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ABSTRACT 

 

 

JIALI LIU.  Combining sister load forecasts.  (Under the direction of DR. TAO HONG) 

 

 

Combining forecasts is a well-known approach to further improving forecast 

accuracy. In the load forecasting literature, there are only few papers discussing load 

forecast combination. Most of them are on combining independent forecasts. However, in 

practice, load forecasters may be able to concentrate on only one or few particular 

forecasting techniques due to limitations in educational background, time for model 

development, costs of additional software and so forth. How to conduct forecast 

combination with these real-world constraints is a challenging problem.  

This thesis proposes a novel solution to the aforementioned problem by 

combining sister load forecasts, which are generated from a family of sister models 

sharing very similar model structure developed from similar variable selection processes. 

In this thesis, 13 forecast combination methods are tested on four sister models. Through 

a comprehensive case study using publicly available data from the Global Energy 

Forecasting Competition 2014, combining sister forecasts using simple methods is found 

to outperform each individual forecast. In addition, the regression based combination, 

which uses a regression model to combine sister forecasts, outperforms the other methods 

for the aforementioned data set. Comparing with the best individual model, the 

regression-based combination reduces the forecast mean absolute percentage error 

(MAPE) by approximately 9%. It also outperforms simple average by 11 %. Note that 

simple average may not always outperform the best individual forecast, which is shown 

in this test case. 
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This thesis starts the first formal investigation on combining sister forecasts, 

which is shown to be very effective in improving load forecasting accuracy of individual 

models. The proposed approach is of great practical value in the sense that it leverages 

existing variable selection processes and does not require additional skill sets from the 

load forecaster.   
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CHAPTER 1: INTRODUCTION 

Many departments of a utility company require load forecasts as an important 

input to the business decision making processes. For instance, the transmission and 

distribution planning department needs load forecasts for a city or region to develop plans 

for building, maintaining and upgrading the infrastructure, such as substations, 

transmission lines and distribution feeders. The operations and maintenance department 

needs to know the load forecasts to arrange its schedule of the equipment maintenance in 

the territory. The finance department also requires load forecasts in order to make 

revenue projections in the coming years and prepare for rate cases (Gross & Galiana, 

1987; Weron, 2006; Hong & Shahidehpour, 2015).  

While load forecasting is a critical function since the inception of the electric 

power industry, the rapid growth and modernization of the electric power industry has 

been challenging the conventional load forecasting practices. In the late 19th century, 

light bulb was the only end use of electricity, when access to this convenient form of 

power was not available to most people. Today the situation has changed with more than 

5 billion people around the world having easy access to electricity. Many basic needs are 

being covered by electricity, such as space heating and cooling, cooking, and cleaning. In 

recent few decades electricity is also being used in greater proportions for entertainment 

as people use more power hunger devices such as computers, phones, and televisions. 

Deployment of smart grid technologies since late 2000s has made electricity consumption 
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easier to monitor and enabled more effective demand side management than before. The 

diverse and active demand patterns make the load forecasting problem increasingly 

interesting and challenging (Hong, 2014). 

Based on the forecasting horizon, load forecasting can be roughly classified into 

short-term load forecasting (STLF) (Hong, 2010) and long-term load forecasting (See e.g. 

Hong, Wilson, & Xie, 2014; Xie, Hong, & Stroud, 2015) with two weeks as the cutoff 

point. The rationale is based on the accuracy of weather forecasts. Electricity demand is 

highly dependent upon weather but today’s weather forecasting technologies can only 

provide reliable forecasts within a two week period (Hong & Shahidehpour, 2015). An 

alternative and more detailed classification is to use one day, two weeks, and three years 

as cutoff points for very short, short, medium, and long term forecasting (Hong, 2010). 

This thesis is devoted to STLF, more specifically, 24-hour ahead hourly load forecasting.  

Gross & Galiana (1987) gave a summary of the utility applications of STLF: 

 Drive the scheduling functions that determine the most economic commitment of 

generation sources, consistent with reliability requirements, operational constraints 

and policies, and physical, environmental, and equipment limitations.  

 Provide a predictive assessment of the power system security.  

 Provide system dispatchers with timely information. 

The remaining content in this thesis is organized as follows: Chapter 2 reviews 

literature of basic forecasting methods and combination methods. Chapter 3 discusses 13 

forecast combination methods. Chapter 4 introduces the experiment and analyses the 

results. Chapter 5 concludes the thesis with recommendations for the future work.



 

 

CHAPTER 2: LITERATURE REVIEW 

This literature review is conducted from the aspects of STLF and forecast 

combination. Section 2.1 reviews the techniques and methodologies used in STLF. 

Section 2.2 reviews the forecast combination methods reported in the forecasting 

community and the ones specifically used in load forecasting. Section 2.3 highlights the 

contributions of this thesis.  

2.1 Short-Term Load Forecasting 

2.1.1 Load Forecasting Reviews 

Over the past three decades, there are several notable literature reviews on STLF. 

They summarized the application and influence of STLF, and introduced different types 

of STLF techniques. 

 Gross and Galiana (1987) summarized the application of STLF in details. The 

authors addressed the four major influence categories of the system load behavior which 

were economic, time, weather and random effects. They also explained that the basic 

models for STLF were peak load models and load shape models. 

Moghram and Rahman (1989) presented a comparison analysis of five STLF 

techniques, which were multiple linear regression, stochastic time series, general 

exponential smoothing, state space and Kalman filter, and knowledge-based. The authors 

offered some insights about the future development of these. 
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Hippert, Pedreira, and Souza (2001) reviewed the literature of using neural 

networks for STLF, with the aim of clarifying the advantage of artificial neural networks 

and its misuses. They pointed out that many models in the literatures were over-

parameterized.  

Metaxiotis, Kagiannas, Askounis, and Psarras (2003) had a broad coverage on the 

development of artificial intelligence technologies (AI) for STLF. The paper summarized 

the research of expert systems (ESs), artificial neural networks (ANNs), and genetic 

algorithms (GAs), and analyzed how these techniques were applied in the electric power 

industry.  

Weron (2006) discussed the factors that affected load patterns, such as time 

factors and weather conditions. It also explained statistical forecasting methods in details 

with case studies. The methods included similar-day method, exponential smoothing, 

regression methods, autoregressive moving average (ARMA), autoregressive integrated 

moving average (ARIMA), and so on. 

Taylor and McSharry (2007) tested univariate short-term forecasting methods 

with 10 time series of intraday electricity demand. They concluded that the best 

performing method was double seasonal exponential smoothing models, with MAPE 

approximately 0.1% to 1.5% lower than other forecasting methods based on the 

differences of forecasting horizon.  

Hong (2010) had a comprehensive and critical review of the literature of STLF 

covering most representative papers prior to 2010. The review included notable literature 

reviews, papers on statistical and artificial intelligence techniques, and usage of weather 

and calendar variables.  
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Hong, Pinson, and Fan (2014) summarized the forecasting methods used by top 

entries in the Global Energy Forecasting Competition 2012, of which one track was on 

hierarchical load forecasting. The paper covered the background, problem, data, results, 

and lessons learned from the competition. The complete dataset of the competition was 

published in order to encourage reproducible research for energy forecasting. 

2.1.2 Load Forecasting Techniques and Methodologies 

Most load forecasting techniques fall into one of the two categories, statistical 

techniques, such as linear regression models, semi-parametric models, autoregressive and 

moving average (ARMA) models, exponential smoothing models, and artificial 

intelligence techniques, such as artificial neural networks (ANN), fuzzy regression 

models, support vector machines (SVMs).  Table 2.1 lists the representative techniques 

and key references for STLF.  

Most of the papers in the literatures only discussed load forecasting techniques, 

such as regression analysis, time series analysis and ANN. Few of them had 

methodological breakthroughs. Here “methodology” is used to refer to the framework 

that can be applicable across various techniques. For instance, Hong (2010) proposed a 

methodology of selecting temperature variables and their interactions with calendar 

variables for STLF. The methodology was demonstrated to be applicable for three 

different load forecasting techniques, linear regression model, ANN, and fuzzy regression. 

Another emerging area that needs research on fundamental methodology is 

hierarchical load forecasting, which means forecasting load of different levels in the 

system. Hong (2008) applied a hierarchical reconciliation method to spatial load 

forecasting. Fan, Methaprayoon, and Lee (2009) proposed a multiregion load forecasting 
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model which could find optimal region partition with different weather conditions and 

load conditions. Lai and Hong (2013) proposed a grouping strategy to enhance 

forecasting accuracy at aggregated levels. The most recent major development in 

hierarchical load forecasting is from the Global Energy Forecasting Competition 2012 

(Hong, Pinson, et al., 2014). 

