deflections as predicted by LS-DYNA and SBEDS; 

2% of critical damping. 

Load Case 
Peak Reflected 

Pressure 
kPa (psi) 

Reflected 
Impulse 
kPa ms 
(psi ms) 

LS-DYNA 
Deflection 

cm (in) 

SBEDS 
Deflection 

cm (in) 

Percent 
Difference 

1* 41 (6.0) 43 (6.3) 0.08 (0.03) 0.08 (0.03) 0.0 
2* 82.7 (12.0) 86.9 (12.6) 0.18 (0.07) 0.18 (0.07) 0.0 
3 165 (24.0) 174 (25.2) 1.0 (0.40) 0.71 (0.28) 43 
4 331 (48.0) 347 (50.4) 4.17 (1.64) 3.10 (1.22) 34 
5 496 (72.0) 521 (75.6) 9.35 (3.68) 6.68 (2.63) 40 
6 827.4 (120.0) 868.7 (126.0) 23.1 (9.10) 16.6 (6.55) 39 

Note:  *Wall remains elastic.  
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TABLE 7.3:  Comparison of time to peak deflection predicted by LS-DYNA and 
SBEDS; 2% of critical damping. 

Load Case 
LS-DYNA 

Time to Peak 
Deflection (ms) 

SBEDS 
Time to Peak 

Deflection (ms) 

Percent 
Difference 

1* 17 18 5.6 
2* 18 18 0.0 
3 65 51 27 
4 133 108 23.1 
5 198 162 22.2 
6 443 289 53.3 

Note:  *Wall remains elastic.  
 
 
TABLE 7.4:  Peak dynamic reactions predicted by LS-DYNA and SBEDS; 2% of critical 

damping. 

Load Case 
LS-DYNA** 
Peak Dynamic 

Reaction kN (lb) 

SBEDS 
Peak Dynamic 

Reaction kN (lb) 

Percent 
Difference 

1* 5.427 (1220) 5.075 (1141) 6.5 
2* 8.007 (1800) 10.15 (2281) -21.1 
3 17.81 (4004) 20.29 (4562) -12.2 
4 38.47 (8648) 40.20 (9037) -4.3 
5 58.676 (13191) 60.878 (13686) -3.6 
6 95.103 (21380) 98.924 (22239) -3.9 

Notes:  *Wall remains elastic. **Peak LS-DYNA reaction is from 
summation of nodal reaction forces at bottom of wall. 
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TABLE 7.5:  Comparison of peak deflections predicted by LS-DYNA and SBEDS; 
SBEDS using 2% and LS-DYNA 0% of critical damping. 

Load Case 
Peak Reflected 

Pressure 
kPa (psi) 

Reflected 
Impulse 

kPa ms (psi 
ms) 

LS-DYNA 
Deflection 

cm (in) 

SBEDS 
Deflection 

cm (in) 

Percent 
Difference 

1* 41 (6.0) 43 (6.3) 0.08 (0.03) 0.08 (0.03) 0.0 
2* 82.7 (12.0) 86.9 (12.6) 0.18 (0.07) 0.18 (0.07) 0.0 
3 165 (24.0) 174 (25.2) 1.3 (0.50) 0.71 (0.28) 79 
4 331 (48.0) 347 (50.4) 6.32 (2.49) 3.10 (1.22) 104 
5 496 (72.0) 521 (75.6) 19.9 (7.82) 6.68 (2.63) 197 
6 827.4 (120.0) 868.7 (126.0) FAILURE** 16.6 (6.55) N/A 

Notes: *Wall remains elastic. **Failure means max wall deflection greater than wall 
thickness.  
 
 

TABLE 7.6:  Comparison of time to peak deflection predicted by LS-DYNA and 
SBEDS; SBEDS using 2% and LS-DYNA 0% of critical damping. 

Load Case 
LS-DYNA 

Time to Peak 
Deflection (ms) 

SBEDS 
Time to Peak 

Deflection (ms) 

Percent 
Difference 

1* 17 18 5.6 
2* 18 18 0.0 
3 79 51 55 
4 190 108 75.9 
5 442 162 173 
6 N/A 289 N/A 

Note: *Wall remains elastic.  
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TABLE 7.7:  Peak dynamic reactions predicted by LS-DYNA and SBEDS; SBEDS using 
2% and LS-DYNA 0% of critical damping. 

Load Case 
LS-DYNA** 
Peak Dynamic 

Reaction kN (lb) 

SBEDS 
Peak Dynamic 

Reaction kN (lb) 

Percent 
Difference 

1* 5.716 (1285) 5.075 (1141) 12.6 
2* 8.514 (1914) 10.15 (2281) -16.1 
3 17.84 (4011) 20.29 (4562) -12.1 
4 38.53 (8662) 40.20 (9037) -4.1 
5 58.774 (13213) 60.878 (13686) -3.5 
6 95.263 (21416) 98.924 (22239) -3.7 

Notes:  *Wall remains elastic. **Peak LS-DYNA reaction is from 
summation of nodal reaction forces at bottom of wall. 

 

 In the case of both 2% and 0% critical damping the tables show that, once the 

models have cracked at midheight, LS-DYNA predicted deflections that are 50 to 100% 

larger than those predicted by SBEDS.  This difference can be explained by considering 

Figure 7.5 which shows the contact force at the midheight crack for Load Case 5 from 

Table 7.2.   Until time t=0.1 seconds, the midheight force is constant and equal to the 

weight of the upper wall half.  When the blast load is applied, the upper wall segment is 

pushed upward as the two segments rock, causing the wall halves to lose contact; this 

corresponds to the first region on the plot where there is a contact force of zero.  The 

subsequent spikes and zero force regions of the plot show that the upper wall half in fact 

“bounces” off the bottom several times during the wall’s response.  Recalling from 

Chapter 6 that URM’s post-elastic out-of-plane resistance is predicated on axial force 

alone, the discrepancy between LS-DYNA and SBEDS begins to make sense.  If there is 

no axial force on the lower wall segment, then there is effectively no out-of-plane 

resistance.  SBEDS is simply incapable of simulating this vertical deflection of one wall 

half relative to another.   
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FIGURE 7.5:  Contact force at mid-height crack as a function of time.  From LS-DYNA 

simulation for Load Case 5 from Table 7.2. 
 

Although this phenomenon makes sense with regard to the LS-DYNA model, it is 

likely less pronounced in an actual structure.  In the LS-DYNA model the materials are 

perfectly elastic, but a real structure would likely see highly localized crushing of mortar 

at a crack.  In addition, a real structure has more complex boundary conditions which 

would likely inhibit vertical movement; both of these factors would act to mitigate the 

bouncing shown in Figure 7.5.  It would be interesting to experimentally measure this 

phenomenon and find out what, if any, effect the dynamic vertical interaction of wall 

segments might have on the out-of-plane response of URM walls.  Based on this 

comparison, it is tempting to label SBEDS as somewhat unconservative relative to LS-

DYNA.  Examining validation data, however, USACE (2008) shows that SBEDS 

predictions are normally conservative when compared to experimental data for URM 

walls.  This means that, in fact, LS-DYNA’s predictions might be overly-conservative. 
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 Tables 7.3 and 7.6 compare the LS-DYNA and SBEDS predictions of the time 

required to achieve maximum deflection.  Given the difference in predicted peak 

deflections, it is not surprising that the predicted time to peak deflection also differed 

between SBEDS and LS-DYNA by a similar degree.  Tables 7.4 and 7.7 compare the 

maximum reactions predicted by LS-DYNA to those predicted by SBEDS.  In SBEDS, 

the maximum reaction forces are computed as a summation of the applied loading and the 

computed element resistance, both multiplied by ESDOF transformation factors.  In LS-

DYNA, the peak reactions were computed by summing the nodal reaction forces at the 

pin at the bottom of the model.  It is interesting to note that the ESDOF computed 

dynamic reactions are normally conservative for cases in which the wall cracks, but 

slightly unconservative for fully elastic simulations.  Studying the force-time history 

produced by LS-DYNA it appears that, for elastic simulations, there are several modes 

(with frequencies higher than the fundamental mode) involved in wall response and their 

combined effect tended to cause FEA reactions to be higher than the ESDOF reactions.   

Regardless, it appears that the FEA and ESDOF predicted reaction forces are generally in 

close agreement. 

 Comparing Tables 7.2 and 7.5 shows that damping can considerably change the 

results of the LS-DYNA simulations.  This same effect was observed in the SBEDS 

results from Chapter 6.  As previously mentioned, SBEDS reduces the damping 

coefficient by a factor of 100 once the model is no longer elastic.  LS-DYNA does have 

the ability to specify damping as a function of time, but this is difficult to use because the 

moment of cracking depends on the damping specified.   It is easier to simply specify a 

constant damping coefficient.  This is problematic because the model’s natural frequency 
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decreases significantly after cracking, thus also changing what would be the critical 

damping coefficient.  Compare, for example, Load Cases 1 and 4 from Table 7.3.  The 

elastic model had a natural period of 58 milliseconds (frequency of 15 Hz) while the 

cracked structure had a natural period of approximately 532 milliseconds (frequency of 

1.88 Hz).  Specifying 2% of critical damping in LS-DYNA, Load Case 1 would require a 

damping value of 3.8 rad/s while Load Case 4 would require a damping value of 0.47 

rad/s, a change of nearly a factor of 8. Further evidence of the effect of damping on post-

elastic response is shown in Figure 7.6, which compares simulation total energy to 

damping energy as a function of time (for Load Case 5 from Table 7.2).  The figure 

shows that after cracking (which occurs shortly after t=0.1 seconds) damping energy 

quickly approaches total energy.  This result implies that most of the model’s kinetic 

energy is quickly dissipated by damping; this should not be the case for a structure with 

2% viscous damping. 

 

 
FIGURE 7.6:  Comparison of total energy to damping energy for 2% of critical damping. 

LS-DYNA results from Load Case 5, Table 7.2. 
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This apparent sensitivity to damping is contrary to what Davidson and Sudame 

(2004) found in their study of fiber reinforced polymer (FRP) strengthened CMU walls.  

They found that specifying 2% or 5% of critical damping yielded essentially the same 

out-of-plane deflections.  It is important to note, however, that because their walls had 

FRP laminates, they were stiffer after cracking than a plain URM wall would have been.  

Thus the change in natural frequency between the uncracked and cracked states was 

small enough that the damping coefficient and therefore the results were only minimally 

affected.  For this investigation, however, the damping must be carefully chosen to 

prevent erroneous energy dissipation after formation of a crack.   

The single integration point element used in the preceding simulations requires a 

special algorithm to prevent excessive hourglass energy.  When hourglass energy 

escalates significantly, the model can become unstable or parts attached by contacts can 

spuriously break apart.    Davidson and Sudame (2004) reported that the hourglass energy 

should be less than 10% of the internal energy in the model.  Figures 7.7 though 7.9 show 

plots of internal energy and hourglass energy for Load Case 1 (with 2% damping) using 

none and two different hourglass control schemes.  Clearly, the Type 4 hourglass control 

provided the best results, yielding an hourglass energy well below 10% of the model’s 

internal energy. 
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FIGURE 7.7:  Internal energy compared to hourglass energy with no hourglass control. 

 
 

 
FIGURE 7.8:  Internal energy compared to hourglass energy with Type 1 hourglass 

control. 
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FIGURE 7.9:  Internal energy compared to hourglass energy with Type 4 hourglass 

control. 
 

7.2. Full-Scale Models 

 Using the information learned from the simplified investigations, two FE models 

were developed for the Shot B blast chamber walls.  One model contained both Wall #2 

and Wall #3 because they connected at a common corner; the other model contained only 

Wall #1 because it was structurally independent from the other walls.  This was 

advantageous because the model of Wall #1 ran quickly (approximately 20 minutes using 

fifteen nodes of the University cluster) and thus permitted several simulations to be 

performed to facilitate choosing the final parameter sets for use in both models.   

7.2.1. Element Size and Type 

Initially, an attempt was made to use 5.08 cm (2 in) cubic solid elements to model 

the walls.  Unfortunately, this led to the creation of more contacts in the model of Walls 

#2 and #3 than LS-DYNA would allow; the model would have required approximately 

120,000 contacts, which is more than the internal limit of UNC Charlotte’s current 
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version of LS-DYNA.  The limitation in software version 971 was confirmed in personal 

communication with LS-DYNA technical support.  Therefore, the models were meshed 

with 10.16 cm (4 in) cubic elements to allow all the necessary contact definitions to be 

included; this reduced the number of contacts to 23,864.  Unfortunately, this larger 

element size created problems controlling hourglass energy for the Type 1 solid element.  

All of the previously discussed hourglass control schemes were investigated, but the 

hourglass energy could never be adequately limited to 10% of the internal energy.  In 

order to resolve this issue, a different element formulation was utilized.  For the full-scale 

models that follow, all solid elements are Type 2, the selectively reduced fully integrated 

solid.   

Since bricks were modeled as 10.16 cm (4in) thick, 10.16 cm (4 in) wide and 

20.32 cm (8 in) long, two of these Type 2 elements were joined together to form each 

brick; this is double the thickness of standard bricks which are nominally 5.08 cm (2 in) 

thick.  The bricks were modeled as 10.16 cm (4 in) thick primarily to reduce the number 

of contact entities, but this also created a favorable 1:1 element aspect ratio.  Each brick 

was given a separate part number. 

7.2.2. Calibration of Failure Stress 

The simplified models tested in Section 7.1 showed that trial-and-error calibration 

was required to determine the correct tensile failure stress (NFLS).  These models 

examined bending perpendicular to the bed joints; this is representative of how Wall #3 

was expected to behave.  Walls #1 and #2, however, experienced two-way bending, 

meaning that bending would also occur parallel to the bed joints.  It was therefore of 

interest to also calibrate the tensile (normal) failure stress using a model with bending 
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parallel to the bed joints.  Figure 7.10 shows the model used for Wall #1 before (at 

bottom) and after (at top) formation of mid-span tensile cracks.  The model was pin-roller 

supported and had a uniform load applied along its span.  An identical model was 

constructed for Wall #2, but with three bricks through the wall’s thickness. 

 

 

 
FIGURE 7.10:  LS-DYNA model of a strip of Wall #1 with bending parallel to the bed 

joints.  Initial unloaded state at bottom and immediately after tensile failure at top.   
 

 Tests with the model yielded two surprises.  First, the shear failure stress must be 

set appreciably lower than the tensile failure stress.  Otherwise, even after tensile failure, 

the shear capacity between bricks will continue to sustain load.  Based on parametric 

studies, it appears as though specifying the shear failure stress (SFLS) to be less than 

75% of the tensile failure stress (NFLS) will yield the correct failure load.  The failure 

stresses employed in the full-scale simulations require one additional piece of 

information, – the dynamic increase factor - which will be described in Section 7.2.4; 

thus the calibrated failure stresses will be presented there. 

The second and more surprising discovery was that the user-specified contact 

penalty force scale factor controls the bending stiffness of the model.  This scale factor is 

specified in the CONTROL_CONTACT card.  The LS-DYNA user manual suggests a 

value of 0.10 and tests showed that this value leads to a bending stiffness approximately 
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half of what traditional beam theory predicts.    Attempts to use a higher value (0.3 for 

example) did increase the bending stiffness, but also created problems with shooting 

nodes (large, non-physical deflections of individual nodes) and unexpected node 

penetrations.  The default recommended value of 0.10 was therefore used in the 

simulations that follow.  Methods to accurately represent bending stiffness while 

avoiding numerical problems warrant further investigation; this is likely something which 

must be investigated by LS-DYNA’s creators as it might involve modifications to the 

contact algorithms. 

7.2.3. Failure Stresses Including the Dynamic Increase Factor 

 For many materials, the failure stress (strength) is directly proportional to the rate 

at which the material is strained.  Higher strain rates produce higher apparent failure 

stresses.  Masonry under compressive or tensile loading experiences this phenomenon.  

One-way engineers account for this is by using a multiplier called the dynamic increase 

factor (DIF).  Using the results of several SBEDS simulations from Section 7.1, it 

appears as though a strain rate of 1 s-1 is a reasonable estimate of the rate experienced by 

the blast chamber walls.  Wei and Hao (2009) report that for a strain rate of 1 s-1, the DIF 

for masonry under tension can be estimated as 1.4.  Burnett et al. (2007) utilized a split 

Hopkinson bar apparatus and experimentally found that a mortar joint in brick masonry 

could have a DIF of up to 3.1.  Given this wide range and a sparsity of experimental data 

for URM (and no such tests performed on the masonry in this investigation), the 

numerical analyses reported here will utilize a mid-range value of the DIF, where DIF = 

2.0.  Note that this DIF makes the specified tensile failure stress consistent with the 

maximum dynamic tensile stress recommended for analysis by UFC 3-340-02, which is 



250 

 

 

1.72 MPa (250 psi); USACE found that this value created the best agreement between 

analyses using SBEDS and experiments.  Based on the NFLS and SFLS calibration trials 

from Sections 7.1 and 7.2.2 and a DIF of 2.0, the tensile and shear failure stresses for 

each wall are summarized in Table 7.8. 

 
TABLE 7.8:  Failure stresses utilized in LS-DYNA models. 
Wall Failure Stress Type MPa (psi) 

Wall #1 
Tensile for Bending 0.9367 (135.9) 

Tensile for through-thickness spall 1.724 (250.0) 
Shear 0.6895 (100.0) 

Wall #2 
Tensile for Bending 1.147 (166.4) 

Tensile for through-thickness spall 1.724 (250.0) 
Shear 0.6895 (100.0) 

Wall #3 
Tensile for Bending 1.286 (186.5) 

Tensile for through-thickness spall 1.724 (250.0) 
Shear 0.6895 (100.0) 

 

 Table 7.8 clearly shows that the LS-DYNA contact cards cannot be written using 

a single definition.  In order to correctly write the contact cards, a Matlab program was 

written (included as Script D.10 in Appendix D) for convenience.  The program takes the 

node and element definition cards from the FE model input files and uses them to 

compute the location of every contact in the model.  The program then writes the correct 

segment and contact definition cards with the failure stress based on the location and 

orientation of the contact.  Given that the smallest model (Wall #1) had 5581 contacts, 

manual specification would have been impractical. 

7.2.4. Inclusion of Fracture Energy 

Although the simplified comparisons successfully utilized the failure option 

described by Eq. (7.1), use of this option in the full-scale simulations led to excessive 

deformations.  A similar observation was reported by Gilbert et al. (1998) who modeled 
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vehicle impacts on masonry parapet walls.  The researchers noticed that although the 

damage pattern was qualitatively similar, use of a simple tiebreak failure model (like 

Type 2) yielded deflections larger than those observed in experiments.  The authors went 

on to explain that it was necessary to include fracture energy in their FE model in order to 

obtain quantitatively accurate deformations.  Note that inclusion of fracture energy in the 

SBEDS comparisons from Section 7.1 would not have been appropriate as SBEDS does 

not account for fracture energy either. 

For this investigation, a failure model including fracture energy was available by 

switching from failure Option 2 to Option 7. Option 7, referred to as the DYCOSS model 

(Dynamic Behavior of Composite Ship Structures), computes the onset of cracking 

according to 

1ൌቀ୫ୟ୶
ሺఙ೙,଴ሻ

ேி௅ௌ
ቁ
ଶ
൅ ቀ ఙೞ

ௌி௅ௌሺଵିୱ୧୬ሺఝሻ୫୧୬ሺ଴,ఙ೙ሻሻ
ቁ
ଶ
        (7.3) 

where σn is the applied normal stress, NFLS is the specified normal failure stress, σs is the 

applied shear stress, SFLS the specified shear failure stress, and ߮ is the friction angle.  

Option 7 failure is thus similar to Option 2, however includes shear strengthening with 

increasing compressive stress.  This compression enhanced shear capacity can be 

compared to a Mohr-Coulomb failure envelope in which the shear capacity of a material 

is computed as 

ܵܮܨܵ ൌ maxሺߪ௡, 0ሻ sinሺ߮ሻ ൅ ܿ      (7.4) 

where SFLS is the shear failure stress, σn is the normal stress (compressive), ߮ is the 

friction angle, and c is the cohesion (i.e. the shear capacity in the absence of normal 

stress).  Interestingly, the shear failure stress component of both the DYCOSS and Mohr-
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Coulomb models may be made equal through selection of an appropriate friction angle	߮.  

For example, using ߮ of 0.4 degrees in Eq. (7.3) yields a similar shear capacity as using 

߮ ൌ 36° in Eq. (7.4).  Note that although the DYCOSS model was not intended for 

masonry, it was found to be the best option available in LS-DYNA for this investigation.  

Failure Option 5 was investigated as an alternate means of including fracture energy, but 

produced numerical problems when tested; use of this option was therefore abandoned. 

In addition to the normal and shear failure stresses, the DYCOSS failure model 

requires the user to specify a Mode I and Mode II fracture energy.  Very limited 

information regarding masonry fracture parameters was found in the literature.  Table 7.9 

summarizes the three sets of available data and shows the source reporting this data.  It 

should be noted that fracture parameters for masonry are likely dependent on a number of 

factors including: mortar type, brick type, surface preparation, tensile and shear strengths 

of the masonry assembly, etc.  Also, the fracture energies should be somewhat correlated 

to the failure stresses of the masonry specimens.  As shear or tensile failure stress 

increases, so too does the fracture energy (in most cases); it is unclear how this statement 

applies to stress increases resulting from high strain rate loading.  Given all of this 

variability and uncertainty, the parameters in Table 7.9 can serve only as a rough estimate 

for the masonry in this investigation. 

 

 

 

 

 



253 

 

 

TABLE 7.9:  Summary of brick masonry fracture parameters. 

Source 
Dilatancy 

Angle (deg) 
Friction 

Angle (deg) 
Mode I ERR 
N/mm (lb/in) 

Mode II ERR 
N/mm (lb/in) 

Burnett et al.  
(2007) 

7.2 Not Listed 0.01 (0.06) 0.059 (0.337) 

Gilbert et al.  
(1998) 

17.7 32.6 0.01 (0.06) 0.05 (0.29) 

Proft et al.  
(2011) 

Not Listed 36.9 0.018 (0.103) 0.125 (0.714) 

 

Table 7.10 shows the fracture energy release rates (ERR) used in the LS-DYNA 

simulations; the values are based on the data from Gilbert et al. (1998).  This source was 

selected because the authors derived their energies from several different data sets which 

supported their final energy value.  Furthermore, the study went on to use the data in FE 

simulations of brick masonry which correlated well with experiments.  Therefore, the 

fracture energies as reported by Gilbert et al. (1998) were adopted, unmodified, to 

represent those of masonry in flexural tension.  For through-thickness tensile failure, the 

energies were magnified by a factor of 1.5; this corresponds to the ratio of the through 

thickness tensile failure stress to the average flexural tensile failure stress utilized in the 

input files.  This magnification is based on the hypothesis that the fracture energy should 

be approximately proportional to the failure stress (tensile or shear); thus if the tensile 

stress is reduced or increased relative to some baseline, so too should the fracture energy.  

