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ABSTRACT 

 

 

DAVID GEORGE VUTETAKIS JR. Replacement of human operator with vision-

guided robot for electronic component pick-and-place work cell. (Under the direction of 

DR. AIDAN F. BROWNE) 

 

 

Picking and placing parts is a fundamental operation involved in circuit board 

manufacturing and assembly plants. Pin thru-hole (PTH) components with non-standard 

features are incompatible with most existing high speed pick-and-place systems; this 

results in the use of manual operators to perform the circuit board assembly process. The 

inclusion of a human element in an otherwise automated manufacturing plant introduces 

a variety of unfavorable effects including decreased throughput rates and increased 

errors. In this research, I have developed an initial framework which allows for 

automated circuit board assembly of non-standard electrical component types. An 

articulated robotic manipulator with 6 degrees of freedom (DOF) was guided by precisely 

calibrated machine vision cameras to obtain workspace information. A model based 

object recognition approach was used for the identification and subsequent localization of 

components and their placements, which demonstrated robust and repeatable results 

among the different components tested. The experimental data demonstrates a decrease 

over the current average human throughput rate as well as reduced error frequency, with 

future work identified to further optimize the performance results.  
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Background 

The circuit board manufacturing process can become quite complex due to the 

extremely wide variety of printed circuit board designs and the electronic components 

with which they are populated. There are many different categories for these parts, but 

their mounting on a circuit board can be classified into two general categories: surface 

mount technology (SMT) or pin thru-hole technology (PTH). Figure 1 displays multiple 

surface mount components on a circuit board, two of which are highlighted as typical 

SMT components. 

 

Figure 1: Example SMT components 
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SMT parts do not use pin leads, but instead use metallic tabs which are easily 

soldered to circuit board pads after placement. The tabs do not frequently require 

adjustment or other conditioning which improves the assembly throughput rate. SMT 

parts can also be manufactured smaller than the thru-hole counterparts and at reduced 

cost. Smaller sizes allow higher component density and increased utilization of board 

surface area. For these reasons, SMT is a preferred circuit board placement methodology 

in most industries.  

The alternative to SMT is the use of pin thru-holes, which was the most common 

approach until the early 1990’s when it was surpassed by SMT. PTH parts have 

protruding pin leads that are inserted in lead holes on a circuit board, which provides 

improved physical mounting strength. Components that may be exposed to high 

mechanical stress must be mounted using thru-holes for additional strength, and some 

components may simply be unavailable as an SMT. Axial leads protrude from opposite 

ends along a single axis of a component as opposed to radial leads which are projected in 

one direction from the same surface (Figure 2). The leads of radial components are 

generally arranged into rows and are referred to as either single in-line package (SIP) or 

dual in-line package (DIP) as shown in Figure 3, but may occasionally take other forms 

as well. 
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Figure 2: Radial component (top); axial component (bottom) 

 

 

Figure 3: Single in-line package (top); dual in-line package (bottom) 

 

Most PCB manufacturing plants are typically not involved in the layout of the board 

or the design of the components and must therefore have many diverse automation 
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systems to handle the diverse task requirements. The components needed for a particular 

board assembly may arrive in several packaging forms, such as reels, trays, tubes or bulk. 

Reels are common for the majority of SMT parts as they can store large component 

volumes which reduces delays involved with initially feeding the reels into the assembly 

machinery. PTH components also frequently implement reel packaging, but sometimes 

may also use trays or tubes. This packaging method allows additional protection of 

components and may also be necessary if a component cannot be practically packaged 

using reels due to large dimensions. Occasionally components that are purchased in bulk 

may be packaged freely with no useful containment characteristics. These parts are 

typically transferred to trays or bins to be used during the assembly process, but are 

sometimes taped by the PCB manufacturer. 

Thru-hole components sometimes require various preparation and conditioning 

depending on the type of original component packaging. Lead forming may be required 

to ensure all pins have the correct orientation and spacing. Lead trimming is often 

performed to remove excess length, which may occur before placement or after soldering. 

Clinching is also commonly required to ensure placed components remain secure during 

handling and soldering [1]. While automated pick-and-place systems currently exist 

which can perform the lead conditioning and assembly tasks, these systems often must be 

custom designed to a dedicated category of components, which is expensive and time 

consuming. More importantly, odd component types which have non-standard 

characteristics are mostly incompatible with these systems, and a dedicated machine for 

every potential component would be impractical. A common solution to this problem is 

to perform the conditioning and insertion of components manually. In order accomplish 



5 

 

this, the boards must be removed from the high speed feeders and placed on portable 

racks which are taken to manual work cells occupied by human operators. The 

components to be placed are often kept in bins or trays at the work cells where they are 

conditioned, inspected and inserted as the boards arrive. The automated manufacturing 

process is interrupted until the manual insertions are complete and the boards are placed 

back on the line. This method introduces high variations in timing which makes precise 

process scheduling difficult. It also results in drastically reduced throughput rates in the 

assembly process and significant error increases. 

Some attempts have been made to develop systems to assist the manual process. 

Halbo et. al [1] describes a hybrid automation system which uses light projection to 

visually highlight which type component to pick and its corresponding placement on the 

board. Using this system, an experienced operator may be capable of placing 100 

components per hour, taking approximately 36 seconds per component, but achieving 

lower error rates than without the assistance. Consultation with a local PCB manufacturer 

quoted their workers being capable of achieving an average placement time of as low as 5 

seconds per part, but experience typical errors of 1% or higher. This is significantly 

below the dedicated assembly machines which can process 50,000 parts or more per 

hour.  

Research attempts have also been made to remove the human element using vision 

systems such as Liebes et. al [2] [3] who developed an assembly system which uses a 

SCARA robotic manipulator coupled with machine vision, referred to as the flexible 

assembly intelligent robot (FLAIR). A major difficulty involved with odd components is 

the need to develop custom feeding systems which can cause manufacturing delays and 
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increased prices. To mitigate this, the FLAIR system developed a modular feeder using a 

tube system. However, it was recognized that a disadvantage of this method is that it 

limits the compatible part types to those readily available with tube packaging. This 

system showed significant potential to handle a variety of nonstandard components. 

Although the assembly quality results were promising with this approach, reliable 

performance with odd-components was still a challenge [2]. Additional research methods 

demonstrating superior results were absent in the literature search, a claim supported in 

consultation with a major circuit board manufacturer which was actively seeking research 

to replace their current human work cells with more flexible automation systems. 

Research relating to the general pick-and-place assembly operations is an ongoing 

field of development. Ono et al [4] used a vision guided robot approach to identify and 

pick coiled springs from a pile. The results showed the capability of the system to 

perform the operation despite the complex features of the springs. However, the 

performance may not exceed the capabilities of a human operator performing the 

equivalent task, with a sample success rate of 77%. Other approaches involved metal 

components such nuts, as well as more complex sheet metal shapes [5]. The placement 

quality showed up to 100% successful placement, but cycle times approached up to 15 

seconds at an accuracy up to ± 1mm which would not meet the requirement of a circuit 

board assembly. Many other researchers have implemented similar methods which 

involve the use of a dexterous robotic manipulator guided by a machine vision system [6] 

[7] [8] [9], an approach which shows great potential for further research in circuit board 

assembly tasks.  
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1.2 Research Overview 

The current manual circuit board assembly process involves many unique tasks 

before a component is inserted into the circuit board. However, the scope of this research 

is limited primarily to the automation of the pick and place task using a robot 

manipulator. The requirements to automate the pick-and-place operation include:  

 localization of the electronic components within the part tray  

 localization of corresponding placement positions on the circuit board 

 picking up components and evaluating part quality 

 insertion of component at corresponding localized placement location 

The research contained in this thesis should provide supporting evidence that a 

precision robotic manipulator in concert with a calibrated machine vision system can be 

successfully used to meet the outlined requirements to automate the pick and place 

process for non-standard electronic components. Specifically, the desired outcome would 

show that the automated process can be performed with a lower number of placement 

errors and faster throughput rates over the current human work cells. 

The proposed methodology to accomplish these research goals involves a 6-axis 

robotic manipulator with pneumatic clamp tooling, as shown in Figure 4 and Figure 5. A 

vision system comprised of two machine vision cameras supplement the necessary 

information for automated operation. Within the robots area of operation, separate 

workspaces are established to contain the tray of components as well as the circuit board. 
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Figure 4: Experimental workspace elements (side view) 

 



9 

 

 

 

Figure 5: Experimental workspace elements (top view, rotated 90°) 

 

An experimental procedure was developed to analyze the circuit board assembly 

performance of the system using. This procedure begins by first preparing a component 

tray and placing it in its workspace. Each tray contains only one type of components, but 

the quantity and pose may vary for different experiments. The board is similarly placed in 

the workspace using fixed mounting structures. Descriptive parameters regarding the 

component, circuit board, and task operations are input to the experimental program 
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followed by the command to begin the procedure. Once the process begins, the robot 

positions the camera at different viewing locations to acquire images of the tray and 

board which are used to identify and localize the components and board placements. 

Once this information is calculated, a single component is picked and positioned in front 

of the inspection camera at multiple viewing angles to determine precision pin offsets. 

Applying these offsets to the reference placement coordinates, the gripper inserts the 

component into the circuit board and releases it. This process can then be repeated as 

dictated by the particular testing goals.  

 

 



 

CHAPTER 2: SYSTEM HARDWARE 

 

 

2.1 Robotic Manipulator 

A Denso VP-6242 was used to perform the mechanical manipulation tasks. The VP-

6242 is a robotic arm with 6 degrees of freedom (DOF) capable of moving an end 

effector to any point in 3 dimensional Cartesian coordinates within its workspace. The 

arm has an overall length of 420 mm with an effective workspace radius of 432 mm as 

depicted in Figure 6 and Figure 7 [10]. This area was sufficient due to the small nature of 

typical electrical components and circuit boards used in this research. 