Table 2.1: Representative techniques and references for STLF. 

 Techniques References 

Statistical 

Techniques 

Regression analysis 

Papalexopoulos and Hesterberg 

(1990); 

Hong (2010); 

Hong, Wang, and Willis (2011); 

Fan and Hyndman (2012); 

Box-Jenkins approach 

Hagan and Behr (1987); 

Amjady (2001); 

Weron (2007); 

Exponential 

Smoothing 
Taylor and McSharry (2007); 

Artificial 

Intelligence 

ANN 

Hippert, Pedreira, and Souza 

(2001); 

Metaxiotis et al. (2003); 

Hippert and Pedreira (2004); 

Fuzzy Systems 

Srinivasan, Tan, Chang, and Chan 

(1998) ; 

Hong and Wang (2014); 

Support Vector 

Regression 
Chen, Chang, and Lin (2004); 
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2.2 Forecast Combination 

2.2.1 Forecast Combination  

Many combination methods have been developed and studied in statistical and 

economic forecasting for decades. However, load forecasting combination is still an 

underdeveloped area. Load forecasters now have an opportunity to leverage the forecast 

combination literature to improve load forecasts.  

Granger and Ramanathan (1984) discussed three alternative approaches of linear 

combination of forecasts. The authors analyzed the testing results of the three approaches 

and stated that the combination weights of forecasts should be constrained but didn’t 

have to sum up to unity.  

Palm and Zellner (1992) introduced Bayesian methods and non-Bayesian methods 

of combining forecasts. The paper summarized the advantages of using simple average to 

combine forecasts. One is that no weights of the forecasts need to be estimated. Another 

one is that the bias from individual forecasts could be averaged out.  

Winkler and Clemen (1992) brought the point that combining forecasts could 

reduce the influence of extremely bad forecast. However, if the combination method was 

very sensitive and the weights fluctuated widely, the benefit of reducing risks by 

combining forecasts could be offset by the risk associated with the possibility of extreme 

weights, such as negative weights or weights larger than one. 

Batchelor and Dua (1995) provided two measurements of benefit from combining 

forecasts. The first one was percentage reduction in expected error variance. The second 

one was probability of a reduction in the error variance. These two measurements could 

tell the forecasters the amount of forecasts to combine by keeping certain percentage 
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reduction in expected error variance or certain probability of a reduction in the error 

variance. The paper also argued that combining forecasts from diverse forecasting 

methods could be more fruitful than combining forecasts from similar ones due to less 

positive correlations among errors of diverse forecasting methods.   

de Menezes, W. Bunn, and Taylor (2000) summarized seven combination 

methods from other papers and the criteria of how to combine forecasts, including error 

variance, distribution asymmetry, and serial correlation.  

Armstrong (2001) summarized many issues related to combining forecasts.  

Armstrong stated that combining forecasts from different forecasting methods could 

improve accuracy because the methods could capture different components which 

affected forecasting. The more diverse the methods were, the larger the error reductions 

were. This book chapter suggested that it was better to combine at least five forecasts, but 

the rate of improvement was diminishing as more forecasts were included. The book 

chapter also mentioned that the combination procedure should be formal and fully 

described, and judgmental weights for different forecasts should be avoided. Forecasts 

should be given equal weights to combine unless there was strong evidence to support 

that some forecasts were better than the rest. To reduce the effects of large errors, the 

paper also suggested using trimmed mean to combine forecasts.  

Stock and Watson (2004) used economy data from seven countries to test five 

types of combination forecast methods: simple combination forecasts, discounted mean 

squared forecast error (MSFE) forecasts, shrinkage forecasts, factor model forecasts, and 

time-varying-parameter combination forecasts. They used different techniques to apply 

historical information on combination weights to different combination methods. Simple 
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combination forecasts include mean, trimmed mean, and median. The authors used 

autoregression forecasts as a benchmark, concluding that combining forecasts increased 

the accuracy substantially. They also found that the combination method with the least 

data adaptivity in the weighting scheme performed the best.  

Jose and Winkler (2008) took one step further in their investigations of trimmed 

mean, Winsorized mean, and median. Comparing to mean’s sensitivity of extreme values, 

trimmed mean, Winsorized mean, and median were more robust and more efficient. The 

paper used family L-estimators as location estimators of the amount of data to trim or 

winsorize, and uses symmetric mean absolute percentage error (sMAPE) as the 

measurement of combined methods’ performances. From its experimental results, the 

paper recommended 10% - 30% of data to trim and 15% - 45% of data to winsorize.  

Trimmed mean and Winsorized mean worked better if the individual forecasts had more 

variability. 

Montgomery, Jennings, and Kulahci (2011) used an equation which had been 

widely applied to calculate combination weights to combine two individual forecasts. The 

variances of two forecasts and the correlation of two individual forecast errors were used 

in the calculation. It had the conclusion that large negative correlation between the two 

individual forecasts would lead to a variance of the two forecasts which approached zero, 

leading to a more accurate result. However, Bates and Granger (1969) had a different 

opinion on this equation: the variance was fixed by using the equation in Montgomery, 

Jennings, and Kulahci (2011), therefore the combining method couldn’t capture the 

change of errors over time.  
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Bates and Granger (1969) provided five combining methods. The methods all had 

the form of weighted average and the weights could change over time. The calculation of 

weights was based on errors in previous hours. Besides, Montgomery, Jennings, and 

Kulahci (2011) and Bates and Granger (1969) both explained how to combine two 

individual methods in detail, but neither of them discussed how to combine more than 

two forecasts at the same time.  

Pesaran and Pick (2011) investigated the combination of the same model’s 

forecasts over different estimation window. The models were linear regression models. 

The average of forecasts over different estimation windows led to a lower root mean 

square forecast error, comparing to the one with a single estimation window. Exponential 

smoothing was also used for comparison, which was too sensitive to the down-weighting 

parameter than the proposed model. 

2.2.2 Load Forecast Combination 

Smith (1989) mentioned an equation of calculating weighting vectors by using 

variance covariance matrix. The writer stated that each forecasting method has its 

weakness, while combining different methods could make up each one’s weakness. This 

paper didn’t provide any specific examples of how to use the combination equation nor 

prove the efficiency of its combined forecast equation. 

To make good use of temperature forecasts from multiple weather stations, Fan, 

Chen, and Lee (2009) used forecast combination with adaptive coefficients to improve 

accuracy of forecasting. Weighted average was used in temperature forecast combination 

and the weights were calculated based on the last observation’s performance. The results 

showed that the ANN model with combined temperature forecasts had the lowest MAPE 
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than the ones with individual temperature forecasts. Later on, Hong, Wang, and White 

(2015) proposed a method to select weather stations. 

To reduce the effect of weather forecasting error in STLF, Fay and Ringwood  

(2010) proposed a forecast combination algorithm which used weighted average to 

combine four models. The combination weight was calculated with error covariance 

matrices. The combined forecast showed improvement of forecasting accuracy. Its 

MAPE was 2.17% while the lowest MAPE of the four individual models was 2.27%. 

Wang, Zhu, Zhang, and Lu (2010) proposed a linear combination method to 

combine the forecasts from three time series models (ARIMA, exponential smoothing 

model, and SVM). The combination weight was decided in an optimization process using 

adaptive particle swarm optimization (APSO). The combination results showed that the 

combined forecast outperformed the forecasts from individual models. 

Taylor (2012) used simple average to combine individual forecasts from six load 

forecasting models. The results showed that the combined forecast outperformed 

individual methods by approximately 0.5% to 1% based on the differences of forecasting 

horizon.  

Matijaš, Suykens, and Krajcar (2013) proposed a meta-learning system for 

multivariate time-series forecasting which included algorithm selection process. The 

system analyzed 7 load forecasting algorithms. The ranks of algorithms’ performances 

were associated with eulidean distance, classification and regression (CART) decision 

tree, learning vector quantization (LVQ) network, multilayer perceptron (MLP), 

automatic multiplayer perceptron (AutoMLP), ɛ support vector machine (ɛ-SVM), and 

Gaussian process (GP). The best-performed algorithm would be selected among them. 



12 

 

2.3 Contribution of This Thesis 

Forecast combination has been well studied in academia, but the number of 

literature related to load forecast combination is limited, of which most combined 

forecasts from independent individual forecasting models. However, in practice, when 

forecasters or research groups plan to conduct load forecasting, it is common that 

educational background, model development time, and costs of additional software may 

constrain their studies.  

This thesis will investigate and present a solution to the aforementioned challenge 

by combining sister load forecasts. Sister load forecasts are the load forecasts generated 

from a family of sister models sharing very similar model structure which are developed 

from similar variable selection processes. Combining sister forecasts can improve the 

accuracy of individual sister forecasts without requiring load forecaster to have additional 

skill sets or software investment. This thesis is the first formal study on combining sister 

load forecast. 