Given the limited information regarding fracture energies of masonry, more study is 

warranted, both to experimentally determine the energies as well as how best to specify 

them in FE models.  Moreover, further study is warranted regarding whether or not 

fracture energy release rates should be scaled by the DIFs for dynamic analyses. 
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TABLE 7.10:  Fracture energies used in LS-DYNA simulations. 
Wall And  

Stress Type 
Tensile Strength 

kPa (psi) 
Shear Strength 

kPa (psi) 
Mode I ERR 
N/mm (lb/in) 

Mode II ERR 
N/mm (lb/in) 

Wall #1 
Flexural Tension 

0.9367 (135.9) 0.6895 (100.0) 0.01 (0.0571) 0.05 (0.2855) 

Wall #1 
Through Thickness 

1.724 (250.0) 0.6895 (100.0) 0.015 (0.0857) 0.075 (0.4283) 

Wall #2 
Flexural Tension 

1.147 (166.4) 0.6895 (100.0) 0.01 (0.0571) 0.05 (0.2855) 

Wall #2 
Through Thickness 

1.724 (250.0) 0.6895 (100.0) 0.015 (0.0857) 0.075 (0.4283) 

Wall #3 
Flexural Tension 

1.286 (186.5) 0.6895 (100.0) 0.01 (0.0571) 0.05 (0.2855) 

Wall #3 
Through Thickness 

1.724 (250.0) 0.6895 (100.0) 0.015 (0.0857) 0.075 (0.4283) 

 

7.2.5. Boundary Conditions 

Figure 7.11 shows the elevation view of the LS-DYNA model of Wall #1.  In the 

figure, individual bricks are represented by different shades of gray.  Rigid wall boundary 

conditions are visible above and below the wall (represented by the thin, dark lines).  At 

the bottom of the model, the rigid wall boundary condition is initially in contact with the 

wall and provides vertical support to resist the force of gravity; the bottom of the wall 

was also roller supported to prevent out-of-plane deflections along this edge.  At the top 

of Wall #1, a 1.52 cm (0.60 in) gap was included between the top of the wall and the rigid 

wall boundary condition above; this modeled the gap that existed between the top of the 

real wall and the beam above.  The vertical edges were restrained out-of-plane by roller 

supports on the non-blast side of the wall.  Figure 7.12 schematically shows the boundary 

conditions applied to the model.   



255 

 

 

 
FIGURE 7.11:  LS-DYNA model of Wall #1. 

 

 
FIGURE 7.12:  Schematic illustration of boundary conditions applied to Wall #1. 

 

Figure 7.13 shows the LS-DYNA model of Walls #2 and #3, looking outward 

from inside the blast chamber.  In the figure there are long assemblies of darkly shaded 
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elements at the top of each wall; they have increased densities to represent the weight of 

the walls above (i.e. from the second story and its roof).  Where these dense elements 

contact the tops of the walls, a contact with tensile and shear failure was defined to 

simulate the presumed initial fixity.  These dense elements were constrained to prevent 

rotation but permitted vertical deflections.  Figure 7.14 shows vertical sections of both 

walls to emphasize the out-of-plane restraints applied to the model.  Wall #3 had a roller 

at its top to prevent out-of-plane deflection; this was judged appropriate because the 

embedded steel framing likely provided some restraint.  Wall #2 did not have any such 

embed and was thus free to displace out-of-plane after failure of the contacts between the 

top of the wall and the dense elements representing the upper story mass. 

 

 
FIGURE 7.13:  View of the LS-DYNA model of Walls #2 and #3 viewed from inside the 

blast chamber. 
 

 

WALL #3

WALL #2
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FIGURE 7.14:  Sections through Walls #2 and #3 showing applied boundary conditions. 

 

The weight of the second floor slab was not included in the model because 

rudimentary calculations suggested that its weight was largely counteracted by the uplift 

resulting from blast pressures inside the blast chamber.  (The FE model was found to 

produce reasonably accurate results without including the weight of the ceiling/floor slab, 

suggesting that indeed this was a reasonable approximation.)  The large gray rectangle at 

the bottom of Figure 7.13 represents the rigid wall boundary condition which modeled 

the top of the foundation supporting Walls #2 and #3.  At the left-hand side of the figure, 

the nodes along the vertical edge of Wall #3 were constrained in-plane to simulate 

continuity with the adjacent in-plane wall segment (not modeled to reduce run times).  At 
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the right-hand side of the figure, the nodes of Wall #2 along the vertical edge (on the 

exterior face) were constrained against both out-of-plane and in-plane deflections.  The 

wall terminated in a joint in the masonry at this location which would have permitted 

contraction but resisted expansion; during the outbound blast response, the wall would 

have experienced expansion and therefore this restraint is a reasonable approximation of 

the real structure.  

7.2.6. Blast Loading 

Although the ConWep airblast algorithms are coded in LS-DYNA, the impulse 

profiles developed in Chapter 5 will be applied to the wall models to provide the most 

accurate representation of the loading experienced by the blast chamber walls.  As 

discussed in Chapter 5, Load Case 2 results (Table 5.18 and Figures 5.13-5.18) will be 

used for the loading in the finite element models.  It is recalled that this load case had the 

most realistic vertical distribution of impulse due to inclusion of the ceiling. 

In order to simplify application of the loading in the FE models, the face of each 

wall was divided into regions (rectangular boxes) of approximately equal size.  Each box 

was assigned a uniform blast pressure and associated time history, which was derived 

from the impulse distributions reported in Chapter 5 for Load Case 2.  Figures 7.15 

through 7.17 schematically show the loading boxes for Walls #1, #2, and #3, 

respectively.  Tables 7.11 through 7.13 contain the related peak reflected pressures and 

impulses applied to each box.  The tables also show the time of arrival for the pressure in 

each box as derived from the CTH simulation results.  Based on the data contained in 

Table 2.3, all waveforms were idealized as triangular pulses having 2.25 ms durations.  

Although it would have been more precise to use the pressure-time histories directly 
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computed by CTH in the Load Case 2 simulation, this would not have necessarily been 

more accurate.  This is because the CTH simulation did not include the presence of Wall 

#3 (to simulate venting) and thus the computed time history might not represent the real 

pressure-time histories any more accurately than the idealized waveforms do. 

 
FIGURE 7.15:  Loading boxes for Wall #1, outside of blast chamber looking in. 
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FIGURE 7.16:  Loading boxes for Wall #2, outside of blast chamber looking in. 

 

 
FIGURE 7.17:  Loading boxes for Wall #3, outside of blast chamber looking in. 

 

 

 



261 

 

 

TABLE 7.11:  Pressure time history data for loading boxes on Wall #1. 
Load 
Box 

Peak Reflected Pressure 
kPa (psi) 

Peak Reflected Impulse 
kPa ms (psi ms) 

Time of Arrival 
ms 

1 728.7 (105.7) 819.8 (118.9) 2.41 
2 696.8 (101.1) 783.9 (113.7) 1.72 
3 992.2 (143.9) 1116 (161.9) 1.03 
4 1230 (178.4) 1384 (200.7) 0.34 
5 648 (94.0) 728.8 (105.7) 3.46 
6 456 (66.1) 513 (74.4) 2.77 
7 382 (55.5) 430 (62.4) 2.08 
8 399 (57.9) 449 (65.1) 1.39 
9 1005 (145.8) 1131 (164.0) 4.51 
10 641 (93.0) 721.2 (104.6) 3.82 
11 496 (72.0) 559 (81.0) 3.13 
12 550 (79.8) 619 (89.8) 2.44 

 

TABLE 7.12:  Pressure time history data for loading boxes on Wall #2. 
Load 
Box 

Peak Reflected Pressure 
kPa (psi) 

Peak Reflected Impulse 
kPa ms (psi ms) 

Time of Arrival 
ms 

1 1014 (147.0) 1140 (165.4) 3.808 
2 817.0 (118.5) 919.1 (133.3) 3.478 
3 829.2 (120.3) 932.9 (135.3) 3.478 
4 1017 (147.5) 1144 (165.9) 3.808 
5 815.7 (118.3) 917.7 (133.1) 4.948 
6 599 (86.9) 674 (97.8) 4.618 
7 606 (87.9) 682 (98.9) 4.618 
8 807.8 (117.2) 908.7 (131.8) 4.948 
9 1212 (175.8) 1364 (197.8) 6.088 
10 881.3 (127.8) 991.5 (143.8) 5.758 
11 905.2 (131.3) 1018 (147.7) 5.758 
12 1218 (176.6) 1370 (198.7) 6.088 
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TABLE 7.13:  Pressure time history data for loading boxes on Wall #3. 
Load 
Box 

Peak Reflected Pressure 
kPa (psi) 

Peak Reflected Impulse 
kPa ms (psi ms) 

Time of Arrival 
ms 

1 676 (98.0) 759.8 (110.2) 2.840 
2 466 (67.6) 525 (76.1) 3.890 
3 679 (98.5) 763.9 (110.8) 4.940 
4 977.0 (141.7) 1099 (159.4) 1.920 
5 385.4 (55.9) 434 (62.9) 2.970 
6 504 (73.1) 567 (82.2) 4.020 
7 1222 (177.3) 1376 (199.5) 1.000 
8 394 (57.1) 443 (64.2) 2.050 
9 543 (78.7) 610 (88.5) 3.100 
10 1060 (153.7) 1192 (172.9) 1.000 
11 372 (54.0) 419 (60.7) 2.050 
12 508 (73.7) 572 (82.9) 3.100 
13 739.8 (107.3) 832.2 (120.7) 1.920 
14 448 (65.0) 504 (73.1) 2.970 
15 604 (87.6) 680 (98.6) 4.020 
16 719.1 (104.3) 808.8 (117.3) 2.840 
17 639 (92.6) 718.4 (104.2) 3.890 
18 992.8 (144.0) 1117 (162.0) 4.940 

 

7.2.7. Additional LS-DYNA Control Parameters 

 In addition to the material failure parameters, there are a number of other control 

parameters which must be defined in LS-DYNA.  First, a small amount of damping was 

specified using a load curve and the *DAMPING_GLOBAL card which defined the 

damping decreasing from 4 to 0.4 rads/sec over the course of blast loading (the LS-

DYNA damping coefficient is specified prior to being multiplied by mass).  These values 

correspond to 2% of critical viscous damping for the uncracked and cracked structure, 

respectively.  It was also necessary to use the CONTROL_TIMESTEP card in order to 

decrease the automatically computed time step.  It was found that using a scale factor of 

0.25 yielded consistently stable results.  Dynamic relaxation was employed to initialize 

gravity in the simulations; non-automatic control was used.  This yielded slightly better 

results than the automatic control scheme.   
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The manually-specified AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK 

contacts functioned well, except when bricks displaced more than 10.16 cm (4 in) relative 

to one another causing element faces to lose contact; the elements would then free-fall 

through the other elements in the mesh.  To address this, an AUTOMATIC_GENERAL 

contact was also specified for the model of Walls #2 and #3 which supported 

compression only; this was not required for the Wall #1 model as brick-to-brick relative 

deflections were not greater than 10.16 cm (4 in).  The coefficients of friction for this 

secondary contact were set very low (to 0.01) to avoid double-representation of brick-to-

brick frictional forces.  Finally, for the AUTOMATIC_GENERAL contact, the default 

penalty scale factor was changed to 0.01 in order to prevent interference with the primary 

contacts responsible for defining tensile and shear failures. 

7.3. Simulation Results 

 Multiple simulations were performed using the two FE models of the Shot B blast 

chamber walls.  In Section 7.3.1, simulation results corresponding to “best-estimate” 

parameters will be presented.  Then, in Section 7.3.2, sensitivity studies will be presented 

in order to determine which model inputs have the greatest impact on simulation results. 

7.3.1. Best-Estimate Results 

Table 7.14 compares the permanent deflections observed in the experiments to 

those predicted by LS-DYNA using the best-estimate parameter set.  The table shows 

that, in general, the simulations were able to predict permanent wall deflections of similar 

magnitude to those in the experiment.  Figures 7.18 through 7.20 show the time histories 

of the key points on each wall; these time histories were used to populate Table 7.14.  

Two points of measurement (3-1 and 3-2) are presented for Wall #3.  Both locations are 
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at the bottom of a window opening but are on adjacent piers.  Figure 7.21 shows locations 

3-1 and 3-2 as well as the predicted crack pattern along the length of Wall #3.  At the 

right-hand side of the figure (location 3-2) a sliding failure occurs after the formation of a 

large flexural crack; the same failure does not occur at location 3-1.  One hypothesis for 

why this occurred is that some combination of factors including the axial stress and 

degree of through-thickness cracking combined to permit sliding at location 3-2 but not 

location 3-1.  Post-crack sliding occurs when a wall segment slides relative to its adjacent 

segment at the location of a tensile flexural crack.  Field observations suggest that post-

crack sliding was responsible for much of the permanent set of Wall #3.   

 
TABLE 7.14:  Comparison between experimental measurements and FE simulations. 

Wall 
Experimental 

Result 
FE Permanent 

Deflection cm (in) 
Percent Error 

#1 25 (10) 38 (15) 150 
#2 8.9 (3.5) 8.1 (3.2) -9.7 

#3-1 6.4 (2.5) 0.61 (0.24) -90 
#3-2 6.4 (2.5) 8.9 (3.5) 41 

 

 
FIGURE 7.18:  Deflection time history of Wall #1 at the topmost node located in the 

horizontal center of the span. 
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FIGURE 7.19:  Deflection time history of Wall #2 at a node located at the center of the 

span, both vertically and horizontally. 
 

 
FIGURE 7.20:  Deflection time history of Wall #3 at bottom of window opening; 

location 3-1 was directly in line with charge while location 3-2 was on an adjacent pier. 
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FIGURE 7.21:  FE results from Wall #3 showing of points of deflection measurement. 

 

Perhaps even more important than the magnitude of permanent deflections are the 

qualitative results of the LS-DYNA models.  If predicted damage patterns are similar to 

those observed in the tests, this suggests that the wall models are, indeed, representative 

of the tested structure and, further, that the complex blast loads were adequately modeled.  

Visualizing cracks (tiebreak contacts which have experienced tensile or shear failure) 

presents a problem in LS-DYNA.  Extensive investigation did not locate a code feature 

for identifying contacts which have experienced a tiebreak (i.e. a crack has formed).  

Therefore crack patterns had to be identified through careful examination of the displaced 

structure as output by LS-DYNA.  By stepping through the deflection time history of a 

simulation, it was possible to see when gaps opened between adjacent bricks.  This 

careful visual inspection yielded the images that follow; they were generated using the 

Location 3-1 

Location 3-2 
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LS-PREPOST post-processor (LSTC, Livermore, CA).  In the figures, bricks which have 

been ejected or have fallen out of the walls will appear more darkly shaded than others.   

Figures 7.22 and 7.23 show, respectively, the experimental and modeled crack 

patterns for Wall #1.  Damage is generally represented by the FE model which also 

produces an inverted Y-shaped crack pattern.  The model also predicts cracking near the 

upper corners of the wall, a phenomenon not observed in the test.  Closer inspection of 

the simulation outputs revealed that this cracking was the result of the wall’s interaction 

with its upper boundary condition.  Figures 7.24 and 7.25 show a similar comparison for 

Wall #2.  The figures show that the predicted crack pattern is similar to that observed in 

the test.  The most obvious difference occurs in the crack which, in the test, was observed 

to intersect the right-hand opening at the upper left-hand corner (Figure 7.24); the FE 

model predicted the crack would intersect this opening at the lower left-hand corner 

(Figure 7.25).   
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FIGURE 7.22:  Photo of damage observed in Wall #1. 

 
 

 
FIGURE 7.23:  Modelled crack pattern of Wall #1. 
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FIGURE 7.24:  Photo of damage observed in Wall #2 near mid-panel. 

 
 

 
FIGURE 7.25:  Modelled crack pattern of Wall #2. 
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Figures 7.26 and 7.27 compare the crack patterns at the intersection of Walls #2 

and #3.  The predicted and experimental crack patterns are observed to match closely.  

Note that the steel lintels, which spanned over the window openings, were not 

represented in the FE model.  This allowed the bricks above the window openings to fall 

out during the simulations.   

Although qualitative damage comparisons were good, the magnitude of the 

predicted permanent deflections were not as good; however, these FE results must be 

viewed relative to the required modeling simplifications.  First, flexural tensile and shear 

failure stresses had to be artificially reduced to predict the correct out-of-plane wall 

capacities; these reductions were spurred by the limited number of contacts that could be 

utilized.  Both of these reduced failure stresses created contact failures where none were 

anticipated.  Moreover, FE results were obtained using estimates (from published studies) 

for critical modeling parameters including: DIFs, fracture energies, coefficients of 

friction, and masonry friction angle among others.  Section 7.3.2 will illustrate how 

adjustments to these modeling parameters can affect FE simulation results.  However, 

given the large number of modeling parameters (and their ranges), the uncertainty of 

actual blast loads/blast load distributions, the approximate nature of wall boundary 

conditions, and uncertainty regarding material properties, it will be demonstrated that the 

results presented in this section are of adequate practical accuracy. 
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FIGURE 7.26:  Photo of damage observed at the intersection of Walls #2 and #3. 

 

 
FIGURE 7.27:  Modelled crack pattern at the intersection of Walls #2 and #3. 
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The global statistics output file of each simulation was also reviewed to identify 

possible simulation errors and to potentially glean insightful information.  No problems 

were identified; however, an interesting observation was made when comparing various 

system energies.  Figure 7.28 compares the external work (which is approximately equal 

to total energy) to the sliding energy for the Wall #1 simulation; sliding energy is 

comprised of the frictional energy at all contacts including those at the rigid boundaries.  

The comparison shows that the majority of the energy absorbed by the system is due to 

frictional effects.  This suggests that the characterization of the frictional properties of the 

brick masonry assemblage is critical to the accuracy of the simulations.   

 
FIGURE 7.28:  Energy calculated by LS-DYNA comparing external work to sliding 

interface energy (for Wall #1). 
 

7.3.2. Parameter Sensitivity Study 

 The simulation results in Section 7.3.1 were computed using the best estimates of 

model parameters.  It is of practical interest to study the effects of varying the input 

parameters on the permanent deflections predicted by the FE models.  Normally, 
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bracketing simulation results is done by increasing or decreasing parameters by their 

standard deviations.  Unfortunately, there is insufficient data available to use this 

approach.  For example, even though a standard deviation could be computed for the 

masonry’s tensile strength, it is multiplied by a DIF with an unknown standard deviation.    

As with the DIF, most parameters needed for this work, taken from peer reviewed 

literature, do not include standard deviations.  Even estimating standard deviations from 

the available published studies may not be particularly meaningful because each study 

utilized different masonry materials and different methodologies and thus would lead 

only to very rough estimates.  Therefore it would seem better advised to perform the 

sensitivity study by varying model parameters using engineering judgment.  In reviewing 

the parameters found in literature, it would appear that varying failure stresses, fracture 

energies, friction angles, and the elastic modulus by +/- 50% would provide 

representative results; similarly, the literature suggests that a +/- 25% variability in the 

coefficients of friction would also be reasonable.  The penalty scale factor, damping, 

density, and wall gap were also adjusted by +/- 25% based on judgment and several trial 

simulations. 

Tables 7.15 through 7.20 report the results of the sensitivity study; each cell of the 

tables represents one simulation in which a single parameter was varied.  The results for 

each wall are reported in a two table set.  The first table reports permanent deflections for 

simulations in which parameters were varied by +/-50%.  The second table reports 

simulation results when the parameters were varied by +/- 25%.   Note that Wall #1 was 

modeled independently, while the parameters for Walls #2 and #3 were changed 

simultaneously because they were in the same model.  In the tables, the word “collapse” 
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denotes a simulation in which the wall deflected far enough out-of-plane to become 

unstable; this usually happened when the peak deflection was greater than the wall’s 

thickness.  “Shooting node instability” refers to a numerical issue in which the contact 

algorithm causes single nodes to rapidly accelerate away from their elements; this usually 

results in a termination of the simulation. 

 
TABLE 7.15:  Wall #1 – Permanent deflections when parameters were varied by +/-50%. 

Parameter 
Best Estimate  

Parameter Value 
Permanent Deflection cm (in) 

+50% Variation -50% Variation 
Tensile Failure Stress*  

MPa (psi) 
0.9363 / 1.724 
(135.8 / 250.0) 

37.3 (14.7) Collapse 

Shear Failure Stress 
MPa (psi) 

0.6895 (100.0) 33.0 (13.0) Collapse 

Mode I Fracture Energy* 
J/mm (lb/in) 

0.0100 / 0.0150 
(0.0571 / 0.0857) 

5.94 (2.34) 43.4 (17.1) 

Mode II Fracture Energy* 
J/mm (lb/in) 

0.0500 / 0.0750 
(0.2855 / 0.4283) 

42.4 (16.7) Collapse 

Friction Angle 
Degrees 

0.401 1.26 (0.497) 30.5 (12.0) 

Elastic Modulus 
MPa (ksi) 

4233 (614.0) 33.0 (13.0) 49.5 (19.5) 

Penalty Scale Factor 0.10 53.1 (20.9) 19.3 (7.58) 
Damping  
rads/sec 

4.4 / 0.44  40.4 (15.9) 12.8 (5.03) 

Notes:  *Table cells with two values – first value is always on a plane normal to direction 
of bending, second value is on a plane normal to through-thickness spall. 

 

TABLE 7.16:  Wall #1 – Permanent deflections when parameters were varied by +/-25%. 

Parameter 
Best Estimate 

Parameter Value 
Permanent Deflection cm (in) 

+25% Variation -25% Variation 
Coeff. of Static 

Friction 
0.75 38.1 (15.0) 56.4 (22.2) 

Coeff. of Kinetic 
Friction 

0.60 38.1 (15.0) 38.1 (15.0) 

Material Density 
kg/m3 (lb/ft3) 

2443  (152.5) 40.1 (15.8) Collapse 

Gap at Top 
cm (in) 

1.5 (0.60) 54.1 (21.3) 15.4 (6.06) 
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TABLE 7.17:  Wall #2 – Permanent deflections when parameters were varied by +/-50%. 

Parameter 
Best Estimate  

Parameter Value 
Permanent Deflection cm (in) 

+50% Variation -50% Variation 
Tensile Failure Stress*  

MPa (psi) 
1.147 / 1.724 

(166.4 / 250.0) 
3.43 (1.35) 15.2 (5.98) 

Shear Failure Stress  
MPa (psi) 

0.6895 (100.0) 10.5 (4.18) Collapse 

Mode I Fracture Energy* 
J/mm (lb/in) 

0.0100 / 0.0150 
(.0571 / .0857) 

7.72 (3.04) 10.2 (4.01) 

Mode II Fracture Energy* 
J/mm (lb/in) 

0.0500 / 0.0750 
(0.2855 / 0.4283) 

13.4 (5.26) Collapse 

Friction Angle 
Degrees 

0.401 19.6 (7.73) 26.7 (10.5) 

Elastic Modulus 
MPa (ksi) 

4233 (614.0) 
Shooting Node 

Instability 
3.81 (1.50) 

Penalty Scale Factor 0.10 21.6 (8.51) 3.38 (1.33) 
Damping  
rads/sec 

4.4 / 0.44 8.36 (3.29) 5.11 (2.01) 

Notes:  *Table cells with two values – first value is always on a plane normal to direction 
of bending, second value is on a plane normal to through-thickness spall. 

 

TABLE 7.18:  Wall #2 – Permanent deflections when parameters were varied by +/-25%. 

Parameter 
Best Estimate  

Parameter Value 
Permanent Deflection cm (in) 

+25% Variation -25% Variation 

Coeff. of Static Friction 0.75 -0.121 (-0.0478) 
Shooting Node 

Instability 
Coeff. of Kinetic Friction 0.60 7.90 (3.11) 7.92 (3.12) 

Material Density* 
kg/m3 (lb/ft3) 

2253 / 33159 
(140.7  / 2070.1) 

7.98 (3.14) Collapse 

Notes:  *First value corresponds to wall density; second value corresponds to density of 
mesh representing upper story walls. 
 

Table 7.15 shows that changing material failure and contact model parameters can 

significantly impact simulation results for Wall #1.  Sometimes parameter changes 

yielded intuitive results – i.e. decreasing strength lead to increased deflections.  Other 

changes, however, yielded counterintuitive results – i.e. a decrease in the value of 

damping actually decreased permanent deformation.  What is not shown in the table is 

that each of these parameter changes altered the manner in which the wall interacted with 
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the upper rigid wall boundary condition.  If a parameter change tended to cause the wall 

to strike the boundary sooner, this normally led to decreased permanent deflections.  