 

Figure 6: Robotic manipulator maximum work space- side view [10] 
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Figure 7: Robotic manipulator maximum work space- top view [10] 
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Figure 8: Robot axis labels [10] 

 

The manipulator uses AC servomotors for each joint with absolute encoder feedback, 

which is critical to prevent drift error accumulation and to maintain positioning resolution 

over time. The robotic arm was mounted by the base on the surface of a workbench 

measuring 3x6 feet (0.914x1.83 m) as shown in Figure 9. In order to ensure an even flat 

work surface and to minimize vibrations caused by arm movements, the robot had been 

previously mounted to a structurally rigid steel workbench. 
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Figure 9: Robot work space dimensions 

 

2.2 Robot Controller 

The kinematic movements are controlled by an RC8 robot controller, also 

manufactured by Denso, which was designed to drive the VP-6242. The controller 

directly connects to the arm base to provide power, motor control and encoder feedback. 

The controller additionally provides 48 points of user input/output (I/O) signals, which 

includes signals for manual/automatic modes and emergency stop switches. When an 

emergency stop signal is sent, it directly deactivates the motor power relay to prevent any 

further movement. One emergency stop was located on a portable monitoring and control 

interface referred to as the teach pendant, and two fixed emergency stops were mounted 

near the work area, one on each end of the workbench. The I/O signal wires were routed 
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into a small breakout box, where the manual/automatic switches were also mounted to for 

easy access. 

The arm contains internally routed pneumatic tubing, which was utilized by the end 

effector sub-system. A pneumatic air compressor was used to provide the pressurized air, 

which was routed through a solenoid valve to control its flow. This solenoid was 

activated by a relay controlled by an I/O signal from the RC8 controller. 

 

Figure 10: Pneumatic system overview 
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2.2.1 Controller Interfacing 

The controller uses a programmable automation controller script (PacScript) language 

to execute program routines and movement commands, which is derived from Microsoft 

Visual Basic. This controller was interfaced through three methods, the initial being a 

teach pendant. The pendant is a tethered handheld device that provides basic interaction 

with the arm, such as applying power to the motors, moving the joints, and monitoring 

position. The pendant was primarily used in the initial setup and familiarization, but did 

not have the capabilities to perform complex automation tasks. The primary interface 

utilized was National Instruments (NI) LabVIEW System Design Software. The base 

development module of LabVIEW provides powerful tools for control system automation 

and data analysis with the capacity to utilize a variety of third party libraries. One such 

library is maintained by DigiMetrix in collaboration with Denso and NI that allows the 

direct use of LabVIEW to interface to the RC8 controller. This library converts high level 

function into recognizable PacScript format, which eliminated the need to directly use the 

PacScript language. Some of the main high level commands utilized are as follows: 

 Move by coordinate name: move tool from current position to a desired 

position 

 Approach: perform movement to a desired position offset by a variable 

distance along the z-axis 

 Depart: perform a movement a variable distance along the z-axis 

 Move Arch: perform a movement to a desired position according to variable 

arch parameters 
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To communicate with the RC8 controller, the “auto mode” signal lines must both be 

simultaneously pulled to 24V which allows commands to be received and executed 

through the Ethernet port on the RC8. This was beneficial by allowing the robot to be 

controlled through any network capable machine, including a host computer and the Real 

Time controller used by the vision system. 

 

Figure 11: Programming software overview 

 

2.3 End Effector 

The particular end effector tooling for this research needed to be identified and 

mounted to perform the specific actions required, such as interaction with objects and 

visual inspection of multiple areas. A pneumatically powered type of gripper was 

selected to perform these tasks. Two gripper models had been previously acquired: the 

MHC2-20D and MHZ2-20D. The only major difference between the two models was 

that the MHC opened angularly, while the MHC opened linearly.  
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Figure 12: Parallel vs. angular gripper style  

 

One other task requirement was the ability to obtain visual information from multiple 

viewing points for automation feedback. Due to a limited number of cameras, and for 

cost efficiency, it was determined that a single camera could accomplish multiple tasks if 

located directly on the end effector, allowing it to move to transition to multiple viewing 

positions or angles. In order to mount these devices to the robot, a bracket was designed 

to make use of the mounting holes on the J6-axis flange (Figure 13).  
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Figure 13: Robot flange mounting face [10] 

 

Square aluminum tubing was chosen as the foundation of the bracket as it can be 

easily purchased, ensures consistent projection alignment, and provides structural rigidity 

to reduce movement errors. The tubing required only to be cut the appropriate length, and 

for holes to be drilled at precisely measured locations, resulting in a bracket made of only 

one single component to prevent compounding misalignment errors. An error occurred in 

the machining of this bracket, however, resulting in the camera and gripper mounting 

locations being incorrect. Since the offsets were still constant, they were accounted for in 

calibration rather than re-machining a new bracket.  
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Figure 14: End effector mounting 

 

The gripper assemblies provide mounting holes for attachments such as fingers, 

which were developed based upon the particular component grasping requirements, but 

the optimization of the fingers was not to be a primary focus of this research. The final 

finger design was created with considerations for minimizing implementation time. 
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Aluminum corner brackets were selected as the foundation of the fingers. The reasoning 

for the 90° angle was to allow a surface with a larger area that could be utilized for other 

functions, such as placement of fiducials to assist in visual localization, and this shape 

also allowed the material to be thinner and lighter while maintaining acceptably rigid 

characteristics. This was taken into consideration due to the moment of inertia produced 

at the greater distance extension, which can result in increased positioning time and 

reduced accuracy.  

 

Figure 15: Final gripper finger design (front & side view) 
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Figure 16: Final gripper finger design (top view) 

 

The aluminum was cut to the appropriate lengths and a mill was used to ensure the 

alignment of the mounting holes was consistent. As a final measure to reduce compliance 

and alignment errors, shim stock was inserted between the gripper and the inner surface 

of the fingers. This design provided the precision and repeatability necessary for other 

aspects of the research.  
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Figure 17: Gripper finger mounting alignment 
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The maximum load of the end effector was given in the specifications at 2.5 kg with 

the wrist direction facing down and 2 kg otherwise. However, the distance this load is 

applied results in a moment of inertia which also must be considered. The maximum 

inertial moment allowed around the J6-axis is 0.007 kgm2. The total mass of the end 

effector was estimated to be approximately 1 kg and the total inertial moment of the end 

effector assembly was calculated to be less than 0.001 kgm2 which was well within the 

robot’s specifications. At these loads, the positioning time of the end effector can be 

estimated using the manufacturer provided graphs displayed below [10]. 

 

Figure 18: Robot J6-axis positioning time [10] 
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Figure 19: Robot continuous path positioning time [10] 

 

The movements of the robot which limit the overall positioning time are the rotation 

of the J6-axis and the translation of the tool between positions. Large rotations require 

significantly more positioning time and may occur both when picking angled parts and 

during inspection, and can become a limiting factor in total positioning time. Assuming 

that no more than ±180° would be necessary to pick a component of any orientation, 

Figure 18 indicates a maximum positioning time under rotation of approximately 0.9 

seconds at an end effector load of 1 kg. According to Figure 19, the positioning time 

becomes linear in relation to distance at approximately 100 mm taking 0.42 seconds. This 

information is useful for path planning in order to minimize the overall positioning time 

requirement. 
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2.4 Lighting Control 

The workbench used for this research was located in a laboratory environment with 

overhead fluorescent lighting fixtures. These lighting conditions were non-ideal for many 

of the machine vision tasks for a variety of reasons, including intensity variations, 

shadow casting, and specular reflections. The control of machine vision lighting can 

become a complex task in itself. While a variety of lighting techniques are able to solve 

some lighting challenges, no universal lighting solution exists. One technique known as 

dark field lighting is based on directional lighting which forms relatively low incident 

angles with the camera as shown in Figure 20 [11]. This method is highly effective for 

reducing glare on specular surfaces by directing reflected light away from the surface at 

the same incident angle, rather than towards the camera. 

 

Figure 20: Dark field lighting concept 
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2.4.1 Lighting Setup 

Nearly every electrical component has metallic features which are highly specular in 

nature (e.g. pins). Circuit boards also exhibit these characteristics from features such as 

mounting pads. To reduce glare while maintaining texture features and workspace 

interaction, a dark lighting approach was implemented; however, the optimization of the 

lighting conditions was not a research objective.  

A large cubic frame enclosure, with four legs and a solid top, was placed on the work 

surface in order to block ambient light originating from directly above the system while 

allowing light to enter from the side openings, as shown in Figure 21. This frame needed 

sufficient vertical clearance for movement of the manipulator, which resulted in a higher 

than desirable incident angle of light in the workspace. Completely removing light from 

this direction was observed to unfavorably increase the presence of shadows, which 

decreased the effectiveness of many vision tasks. A compromise was made by using light 

diffusion cloth to reduce the coherence of the light while sustaining the approximate 

quantity. This allowed the average light intensity to remain higher while reducing the 

glaring effect caused by high incident light angles. In the event that a particular object 

required higher contrast, additional light fixtures were placed inside the enclosure frame 

which provided further diffused lighting. Linear fluorescent bulbs were chosen to 

distribute the light more uniformly than the point source of a lamp style bulb. 



28 

 

 

Figure 21: Lighting control system 

 

2.5 Vision System 

One of the main components of the research relied on the use of an imaging system to 

obtain visual information of the work area and objects of interest. This system was also 

used to perform real world object localization and measurement, and therefore needed to 

be of high enough quality to meet the precision requirements. Two camera and lens 

assemblies believed to meet these requirements were selected. Each camera was a Basler 

area scan machine vision camera coupled with Computar low distortion lenses that 

consisted of the following specifications: 
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Table 1: Camera hardware specifications 

Camera Sensor 

Type 

Output 

Format 

Resolution 

(Pixels) 

Frame Rate 

(fps) 

Lens Focal 

Length (mm) 

acA1300-30uc CCD Color 1294x964 30 12 

acA2500-14uc CMOS Color 2590x1942 14 8 

 

The camera used to view the board and components benefitted from a larger FOV by 

allowing more components to be analyzed and placed on a larger board. The lens with the 

shorter focal length was paired with the higher resolution camera to allow a larger 

viewing area while mitigating the loss of feature resolution. Each camera communicated 

through a USB3 interface, which allowed the necessary throughput to operate in real 

time. 

The information obtained from each camera needed to be transferred, processed, and 

analyzed in real time to minimize the process time. To do so, a National Instruments 

CVS-1459RT compact vision system was selected as the real time controller. This device 

was compatible with LabVIEW software as well as the Denso robotics library. A host 

machine was installed with all of the software and configuration files, which could be 

accessed from any other machine on the network. 