 

CHAPTER 3: FORECAST COMBINATION METHDOLOGIES 

This chapter will provide the theoretical background of the 13 forecast 

combination methods and explain how each method works. In Chapter 4, the experiment 

and comparison results of combining sister forecasts using the 13 methods will be 

presented. 

3.1 Overview of the Chapter 

According to Armstrong (2001), combining forecasts means the averaging of 

independent forecasts. These forecasts can be based on different methods or different 

data, and the rule of averaging can be replicated. The goal of combining forecasts is to 

reduce the effects of errors from different forecasting methods so the combined forecast 

is more accurate than using the individual forecasts. 

As mentioned in Chapter 2, many combination methods proposed in research 

papers can only combine two forecasts at one time. In the real world, it is impossible to 

test all of the combinations of all forecasting models every time to find the best pair to be 

combined in the future. The process will be very time-consuming and the forecasting  

results may not be accurate. To reiterate, there is very limited literature that discusses 

load forecast combination. In practice, most forecasters only use simple averaging when 

applying combinations. This thesis will provide a reference for forecasters with regards to 

load forecast combination beyond just a simple average.  
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Combination methods that will be tested have been separated into 5 groups by 

their characteristics. These groups are as follows (also, see Figure 3.1): simple average 

and median, trimmed mean and Winsorized mean, group analysis, rolling combination, 

and regression combination. MAPE is used to measure the accuracy of forecast 

combination. Most of the combination methods have equations to combine forecasts. In 

these equations, 𝑆𝑖 (𝑖 = 1,2, … , 𝑛)  is used to represent individual forecasts from one 

model for each hour and each hour has 𝑛 forecasts in total (in this thesis 𝑛 equals to 8, 

see Chapter 4). 𝐹𝐶 refers to the combined forecast for each hour.  

 

Figure 3.1: Structure of combination methods comparison.  

Combination 
methods 

Simple average  & 
median  

Simple average 

Modified simple average 

Median 

Trimmed mean & 
Winsorized mean  

Trimmed mean 

Winsorized mean 

Group Analysis  

Using  absolute residual 

Using MAPE 

Rolling 
combination 

Using absolute residual 

Using daily MAPE 

Using mean of N-day 
absolute residual 

Using mean of N-day 
absolute residual  by hour  

Using mean of N-day square 
of residual  by hour 

Regression 
combination 
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3.2  Simple Average and Median 

This section will define the methods used for simple average combination method 

and median combination method. 

3.2.1 Simple Average 

When forecasters are uncertain about the weights of different forecasts from 

different methods, simple average is usually the best choice. Especially when forecasts 

have close performances to each other, inappropriate weights could lead to less accurate 

forecasts than using a simple average. The equation for simple average of each hour is 

given as follows: 

𝐹𝐶 =
1

𝑛
∑ 𝑆𝑖

𝑛

𝑖=1

 (3.1) 

3.2.2 Modified Simple Average 

In this method, the forecasts from the forecasting model with the largest MAPE 

are removed and the remaining 𝑛 − 1 individual forecasts are averaged for each hour. If 

one model has larger forecasting MAPE than other models for the validation period, it is 

reasonable to believe that this model will perform worse than others continuously for the 

forecasting period and all the forecasts from it should all be removed. The equation for 

the modified simple average of each hour is given as follows: 

𝐹𝐶 =
1

𝑛 − 1
[(∑ 𝑆𝑖

𝑛

𝑖=1

) − 𝑆𝐿] (3.3) 

where 𝑆𝐿 is the hourly forecast from Model L which has largest MAPE for validation 

period. 
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3.2.3 Median 

As mentioned in Jose and Winkler (2008), simple average is sensitive to extreme 

values, so one alternative can be median. The median of 𝑛 forecasts for each hour is used 

as the combined forecast.  

3.3 Trimmed Mean and Winsorized Mean  

Jose and Winkler (2008) stated that trimmed mean and Winsorized mean can 

reduce the effect of extreme values on combined forecasts. The accuracy of these 

combination methods can be slightly better than simple average. Meanwhile, these simple 

combination methods tend to outperform the complicated ones. 

3.3.1 Trimmed Mean 

If there are 𝑛 models and each one of them provide one forecast, the smallest and 

largest individual forecasts are removed for each hour and the remaining 𝑛 − 2 forecasts 

are averaged afterwards. Using the example in Figure 3.2, for hour 1 the forecasts are 

sorted. The smallest forecast is 𝑆1 and the largest forecast is 𝑆8. In this example these two 

forecasts are removed and the remaining 6 forecasts are averaged as a trimmed mean. 

The equation for the trimmed mean model of each hour (Jose & Winkler, 2008) is given 

as follows: 

𝐹𝐶 =
1

𝑛 − 2
∑ 𝑆′𝑘

𝑛−1

𝑘=2

 (3.4) 

where 𝑆′𝑘 are sorted forecasts. 
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Figure 3.2: Example of trimmed mean. For hour 1 the smallest forecast is 𝑆1 and the 

largest forecast is 𝑆8. In this example these two forecasts are removed and the remaining 6 

forecasts are averaged as a trimmed mean. 

3.3.2 Winsorized Mean 

Winsorized mean in this thesis is facilitated by replacing the smallest and largest 

individual forecast with second smallest and second largest forecast, and averaging the 

data afterwards. In Figure 3.3, the forecasts are sorted. 𝑆1 and 𝑆8 are the smallest and 

largest one. To get Winsorized mean, they are replaced with 𝑆2 and 𝑆7 which are the 

second smallest and second largest forecasts, then all the forecasts are averaged for hour 

1. The equation for the Winsorized mean model of each hour (Jose & Winkler, 2008) is 

given as follows: 

𝐹𝐶 =
1

𝑛
[𝑆2 + ∑ 𝑆′𝑘 + 𝑆𝑛−1

𝑛−1

𝑘=2

] (3.5) 

where 𝑆′𝑘 are sorted forecasts. 
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Figure 3.3: Example of Winsorized mean. For hour 1 𝑆1 and 𝑆8 are the smallest and 

largest one which are replaced with 𝑆2 and 𝑆7, then all the forecasts are averaged as 

Winsorized mean.  

3.4  Group Analysis  

In group analysis, the individual forecasts for each hour are in one group and the 

forecast with the smallest absolute residual is selected as the combined forecast for that 

hour. It is more like a forecast selection process than a forecast averaging process 

because only the best forecast for each hour is selected and the remaining forecasts are 

not averaged or in use. The load forecasting method in this thesis is 24-hour ahead 

forecasting so it is impossible to know the residuals or MAPEs of forecasts for the 

forecasting period. In this method the absolute residuals from previous days are used to 

estimate combination weights. Using 𝑁 as the number of days ahead: if 𝑁-day ago, one 

forecast has the smallest residual or daily MAPE for hour 1, it could be used as a 

reference for hour 1 𝑁-day later by assuming this hour or this day repeats a similar load 

pattern. Therefore the forecast selected for each hour or each day could be different from 
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its adjacent hours or days in the forecasting period. For the days with no previous 

residuals or MAPEs to use (like January 1
st
), simple average is used to combine the 

forecasts. The structure of combination equation 3.6 is used through section 3.4 and 

section 3.5 while the ways of calculating weights are different. 

3.4.1 Residual Based Binary-Weight Combination 

This method will use previous one day’s absolute residual (absolute error) to 

generate the weight for each forecast, therefore 𝑁  days are tested to check the 

combination accuracy. In the model below, if 𝑁 days ago one forecast has the smallest 

absolute residual for a certain hour, its coefficient 𝛼𝑖  for that hour of the forecasting 

period will be 1, and otherwise it will be 0. This method is trying to pick the most 

accurate individual forecast as the combined forecast for each hour. The equation for the 

residual based binary-weight combination model of each hour is given as follows: 

𝐹𝐶 = ∑ 𝛼𝑖,𝑁𝑆𝑖

𝑛

𝑖=1

 (3.6) 

where 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑚𝑖𝑛,𝑁 denotes the hourly smallest absolute residual and  

𝛼𝑖,𝑁 = {
1, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑁  = min {𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑁}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
. 

For example, let 𝑁=1 so absolute residuals of January 1
st
 are used to judge the 

weights for the forecasts of January 2
nd

. In Figure 3.4, 𝑅 is denoted as absolute residual. 

The absolute residuals and corresponding forecasts are listed from the smallest to the 

largest. The smallest forecasting absolute residual is 𝑅2 at 10 a.m. January 1
st
, so the 

weight for S2 at 10 a.m. January 2
nd

 is 1. The weights for the other forecasts are zero.  
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Figure 3.4: Example of residual based binary-weight combination (𝑁=1). The smallest 

forecasting absolute residual is 𝑅2 at 10 a.m. January 1
st
 so the weight for 𝑆2 at 10 a.m. 