Table 7.16 shows the results for Wall #1 parameters that were varied by +/- 25%.  The 

static coefficient of friction, the material density, and the size of the gap at the top of the 

wall all had a significant impact on the results.  Interestingly, the coefficient of kinetic 

friction had virtually no effect on simulation results for a 25% variation. 

 
TABLE 7.19:  Wall #3 – Permanent deflections when parameters were varied by +/-50%. 

Parameter 
Best Estimate 

Parameter Value 
Permanent Deflection cm (in) 

+50% Variation -50% Variation 
Tensile Failure Stress*  

MPa (psi) 
1.286 / 1.724 

(186.5 / 250.0) 
5.49 (2.16) 7.42 (2.92) 

Shear Failure Stress  
MPa (psi) 

0.6895 (100.0) 0.0668 (0.0263) 6.20 (2.44) 

Mode I Fracture Energy* 
J/mm (lb/in) 

0.0100 / 0.0150 
(.0571 / .0857) 

2.57 (1.01) 6.22 (2.45) 

Mode II Fracture Energy* 
J/mm (lb/in) 

0.0500 / 0.0750 
(0.2855 / 0.4283) 

-0.0363 (-0.0143) Collapse 

Friction Angle 
Degrees 

0.401 0.189 (0.0746) 0.366 (0.144) 

Elastic Modulus 
MPa (ksi) 

4233 (614.0) 
Shooting Node 

Instability 
0.716 (0.282) 

Penalty Scale Factor 0.10 2.05 (0.808) 3.43 (1.35) 
Damping  
rads/sec 

4.4 / 0.44 0.226 (0.0890) 0.218 (0.0859) 

Notes:  *Table cells with two values – first value is always on a plane normal to direction 
of bending, second value is on a plane normal to through-thickness spall. 
 

TABLE 7.20:  Wall #3 – Permanent deflections when parameters were varied by +/-25%. 

Parameter 
Best Estimate 

Parameter Value 
Permanent Deflection cm (in) 

+25% Variation -25% Variation 

Coeff. of Static Friction 0.75 0.328 (0.129) 
Shooting Node 

Instability 
Coeff. of Kinetic Friction 0.60 0.947 (0.373) 0.947 (0.373) 

Material Density* 
kg/m3 (lb/ft3) 

2253 / 33159 
(140.7 / 2070.1) 

-1.14 (-0.448) Collapse 

Notes:  *First value corresponds to wall density; second value corresponds to density of 
mesh representing upper story walls. 
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Tables 7.17 through 7.20 for Walls #2 and #3 show similar trends.  Many of the 

strength parameter changes yielded predictable results; lower strength meant higher 

permanent deflections.  Other parameters like the damping coefficient or penalty scale 

factor showed no predictable trend.  In some cases, like decreasing the elastic modulus, 

numerical instabilities occurred which produced “shooting nodes,” causing the simulation 

to prematurely terminate.  For Walls #2 and #3, changing a single parameter could 

drastically alter the crack pattern predicted by the FE model.  This caused particularly 

unpredictable results in Wall #3.  If a shear failure with sliding developed at the point of 

measurement (bottom of the window openings), then deformations tended to match the 

experiments.  If such a failure did not develop, however, negative permanent deflections 

could result.   

Reviewing Tables 7.15 through 7.20, it becomes apparent that the parameter set 

selected as the best estimate values do indeed produce some of the better results possible.  

The only exceptions are the simulations in which flexural and through thickness tensile 

strengths were increased to 150% of the best estimate values.  These simulations 

produced equal, if not slightly more accurate, permanent deformations.  Otherwise, it 

appears as though modifying the parameters would not yield substantial improvements to 

the results.   

Careful examination of the FEA generated animations and associated crack 

patterns make one fact clear – the necessity to specify reduced failure stresses is likely a 

significant reason that experimental and analytical deflections do not compare more 

closely.  This also appears to be the reason that the simulations predict more cracks than 

were observed in the test.  This finding would suggest that those aspects of LS-DYNA 
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require further development.  This includes providing the capacity to run models that 

have many hundreds of thousands of contacts.  Additionally, an automated contact search 

feature should be developed which does not generate contacts for segments at 90 degrees 

to one another (or at least an option to turn this feature off should be considered).  And 

lastly, more research on masonry’s fracture parameters and post-failure frictional 

interface properties is required.  

 

 

 

 

 



 

 

 

 

 
CHAPTER 8:  SUMMARY AND CONCLUSIONS 

 

 Although hydrodynamics and structural dynamics are well established fields, the 

information required for this investigation had to be cobbled together from a variety of 

far-flung sources including journals, limited distribution military manuals, research 

reports, and out-of-print texts.  The sources were found to be particularly disparate for 

ESDOF methods.  Although UFC 3-340-02 (a limited distribution document) provides 

extensive guidance on how to use the ESDOF method, it does not provide any 

justification for the provided transformation factors.  The reader is left to locate other 

documents, some of which are out of publication.  In addition, Morrison (2008) showed 

that many references for the ESDOF method contain errors in the transformation factors 

(derivations and/or the factors reported).  Given the ESDOF method’s widespread use, 

the development of a comprehensive ESDOF text might prove useful for practicing 

professionals engaged in any sort of dynamic analysis, ranging from blast or earthquake 

resistant design, to machine vibration and impact problems.  Accompanying the 

comprehensive text should be basic, open-source software capable of performing the 

calculations required for an ESDOF analysis (SBEDS is not open-source and much of the 

program is inaccessible without a password).  The Matlab scripts in Appendix D serve as 

a starting point for this effort. 

 Chapter 2 described the experimental program in detail.  The shock 

accelerometers used in the experiments were not optimal.  Their range (+/- 100,000 g) 
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created a high noise floor which likely obscured actual structural accelerations.  

Subsequent testing by the University has shown that DC coupled sensors with a range of 

+/- 5,000 g that include mechanical and electrical low pass filters perform much better for 

instrumenting blast loaded structural components.  Reassuringly, the investigation also 

showed that despite both high and low frequency filtration of sensor signals, the pressure 

measurements were only affected to a small degree.  Note that this finding is only true if, 

in fact, there were no gas phase pressures lasting for several tenths of a second; any such 

pressure signals would have been attenuated by the AC coupling. 

The experimental data showed that, where pressure sensors were placed 

symmetrically, they registered similar pressures and impulses; this indicates both a 

symmetric detonation and consistent performance of the sensors.  In a few cases the 

pressure sensors malfunctioned.  These malfunctions were mostly attributable to cable 

damage during prior shots.  In a few instances, it appeared as though sensor ringing 

occurred.  This was caused by the sensor mounting which did not isolate the sensor from 

the metal plate or surrounding structure.  Subsequent work at the University has 

developed methods of mounting pressure sensors in a non-metallic grommet which 

reduces the chance that ringing will occur. 

 Chapter 3 documented efforts to use simplified analysis methods to predict 

the pressures and impulses observed in Shot A1 and from open arena tests; no predictions 

were made for Shot A2 because information regarding charge composition was lacking.   

The best open arena predictions were obtained by combining Esparza’s method (1992) 

and ConWep; errors from BlastX predictions were nearly double the Esparza/ConWep 

method.  It is surprising that BlastX would perform so poorly because the BlastX 
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cylindrical tabular model was generated from hydrocode simulations of cylindrical 

charges; this would presumably give the code a distinct advantage with respect to the 

spatial distribution of blast energy.  Furthermore, BlastX should also accurately model 

the effects of reflections from the ground’s surface, a blast loading scenario that the 

ConWep/Esparza method cannot model.   

When applied to the A1 blast scenario, however, the results were reversed.  The 

ConWep/Esparza method yielded larger errors than BlastX, although not significantly.  It 

also became clear that the BlastX order of rays option has a tremendous effect on the 

results and must be chosen carefully depending on whether the objective is design or 

analysis.  Overall, the comparisons between measurements and predictions showed that 

simplified analysis methods could predict blast impulses with an average absolute 

accuracy 36% in the case of Shot A1 and 20% for the open arena tests. 

Another interesting observation is that the Esparza equivalency method was not 

accurate when combined with UFC 3-340-02 calculations for incident parameters below 

the triple point.  Blast wave measurements for the open arena tests documented in 

Chapter 3, however, were made below the triple point.  It therefore might have been 

serendipitous that the coupled Esparza/ConWep calculations agreed so well with the data.  

It would likely prove useful to extend the Esparza spherical equivalency data to include 

cylindrical charges with a low height of burst; this would likely have many applications 

in protective design. 

 The difficulties encountered using simplified methods led to the use of CTH in 

Chapter 4.  An extensive convergence study was conducted which led to the discovery of 

a relationship between the converged mesh size and the properties of the blast wave.  
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This suggests the possibility of some fundamental (and possibly closed form) relationship 

between the hydrodynamic difference equations and blast wave properties.  One example 

might be a relationship between the mesh size, time step, and resulting errors in 

predictions of velocity, density, energy, and/or pressure.  Comparisons between the 

converged CTH simulations and empirical data for TNT airblasts showed that CTH could 

predict pressure and impulse accurately.  CTH underpredicted peak incident overpressure 

by an average of 12% and overpredicted positive incident impulse by 2% when compared 

to Kinney and Graham’s airblast data.  With respect to reflected parameters, CTH 

underpredicted peak reflected pressure by 14% and peak reflected positive impulse by 

0.4% when compared to ConWep predictions.  These errors are, in comparison to most 

predictive methods, excellent. 

 Chapter 5 detailed efforts to develop JWL EOS parameters for Unimax dynamite.  

Initial attempts to use density scaling to develop new coefficients from those published in 

technical literature did not yield satisfactory results.  Instead, the density scaling 

procedure was combined with some of CTH’s internal coding to develop a new 

procedure for energy scaling JWL coefficients.  The method, which is consistent with 

respect to the CJ state, tended to preferentially adjust only R1, R2, and ω when 

implemented in an Excel solver.  Although these variables are not normally adjusted, this 

is not necessarily problematic because other trials using a density scaling technique found 

that A, B, and C could only be adjusted within relatively limited tolerances before the 

JWL encountered numerical difficulties.   

 The development of the energy scaling procedure required careful study of the 

JWL and its implementation in CTH.  The restriction on JWL coefficients imposed by 
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consistency conditions for the CJ state and thermodynamic considerations limit how JWL 

parameters can be adjusted.  For example, it was found that increasing blast overpressure 

while decreasing blast impulse was essentially infeasible.  These limitations, although in 

adherence to the theoretical framework of the EOS, are somewhat unimportant to airblast 

modelers primarily concerned with far field results.  To such users, the JWL and its 

implementation represent what is essentially a complicated initial condition used to set up 

a travelling shockwave.  Thus it would be worthwhile to consider development of some 

simpler explosive EOS for airblast modelers.  The new EOS should be calibrated by 

allowing modelers to adjust pressure and impulse somewhat independently (within 

certain necessary limitations) to match simple airblast measurements; this would 

represent a tremendous cost savings over current JWL development methods. 

 Using the energy-adjusted JWL coefficient set with CTH, simulations were 

conducted for shots A1 and B.  The two-dimensional simulations had an average absolute 

pressure error of 31% and an absolute impulse error of 21%.  The three-dimensional 

simulations of Shot B had an average absolute pressure error of 50.4% and an average 

absolute impulse error of 35%.  Note that although the two and three-dimensional 

simulations both used the same mesh resolution, the errors in three dimensions were still 

higher.  Attempts to accurately model the Shot B blast chamber in three dimensions 

including the window openings in Wall #3 showed that CTH’s rigid material algorithm is 

not fully functional; instead, an entire wall had to be omitted from the simulation in order 

to model venting through the windows.  Although only marginally more accurate than the 

simplified analytical methods, the CTH analyses provided the necessary spatio-temporal 
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distribution of blast energy on reflecting surfaces which was vital for subsequent 

structural simulations.   

Chapter 6 investigated the ability of the ESDOF method to simulate the response 

of the Shot B blast chamber walls.  A new resistance function was developed which 

permits a one-way spanning member to crack at any height.  An accompanying software 

program was written which could take arbitrary loading and compute the required 

ESDOF input parameters including resistance function ordered pairs and transformation 

factors.  Numerous errors in the traditionally quoted transformation factors were found 

while developing transformation factors for two-way elements; these errors were 

corroborated by Morrison (2008).  Given that most design engineers would be hard 

pressed to perform the calculations necessary to develop transformation factors for two-

way members, providing an open source software program and comprehensive text 

geared toward practitioners would be a useful contribution to the state-of-the-art. 

Overall, the ESDOF analyses predicted permanent deflections similar to those 

measured in the field.  It is interesting that the predictions made using carefully computed 

resistance function ordered pairs and transformation factors were not any more accurate 

than those made using the default values.  It should be noted that some of the error in the 

predictions can be explained by the observation that, in addition to flexural deflections, 

the blast chamber walls also had relative shearing/sliding motions that occurred between 

wall segments; these shearing/sliding motions are not modeled by the ESDOF method 

using current URM resistance functions. 

Another source of error is the large number of system properties which had to be 

estimated, including: the effective span lengths, the degree of fixity, and the dynamic 
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tensile strength, to name but a few.  The number of estimated parameters suggests that an 

uncertainty analysis of ESDOF-predicted deflections would be quite useful.  The 

investigation might show that, due to the uncertainty in material properties alone, 

computing more accurate transformation factors is unwarranted because the gain in 

accuracy from the transformation factors is entirely offset by the spread in resistance 

function ordered pairs created by material uncertainties.  Such a conclusion would 

provide additional validation to the current state-of-practice for the ESDOF method in 

protective design.   

Analytical investigations into the effects of damping on ESDOF predictions 

showed that permanent deflections could change dramatically (by 50% or more) based on 

the choice of damping ratio.  This observation is consistent with the SBEDS user manual, 

which states that the brittle flexural response with axial load resistance function is 

particularly sensitive to the choice of damping.  A review of the SBEDS user manual and 

Oswald (2005) suggest that the default damping ratio be specified as 2% of critical 

because it produced the best agreement between analytical and experimental deflections 

for tests of masonry walls.  By contrast, the experimental work performed by Griffith et 

al. (2004) on cracked masonry walls indicates a minimum damping ratio of 5% over a 

broad range of frequencies.  This investigation seems to reaffirm the use of 2% damping, 

as that produced the best agreement between analytical predictions and the measured 

permanent deformations.   

Deflection and resistance-based criteria were adopted for quantifying the state of 

the Shot B URM walls relative to their collapse limit-states.  Both criteria, based on 

simple ratios, provide a straightforward means for estimating how close a building is to 
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collapsing.  If future out-of-plane loads are not of concern, then the deflection criterion 

can provide a very simple estimate of a structure’s state relative to its collapse limit-state.  

If, however, a structure is to be reloaded by a blast or some other type of out-of-plane 

force (such as wind pressure), then the resistance criterion should be used to provide a 

conservative estimate of the building’s state relative to its collapse limit-state.   

Chapter 7 documented LS-DYNA simulations that were able to reproduce the 

results of the experimental program in a general sense.  The investigation reinforced that 

the analyst is required to carefully consider wall boundary conditions, compute 

representative (effective) blast pressures, and determine effective axial loads (accounting 

for the possible load reduction due to slab uplift) in order to even reproduce qualitatively 

accurate damage patterns; admittedly, the choice of boundary conditions is easier when 

experimental results are available a priori.  Although the qualitative damage comparisons 

were good, the magnitudes of the predicted permanent deflections were not as good. 

These FEA results, however, must be viewed relative to the required modeling 

simplifications.  First, only a limited number of contacts could be defined; this in turn 

limited the number of elements and thus mesh resolution.  The limited mesh resolution 

required the tensile failure stress to be artificially reduced so that the flexural capacity of 

the walls was accurately represented.  This in turn required the shear failure stress to be 

drastically reduced.  Examination of simulation results suggest that these stress capacity 

reductions were the cause of the increased damage observed in simulation results.  This 

finding suggests that LS-DYNA would benefit from further development which increases 

the number of contacts the code can utilize in a single model. Users of the code would 

also greatly benefit from some automated contact search algorithm which does not 
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initially tie segments at 90 degrees to one another; the Matlab code included in Appendix 

D serves as a starting point for this feature.   

In addition to these general modeling difficulties, there were other findings that 

merit further study.  First, an investigation of the contact penalty force scale factor is 

warranted; this factor appears to have a significant influence on the resulting out-of-plane 

bending stiffness of the FE wall models.  It would also be interesting if a Mohr Coulomb 

failure option could be added to the LS-DYNA surface to surface contacts; if shear 

dilatancy could be included, then the contact would be highly representative of masonry 

failure.  To support this failure model, more laboratory tests would be required to develop 

a better data set of fracture energy release rates, friction angles, and shear dilatancy 

angles.  Also, it might be of use to perform further studies, both experimental and 

analytical, on the contact forces between rocking wall segments.  The simplified unit-

width FEA models showed that rocking wall segments can lose contact entirely and this 

has important implications for the cracked wall’s resistance function.  
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APPENDIX A:  SHOT A1 SENSOR MEASUREMENTS 
 
 This appendix contains plots for all sensor measurements from Shot A1.  

Measurements have been plotted on a common time window, where the beginning of the 

time window is an arbitrarily selected point preceding the detonation of the charge.  All 

time history data are plotted starting at time = 0.04 seconds (regardless of whether tick 

mark is shown or not). 
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FIGURE A.1.  Shot A1 - Flush mount sensor P1 pressure and impulse as a function of 

time. 
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FIGURE A.2.  Shot A1 - Flush mount sensor P2 pressure and impulse as a function of 

time. 
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FIGURE A.3:  Shot A1 - Flush mount sensor P3 pressure and impulse as a function of 

time. 
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FIGURE A.4:  Shot A1 - Flush mount sensor P4 pressure and impulse as a function of 

time. 
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FIGURE A.5:  Shot A1 - Flush mount sensor P5 pressure and impulse as a function of 

time. 
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FIGURE A.6:  Shot A1 - Flush mount sensor P6 pressure and impulse as a function of 

time. 
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FIGURE A7:  Shot A1 - Flush mount sensor P7 pressure and impulse as a function of 

time. 
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FIGURE A.8:  Shot A1 - Flush mount sensor P8 pressure and impulse as a function of 

time. 
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FIGURE A.9:  Shot A1 - Pressure pencil PP1 pressure and impulse as a function of time. 
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FIGURE A.10:  Shot A1 - Acceleration time history measured by sensor S1.  
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FIGURE A.11:  Shot A1 - Fourier amplitude spectrum of acceleration time history 

measured by sensor S1. 
 

 
FIGURE A.12:  Zoomed in window showing lower frequencies from Figure A.11. 
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FIGURE A.13:  Shot A1 - Acceleration time history measured by sensor S2.  
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FIGURE A.14:  Shot A1 - Fourier amplitude spectrum of acceleration time history 

measured by sensor S2. 
 

 
FIGURE A.15:  Zoomed in window showing lower frequencies from Figure A.14. 
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FIGURE A.16:  Shot A1 - Acceleration time history measured by sensor S3.   
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FIGURE A.17:  Shot A1 - Fourier amplitude spectrum of acceleration time history 

measured by sensor S3. 
 

 
FIGURE A.18:  Zoomed in window showing lower frequencies from Figure A.17. 
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FIGURE A.19:  Response of Matlab filter used to post-process shock accelerometer data.  
Note that in normalized frequency, 1.0 corresponds to the Nyquist frequency (50 kHz in 

this case). 
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APPENDIX B:  SHOT A2 SENSOR MEASUREMENTS 
 
 This appendix contains plots for all sensor measurements from Shot A2.  

Measurements have been plotted on a common time window, where the beginning of the 

time window is an arbitrarily selected point preceding the detonation of the charge.  All 

time history data are plotted starting at time = 0.19 seconds (regardless of whether tick 

mark is shown or not). 
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FIGURE B.1:  Shot A2 - Flush mount sensor P1 pressure and impulse as a function of 

time. 
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FIGURE B.2:  Shot A2 - Flush mount sensor P2 pressure and impulse as a function of 

time. 
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FIGURE B.3:  Shot A2 - Flush mount sensor P3 pressure and impulse as a function of 

time. 
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FIGURE B.4:  Shot A2 - Flush mount sensor P4 pressure and impulse as a function of 

time. 
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FIGURE B.5:  Shot A2 - Flush mount sensor P5 pressure and impulse as a function of 

time. 
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FIGURE B.6:  Shot A2 - Flush mount sensor P6 pressure and impulse as a function of 

time. 
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FIGURE B.7:  Shot A2 - Flush mount sensor P7 pressure and impulse as a function of 

time. 
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FIGURE B.8:  Shot A2 - Flush mount sensor P8 pressure and impulse as a function of 

time. 
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FIGURE B.9:  Shot A2 - Pressure pencil PP1 pressure and impulse as a function of time. 
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FIGURE B.10:  Shot A2 - Acceleration time history measured by sensor S1. 
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FIGURE B.11:  Shot A2 - Fourier amplitude spectrum of acceleration time history 

measured by sensor S1. 
 
 

 
FIGURE B.12:  Zoomed in window showing lower frequencies from Figure B.11. 
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FIGURE B.13:  Shot A2 - Acceleration time history measured by sensor S2. 
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FIGURE B.14:  Shot A2 - Fourier amplitude spectrum of acceleration time history 

measured by sensor S2. 
 

 

 
FIGURE B.15:  Zoomed in window showing lower frequencies from Figure B.14. 
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FIGURE B.16:  Response of Matlab filter used to post-process shock accelerometer data.  
Note that in normalized frequency, 1.0 corresponds to the Nyquist frequency (50 kHz in 

this case). 
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APPENDIX C:  SHOT B SENSOR MEASUREMENTS 
 
 This appendix contains plots for all sensor measurements from Shot B.  

Measurements have been plotted on a common time window, where the beginning of the 

time window is an arbitrarily selected point preceding the detonation of the charge. All 

time history data are plotted starting at time = 0.095 seconds (regardless of whether tick 

mark is shown or not). 
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FIGURE C.1:  Shot B - Flush mount sensor P1 pressure and impulse as a function of 

time.  Subsequent spikes after first pressure wave appear to be nonphysical, likely cable 
or connection damage. 
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FIGURE C.2:  Shot B - Flush mount sensor P2 pressure and impulse as a function of 

time. 
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FIGURE C.3:  Shot B - Flush mount sensor P3 pressure and impulse as a function of 
time.  Close inspection of time series shows that measurement is non-physical.  Either 

cable/connector damage or sensor damage from prior shot. 
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FIGURE C.4:  Shot B - Flush mount sensor P4 pressure and impulse as a function of 

time. 
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FIGURE C.5:  Shot B - Flush mount sensor P5 pressure and impulse as a function of 

time. 
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FIGURE C.6:  Shot B - Flush mount sensor P6 pressure and impulse as a function of 

time. 
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FIGURE C.7:  Shot B - Flush mount sensor P7 pressure and impulse as a function of 

time. 
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FIGURE C.8:  Shot B - Flush mount sensor P8 pressure and impulse as a function of 

time.  Only first two reflected waves included in impulse computation included in 
Chapter 2.   

 

0.1 0.11 0.12 0.13 0.14 0.15
-0.5

0

0.5

1

Time (s)

P
re

ss
ur

e 
(M

P
a)

0.1 0.11 0.12 0.13 0.14 0.15
0

0.5

1

1.5

Time (s)

Im
pu

ls
e 

(M
P

a 
m

s)



339 

 
FIGURE C.9:  Shot B - Flush mount sensor P9 pressure and impulse as a function of 

time. 
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FIGURE C.10:  Shot B - Flush mount sensor P10 pressure and impulse as a function of 

time. 
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FIGURE C.11:  Shot B - Flush mount sensor P11 pressure and impulse as a function of 

time. 
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FIGURE C.12:  Shot B - Flush mount sensor P12 pressure and impulse as a function of 

time. 
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FIGURE C.13:  Shot B - Acceleration time history measured by sensor S1. 
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FIGURE C.14:  Shot B - Fourier amplitude spectrum of acceleration time history 

measured by sensor S1. 
 