 

CHAPTER 3: ROBOTIC MANIPULATOR CALIBRATION 

 

 

3.1 Coordinate Systems 

The manipulator position is expressed using a 3 dimensional Cartesian coordinate 

system referenced to the center of the flange surface located at the end of the J6-axis. 

This position can be defined through the use of unique coordinate systems, which are the 

Base, Work, and Tool coordinate systems [10]. Each of these coordinate systems are 

useful for determination and command of positional set points relative to various points 

of interest. The Base coordinate system is absolute and referenced to an origin located at 

the center of the robot base as shown in Figure 22. All other coordinate systems are 

established with respect to the base coordinates. The Work coordinate system can be 

defined through any translation or rotation of the Base coordinates, allowing the origin to 

be relocated to any point of interest within the workspace. This system can be 

dynamically redefined as needed, making programming movements simpler and faster. 
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Figure 22: Robot base and work coordinate systems [10] 

 

Before defining the Tool system, it is necessary to define the mechanical interface 

coordinates, which are a fixed coordinate system established with respect to the center of 

the flange surface on the J6-axis. As shown in Figure 23, The Zm-axis is normal to the 

center of the flange, with Ym pointing in the direction of the orientation key hole [10]. 

Xm passes through the center of the flange and is orthogonal to Ym and Zm and the 

intersection of these three axes is the point used to determine the robots position in 

relation to the Work or Base coordinates. The Tool coordinates can be established 

through rotation or translation of the mechanical interface coordinates as shown in Figure 



32 

 

24, similar to the process of defining Work coordinates. Using Tool coordinates allows 

the robot to be positioned relative to more useful points of interest, such as the center of 

the gripper, which enables more precise manipulation of components.  

 

 

Figure 23: Robot flange coordinate system [10] 
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Figure 24: Robot tool coordinate system [10] 

 

3.2 Tool Coordinate Offset Measurements 

When an end effector is mounted on the mechanical interface, the resulting offsets of 

any particular point of interest must be precisely measured to ensure consistency between 

the modeled reference point and the physical reference point. A variety or error sources 

must be considered to achieve high precision requirements of this research. Seemingly 

small measurement errors can accumulate to produce non-linear errors in positioning. 

Before attempting to calibrate the tool offsets, the orientation of the Base coordinates 

first needed to be determined as a reference. The most fundamental method to accomplish 

this is to identify workspace reference points that correspond to manipulator positions. 
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This was done by manually moving the arm along the x-axis and y-axis separately and 

tracing the resulting paths to determine the X and Y directions. In order for this method 

to be valid, it was assumed that the robot XY plane was approximately parallel to the 

work surface.  

When a new tool was attached to the end effector, the coordinate offsets were 

determined through the determination of the tool tip with respect to known mechanical 

interface coordinates. A physical feature needed to be placed to identify the locations of 

robot position reference points on the work surface. To maximize the certainty of the true 

origin of a reference point, the size of the identifying features needed to be sufficiently 

small. This was accomplished by using a sharpened needle with a very fine tip. A soft but 

rigid foam board was placed on the work surface. The needle was firmly secured in the 

inner channel of each gripper finger with just the tip protruding from the bottom. For 

each (x,y) reference position the needle was inserted into the foam along the z-axis to 

create an indentation. The next step was to accurately measure distances between these 

points. The manipulator was chosen as the measurement device as it is capable of a 

repeatability of 0.02 mm in each axis, which is far superior to measurements done by 

hand. To perform a measurement, the needle tip was manually positioned from one 

position to another, tracking the displacement distance in each axis according to the 

following equation:  

 
𝑥𝑡 =

[𝑥𝑡0 − 𝑥𝑡1]

2
 (1) 

 

 
𝑦𝑡 =

[𝑦𝑡1 − 𝑦𝑡0]

2
 (2) 
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The tool was manually stepped visually until it could be re-inserted into the 

indentation of interests without causing any deformation. This method ensured the 

ground truth origin, or the point used to identify the reference point, was equal or less 

than the width of tip. The maximum error of the arm is rated at ±0.0283 mm in between 

two axes, therefore the maximum limiting error is described by the following equation 

and represented by Figure 25, where εarm is the maximum error of the arm and εgt is the 

maximum error of the ground truth origin defined by the radius of the needle tip. 

 𝜀𝑚𝑎𝑥 = 𝜀𝑎𝑟𝑚 + 𝜀𝑔𝑡 (3) 

 

 

Figure 25: Reference position imprint error analysis 
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Using (4), the displacement measurement error can be described using the following 

equations, which indicates the maximum error using this method would be equal or less 

than |2𝜀𝑚𝑎𝑥|. For a sharpened point with a diameter at the tip of 0.05 mm, the maximum 

resulting offset error would be approximately 0.14 mm in each axis, but would likely be 

less than this value. 

 𝑥𝑡 = ((𝑥𝑚 ± 𝜀𝑚𝑎𝑥) − (𝑥𝑟𝑒𝑓 ± 𝜀𝑚𝑎𝑥)) = 𝑥𝑚 − 𝑥𝑟𝑒𝑓 + |2𝜀𝑚𝑎𝑥| (4) 

 

 𝑦𝑡 = ((𝑦𝑚 + 𝜀𝑚𝑎𝑥) − (𝑦𝑟𝑒𝑓 + 𝜀𝑚𝑎𝑥)) = 𝑦𝑚 − 𝑦𝑟𝑒𝑓 + |2𝜀𝑚𝑎𝑥| (5) 
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Figure 26: Determination of robot tool offsets 

 

Once calibration offsets were obtained, the accuracy and precision of the calibration 

was tested. The base coordinate system previously traced represents the positions which 

should now correspond to the calibrated tool reference point. If there is any significant 

error, a recalibration is necessary. By rotating the tool around a given point, any 

calibration errors can also be measured as deviation from the set point as the tool rotates. 

In order to determine if the calibration quality was within the maximum tolerance, the 

maximum allowable error needed to be determined. This error margin is limited by the 
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maximum error margin of the other components of the system during the task execution. 

Considerations needed to be made with respect to the tolerance of the components to be 

placed, spacing tolerance of the circuit board through holes, and the maximum feature 

resolution of the imaging system.  

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 4: MACHINE VISION 

 

 

A critical component to automating the assembly procedure is the use of the vision 

system. The information available in images provides the capability to recognize and 

localize objects, obtain precise geometric measurements, and perform inspections. The 

LabVIEW vision development module provides powerful library tools to implement the 

necessary machine vision algorithms; an in-depth discussion of their operational concepts 

is provided in the following sections. 

4.1 Vision Fundamentals 

A digital camera is a device which uses an electronic sensor to convert light 

intensities into a digital representation. These sensors are typically a rectangular 

arrangement of phototransistors with dimensions (x,y), where the relationship of x/y is 

known as the aspect ratio, and the number of sensor elements along each dimension 

defines the maximum image resolution. When light hits one of these sensors, the energy 

is converted to an electrical signal proportional to the lights intensity which can then be 

transferred to an image file, where they are referred to as picture elements, or pixels. The 

maximum rate at which the full number of pixels can be transferred is the cameras frame 

rate. For a given amount of light from a scene is directed at a camera sensor, ideally the 

number of sensor elements should be maximized, but to keep the same amount of light 

reception, the sensor area should be minimized to reduce the signal to noise ratio (SNR) 

[12] [13]. 
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Digital images are represented as either a two dimensional matrix for grayscale 

images, or a three dimensional matrix for color images where each of the RGB color 

scale has a unique two dimensional representation [12] [14]. Each element of the matrices 

is a spatial representation of a corresponding pixel location and its numerical value 

represents the luminous intensity at the time of the sensor exposure. Representing images 

this way allows them to be operated on using many conventional digital signal processing 

techniques.  

One of the most basic objective of machine vision for this research is the 

identification and recognition of image features. According to Farinella et al. [15], a 

quality feature should be distinctive from spatial surroundings, invariant to irrelevant 

changes, robust to noise, comparable to similar content in other images, and highly 

relevant to the current application. Some of the fundamental categories of features 

include: intensity, edges, contours, shapes, and texture. The images acquired from camera 

sensors contains noise that often must be filtered before analysis in order to produce 

reliable results.  

The fundamental operator of the filtering process is performed using convolution of a 

whole image or a region of interest (ROI) within an image. A 1D or 2D kernel is 

convolved through each pixel index in an image replacing the pixel value with the 

convolution results, as described using (6) [16]. The characteristics of the resulting image 

is determined by the kernel composition used in the filter. 
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 𝐼′(𝑢, 𝑣) = ∑ 𝐼(𝑢 + 𝑖, 𝑣 + 𝑗)𝐻(𝑖, 𝑗)

(𝑖,𝑗)∈𝑅𝐻

 (6) 

  

𝐼 = image function 

𝐻 = convolution kernel 

 

 

Smoothing filters are simple yet powerful techniques used for noise removal. The 

Gaussian filter is effective at smoothing images with Gaussian distributed noise and is 

based on the general form of Equation 7 [12] [13]. The effects of this filter can be 

observed in Figure 27. 

 
𝑔(𝑥, 𝑦) =

1

2𝜋𝜎2
𝑒

(−
𝑥2+𝑦2

2𝜎2 )
 (7) 

  

x = x pixel 

y = y pixel 

σ = sample variance 

 

 

This filter acts as a low pass filter by averaging the neighboring pixels of each origin 

pixel while applying a Gaussian distributed weighting to the kernel. This process is 

demonstrated in Figure 27, where the image on the left exhibits random pixel noise which 

is significantly reduced after the application of the smoothing filter as shown in the image 

on the right.   
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Figure 27: 5x5 Gaussian filtering example 

 

Another useful technique is the identification of edges. Edges are a highly useful 

feature as they represent boundaries between objects or between regions within a single 

object. One method of determining an edge location is through analyzing the local rate of 

change between pixels. Equation (8) is the general expression for the rate of change 

between pixels, where f(x) is the intensity value of a pixel at the x-index [16]. 

 

 𝑑𝑓

𝑑𝑥
(𝑥) ≈

𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

(𝑥 + 1) − (𝑥 − 1)
=

𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

2
 (8) 

 

This equation can be expanded to find the gradient of an image by taking the partial 

derivative with respect to each pixel axis as shown in Equation (9). A simple kernel to 

implement this function is the Sobel operator shown in Equations (10) and (11) where I is 

the original 2D image matrix. The functions Sx and Sy return the gradient values of the x-
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axis and y-axis, respectively, where the gradient magnitude is calculated according to 

Equation (12) [14] [16]. 