January 2
nd

 is 1 and the weights for other forecasts are zero. 

3.4.2 MAPE Based Binary-Weight Combination 

 Instead of using absolute residuals, this method uses daily MAPE for each hour to 

estimate the weight of forecasts. The structure of the equation for the MAPE based 

binary-weight combination of each hour is the same as equation 3.6, but 𝑀𝐴𝑃𝐸𝑚𝑖𝑛,𝑁 

denotes the smallest daily MAPE. The weight in equation 3.6 is calculated as 𝛼𝑖,𝑁 =

{
1,  𝑀𝐴𝑃𝐸𝑖,𝑁 = min {𝑀𝐴𝑃𝐸𝑖,𝑁} 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
. 

Figure 3.5 shows an example of this method. 𝑀  is denoted as MAPE. The 

MAPEs and corresponding forecasts are listed from the smallest to the largest. Since 𝑆2 

from January 1
st
 has the lowest MAPE, the forecast from this model will be chosen as 

combined forecast for January 2
nd

.  
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Figure 3.5: Example of MAPE based binary-weight combination (𝑁 =1). 𝑆2 from January 

1
st
 has the lowest MAPE, the forecast from this model will be chosen as the combined 

forecast for January 2
nd

. 

3.5  Rolling Combination (RC) 

The structure of the combination equations in this section is the same as equation 

3.6, but the weights are not binary. Rolling combination method’s weight is calculated 

with residuals or MAPE which are from previous 𝑁 -day forecasts or the mean of 

previous 𝑁 -day’s absolute residuals or MAPEs. This method is called rolling 

combination because the days used to calculate weights change as the date changes. For 

example, if two-day ago (𝑁=2) residuals are used, weights for the models of January 5
th

 

are calculated from the residuals of January 3
rd

. For January 6
th

, the models’ weights are 

calculated from the residuals of January 4
th

. For the days with no previous residuals or 

MAPEs to use (like January 1
st
), simple average is used to combine the forecasts.  

With a rolling procedure, the weights can be more suitable for the present 

situation because load patterns are changing over time. If the combination origin is fixed, 
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it is possible that a heavy weight could be given to a model which has accurate forecasts 

for last month but has bad forecasts for the current month. The rolling combination origin 

can reduce the errors caused by this type of situation.  

All the rolling combination models share the same equation structure from 

equation 3.6. To different the five rolling combination models in section 3.5.1 to section 

3.5.5, each method is given a name. 

3.5.1 Absolute Residual (RC-A) 

In this method, to avoid negative weights, absolute residuals (|𝑒𝑖|) instead of 

residuals are used. Negative weights could lead to less accurate forecasts. 𝑁-day ago 

daily mean absolute residuals are used to calculate weights for the individual forecasting 

models. Let 𝐸𝑖,𝑁 denotes mean absolute residuals of one day, which equation is 𝐸𝑖,𝑁 =

1

24
∑ |𝑒𝑖,𝑁,ℎ|24

ℎ=1  and 𝑖, 𝑗, 𝑙, and 𝑘 denotes the order of forecasts. The weight in equation 3.6 

is calculated as 𝛼𝑖,𝑁 =
∑ 𝐸𝑙,𝑁

𝑛
𝑙

𝐸𝑖,𝑁 ∑ (
∑ 𝐸𝑘,𝑁

𝑛
𝑘=1

𝐸𝑗,𝑁
)𝑛

𝑗=1

 .  

Using 𝑁=3 as an example. There are 8 models to provide 8 forecasts for each 

hour. If the forecasting time is January 4
th

, mean absolute residuals of January 1
st
 are used 

to calculate weights (see Figure 3.6). For January 5
th

, the residuals of January 2
nd

 are used 

to calculate the weights. 
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Figure 3.6: Example of rolling combination-A (𝑁=3). To calculate combination weights 

for January 4
th

, mean absolute residuals of January 1
st 

are used. Each day’s weights are 

calculated with residuals from different previous days. 

3.5.2 MAPE (RC-B) 

The only difference between RC-A and RC-B is that the daily MAPE is used to 

replace the absolute residual. MAPE is a method to measure error, which could capture 

different characteristics in forecasts than absolute residuals. The MAPEs are from the 

forecasts 𝑁-day ago.  
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In this method 𝑀𝑖,𝑁 denotes daily MAPE of one day and 𝑖, 𝑗, 𝑙, and 𝑘 denotes the 

order of forecasts. The weight in equation 3.6 is calculated as 𝛼𝑖,𝑁 =
∑ 𝑀𝑙,𝑁

𝑛
𝑙

𝑀𝑖,𝑁 ∑ (
∑ 𝑀𝑘,𝑁

𝑛
𝑘=1

𝑀𝑗,𝑁
)𝑛

𝑗=1

  .  

3.5.3 Mean of 𝑁-day Absolute Residuals (RC-C) 

Different from previous two rolling combination methods, this method uses the 

mean of preceding 𝑁 days’ residuals to calculate weights for individual forecasts of each 

hour. The advantage of this method is that it improves stability of weights by using more 

than one day’s forecasting residuals. Let 𝐴𝑖,𝑁 denotes mean absolute residuals of 𝑁 days 

which equation is 𝐴𝑖,𝑁 =
1

24𝑁
∑ |𝑒𝑡|24𝑁

𝑡=1 and 𝑖, 𝑗, 𝑙, and 𝑘 denotes the order of forecasts. The 

weight in equation 3.6 is calculated as 𝛼𝑖,𝑁 =
∑ 𝐴𝑙,𝑁

𝑛
𝑙

𝐴𝑖,𝑁 ∑ (
∑ 𝐴𝑘,𝑁

𝑛
𝑘=1

𝐴𝑗,𝑁
)𝑛

𝑗=1

  .  

Using the calculation of 8 models’ weights on January 3
rd

 as an example: if 𝑁=2, 

the mean absolute residuals from January 2
nd

 and January 1
st
 are used to calculate the 

weight (see Figure 3.7).  
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Figure 3.7: Example of using rolling combination model-C (𝑁=2). For January 3
rd

, the 

mean of absolute residuals from previous two days is used to calculate weights. 

3.5.4 Mean of 𝑁-day Absolute Residuals by Hour (RC-D) 

This method is an extended version of RC-A. Instead of using one day’s mean of 

absolute residuals to calculate weights, the new method first slices the data into 24 pieces 

by each hour, and then uses the mean of preceding 𝑁  hours’ absolute residuals to 

calculate weights for the present hour’s forecasts. Let 𝐻𝑖,𝑁 denotes mean of previous 𝑁 

days’ hourly absolute residual which equation is 𝐻𝑖,𝑁 =
1

𝑁
∑ |𝑒𝑡|𝑁

𝑡=1  and 𝑖, 𝑗, 𝑙, and 𝑘 

denotes the order of forecasts. The weight in equation 3.6 is calculated as 𝛼𝑖,𝑁 =

∑ 𝐻𝑙,𝑁
𝑛
𝑙

𝐻𝑖,𝑁 ∑ (
∑ 𝐻𝑘,𝑁

𝑛
𝑘=1

𝐻𝑗,𝑁
)𝑛

𝑗=1

 . 
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For example, to calculate the weights of the 8 individual forecasts at 10 a.m. 

January 3
rd

: if 𝑁=2, the mean of absolute residuals at 10 a.m. of January 1
st
 and January 

2
nd 

are used to calculate the weights (see Figure 3.8).  

 

Figure 3.8: Example of rolling combination model-D (𝑁 =2). The mean of absolute 

residuals at 10 a.m. of January 1
st
 and January 2

nd 
are used to calculate the combination 

weights for the models at 10 p.m. January 3
rd

. 

3.5.5 Mean of 𝑁-day Square of Residuals by Hour (RC-E) 

RC-E is a modified version of RC-D, which uses the mean of preceding 𝑁 days’ 

square residuals to calculate weights for individual forecasts of each hour. Let  𝑄𝑖.𝑁 

denotes mean hourly square residuals of previous 𝑁 days which equation is  𝑄𝑖.𝑁 =
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1

𝑁
∑ 𝑒𝑡

2𝑁
𝑡=1  and 𝑖, 𝑗, 𝑙, and 𝑘 denotes the order of forecasts. The weight in equation 3.6 is 

calculated as 𝛼𝑖,𝑁 =
∑ 𝑄𝑙,𝑁

𝑛
𝑙

𝑄𝑖,𝑁 ∑ (
∑ 𝑄𝑘,𝑁

𝑛
𝑘=1

𝑄𝑗,𝑁
)𝑛

𝑗=1

  . 