 

 
FIGURE C.15:  Zoomed in window showing lower frequencies from Figure C.14. 
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FIGURE C.16:  Shot B - Acceleration time history measured by sensor S2. 
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FIGURE C.17:  Shot B - Fourier amplitude spectrum of acceleration time history 

measured by sensor S2. 
 

 
FIGURE C.18:  Zoomed in window showing lower frequencies from Figure C.17. 
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FIGURE C.19:  Shot B - Acceleration time history measured by sensor S3. 
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FIGURE C.20:  Shot B - Fourier amplitude spectrum of acceleration time history 

measured by sensor S3. 
 

 
FIGURE C.21:  Zoomed in window showing lower frequencies from Figure C20. 
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FIGURE C.22:  Shot B - Acceleration time history measured by sensor S4. 
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FIGURE C.23:  Shot B - Fourier amplitude spectrum of acceleration time history 

measured by sensor S4. 
 

 
FIGURE C.24:  Zoomed in window showing lower frequencies from Figure C23. 
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FIGURE C.25:  Shot B - Acceleration time history measured by sensor S5.  Sensor likely 

damaged or had faulty cabling, no signal measured. 
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FIGURE C.26:  Response of Matlab filter used to post-process shock accelerometer data.  
Note that in normalized frequency, 1.0 corresponds to the Nyquist frequency (50 kHz in 

this case). 
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APPENDIX D:  MATLAB SCRIPTS 
 

This appendix contains Matlab scripts used in this investigation.  Preceding each 

script is a brief description of the code’s use.  This text may be directly copied and pasted 

into a Matlab window and executed. 

D.1. Script for Figure 2.10 

This script will create the pressure and impulse time histories shown in Figure 

2.10 in Chapter 2.  It creates the pressure time history using an equation from page 100 of 

Kinney and Graham’s text.  The script then applies two filters to the data to mimic the 

effects of the data acquisition system’s filtration.  Following the code see Figure D.1 for 

an NI supplied high pass frequency curve for NI 4472 modules. 

%Create the time vector 
time=[0.00001:0.00001:0.5]; 
 
%Create the positive phase of a blastwave 
for j=1:1:300 
    p(j)=(1-time(j)/0.003)*exp(-2.4*time(j)/0.003); %Pressure spike of 1 MPa 
end 
 
%Stitch this into a longer time series that is zero-padded 
pressure(1:10000)=[0]; 
pressure(10001:10300)=[p]; 
pressure(10301:50000)=[0]; 
 
%Design a 1 pole high pass filter with the -3dB point at 3.3 Hz 
T=1/100000;   %Time between samples 
t=0.047   %filter time constant, from NI data sheet on NI4472 DAQ 
a=T/t;   %filter coefficient 
%freqz([1-a a-1],[1 a-1],50000)  %Plot the frequency response of the high pass filter 
 
%Design a 1st order low pass filter with 7kHz cutoff and 100 kHz Sampling 
[B,A]=butter(1,7/50); 
%freqz(B,A,50000)   %plot the frequency response of the lowpass filter 
 
pfiltlow=filter(B,A,pressure);  %Apply the lowpass filter 
pfilt=filter([1-a a-1],[1 a-1],pfiltlow);   %Apply the highpass filter 
 
impnorm=cumtrapz(pressure)/100;  %Unfiltered impulse, MPa ms 
impfilt=cumtrapz(pfilt)/100;   %Filtered impulse, MPA ms 
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%Plot the results 
figure(1) 
subplot(2,1,1) 
plot(time,pressure) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
hold on 
plot(time,pfilt,'--') 
xlim([0.099,0.104]) 
grid on 
subplot(2,1,2) 
plot(time,impnorm) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.099,0.104]) 
hold on 
plot(time,impfilt,'--') 
grid on 
 

 
 

FIGURE D.1:  National Instruments supplied frequency versus attenuation amplitude 
curve for NI 4472 modules.  High pass RC filter time constant = 47 milliseconds 

 
Graph Source:  
http://digital.ni.com/public.nsf/allkb/E1DC95907C3D7D28862571ED0033D0D1 
 
 

D.2. Script for Shot A1 in Appendix A 

This script post-processes and plots the sensor data for Shot A1 in Appendix A.  It 

requires that the A1 data file be located in the Matlab working directory. 
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%This file will read in the time series data from shot A1.  The file then 
%creates a redundant time series for each curve, trims the curve and compute 
%impulse.  Finally, a double windowed plot will be made so that pressure 
%and impulse can be compared on more or less the same plot. 
 
%Load the basic variables into the workspace 
load('shotA1clip.mat'); 
 
%Create a time series from each pressure time history for integrating 
%impulse.  Use cumulative trapezoidal integration. 
P1cc(4191:20000)=P1c(4191:20000)*0.00689475; 
P1cc(1:4190)=0; 
P1imp=cumtrapz(P1cc)/100; 
 
P2cc(4214:20000)=P2c(4214:20000)*0.00689475; 
P2cc(1:4213)=0; 
P2imp=cumtrapz(P2cc)/100; 
 
P3cc(4267:20000)=P3c(4267:20000)*0.00689475; 
P3cc(1:4266)=0; 
P3imp=cumtrapz(P3cc)/100; 
 
P4cc(4651:20000)=P4c(4651:20000)*0.00689475; 
P4cc(1:4650)=0; 
P4imp=cumtrapz(P4cc)/100; 
 
P5cc(4224:20000)=P5c(4224:20000)*0.00689475; 
P5cc(1:4223)=0; 
P5imp=cumtrapz(P5cc)/100; 
 
P6cc(4442:20000)=P6c(4442:20000)*0.00689475; 
P6cc(1:4441)=0; 
P6imp=cumtrapz(P6cc)/100; 
 
P7cc(5118:20000)=P7c(5118:20000)*0.00689475; 
P7cc(1:5117)=0; 
P7imp=cumtrapz(P7cc)/100; 
 
P8cc(4868:20000)=P8c(4868:20000)*0.00689475; 
P8cc(1:4867)=0; 
P8imp=cumtrapz(P8cc)/100; 
 
PP1cc(4868:20000)=PP1c(4868:20000)*0.00689475; 
PP1cc(1:4867)=0; 
PP1imp=cumtrapz(PP1cc)/100; 
 
%Now filter all of the shock sensor data using a low-pass filter at 2500 HZ 
b=fir1(50,0.05);    %50th order filter, very sharp. 
%freqz(b,1,512); %this command will plot the frequency response function 
 
S1f=filter(b,1,S1c); 
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S2f=filter(b,1,S2c); 
S3f=filter(b,1,S3c); 
 
%Remove the DC offset in the sensors 
S1avg=sum(S1f(1:2000))/2000; 
S1f=S1f-S1avg; 
S1f=S1f'; 
S2avg=sum(S2f(1:2000))/2000; 
S2f=S2f-S2avg; 
S2f=S2f'; 
S3avg=sum(S3f(1:2000))/2000; 
S3f=S3f-S3avg; 
S3f=S3f'; 
 
%Delete the source vectors 
clear P1c 
clear P2c 
clear P3c 
clear P4c 
clear P5c 
clear P6c 
clear P7c 
clear P8c 
clear PP1c 
clear S1c 
clear S2c 
clear S3c 
 
%Make time series an even number 
S1f(80001)=[]; 
S2f(80001)=[]; 
S3f(80001)=[]; 
 
%Create time array for X-axis of plots 
time1=[0:0.00001:0.19999]; 
time2=[0:0.00001:0.79999]; 
 
%Get Fourier Amplitude Spectra of all acceleration data 
Ys1=fft(S1f); 
FAMPs1=abs(Ys1(1:40000))/40000; 
Ys2=fft(S2f); 
FAMPs2=abs(Ys2(1:40000))/40000; 
Ys3=fft(S3f); 
FAMPs3=abs(Ys3(1:40000))/40000; 
FREQ=[0:39999]/40000*50000; 
 
%Start plotting sensor data 
%Flushmount #1 
figure(1) 
subplot(2,1,1) 
plot(time1,P1cc,'Color',[0 0 0]) 
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xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.05]) 
grid on 
subplot(2,1,2) 
plot(time1,P1imp,'Color',[0 0 0]) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.05]) 
grid on 
%set(gcf,'PaperPositionMode','manual') 
%set(gcf,'PaperType','usletter') 
%set(gcf,'PaperPosition',[2 3 6 7]) 
%print -f1 -r200 -dmeta A1_FM1 
 
%Flushmount #2 
figure(2) 
subplot(2,1,1) 
plot(time1,P2cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.05]) 
grid on 
subplot(2,1,2) 
plot(time1,P2imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.05]) 
grid on 
 
%Flushmount #3 
figure(3) 
subplot(2,1,1) 
plot(time1,P3cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.06]) 
grid on 
subplot(2,1,2) 
plot(time1,P3imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.06]) 
grid on 
 
%Flushmount #4 
figure(4) 
subplot(2,1,1) 
plot(time1,P4cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
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xlim([0.04,0.07]) 
grid on 
subplot(2,1,2) 
plot(time1,P4imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.07]) 
grid on 
 
%Flushmount #5 
figure(5) 
subplot(2,1,1) 
plot(time1,P5cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.05]) 
grid on 
subplot(2,1,2) 
plot(time1,P5imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.05]) 
grid on  
 
%Flushmount #6 
figure(6) 
subplot(2,1,1) 
plot(time1,P6cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.07]) 
grid on 
subplot(2,1,2) 
plot(time1,P6imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.07]) 
grid on 
 
%Flushmount #7 
figure(7) 
subplot(2,1,1) 
plot(time1,P7cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.08]) 
grid on 
subplot(2,1,2) 
plot(time1,P7imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 



359 
 

xlim([0.04,0.08]) 
grid on 
 
%Flushmount #8 
figure(8) 
subplot(2,1,1) 
plot(time1,P8cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,0.08]) 
grid on 
subplot(2,1,2) 
plot(time1,P8imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.08]) 
grid on 
 
%Pressure Pencil 
figure(9) 
subplot(2,1,1) 
plot(time1,PP1cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.04,.088]) 
grid on 
subplot(2,1,2) 
plot(time1,PP1imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.04,0.088]) 
grid on 
 
%Shock 1 Time Series 
figure(10) 
plot(time2,S1f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.04,0.43]) 
grid on 
 
%Shock 1 Fourier Spectra 
figure(11) 
plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
grid on 
 
%Shock 1 Zoom Fourier Spectra 
figure(12) 
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plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
grid on 
 
%Shock 2 Time Series 
figure(13) 
plot(time2,S2f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.04,0.44]) 
grid on 
 
%Shock 2 Fourier Spectra 
figure(14) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
grid on 
 
%Shock 2 Zoom Fourier Spectra 
figure(15) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
grid on 
 
%Shock 3 Time Series 
figure(16) 
plot(time2,S3f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.04,0.44]) 
grid on 
 
%Shock 3 Fourier Spectra 
figure(17) 
plot(FREQ,FAMPs3) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
grid on 
 
%Shock 3 Zoom Fourier Spectra 
figure(18) 
plot(FREQ,FAMPs3) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
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xlim([0,75]) 
grid on 
 
%Plot Frequency and Phase Response of Filter 
figure(19) 
freqz(b) 
grid on 
 

D.3. Script for Shot A2 in Appendix B 

This script post-processes and plots the sensor data for Shot A2 in Appendix B.  It 

requires that the A2 data file be located in the Matlab working directory. 

%This file will read in the time series data from shot A2.  The file then 
%creates a redundant time series for each curve, trim the curve and compute 
%impulse.  Finally, a double windowed plot will be made so that pressure 
%and impulse can be compared on more or less the same plot. 
 
%Load the basic variables into the workspace 
load('shotA2clip.mat'); 
 
%Create a time series from each pressure time history for integrating 
%impulse.  Use cumulative trapezoidal integration. 
P1cc(69671:80000)=P1c(69671:80000)*0.00689475; 
P1cc(1:69670)=0; 
P1imp=cumtrapz(P1cc)/100; 
 
P2cc(69721:80000)=P2c(69721:80000)*0.00689475; 
P2cc(1:69720)=0; 
P2imp=cumtrapz(P2cc)/100; 
 
P3cc(69777:80000)=P3c(69777:80000)*0.00689475; 
P3cc(1:69776)=0; 
P3imp=cumtrapz(P3cc)/100; 
 
P4cc(70130:80000)=P4c(70130:80000)*0.00689475; 
P4cc(1:70129)=0; 
P4imp=cumtrapz(P4cc)/100; 
 
P5cc(69710:80000)=P5c(69710:80000)*0.00689475; 
P5cc(1:69709)=0; 
P5imp=cumtrapz(P5cc)/100; 
 
P6cc(69900:80000)=P6c(69900:80000)*0.00689475; 
P6cc(1:69899)=0; 
P6imp=cumtrapz(P6cc)/100; 
 
P7cc(70530:80000)=P7c(70530:80000)*0.00689475; 
P7cc(1:70529)=0; 
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P7imp=cumtrapz(P7cc)/100; 
 
P8cc(70300:80000)=P8c(70300:80000)*0.00689475; 
P8cc(1:70299)=0; 
P8imp=cumtrapz(P8cc)/100; 
 
PP1cc(69830:80000)=PP1c(69830:80000)*0.00689475; 
PP1cc(1:69829)=0; 
PP1imp=cumtrapz(PP1cc)/100; 
 
%Now filter all of the shock sensor data using a low-pass filter at 2000 HZ 
b=fir1(50,0.05);    %50th order filter, very sharp. 
%freqz(b,1,512); %this command will plot the frequency response function 
 
S1f=filter(b,1,S1c); 
S2f=filter(b,1,S2c); 
 
%Remove the DC offset in the sensors 
S1avg=sum(S1f(1:2000))/2000; 
S1f=S1f-S1avg; 
S1f=S1f'; 
S2avg=sum(S2f(1:2000))/2000; 
S2f=S2f-S2avg; 
S2f=S2f'; 
 
%Delete the source vectors 
clear P1c 
clear P2c 
clear P3c 
clear P4c 
clear P5c 
clear P6c 
clear P7c 
clear P8c 
clear PP1c 
clear S1c 
clear S2c 
 
%Trim the junk at the front of all time series 
P1cc(1:50000)=[]; 
P2cc(1:50000)=[]; 
P3cc(1:50000)=[]; 
P4cc(1:50000)=[]; 
P5cc(1:50000)=[]; 
P6cc(1:50000)=[]; 
P7cc(1:50000)=[]; 
P8cc(1:50000)=[]; 
PP1cc(1:50000)=[]; 
S1f(1:50000)=[]; 
S2f(1:50000)=[]; 
P1imp(1:50000)=[]; 
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P2imp(1:50000)=[]; 
P3imp(1:50000)=[]; 
P4imp(1:50000)=[]; 
P5imp(1:50000)=[]; 
P6imp(1:50000)=[]; 
P7imp(1:50000)=[]; 
P8imp(1:50000)=[]; 
PP1imp(1:50000)=[]; 
 
%Make time series an even number 
S1f(250001)=[]; 
S2f(250001)=[]; 
 
%Create time array for X-axis of plots 
time1=[0:0.00001:0.29999]; 
time2=[0:0.00001:2.49999]; 
 
%Get Fourier Amplitude Spectra of all acceleration data 
Ys1=fft(S1f); 
FAMPs1=abs(Ys1(1:125000))/125000; 
Ys2=fft(S2f); 
FAMPs2=abs(Ys2(1:125000))/125000; 
FREQ=[0:124999]/125000*50000; 
 
%Start plotting sensor data 
%Flushmount #1 
figure(1) 
subplot(2,1,1) 
plot(time1,P1cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
plot(time1,P1imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
set(gcf,'PaperPositionMode','manual') 
set(gcf,'PaperType','usletter') 
set(gcf,'PaperPosition',[2 1 6 6]) 
print -f1 -r600 -deps A1_FM1 
 
%Flushmount #2 
figure(2) 
subplot(2,1,1) 
plot(time1,P2cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
plot(time1,P2imp) 
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xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
 
%Flushmount #3 
figure(3) 
subplot(2,1,1) 
plot(time1,P3cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
plot(time1,P3imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
 
%Flushmount #4 
figure(4) 
subplot(2,1,1) 
plot(time1,P4cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
plot(time1,P4imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
 
%Flushmount #5 
figure(5) 
subplot(2,1,1) 
plot(time1,P5cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
plot(time1,P5imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
 
%Flushmount #6 
figure(6) 
subplot(2,1,1) 
plot(time1,P6cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.19,0.24]) 
subplot(2,1,2) 
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plot(time1,P6imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.24]) 
 
%Flushmount #7 
figure(7) 
subplot(2,1,1) 
plot(time1,P7cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.2,0.25]) 
subplot(2,1,2) 
plot(time1,P7imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.25]) 
 
%Flushmount #8 
figure(8) 
subplot(2,1,1) 
plot(time1,P8cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.2,.25]) 
subplot(2,1,2) 
plot(time1,P8imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.25]) 
 
%Pressure Pencil 
figure(9) 
subplot(2,1,1) 
plot(time1,PP1cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.198,.2]) 
subplot(2,1,2) 
plot(time1,PP1imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.19,0.2]) 
 
%Shock 1 Time Series 
figure(10) 
plot(time2,S1f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.19,0.25]) 
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%Shock 1 Fourier Spectra 
figure(11) 
plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 1 Zoom Fourier Spectra 
figure(12) 
plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
 
%Shock 2 Time Series 
figure(13) 
plot(time2,S2f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.19,0.25]) 
 
%Shock 2 Fourier Spectra 
figure(14) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 2 Zoom Fourier Spectra 
figure(15) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,25]) 
 
%Plot Frequency and Phase Response of Filter 
figure(16) 
freqz(b) 
 

D.4. Script for Shot B in Appendix C 

This script post-processes and plots the sensor data for Shot B in Appendix C.  It 

requires that the B data file be located in the Matlab working directory. 

%This file will read in the time series data from shot B.  The file then 
%creates a redundant time series for each curve, trim the curve and compute 
%impulse.  Finally, a double windowed plot will be made so that pressure 
%and impulse can be compared on more or less the same plot. 
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%Load the basic variables into the workspace 
load('shotBclip.mat'); 
 
%Create a time series from each pressure time history for integrating 
%impulse.  Use cumulative trapezoidal integration. 
P1cc(30050:50000)=P1c(30050:50000)*0.00689475; 
P1cc(1:30049)=0; 
P1imp=cumtrapz(P1cc)/100; 
 
P2cc(30080:50000)=P2c(30080:50000)*0.00689475; 
P2cc(1:30079)=0; 
P2imp=cumtrapz(P2cc)/100; 
 
P3cc(30145:50000)=P3c(30145:50000)*0.00689475; 
P3cc(1:30144)=0; 
P3imp=cumtrapz(P3cc)/100; 
 
P4cc(30095:50000)=P4c(30095:50000)*0.00689475; 
P4cc(1:30094)=0; 
P4imp=cumtrapz(P4cc)/100; 
 
P5cc(30040:50000)=P5c(30040:50000)*0.00689475; 
P5cc(1:30039)=0; 
P5imp=cumtrapz(P5cc)/100; 
 
P6cc(30310:50000)=P6c(30310:50000)*0.00689475; 
P6cc(1:30309)=0; 
P6imp=cumtrapz(P6cc)/100; 
 
P7cc(30170:50000)=P7c(30170:50000)*0.00689475; 
P7cc(1:30169)=0; 
P7imp=cumtrapz(P7cc)/100; 
 
P8cc(30355:50000)=P8c(30355:50000)*0.00689475; 
P8cc(1:30354)=0; 
P8imp=cumtrapz(P8cc)/100; 
 
P9cc(30355:50000)=P9c(30355:50000)*0.00689475; 
P9cc(1:30354)=0; 
P9imp=cumtrapz(P9cc)/100; 
 
P10cc(30355:50000)=P10c(30355:50000)*0.00689475; 
P10cc(1:31254)=0; 
P10imp=cumtrapz(P10cc)/100; 
 
P11cc(30355:50000)=P11c(30355:50000)*0.00689475; 
P11cc(1:31354)=0; 
P11imp=cumtrapz(P11cc)/100; 
 
P12cc(30355:50000)=P12c(30355:50000)*0.00689475; 
P12cc(1:30354)=0; 
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P12imp=cumtrapz(P12cc)/100; 
 
%Now filter all of the shock sensor data using a low-pass filter at 2000 HZ 
b=fir1(50,0.05);    %50th order filter, very sharp. 
%freqz(b,1,512); %this command will plot the frequency response function 
 
S1f=filter(b,1,S1c); 
S2f=filter(b,1,S2c); 
S3f=filter(b,1,S3c); 
S4f=filter(b,1,S4c); 
S5f=filter(b,1,S5c); 
 
%Remove the DC offset in the sensors 
S1avg=sum(S1f(1:2000))/2000; 
S1f=S1f-S1avg; 
S1f=S1f'; 
S2avg=sum(S2f(1:2000))/2000; 
S2f=S2f-S2avg; 
S2f=S2f'; 
S3avg=sum(S3f(1:2000))/2000; 
S3f=S3f-S3avg; 
S3f=S3f'; 
S4avg=sum(S4f(1:2000))/2000; 
S4f=S4f-S4avg; 
S4f=S4f'; 
S5avg=sum(S5f(1:2000))/2000; 
S5f=S5f-S5avg; 
S5f=S5f'; 
 
%Delete the source vectors 
clear P1c 
clear P2c 
clear P3c 
clear P4c 
clear P5c 
clear P6c 
clear P7c 
clear P8c 
clear P9c 
clear P10c 
clear P11c 
clear P12c 
clear S1c 
clear S2c 
clear S3c 
clear S4c 
clear S5c 
 
%Make time series an even number 
S1f(30001)=[]; 
S2f(30001)=[]; 
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S3f(30001)=[]; 
S4f(30001)=[]; 
S5f(30001)=[]; 
 
%Get Fourier Amplitude Spectra of all acceleration data 
Ys1=fft(S1f); 
FAMPs1=abs(Ys1(1:150000))/150000; 
Ys2=fft(S2f); 
FAMPs2=abs(Ys2(1:150000))/150000; 
Ys3=fft(S3f); 
FAMPs3=abs(Ys3(1:150000))/150000; 
Ys4=fft(S4f); 
FAMPs4=abs(Ys4(1:150000))/150000; 
Ys5=fft(S5f); 
FAMPs5=abs(Ys5(1:150000))/150000; 
 
FREQ=[0:149999]/150000*50000; 
 
%Trim the excess time in front of time series 
P1cc(1:20000)=[]; 
P2cc(1:20000)=[]; 
P3cc(1:20000)=[]; 
P4cc(1:20000)=[]; 
P5cc(1:20000)=[]; 
P6cc(1:20000)=[]; 
P7cc(1:20000)=[]; 
P8cc(1:20000)=[]; 
P9cc(1:20000)=[]; 
P10cc(1:20000)=[]; 
P11cc(1:20000)=[]; 
P12cc(1:20000)=[]; 
P1imp(1:20000)=[]; 
P2imp(1:20000)=[]; 
P3imp(1:20000)=[]; 
P4imp(1:20000)=[]; 
P5imp(1:20000)=[]; 
P6imp(1:20000)=[]; 
P7imp(1:20000)=[]; 
P8imp(1:20000)=[]; 
P9imp(1:20000)=[]; 
P10imp(1:20000)=[]; 
P11imp(1:20000)=[]; 
P12imp(1:20000)=[]; 
 