 

∇𝐼(𝑥, 𝑦) =

[
 
 
 
𝜕𝐼

𝜕𝑥
(𝑥, 𝑦)

𝜕𝐼

𝜕𝑦
(𝑥, 𝑦)

]
 
 
 

 (9) 

  

𝐼 = image function 

𝑥 = x-axis pixel 

𝑦 = y-axis pixel 

 

 

 
𝑆𝑥 = [

−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼 (10) 

  

𝑆𝑥 = x-axis Sobel operator 

𝐼 = image function 

 

 

 
𝑆𝑦 = [

−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐼 (11) 

 

 
|∇ 𝐼(𝑥, 𝑦)| = √𝑆𝑥(𝑥, 𝑦)2 + 𝑆𝑦(𝑥, 𝑦)2 (12) 

 

Another area of image processing utilized was image compression, which is the 

resampling of an image to reduce the size of its representation. In many practical 

applications, an image contains more data than is needed which can result in unnecessary 

increases in processing time. Compressing the image can often remove much of this 

redundant information while maintaining the overall global image features desired. A 

basic form that was implemented was through interlacing, where alternating rows and 

columns are removed from the image. Another approach that is sometimes more effective 
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is to use Gaussian pyramids, which do not completely eliminate the information in the 

removed indices. This is accomplished by using a local Gaussian operator to determine 

the subsampled row and column values based on a pixels neighboring spatial information 

[12] [15] [13].  

In many instances, after an image has been filtered, the specific pixel intensity values 

are no longer useful for providing additional information for a task such as edge detection 

for example. The location of the edge is the desired information while the intensity value 

of the edge is not directly useful. In these instances, image segmentation is used to 

establish boundary limits within an image, usually between the background and 

foreground, or to identify features in an area of interest. Once these boundaries are 

determined, the image can be reduced to binary values which correspond to 

background/foreground. This is accomplished through thresholding as shown in Equation 

13, where I is the image function of indices x and y, and  T is a calculated threshold value 

used to determine whether or not a pixel is of interest [13]. 

 

 𝐼(𝑥, 𝑦) = {
0: if 𝐼(𝑥, 𝑦) < 𝑇
1: otherwise     

 

 
(13) 

 

Once an image is segmented, the connected regions may sometimes be referred to as 

particles. Further filtering techniques may be applied and are often referred to as particle 

filters, or binary filters [14]. Particle filters first analyze a segmented image and return 

characteristics of the connected regions which is then accepted or rejected based on a 

threshold for the returned analysis results. One useful analytical measurement used for 
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particle filtering is the Heywood circularity factor which represents the ratio of the 

perimeter of an enclosed region to the perimeter of a circle having the same area. This 

value can be determined using (14) and is effective for quantifying a shapes similarity to 

a circle [17]. 

 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑝

2√𝜋𝐴
 (14) 

 𝑝 = particle perimeter 

𝐴 = particle area 

 

 

 

4.2 Camera Calibration 

In this research, it is necessary for the analytical results to be in world units, such as 

millimeters, which must be relationally defined. To translate the results accurately, the 

camera must be calibrated, which is the process of normalizing images into a 

geometrically accurate representation [13].  

Ideally, more light received by a camera sensor results in more information about the 

scene. However, it is important that this light from one point in the scene is transferred to 

only one sensor element. A simple model can be represented through the concept of a 

pin-hole camera. As shown in Figure 28, the points of an image scene are linearly 

mapped onto the image plane according to a scaling factor determined by the focal length 

[16]. 
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Figure 28: Pinhole camera model [16] 

 

If all of the light passes through a single projection point, then an angular relationship 

forms between the scene and the sensor, so that only light from a single point is 

transferred to a single point on the sensor as described by the following equations [16]: 

 
𝑥 = −𝑓

𝑋

𝑍
 (15) 

 𝑥 = image x-coordinate 

𝑓 = image focal length 

𝑋 = world x-coordinate 

𝑍 = optical axis 

 

 

 
𝑦 = −𝑓

𝑌

𝑍
 (16) 

 𝑦 = image y-coordinate 

𝑓 = image focal length 

𝑌 = world y-coordinate 

𝑍 = optical axis 
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The pinhole camera model limits the amount of light available, which means reduced 

information content. This can be resolved by the use of a lens, which can focus a larger 

area of light to a single location, as shown in Figure 29 [12].  

 

Figure 29: Lens description [12] 

 

When lenses are introduced to a vision system, a variety of new error sources are also 

introduced. Therefore, the primary sources of error must be identified, modeled, and 

rectified to achieve geometrically accurate measurements. Some of the primary sources 

of error are [13]: 

 World coordinate offset 

 Central projection error 

 Lens distortion 

 Mapping sensor coordinates into image coordinates 



48 

 

To correct for these error sources, assume a single point 𝑃𝑤 = (𝑋𝑤, 𝑌𝑤 , 𝑍𝑤) in world 

coordinates can be described as camera coordinates 𝑃𝑠 = (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) by the affine 

transformation of the following equation [13]: 

 

 
(𝑋𝑠, 𝑌𝑠, 𝑍𝑠)

𝑇 = ℝ ⋅ [(𝑋𝑤, 𝑌𝑤, 𝑍𝑤)𝑇 + 𝕋] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] ⋅ [
𝑋𝑤 + 𝑡1
𝑌𝑤 + 𝑡2
𝑍𝑤 + 𝑡3

] (17) 

 (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) = camera coordinates 

(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) = world coordinates 

ℝ = rotation matrix 

𝕋 =translation vector 

𝑟 = rotation coefficients 

𝑡 = translation coefficients 

 

 

This can be further expressed as Equation 18 to account for error resulting from an offset 

image center [13]. 

[

𝑥 − 𝑐𝑥

𝑦 − 𝑐𝑦

𝑓
] = [

𝑥𝑢

𝑦𝑢

𝑓
] = 𝑓 [

𝑋𝑠/𝑍𝑠

𝑌𝑠/𝑍𝑠

1

]

= 𝑓

[
 
 
 
 
𝑟11(𝑋𝑤 + 𝑡1) + 𝑟12(𝑌𝑤 + 𝑡2) + 𝑟13(𝑍𝑤 + 𝑡3)

𝑟31(𝑋𝑤 + 𝑡1) + 𝑟32(𝑌𝑤 + 𝑡2) + 𝑟33(𝑍𝑤 + 𝑡3)

𝑟21(𝑋𝑤 + 𝑡1) + 𝑟22(𝑌𝑤 + 𝑡2) + 𝑟23(𝑍𝑤 + 𝑡3)

𝑟31(𝑋𝑤 + 𝑡1) + 𝑟32(𝑌𝑤 + 𝑡2) + 𝑟33(𝑍𝑤 + 𝑡3)
1 ]

 
 
 
 

 

(18) 

If a distorted image point is given by Equation 19 which represents an undistorted 

image point of Equation 20, then Equations 21 and 22 may be used to represent the 

transformation of a distorted point to a calibrated undistorted point. Furthermore, for a 

principal point (cx, cy), the magnitude of the radial distortion can be expressed as shown 

in Equation (23) [13, 12]. 
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 𝑝𝑑 = (𝑥𝑑, 𝑦𝑑) (19) 

 

 𝑝𝑢 = (𝑥𝑢, 𝑦𝑢) (20) 

 

 𝑥𝑢 = 𝑐𝑥 + (𝑥𝑑−𝑐𝑥)(1 + 𝑘1𝑟𝑑
2 + 𝑘2𝑟𝑑

2) (21) 

 𝑥𝑢 = undistorted coordinate 

𝑥𝑑 = distorted coordinate 

𝑐𝑥 = x-axis principal point 

𝑘 = distortion coefficient  

 

 

 𝑦𝑢 = 𝑐𝑦 + (𝑦𝑑−𝑐𝑦)(1 + 𝑘1𝑟𝑑
2 + 𝑘2𝑟𝑑

2) (22) 

 𝑦𝑢 = undistorted coordinate 

𝑦𝑑 = distorted coordinate 

𝑐𝑦 = y-axis principal point 

𝑘 = distortion coefficient 

 

 

 
𝑟𝑑 = √(𝑥𝑑 − 𝑐𝑥)2 + (𝑦𝑑 − 𝑐𝑦)

2
 

(23) 

 

Equations (21) through (23) can readily be used to solve for the distortion coefficients 

using a reference point in world coordinates, its undistorted transformation to camera 

coordinates, and the resulting distorted location. The only input that must be provided is 

the reference point location within the world coordinate system. One method to 

accomplish this is through the creation of a grid system with known spacing. The world 

coordinate system origin can arbitrarily be set to zero during this process, then scaled 

later on. Once the reference points are located in an image, Equations (19)-(23)  can be 

used to solve for the distortion modeling coefficients. These equations can then be used 
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to solve for an error map across the entire image stored in a look up table to decrease 

computation times during a live application.  

In this research, the dot grid method was selected in order to take advantage of the 

LabVIEW vision libraries to handle the computation of the distortion model. An example 

the grid is shown in Figure 30. The determination of the reference positions using this 

method is based on the relative separation distances, and not an absolute known 

locations; careful procedures were followed to ensure a flat surface with even spacing to 

prevent additional model distortion. The dot grids were computer generated, then printed 

at 1200 dots per inch (dpi) to minimize resolution based errors. To reduce any 

perspective error caused by surface contours, a 1/8 in. steel plate was selected to provide 

a rigid surface. A thin layer of spray adhesive was used to secure the paper to the steel, 

which minimized any rippling of the paper. 

 

Figure 30: Dot grid used for camera calibrations 
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When performing the calibration, the camera was located in the position to be 

calibrated and the calibration grid was placed flat along the surface of the area to be 

mapped. Due to the affine transformation used by the calibration model, the results are 

only valid for real-world coordinates coplanar to the calibration grid reference plane, and 

images must be taken from the same camera pose. Several images were taken with the 

grid at various angles, which produced the reference coordinates used to determine the 

cameras intrinsic parameters. A local threshold was applied to segment the image using 

dots as the foreground and all other pixels as background. Noise frequently remained 

after this process which was subsequently eliminated through further particle filtering. 