3.6 Regression Combination  

Regression models can be used to calculate weights for combination, instead of 

using absolute residuals and MAPEs. The advantage of this method is that weights may 

be more objective and may capture the characteristics which are not involved in residuals 

and MAPEs. The disadvantage could be its longer processing time than other methods. It 

uses ordinary least squares to minimize the sum of squares of forecasting errors. To 

generate accurate results, past 𝑁-day actual load and forecasts are used as historical data 

to estimate parameters. The forecasting has a moving window like the rolling 

combination method mentioned previously. For the first 𝑁  days which don’t have 

historical data and combined results, simple average is used to combine the forecasts. For 

example, if 𝑁=10, then the first 10-day actual load and forecasts are used as historical 

data to estimate parameters for the linear model. Therefore these 10 days don’t have 

combined forecasts and simple average is used to combine them. The equation for the 

regression model of each hour is given as follows:  

𝐿𝑜𝑎𝑑 = 𝛽0 + ∑ 𝛽𝑖𝑆𝑖

𝑛

𝑖=1

 (3.7) 

Where 𝛽0 refers to constant, 𝛽𝑖 refers to parameters, and 𝑆 refers to forecasts. 

 



 

 

CHAPTER 4: EXPERIMENT AND RESULTS 

This chapter will show the process of generating sister forecasts, combining sister 

forecasts and analyzing the combination results. The strategy of selecting sister models 

will be described. A summary and discussion of combination results will be addressed in 

the last section of this chapter. 

4.1 Background  

4.1.1 Data Description 

In this thesis, the load data is from Global Energy Forecasting Competition 2014.  

Temperature data for each hour are provided from 25 weather stations (the location of 

these weather stations is not provided). The arithmetic average of the 25 temperature data 

is used as the representative temperature for each hour. Hong, Wang et al. (2015) 

proposed an advanced method to select temperature data to combine, which is weather 

station selection.   

Figure 4.1 shows the relationship of temperature and load from year 2008. The 

scatter shape takes the form of a check mark or the letter ‘v’. The reason for this pattern 

is that people tend to consume more electricity in summer and winter for the purpose of 

cooling and heating. Seasons with mild temperatures (around 50°F) have 

characteristically lower energy usage. 
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Figure 4.1: Load-temperature relationship of 2008. Summer and winter have higher 

electricity consumption than spring and autumn. 

Figure 4.2 shows consumers of electricity use energy at different rates depending 

on the time of the day. This verifies the importance of time of day as a variable for load 

forecasting. Note that while the load vs. temperature curves exhibit the same basic shape, 

they are shifted depending on the time of day. 
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Figure 4.2: Comparison of load patterns (versus temperature) at 4 a.m. (left graph) and 9 

p.m. (right graph). Electricity consumption changes due to the different time. 

4.1.2 Experiment Process 

There are three steps to accomplish the experiment.  

1) The first one is to use different selection methods to select sister models. 

The sister forecasts generated from this step are used for the two sub-steps 

in step 2. 

2)  First sub-step is to compare the sister forecasts and out-of-sample sister 

forecasts to verify the usefulness of sister models. Second sub-step is 

using the sister forecasts to compare combination methods so that the best 

one can be selected among them.  

3) In step 3, the selected best combination method will be tested with the out-

of-sample sister forecasts (see Figure 4.3). This process can ensure the 

reliability of both sister forecasts and the best combination methods are 

checked with out-of-sample test. 
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Figure 4.3 Experiment process. The process includes 3 stages to ensure the reliability of 

sister forecasts and combination methods 

4.2  Sister Load Forecast 

There are two types of forecasting: ex-ante forecasting and ex-post forecasting. 

Ex-ante forecasting uses forecast data in the model to forecast load. Ex-post forecasting 

uses real data to forecast load and it is also called “backcasting”. For example, using 

previous forecasts of temperatures to forecast tomorrow’s load is ex-ante forecasting. 

Using yesterday’s temperature data to forecast yesterday’s load is ex-post forecasting. 

For real-time load forecasting, ex-ante forecasting is used because the actual temperature 

is unknown and forecasts of temperature must be used. Ex-post forecasting is commonly 

used to understand modeling error with actual information of the independent variables. 

In this thesis, ex-post forecasting is used. 

4.2.1 Basic Model 

The basic model used in this thesis to develop sister models is Tao’s vanilla 

benchmark model (Hong, Wang, et al., 2015; Hong, Pinson, et al., 2014). It is a multiple 
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linear regression model and was first proposed in Hong (2010). It is also the benchmark 

model in GEFCom2012 (Hong, Pinson, et al., 2014). Class variables are month, weekday, 

and hour in the model, which is shown as follows: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1𝑀𝑡 + 𝛽2𝑊𝑡 + 𝛽3𝐻𝑡 + 𝛽4𝑊𝑡𝐻𝑡 + 𝑓(𝑇𝑡) (4.1) 

where 𝑇 denotes as temperature, 𝛽 denotes the parameter of the linear regression model, 

and the function 𝑓(𝑇) is defined as follows: 

𝑓(𝑇𝑡) = 𝛽5𝑇𝑡 + 𝛽6𝑇𝑡
2 + 𝛽7𝑇𝑡

3 + 𝛽8𝑇𝑡𝑀𝑡 + 𝛽9𝑇𝑡
2𝑀𝑡 + 𝛽10𝑇𝑡

3𝑀𝑡 +

𝛽11𝑇𝑡𝐻𝑡 + 𝛽12𝑇𝑡
2𝐻𝑡 + 𝛽13𝑇𝑡

3𝐻𝑡  
(4.2) 

4.2.2 Forecasting Process 

To improve the accuracy of benchmark model, recency effects are added in the 

model. Recency effect is used to describe the effects of temperatures in preceding hours 

to the present hours’ load forecasts. Lagged temperature and moving average of 

temperature are the two components used in recency effects. The process of adding 

recency effects into the benchmark model has been explained in Hong, Liu, and Wang 

(2015). In this thesis, the difference between the sister models is that they use different 

rules to select the number of lagged temperature and moving average of temperature to 

add in the benchmark models. 

Year-ahead forecasting is used to test the effect of adding lagged temperature 

variables and moving average temperature variables in the benchmark model. This type 

of forecasting uses historical data to forecast one year’s load at one time. The lag-average 

pair (lagged variable - moving average variable pair) with the lowest MAPE under 
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different test scenarios will be chosen. Lagged temperature (lag) is an hourly lagged 

variable. The interval for the moving average (avg) of temperature is 24 hours.  

Day-ahead rolling forecasting is used to validate sister models. The selected lag-

average pair will be used on day-ahead load forecasting which uses historical data to 

forecast the next day’s load. The forecasting origin is not fixed so that the forecasting has 

moving window (Tashman, 2000). For example, Monday to Friday’s actual temperature 

and actual load data are used to forecast Saturday’s load, then Tuesday to Saturday’s 

actual temperature and actual load data are used to forecast Sunday’s load. This 

forecasting method is similar to methods used in electric power industry for STLF. The 

model of adding lagged temperature and moving average of temperature is shown as 

follows: 

Load = 𝛽0 + 𝛽1M𝑡 + 𝛽2W𝑡 + 𝛽3H𝑡 + 𝛽4W𝑡H𝑡 + 𝑓(𝑇𝑡) + 𝑓(∑ 𝑇𝐴𝑣𝑔,𝑑𝑑 ) +

𝑓(∑ 𝑇𝐿𝑎𝑔,𝑖𝑖 )   

(4.3) 

Where the function 𝑇𝐴𝑣𝑔,𝑑 is as follows: 

𝑇𝐴𝑣𝑔,𝑑 =
1

24
∑ 𝑇𝐿𝑎𝑔,𝑖

24𝑑

𝑖=24𝑑−23
 

(4.4) 

4.2.3 Methodology of Sister Forecasting  

Different periods of training data are used to estimate parameters of the models. 

One period uses data from 2005, 2006, and 2007 as training data, which is denoted as L1. 

The other period uses data from 2006 and 2007 as training data, which is denoted as L2. 

The data from 2008 is used as validation data. The test data is from 2009. This test data 

includes hourly load and hourly temperature. The forecasting in this chapter is day-ahead 

ex-post forecasting. The process of sister load forecasting can be seen in Figure 4.4. 
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Figure 4.4: Process of sister load forecasting. The stages include selecting lag-average 

pair for sister models, using sister models to generate and compare forecasts, and testing 

sister models with new dataset. 

Load usage has seasonal and hourly changes. The pattern of electricity 

consumption of summer is different from the one of winter. People also tend to use more 

electricity in the daytime and night (when they are most active) than in early morning. 