S1f(1:20000)=[]; 
S2f(1:20000)=[]; 
S3f(1:20000)=[]; 
S4f(1:20000)=[]; 
S5f(1:20000)=[]; 
 
%Create time array for X-axis of plots 
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time1=[0:0.00001:0.29999]; 
time2=[0:0.00001:2.79999]; 
 
%Start plotting sensor data 
%Flushmount #1 
figure(1) 
subplot(2,1,1) 
plot(time1,P1cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.11]) 
subplot(2,1,2) 
plot(time1,P1imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.11]) 
set(gcf,'PaperPositionMode','manual') 
set(gcf,'PaperType','usletter') 
set(gcf,'PaperPosition',[2 1 6 6]) 
print -f1 -r600 -deps A1_FM1 
 
%Flushmount #2 
figure(2) 
subplot(2,1,1) 
plot(time1,P2cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.12]) 
subplot(2,1,2) 
plot(time1,P2imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.12]) 
 
%Flushmount #3 
figure(3) 
subplot(2,1,1) 
plot(time1,P3cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.105]) 
subplot(2,1,2) 
plot(time1,P3imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.105]) 
 
%Flushmount #4 
figure(4) 
subplot(2,1,1) 
plot(time1,P4cc) 
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xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.12]) 
subplot(2,1,2) 
plot(time1,P4imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.12]) 
 
%Flushmount #5 
figure(5) 
subplot(2,1,1) 
plot(time1,P5cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.12]) 
subplot(2,1,2) 
plot(time1,P5imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.12]) 
 
%Flushmount #6 
figure(6) 
subplot(2,1,1) 
plot(time1,P6cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.15]) 
subplot(2,1,2) 
plot(time1,P6imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.15]) 
 
%Flushmount #7 
figure(7) 
subplot(2,1,1) 
plot(time1,P7cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.15]) 
subplot(2,1,2) 
plot(time1,P7imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.15]) 
 
%Flushmount #8 
figure(8) 
subplot(2,1,1) 
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plot(time1,P8cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.15]) 
subplot(2,1,2) 
plot(time1,P8imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.15]) 
 
%Flushmount #9 
figure(9) 
subplot(2,1,1) 
plot(time1,P9cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.15]) 
subplot(2,1,2) 
plot(time1,P9imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.15]) 
 
%Flushmount #10 
figure(10) 
subplot(2,1,1) 
plot(time1,P10cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.2]) 
subplot(2,1,2) 
plot(time1,P10imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.2]) 
 
%Flushmount #11 
figure(11) 
subplot(2,1,1) 
plot(time1,P11cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.2]) 
subplot(2,1,2) 
plot(time1,P11imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.2]) 
 
%Flushmount #12 
figure(12) 
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subplot(2,1,1) 
plot(time1,P12cc) 
xlabel('Time (s)') 
ylabel('Pressure (MPa)') 
xlim([0.095,0.15]) 
subplot(2,1,2) 
plot(time1,P12imp) 
xlabel('Time (s)') 
ylabel('Impulse (MPa ms)') 
xlim([0.095,0.15]) 
 
%Shock 1 Time Series 
figure(13) 
plot(time2,S1f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.095,0.49]) 
 
%Shock 1 Fourier Spectra 
figure(14) 
plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 1 Zoom Fourier Spectra 
figure(15) 
plot(FREQ,FAMPs1) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
 
%Shock 2 Time Series 
figure(16) 
plot(time2,S2f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.095,0.49]) 
 
%Shock 2 Fourier Spectra 
figure(17) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 2 Zoom Fourier Spectra 
figure(18) 
plot(FREQ,FAMPs2) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
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xlim([0,75]) 
 
%Shock 3 Time Series 
figure(19) 
plot(time2,S3f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.095,0.49]) 
 
%Shock 3 Fourier Spectra 
figure(20) 
plot(FREQ,FAMPs3) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 3 Zoom Fourier Spectra 
figure(21) 
plot(FREQ,FAMPs3) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
 
%Shock 4 Time Series 
figure(22) 
plot(time2,S4f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
xlim([0.095,0.49]) 
 
%Shock 4 Fourier Spectra 
figure(23) 
plot(FREQ,FAMPs4) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 4 Zoom Fourier Spectra 
figure(24) 
plot(FREQ,FAMPs4) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
 
%SHOCK 5 RECORDED NO SIGNAL, PLOTTED ONLY FOR COMPLETENESS 
 
%Shock 5 Time Series 
figure(25) 
plot(time2,S5f) 
xlabel('Time (s)') 
ylabel('Acceleration (g)') 
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xlim([0.095,0.49]) 
 
%Shock 5 Fourier Spectra 
figure(26) 
plot(FREQ,FAMPs5) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,500]) 
 
%Shock 5 Zoom Fourier Spectra 
figure(27) 
plot(FREQ,FAMPs5) 
xlabel('Frequency (Hz)') 
ylabel('Fourier Amplitude (g)') 
xlim([0,75]) 
 
%Plot Frequency and Phase Response of Filter 
figure(28) 
freqz(b) 
 

D.5. Script for Figures 2.23 and 2.24 

This script generates the plots of vertical pressure/impulse ratio versus height above blast 

chamber floor shown in Figures 2.23 and 2.24. 

y1=[47,142,213]; 
imp11=[1,.54,.29]; 
p1=[100,42.8,14.9]; 
y2=[47,142,213]; 
imp2=[1,0.81,0.48]; 
p2=[100,90.9,29.5]; 
y3=[44.5,158.8]; 
imp3=[1,0.49]; 
p3=[100,13.6]; 
 
imp1=imp1*100 
imp2=imp2*100 
imp3=imp3*100 
 
hold on 
plot(imp1,y1) 
plot(imp2,y2) 
plot(imp3,y3,'*') 
 
hold on 
plot(p1,y1) 
plot(p2,y2) 
plot(p3,y3) 
 
 



376 
 

D.6. Script for Figures 5.13 through 5.18 

This script post processes the CTH 3D simulations to generate pressure and 

impulse contours over Chamber B walls.  This script produces Figures 5.13 through 5.18. 

%Process the pressure time histories from the 3D CTH simulation. 
%Extract the pressure vectors after importing them from the HSCTH file: 
TIME=data(:,1); 
%first subtract the initial reading from all sensors, then convert to psi, 
%then integrate 
k=0 
for j=14:4:378 
    k=k+1; 
    P(:,k)=(data(:,j)-data(1,j))/68947.5; 
end 
 
%convert P to MPa 
P=P*0.00689475729; 
 
for j=1:1:92 
    imp(:,j)=cumtrapz(TIME,P(:,j)); 
end 
 
%make it MPa - ms 
imp=imp*1000; 
 
%GENERATE LOCATIONS OF SENSORS 
%Blast chamber sensors 
LOC(1,1:3)=[500,45,428];    %*P1 
LOC(2,1:3)=[500,159,428];   %*P2 
LOC(3,1:3)=[500,350,428];  %*P3 
LOC(4,1:3)=[500,159,428];  %*P4 
LOC(5,1:3)=[500,45,428];  %*P5 
LOC(6,1:3)=[248,160,0];   %*P6 
LOC(7,1:3)=[500,160,212];   %*P7 
%Wall 1 midheight horizontal profile 
LOC(8,1:3)=[500,175,0]; 
LOC(9,1:3)=[500,175,50]; 
LOC(10,1:3)=[500,175,100]; 
LOC(11,1:3)=[500,175,150]; 
LOC(12,1:3)=[500,175,200]; 
LOC(13,1:3)=[500,175,250]; 
LOC(14,1:3)=[500,175,300]; 
LOC(15,1:3)=[500,175,350]; 
LOC(16,1:3)=[500,175,400]; 
LOC(17,1:3)=[500,175,450]; 
LOC(18,1:3)=[500,175,500]; 
%Wall 1 central vertical profile 
LOC(19,1:3)=[500,0,236]; 
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LOC(20,1:3)=[500,50,236]; 
LOC(21,1:3)=[500,100,236]; 
LOC(22,1:3)=[500,150,236]; 
LOC(23,1:3)=[500,200,236]; 
LOC(24,1:3)=[500,250,236]; 
LOC(25,1:3)=[500,300,236]; 
LOC(26,1:3)=[500,350,236]; 
%Wall 1 quarter point vertical profile 
LOC(27,1:3)=[500,0,118]; 
LOC(28,1:3)=[500,50,118]; 
LOC(29,1:3)=[500,100,118]; 
LOC(30,1:3)=[500,150,118]; 
LOC(31,1:3)=[500,200,118]; 
LOC(32,1:3)=[500,250,118]; 
LOC(33,1:3)=[500,300,118]; 
LOC(34,1:3)=[500,350,118]; 
%Wall 1 quarter point vetical profile 
LOC(35,1:3)=[500,0,354]; 
LOC(36,1:3)=[500,50,354]; 
LOC(37,1:3)=[500,100,354]; 
LOC(38,1:3)=[500,150,354]; 
LOC(39,1:3)=[500,200,354]; 
LOC(40,1:3)=[500,250,354]; 
LOC(41,1:3)=[500,300,354]; 
LOC(42,1:3)=[500,350,354]; 
%Wall 2 horizontal profile 
LOC(43,1:3)=[0,175,0]; 
LOC(44,1:3)=[50,175,0]; 
LOC(45,1:3)=[100,175,0]; 
LOC(46,1:3)=[150,175,0]; 
LOC(47,1:3)=[200,175,0]; 
LOC(48,1:3)=[250,175,0]; 
LOC(49,1:3)=[300,175,0]; 
LOC(50,1:3)=[350,175,0]; 
LOC(51,1:3)=[400,175,0]; 
LOC(52,1:3)=[450,175,0]; 
LOC(53,1:3)=[500,175,0]; 
%Wall 2 vertical profile 
LOC(54,1:3)=[248,0,0]; 
LOC(55,1:3)=[248,50,0]; 
LOC(56,1:3)=[248,100,0]; 
LOC(57,1:3)=[248,150,0]; 
LOC(58,1:3)=[248,200,0]; 
LOC(59,1:3)=[248,250,0]; 
LOC(60,1:3)=[248,300,0]; 
LOC(61,1:3)=[248,350,0]; 
%Wall 2 vertical quarter point profile 
LOC(62,1:3)=[372,0,0]; 
LOC(63,1:3)=[372,50,0]; 
LOC(64,1:3)=[372,100,0]; 
LOC(65,1:3)=[372,150,0]; 
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LOC(66,1:3)=[372,200,0]; 
LOC(67,1:3)=[372,250,0]; 
LOC(68,1:3)=[372,300,0]; 
LOC(69,1:3)=[372,350,0]; 
%wall 3 points along midheight 
LOC(70,1:3)=[500,175,0]; 
LOC(71,1:3)=[500,175,50]; 
LOC(72,1:3)=[500,175,100]; 
LOC(73,1:3)=[500,175,200]; 
LOC(74,1:3)=[500,175,300]; 
LOC(75,1:3)=[500,175,400]; 
LOC(76,1:3)=[500,175,500]; 
%wall 3 vertical profile at sensors 
LOC(77,1:3)=[500,0,428]; 
LOC(78,1:3)=[500,50,428]; 
LOC(79,1:3)=[500,100,428]; 
LOC(80,1:3)=[500,150,428]; 
LOC(81,1:3)=[500,200,428]; 
LOC(82,1:3)=[500,250,428]; 
LOC(83,1:3)=[500,300,428]; 
LOC(84,1:3)=[500,350,428]; 
%wall 3 vertical profile at quarter point 
LOC(85,1:3)=[500,0,214]; 
LOC(86,1:3)=[500,50,214]; 
LOC(87,1:3)=[500,100,214]; 
LOC(88,1:3)=[500,150,214]; 
LOC(89,1:3)=[500,200,214]; 
LOC(90,1:3)=[500,250,214]; 
LOC(91,1:3)=[500,300,214]; 
LOC(92,1:3)=[500,350,214]; 
 
%Create vectors listing which sensors is on which wall 
W3=[1 2 7 8:42 70:92]; 
W1=[1 2 7 8:42 70:92]; 
W2=[6 43:69]; 
 
%Generate a matrix for each wall providing x, y, z, pressure, and impulse 
%Wall 3 
num=length(W3); 
for k=1:1:num 
    N=W3(k); 
    Wall3(k,1:3)=LOC(N,1:3); 
    Wall3(k,4)=max(P(:,N)); 
    Wall3(k,5)=max(imp(:,N)); 
end 
%Wall 2 
num=length(W2); 
for k=1:1:num 
    N=W2(k); 
    Wall2(k,1:3)=LOC(N,1:3); 
    Wall2(k,4)=max(P(:,N)); 
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    Wall2(k,5)=max(imp(:,N)); 
end 
%Replicate the wall 2 quarter point measurements which should be locations 
%62-69 
Wall2(29:36,1:5)=Wall2(21:28,1:5); 
Wall2(29:36,1)=Wall2(29:36,1)-248; 
%Wall 1 
num=length(W1); 
for k=1:1:num 
    N=W1(k); 
    Wall1(k,1:3)=LOC(N,1:3); 
    Wall1(k,4)=max(P(:,N)); 
    Wall1(k,5)=max(imp(:,N)); 
end 
 
%Create a grid and use the interpolation/extrapolation features to create 
%contour plots of pressure and impulse across all 3 walls 
%Wall 2 
W2x=Wall2(:,1); 
W2y=Wall2(:,2); 
W2z(1:length(W2x))=[2]; 
W2p=Wall2(:,4); 
W2i=Wall2(:,5); 
x2=[0:4:500]; 
y2=[0:4:350]; 
[X2,Y2]=meshgrid(x2,y2); 
P2=griddata(W2x,W2y,W2p,X2,Y2,'v4'); 
I2=griddata(W2x,W2y,W2i,X2,Y2,'v4'); 
LOC2=[W2x W2y]; 
clear W2p W2i x2 y2 
%plot pressure 
figure(1) 
[C,h]=contour(X2,Y2,P2) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #3 (cm)') 
ylabel('Height Above Chamber Floor (cm)') 
%plot impulse 
figure(2) 
[C,h]=contour(X2,Y2,I2) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #3 (cm)') 
ylabel('Height Above Chamber Floor (cm)') 
 
%Wall 1 
W3x=Wall3(:,3); 
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W3y=Wall3(:,2); 
W3p=Wall3(:,4); 
W3i=Wall3(:,5); 
x3=[0:4:500]; 
y3=[0:4:350]; 
[X3,Y3]=meshgrid(x3,y3); 
P3=griddata(W3x,W3y,W3p,X3,Y3,'v4'); 
I3=griddata(W3x,W3y,W3i,X3,Y3,'v4'); 
LOC3=[W3x W3y]; 
clear W3p W3i x3 y3 
%plot pressure 
figure(3) 
[C,h]=contour(X3,Y3,P3) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC3(:,1),LOC3(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #2 (cm)') 
ylabel('Height Above Chamber Floor (cm)') 
xlim([0 472]) 
%plot impulse 
figure(4) 
[C,h]=contour(X3,Y3,I3) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC3(:,1),LOC3(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #2 (cm)') 
ylabel('Height Above Chamber Floor (cm)') 
xlim([0 472]) 
 
%Wall 3 
W3x=Wall3(:,3); 
W3y=Wall3(:,2); 
W3p=Wall3(:,4); 
W3i=Wall3(:,5); 
x3=[0:4:500]; 
y3=[0:4:350]; 
[X3,Y3]=meshgrid(x3,y3); 
P3=griddata(W3x,W3y,W3p,X3,Y3,'v4'); 
I3=griddata(W3x,W3y,W3i,X3,Y3,'v4'); 
LOC3=[W3x W3y]; 
clear W3p W3i x3 y3 
%plot pressure 
figure(5) 
[C,h]=contour(X3,Y3,P3) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC3(:,1),LOC3(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #2 (cm)') 
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ylabel('Height Above Chamber Floor (cm)') 
xlim([0 428]) 
%plot impulse 
figure(6) 
[C,h]=contour(X3,Y3,I3) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
plot(LOC3(:,1),LOC3(:,2),'ko','MarkerSize',4); 
xlabel('Distance From Wall #2 (cm)') 
ylabel('Height Above Chamber Floor (cm)') 
xlim([0 428]) 
 
 

D.7. Script for Wall #3 

This script generates the KLM factors for one way spanning members.  It also 

computes elastic deflections, and resistance function values.  The script as included here 

is specifically for Wall #3. 

%%%%%%%%%%%%BEGIN INPUTS%%%%%%%%%%%%%%%%%%%%%% 
%Process the blast load parameters.  This comes from a vector of data 
%reduced from the 2D loading profiles shown in Section 5.7. 
%Input a vector "y" which is the position from the top of the wall to the 
%bottom.  Input a vector "z" which is the normalized impulse. 
 
%Basic Structural Dimensions 
L1=35.98;   %inches, height of bottom part of wall up to window bottom 
L2=108.036;   %inches, total wall height minus L1 
hw=84.02;   %inches, height of window opening 
numit=2000;   %Number of segments into which to divide the wall 
R=0.4822;    %Ratio of solid width to total width of wall section 
E=614e3;   %psi, modulus of elasticity 
I=144;    %in^4, wall moment of inertia per unit width, not including window openings 
t=12;    %inches, thickness of wall 
ft=250;     %psi, tensile strength of masonry normal to bed joints 
P=0;    %lbs per unit width applied axial surcharge.  Positive = compression. 
A=12;   %square inches of cross section per unit width 
mass=(115+25)/144/32.2/12;   %aerial mass in inches per second squared 
%%%%%%%%%%%ND INPUTS%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%BEGIN COMPUTATIONS%%%%%%%%%%%%%%%%%% 
%Divide the wall into even segments 
dx=(L1+L2)/numit; 
x(1)=0; 
for j=2:1:numit 
    x(j)=x(j-1)+dx; 
end 
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 %Create a vector providing the moment of inertia of the wall section at 
 %each location along x.  Allows inclusion of non-uniform stiffness. 
 MOMI(1)=I; 
 for j=2:1:numit 
     if x(j)<=(L2-hw) 
         MOMI(j)=I; 
     end 
     if x(j)<=L2 
         if x(j)>(L2-hw) 
             MOMI(j)=R*I; 
         end 
     end 
     if x(j)>L2 
         MOMI(j)=I; 
     end 
 end 
 
%Create a normalized moment of inertia vector which will serve to reduce 
%the applied load in areas with window openings 
 
preduce=MOMI/max(MOMI); 
 
%Generate the loading vector by interpolating the supplied z vector 
 for j=1:1:numit 
     p(j)=interp1(y,z,x(j))*preduce(j); 
 end 
  
%Find the centroid of the shear curve and thus also compute the top and 
%bottom wall reactions, which allow the corrected shear and moment curves 
%to be generated. 
 for j=1:1:numit 
     V=cumtrapz(x,p); 
     R1=V(j); 
     V=V-R1; 
     M=cumtrapz(x,V); 
     if max(M)<=0 
         cgv=x(j);  %this is the x location of the shear curve centroid 
         Rbot=V(numit); 
         Rtop=abs(V(1)); 
         V=V-Rtop;  %Created corrected shear curve 
         break 
     end 
 end 
  
  %Create the M/EI curve for subsequent integrations. 
 for j=1:1:numit 
     c(j)=M(j)/(E*MOMI(j)); 
 end 
  
 %Create the rotation curve 
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  rot=cumtrapz(x,c); 
 %The lefthand and righthand support rotations can be determined knowing that the 
 %deflection at x=L1+L2 must equal 0. 
 for j=1:1:numit 
     rot=rot-rot(j); 
     defl=cumtrapz(x,rot); 
     if defl(numit)>=0 
         break 
     end 
     xmax=x(j); 
 end 
 
%find the maximum tensile stress and its location.   
sratio(1)=[0]; 
for j=2:1:length(x) 
    mcrack=M(j); 
    stress(j)=abs(mcrack)*(t/2)/MOMI(j); 
    sratio(j)=stress(j)/(ft+P/A); 
end 
%Take advantage of the fact that the structure is linear and all results 
%can be scaled using the actual to cracking stress ratio 
smax=max(stress); 
SR=smax/(ft+P/A); 
pcrack=p/SR; 
stress=stress/SR; 
 
%Scale up the deflected shape and moment using the stress ratio because the 
%deformation should be linear with respect to loading 
defl=defl/SR; 
M=M/SR; 
 
%compute deflection at assumed height of crack 
deflcrack=defl(round(L2/dx)); 
deflmax=max(defl); 
%compute moment at assumed crack height 
mcrack=M(round(L2/dx)); 
%check stress at assumed crack height 
fcrack=abs(mcrack)*t/2/(R*I); 
R1=max(cumtrapz(x,pcrack));   %elastic resistance, total load on wall in lbs 
X1=deflcrack;    %deflection at onset of tensile cracking, inches 
K1=R1/X1;   %elastic stiffness at the cracking load as observed at the location of the crack, lb/in 
%%%%%%%%%END CRACKING LOAD DEFL CALC%%%%%%%%%%%%% 
 
%%%%%%%%%%ELASTIC TRANSFORMATION FACTORS%%%%%%%%%% 
%Given the complicated loading and deflected shape, use numerical 
%integration to compute the elastic KL, KM, and KLM factors. 
  
 %Create a mass vector 
 MASS(1)=mass; 
 for j=2:1:numit 
     if x(j)<=(L2-hw) 
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         MASS(j)=mass; 
     end 
     if x(j)<=L2 
         if x(j)>(L2-hw) 
             MASS(j)=R*mass; 
         end 
     end 
     if x(j)>L2 
         MASS(j)=mass; 
     end 
 end 
  
 %Total mass 
 masstot=max(cumtrapz(x,MASS)); %lbs/in 
  
 %Normalize the deflection function to the point being tracked 
 deflnorm=defl/X1; 
  
 %compute the KM function 
 for j=1:1:numit 
     f1(j)=MASS(j)*(deflnorm(j))^2; 
 end 
 KMe=max(cumtrapz(x,f1))/masstot; 
  
 %compute the KL function 
  for j=1:1:numit 
     f1(j)=pcrack(j)*(deflnorm(j)); 
 end 
 KLe=max(cumtrapz(x,f1))/R1; 
 
KLMe=KMe/KLe; 
 
%compute the KR function 
  for j=1:1:numit 
     f1(j)=1*(deflnorm(j)); 
 end 
 KRe=max(cumtrapz(x,f1))/(L1+L2); 
 
%%%%%END ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%% 
 
%%%%%POST ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%% 
% The wall's post elastic deflection has its maximum value at x=L2. 
 
m1=1/L2;   %slope of the curve between x=0 and x=L2 
m2=1/L1;   %slope of curve between x=L2 and x=L1+L2 
for j=1:1:numit 
    if x(j)<=L2 
        crackdefl(j)=x(j)*m1; 
    elseif x(j)>L2 
        crackdefl(j)=crackdefl(j-1)-m2*dx; 
    end 



385 
 

end 
 
%compute the KM function 
 for j=1:1:numit 
     f1(j)=MASS(j)*(crackdefl(j))^2; 
 end 
 KMc=max(cumtrapz(x,f1))/masstot 
  
 %compute the KL function 
  for j=1:1:numit 
     f1(j)=pcrack(j)*(crackdefl(j)); 
 end 
KLc=max(cumtrapz(x,f1))/R1; 
 
KLMc=KMc/KLc; 
 
%compute the KR function 
  for j=1:1:numit 
     f1(j)=1*(crackdefl(j)); 
 end 
KRc=max(cumtrapz(x,f1))/(L1+L2); 
 
%%%%%END POST ELASTIC TRANSFORMATION FACTORS%%%%%%%% 
 
%%%%%ARCHING RESISTANCE FUNCTION CALULATIONS%%%%%%%% 
%If the load were uniform, it would be possible to develop a closed form 
%solution for the arching resistance as is reported in Chapter 6.  Due to 
%nonuniformity, use the equations of moment equilibrium about points of  
%rocking to solve for the maximum total resultant the wall can withstand.   
%Note that the equilibrium equations do not include wall self weight. 
 