Based on the average pixel area of each dot, an area filter was applied to remove any 

particles significantly smaller. Next a Haywood circularity filter was applied to remove 

any remaining noise that did not meet the threshold levels of edge circularity. The 

centroids of the resulting particles were calculated and used as the final reference point 

origins. 

The lenses used with the cameras have variable focal points and apertures. Setting the 

aperture too low reduced the amount of light available, which decreased the image 

contrast, while setting it too high allowed too much light which can lead to saturation. 

Since lighting was controllable, it could be reduced to prevent light saturation, but doing 

so would degrade the SNR at the cost of image resolution. The ideal configuration would 

be a minimum aperture size with maximum light to increase the contrast. This is not 

easily implemented in practice, as it can cause specular reflections and can result in 

prominent shadowing, especially if the lighting is non-uniform. To find a balance 

sufficient enough for this research, the aperture was configured to its median setting and 
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additional lighting was supplemented as needed. To establish appropriate focal length 

setting, a live feed of the camera was monitored as the focus was adjusted until the image 

was visibly at its highest quality. Once these settings were found, set screws were 

tightened to prevent any further changes, as the calibration model is dependent on these 

specific parameters. 

4.3 Cross Correlation  

A common technique used to assess similarity between two signals is cross 

correlation. This method involves convolution of a search template through an image to 

produce correlation scores at each image pixel. The 2D formula for image correlation is 

shown in Equation (24) [17]. 

 

 

𝐶(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑥, 𝑦)𝑓(𝑥 + 𝑖, 𝑦 + 𝑗)

𝐾−1

𝑦=0

𝐿−1

𝑥=0

 (24) 

  

𝐶 = correlation function 

𝑓 = image function 

𝑤 = matching template function 

𝑖 = pixel row index 

𝑗 = pixel column index 

𝐿 = template image width 

𝐾 = template image height 

𝑥 = template x index 

𝑦 = template y index 

 

 

While correlation can reliably find a template within an images that share similar 

characteristics, the processing time is very high and rapidly increases with image size. 

Additionally, this methods effectiveness is highly sensitive to scale and rotation 

variations. Due to these shortcomings, more advanced methods were investigated. 
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4.4 Low Discrepancy Sampling 

One method that can dramatically reduce the computation time of cross correlation is 

through the use of low discrepancy sequences (LDS). Sometimes referred to as quasi-

random sequences, these patterns represent a continuous distribution of quasi-random 

numbers in a data set that has more homogeneous characteristics than random or 

pseudorandom distributions, especially with smaller sample sizes [18] [20]. Traditional 

correlation techniques utilize all of the information in an image during the matching 

process. However, it is often that all of the information is not necessary or useful 

resulting in unnecessary computations and time delays. LDS uses non-uniform sampling 

to extract only the dominant features of an image [18] [14] [20]. 

In numerical integration, an area of interest is typically reduced to a finite number of 

sample points which are used to evaluate a given function [19]. The number of samples 

required is dependent upon the nature of the analysis; for images, this number can easily 

reach numbers in the order of 106. The most basic approach is to use a random number 

generator to determine the sample locations, as shown in (Figure 31). However, this 

approach is not without disadvantages, including varying density through “clumping” 

[19] [20]. A second disadvantage results from non-deterministic characteristics. The two 

sample groups (left and right) were generated using the same parameters but resulted in a 

different set of sample locations. The same parameters were used to generate each plot, 

but resulted in different sample locations. 
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Figure 31: Spatial sampling comparison using pseudo-random number generator 

 

Discrepancy is the terminology used to quantify the measure of uniformity in a 

sequence [20]. More specifically, it is the error produced by the difference in percentages 

of total volumetric sample points between subsets. In general, Equation (25), sometimes 

referred to as the star-discrepancy, can be used as a criteria to determine if a sequence can 

be described as low discrepancy [20].  

 

 
𝐷𝑁

∗ ≈
(log𝑁)𝑠

𝑁
 (25) 

  

𝑁 = number of samples 

𝑠 = dimension order 

 

 

Several types of sequences are frequently used which produce low discrepancy 

characteristics. These are often referred to as quasi-random sequences because they 

exhibit uniform distribution similar to random sequences, but they also produce 

characteristics of a lattice distribution [20]. One method used to generate such a 

distribution is the Halton sequence, which relies upon the p-adic expansion of integers 
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from a pseudo-random generator [20]. Equation (26) demonstrates a 1D uniformly 

distributed sequence where (𝑛)𝑝 = 𝑎𝑘𝑎𝑘−1 ⋯ 𝑎0 and 0 ≤ 𝑎𝑖 ≤ 𝑝 [20]. 

 

 𝑆𝑝(𝑛) =
𝑎0

𝑝
+

𝑎1

𝑝2
+ ⋯+

𝑎𝑘

𝑝𝑘+1
 (26) 

 

It follows that any s-dimensional application can be generalized by the following [20]: 

 

 𝒙𝑛 = (𝑆𝑝1
(𝑛),… , 𝑆𝑝𝑠

(𝑛)) (27) 

 

An example of a resulting sample distribution is shown in Figure 32, which is the first 

512 elements of a Halton sequence. When compared to the random number generation 

method, it has notably more homogeneous characteristics and has a repeatable 

distribution pattern. An additional benefit is the capability to implement the sequence 

using additive recursion which allows samples to be incrementally added and can reduce 

the required number of samples evaluated before a match occurs [20]. 
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Figure 32: Low discrepancy sampling visualization using Halton sequence 

 

The LabVIEW Vision Development Module has native libraries which allowed for 

rapid implementation of these techniques. To create a template image to use for matching 

in a search image, a reference image containing the desired object is acquired (Figure 33 

top), preferably under consistent conditions as those during the search process. Using an 

image mask, the object can be sub-sampled and stored as a separate image. Further 

masking can be applied to prevent features from being used in the calculation of the 

correlation score (Figure 33 bottom left), which is especially useful if certain features 

exhibit high variability between search images. When a match occurs, it is often useful to 

identify an offset location to be used as the origin of the template, which is shown in 

Figure 33 (bottom right). Once all of the initial setup parameters are chosen, LabVIEW 

contains a library which initializes the low discrepancy sampling method and stores all of 

the template information as part of the image data.  
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Figure 33: Object reference image (top); correlation mask (bottom left); match origin 

offset (bottom right) 

 

In the matching process, convolution is used to produce correlation scores across the 

search image. Each resulting score is produced from the sub-sampled points produced by 

the low discrepancy series to reduce the processing time. The desired angular search 

range can be adjusted from 0-360°, and the incremental angular accuracy can be precisely 
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tuned as well. Rotated patterns can be searched for as well according to the desired 

angular range. This range can be limited, and the intermediate angular search angles can 

be adjusted to decrease search time. A correlation score from 0 through 1000 is 

computationally produced which is compared to a threshold to determine a successful 

match. In general, setting a threshold of 800 or higher produces a high confidence of a 

successful match. Once an approximate match occurs, interpolation is performed to 

achieve resolution potentially finer than a single pixel unit.   

One primary advantage of LDS is its computational efficiency, requiring a relatively 

low number of samples to for accurate estimation of object location. This significantly 

reduces the computational complexity of a total cross correlation method, which 

exponentially increases with larger images. One potential disadvantage can arise when 

the template image is relatively small or has dense features intervals which can be 

excluded due to the small sampling numbers [14, 18]. 

4.5 Pyramid Template Matching 

The grayscale value pyramid technique (GVP) uses the correlation score of a pre-

existing image template model within the image of interest. Specifically, a template 

image is processed by down sampling the image at various pyramid levels. At each level, 

the features used for cross correlation are the normalized gray values of the image. 

During the matching process, both the image and template image are sampled to the 

highest available pyramid level, drastically reducing the computational complexity. A 

score is produced at each location in the search image and a threshold is applied to 

determine if an acceptable match has occurred. This is done at each pyramid level until a 

match occurs. When a match is found in a higher pyramid level, the search area in the 



59 

 

successively lower pyramids is approximately known, further reducing the complexity 

until the match is located in the full image size. This method is particularly useful for 

templates with complex textures and compact edges [18].  

Another implementation of this pyramid matching is through gradient pyramid 

matching. The concept is similar, but instead of using each grayscale value, the image is 

first filtered to locate significant edges, while suppressing weak edges [14]. Much of the 

unnecessary information is removed in the resulting binary image which can decrease the 

execution time. However, if the image has a high feature density, the filtering process 

may consume more time than it saves. Additionally, this method can become less reliable 

in templates with minimal edge features [18].  



 

CHAPTER 5: AUTOMATED WORK CELL METHODOLOGY 

 

 

In order to evaluate each component of the research, an experimental procedure was 

designed and implemented to replicate the assembly process. This procedure was used to 

control the execution of various tasks and collect data for later analysis regarding certain 

process variables. This section will outline the development of both the procedure as well 

as the selection and measurement of process variables. Figure 34 and Figure 35 depict the 

primary system components of the work cell. 
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Figure 34: System component overview  
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Figure 35: System work space overview 

 

The individual steps in the testing process begin with calibrations. The end effector 

and camera calibration procedures previously described are only necessary to perform 

initially if a change in any of the hardware has occurred, such as changing gripper fingers 

or camera parameters. After the calibration procedures are complete the assembly project 

parameters are input into the experimental testing program. These parameters include the 

following: 
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 Image search templates 

o Component 

o Component pins 

o Circuit board 

 Inspection parameters 

o Pin spacing tolerance range 

o Pin angle tolerance range 

o Pin quantity 

o Expected component quantity 

o Expected placement quantity 

 Motion parameters 

o Inspection positions 

o Component pick clearance height 

o Placement clearance height 

Once the setup is complete for an assembly project, a tray of the selected components 

and their corresponding target circuit board are placed in their respective workspaces. 