Therefore much of the literature in this area slices data into 24 pieces so that each hour 

has its own parameter estimation of the forecasting model. On the other hand, most of 

time all of the historical data are not sliced and directly used to estimate the parameters of 

one model for all the hours. The test scenario of selecting sister models is based on these 

two data separation strategies and their accuracy of forecasting will be analyzed. 

To find the best recency effect, combinations of lag variables and moving average 

variables are tested. The number of lag variables varies from 0 to 48 and the number of 

moving averages varies from 0 to 7, so there are 392 combinations in total. Each sister 

model has its own way to select a lag-average pair (see Table 4.1), which is explained in 

Using year-ahead load forecasting and benchmark model  
to select lag-average pair for each sister model. 

Training data: 2006-2007 and 2005-2007 

Validation data: 2008 

Using day-ahead load forecasting and sister models to 
generate and compare forecasts. 

Training data: 2006-2007 and 2005-2007 

Validation data: 2008 

Using day-ahead load forecasting to test sister models 
with selected lag-average pair. 

Test data: 2009 
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Liu, Liu, and Hong (2015). The forecasting procedure is finished by using SAS software 

and its macro language.  

The scenarios of selecting lag-average pair for sister models: 

1) Model A uses completed training data to estimate parameters of one model. It tries all 

the lag-average pairs and uses the one with lowest MAPE as the final model. 

2) Model B uses sliced training data and sliced validation data. These data are sliced by 

hours so that each hour has its own parameter estimation of the model with recency 

effect. MAPE is calculated on the base of 24 hours and the lag-average pair with 

lowest MAPE is selected as the final pair for a sister model. 

3) Model C uses completed training data and sliced validation data. Completed training 

data is used to estimate parameters for hourly validation data and this process repeats 

24 times. The lag-average pair with lowest MAPE for each hour is selected as the 

final pair for that hour. There are 24 pairs in total. 

4) Model D uses sliced training data and sliced validation data. Hourly training data and 

hourly validation data are used to estimate parameters. This process repeats 24 times. 

Instead of calculating MAPE on the base of 24 hours, hourly MAPE is calculated and 

the lag-average pair with lowest MAPE is selected as the final pair for that hour. 

There are 24 pairs in total. 

Table 4.1: Recency effect modeling of sister models. 

model Training Validation Lag-average Pair 

A 1 1 1 

B 24 24 1 

C 1 24 24 

D 24 24 24 
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For Model A and Model B, because they only choose one lag-average pair so 

every hour has the same pair. Model A-L1 selects 0 lag variable and 17 moving average 

variables and Model A-L2 selects 1 lag variable and 4 moving average variables. Model 

B-L1 selects 1 lag variable and 1 moving average variable and Model B-L2 selects 1 lag 

variable and 0 moving average variable. Model C and Model D have 24 lag-average pairs 

for 24 hours so each hour has different pairs, which are shown in Table 4.2.
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Table 4.2: Model C and Model D with selected lag-average pair. 

Hour 

Model C Model D 

L1 L2 L1 L2 

Lag Avg Lag Avg Lag Avg Lag Avg 

1 0 16 1 5 1 0 1 0 

2 0 17 1 1 1 1 1 0 

3 0 18 1 1 1 1 1 0 

4 0 19 1 2 1 0 1 1 

5 0 20 1 3 2 1 2 1 

6 0 21 1 12 2 2 1 0 

7 1 13 1 13 2 1 2 1 

8 0 13 1 12 2 1 2 1 

9 0 28 1 9 2 1 1 1 

10 0 31 1 0 1 1 1 1 

11 2 0 1 0 1 0 1 0 

12 0 19 1 1 1 0 1 0 

13 1 2 1 2 0 2 1 1 

14 1 12 1 3 2 0 0 2 

15 1 13 1 4 0 0 0 0 

16 1 5 1 6 0 0 0 0 

17 1 9 1 8 0 1 1 0 

18 1 23 1 7 0 1 0 1 

19 1 13 1 17 0 2 0 2 

20 0 10 1 9 1 3 0 3 

21 0 5 1 5 1 0 1 1 

22 1 6 1 6 1 0 1 1 

23 1 6 1 3 1 0 1 0 

24 2 8 1 4 1 0 1 0 
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4.2.4 Analysis of Forecasting Results 

Table 4.3 shows the MAPE of sister forecasts for 2008. Model A with three-year 

training data (A-L1) has the lowest MAPE. This result is also tested on the data of 2009 

and the conclusion is the same (see Table 4.4). However, the model with lowest MAPE 

(Lowest MAPE is highlighted in bold) for each hour is different for 2008 and 2009. For 

instance, for 2008, the model with lowest MAPE for hour 3 to hour 8 is A-L1 while for 

2009 the models with lowest MAPE for the same period of time are B-L1, D-L1, D-L1, B-

L1, D-L1, and D-L1, respectively. Forecasting contains uncertainty and the past isn’t 

repeatable, so for different periods of time, the best forecasting model could be different. 

On the other hand, this experiment also shows a common flaw: separating data by hour 

always leads to more accurate forecasts. This is of course not always true. In this 

experiment, Model B and Model D don’t outperform Model A. 

The sister models perform better than benchmark model. Model A-L1’s MAPE is 

4.575%. Comparing to the benchmark model which has a MAPE of 5.641%, Model A-L1 

has reduced MAPE by 23%. The results from using sister models on test data shows that 

MAPE of Model A-L1 is 5.013%, which is the lowest one among MAPEs of the eight 

models.  
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Table 4.3: MAPE (%) of sister forecasts for 2008.  

Hour 
A B C D 

L1 L2 L1 L2 L1 L2 L1 L2 

1 4.229 4.402 4.268 4.512 4.592 4.492 4.324 4.515 

2 4.419 4.571 4.457 4.666 4.853 4.675 4.530 4.695 

3 4.533 4.750 4.647 4.754 4.984 4.728 4.762 4.756 

4 4.560 4.747 4.735 4.810 5.049 4.701 4.892 4.798 

5 4.482 4.653 4.740 4.596 4.972 4.581 4.768 4.552 

6 4.411 4.545 4.770 4.548 4.759 4.496 4.761 4.504 

7 4.755 4.849 5.195 5.002 4.809 4.778 5.181 4.981 

8 4.065 4.123 4.675 4.283 4.188 4.119 4.379 4.287 

9 3.930 3.852 4.432 4.054 3.973 3.901 4.061 4.131 

10 4.170 4.059 4.347 4.234 4.287 4.067 4.264 4.279 

11 4.509 4.461 4.521 4.496 4.468 4.491 4.347 4.357 

12 4.682 4.653 4.855 4.730 4.736 4.637 4.638 4.653 

13 4.808 4.821 5.107 4.817 4.849 4.895 4.827 5.003 

14 4.945 4.927 5.253 5.071 4.993 5.043 5.079 4.982 

15 5.129 5.095 5.327 5.309 5.122 5.128 5.219 5.169 

16 5.258 5.232 5.456 5.404 5.217 5.331 5.261 5.240 

17 5.366 5.346 5.510 5.245 5.203 5.305 5.324 5.158 

18 5.742 5.566 5.453 5.210 5.566 5.587 5.022 5.119 

19 5.223 5.000 5.054 5.111 5.017 5.118 4.665 4.814 

20 4.507 4.509 4.644 4.666 4.604 4.612 4.442 4.536 

21 3.879 4.009 4.109 4.023 4.001 4.052 3.918 4.140 

22 3.921 4.031 4.053 4.018 3.928 3.929 3.886 4.115 

23 4.018 4.196 4.060 4.179 4.059 4.049 4.072 4.178 

24 4.263 4.442 4.202 4.473 4.366 4.408 4.276 4.441 

Average 

MAPE 
4.575 4.618 4.745 4.675 4.691 4.630 4.621 4.642 
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Table 4.4: MAPE (%) of sister forecasts for 2009.  