%create a normalized load vector 
pnorm=p/max(p); 
n=round(L2/dx); 
%normalized total force for each component 
ftop=max(cumtrapz(x(1:n),pnorm(1:n))); 
fbot=max(cumtrapz(x(n:numit),pnorm(n:numit))); 
%Find the top half centroid 
for j=2:1:n 
    if max(cumtrapz(x(1:j),pnorm(1:j)))>=ftop/2 
        cgtop=x(j); 
        break 
    end 
end 
%Find the bottom half centroid 
for j=n+1:1:numit 
    if max(cumtrapz(x(n:j),pnorm(n:j)))>=fbot/2 
        cgbot=x(j); 
        break 
    end 
end 
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%Compute wall part weights 
Mtop=max(cumtrapz(x(1:n),MASS(1:n)));  
Mbot=masstot-Mtop; 
 
Wtop=Mtop*32.2*12; 
Wbot=Mbot*32.2*12; 
 
%Top half equilibrium 
Ftop=(Wtop+P)*(t-X1)/cgtop; 
%factor up the normalized load according to this result 
ratio=Ftop/ftop; 
R2top=max(cumtrapz(x,ratio*pnorm)); 
 
%Bottom half equilibrium 
Fbot=(Wbot+P)*(t-X1)/(L2+L1-cgbot); 
%factor up the normalized load according to this result 
ratio=Fbot/fbot; 
R2bot=max(cumtrapz(x,ratio*pnorm)); 
 
%Determine maximum arching resistance 
R2=min(R2top,R2bot); 
%%%%%%%END ARCHING RESISTANCE FUNCTION CALCULATION%%%%% 
 
Pmax=max(cumtrapz(x,p)); 
 
%%%%%%%CREATE ANALYSIS REPORT%%%%%%%%%%%%%%%%%%%% 
R1 
X1 
KLMe 
R2 
KLMc 
Pmax 
%%%%%%%END REPORT%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D.8. Script for Wall #1 ESDOF Factors 

This script performs the numerical integration of deformed shapes to compute the 

elastic and post-elastic ESDOF factors for Wall #1.  The program requires input files 

containing data from an ANSYS FEA model.  This script generates the post-elastic 

deflected shape based on standard SBEDS assumptions. 

%This program will compute the transformation factors for a two dimensional  
%structure given inputs that define the loading and deflected shape.  The 
%following computations assume a uniform distribution of mass and stiffness 
%THIS PROGRAM IS SPECIFICALLY FOR WALL#1 
 
%%%%%%%%BEGIN INPUTS%%%%%%%%%%%%%%%%%% 
NODELOC=NODELOC*2.54; 
DISPSHAPE=DISPSHAPE*2.54; 
L=max(NODELOC(:,1)); 
H=max(NODELOC(:,2)); 
amass=46.115/(12*12*2.54*2.54);   %kg per square centimeter, aerial mass, any constant will 
work... 
totalmass=amass*L*H; 
ymeet=min(104.8*2.54,H);   %distance from base where yield lines meet, this 
%is derived from the SBEDS methodology manual, Table 4-4 
 
%Grid the deflected shape from the FEA model node location matrix (NODELOC) 
dx=NODELOC(5,1)-NODELOC(4,1);  %grid spacing in x direction for nodes 
dy=NODELOC(57,2)-NODELOC(56,2);  %grid spacing in y direction for nodes 
xvect=[0:dx:L]; 
yvect=[0:dy:H]; 
[X,Y]=meshgrid(xvect,yvect); 
%Grid the FEA displaced shape vecotr (DISPSHAPE) 
Z=griddata(NODELOC(:,1),NODELOC(:,2),DISPSHAPE,X,Y,'v4'); 
%convert the grid to metric for use with the applied loading 
 
%scale the loading function slightly to encompass the deflected shape so 
%that the interpolation algorithm will function 
scalex=max(max(X))/max(max(X1))+0.001; 
scaley=max(max(Y))/max(max(Y1))+0.001; 
X1=X1*scalex; 
Y1=Y1*scaley; 
 
%normalize the deflected shape at the point where displacement is tracked 
%in the SDOF model - i.e midspan in both directions for this case 
dispcrack=interp2(X,Y,Z,L/2,H); 
Z=Z/dispcrack; 
%%%%%%%%%%END INPUTS%%%%%%%%%%%%%%%%%% 
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%%%%%%%ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%%%%% 
%Given the complicated loading and deflected shape, use numerical 
%integration to compute the elastic KL, KM, and KLM factors. 
%assumes constant mass. 
 
%compute the KM factor: 
%square every entry in the deflected shape matrix to get the mass factor 
rows=length(Z(:,1)); 
cols=length(Z(1,:)); 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            Zsq(k,j)=Z(k,j)^2*amass*(dx*dy)/2; 
        else 
            Zsq(k,j)=Z(k,j)^2*amass*(dx*dy); 
    end 
    end 
end 
 
KMe=sum(sum(Zsq))/totalmass; 
 
Lsum=0; 
%compute the KL factor: 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZL(k,j)=Z(k,j)*interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy)/2; 
            Lsum=Lsum+interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy)/2; 
    else 
            ZL(k,j)=Z(k,j)*interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy); 
            Lsum=Lsum+interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy); 
    end 
    end 
end 
KLe=sum(sum(ZL))/Lsum; 
KLMe=KMe/KLe 
 
%compute the KR factor: 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZL(k,j)=Z(k,j)*1*(dx*dy)/2; 
    else 
            ZL(k,j)=Z(k,j)*1*(dx*dy); 
    end 
    end 
end 
rsum=L*H*1; 
KRe=sum(sum(ZL))/rsum; 
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%%%%%%%%END  ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%% 
 
%%%%%%%%POST ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%% 
%Wall is assumed to crack along classic yield line pattern from SBEDS 
%manual 
 
%yield line slope: 
m=ymeet/(L/2); 
 
%Create the deflected shape: 
rows=length(X(:,1)); 
cols=length(X(1,:)); 
for j=1:1:cols 
    for k=1:1:rows 
        if (Y(k,j)>=X(k,j)*m)&&(X(k,j)<=L/2)  %Upper Left 
        Zcrack(k,j)=(X(k,j)/(L/2)); 
        end 
        if (Y(k,j)>=ymeet-m*(X(k,j)-L/2))&&(X(k,j)>L/2);  %Upper Right 
        Zcrack(k,j)=(1-(X(k,j)-L/2)/(L/2)); 
        end 
        if (Y(k,j)<ymeet-m*(X(k,j)-L/2))&&(Y(k,j)<X(k,j)*m)  %Bottom Middle 
        Zcrack(k,j)=Y(k,j)/(H-(H-ymeet)); 
        end 
    end 
end 
 
%compute the Km factor: 
%square every entry in the deflected shape matrix 
 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            Zsqc(k,j)=Zcrack(k,j)^2*amass*(dx*dy)/2; 
        else 
            Zsqc(k,j)=Zcrack(k,j)^2*amass*(dx*dy); 
    end 
    end 
end 
KMc=sum(sum(Zsqc))/totalmass; 
 
Lsum=0; 
 
%compute the load factor 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZLc(k,j)=Zcrack(k,j)*interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy)/2; 
            Lsum=Lsum+interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy)/2; 
    else 
            ZLc(k,j)=Zcrack(k,j)*interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy); 
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            Lsum=Lsum+interp2(X1,Y1,I1,X(k,j),Y(k,j))*(dx*dy); 
    end 
    end 
end 
KLc=sum(sum(ZLc))/Lsum; 
KLMc=KMc/KLc 
 
%compute the resistance factor 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZLc(k,j)=Zcrack(k,j)*1*(dx*dy)/2; 
    else 
            ZLc(k,j)=Zcrack(k,j)*1*(dx*dy); 
    end 
    end 
end 
rsum=H*L*1; 
KRc=sum(sum(ZLc))/rsum; 
 
%%%%%%%%END POST ELASTIC TRANSFORMATION FACTORS%%%%%%%%%% 
 
%plot elastic deflected shape. 
figure(1) 
[C,h]=contour(X,Y,Z,[0.2 0.4 0.6 0.8 1]) 
clabel(C,h,'LabelSpacing',200) 
colormap('bone') 
hold on 
%plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',2); 
xlabel('X (cm)') 
ylabel('Y (cm)') 
xlim([0 L]) 
ylim([0 H]) 
 
%plot plastic deflected shape. 
figure(2) 
[C,h]=contour(X,Y,Zcrack,[0.2 0.4 0.6 0.8 1]) 
clabel(C,h,'LabelSpacing',200) 
colormap('bone') 
hold on 
%plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',2); 
xlabel('X (cm)') 
ylabel('Y (cm)') 
xlim([0 L]) 
ylim([0 H]) 
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D.9. Script for Wall #2 ESDOF Factors 

This script performs the numerical integration of deformed shapes to compute the 

elastic and post-elastic ESDOF factors for Wall #2.  The program requires input files 

containing data from an ANSYS FEA model.  This script generates the post-elastic 

deflected shape based on standard SBEDS assumptions. 

%This program will compute the transformation factors for a two dimensional  
%structure given inputs that define the loading and deflected shape.  The 
%following computations assume a uniform distribution of mass and stiffness 
%THIS PROGRAM IS SPECIFICALLY FOR WALL#2 
 
%%%%%%%%%%%%BEGIN INPUTS%%%%%%%%%%%%%%%%%%% 
NODELOC=NODELOC*2.54; 
DISPSHAPE=DISPSHAPE*2.54; 
L=max(NODELOC(:,1)); 
H=max(NODELOC(:,2)); 
amass=63.5/(12*12*2.54*2.54);   %kg per square centimeter, aerial mass, any constant will 
work... 
totalmass=amass*L*H; 
xmeet=min(83.52*2.54,L/2);   %distance from vertical edges where yield lines meet, this 
%is derived from the SBEDS methodology manual, Table 4-4 
 
%Grid the deflected shape from the FEA model node location matrix (NODELOC) 
dx=NODELOC(5,1)-NODELOC(4,1);  %grid spacing in x direction for nodes 
dy=NODELOC(57,2)-NODELOC(56,2);  %grid spacing in y direction for nodes 
xvect=[0:dx:L]; 
yvect=[0:dy:H]; 
[X,Y]=meshgrid(xvect,yvect); 
%Grid the FEA displaced shape vecotr (DISPSHAPE) 
Z=griddata(NODELOC(:,1),NODELOC(:,2),DISPSHAPE,X,Y,'v4'); 
%convert the grid to metric for use with the applied loading 
 
%scale the loading function slightly to encompass the deflected shape so 
%that the interpolation algorithm will function 
scalex=max(max(X))/max(max(X2))+0.001; 
scaley=max(max(Y))/max(max(Y2))+0.001; 
X2=X2*scalex; 
Y2=Y2*scaley; 
 
%normalize the deflected shape at the point where displacement is tracked 
%in the SDOF model - i.e midspan in both directions for this case 
dispcrack=interp2(X,Y,Z,L/2,H/2); 
Z=Z/dispcrack; 
%%%%%%%%%%%%END INPUTS%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%ELASTIC TRANSFORMATION FACTORS%%%%%%% 
%Given the complicated loading and deflected shape, use numerical 
%integration to compute the elastic KL, KM, and KLM factors. 
%assumes constant mass. 
 
%compute the KM factor: 
%square every entry in the deflected shape matrix to get the mass factor 
rows=length(Z(:,1)); 
cols=length(Z(1,:)); 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            Zsq(k,j)=Z(k,j)^2*amass*(dx*dy)/2; 
        else 
            Zsq(k,j)=Z(k,j)^2*amass*(dx*dy); 
    end 
    end 
end 
 
KMe=sum(sum(Zsq))/totalmass; 
 
Lsum=0; 
%compute the KL factor: 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZL(k,j)=Z(k,j)*interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy)/2; 
            Lsum=Lsum+interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy)/2; 
    else 
            ZL(k,j)=Z(k,j)*interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy); 
            Lsum=Lsum+interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy); 
    end 
    end 
end 
KLe=sum(sum(ZL))/Lsum; 
 
KLMe=KMe/KLe 
 
%compute the KRe factor: 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZL(k,j)=Z(k,j)*1*(dx*dy)/2; 
    else 
            ZL(k,j)=Z(k,j)*1*(dx*dy); 
    end 
    end 
end 
rsum=L*H*1; 
KRe=sum(sum(ZL))/rsum; 
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%%%%%%%%%END ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%%% 
 
%%%%%%%%%POST ELASTIC TRANSFORMATION FACTORS%%%%%%%%%%% 
%Wall is assumed to crack along classic yield line pattern from SBEDS 
%manual 
 
%yield line slope: 
m=H/2/xmeet; 
 
%Create the deflected shape: 
rows=length(X(:,1)); 
cols=length(X(1,:)); 
for j=1:1:cols 
    for k=1:1:rows 
        if (X(k,j)<=Y(k,j)/m)&&(Y(k,j)<=H/2)  %Lower left quadrant 
        Zcrack(k,j)=(X(k,j)/xmeet); 
        end 
        if (X(k,j)<=(xmeet-(Y(k,j)-H/2)/m))&&(Y(k,j)>H/2)  %Upper left quadrant 
        Zcrack(k,j)=(X(k,j)/xmeet); 
        end 
        if (X(k,j)>=(L-xmeet+(Y(k,j)-H/2)/m))&&(Y(k,j)>H/2);  %Right top 
        Zcrack(k,j)=(1-(X(k,j)-(L-xmeet))/xmeet); 
        end 
        if (X(k,j)>=(L-Y(k,j)/m))&&(Y(k,j)<=H/2)      %Right bottom 
        Zcrack(k,j)=(1-(X(k,j)-(L-xmeet))/xmeet); 
        end 
        if (X(k,j)>Y(k,j)/m)&&(X(k,j)<(L-Y(k,j)/m))&&(Y(k,j)<=H/2)  %Center bottom 
        Zcrack(k,j)=(Y(k,j)/(H/2)); 
        end 
        if (X(k,j)>(xmeet-(Y(k,j)-H/2)/m))&&(X(k,j)<(L-xmeet+(Y(k,j)-H/2)/m))&&(Y(k,j)>H/2) 
        Zcrack(k,j)=(2-2*Y(k,j)/H);   %Center Top 
        end 
    end 
end 
 
%compute the Km factor: 
%square every entry in the deflected shape matrix 
 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            Zsqc(k,j)=Zcrack(k,j)^2*amass*(dx*dy)/2; 
        else 
            Zsqc(k,j)=Zcrack(k,j)^2*amass*(dx*dy); 
    end 
    end 
end 
KMc=sum(sum(Zsqc))/totalmass; 
 
Lsum=0; 
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%compute the load factor 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZLc(k,j)=Zcrack(k,j)*interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy)/2; 
            Lsum=Lsum+interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy)/2; 
    else 
            ZLc(k,j)=Zcrack(k,j)*interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy); 
            Lsum=Lsum+interp2(X2,Y2,I2,X(k,j),Y(k,j))*(dx*dy); 
    end 
    end 
end 
KLc=sum(sum(ZLc))/Lsum; 
 
KLMc=KMc/KLc 
 
%compute the resistance factor 
for k=1:1:rows 
    for j=1:1:cols 
    if (j==1 || k==1 || j==cols || k==rows) 
            ZLc(k,j)=Zcrack(k,j)*1*(dx*dy)/2; 
    else 
            ZLc(k,j)=Zcrack(k,j)*1*(dx*dy); 
    end 
    end 
end 
rsum=L*H*1; 
KRc=sum(sum(ZLc))/rsum; 
 
%%%%%%%%%%END POST ELASTIC TRANSFORMATION FACTORS%%%%% 
%plot elastic deflected shape. 
figure(1) 
[C,h]=contour(X,Y,Z,[0.2 0.4 0.6 0.8 1.0000]) 
clabel(C,h,'LabelSpacing',200) 
%set(h,'ShowText','on','TextStep',get(h,'LevelStep')*1) 
colormap('bone') 
hold on 
%plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',2); 
xlabel('X (cm)') 
ylabel('Y (cm)') 
xlim([0 L]) 
ylim([0 H]) 
 
%plot plastic deflected shape. 
figure(2) 
[C,h]=contour(X,Y,Zcrack,[0.2 0.4 0.6 0.8 1.0]) 
clabel(C,h,'LabelSpacing',200) 
%set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap('bone') 
hold on 
%plot(LOC2(:,1),LOC2(:,2),'ko','MarkerSize',2); 
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xlabel('X (cm)') 
ylabel('Y (cm)') 
xlim([0 L]) 
ylim([0 H]) 
 
 

D.10. Script for Locating Contacts in Cubic LSDYNA Meshes 

This script will identify contacts and write the required input cards for an 

LSDYNA model; the domain must be meshed with cubic elements with their faces 

oriented on planes parallel to the global XYZ axes.  Furthermore, the nodal XYZ 

coordinates must all be non-negative.  The program will directly read the *NODE and 

*ELEMENT cards of an LSDYNA input file provided each input card is written in a 

separate text file with all non-numeric data removed.   

%This code will search two files titled 'nodes.txt' and 'elements.txt' 
%and will identify contacting surfaces.  The code will then write the 
%required *set_segment and *contact cards 
 
DX=4;       %Manually specify the cubic mesh size 
 
%Read in the node numbers and locations, delete the last two columns which 
%contain no data 
%Format is |node number|x-coord|y-coord|z-coord| 
node=dlmread('nodes.txt'); 
%node(:,6)=[]; 
%node(:,5)=[]; 
 
%Read in the element data 
%Format is 
%|elnumber|partnumber|node1|node2|node3|node4|node5|node6|node7|node8| 
elems=dlmread('elements.txt'); 
 
%Now create a list of every element face in the entire model 
%First determine the total number of faces 
numels=length(elems(:,1)); 
numfaces=numels*6; 
 
%Preallocate all vectors 
faces(:,1)=(1:1:numfaces); 
faces(:,2:6)=0; 
xmin(1:numfaces)=0; 
xmax(1:numfaces)=0; 
ymin(1:numfaces)=0; 
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ymax(1:numfaces)=0; 
zmin(1:numfaces)=0; 
zmax(1:numfaces)=0; 
A(1:numfaces,1:4)=0; 
normal(1:numfaces,1:3)=0; 
fcenter(1:numfaces,1:3)=0; 
contact(1:numfaces,1:2)=0; 
ecenter(1:numels,1:3)=0; 
 
%Loop through one element at a time forming 4 node sets that comprise each 
%of the six faces 
 
for k=1:1:numels 
    enum=k 
    %Number the second column according to which element the face is associated 
    faces(6*k-5:6*k,2)=enum; 
    %Number the third through the sixth column with the nodes defining the 
    %faces 
    faces(6*k-5,3:6)=elems(enum,3:6); 
    faces(6*k-4,3:6)=elems(enum,7:10); 
    faces(6*k-3,3:6)=[elems(enum,3),elems(enum,4),elems(enum,7),elems(enum,8)]; 
    faces(6*k-2,3:6)=[elems(enum,5),elems(enum,6),elems(enum,9),elems(enum,10)]; 
    faces(6*k-1,3:6)=[elems(enum,4),elems(enum,5),elems(enum,8),elems(enum,9)]; 
    faces(6*k,3:6)=[elems(enum,3),elems(enum,6),elems(enum,7),elems(enum,10)]; 
end 
 
%Create the symbolic vector for later calculations 
syms x y z; 
P=[x,y,z]; 
 
%Split up the nodes of each face into 4 seperate vectors for computation 
node1(1:numfaces)=faces(1:numfaces,3); 
node2(1:numfaces)=faces(1:numfaces,4); 
node3(1:numfaces)=faces(1:numfaces,5); 
node4(1:numfaces)=faces(1:numfaces,6); 
 
%Obtain the xyz coordinates of every node of every face 
%Preallocate the vectors to speed memory performance 
vect1(1:numfaces,1:3)=[0]; 
vect2(1:numfaces,1:3)=[0]; 
vect3(1:numfaces,1:3)=[0]; 
vect4(1:numfaces,1:3)=[0]; 
for k=1:1:numfaces 
    facevector=k 
vect1(k,1:3)=node(node1(k),2:4); 
vect2(k,1:3)=node(node2(k),2:4); 
vect3(k,1:3)=node(node3(k),2:4); 
vect4(k,1:3)=node(node4(k),2:4); 
end 
 
%Compute the properties of areas defining every face including the x,y,z 
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%center of each face 
%preallocate the vectors to speed memory performance 
xmax(1:numfaces)=[0]; 
ymax(1:numfaces)=[0]; 
zmax(1:numfaces)=[0]; 
xmin(1:numfaces)=[0]; 
ymin(1:numfaces)=[0]; 
zmin(1:numfaces)=[0]; 
facecenter(1:numfaces,1:3)=[0]; 
for k=1:1:numfaces 
    currentface=k 
    xmax(k)=max([vect1(k,1),vect2(k,1),vect3(k,1),vect4(k,1)]); 
    ymax(k)=max([vect1(k,2),vect2(k,2),vect3(k,2),vect4(k,2)]); 
    zmax(k)=max([vect1(k,3),vect2(k,3),vect3(k,3),vect4(k,3)]); 
    xmin(k)=min([vect1(k,1),vect2(k,1),vect3(k,1),vect4(k,1)]); 
    ymin(k)=min([vect1(k,2),vect2(k,2),vect3(k,2),vect4(k,2)]); 
    zmin(k)=min([vect1(k,3),vect2(k,3),vect3(k,3),vect4(k,3)]); 
    %compute the center of the face 
    
facecenter(k,1:3)=[round((xmin(k)+xmax(k))/2),round((ymin(k)+ymax(k))/2),round((zmin(k)+z
max(k))/2)]; 
end 
 
%construct a matrix which calculates the centroid of every element in the 
%model.  This will be used to construct the 3D search matrix 
%preallocate vectors for performance 
ecenter(1:numels,1:3)=[0]; 
for j=1:1:numels 
    xavg=sum(node(elems(j,3:10),2))/8; 
    yavg=sum(node(elems(j,3:10),3))/8; 
    zavg=sum(node(elems(j,3:10),4))/8; 
    ecenter(j,1)=xavg; 
    ecenter(j,2)=yavg; 
    ecenter(j,3)=zavg; 
end 
 
%Now associate the center of every face with the element to which it is 
%attached 
%preallocate vectors for performance 
fcenter(1:numels,1:3)=[0]; 
for j=1:1:numfaces 
    fcenter(j,1:3)=ecenter(faces(j,2),1:3); 
end 
 
%Construct a matrix that represents the xyz location of every element for 
%use as a screening tool to minimize nearest neighbor searches 
 
%Determine the global minimum coordinates 
gxmin=min(xmin); 
gymin=min(ymin); 
gzmin=min(zmin); 
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%Convert the element centers into index coordinates for a three dimensional 
%matrix 
eloc(1:numels,1)=(ecenter(1:numels,1)-DX/2)+1; 
eloc(1:numels,2)=(ecenter(1:numels,2)-DX/2)+1; 
eloc(1:numels,3)=(ecenter(1:numels,3)-DX/2)+1; 
 
%Do a little memory clean up 
clear vect1 vect2 vect3 vect4 
 
%Now write the element number into the spatially correct position inside a 
%3D matrix that will aid the nearest neighbor search 
%preallocate vectors 
for j=1:1:numels 
    xpos=round(eloc(j,1)); 
    ypos=round(eloc(j,2)); 
    zpos=round(eloc(j,3)); 
    LOC(xpos,ypos,zpos)=j; 
end 
 