The automated process is then executed. The process used to conduct each experiment 

generally shared common task elements, which begin with the localization of the 

components and board placements within their work areas. This is displayed in Figure 36 

where the robot moves to a predetermined position to acquire each image and processes 

the location and orientation data.  
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Figure 36: Robot positions for component/board localization 

 

The selection of locations for the tray and board work areas were specifically chosen 

to minimize unnecessary movements of the end effector. Another limiting factor that was 

considered for the selection of these locations was the cameras field of view (FOV). The 

FOV increased as the cameras height increased, which allowed a greater number of 

components to be placed per iteration. This is beneficial because of the additional time 

duration required to capture and process the image of a new component/board set. 
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However, a limited space was accessible by the arms range of motion and increasing the 

FOV beyond this point did not provide any additional benefits. The same condition 

applied for the location of the board. However, since the camera lens has a fixed focal 

length and depth of field, both locations needed to be considered when selecting a FOV 

which was limited by the larger of the two areas. 

In a typical assembly line, the number of an individual component on a given board 

varies widely based on the nature of the product requirements. A single board may use an 

individual component type only once, or it could have multiple placements. For this 

reason, tests were conducted where only one component placement was specified per 

board as well as multiple placement specifications per board. For automated processes 

such as this, the boards are typically placed on conveyors or other types of automated 

machines that maintain a constant flow of parts. The development or procurement of such 

systems was outside the scope of this research. Instead, manually placing the boards and 

component sets conceptually represented same action as if a machine had performed 

these tasks. 

Once the component localization is complete, the program positions the tool at the 

calculated coordinates and closes the gripper (Figure 37). The orientation angle for the 

tool to grab the component is defined in the matching template coordinate system. The 

program executes a short movement upwards along the z-axis to prevent any pin 

deformation from contact with the tray surface. 
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Figure 37: Picking a component after localization 

 

The component is translated to the inspection viewing position where it is analyzed in 

different poses for precision pin localization and tolerance (Figure 38). If it is determined 

the component is unfit for placement, it is discarded in the discard bin and the process 

iteration is terminated.  
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Figure 38: Component inspection positions 

 

To determine the pin spacing, an image matching template is used to return the 

location and orientation of each pin (Figure 39). The template origin corresponds to the 

center of each pin tip where the difference between matches is used to determine 

separation distance. The measured location of a single pin with respect to the tool 

coordinates was used as the reference for the board placement. In all cases, the top left 

pin was used as the reference, which is consistent with the pin numbering convention of 
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many THT components. The component is then inserted into the circuit board to 

complete a single component placement cycle as shown in Figure 40. 

 

 

Figure 39: Pin reference matching 
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Figure 40: Component placement and process completion positions 

 

Two primary approaches were utilized to determine the placement location for the 

reference pin of the component. If a board template is reasonably small, the entire board 

may be used to identify the placement location. Larger boards would result in searching 

for unnecessary information and produces higher processing durations. To reduce the 

processing time, unnecessary information in the template image was masked which was 

effective for boards requiring only a single component placement. When multiple 
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placements were needed for a single board, the processing time increased proportionally 

to the number of additional placements needed to be localized. A solution was 

implemented which used only 3 search templates that were made relatively small. As 

shown in Figure 41, these 3 templates were selected to identify coordinate positions for 

use in creating a board coordinate system. The distance between the reference template 

and the dx template was divided by the number of thru-holes to establish an array of 

locations corresponding to each thru-hole center. This was done similarly between the 

reference and dy templates. This approach created a board coordinate system that allowed 

any quantity of placements to be determined in approximately the same fixed time. The 

process of selecting placements was simplified by allowing integer values to index the 

desired row and column of the placement coordinate arrays. 
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Figure 41: Board placement template overview 

 

A summary of relevant definitions relating to the experimental testing procedure is 

located in Table 2. These parameters define the scope and limitations of the testing 

conducted, and also outline the specific performance goals and verification methods. 
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Table 2: Experimental testing definitions 

Localization Time Duration to localize all components on a single tray and all 

placements on a single board 

Tray Cycle Time Duration to pick and place all components on a tray 

Component Cycle 

Time 

Duration to pick and place a single component from a tray 

Distributed Component 

Cycle Time 

Equal distribution of tray cycle time among all components 

on a single tray 

Process Error An occurrence of one of the following: 

 Failed attempt to pick a component 

 Placing the component in the incorrect position, 

including misaligned placements and absent 

placements 

 Any action that results in damage to an electronic 

component, circuit board, or part of the work cell 

Non-Standard 

Component 

Non-standard, or odd components, are defined as those with 

the following characteristics: 

 Through hole placement (non SMT) 

 Non-conforming dimensions, form factors, or pin 

spacing 

 Are not packaged using a reel feeder 

 Cannot be readily used by existing dedicated systems 

Performance 

Specifications 
 Fully automated operation – no human interaction 

after issue of start command 

 Average error less than 1% 

o Verified through visual inspection 

 Average component cycle time less than 5 seconds 

o Verified through internal program timers 

 



 

CHAPTER 6: EXPERIMENTAL RESULTS 

 

 

This chapter contains the results of each experimental testing procedure conducted 

using the methodology previously outlined. Each experiment was performed using only 

one component type, while the quantity, location, and rotation characteristics were 

varied.  

6.1 Coordinate System Identifications 

The robot tool calibration procedure was performed once and produced the following 

tool offsets used in the subsequent experimentation: 

Table 3: Robot tool calibration parameters 

X Y Z Rx Ry Rz 

-11.45 51.7 128.5 0 0 0 

 

6.2 Camera Calibration Results 

The camera calibration procedure was performed for each camera to identify the 

modeling coefficients and camera projection matrices. The results are summarized below. 
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Table 4: Camera calibration results 

Parameters End Effector Camera Inspection Camera 

Radial Distortion 

Coefficients 

k1 -0.103988 0.040119 

k2 0.0887567 -4.18614 

k3 0.381705 38.2996 

Tangential Distortion 

Coefficients 

k1 0.000377 -0.00253 

k2 0.001957 0.001515 

Focal Length fx (mm)  8.363  12.181 

fy (mm)  8.344  12.181 

Optical Center dx (pixel) 1270.27 686.696 

dy (pixel) 1079.21 438.546 

 

End Effector Camera Projection Matrix: 

[
0.0680712 0.000230396 −4.09087

0.000197397 0.0690134 −2.01386
−0.00000334581 0.00000644127 1.00001

] 

 

Inspection Camera Projection Matrix: 

[
−0.0731213 −0.00147396 74.0162
0.000296107 −0.0756875 140.32

0.00000528269 −0.0000195153 1.03111
] 

 

6.3 Component Matching Performance Results 

An individual analysis was conducted to compare the performance of the image 

matching algorithms. The results are shown in Table 5 which were used to determine 

optimum matching approach. 
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Table 5: Template pattern matching performance comparison 

Matching Method Average Time (ms) Average Correlation 

Score 

LDS 62.1  938/1000 

Grayscale Pyramid 71.9 946/1000 

Gradient Pyramid 203.3 958/1000 

 

6.4 Component 1: LM311 IC 

The first component used for testing was an LM311 IC. The LM311 is available as 

either SMT or THT; the thru-hole model was used for testing. This component was 

selected for the initial testing to bridge the gap between a standard and non-standard 

component. This part is readily available on reels used in current assembly machines, but 

is also selectively available in other packing forms such as tubes or trays, which reduces a 

components compatibility with the high speed feeder’s current systems use. This 

component is a DIP with 8 pins and has the specifications displayed in Table 6. Some of 

the challenges with this part occur when determining rotation as it has many symmetric 

features. The primary features useful for determining this information are the texture 

features printed on the surface and a small imprint keyed on one end. 

 

 

Figure 42: LM311 component (top view) 
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Table 6: LM311 component dimensions 

Length (mm) Width (mm) Depth (mm) Pin Spacing 

(mm) 

Pin Diameter 

(mm) 

10.1 6.5 8.26 2.54 0.6 

 

The board to be used for placement is shown below. An unpopulated prototype board 

was selected due to ready availability. The use of an unpopulated board rather than 

populated should not result in any significant effects to the results; equivalent 

characteristics could be achieved by using an image mask on a partially populated board. 

This circuit board had a nominal thru-hole pitch spacing of 2.54 mm and a lead-hole 

diameter of 1 mm, resulting in approximately 0.4 mm of clearance for pin placement. 

 

Figure 43: Unpopulated PCB (front & back) 

 

To analyze the throughput rate and percent error, the assembly process was 

consecutively tested on 30 trays, each containing 3 LM311 components randomly 

distributed on.  
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Figure 44: LM311 experimental component placement overview 

 

The results are summarized in Table 7. The system was able to perform 30/30 

placements successfully with an average placement time of 4.421 seconds and an average 

localization time of 3.423 seconds. Figure 45 through Figure 48 display graphs of the 

component cycle durations. The average calculated x-y placement locations for the 

ordered placements were respectively (-115.6, 309.64), (-115.5, 289.25), and (-115.4, 

267.88). 

 

Table 7: LM311 cycle time and success statistics 

Component Average, (s) Standard 

Deviation, 

(s) 

Max, (s) Min, (s) Successful 

Placements 

LM311 4.42 0.13 4.64 4.19 30/30 
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Figure 45: Combined component cycle times 

 

 

Figure 46: LM311 first component cycle time 
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Figure 47: Lm311 second component cycle time 
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Figure 48: LM311 third component cycle time  

 

6.5 Component 2: DIP Socket 

The next component tested was an 8 pin DIP socket similar to the LM311, but has 

different package dimensions, and a non-uniform top surface. The package body has a 

much larger footprint and extends outward further than the pins. This component also had 

minimal features useful for determining orientation; a small indentation on one side was 

the only identifiable feature. Additional complications of this part were large curved 

specular surfaces on the top face. These features were curved in such a way that the 

reflections take on very different signatures dependent on the perspective position in the 

cameras FOV and the orientation of the component. These particular features were 

masked in the calculation of the correlation score. 
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Figure 49: DIP socket component (top & bottom) 

 

The board used for placement is shown in Figure 50. This board had a pitch of 2.54 

mm and a rectangular arrangement of 54x33 lead holes each with a nominal 1.1 mm 

diameter. An additional feature difference from the previously tested board was double 

sided silver thru-hole pads as opposed to single sided copper pads which resulted in more 

prominent reflections. This board was also much larger, allowing a wider range of 

placements to be analyzed. 