Hour 
A B C D 

L1 L2 L1 L2 L1 L2 L1 L2 

1 4.973 5.801 5.119 5.133 5.553 5.704 5.126 5.289 

2 5.126 5.922 5.247 5.280 5.932 5.872 5.255 5.289 

3 5.398 6.201 5.316 5.511 6.205 6.063 5.325 5.522 

4 5.395 6.125 5.273 5.417 6.164 6.023 5.170 5.560 

5 5.466 6.268 5.194 5.493 6.228 6.144 5.163 5.450 

6 5.136 5.796 4.933 5.231 5.489 5.686 4.936 5.327 

7 5.390 5.811 5.201 5.335 5.653 5.929 5.184 5.282 

8 4.567 4.846 4.715 4.676 5.013 5.046 4.517 4.568 

9 4.252 4.570 4.546 4.449 4.570 4.631 4.286 4.347 

10 4.361 4.710 4.671 4.677 4.854 4.765 4.652 4.685 

11 4.758 5.171 5.063 5.071 5.087 5.029 5.062 5.056 

12 4.986 5.393 5.495 5.336 5.286 5.312 5.494 5.433 

13 5.233 5.665 5.912 5.784 5.653 5.637 5.703 6.015 

14 5.306 5.598 5.937 5.818 5.685 5.613 6.138 5.835 

15 5.455 5.687 5.930 5.975 5.786 5.638 6.633 6.633 

16 5.531 5.684 5.965 5.808 5.680 5.677 6.714 6.736 

17 5.588 5.701 5.941 5.590 5.599 5.562 5.923 6.070 

18 5.829 5.891 5.717 5.095 5.937 5.527 5.611 5.634 

19 5.215 5.531 5.283 4.985 5.430 5.399 5.421 5.369 

20 4.347 4.837 4.992 4.538 4.698 4.937 4.836 4.528 

21 4.406 4.949 4.586 4.553 4.687 5.182 4.558 4.713 

22 4.464 5.007 4.493 4.401 4.726 4.940 4.496 4.671 

23 4.490 5.088 4.552 4.558 4.849 5.114 4.565 4.738 

24 4.643 5.299 4.785 4.747 5.031 5.272 4.793 4.921 

Average 

MAPE 
5.013 5.481 5.203 5.144 5.408 5.446 5.232 5.320 
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4.3 Analysis of Forecast Combination Results 

This section will analyze the results of combining sister forecasts. In this 

investigation the MAPE of Model A-L1 is used as benchmark 1 and the MAPE of a 

simple average is used as benchmark 2. All of the combination methods in Chapter 3 will 

be tested on the forecasts of 2008. The one that has the lowest MAPE and also beats the 

benchmarks is selected as the representative combination method, and will be used on the 

forecasts of 2009. SAS software and its macro language are used to generate combined 

forecasts.  

4.3.1  Comparison of Simple Average Methods and Median Method 

Comparing to sister model A-L1’s MAPE of 4.575%, simple average’s MAPE 

(benchmark 2) has decreased 4%. Modified simple average model has an even lower 

MAPE than simple average (see Table 4.5). When forecasters are not sure about 

weighted combination, simple average and its modified models could be helpful to 

generate basic combined results. The method of using median of the sister forecasts 

perform better than benchmark 1 (model A-L1), but doesn’t outperform simple average. 

Its MAPE is 4.440%. 

Table 4.5: MAPE (%) comparison of simple average methods and median method.  

Method MAPE 

Simple average (Benchmark 2) 4.385 

Modified simple average 4.382 

Median 4.440 

 

Simple average also can be used as a benchmark to measure the performance of 

combination methods used in most literatures. For example, Montgomery et al. (2011) 
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provides an equation to calculate weight by using correlation and variances of different 

forecasting methods (see Equation 4.1) which can only combine two forecasts at one time. 

Table 4.6 shows MAPE’s of combining two models at one time using Equation 4.1, for 

every sister load forecast. Notice that most of the MAPE of combined forecasts are lower 

than the lowest MAPE of sister models, but it is much higher than using a simple average, 

which is the most commonly used combination method for load forecasting.  

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝜎1

2 − 𝜌𝜎1𝜎2

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

 (4.5) 

Table 4.6: MAPE (%) comparison of using Equation 4.1. The darker color means the 

MAPE is smaller.  

Model A-L1 B-L1 C-L1 D-L1 A-L2 B-L2 C-L2 D-L2 

A-L1  4.580 4.604 4.452 4.479 4.484 4.487 4.447 

B-L1  
 4.536 4.585 4.493 4.615 4.493 4.596 

C-L1   
 4.484 4.563 4.535 4.563 4.492 

D-L1    
 4.415 4.553 4.419 4.559 

A-L2     
 4.477 4.548 4.424 

B-L2      
 4.493 4.575 

C-L2       
 4.462 

D-L2        
 

 

4.3.2 Comparison of Trimmed Mean and Winsorized Mean Methods 

The MAPE of Winsorized mean is 4.389% while the MAPE of trimmed mean is 

4.440%. Winsorized mean has better performance than trimmed mean, but its MAPE is 

still higher than benchmark 2. 
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4.3.3  Comparison of Group Analysis Methods 

To get accurate combined forecasts, the effect of using one day ago residuals or 

MAPE to 28-day ago residuals is tested. The lowest MAPE for the method using absolute 

residual is 4.583% and the lowest MAPE for the method using MAPE is 4.545% (see 

Table 4.7). The method using 9 days ago forecasts’ MAPE to calculate the weight for 

present hour is the one outperforms others. 
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Table 4.7: MAPE (%) comparison between residual based binary-weight method and 

MAPE based binary-weight method.  

𝑵 days MAPE (residual-base method) MAPE (MAPE-based method) 

1 4.591 4.562 

2 4.595 4.562 

3 4.597 4.568 

4 4.618 4.554 

5 4.635 4.566 

6 4.600 4.557 

7 4.588 4.551 

8 4.603 4.564 

9 4.608 4.545 

10 4.622 4.559 

11 4.611 4.562 

12 4.592 4.561 

13 4.602 4.562 

14 4.595 4.569 

15 4.619 4.560 

16 4.611 4.555 

17 4.600 4.555 

18 4.609 4.560 

19 4.611 4.557 

20 4.624 4.563 

21 4.617 4.565 

22 4.583 4.572 

23 4.592 4.565 

24 4.629 4.557 

25 4.591 4.556 

26 4.611 4.563 

27 4.608 4.565 

28 4.614 4.560 
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4.3.4  Comparison of Rolling Combination Methods 

Table 4.8 shows the combination results of the five rolling combination methods. 

Both model A and model B have the same MAPE and they barely beat benchmark 2. The 

effect of using one day ago absolute residuals or MAPEs to 28-day ago absolute residuals 

or MAPEs is tested.  
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Table 4.8: MAPE (%) comparison of five rolling combination methods. 

𝑵 days Model-A Model-B Model-C Model-D Model-E 

1 4.401 4.402 4.408 4.413 4.473 

2 4.396 4.397 4.405 4.408 4.460 

3 4.392 4.393 4.401 4.400 4.452 

4 4.397 4.398 4.403 4.402 4.455 

5 4.411 4.413 4.402 4.402 4.455 

6 4.391 4.395 4.401 4.399 4.450 

7 4.396 4.400 4.401 4.399 4.453 

8 4.404 4.406 4.401 4.400 4.456 

9 4.393 4.396 4.400 4.399 4.454 

10 4.397 4.401 4.400 4.399 4.454 

11 4.401 4.403 4.399 4.399 4.452 

12 4.390 4.392 4.398 4.398 4.450 

13 4.395 4.397 4.398 4.398 4.449 

14 4.401 4.403 4.399 4.398 4.449 

15 4.402 4.402 4.398 4.398 4.450 

16 4.385  4.385  4.397 4.397 4.448 

17 4.398 4.398 4.398 4.396 4.446 

18 4.398 4.398 4.398 4.397 4.448 

19 4.397 4.397 4.398 4.397 4.448 

20 4.398 4.398 4.398 4.397 4.449 

21 4.385  4.385  4.397 4.396 4.447 

22 4.389 4.389 4.396 4.396 4.447 

23 4.400 4.400 4.397 4.396 4.447 

24 4.403 4.403 4.397 4.397 4.448 

25 4.404 4.404 4.397 4.396 4.448 

26 4.401 4.401 4.398 4.397 4.448 

27 4.396 4.396 4.397 4.396 4.448 

28 4.389 4.389 4.397 4.395 4.447 
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4.3.5  MAPE of Regression Combination method 

Different from the methods above, this method uses a regression model instead of 

forecasting residuals to estimate the weight for each sister forecast. The regression model 

needs historical data so the number of days it needs to estimate parameters is tested. The 

results show using 50 days to estimate parameters has the lowest MAPE, which is 

4.299%. This MAPE is lower than benchmark 2. The comparison of MAPEs of using 𝑁-

day actual load as historical data is in Table 4.9. 

Table 4.9: MAPE (%) comparison of using 𝑁-day actual load as historical data for 

regression combination.  