%Increment through each element of this matrix.  At each position, look in 
%all six directions and take note of the elements surround each other 
%element 
LOCsize=size(LOC) 
LOCx=LOCsize(1); 
LOCy=LOCsize(2); 
LOCz=LOCsize(3); 
 
%Step through the location matrix LOC one entry at a time through each 
%slice.  Compare each element to the ones near it and create a list called 
%bucket that will detail what other elements each element could have a 
%contact with. 
%Initialize the matrix to correct size. 
bucket(1,1:6)=[0]; 
 
for j=1:1:LOCx 
    for k=1:1:LOCy 
        for l=1:1:LOCz 
            if (LOC(j,k,l)==0) 
                continue 
            end 
            %Look in+/- x direction 
            if (j>=1) && (j<LOCx) 
                masterel=LOC(j,k,l); 
                bucket(masterel,1)=LOC(j+DX,k,l); 
                if j>1 
                bucket(masterel,2)=LOC(j-DX,k,l); 
                end 
            end 
            %Look in the +/- y direction 
            if (k>=1) && (k<LOCy) 
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                masterel=LOC(j,k,l); 
                bucket(masterel,3)=LOC(j,k+DX,l); 
                if k>1 
                bucket(masterel,4)=LOC(j,k-DX,l); 
                end 
            end 
            %Look in the +/- z direction 
            if (l>=1) && (l<LOCz) 
                masterel=LOC(j,k,l); 
                bucket(masterel,5)=LOC(j,k,l+DX); 
                if l>1 
                bucket(masterel,6)=LOC(j,k,l-DX); 
                end 
            end 
        end 
    end 
end 
 
%Now translate these lists of nearest neighbor elements into a list 
%of faces that are near each other.  Translate the bucket matrix into a 
%matrix that contains face numbers, rather than element numbers. 
 
for k=1:1:length(bucket(:,1)) 
    CurrentElement=k 
    masterfaces=[6*k 6*k-1 6*k-2 6*k-3 6*k-4 6*k-5]; 
    SL1=bucket(k,1); 
    SL2=bucket(k,2); 
    SL3=bucket(k,3); 
    SL4=bucket(k,4); 
    SL5=bucket(k,5); 
    SL6=bucket(k,6); 
    %Create vector lists of the possible slave face matches 
    slave(1,1:6)=[SL1*6 SL1*6-1 SL1*6-2 SL1*6-3 SL1*6-4 SL1*6-5]; 
    slave(2,1:6)=[SL2*6 SL2*6-1 SL2*6-2 SL2*6-3 SL2*6-4 SL2*6-5]; 
    slave(3,1:6)=[SL3*6 SL3*6-1 SL3*6-2 SL3*6-3 SL3*6-4 SL3*6-5]; 
    slave(4,1:6)=[SL4*6 SL4*6-1 SL4*6-2 SL4*6-3 SL4*6-4 SL4*6-5]; 
    slave(5,1:6)=[SL5*6 SL5*6-1 SL5*6-2 SL5*6-3 SL5*6-4 SL5*6-5]; 
    slave(6,1:6)=[SL6*6 SL6*6-1 SL6*6-2 SL6*6-3 SL6*6-4 SL6*6-5]; 
    %Now loop through each of the master/slave sets and identify contacting 
    %faces 
    for l=1:1:6 
        for m=1:1:6 
            for n=1:1:6 
                r=masterfaces(l); 
                t=slave(m,n); 
                if (r<=0) || (t<=0) 
                    continue 
                end 
                %If any of the nodes are shared then there is no contact 
                if (node1(r)==node1(t)) || (node1(r)==node2(t))  || (node1(r)==node3(t))  || 
(node1(r)==node4(t)) 



400 
 

                    continue 
                end 
                if (facecenter(r,1:3)~=facecenter(t,1:3)) 
                    continue 
                end 
                if (facecenter(r,1:3)==facecenter(t,1:3)) 
                    if (contact(t,2)~=r)  %this makes sure it hasn't been written elsewhere 
                        contact(r,1)=r; 
                        contact(r,2)=t; 
                    end 
                end 
            end 
        end 
    end 
end 
 
%this code will write the resulting contact pairs to a text file in the 
%appropriate format for *set_segment and *contact cards 
 
%Now loop through all faces having a contact and create node sets that 
%correspond to segments with normals pointing at each other 
nset(1:length(faces),1:4)=0; 
for j=1:1:length(contact) 
    currentcontact=j 
    if (contact(j,1)>0) 
        %Get the numbers of the faces involved in the contact 
        face1=contact(j,1); 
        face2=contact(j,2); 
        %get the locations of the associated elements 
        f1x=fcenter(face1,1); 
        f1y=fcenter(face1,2); 
        f1z=fcenter(face1,3); 
        f2x=fcenter(face2,1); 
        f2y=fcenter(face2,2); 
        f2z=fcenter(face2,3); 
        if (f1x>f2x) || (f1y>f2y) || (f1z>f2z) 
            %renumber faces if we had them backwards, always want face 1 to 
            %be closer to the origin so segments are facing +x, +y or +z 
            face1=contact(j,2); 
            face2=contact(j,1); 
            f1x=fcenter(face1,1); 
            f1y=fcenter(face1,2); 
            f1z=fcenter(face1,3); 
            f2x=fcenter(face2,1); 
            f2y=fcenter(face2,2); 
            f2z=fcenter(face2,3); 
        end 
        %Handle an X facing contact.  We want face 1 to have a +x facing 
        %normal and face 2 to have a -x facing normal. 
        if (f1z==f2z) && (f1y==f2y) 
            contact(j,3)=[1]; 
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          xnorm=[1 0 0]; 
            %FIRST DO THE POSITIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face1,3),2:4); 
            n(2,1:3)=node(faces(face1,4),2:4); 
            n(3,1:3)=node(faces(face1,5),2:4); 
            n(4,1:3)=node(faces(face1,6),2:4); 
            %write node numbers as last column 
            n(1,4)=faces(face1,3); 
            n(2,4)=faces(face1,4); 
            n(3,4)=faces(face1,5); 
            n(4,4)=faces(face1,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),xnorm)>0) && (dot(cross(edge3,edge2),xnorm)>0) && 
(dot(cross(edge4,edge3),xnorm)>0) && (dot(cross(edge1,edge4),xnorm)>0) 
                    nset(face1,1)=face1; 
                    nset(face1,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),1];  %Last 1 
indicates z-facing contact 
                end 
            end  
            %NOW DO THE NEGATIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face2,3),2:4); 
            n(2,1:3)=node(faces(face2,4),2:4); 
            n(3,1:3)=node(faces(face2,5),2:4); 
            n(4,1:3)=node(faces(face2,6),2:4); 
            %write node numbers as last column 
            n(1,4)=faces(face2,3); 
            n(2,4)=faces(face2,4); 
            n(3,4)=faces(face2,5); 
            n(4,4)=faces(face2,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
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                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),xnorm)<0) && (dot(cross(edge3,edge2),xnorm)<0) && 
(dot(cross(edge4,edge3),xnorm)<0) && (dot(cross(edge1,edge4),xnorm)<0) 
                    nset(face2,1)=face2; 
                    nset(face2,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),1];  %Last 1 
indicates z-facing contact 
                end 
            end  
        end 
        %Handle a Y facing contact.  We want face 1 to have a +Y facing 
        %normal and face 2 to have a -Y facing normal. 
        if (f1x==f2x) && (f1z==f2z) 
            contact(j,3)=[2]; 
          ynorm=[0 1 0]; 
            %FIRST DO THE POSITIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face1,3),2:4); 
            n(2,1:3)=node(faces(face1,4),2:4); 
            n(3,1:3)=node(faces(face1,5),2:4); 
            n(4,1:3)=node(faces(face1,6),2:4); 
            %write node numbers as last column 
            n(1,4)=faces(face1,3); 
            n(2,4)=faces(face1,4); 
            n(3,4)=faces(face1,5); 
            n(4,4)=faces(face1,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),ynorm)>0) && (dot(cross(edge3,edge2),ynorm)>0) && 
(dot(cross(edge4,edge3),ynorm)>0) && (dot(cross(edge1,edge4),ynorm)>0) 
                    nset(face1,1)=face1; 
                    nset(face1,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),2];  %Last 2 
indicates z-facing contact 
                end 
            end  
            %NOW DO THE NEGATIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face2,3),2:4); 
            n(2,1:3)=node(faces(face2,4),2:4); 
            n(3,1:3)=node(faces(face2,5),2:4); 
            n(4,1:3)=node(faces(face2,6),2:4); 
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            %write node numbers as last column 
            n(1,4)=faces(face2,3); 
            n(2,4)=faces(face2,4); 
            n(3,4)=faces(face2,5); 
            n(4,4)=faces(face2,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),ynorm)<0) && (dot(cross(edge3,edge2),ynorm)<0) && 
(dot(cross(edge4,edge3),ynorm)<0) && (dot(cross(edge1,edge4),ynorm)<0) 
                    nset(face2,1)=face2; 
                    nset(face2,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),2];  %Last 2 
indicates z-facing contact 
                end 
            end            
        end 
        %Handle a Z facing contact.  We want face 1 to have a +Z facing 
        %normal and face 2 to have a -Z facing normal. 
        if (f1x==f2x) && (f1y==f2y) 
            contact(j,3)=[3]; 
            znorm=[0 0 1]; 
            %FIRST DO THE POSITIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face1,3),2:4); 
            n(2,1:3)=node(faces(face1,4),2:4); 
            n(3,1:3)=node(faces(face1,5),2:4); 
            n(4,1:3)=node(faces(face1,6),2:4); 
            %write node numbers as last column 
            n(1,4)=faces(face1,3); 
            n(2,4)=faces(face1,4); 
            n(3,4)=faces(face1,5); 
            n(4,4)=faces(face1,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),znorm)>0) && (dot(cross(edge3,edge2),znorm)>0) && 
(dot(cross(edge4,edge3),znorm)>0) && (dot(cross(edge1,edge4),znorm)>0) 
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                    nset(face1,1)=face1; 
                    nset(face1,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),3];  %Last 3 
indicates z-facing contact 
                end 
            end  
            %NOW DO THE NEGATIVE FACING FACE 
            %arbitrarily choose the first node as being fixed, then fill in 
            %the remaining three 
            %get location vectors of nodes 
            n(1,1:3)=node(faces(face2,3),2:4); 
            n(2,1:3)=node(faces(face2,4),2:4); 
            n(3,1:3)=node(faces(face2,5),2:4); 
            n(4,1:3)=node(faces(face2,6),2:4); 
            %write node numbers as last column 
            n(1,4)=faces(face2,3); 
            n(2,4)=faces(face2,4); 
            n(3,4)=faces(face2,5); 
            n(4,4)=faces(face2,6); 
            %create a permutation matrix 
            nlist=[2 3 4]; 
            indx=perms(nlist); 
            %Now test each possible combination using dot and cross product 
            for q=1:1:length(indx) 
                edge1=n(indx(q,1),1:3)-n(1,1:3); 
                edge2=n(indx(q,2),1:3)-n(indx(q,1),1:3); 
                edge3=n(indx(q,3),1:3)-n(indx(q,2),1:3); 
                edge4=n(1,1:3)-n(indx(q,3),1:3); 
                if (dot(cross(edge2,edge1),znorm)<0) && (dot(cross(edge3,edge2),znorm)<0) && 
(dot(cross(edge4,edge3),znorm)<0) && (dot(cross(edge1,edge4),znorm)<0) 
                    nset(face2,1)=face2; 
                    nset(face2,2:6)=[n(1,4),n(indx(q,1),4),n(indx(q,2),4),n(indx(q,3),4),3];  %Last 3 
indicates z-facing contact 
                end 
            end  
        end 
    end 
end        
 
%Now open the output file for writing and begin writing cards 
fid=fopen('contacts.k','a+'); 
 
%Write the *set_segment cards 
a='*SET_SEGMENT'; 
b='$#     sid       da1       da2       da3       da4'; 
c='$#      n1        n2        n3        n4        a1        a2        a3        a4'; 
indx=0; 
for j=1:1:length(contact) 
    if (contact(j,1)>0) 
        %write *set_segment 
        fprintf(fid,'%s\n',a); 
        %write the header for the SID line 
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        %fprintf(fid,'%s\n',b); 
        %write the SID as the current face number 
        fprintf(fid,'%10.0f\n',contact(j,1)); 
        %write the next header line 
        %fprintf(fid,'%s\n',c); 
        %now write the nodes that comprise this set 
        node1=nset(contact(j,1),2); 
        node2=nset(contact(j,1),3); 
        node3=nset(contact(j,1),4); 
        node4=nset(contact(j,1),5); 
        fprintf(fid,'%10.0f%10.0f%10.0f%10.0f\n',[node1 node2 node3 node4]); 
        %write the second face's card 
        fprintf(fid,'%s\n',a); 
        %write the header for the SID line 
        %fprintf(fid,'%s\n',b); 
        %write the SID as the current face number 
        fprintf(fid,'%10.0f\n',contact(j,2)); 
        %write the next header line 
        %fprintf(fid,'%s\n',c); 
        %now write the nodes that comprise this set 
        node1=nset(contact(j,2),2); 
        node2=nset(contact(j,2),3); 
        node3=nset(contact(j,2),4); 
        node4=nset(contact(j,2),5); 
        fprintf(fid,'%10.0f%10.0f%10.0f%10.0f\n',[node1 node2 node3 node4]); 
    end 
end 
 
%Now write the contact cards to file using the set segment numbers in each 
%pair 
a='*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_ID'; 
b='$#     cid'; 
c='$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr'; 
d='$#      fs        fd        dc        vc       vdc    penchk        bt        dt'; 
e='  0.750000  0.500000     0.000     0.000      2.00         0     0.0001.0000E+20'; 
f='$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf'; 
g='  1.000000  1.000000     0.000     0.000  1.000000  1.000000  1.000000  1.000000'; 
h='$#    nfls      sfls    tblcid'; 
%hh='         2  93.24000  100.0000'; 
%hhh='         2  200.0000  100.0000'; 
hh='         7   85.8000    75.000       7.2    0.0571     0.337'; 
hhh='         7   150.000    75.000       7.2    0.0571     0.337'; 
 
clear face; 
for j=1:1:length(contact) 
    if (contact(j,1)>0) 
        face=contact(j,1); 
        %write the headers before the set ID's 
        fprintf(fid,'%s\n',a); 
        %fprintf(fid,'%s\n',b); 
        fprintf(fid,'%10.0f\n',j);  %this is the contact ID number 
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        %now write the contact slave and master id's 
        %fprintf(fid,'%s\n',c); 
        fprintf(fid,'%10.0f%10.0f%10.0f%10.0f\n',[contact(j,1),contact(j,2)],0,0); 
        %now write the rest of the lines 
        %fprintf(fid,'%s\n',d); 
        fprintf(fid,'%s\n',e); 
        %fprintf(fid,'%s\n',f); 
        fprintf(fid,'%s\n',g); 
        %fprintf(fid,'%s\n',h); 
        if (fcenter(face,1)<300)&&(contact(j,3)==2) 
            fprintf(fid,'%s\n',hhh); 
        elseif (fcenter(face,1)>300)&&(contact(j,3)==1) 
            fprintf(fid,'%s\n',hhh); 
        else 
            fprintf(fid,'%s\n',hh); 
        end 
        %fprintf(fid,'%s\n',hhh); 
        %fprintf(fid,'%s\n',hhhh); 
    end 
end 
 
fclose(fid); 
 
%This will write the *PART cards  
 
fid=fopen('parts.k','a+'); 
 
%Write the *set_segment cards 
a='*PART'; 
b='Part Definitions'; 
c='$PID      SECID     MID       EOSID     HGID'; 
%d='*DAMPING_PART_STIFFNESS' 
%dd='$#     pid      coef' 
numparts=5748; 
 
for j=1:1:numparts 
   fprintf(fid,'%s\n',a); 
   fprintf(fid,'%s\n',b); 
   fprintf(fid,'%s\n',c); 
   fprintf(fid,'%10.0f%10.0f%10.0f%10.0f%10.0f\n',[j,1,1,0,0]); 
  %fprintf(fid,'%s\n',d); 
  %fprintf(fid,'%s\n',dd); 
  %fprintf(fid,'%10.0f%10.4f\n',[j,0.100]); 
end 
 
fclose(fid); 
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APPENDIX E:  INPUT FILES FOR CTH SIMULATIONS 
 
 This appendix contains the CTH input files used during this investigation.  At the 

beginning of each input file is a brief description of the simulation’s purpose. 

E.1. INPUT #1 

This input file simulates the BPS-10 and BPG-14 blast events documented in 

Chapter 3 and again in Chapter 5. 

******************************************************************** 
*eor* cthin 
********************************************************************* 
2D Test of Eo=5kJ/cc – BPS-10 and BPG-14 - Free Air 
* 
control  
  mmp 
  tstop = 6e-3 
endc 
 
spy 
 
 PlotTime(0.0, 5e-4); 
 
 SaveTime(0.0, 5e-4); 
 Save("M,VOLM,VX,VY,P"); 
 
 ImageFormat(800,600); 
 
 define main() 
 { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,400); 
   YLimits(0,80); 
 
   Image("Mats"); 
    Window(0,0,0.75,1); 
    MatColors(PERU,LIGHT_BLUE); 
    Label(sprintf("Materials at %0.2e s.",TIME)); 
    Plot2DMats; 
    Draw2DBlockEdges; 
    MatNames("TNT","Air"); 
    DrawMatLegend("",0.75,0.2,0.99,0.9); 
   EndImage; 
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   Image("Pressure"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e6,7e7,LOG_MAP); 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Plot2D("P"); 
    Draw2DMatContour; 
    Draw2DTracers(3); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
   Image("Vmag"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e2,1e6,LOG_MAP); 
    Label(sprintf("Velocity Magnitude at %0.2e s.",TIME)); 
    Plot2D("VMAG"); 
    Draw2DMatContour; 
    Draw2DTracers(3); 
    DrawColorMap("(cm/s)",0.75,0.4,0.9,0.9); 
   EndImage; 
 } 
 
 HisTime(0,1e-6); 
 SaveTracer(ALL); 
 SaveHis("GLOBAL,POSITION,P"); 
 
 define spyhis_main() 
 { 
  HisLoad(1,"hscth"); 
  Label("Pressure at Tracer 1"); 
  TPlot("P.1",1,AUTOSCALE); 
 } 
endspy 
 
* AMR calculation 
amr 
 2dc 
 debug 
 nx=10 
 ny=10 
 bx=10 
 by=4 
 gmin = 0,   0  
 gmax = 400, 160 
 maxl = 4 
 maxb = 5000  
 
 * unrefine everywhere refinement not indicated 
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 indicator 
  val void 
  unrabove -1 
 endi 
 
 * refine explosive until burn complete 
 indicator 
  mat 1 
  val dens 
  refabove 1 
  maxl=4 
 endi 
 
 * refine moving air shock 
 indicator 
  ton=1e-6 
  maxl=4 
  val P 
  linhistogram 
  vmin 1.2e6 
  refabove 0.15 
  unrbelow 0.15 
 endi 
 
enda 
 
convct 
   interface = smyra 
endc 
  
*  equation of state inputs 
eos 
   *dynamite 
   mat1  jwl tnt 
   R0=1.5 AG=2.3435e12 BG=9.5127e10 
   DCJ=5.856e5 PCJ=1.46502e11 R1=4.35916869 R2=1.39146798 
   WG=0.249751967 TCJ=0.35 E0=0 CV=0 BRN=1 
   *air at gastonia range conditions 
   mat2  ses  air T0=0.0255239 R0=1.197e-3 
endeos 
 
tracer 
 add 293.4,50.8 fixed=xy 
 add 297.5,50.8 fixed=xy 
endtracer 
heburn 
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  mat 1  d 5.856e5 
  dp 0,40 
  r 45 
  time 0.0 
endh 
 
* material insertion inputs 
diatom 
    package 'explosive' 
     mat 1 
     insert box 
       p1=0,40.65 
       p2=4.46837,60.95 
     endinsert 
    endpackage 
    package 'air' 
     mat 2 
     insert box 
      p1 0,   0 
      p2 2000, 2000 
     endi 
    endp 
enddiatom 
 
edit 
  shortt 
    tim = 0.,  dt = 1e-3 
  ends 
  longt 
    tim = 0.,  dt = 1.0 
  endl  
  restt 
    tim = 0. 
    dtf = 3e-3 
  endr 
ende 
 
*  spall parameters  
 fracts  
   pfrac1  -1.0e12 
   pfrac2  -1.0e12 
 endf  
* 
boundary 
   bhy 
       bxb = 0 , bxt = 1 
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       byb = 0 , byt = 1 
   endh  
endb 
mindt  
   time = 0.  dt = 1.e-12 
endn 
 

E.2. INPUT #2 

This input file simulates the A1 blast event using two-dimensional cylindrical 

symmetry. 

******************************************************************** 
*eor* cthin 
********************************************************************* 
Shot A1 with unimax Eo of 5 kJ/cc 
* 
control  
  mmp 
  tstop = 9e-3 
endc 
 
spy 
 PlotTime(0.0, 5e-4); 
 SaveTime(0.0, 5e-4); 
 Save("M,VOLM,VX,VY,P"); 
 ImageFormat(800,600); 
 
 define main() 
 { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,251.5); 
   YLimits(0,503); 
 
   Image("Mats"); 
    Window(0,0,0.75,1); 
    MatColors(PERU,SNOW); 
    Label(sprintf("Materials at %0.2e s.",TIME)); 
    Plot2DMats; 
    Draw2DBlockEdges; 
    MatNames("TNT","Air"); 
    DrawMatLegend("",0.75,0.2,0.99,0.9); 
   EndImage; 
   Image("Pressure"); 
    Window(0,0,0.75,1); 
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    ColorMapRange(1e6,7e7,LOG_MAP); 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Plot2D("P"); 
    Draw2DMatContour; 
    ReverseGrayMap; 
    Draw2DTracers(3); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
   Image("Vmag"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e2,1e6,LOG_MAP); 
    Label(sprintf("Velocity Magnitude at %0.2e s.",TIME)); 
    Plot2D("VMAG"); 
    Draw2DMatContour; 
    Draw2DTracers(3); 
    ReverseGrayMap; 
    DrawColorMap("(cm/s)",0.75,0.4,0.9,0.9); 
   EndImage; 
  
 } 
 
 HisTime(0,1e-6); 
 SaveTracer(ALL); 
 SaveHis("GLOBAL,POSITION,P"); 
 
 define spyhis_main() 
 { 
  HisLoad(1,"hscth"); 
  Label("Pressure at Tracer 1"); 
  TPlot("P.1",1,AUTOSCALE); 
 } 
endspy 
 
* AMR calculation 
amr 
 2dc 
  debug 
 
 nx=10 
 ny=10 
 bx=4 
 by=8 
 gmin = 0,0  
 gmax = 251.5,503 
 maxl = 7 
 maxb = 5000  
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 * unrefine everywhere refinement not indicated 
 indicator 
  val void 
  unrabove -1 
 endi 
 
 * refine explosive until burn complete 
 indicator 
  mat 1 
  toff=1e-3 
  val dens 
  refabove 1 
  maxl=7 
 endi 
 
 * refine moving air shock 
 indicator 
  ton=1e-5 
  maxl=6 
  value P 
  linhistogram 
  vmin 1.1e6 
  refabove 0.15 
  unrbelow 0.15 
 endi 
 
 *refine reflection zone 
 indicator 
 mat 2 
 maxl=7 
 val vmag 
 refabove 1000 
 unrbelow 900 
 p1=240,0 
 p2=251.5,503 
 endi 
 
enda 
 
convct 
   interface = smyra 
endc 
  
*  equation of state inputs 
eos 
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   *dynamite 
   mat1  jwl tnt 
   R0=1.5 AG=2.3435e12 BG=9.5127e10 
   DCJ=5.856e5 PCJ=1.46502e11 R1=4.35916869 R2=1.39146798 
   WG=0.249751967 TCJ=0.35 E0=0 CV=0 BRN=1 
    
   *Mid day macon GA air 
   mat2  ses  air T0=0.02642 R0=1.172e-3 
endeos 
 
tracer 
 add 251.5,42 fixed=xy 
 add 251.5,136 fixed=xy 
 add 251.5,203 fixed=xy 
 add 5,503 fixed=xy 
 add 251.5,138 fixed=xy 
 add 251.5,0 fixed=xy 
 add 251.5,50 fixed=xy 
 add 251.5,100 fixed=xy 
 add 251.5,150 fixed=xy 
 add 251.5,200 fixed=xy 
 add 251.5,250 fixed=xy 
 add 251.5,300 fixed=xy 
 add 251.5,350 fixed=xy 
 add 251.5,400 fixed=xy 
 add 251.5,450 fixed=xy 
 add 251.5,503 fixed=xy 
endtracer 
 
heburn 
  mat 1  d 5.856e5 
  dp 0,70 
  r 45   
  time 0.0 
endh 
 
* material insertion inputs 
diatom 
    package 'explosive' 
     mat 1 
     insert box 
       p1=0,30.48 
       p2=5.8136,71.48 
     endinsert 
    endpackage 
    package 'air' 
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     mat 2 
     insert box 
      p1 0,   0 
      p2 2000, 2000 
     endi 
    endp 
enddiatom 
 
edit 
  shortt 
    tim = 0.,  dt = 1e-3 
  ends 
  longt 
    tim = 0.,  dt = 1.0 
  endl  
  restt 
    tim = 0. 
    dtf = 6e-3 
  endr 
ende 
 
*  spall parameters  
 fracts  
   pfrac1  -1.0e12 
   pfrac2  -1.0e12 
 endf  
* 
boundary 
   bhy 
       bxb = 0 , bxt = 0 
       byb = 0 , byt = 0 
   endh  
endb 
mindt  
   time = 0.  dt = 1.e-12 
endn 
 

E.3. INPUT #3 

This input file simulates the B blast event using two-dimensional cylindrical 

symmetry.  Input file for Wall #2 (ref Chapter 2 for wall designations). 