 

Figure 50: Unpopulated PCB used to place socket components 
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6.5.1 Experiment 1 Results 

 

Figure 51: Overview of component & board reference positions 

 

The initial procedure tested using this assembly combination involved a single 

component iteration per process. A circular area with an 8 mm diameter was randomly 

chosen and outlined towards the center of the camera FOV where the component was to 

be placed for each test iteration. A total of 40 consecutive process iterations were 

performed, which involved the following steps: 

1. Place component and board at reference positions 

2. Manually command automated sequence 

3. System initialization 

4. Component/board localization 

5. Pick-and-place component 

6. Automation sequence completion 

7. Visual analysis of results quality 

8. Removal of component from board 

9. Replacement of component at reference position 
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The calculated locations of each component are shown in Figure 52 and are further 

summarized in Table 8. Using the same component for each placement cycle, the pin 

spacing was calculated within a maximum range of 0.06 mm with a standard deviation 

less than 0.025 mm. 

 

Figure 52: Results of component localization 

 

Table 8: Localization statistics 

Component Coordinates Mean 

(mm) 

S.D. (mm) Max 

(mm) 

Min 

(mm) 

Range 

(mm) 

Component 

Pos X 127.665 1.13695274 129.75 124.13 5.62 

Pos. Y 274.01 0.86 275.7 272.19 3.51 

Angle 1.59625 1.44 4.32 -0.82 5.14 

Board 

Pos X -147.19175 0.0090 -147.18 -147.23 0.05 

Pos. Y 313.512 0.0162 313.52 313.48 0.05 

Angle 0.31 0 0.31 0.31 0 
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The time duration of each process are shown in Figure 53. A statistical analysis was 

performed on this data and is summarized in Table 9. 

 

Figure 53: Graph of process durations for each component iteration 

 

Table 9: Statistical analysis of experiment 1 durations 

Parameter Mean, 

(ms) 

S.D., 

(ms) 

Max, 

(ms) 

Min,  

(ms) 

Range, 

(ms) 

Initialization Duration 4260 100 4450 4090 360 

Localization Duration 2418 47 2500 2310 190 

Pick-and-Place Duration 4537 19 4570 4500 70 

Successful Component Iterations 30/30 

 

6.5.2 Experiment 2 Results  

The next experiment was conducted using multiple components being placed in 

different locations on the same board. Each tray contained 10 components which were 
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placed across a range of approximately 111 mm in the x-axis and 69 mm in the y-axis. A 

total of 120 component cycles were sampled, which are graphed according to the 

placement cycle time in Figure 54. 

 

Figure 54: Localized component position distribution 
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Table 10: Analysis of localized board position data 

Board Ref Mean (mm) S.D. (mm) Max (mm) Min (mm) Range (mm) 

Pos X -147.196 0.01502 -147.19 -147.23 0.04 

Pos. Y 313.4985 0.02075 313.52 313.48 0.04 

Angle 0.31 0 0.31 0.31 0 

 

Table 11: Analysis of process task durations 

Timing Mean (ms) S.D. (ms) Max (ms) Min (ms) Range (ms) 

Localization 

Duration 

2668 70 2800 2540 260 

Component 

Cycle Duration 

4384 112 4650 4150 500 

 

6.5.3 Experiment 3 Results 

In order to further explore the effects of placement location, an experiment was 

conducted using a single component per tray. The localization process was performed 

followed by the pick-and-place sequence. However, to allow larger data samples to be 

collected, the command to close the gripper was removed from the sequence so the 

component was not moved from its fixed reference position. Upon arrival at the 

inspection position, the sequence was terminated and the arm returned to the tray viewing 

position to begin the next process iteration. The following conditions were applied to this 

testing: 

 Total consecutive tray cycles: 270 

 Tray cycles at each reference location: 30 

 Component cycles per tray: 1 
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Figure 55: Distribution of localized component positions 

 

Table 12: Pick duration comparison at various reference positions 

Component 

Reference Position 

XY Displacement 

Distance (mm) 

Mean Pick 

Duration (ms) 

Mean Inspection 

Travel Duration (ms) 

Top Left 69.89 1289 573 

Top Center 133.72 1340 654 

Top Right 175.92 1361 688 

Center Left 73.78 1289 536 

Center 138.42 1279 646 

Center Right 193.13 1344 703 

Bottom Left 88.72 1201 598 

Bottom Center 143.76 1267 659 

Bottom Right 199.30 1290 722 
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A similar approach was implemented next to analyze the effects of component 

rotation. Using 2 nominal reference locations, the component was analyzed under various 

degrees of rotation and the following conditions were applied to the process: 

 Total consecutive tray cycles: 300 

 Tray cycles per reference angle: 30 

 Components cycles per tray: 1 

 

Figure 56: Distribution of localized component positions 
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Table 13: Pick duration results at various degrees of component rotation 

Component 

Reference Position 

Mean Calculated 

Angle (°) 

Mean Pick 

Duration (ms) 

Mean Inspection Travel 

Duration (ms) 

Angle Position 

0° Center 1.2 1223 651 

Left 0.4 1189 541 

90° Center 90.1 1472 1110 

Left 90.2 1419 1046 

180° Center 179.7 1415 1280 

Left 179.19 1476 1337 

270° Center 270.6 1207 846 

Left 270.2 1164 899 

 

6.5.4 Experiment 4 Results 

The next experiment was designed to analyze the effects of multiple placements on a 

single board after improving the process based on the results of the previous experiments. 

The following testing characteristics were applied: 

 Total consecutive tray cycles: 120 

 Components cycles per tray: 8 
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Figure 57: Distribution of localized component positions 

 

Table 14: Resulting durations of combined process iterations  

Parameter Average (ms) St. Dev. (ms) 

Component Localization Duration 930 43.0 

Component Position Movement Duration 13.7 11.5 

Placement Localization Duration 167.7 16.7 

Board Position Movement Duration 838.5 1.6 

Total Localization Duration 1132.5 35.5 

Individual Pick-and-Place Duration 3996.6 131.4 

Distributed Component Cycle Duration 4098.25 28 

Successful Placements 120/120 

 

6.5.5 Experiment 5 Results 

This experiment was performed to analyze the effects of rotation on the overall 

process time using the following conditions:  
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 Total consecutive tray cycles: 24 

 Components cycles per tray: 5 

 Component cycles per reference angle: 20 

 Total component cycles: 120 

 

Figure 58: Distribution of localized components 
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Table 15: Process results of components at various degrees of rotation 

Component 

Reference Angle 

Mean Calculated 

Angle (°) 

Mean Pick 

Duration (ms) 

Successful 

Placements 

-170° -166.8 5251 20/20 

-90° -89.3 4539 20/20 

-45° -46.0 4278 20/20 

45° 48.4 4607 20/20 

90° 90.7 5069 20/20 

170° 170.1 5480 20/20 

Total - 4870 - 

 

6.5.6 Experiment 6 Results 

The next experiment was designed to analyze effects of reducing the number of 

components being placed on a single board. The process was slightly modified to account 

for a board that requires only one component placement. Initially, a tray of 5 components 

was localized along with the board placement. After a single placement, the board was 

removed and a replacement was inserted. The system then localized the new board while 

maintaining the previously acquired component information to reduce unnecessary 

process time. Each step of the process was analyzed separately to identify potential areas 

of optimization. A total of 6 tray cycles were performed with 5 component per tray 

resulting in a total of 30 component cycle samples. All 30 of the components were 

successfully placed with an average process time of approximately 4.8 seconds per 

component. 
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Figure 59: Distribution of localized components 
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Table 16: Process results summary 

Parameter Average (ms) St. Dev. (ms) 

Component Localization Duration 531 10 

Placement Localization Duration 119 0.5 

Board Position Movement Duration 843 6 

Pick Duration 981 45 

Movement to inspection pos. duration 585 30 

Inspection Duration 127 68 

Movement To Second Inspection Pos. Duration 942 3 

Second Inspection Duration 101 4 

Placement Duration 848 2 

Return to Board View Position 917 2 

Average Overall Process Time per Component 4775 312 

Successful Placements 30/30 

 

6.6 Component 3: JQX-118F Electromechanical Relay 

The third component tested was a mechanical relay with the part number JQX-118F. 

This part had several non-standard features such as a larger lead pitch of 3.2 mm and an 

asymmetrical pin arrangement. From above, printed part information is the only visual 

feature useful for calculating orientation. Due to its larger lead pitch, a custom board was 

created to use for placement testing. A blank PCB was machined according to the 

manufacturer’s specifications which recommended a lead-hole diameter of 1.3 mm.  
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Figure 60: JQX-118F component features 

 

 

Figure 61: Custom machined circuit board for JQX-118F component 
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The primary purpose of the experimentation with this component was to support the 

consistency of the results between different component types. As a worst case scenario, 

this experiment was performed using a single component localization and placement to 

provide data corresponding to the maximum process duration. Based upon observations 

made from the previous preliminary experimentation, several optimizations were 

implemented. Due to the relationship of the total arm displacement to the process 

duration, the distance between the component locations and the board placement was 

reduced. Addition parallel processing was utilized so that image analysis was primarily 

performed during arm movements. The results of the experiment are summarized below 

and demonstrate a pick-and-place duration of approximately 4.1 seconds with all 

attempted placements successfully performed. 

 

Figure 62: Distribution of localized JQX-118F component positions 
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Table 17: Summary of testing results using JQX-118F component 

Parameter Average (ms) St. Dev. (ms) 

Component Localization Duration 760 28 

Component Position Movement Duration 8 2 

Placement Localization Duration 92 5 

Board Position Movement Duration 712 3 

Total Localization Duration 886 26 

Individual Pick-and-Place Duration 4059 106 

Total Process Duration per Component 4927 109 

Successful Placements 15/15 

 

 

 



 

CHAPTER 7: DISCUSSION AND CONCLUSIONS 

 

 

7.1 Template Matching Analysis 

The LDS method exhibited the shortest processing time compared to the other 

methods tested, and also experienced smaller processing time increases when parameters 

were adjusted to search for more components and wider angle ranges. The other methods 

were able to produce marginally higher match confidence, especially under rotation and 

when an object position approaches the image perimeter where perspective distortion is 

the highest. However background features could be feasibly be reduced in the workspace 

so that accepting lower scores would not likely result it false positive matches. Due to 

these reasons, the LDS method was chosen for all of the object recognition tasks. 