𝑵 MAPE 𝑵 MAPE 𝑵 MAPE 𝑵 MAPE 

1 5.341 22 4.457 43 4.349 64 4.328 

2 5.088 23 4.450 44 4.344 65 4.323 

3 4.832 24 4.438 45 4.335 66 4.325 

4 4.839 25 4.423 46 4.332 67 4.329 

5 4.845 26 4.417 47 4.325 68 4.327 

6 4.753 27 4.412 48 4.320 69 4.321 

7 4.687 28 4.410 49 4.313 70 4.319 

8 4.653 29 4.420 50 4.297 71 4.318 

9 4.622 30 4.428 51 4.299 72 4.317 

10 4.606 31 4.435 52 4.302 73 4.313 

11 4.578 32 4.412 53 4.303 74 4.316 

12 4.541 33 4.401 54 4.310 75 4.317 

13 4.539 34 4.396 55 4.315 76 4.320 

14 4.511 35 4.389 56 4.310 77 4.322 

15 4.492 36 4.380 57 4.305 78 4.326 

16 4.499 37 4.364 58 4.306 79 4.331 

17 4.510 38 4.361 59 4.308 80 4.332 

18 4.529 39 4.356 60 4.312 81 4.331 

19 4.516 40 4.348 61 4.319 82 4.328 

20 4.500 41 4.344 62 4.327 83 4.328 

21 4.477 42 4.346 63 4.329 84 4.327 
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4.4 Summary and Discussion 

Figure 4.5 and Table 4.10 show the MAPEs of all the techniques. In the figure 

GA denotes group analysis method and RC denotes rolling combination method. Nearly 

every method manages to beat benchmark 1. Only the modified simple average and 

regression combination beat the benchmark 2. The regression combination method 

outperforms others in this test case. In rolling combination methods, model C, model D, 

and model E all outperform model A and model B. Many people probably think it could 

generate more accurate forecasts by using more than one day’s absolute residuals to 

calculate weights. However, in rolling combination of this test case, model A and model 

B outperform model C, model D, and model E which shows using one day’s absolute 

residuals could lead to better forecasts. 

 

Figure 4.5: Comparison of 13 combination methods and benchmarks. The individual 

sister model A-L1 has the largest MAPE while regression combination has the smallest 

MAPE. 
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Table 4.10: MAPE (%) comparison of 13 methods with benchmarks.  

Methods MAPE 

Sister model A-L1 (benchmark 1) 4.575 

Simple average (benchmark 2) 4.385 

Modified simple average 4.382 

Median 4.440 

Trimmed mean 4.440 

Winsorized mean 4.389 

Group analysis-using absolute residual 4.583 

Group analysis-using MAPE 4.545 

Rolling combination model-A 4.385 

Rolling combination model-B 4.385 

Rolling combination model-C 4.396 

Rolling combination model-D 4.395 

Rolling combination model-E 4.446 

Regression combination 4.299 

 

To verify the usefulness of the regression combination, its best model (𝑁=50) is 

tested on the data of 2009. For 2009, the sister forecasting model with lowest MAPE, 

which is also benchmark 1, is model A-L1. Its MAPE is 5.013%. The MAPE of 

benchmark 2 is 5.081% (see table 4.11).  By using regression combination with 50-day 

historical data, the MAPE of the combined forecasts is 4.545%, which is a decrease of 9% 

compared to benchmark 1 and 11% compared to benchmark 2. The test result of 2009 

also shows a fact that sometimes simple average can’t provide a better forecast than using 

individual forecast. It is necessary to have other combination methods when simple 

average is no longer suitable for the situation. 
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Table 4.11: MAPE (%) comparison of regression combination method with benchmarks 

on data of 2008 and 2009. 

Techniques 
MAPE 

(validation period) 

MAPE 

(test period) 

Sister model A-L1 (benchmark 1) 4.575 5.013 

Simple average (benchmark 2) 4.385 5.081 

Regression combination 4.299 4.545 

 

In addition, the methods are compared using their one-year overall MAPEs. The 

combination method which has the smallest MAPE doesn’t mean it has the smallest 

MAPE for every hour. For instance, comparing MAPEs of the top five combination 

methods with low MAPEs (see Table 4.12), the one has the smallest MAPE for each hour 

is not always regression combination method. It is possible that regression combination 

can’t outperform other methods if different error measurement and different dataset are 

used. However, forecasters can borrow the strategy of applying and comparing the 13 

combination methods. Forecasters and researchers could check if it is better to judge a 

combination method by its average performance than by its hourly performance. 

Some scholars have stated that the more diverse the forecasting methods are, the 

greater the expected improvement in accuracy (Armstrong, 2001). The results of 

combining sister load forecasts prove that combining the forecasts from similar models 

can also improve the accuracy of forecasting significantly. As mentioned previously, due 

to many constrains forecasters or research groups can only concentrate on studying 

particular forecasting method. Combining sister forecasts could be more suitable to real-

world cases than combining diverse forecasts. 
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Table 4.12: Hourly MAPEs (%) of top five combination methods. The smallest MAPE is 

highlighted in bold for each hour. 

Hour 
Simple 

average 

Modified 

simple 

average 

Winsorized 

mean 

Rolling 

Combination 

model-A 

Regression 

Combination 

1 4.195 4.181 4.251 4.124 4.017 

2 4.341 4.345 4.430 4.306 4.155 

3 4.491 4.495 4.600 4.437 4.238 

4 4.554 4.554 4.666 4.486 4.302 

5 4.399 4.383 4.488 4.347 4.224 

6 4.319 4.320 4.427 4.289 4.197 

7 4.628 4.649 4.725 4.640 4.522 

8 3.999 4.007 4.108 3.967 3.834 

9 3.820 3.838 3.862 3.793 3.701 

10 4.042 4.040 4.114 4.031 3.872 

11 4.256 4.252 4.313 4.313 4.087 

12 4.489 4.483 4.535 4.495 4.394 

13 4.650 4.644 4.694 4.632 4.617 

14 4.702 4.684 4.757 4.713 4.701 

15 4.858 4.842 4.889 4.869 4.851 

16 4.959 4.950 4.982 4.982 4.887 

17 5.000 4.995 5.043 5.041 4.932 

18 4.974 4.933 5.073 5.132 5.048 

19 4.652 4.643 4.755 4.788 4.558 

20 4.263 4.242 4.340 4.300 4.212 

21 3.819 3.819 3.878 3.800 3.832 

22 3.791 3.814 3.852 3.774 3.877 

23 3.897 3.912 3.951 3.866 3.993 

24 4.139 4.148 4.189 4.107 4.112 

 

 

 



 

 

CHAPTER 5: CONCLUSION AND FUTURE WORK 

There is a large amount of literature devoted to the improvement of load 

forecasting accuracy, but with few on load forecast combination. Most papers on load 

forecast combination only focus on combining forecasts from independent forecasting 

techniques. The combination method commonly used is simple average. This thesis 

investigates combining sister load forecasts, which are developed from a group of sister 

models with similar model structure. The proposed method can help forecasters improve 

forecasting accuracy with reasonable efforts and resource requirements. 13 combination 

methods are tested using data from the Global Energy Forecasting Competition 2014. 

The best-performing combination method in this test case is regression combination. The 

out-of-sample test shows that it decreases MAPE approximately 10% comparing with the 

two benchmarks. The aforementioned forecasting method by using recency effect has 

become the state-of-the-art forecasting method in the load forecasting area. By testing the 

combination methods on the sister forecasts which generated by using recency effect, the 

forecasting accuracy has been improved one-step further. This test also proves that 

because load is very stochastic, sometimes using simple average to combine forecasts 

may not improve the accuracy so it is better to have backup load forecast combination 

methods. For different scenarios the best method may vary, but the overall load forecast 

combination methodology and strategy in this thesis can be borrowed and applied. This 

thesis is also the first formal investigation on combining sister forecasts.  
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Although the representative combination methods have been selected and tested 

thoroughly, there is still room for improvement. The parameters of  the regression models 

in regression combination are not constrained, which means that it is possible that 1) they 

can be negative and/or 2) the sum of them could be larger or smaller than 1. From the 

perspective of improving forecasting accuracy, the value of these parameters is not 

analyzed in detail. It is possible that positive and sum-to-unity weights may further 

enhance the forecast combination. Additional research could be conducted to analyze 

constrained parameters for regression models. 

Besides the research direction mentioned above, there are also three topics 

deserve some further analysis. Firstly, the forecasts used in this thesis are all point 

forecasts. Forecasters could combine probabilistic forecasts and investigate the best 

combination method for them (see e.g. Wallis, 2011; Hall & Mitchell, 2007). Secondly, 

the tested combination methods are quite basic and there are more weighted averaging 

schemes that may be beneficial for load forecast combination. Forecasters may test 

additional combination methods on sister forecasts and check if accuracy of forecasting 

could be improved. Examples of other combination methods include ANN or Least 

Absolute Deviation method (Nowotarski, Raviv, Trück, & Weron, 2014). Lastly, 

combining sister electricity price forecasts can be another direction to pursue. 
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