 
******************************************************************** 
*eor* cthin 



 416 
 

 
 

********************************************************************* 
Shot B wall 2 with Eo of 5 kJ 
* 
control  
  mmp 
  tstop = 13e-3 
endc 
 
spy 
 PlotTime(0.0, 5e-4); 
 SaveTime(0.0, 5e-4); 
 Save("M,VOLM,VX,VY,P"); 
 ImageFormat(800,600); 
 
 define main() 
 { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,428); 
   YLimits(0,321); 
 
   Image("Mats"); 
    Window(0,0,0.75,1); 
    MatColors(PERU,SNOW); 
    Label(sprintf("Materials at %0.2e s.",TIME)); 
    Plot2DMats; 
    Draw2DBlockEdges; 
    MatNames("TNT","Air"); 
    DrawMatLegend("",0.75,0.2,0.99,0.9); 
   EndImage; 
   Image("Pressure"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e6,7e7,LOG_MAP); 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Plot2D("P"); 
    Draw2DMatContour; 
    ReverseGrayMap; 
    Draw2DTracers(3); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
   Image("Vmag"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e2,1e6,LOG_MAP); 
    Label(sprintf("Velocity Magnitude at %0.2e s.",TIME)); 
    Plot2D("VMAG"); 
    Draw2DMatContour; 
    Draw2DTracers(3); 
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    ReverseGrayMap; 
    DrawColorMap("(cm/s)",0.75,0.4,0.9,0.9); 
   EndImage; 
  } 
  
HisTime(0,1e-6); 
 SaveTracer(ALL); 
 SaveHis("GLOBAL,POSITION,P"); 
 define spyhis_main() 
 { 
  HisLoad(1,"hscth"); 
  Label("Pressure at Tracer 1"); 
  TPlot("P.1",1,AUTOSCALE); 
 } 
endspy 
 
* AMR calculation 
amr 
 2dc 
  debug 
 nx=10 
 ny=10 
 bx=8 
 by=6 
 gmin = 0,0  
 gmax = 428,321 
 maxl = 7 
 maxb = 5000  
 
 * unrefine everywhere refinement not indicated 
 indicator 
  val void 
  unrabove -1 
 endi 
 
 * refine explosive until burn complete 
 indicator 
  mat 1 
  toff=1e-3 
  val dens 
  refabove 1 
  maxl=7 
 endi 
 
 * refine moving air shock 
 indicator 
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  ton=1e-5 
  maxl=6 
  value P 
  linhistogram 
  vmin 1.1e6 
  refabove 0.15 
  unrbelow 0.15 
 endi 
 
 *refine reflection zone 
 indicator 
 mat 2 
 maxl=7 
 val vmag 
 refabove 1000 
 unrbelow 900 
 p1=418,0 
 p2=428,321 
 endi 
 
enda 
 
convct 
   interface = smyra 
endc 
  
*  equation of state inputs 
eos 
   *dynamite 
   mat1  jwl tnt 
   R0=1.5 AG=2.3435e12 BG=9.5127e10 
   DCJ=5.856e5 PCJ=1.46502e11 R1=4.35916869 R2=1.39146798 
   WG=0.249751967 TCJ=0.35 E0=0 CV=0 BRN=1 
    
   *Macon GA air at mid day 
   mat2  ses  air T0=0.02642 R0=1.172e-3 
endeos 
 
tracer 
 add 428,160 fixed=xy 
 add 428,0 fixed=xy 
 add 428,50 fixed=xy 
 add 428,100 fixed=xy 
 add 428,150 fixed=xy 
 add 428,200 fixed=xy 
 add 428,250 fixed=xy 
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 add 428,300 fixed=xy 
 add 428,321 fixed=xy 
endtracer 
 
heburn 
  mat 1  d 5.856e5 
  dp 0,70 
  r 45   
  time 0.0 
endh 
 
* material insertion inputs 
diatom 
    package 'explosive' 
     mat 1 
     insert box 
       p1=0,30.48 
       p2=6.714235,71.48 
     endinsert 
    endpackage 
    package 'air' 
     mat 2 
     insert box 
      p1 0,   0 
      p2 2000, 2000 
     endi 
    endp 
enddiatom 
 
discard 
mat=-1 
dens=1000 
denl=3 
ton=5e-4 
toff=20e-3 
dti=5e-5 
endd 
 
edit 
  shortt 
    tim = 0.,  dt = 1e-3 
  ends 
  longt 
    tim = 0.,  dt = 1.0 
  endl  
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  restt 
    tim = 0. 
    dtf = 9e-3 
  endr 
ende 
 
*  spall parameters  
 fracts  
   pfrac1  -1.0e12 
   pfrac2  -1.0e12 
 endf  
 
boundary 
   bhy 
       bxb = 0 , bxt = 0 
       byb = 0 , byt = 0 
   endh  
endb 
mindt  
   time = 0.  dt = 1.e-12 
endn 
 

E.4. INPUT #4 

This input file simulates the B blast event using two-dimensional cylindrical 

symmetry.  Input file for Wall #3 (ref Chapter 2 for wall designations). 

******************************************************************** 
*eor* cthin 
********************************************************************* 
Shot B wall 3 with Eo of 5 kJ 
* 
control  
  mmp 
  tstop = 9e-3 
  tbad=500000000 
endc 
 
spy 
 PlotTime(0.0, 5e-4); 
 SaveTime(0.0, 5e-4); 
 Save("M,VOLM,VX,VY,P"); 
 ImageFormat(800,600); 
 
 define main() 
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 { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,248); 
   YLimits(0,372); 
 
   Image("Mats"); 
    Window(0,0,0.75,1); 
    MatColors(PERU,SNOW); 
    Label(sprintf("Materials at %0.2e s.",TIME)); 
    Plot2DMats; 
    Draw2DBlockEdges; 
    MatNames("TNT","Air"); 
    DrawMatLegend("",0.75,0.2,0.99,0.9); 
   EndImage; 
   Image("Pressure"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e6,7e7,LOG_MAP); 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Plot2D("P"); 
    Draw2DMatContour; 
    ReverseGrayMap; 
    Draw2DTracers(3); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
   Image("Vmag"); 
    Window(0,0,0.75,1); 
    ColorMapRange(1e2,1e6,LOG_MAP); 
    Label(sprintf("Velocity Magnitude at %0.2e s.",TIME)); 
    Plot2D("VMAG"); 
    Draw2DMatContour; 
    Draw2DTracers(3); 
    ReverseGrayMap; 
    DrawColorMap("(cm/s)",0.75,0.4,0.9,0.9); 
   EndImage; 
  } 
 
 HisTime(0,1e-6); 
 SaveTracer(ALL); 
 SaveHis("GLOBAL,POSITION,P"); 
 
 define spyhis_main() 
 { 
  HisLoad(1,"hscth"); 
  Label("Pressure at Tracer 1"); 
  TPlot("P.1",1,AUTOSCALE); 
 } 
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endspy 
 
* AMR calculation 
amr 
 2dc 
  debug 
 nx=10 
 ny=10 
 bx=4 
 by=6 
 gmin = 0,0  
 gmax = 248,372 
 maxl = 7 
 maxb = 5000  
 
 * unrefine everywhere refinement not indicated 
 indicator 
  val void 
  unrabove -1 
 endi 
 
 * refine explosive until burn complete 
 indicator 
  mat 1 
  toff=1e-3 
  val dens 
  refabove 1 
  maxl=7 
 endi 
 
 * refine moving air shock 
 indicator 
  ton=1e-5 
  maxl=6 
  value P 
  linhistogram 
  vmin 1.1e6 
  refabove 0.15 
  unrbelow 0.15 
 endi 
 
 *refine reflection zone 
 indicator 
 mat 2 
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 maxl=7 
 val vmag 
 refabove 1000 
 unrbelow 900 
 p1=238,0 
 p2=248,372 
 endi 
enda 
 
convct 
   interface = smyra 
endc 
  
*  equation of state inputs 
eos 
   *dynamite 
   mat1  jwl tnt 
   R0=1.5 AG=2.3435e12 BG=9.5127e10 
   DCJ=5.856e5 PCJ=1.46502e11 R1=4.35916869 R2=1.39146798 
   WG=0.249751967 TCJ=0.35 E0=0 CV=0 BRN=1 
    
   *Macon GA air at mid day 
   mat2  ses  air T0=0.02642 R0=1.172e-3 
endeos 
 
tracer 
 add 248,45 fixed=xy 
 add 248,159 fixed=xy 
 add 248,0 fixed=xy 
 add 248,50 fixed=xy 
 add 248,100 fixed=xy 
 add 248,150 fixed=xy 
 add 248,200 fixed=xy 
 add 248,250 fixed=xy 
 add 248,300 fixed=xy 
 add 248,350 fixed=xy 
 add 248,372 fixed=xy 
endtracer 
 
heburn 
  mat 1  d 5.856e5 
  dp 0,70 
  r 45   
  time 0.0 
endh 
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* material insertion inputs 
diatom 
    package 'explosive' 
     mat 1 
     insert box 
       p1=0,30.48 
       p2=6.714235,71.48 
     endinsert 
    endpackage 
    package 'air' 
     mat 2 
     insert box 
      p1 0,   0 
      p2 2000, 2000 
     endi 
    endp 
enddiatom 
 
discard 
mat=-1 
dens=100 
denl=3 
ton=5e-4 
toff=9e-3 
dti=1e-4 
endd 
 
edit 
  shortt 
    tim = 0.,  dt = 1e-3 
  ends 
  longt 
    tim = 0.,  dt = 1.0 
  endl  
  restt 
    tim = 0. 
    dtf = 6e-3 
  endr 
ende 
 
*  spall parameters  
 fracts  
   pfrac1  -1.0e12 
   pfrac2  -1.0e12 
 endf  
* 
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boundary 
   bhy 
       bxb = 0 , bxt = 0 
       byb = 0 , byt = 0 
   endh  
endb 
mindt  
   time = 0.  dt = 1.e-12 
endn 
 

E.5. INPUT #5 

This input file simulates shot B in three dimensions. 

******************************************************************** 
*eor* cthin 
********************************************************************* 
Shot B in 3D with unimax Eo of 5 kJ/cc 
* 
control  
  mmp0 
  tstop = 25e-3 
  tbad=5000000000 
  pvo=10 
  rdu=14.4e3 
endc 
 
spy 
 PlotTime(0.0, 5e-4); 
 SaveTime(0.0, 5e-4); 
 Save("M,VOLM,VX,VY,P"); 
 ImageFormat(800,600); 
 define main() 
 { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,500); 
   YLimits(0,350); 
   ZLimits(0,500); 
 
   Image("Mats"); 
    Window(0,0,0.75,1); 
    MatColors(PERU,NO_COLOR); 
    RotateAbout(250,150,250); 
    RotateY(45); 
    RotateZ(10); 
    RotateX(10); 
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    Label(sprintf("Materials at %0.2e s.",TIME)); 
    Plot3DMats; 
    Draw3DBlockEdges; 
    MatNames("TNT","Air"); 
    DrawMatLegend("",0.75,0.2,0.99,0.9); 
   EndImage; 
   Image("Pressure"); 
    Window(0,0,0.75,1); 
    RotateAbout(250,150,250); 
    RotateY(45); 
    RotateZ(10); 
    RotateX(10); 
    MatColors(NO_COLOR,NO_COLOR); 
    Plot3DMats; 
    ColorMapRange(1.1e6,2e8,LIN_MAP); 
    ColorMapClipping(ON,OFF); 
    ReverseGrayMap; 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Paint3DMat(1,"P"); 
    Paint3DMat(2,"P"); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
   Image("Pressure2"); 
    Window(0,0,0.75,1); 
    RotateAbout(250,150,250); 
    RotateY(15); 
    RotateZ(5); 
    RotateX(10); 
    MatColors(NO_COLOR,NO_COLOR); 
    Plot3DMats; 
    ColorMapRange(1.1e6,2e8,LIN_MAP); 
    ColorMapClipping(ON,OFF); 
    ReverseGrayMap; 
    Label(sprintf("Pressure at %0.2e s.",TIME)); 
    Paint3DMat(1,"P"); 
    Paint3DMat(2,"P"); 
    DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
   EndImage; 
 } 
 
 HisTime(0,1e-6); 
 SaveTracer(ALL); 
 SaveHis("GLOBAL,POSITION,P"); 
 
 define spyhis_main() 
 { 
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  HisLoad(1,"hscth"); 
  Label("Pressure at Tracer 1"); 
  TPlot("P.1",1,AUTOSCALE); 
 } 
endspy 
 
* AMR calculation 
amr 
 3dr 
 debug 
 nx=8 
 ny=8 
 nz=8 
 bx=10 
 by=7 
 bz=12 
 gmin = 0,0,0 
 gmax = 500,350,600 
 maxl = 6 
 maxb = 1600 
 
 * unrefine everywhere refinement not indicated 
 indicator 
  val void 
  unrabove -1 
 endi 
 
 * refine explosive until burn complete 
 indicator 
  mat 1 
  toff=5e-5 
  val dens 
  refabove 0.25 
  maxl=6 
 endi 
 
 * refine moving air shock 
 indicator 
  maxl=6 
  value P 
  linhistogram 
  vmin 1.3e6 
  refabove 0.05 
  unrbelow 0.04 
 endi 
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enda 
 
convct 
   interface = smyra 
   convct=0 
endc 
  
*  equation of state inputs 
eos 
   *dynamite 
   mat1  jwl tnt 
   R0=1.5 AG=2.3435e12 BG=9.5127e10 
   DCJ=5.856e5 PCJ=1.46502e11 R1=4.35916869 R2=1.39146798 
   WG=0.249751967 TCJ=0.35 E0=0 CV=0 BRN=1 
    
   *Mid day macon GA air 
   mat2  ses  air T0=0.02642 R0=1.172e-3 
endeos 
 
tracer 
 *instruments 
 add 500,45,428 fixed=xyz   *P1 
 add 500,159,428 fixed=xyz  *P2 
 add 500,350,428 fixed=xyz  *P3 
 add 500,159,428 fixed=xyz  *P4 
 add 500,45,428 fixed=xyz   *P5 
 add 248,160,0 fixed=xyz  *P6 
 add 500,160,212 fixed=xyz  *P7 
 *Wall 1 horizontal profile 
 add 500,175,0 fixed=xyz 
 add 500,175,50 fixed=xyz 
 add 500,175,100 fixed=xyz 
 add 500,175,150 fixed=xyz 
 add 500,175,200 fixed=xyz 
 add 500,175,250 fixed=xyz 
 add 500,175,300 fixed=xyz 
 add 500,175,350 fixed=xyz 
 add 500,175,400 fixed=xyz 
 add 500,175,450 fixed=xyz 
 add 500,175,500 fixed=xyz 
 *Wall 1 central vertical profile  
 add 500,0,236 fixed=xyz 
 add 500,50,236 fixed=xyz 
 add 500,100,236 fixed=xyz 
 add 500,150,236 fixed=xyz 
 add 500,200,236 fixed=xyz 
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 add 500,250,236 fixed=xyz 
 add 500,300,236 fixed=xyz 
 add 500,350,236 fixed=xyz 
 *Wall 1 quarter point vertical profile 
 add 500,0,118 fixed=xyz 
 add 500,50,118 fixed=xyz 
 add 500,100,118 fixed=xyz 
 add 500,150,118 fixed=xyz 
 add 500,200,118 fixed=xyz 
 add 500,250,118 fixed=xyz 
 add 500,300,118 fixed=xyz 
 add 500,350,118 fixed=xyz 
 *Wall 1 quarter point vetical profile 
 add 500,0,354 fixed=xyz 
 add 500,50,354 fixed=xyz 
 add 500,100,354 fixed=xyz 
 add 500,150,354 fixed=xyz 
 add 500,200,354 fixed=xyz 
 add 500,250,354 fixed=xyz 
 add 500,300,354 fixed=xyz 
 add 500,350,354 fixed=xyz 
 *Wall 2 horizontal profile 
 add 0,175,0 fixed=xyz 
 add 50,175,0 fixed=xyz 
 add 100,175,0 fixed=xyz 
 add 150,175,0 fixed=xyz 
 add 200,175,0 fixed=xyz 
 add 250,175,0 fixed=xyz 
 add 300,175,0 fixed=xyz 
 add 350,175,0 fixed=xyz 
 add 400,175,0 fixed=xyz 
 add 450,175,0 fixed=xyz 
 add 500,175,0 fixed=xyz 
 *Wall 2 vertical profile 
 add 248,0,0 fixed=xyz 
 add 248,50,0 fixed=xyz 
 add 248,100,0 fixed=xyz 
 add 248,150,0 fixed=xyz 
 add 248,200,0 fixed=xyz 
 add 248,250,0 fixed=xyz 
 add 248,300,0 fixed=xyz 
 add 248,350,0 fixed=xyz 
 *Wall 2 vertical quarter point profile 
 add 372,0,0 fixed=xyz 
 add 372,50,0 fixed=xyz 
 add 372,100,0 fixed=xyz 
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 add 372,150,0 fixed=xyz 
 add 372,200,0 fixed=xyz 
 add 372,250,0 fixed=xyz 
 add 372,300,0 fixed=xyz 
 add 372,350,0 fixed=xyz 
 *wall 3 points along midheight 
 add 500,175,0 fixed=xyz 
 add 500,175,50 fixed=xyz 
 add 500,175,100 fixed=xyz 
 add 500,175,200 fixed=xyz 
 add 500,175,300 fixed=xyz 
 add 500,175,400 fixed=xyz 
 add 500,175,500 fixed=xyz 
 *wall 3 vertical profile at sensors 
 add 500,0,428 fixed=xyz 
 add 500,50,428 fixed=xyz 
 add 500,100,428 fixed=xyz 
 add 500,150,428 fixed=xyz 
 add 500,200,428 fixed=xyz 
 add 500,250,428 fixed=xyz 
 add 500,300,428 fixed=xyz 
 add 500,350,428 fixed=xyz 
 *wall 3 vertical profile at quarter point 
 add 500,0,214 fixed=xyz 
 add 500,50,214 fixed=xyz 
 add 500,100,214 fixed=xyz 
 add 500,150,214 fixed=xyz 
 add 500,200,214 fixed=xyz 
 add 500,250,214 fixed=xyz 
 add 500,300,214 fixed=xyz 
 add 500,350,214 fixed=xyz 
endtracer 
 
heburn 
  mat 1  d 5.856e5 
  dp 250,70,428 
  r 50  time 0.0 
endh 
 
* material insertion inputs 
diatom 
    package 'explosive' 
     mat 1 
     numsub=12 
     iteration=4 
     insert cylinder 
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       ce1=250,30.48,428 
       ce2=250,71.48,428 
       r=6.714235 
     endinsert 
    endpackage 
    package 'air' 
     mat 2 
     insert box 
      p1 0,0,0 
      p2 2000,2000,2000 
     endi 
    endp 
enddiatom 
 
discard 
*mat=1 ton=1e-7 toff=25e-3 dti=1e-7 dens=100 denl=0 pres=1e2 
mat=1 ton=5e-3 toff=25e-3 dti=1e-5 dens=100 enrg=1 
*mat=1 ton=1.01e-5 toff=25e-3 dti=1e-6 dens=100 enrg=1 
endd 
 
edit 
  shortt 
    tim = 0.,  dt = 5e-3 
  ends 
  longt 
    tim = 0.,  dt = 1.0 
  endl  
  restt 
    tim = 0. 
    dtf = 30e-3 
  endr 
ende 
 
*  spall parameters  
 fracts  
   pfrac1  -1.0e12 
   pfrac2  -1.0e12 
 endf  
* 
boundary 
   bhy 
       bxb = 0 , bxt = 0  
       byb = 0 , byt = 0 
       bzb = 0 , bzt = 2.1 
   endh  
endb 
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mindt  
   time = 0.  dt = 1.e-12 
endn 
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APPENDIX F:  TIME HISTORY PLOTS OF PRESSURES FROM CTH 
SIMULATIONS AND EXPERIMENTS 

 
 This appendix contains plots overlaying the CTH predicted blast pressure time 

histories from two-dimensional simulations with those measured during Shots A1 and B.   
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FIGURE F.1:  Shot A1, Sensor P1 – Comparison of CTH pressure pulse to that measured 

at Sensor P1.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are similarly shifted relative to P1. 
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FIGURE F.2:  Shot A1, Sensor P2 – Comparison of CTH pressure pulse to that measured 

at Sensor P2.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are similarly shifted relative to P1. 
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FIGURE F.3:  Shot A1, Sensor P3 – Comparison of CTH pressure pulse to that measured 

at Sensor P3.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are identically shifted relative to P1. 
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FIGURE F.4:  Shot A1, Sensor P5 – Comparison of CTH pressure pulse to that measured 

at Sensor P5.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are identically shifted relative to P1. 
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FIGURE F.5:  Shot B, Sensor P1 – Comparison of CTH pressure pulse to that measured 

at Sensor P1.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are identically shifted relative to P1. 
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FIGURE F.6:  Shot B, Sensor P2 – Comparison of CTH pressure pulse to that measured 

at Sensor P2.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are identically shifted relative to P1. 
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FIGURE F.7:  Shot B, Sensor P6 – Comparison of CTH pressure pulse to that measured 

at Sensor P6.  CTH prediction is the thicker line.  P1 time of arrival manually 
synchronized.  All other arrival times are identically shifted relative to P1. 
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