7.2 Experimental Data Analysis 

The data collected from the experimental procedures was analyzed and assessed with 

respect to the initial performance requirements. The two primary categories of analysis 

were the throughput cycle time of the pick and place process and the observed failure rate 

in the samples collected. The analysis of these results for each of the components tested 

are described in the following sections.  

7.2.1 Pick-and-Place Throughput Cycle Time 

The cycle time results recorded for the LM311 component exhibited repeatable data 

between process iterations. Using a tray of 3 components to be inserted to a single board, 

an average component cycle time of 4.42 s was calculated with a standard deviation of 
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130 ms. A repeatable pattern was observable from the graph in Figure 45 which was 

suspected to be a result of the displacement of the arm position for each component. 

Movement of the arm that originates from the board inspection position results in the 

largest travel time but only occurs for the first component pick of a tray. When the 

process was categorized based on the component cycle order, the resulting data 

confirmed the initial component cycle yielded the highest time of 4.57 seconds, while the 

subsequent cycles produced cycle times of 4.28 s. and 4.41 s respectively. The 

discrepancy between the cycle time of the 2nd and 3rd component can be reasonably 

attributed to the additional displacement determined by the board placement position. The 

average calculated placement positions in the y-axis of the tool coordinate system were 

approximately 289 mm and 268 mm which resulted in an additional 21 mm of travel for 

the third component placement to account for the increased placement time. A maximum 

cycle time standard deviation of 64 ms indicates that these results are repeatable. 

Testing performed using the DIP socket component was conducted in greater depth to 

analyze the effects of parameter deviations. Data from the first experiment involved a 

single component per tray to allow consistent conditions to be used for comparison. After 

a total of 40 component cycles, the average placement time per component was 4.54 

seconds with a standard deviation of approximately 19 ms. This high consistency 

between cycles with similar characteristics is significant in showing the results are 

repeatable and deterministic. The average time to localize the component and board was 

2.42 seconds with a standard deviation of 47 ms. This can potentially increase overhead 

time before the pick-and-place task can begin, but is only performed once per tray. 

Therefore, higher quantities of components will equally distribute this constant value and 
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reduce the effective throughput cycle time. An experiment was performed using 10 

components per tray which produced an average component cycle time of 4.38 seconds 

and a localization time of 2.67 seconds. Several important observations were noted with 

these results which were consistent with the expectations. First, the localization time was 

approximately 0.25 seconds longer due to the higher number of requested component 

matches. The selection of the low discrepancy sampling method proved beneficial 

because of minimizing the additional processing time. Secondly, the average cycle time 

was approximately 140 ms lower than the individual component testing primarily due to 

the reduced time of the 9 subsequent cycles compared to the 1st cycle which has the 

highest displacement. The third observation was that the higher quantity of components 

distributed the localization time among each cycle to produce an average distributed 

cycle time of approximately 4.65 seconds. 

Experiment 3 was conducted to further analyze the characteristics of each task in the 

picking process, which included the individual localization tasks and each separate 

movement command. These results showed that the component localization took an 

average of approximately 265 ms and placement localization took an average of 157 ms. 

The movement time between localization positions was approximately 139 ms with a 

relative standard deviation of 0.03%. After localization, the pick time was dependent on 

the distance of the component from the arm, which was 1.3 seconds on average. The time 

to bring the component to the inspection position was dependent on the same 

characteristics and had an average of 642 ms. The low time deviation between similar 

component locations indicates the system’s level of repeatability. 
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The effects of rotation on the picking process was analyzed by varying the component 

orientation angle at two reference locations; one in the center and one on the left. The 

average component localization time was approximately 423 ms which was an increase 

from the previous experiment due to the higher rotation of the matching template. The 

average pick time was 1.35 seconds at the center position and 1.34 at the left position. 

The precise difference between the two averages was measured to be 2.33 ms which was 

a result of the positioning limitation time of the end effector rotations. 

It is a common occurrence for some circuit board designs to have only one of a 

specific type of component, which would require the localization process for each 

component cycle. Upon discovering the specific composition of the localization time, a 

variety of optimizations were implemented to further reduce the overall process time. A 

tray of 5 components were localized once per process iteration; a new board was 

localized before each component placement cycle. The viewing positions were tuned to 

minimize unnecessary arm movements and the distance between the components and 

board was reduced. Additional parallel processing was implemented so that each of the 

localization tasks were performed during robot movements. These improvements 

produced an average individual component cycle time of approximately 4.78 seconds 

with a maximum of 4.892 seconds, which included the distribution of the localization 

times. These results meet the performance specification of less than 5 second pick-and-

place cycles, and would improve with the addition of more components per tray. 

The JQX-118F was tested using the optimizations developed from the previous 

experiments. To establish a maximum baseline cycle time, the experiment was performed 

using a single component per tray. The component location-per-cycle ranged from 
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approximately 79 mm to 121 mm with a localized angle range from -31° to 44°. The 

testing procedure according to these parameters resulted in an average placement time of 

less than 4.1 seconds; the localization time was effectively reduced to 886 ms, which 

yielded an average cycle rate of 4.93 seconds. These results represent the upper limits of 

the cycle time, and would be incrementally lowered with the addition of more 

components per tray as demonstrated in the previous testing. 

7.2.2 Failure Occurrences 

A failure, as previously defined, is any event which results in an incorrect component 

insertion into the circuit board, which primarily includes following:  

 Localization error 

 Missed component grasp or incorrect grasp angle 

 Pin offset measurement error 

 Component placement is missing or misaligned  

Since the tool was precisely calibrated in each workspace, a component grasp failure 

would likely only occur as a result of a localization error. To prevent this occurrence, 

each component template was designed to emphasize features which indicate orientation 

angle. Feature masks were applied to suppress symmetrical features as well as features 

known to experience high variations such as specular surfaces. Perspective error occurs 

as the component position in an image radially deviates from the center, which was 

partially compensated by bounding the component placements on the tray to keep their 

locations away from the image borders. Additional masking was implemented along 

object edges where perspective occlusions are significant. Each template was tested at 

different locations and orientations to ensure the minimum correlation score was above a 
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general confidence threshold of 800/1000 before it was determined to be reliable for 

experimentation. This process was successful at preventing localization errors and 

grasping errors in all sample groups tested. A total of 1599 localization cycles were 

recorded, which resulted in no failed component grasps. 

In the testing of the LM311 component, a total of 30 component cycles were 

analyzed, all of which resulted in a successful placement. The quality of the placements 

can be attributed to the precision of the calibration models and the performance of the 

pattern matching algorithm. The DIP socket component was exposed to a much wider 

range of parameter variations that allowed for detailed analysis of how the sample 

success rates were achieved. The first experiment included a sample size of 40 

component cycles, each of which was successfully localized and placed. The localized 

placement position between all runs had a standard deviation of less than 0.04 mm in 

each of the X and Y axes, which is a strong indication of the effectiveness and 

repeatability of the placement localization process. The same component was used for 

each cycle and the pin spacing was measured within a total range of 0.06 mm. These 

precision characteristics were well within the required clearance radius of 0.2 mm to 

ensure a successful placement. Further evidence to support the achieved precision quality 

is provided by the additional experiments which involved many parameter variations 

such as modification of component quantity, location, and orientation. In total, 996 

component cycles were tested using this component which resulted in success of all 

attempted circuit board insertion in each cycle. In the majority of tests, the component 

leads were formed to the correct alignment to ensure they were suitable for placement, 

which kept discards sparse. A total of 17/996 components were discarded due to 
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components not meeting the minimum measurement specifications. An additional 15 

samples were tested using the JQX component to support the theorized flexibility of the 

methodology to handle different components and boards. All of the samples were 

successfully placed within the same range of precision and required only changing the 

matching templates and tool approach distances to handle the larger component. 

7.3 Conclusions 

The research conducted in this thesis was intended to propose a methodology to 

automate the pick-and-place assembly of non-standard components into printed circuit 

boards. The proposed methodology involved a 6-axis robotic manipulator guided by a 

precision calibrated vision system. The main performance requirements included 

improvement of the current manual component cycle rate of 5 seconds and a reduction of 

the current error rate of 1%. The experimental procedure was conducted using three 

separate components, each of which was able to satisfy the research goals. Each 

component was able to perform the pick and place process in less than 5 seconds, while 

the fastest observed times were less than 4 seconds. An analysis of the compositional 

tasks involved in the process indicated high repeatability of this data which was 

consistent between different components. Out 1,041 component cycles, a total of 17 

components were determined unsuitable for placement and discarded, while the 

remaining 1,024 components were placed successfully. This repeatability was 

accomplished through ensuring the combined error from calibration and image 

localization was within the tolerance needed to ensure successful placement. This initial 

data strongly supports the claim that precise calibration and high confidence template 

localization methods are capable of achieving error rates lower than the 1% requirement. 
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The visual features used to identify and localize image objects were customized for each 

template to achieve the highest quality matching, but this process is not limited to the 

characteristics of only the components tested. Rather, the process of creating each image 

matching template can be applied to the feature sets of nearly any part type, which would 

result in a robust assembly system capable of handling a much wider diversity of 

electronic components than existing implementations. 

7.4 Future Work 

Several areas of optimization were determined through conducting this research that 

would allow throughput rates to be reduced even further. The positioning time of the VP-

6242 was a key limitation to achieving faster cycle times. An example replacement could 

be the DENSO VS-068 robot unit, which has a rated cycle time of 0.33 seconds 

compared to the 0.99 second cycle time of the VP-6242; an increase by a factor of 3. 

Considering the JQX component which had an average combined positioning duration 

per cycle of 4.63 seconds, the VS series could potentially reduce the total positioning 

duration per component to as low as 1.55 seconds. Optimized path planning, minimizing 

the distance between points of interest, and minimizing unnecessary movements would 

further improve this number. One relatively simple approach to minimize extra 

movements would involve the use of additional camera units. A dedicated camera for 

localization would eliminate the positioning time needed to raise the arm to each viewing 

location. Similarly, multiple cameras for inspection would eliminate the extensive 

rotation time currently required to inspect each side of the component. Using the JQX as 

reference, this could potentially eliminate 600 ms or more from the total positioning time, 

resulting in throughput cycle rates less than 1 second at no sacrifice to repeatability. The 
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implementation of these improvements would only involve upgraded equipment and 

tuning of current motion parameters, neither of which would fundamentally alter any of 

the operational concepts which were utilized in these experiments.  
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